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A Bayesian Nonlinear Mixed-Effects Location Scale Model for 
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Daniel R. Zimprich,
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Abstract

We present a Bayesian nonlinear mixed-effects location scale model (NL-MELSM). The NL-

MELSM allows for fitting nonlinear functions to the location, or individual means, and the scale, 

or within-person variance. Specifically, in the context of learning, this model allows the within-

person variance to follow a nonlinear trajectory, where it can be determined whether variability 

reduces during learning. It incorporates a sub-model that can predict nonlinear parameters for 

both, the location and scale. This specification estimates random effects for all nonlinear location 

and scale parameters that are drawn from a common multivariate distribution. This allows 

estimation of covariances among the random effects, within and across the location and the scale. 

These covariances offer new insights into the interplay between individual mean structures and 

intra-individual variability in nonlinear parameters. We take a fully Bayesian approach, not only 

for ease of estimation, but also for inference because it provides the necessary and consistent 

information for use in psychological applications, such as model selection and hypothesis testing. 

To illustrate the model, we use data from 333 individuals, consisting of three age groups, who 

participated in five learning trials that assessed verbal memory. In an exploratory context we 

demonstrate that fitting a nonlinear function to the within-person variance, and allowing for 

individual variation therein, improves predictive accuracy compared to customary modeling 

techniques (e.g., assuming constant variance). We conclude by discussing the usefulness, 

limitations, and future directions of the NL-MELSM.
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The ability to learn is of central importance throughout the lifespan and it serves as a main 

ingredient for long-term development of individuals, as well as their adaptation to changing 

environmental demands (Freund, 2008; Rast, 2011). While learning abilities are most 

evident in young age, they remain of importance into adulthood where they, however, are 

subject to decline with advancing age (Kausler, 1994). That is, most people will experience 

losses in their learning abilities, sometimes beginning in the mid-20s (Salthouse, 2009). At 

the same time, a defining feature of cognitive decline is potentially large and reliable 

individual differences therein. For example, some individuals will decrease dramatically in 

their ability to store and recall new information, but others will maintain remarkable levels 

of cognitive functioning (Harada, Love, & Triebel, 2013). Accordingly, describing and 

explaining these individual differences has generated a large volume of scientific interest 

over the last decades, because these differences might shed light on the mechanisms that 

allow for maintaining the ability to learn across the lifespan (Bush & Mosteller, 1955; Craik 

& Lockhart, 1972; Estes, 1950; Kausler, 1994; Rast, 2011; Rast & Zimprich, 2009; Z. 

Zhang, Davis, Salthouse, & Tucker-Drob, 2007; Zimprich, Rast, & Martin, 2008)

Typically, performance on a learning task improves with repetition. However, with every 

repetition the amount of performance improvement decreases. As a consequence, 

performance improvements, or learning of a task, may be described as a process that benefits 

from further practice, but with diminishing returns. If performance is diagrammed as a 

function of the number of practice repetitions, the so-called learning curve emerges that 

follows a gradually increasing, albeit negatively accelerated trajectory (Ritter & Schooler, 

2001). The relation between performance improvement and repeated practice, as described 

in the learning curve, is so ubiquitous that it applies to a broad variety of performance 

increments in human behavior, including the acquisition of new skills (Ackerman, 1988), 

gaining knowledge of statistics (e.g., Smith, 1998) and, of course, verbal learning (Tulving 

& Madigan, 1970; Tulving & Pearlstone, 1966).

Generally, different forms of learning will lend themselves to different functions that reflect 

theoretical expectations, such as diminishing returns with repeated practice, resulting in an 

approximation of an idealized asymptote of maximal learning. As such, a number of 

nonlinear models have been proposed that capture these distinct features. For example, 

Heathcote, Brown, and Mewhort (2000) discussed an exponential curve for skill acquisition 

while Mazur and Hastie (1978) put forward a hyperbolic function for free recall, perceptual, 

and motor learning. Yet another approach, the power curve, was discussed by Logan (1988) 

and in its more genearl form by Newell and Rosenbloom (1981). More recent work has 

focused on refining some of these classic learning functions. For example, N. J. Evans, 

Brown, Mewhort, and Heathcote (2018) added an additional parameter to the power and the 

exponential function to address phases of little change early in the learning process.

The different nonlinear functions mentioned above do not only affect the curvature of 

learning trajectories, but they also have important theoretical implications as data-generative 

models. For example, as detailed by Mazur and Hastie (1978), the exponential curve may be 

interpreted as being based on a “replacement model” of learning. It suggests that learning is 

a process through which incorrect response tendencies are replaced by more and more 

correct response tendencies. The exponential model implies a constant learning rate relative 
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to the amount left to be learned and the replacement process is assumed to occur at a 

constant rate. By contrast, the hyperbolic curve is based on an “accumulation model” of 

learning. According to the accumulation model, learning is a process by which correct 

response tendencies increase steadily with practice and compete with incorrect response 

tendencies, which remain constant across trials. Unlike the exponential model, the amount of 

accumulation per trial is considered a constant proportion of the amount or duration of the 

study. Finally, the power curve is based on the assumption that “…some mechanism is 

slowing down the rate of learning” (Newell & Rosenbloom, 1981, p. 18). Thus, if learning 

follows a power law, learning slows down across trials.

The common element among these models is that they contain parameters for lower and 

upper boundaries and a parameter that relates the speed of learning accumulation, or 

learning rate, that connects the lower to the upper boundary (Anzanello & Fogliatto, 2011). 

Fast learners will typically have steep initial increases in performance, but a slower 

accumulation once maximal performance has been attained, resulting in a markedly curved 

learning trajectory (Rast, 2011). Slow learners, on the other hand, tend to produce more 

shallow trajectories that may appear linear. As a consequence, they will need more trials to 

master the same material, compared to fast learners, which results in learning curves that 

appear considerably less “bent” (Feldman, Cao, Andalib, Fraser, & Fried, 2009; Ram, 

Stollery, Rabbitt, & Nesselroade, 2005).

Nonlinear models are not the only approach for modeling learning data. In fact, polynomial 

models are a common choice due to their flexibility and ease of implementation (Blachstein 

& Vakil, 2016; Jones et al., 2005). However, these models are typically limited to 

retrodiction: that is, they do not allow for extrapolation beyond the observed data range 

(Bonate, 2009). Any extrapolation beyond the observed range typically results in useless 

predictions as they will be dominated by the leading term of the polynomial equation. More 

importantly for applied researchers, higher order polynomial models result in parameters 

that are difficult to interpret and that are highly contingent on data handling features such as 

centering choices (Dalal & Zickar, 2012). Nonlinear models, in turn, often result in more 

interpretable parameters and, if the functions represent a theoretical model, they allow for 

extrapolations that result in more meaningful predictions compared to polynomial models 

(Bonate, 2009; Grimm, Ram, & Hamagami, 2011)

While most work revolved around individual differences, in recent years the focus has 

widened to include differences within individuals (typically over time or across similar 

situations) as a source of information on the stability of a persons’ behavioral system (Brose, 

Voelkle, Lövdén, Lindenberger, & Schmiedek, 2015; Rast, Hofer, & Sparks, 2012; 

Sliwinski, Hoffman, & Hofer, 2010; Voelkle, Brose, Schmiedek, & Lindenberger, 2014). 

The central idea is that within-person variability should not be regarded as reflecting mere 

measurement error but that it conveys systematic information that is not contained in 

individual means. These ideas are not new to psychology as they have been discussed for 

almost a century now (Cattell, Cattell, & Rhymer, 1947; Fiske & Rice, 1955; Horn, 1972; 

Woodrow, 1932). However, only over the past 15 to 20 years has interest in intra-individual 

variability (IIV) increased (Eizenman, Nesselroade, Featherman, & Rowe, 1997; Hultsch, 

Hertzog, Small, McDonald-Miszczak, & Dixon, 1992; Nesselroade & Salthouse, 2004), 
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probably also due to the availability of abundant within-person-level data, and it is now 

commonly used to describe the number of reversible, short-term behavioral fluctuations that 

are observed over time (Ram & Gerstorf, 2009). These fluctuations can also occur in 

different situations and are interpreted to carry information about short-term adaptive 

processes, regulative mechanisms, and potential vulnerability to the system (Nesselroade, 

1991; Röcke & Brose, 2013).

An important assumption about IIV is that it reflects other aspects of behavioral outcomes 

compared to individual levels or rates of change, such as individual means (Fagot et al., 

2018, iM). Also, from a theoretical perspective, IIV is given the potential to be both the 

explanans and explanandum. For example, two individuals may perform, on average, equally 

well on a task but their performance pattern on single items within the task might be quite 

different (Garrett, MacDonald, & Craik, 2012). Such differences in the distribution of scores 

about the average performance are considered to reflect a meaningful aspect of individual 

performance and behavior, for example, in the prediction of cognitive decline (Lövdén, Li, 

Shing, & Lindenberger, 2007).

In terms of statistical modeling, mixed-effects models have been a frequent choice as they 

partition between- and within-person variability and thus allow for clustering effects, 

common in repeated measurements, such as learning tasks (Chu et al., 2007). Recently, 

mixed-effects models have been expanded to mixed-effects location scale models (MELSM; 

Hedeker, Mermelstein, & Demirtas, 2008; Watts, Walters, Hoffman, & Templin, 2016) that 

allow the inclusion of submodels for both the between- and within-person variance – or the 

location and the scale of the generating data process. With these models it is possible to 

model and estimate between and within person differences simultaneously. So far, the 

MELSM has been, for the most part, defined and used for intrinsically linear applications 

(Hedeker, Mermelstein, & Demirtas, 2012; Leckie, French, Charlton, & Browne, 2014; Rast 

& Ferrer, 2018). While Hedeker, Demirtas, and Mermelstein (2009) and Walters (2015) 

discussed a MELMS for a logit response, we are currently only aware of one inherently non-

linear application based on the SITAR age-shifted model for adolescent growth (Cole, 

Donaldson, & Ben-Shlomo, 2010) described by Goldstein, Leckie, Charlton, Tilling, and 

Browne (2018). In that context the authors describe a MELSM that includes the non-linear 

term in the location part of the model. In this article, we present an approach to address and 

explain between- and within-person differences in verbal learning simultaneously using 

nonlinear models for both the location and the scale. Hence, the aim of this paper is to define 

nonlinear mixed effect models in the context of MELSM to accommodate nonlinear within-

person variance changes, conditional on explanatory variables. By doing so, we extend the 

MELSM to inherently nonlinear applications, both in the location and scale.

From a substantive perspective, we build on previous work that investigated individual 

differences in learning but we add the possibility to address and model within-person 

variability with a mixed-effects (non)-linear sub-model resulting in the same benefits in 

terms of interpretability and theoretical consistence as described earlier. Hence, the approach 

presented here not only allows for describing within-person variance changes with nonlinear 

forms, but it also adds the potential to assess covariances among nonlinear location and scale 

parameters, thereby providing novel information for inference in psychological applications.
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The remainder of the manuscript is organized as follows. First, we formally describe a 

general nonlinear MELSM (NL-MELSM). Second, we provide an example involving 

empirical data where three age groups participated in five learning trials assessing verbal 

memory. In our experience, classical methods (e.g., expectation-maximization) cannot 

readily estimate NL-MELSM’s yet due to the nonlinear error variance structure which 

violates the assumption of normally distributed residuals thus making convergence very 

unlikely. Thus, hypothesis testing and model comparison with p-values are not currently 

feasible. As such, we take a fully Bayesian approach that does not only make estimation 

possible, but also provides the necessary tools for use in substantive applications. For 

example, we use leave-one-out cross validation LOOCV for model comparison and Bayes 

factors for hypothesis testing at the level of the individual parameters. Third, we discuss the 

findings in the context of the learning literature. Fourth, while introducing Bayesian 

inference is beyond the present scope, we provide several references to complement this 

work. We end by listing shortcomings as well as possible extensions of the NL-MELSM 

model.

Nonlinear Mixed-Effects Location Scale Model

In this section, we describe a generic nonlinear mixed-effects model, in addition to the 

customary MELSM that generally assumes linearity. We then describe how the models can 

be combined, resulting in the proposed NL-MELSM. Along with the specification, we also 

discuss practical challenges (i.e., convergence issues) and advantages of this model. For 

example, while describing the covariance structure among location and scale random effects, 

we relate this to psychological applications. In the following section, using this general 

notation, we fit a NL-MELSM with a specific nonlinear function.

Nonlinear Mixed-Effects Model

A generic nonlinear mixed-effects (NLME) model can be defined as

y N μi, σ2 ,

(1)

μi = f xit, ψi ,

where the location μ is assumed to follow some nonlinear function f. Here xit is a matrix of 

individual-specific values. For example, in the context of learning or longitudinal models, xit 

may denote the elapsed time, scaled as learning trials or recall time points t ∈ (1, …Ti), 

respectively, for the ith individual. Of course, depending on the research question, xit could 

be any variable that is expected to describe the outcome y with some function f. The 

nonlinear parameters are then
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ψ ik = Xϕk + Zibi, k ∈ 1, …, Kμ ,

(2)

which follows the customary notation for linear mixed-effects models. Here X and Z are the 

fixed and random effect design matrices, with K denoting the number of nonlinear 

parameters to be estimated. For K, we have used the subscript μ, which denotes that these 

nonlinear parameters are specifically for the location, or mean structure. The random effects 

bi are then assumed to follow

bi N(0, Θ),

(3)

where bi denotes the individual deviations from the population average. This distribution has 

mean zero and and a Kμ × Kμ dimensional covariance matrix Θ. The covariances θij ∈ Θ can 

be restricted to be independent of one another, or a maximal model can be fitted in which all 

of the covariances between random effects are estimated (Barr, Levy, Scheepers, & Tily, 

2013). This is often determined by the complexity of the model, since convergence issues 

can arise when fitting fully parametrized NLME models (Comets, Lavenu, & Lavielle, 2017; 

Hall & Bailey, 2001).

Mixed-Effects Location Scale Model.—The traditional NLME model, described in 

Equation (2), is known for its flexibility and conservative use of parameters compared to nth 

degree polynomial linear models. However, to our knowledge, an approach to explicitly 

model the within-person variance eit ~ N(0, σ2) with its own functional form, in addition to 

allowing for individual variation therein, has not been described. In the context of linearity, 

this is known as mixed-effects location scale model (MELSM; Hedeker et al., 2008; Leckie 

et al., 2014; Rast et al., 2012), which is defined as

yi N μi, σi
2 ,

(4)

μi = Xiβ + Zibi,
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σi
2 = exp Wiη + Viui .

Here, rather than assuming that the residuals have a constant variance σ2, they are described 

by their own mixed-effects model. The design matrices, W and V, are thought to predict σi
2

with the fixed effects η and random effects ui. For example, when predicting change over 

time, η can be the fixed effect of the time metric, which is then allowed to vary among 

individual (i.e., random intercepts and/or slopes). In other words, this model essentially 

treats the residual variance as the response variable. With computational advancements, this 

model has become increasingly popular in both applied (Watts et al., 2016) and 

methodological literatures (Lin, Mermelstein, & Hedeker, 2018; Rast & Ferrer, 2018; 

Walters, Hoffman, & Templin, 2018). However, to our knowledge the MELSM has not been 

extended to allow for fitting nonlinear functions to the location μ and the scale σi
2. The 

contribution of the current paper is to show the generality of the MELSM by bringing 

together both nonlinear and location scale mixed- effects models into one coherent 

framework.

Within-Person Variance.—We extend the traditional nonlinear mixed-effects model, 

described in Equation 2, by allowing σi
2 to have its own functional form

σi
2 = exp f zit, ζi ,

(5)

where ζi denotes the nonlinear parameters for the ith individual. The entire function f is 

exponentiated to ensure that the variance is restricted to positive values 0 < σi
2 . This 

function can either be the same as that fitted to the location or a different functional form can 

be assumed. For example, it is possible to describe μi with an exponential function, whereas 

σi
2 can follow a Weibull growth curve. The fixed and random effects for predicting σi

2 are 

then defined as

ζik = Wγk + Viui, k ∈ 1, …, K
σ2 ,

(6)

where K is the number of nonlinear parameters to be estimated. Note that in this model σi
2 is 

a response variable that is simultaneously being estimated with the location μi. This is a 

particularly important feature because such within-person variance can be examined in 
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relation to variables external to the system (Rast & Ferrer, 2018). For example, a researcher 

interested in learning may want to use variables to predict the (in-)consistency in learning. In 

addition, there might be variables external to the modeled system (e.g., age, learning 

strategy, etc.) that could potentially explain part of the variance in learning performance that 

are not accounted for by the model fitted to the location (Equation 2).

Random Location and Scale Effects.—With the introduction of a mixed-effects model 

for the within-person variance, we also allow for random effects to be estimated 

simultaneously for the location and the scale part. By estimating these two components 

within the same NLME model, we are able to account for possible covariances that arise 

among iMs and iSDs, which ensures that we can make valid inferences about our parameter 

estimates (Verbeke & Davidian, 2009). From a substantive perspective, in the context of 

learning, these models allow for determining the relationship among individual location and 

scale parameters. For example, one might investigate whether individuals with faster 

learning rates tend to show smaller within-person variance in their asymptote. Of course, this 

requires allowing for covariances between the random location bi and scale effects ui, 

respectively. Let us assume nonlinear functions for the location (μi) and scale σi
2 , which 

result in a Kμ + K
σ2 × K

σ2 + Kμ  covariance matrix Σ. The random effects for both the 

location and the scale come from the same multivariate distribution

bi
ui

N(0, Σ)

with mean zero. Following common practice (Barnard, McCulloch, & Meng, 2000), the 

covariance matrix can then be re-expressed as

Σ = τΩτ′,

(7)

where Ω is a Kμ + K
σ2 × K

σ2 + Kμ  correlation matrix and τ is the diagonal of a matrix with 

the same dimension containing the random effect SDs. This parameterization offers several 

advantages compared to hierarchical Bayesian models that depend on conjugate priors, such 

as, for example the inverse Wishart distribution (Barnard et al., 2000). The approach of 

partitioning the covariance matrix into a diagonal matrix of SDs and a correlation matrix is 

more efficient and numerically stable (Rast & Ferrer, 2018), in addition to more intuitive 

prior specification on the size of the correlations, it readily allows for Bayesian hypothesis 

testing via Bayes factors (Marsman & Wagenmakers, 2017).
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For clarity, suppose we have two nonlinear parameters for the location (Kμ = 2) and scale 

K
σ2 = 2 . This parametrization, described in Equation (7), would result in a 4 × 4 correlation 

matrix

Ω =

1
ϕ1, ϕ0 1
γ0, ϕ0 γ0, ϕ1 1
γ1, ϕ0 γ1, ϕ1 γ1, γ0 1

.

(8)

Here we have depicted the lower-triangle. The off-diagonal entry at Ω2,1 = ϕ1, ϕ0 denotes the 

correlation between the location random effects while the Ω4,3 = γ1, γ0 captures the 

correlation among the scale random effects. Notably, the four other elements Ω3:4,1:2 

correspond to the correlations among the location ϕ and scale γ random effects.

A Nonlinear Mixed-Effects Location Scale Model for Learning

In this section, using the generic specification above, we describe a specific NL-MELSM 

applied to learning data. The assumed functional form is the asymptotic parameterization 

that is described in Pinheiro and Bates (2006). We thus extend the asymptotic nonlinear 

mixed-effects model for the location to modeling the within-person variance with the same 

nonlinear function, in addition to allowing for individual variation in the location and scale 

parameters. Further, we include age groups as a predictor for the nonlinear parameters in the 

NL-MELSM (Section Predicting Nonlinear Parameters).

Illustrative Data

Study Participants.—Study participants were recruited in the Nuremberg and Erlangen 

Metropolitan regions. The total was N = 333, including three age groups young (n = 111, 56 

female), mean age 21.5 (SD 1.72), middle-aged (n = 111, 56 female), mean age 46.9 (SD 

2.62), and old (n = 111, 56 female), mean age 73.8 (SD 2.28).

Verbal learning.—Verbal learning (VL) was assessed by five consecutive trials of a word 

list recall task. The task comprised 27 meaningful, but unrelated, two- to three-syllabic 

German words taken from the Handbook of German Word Norms (Hager & Hasselhorn, 

1994). The words appeared on a computer screen at a rate of 2 seconds each, and 

participants had to read them aloud. After the presentation of all 27 words, participants 

recalled as many words as possible in any order. This procedure was repeated five times 

using the same list of 27 words but with a different order of word presentation for each trial. 

The number of correctly recalled words was scored after each trial, which could range 

between 0 and 27.
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Model Specification

The learning process was modeled with an asymptotic function that has three parameters to 

be estimated

f (trial , ϕ) = ϕ0 + ϕ1 − ϕ0 × exp −exp ϕ2 ×  trial .

(9)

Here, trials is scaled as 0, …, T − 1 which reduces Equation (9) to ϕ1, the initial 

performance when trial = 0. The parameter ϕ0 is the upper asymptote of recall performance 

as the number of trials → ∞ 1, and ϕ2 refers to the rate of learning which also defines the 

curvature in the learning trajectories. The asymptotic function described here and 

reparameterizations thereof have been used previously to model learning related data (e.g. 

Heathcote et al., 2000; Rast, 2011). If one considers nonlinear functions from a theoretical 

perspective, functions with asymptotic boundaries are compatible with learning processes in 

which limiting behavior is expected. That is, common performance in VL increases with 

every additional presentation of the stimuli. However, as known from “testing the limits” 

studies (Baltes & Kliegl, 1992), after a certain number of trials the performance remains 

constant, and increasing the number of trials will not improve performance. This behavior is 

best modeled by nonlinear functions, which incorporate an upper asymptote that captures the 

theoretical limit for individual learning. Note however, that these are not, by any means, the 

only functions to model learning data. Especially in situations where learning is delayed 

initially but then accelerates quickly (Rickard, 2004), standard exponential models are not 

well suited to capture the learning process. For example, N. J. Evans et al. (2018) formulated 

a delayed exponential model with an additional parameter to capture initial delay in 

learning. Hence, it is important to emphasize that Equation (9) can take any nonlinear form. 

The selection of an appropriate functional form will depend on the underlying process or 

may result from an exploratory comparison among different candidate functions.

In a mixed model framework, assuming that the nonlinear parameters vary between 

individuals, Equation (9) is extended to

yit = ϕ0i + ϕ1i − ϕ0i × exp −exp ϕ2i ×  trialit + ϵit .

(10)

Rather than assume the customary ϵi ~ N(0, σ2) for the within-person variance σ2, we can 

instead assume that it follows a nonlinear function as well and that it takes different values 

across measurement occasions t and indvidual i. In other words, we treat σit
2 as a person and 

time-varying response variable to be predicted by a set of nonlinear parameters. While it is 
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possible to allow the nonlinear functions (e.g., exponential vs. weibull) to differ between the 

location and the scale, we assume

σit
2 = exp γ0i + γ1i − γ0i × exp −exp γ2i ×  trialit ,

(11)

where σit
2 contains all error variances for individuals i and for each each trial t. Furthermore, 

the nonlinear parameters γ ∈ (1, …, 3) have the same interpretation as in equation (9) that 

describes the location. Of course, an interesting extension is to then predict ϕ and γ with 

explanatory variables. That is, one can assess hypothesized group differences in the 

nonlinear parameters. Without loss of generality, this results in the following specification

ϕki = Xiβ + Zibi, k ∈ (1, …, 3),

(12)

γki = Wiη + Viui, k ∈ (1, …, 3),

where X and W are the fixed effect design matrices that are thought to influence the 

nonlinear parameters (ϕ and γ), whereas Z and V are the random effect components. In the 

present example, for demonstrative purposes, we first assume the design matrices contain a 

column of 1’s (n × 1), thereby denoting the population averages for each nonlinear 

parameter. Importantly, this general NL-MELSM, herein referred to as NL-MELSM 1, can 

easily be extended to include explanatory variables thought to predict the nonlinear 

parameters (Section Predicting Nonlinear Parameters).

Although a common approach for building mixed effect models is to use some variety of 

stepwise selection (Zuur et al., 2007), we take the approach described in Barr et al. (2013). 

Here we begin by fitting the maximal covariance structure, in which all random effects are 

allowed to correlate with one another. This allows for not only estimating the correlations 

between random location and scale effects, but also correlations between the two, in addition 

to limiting data dependent decisions (Gelman & Loken, 2014). For the asymptotic function, 

fit to both the location and scale, there are 6 nonlinear parameters in total which results in

bi
ui

N(0, Σ),
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Σ = τΩτ′

with the means as zero and the covariance defined as Σ. We re-expressed Σ as τ Ωτ′, where 

Ω is a (q + p) × (q + p) correlation matrix and τ are the SDs. The estimation of the full 

covariance structure can be challenging, even for state-of-the-art Bayesian software, such as 

Stan. As such, to ensure good quality of the parameter estimates, convergence of the MCMC 

algorithm needs to be monitored closely.

Prior Specification.—In order to keep the parameter estimates within a reasonable range, 

we specified priors that were informed by previous work, by prior predictive distributions 

and by the data. Since the nonlinear parameters have clear meanings, for example ϕ1 as 

learning at trial one, we therefore decided upon the priors by visualizing the data and 

referring to past research (Rast, 2011). This was accomplished by not only looking at the 

observed data, but also by examining the prior predictive distribution. For the latter, without 

conditioning on the data, hypothetical datasets were replicated from the assumed prior 

distributions to ensure adequacy for the goal at hand–convergence with minimal 

informativeness. While beyond the scope of this work, we refer to the following references 

for visualizing Bayesian models (including prior predictive checks; Gabry, Simpson, Vehtari, 

Betancourt, & Gelman, 2019), checking prior-data conflict (M. Evans & Moshonov, 2006), 

and Gelman, Simpson, and Betancourt (2017) that provides several ways to think about prior 

specification.

We first describe the assumed priors for the fixed effects, where

ϕ0 N(25, 2),

(13)

ϕ1 N(8, 2),

ϕ2 N( − 1, 2),

denote the location parameters. Specifically, ϕ0 denotes the upper asymptote of 25, with a 

scale of 2, which was chosen with respect to the maximum score (i.e., 27) possible on the 

recall task. On the other hand, the prior on ϕ1 reflects recall at trial 1, whereas the scale 

encoded a 95% prior probability in the range of 4 – 12. This choice was informed based on 

past research, for example Rast (2011), where the reported recall at trial 1 was 6.27, so we 

did not want to be overly restrictive. The learning rate ϕ2 is not straightforward to infer from 

visualizations. We thus centered the prior distribution based on Rast (2011), but the wide 

scale ensured the prior was minimally informative. We viewed this as a reasonable choice, 
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since the the rate of learning is of primary interest. The priors for the scale parameters 

followed

γ0 N(0, 1),

(14)

γ1 N(1, 1),

γ2 N(0, 1),

which have the same interpretation as for the location parameters. We justify these priors, a 
priori, as not expecting substantial variability in the nonlinear parameters fitted to the 

within-person variance. However, to ensure there is some benefit from fitting a nonlinear 

function to the scale, we provide a model comparison to a linear function (Section: Model 

Selection).

The random effect SDs also require a prior distribution, which were similarly chosen to to be 

minimally informative. We denote the random location effect SDs τϕ1, …, ϕ3
, whereas the 

random scale effects SDs are denoted τγ1, …, γ3
. The assumed priors are then

τϕ1, …, ϕ3
 Student‐t(3, 0, 5),

(15)

τγ1, …, γ3
 Student‐t(3, 0, 1),

Ω  LKjcorr (η = 1),

where LJKcorr is the Lewandowski, Kurowicka, and Joe prior on the correlation matrix 

(Lewandowski, Kurowicka, & Joe, 2009). This distribution for LKJcorr is governed by a 

single parameter η, where a value of one places a uniform prior over all correlation matrices, 

assuming a 2 × 2 matrix. In larger dimensions, even with η = 1, there is shrinkage towards 

an identity matrix, due to the positive definiteness restriction. This model serves as the 

foundation for the remainder of this work (NL-MELSM 1), and all proceeding models 
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(Section: Model Selection) are either more restricted special cases (thus all the priors remain 

the same), or we implicitly assume so-called non-informative prior distributions. The latter 

choice was explicitly made for simplicity, such that the primary focus remains on 

introducing the NL-MELSM.

Estimation and Software.—The fitted models included four chains of 5,000 iterations, 

excluding a warm-up period of the same size. This number of iterations provided a good 

quality of the parameter estimates in which the models converged with potential scale 

reduction factors R smaller than 1.1 (Gelman, 2006). As measures of relative model fit, we 

report the deviance and the Pareto smoothed importance sampling-Leave-one-out cross-

validation (LOO) with the corresponding standard errors (Vehtari, Gelman, & Gabry, 2017). 

The fitted models were evaluated based on the their respective differences in the values of 

LOO and standard errors. Additionally, we also computed pseudo-BMA+ weights, describe 

in Yao, Vehtari, Simpson, and Gelman (2017), which provide a similar interpretation as 

Akaike weights (Wagenmakers & Farrell, 2004). That is, the probability that a given model 

will provide the most accurate out-of-sample predictions. Alternative Bayesian approaches 

for variable selection are described elsewhere (O’Hara & Sillanpää, 2009). Further, it is 

customary to evaluate nonlinear effects with significance tests which are not possible for the 

present model. For demonstrative purposes we used Bayes factors (BF10), with the Savage-

Dickey ratio, to evaluate evidence for not only non-zero effects but also the null hypothesis. 

We follow Lee and Wagenmakers (2013), where 1 ≤ BF10 ≤ 3 is anecdotal, 3 ≤ BF10 ≤ 10 is 

moderate, and 10 ≤ BF10 is considered strong evidence in favor of the alternative hypothesis 

(i.e., the prior distribution). The reciprocal values, in turn, provide evidence in favor of the 

null hypothesis. Further, we summarize the posterior distributions with equal tailed 90% 

credible intervals (CrI), but note this is mostly an arbitrary choice that can be justified in two 

ways. The tail regions make up 10% of the posterior samples which leads to greater stability. 

Second, when an interval excludes zero, there is a directional posterior probability of at least 

95%. When making posterior based inference, we also emphasize density regions of interest.

All computations were done in R version 3.4.2 (R Core Team, 2017) The models were fitted 

with the the package brms (Bürkner, 2017b), which serves as a front-end to the probabilistic 

programming language Stan (Stan Development Team, 2016). There are several advantages 

of the package brms. The model specification follows lme4 (Bates, Mächler, Bolker, & 

Walker, 2015), although brms allows for fitting a much wider range of models. Additionally, 

there are several post-processing features for model checking (Appendix C1) and Bayesian 

hypothesis testing. We refer interested readers to Stegmann, Jacobucci, Harring, and Grimm 

(2018), where brms was compared to alternative R packages for fitting nonlinear mixed-

effects models. There are also several tutorials using brms, including ordinal models 

(Bürkner & Vuorre, 2017), distributional regression (Estimating Distributional Models with 

brms), and supporting code for an introductory Bayesian textbook (Statistical Rethinking 

with brms). Model comparisons were made with the package loo (Vehtari, Gabry, Yao, & 

Gelman, 2018). For this work, we have provided annotated R code for fitting NL-MELSM 1 

(Appendix R-code). The final model converged after 3.7 h on a Windows 10 operated 

system with an IntelCore i7 processor at 3.6 GHz, four cores (8 threads) and 16 GiB RAM.
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Model Selection

As noted before, we take the maximal perspective of Barr et al. (2013), where we are 

primarily interested in fitting a fully parameterized model. This is in contrast to more 

common stepwise model building approaches, but offers several advantages. First, stepwise 

strategies can introduce bias in that the stochastic nature of model selection is typically 

ignored altogether (Harrell, 2001; Kabaila & Leeb, 2006; Leeb, Pötscher, & Ewald, 2015; 

Raftery, Madigan, & Hoeting, 1997; Tibshirani, Taylor, Lockhart, & Tibshirani, 2016). 

Second, assuming the model can be estimated, we do not think restricting parameters to zero 

is a reasonable approach, because estimating the posterior distributions provides useful 

information (Figure 1). That is, leaving all variables in the model, especially in a Bayesian 

context, ensures all uncertainties are averaged across when obtaining the marginal posterior 

distributions. To demonstrate the utility of the proposed NL-MELSM for learning, however, 

we do make model comparisons with LOO. Of note, the goal of cross-validation is not 

necessarily to identity the true model, which assumes the ℳ-closed setting (Bernardo & 

Smith, 2001; Lee & Vanpaemel, 2017; Piironen & Vehtari, 2017). That is, it is assumed that 

the true model is in the candidate set. On the other hand, in the ℳ-open setting, where it is 

not assumed that the true model necessarily is in the candidate set, the objective is to 

minimize prediction error. This means that LOO does not inherently favor parsimonious 

models, but can nonetheless be used to inform model building, revision, and ultimately 

selection. Additionally, for each of the candidate models, we computed psuedo-BMA 

(Bayesian model averaging) weights with the approach described in Yao et al. (2017). This 

provides an additional quantity for model comparison, and in the event no model is 

preferable, would allow for averaging the posterior and predictive distributions (Section 

Substantive Applications).

The LOO results are reported in Table 1. While there are no set rules for interpreting LOO, 

the differences can be interpreted relative to the uncertainty, expressed in its standard errors. 

We first compared NL-MELSM 1 to a standard linear mixed-effects location scale model 

(MELSM). This provided evidence in favor of the proposed nonlinear model, thereby 

suggesting verbal learning is better predicted by an asymptotic function. We then compared 

predictive accuracy to a standard nonlinear mixed-effects model (NLME), where the fully 

parameterized model was favored, thus demonstrating the assumption of constant within-

person variance is too restrictive. We then expanded NLME, by fitting an asymptotic 

function to the scale, but not allowing for individual variation therein (NL-MELSM 2). The 

fully parametrized model minimized the errors, which indicates that allowing for individual 

variability in the variance leads to improved prediction accuracy. The next comparison was 

to a LME model fitted to the within-person variance (NL-MELSM 3), which indicated that 

the nonlinear function provided more accurate predictions. The final comparison was to a 

model in which correlations between the random location and scale effects were restricted to 

zero (NL-MELSM 4), where there was model selection uncertainty, as indicated by the 

standard error. This highlights an advantage of fully Bayesian model comparison, in that 

there is an automatic measure of uncertainty that guards against overconfident inferences. It 

would be further possible to fit models to check whether particular correlations would 

provide a better fit. On the other hand, due to providing more information for inference we 
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summarize the fully parameterized model, although in practice model averaging could be 

used to account for uncertainty (Section: Substantive Applications).

Model Interpretation

In this section, we describe the results for NL-MELSM 1. Since a defining feature of the 

proposed model is quantifying individual variability, we have also plotted the results in 

Figure 1. This shows the individual effects, summarized with 90% CrIs, where blue bars 

denote estimates that excluded the population average. Thus, this plot visualizes whether 

(and how many) individuals differed from the population average. Additionally, Figure 2 

shows the predicted values, both for the location of verbal memory and the within-person 

variability, or scale. In practice, where nonlinear parameters do not always have intuitive 

interpretations (specially for the scale parameters), these visualizations add clarity to the 

fitted model.

Location Parameters.—The location parameters of the NL-MELSM capture the average 

means (fixed effects) and individual departures (random effects) and typically correspond to 

the same parameters obtained from the standard NLME model. On average, the asymptote 

(ϕ0) was 25.95 (90% CrI = [24.97, 26.84]), with anecdotal evidence for the absence of 

individual variability (BF10 = 0.48, τϕ0
= 0.93, 90% CrI = [0.20, 1.79]). Indeed, from the top 

left panel in Figure 1, it is clear that most individuals had a similar asymptote. The initial 

recall performance after the first trial is captured by the ϕ1 parameter (ϕ1 = 8.58, 90% CrI = 

8.28, 8.90). As suggested by Figure 1, top middle panel, there was strong evidence for 

individual variability (BF10 = 9.5 × 1025, τϕ1
= 2.94, 90% CrI = [2.64, 3.24]). The learning 

rate (ϕ3) that links the initial performance to the asymptote and defines the curvature was, on 

average, −1.12 (90% CrI = [−1.23, −1.04]), with strong evidence for individual variability 

(BF10 = 4.3 × 108, τϕ1
= 0.23, 90% CrI = [0.10, 0.39]). This can be seen in Figure 1, top left 

panel, where it is clear that many individuals differed from the population average. That is, 

some individuals had very “bent” learning trajectories while others showed minimal 

curvature (Figure 2). These differences are also visible in the predicted trajectories in the 

upper panel of Figure 2.

Scale Parameters.—The scale parameters capture the within-person variance and just as 

the location parameters they provide fixed and random effects. Given the model definition, 

we report all scale parameters on the logarithmic scale (e.g., exp(0.70) = 2.01). The 

asymptote was, on average, 0.70 (90% crI = [0.25, 0.53]), which provides the theoretically 

upper bound of within-person variance when the number of trials approach infinity. 

Interestingly, there was strong evidence for individual variation (BF10 = 2.1 × 103, 

τγ0
= 0.63, 90% CrI = [0.23, 1.42]) indicating that some individuals became more variable as 

trials progressed, while others became less so (see lower panel of Figure 2). The average 

variability at trial one was 0.43 (90% CrI = [0.25, 0.56]), with anecdotal evidence for 

individual variability (BF10 = 1.65, τγ1
= 0.23, 90% CrI = [0.10, 0.39]). However, as shown 

in the lower panels in Figure 1, it should be noted that several individuals differed from the 
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average value. The degree of curvature is again defined by the change rate (γ3) which was, 

on average, −1.31 (90% CrI = [−2.94, 0.50]), with moderate evidence that individuals varied 

(BF10 = 3.90, 90% CrI = [0.25, 2.36]). As is evident from Figure 2, changes in the within-

person SD ranged from nonlinear to practically linear. However, the asymptotic function 

provided better fit according to LOO (NL-MELSM 1 vs. NL-MELSM 3). Together, by 

extending the standard NLME model, we demonstrated that within-person SD is best 

described by a nonlinear trajectory, in addition to showing individual variation therein.

Correlations.—An additional advantage of the proposed model is that correlations 

between location and scale random effects can be estimated. For example, it is possible to 

assess whether the asymptote for within-person variance τγ0
 is related to verbal memory at 

trial 1 τϕ1
. The full correlation matrix is provided in Table 2 and visually separated in 

quadrants that indicate the source of correlations. That is, the top left quadrant reports 

correlations among the location parameters, the lower right quadrant describes correlations 

among the scale parameters, and the lower left quadrant reports all nine correlations among 

the location and scale random effects. For the location random effects, there was strong 

evidence for a positive correlation between the initial performance and learning rate (r = 

0.71, BF10 = 10 × 107). In other words, those who began the study with greater verbal ability 

apparently memorized words at a faster rate and attained their asymptote more quickly 

compared to those who started with lower recall performance. This is visible in the fan 

spread of the individual trajectories in Figure 2. At the beginning of the study, there was also 

strong evidence for a positive correlation between verbal memory and within-person SD (r = 

0.63, BF10 = 16.16). Interestingly, there was suggestive evidence that the location and scale 

rate parameters were positively correlated (r = 0.46, BF10 = 3.14), which suggests that 

individuals with a “bent” trajectory for verbal memory also showed increased curvature with 

respect to within-person variability. We note that there was anecdotal evidence for a negative 

relationship between variability at trial one and the asymptote for within-person SD (r = 

−0.37, BF10 = 1.91). While the effect was not large, this correlation denotes that more 

variable individuals, at the beginning of the study, also had a smaller estimate for the within-

person SD asymptote.

Predicting Nonlinear Parameters

In this section, we extend NL-MELSM 1 by predicting the nonlinear parameters. In practical 

applications, this allows for answering specific questions relating to the nonlinear function. 

For these illustrative data, we predicted each nonlinear parameter with a fixed effect that 

included three age groups (Section Illustrative Data). We assumed a dummy coded matrix, 

where the youngest group was the reference category (location: β0 and scale: η0). With this 

parametrization, we estimated differences for the middle (β1 and η1) and the oldest age 

group (β2 and η2). In other words, in reference to Equation 12, the design matrices for the 

location X and scale W included age group as the predictor variable. For simplicity, we 

assumed so-called non-informative priors, and summarized the posterior distributions with 

directional probabilities. For example, p(θ > 0|y, M) denotes the posterior probability of a 

positive effect.
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Model Interpretation

To understand the fitted model, we again rely on visualization, where the predicted values 

for each group are plotted in Figure 3. Additionally, the fixed effects are reported in Table 

A1. Before describing these results it should be noted that LOO did not favor this model 

compared to NL-MELSM 1 (LOOdiff = 0.3, SE = 8.3), and according to the pseudo-BMA+ 

weights, each model received about equal support.

Location Parameters.—As evident from Figure 3, the age groups differed at trial 1, with 

the youngest group showing the highest verbal memory. Indeed, in comparison to the 

youngest age group, the posterior probability that both age groups had lower scores was 

99.9% (Table A1). A similar pattern was observed for the learning rate, where it appears that 

the youngest group showed the most curvature in their learning trajectory. Indeed, compared 

to the youngest study participants, there was a 99.9% posterior probability that the older age 

groups learned words at a slower rate.

For within-person variability, the posterior probability that the middle age group had a 

higher asymptote than the youngest age group was 97.5%, thereby suggesting learning 

variability may be related to age. Although the 90% CrI included zero, it should be noted 

there was a 91.3% posterior probability that the oldest age group also had a larger 

asymptote. Further, as illustrated in the lower panels of Figure 3, it is clear that only the 

youngest group had a negative within-person SD trajectory, in that variance reduced while in 

the process of learning. On the other hand, for the older groups, the learning curves were 

slightly concave indicating that the asymptote was higher than the variability at the 

beginning of the learning trials. In comparison to the youngest group, the middle age group 

apparently had less within-person SD at trial 1, with a posterior probability of 98.8%. We 

emphasize that the findings are far from confirmatory, but nonetheless demonstrate the 

utility of the proposed model. That is, by modeling within-person SD we were able to 

suggest a relationship between learning and variability, in addition to group differences 

therein.

Discussion

In this paper we expanded upon the standard nonlinear mixed-effects model, by fitting a 

nonlinear function to the within-person variance, and allowing for individual variation 

therein. This model was specifically built to address the goal of identifying and accounting 

for IIV in a nonlinear mixed effects model, with a specific application for learning. 

Nonlinear modeling and explaining learning at both the mean and variance level requires 

repeated trials and flexible methods that are able to capture changes within and differences 

between individuals, of which the NL-MELSM is one such model. This approach can 

simultaneously model both the mean nonlinear structure, in the location component, and 

also the variance nonlinear structure, in the scale part. Moreover, variables can be included 

to predict either (or both) the location and scale of nonlinear parameters. The model also 

results in the estimation of random effects for both the location and the scale components, 

thus allowing for characterizing individual effects. This does not only control for the 
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influence of mean and variance dependency, but also allows for obtaining correlations 

between the nonlinear location and scale random effects.

The information provided by the correlations across the nonlinear location and scale effects 

is a unique feature of the NL-MELSM. In our illustrative example, at trial 1, we found that 

individuals with higher verbal memory also had the most variability in verbal memory. 

Further, while the evidence was not strong, there was an interesting negative relationship 

between variability at trial 1 and the asymptote for within-person SD. Participants with 

larger initial variability tended to decrease over time while participants with smaller initial 

variability tend to be associated to increasing variability over time. While this could be an 

actual feature of how people learn, it might also be due to a ceiling effect in the observed 

data. Participants who started higher initially, reached the full list length faster and with it, 

had less room to be variable. Based on visual inspection, extending the model to predict the 

nonlinear parameters suggested that only the youngest age group showed a declining curve, 

in that variability reduced when learning (Figure 3) – which could again be due to the 

generally higher performance and upper limit of 27 words. Of note, these types of 

inferences, with a fine-grained level of detail about IIV, are unique to the NL-MELSM.

Substantive Applications

In addition to learning, there are many psychological applications where the NL-MELSM 

may be fruitfully applied. For example, there is now a large body of research using growth 

curve models in the structural equation framework for estimation (Grimm et al., 2011). 

Paradoxically, as the name explicitly assumes a curved trajectory, extending beyond a linear 

function has proven non-trivial, often requiring approximations such as the Taylor series 

expansion (Hall & Bailey, 2001; Rast, 2011). And we are not aware of any examples that 

have fit a sub-model to the within-person variability. On the other hand, growth curve 

models can be estimated in a mixed-effects framework (Curran, 2003; Curran, Obeidat, & 

Losardo, 2010). Thus, the presented model provides a flexible alternative that also allows for 

asking novel research questions. As such, the NL-MELSM can be applied in the broader 

context of developmental research, to elucidate both inter and intra-individual variability in 

curved trajectories.

Bayesian estimation has become more accessible and popular over the last years as it entered 

mainstream software packages. In fact, the models described here were fit with the R 

package brms which uses similar syntax as lme4 (Bürkner, 2017a). In our experience, brms 
is sufficiently flexible to fit most models in psychology, but Stan can be used directly if 

needed. For example, it is possible for another sub-model predicting the between-person 

variance (Rast & Ferrer, 2018). While Bayesian estimation techniques have become more 

widespread, the same can not be said about Bayesian inference. While a thorough discussion 

on that topic (e.g., on hypothesis testing) was beyond the scope of this work we illustrated 

some of the possibilities that Bayesian inference is able to offer. There are now several 

introductions for Bayesian inference specifically for psychological applications (Quintana & 

Williams, 2018). These are typically geared towards simpler models (e.g., t-test; Rouder, 

Speckman, Sun, Morey, & Iverson, 2009), but the techniques can be used with the NL-

MELSM. We refer to Wagenmakers, Marsman, et al. (2018) and Wagenmakers, Love, et al. 
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(2018), in addition to Wagenmakers, Lodewyckx, Kuriyal, and Grasman (2010) which is 

specifically about the Savage-Dickey ratio. Importantly, Bayes factors depend critically upon 

the prior distribution, which should ideally be informed by relevant theory. In the absence of 

precise theoretical predictions, it is common place to assume defaults (Rouder & Morey, 

2012). In practice, sensitivity analyses should be performed, although they were excluded 

from this work for simplicity. We refer to Carlsson, Schimmack, Williams, and Bürkner 

(2017), where the prior distributions were varied to investigate whether the effect was robust.

For NLME models, it is customary to compare the fit of several functions (Rast, 2011). As 

such, we included some information about model selection with LOO (Vehtari et al., 2017). 

We reemphasize that LOO can guide model evaluation, and model selection (if desired), but 

it is important to appreciate potential limitations (Section Model Selection; Gronau & 

Wagenmakers, 2018). For example, while LOO is a fully Bayesian approach to assess 

predictive accuracy, it is asymptotically equivalent to the widely applicable information 

criterion (Watanabe, 2010) which is, in turn, asymptotically equivalent to the Akaike 

information criterion (Akaike, 1974). This means that LOO is not consistent for the purpose 

of model selection (Y. Zhang & Yang, 2015), having a similar justification as AIC (Burnham 

& Anderson, 2004), but with respect to the posterior distribution (Vehtari et al., 2017). 

Further, while beyond the scope of this work, uncertainty in model selection should be 

considered with averaging the posterior or predictive distributions (Yao et al., 2017, e.g., 

with pseudo-BMA+ weights). We refer to Hoeting, Madigan, Raftery, and Volinsky (1999) 

for an introduction, and two examples of Bayesian model averaging in the psychological 

literature (Gronau et al., 2017; Scheibehenne, Gronau, Jamil, & Wagenmakers, 2017).

Limitations

There are several notable limitations of this work in particular, as well as the NL-MELSM in 

general. For the latter, when the variances are of interest, it should be noted that their 

magnitude is also defined by the location of the average response. In other words, with 

bounded variables that are common in psychology, the variance will be a function of the 

person’s mean (Baird, Le, & Lucas, 2006; Eid & Diener, 1999; Kalmijn & Veenhoven, 

2005; Rouder, Tuerlinckx, Speckman, Lu, & Gomez, 2008). This problem is known in 

MELSM applications (Rast & Ferrer, 2018), but also applies to the NL-MELSM. In the 

present work, this correlation was large (r = 0.63 among τϕ1
 and τγ1

) which indicates that 

individuals further away from the lower boundary also had more variability at trial 1. This 

could be an effect of substantive interest, or dictated by aspects of the study design. 

Importantly, this is not necessarily a problem for the NL-MELSM, but it should be 

considered when making inference from the random effect correlations. On the other hand, it 

is often argued that variability predicts important life outcomes (even death) while ignoring 

the location altogether (MacDonald, Hultsch, & Dixon, 2008), whereas the NL-MELSM 

accounts for both sources of uncertainty

Moreover, while we provided a fully Bayesian approach (i.e., posterior uncertainty was 

accounted for in model selection), we did not make use of the marginal likelihood and 

posterior model probabilities. For these models, we were not able to successfully specify 

what could reasonably be considered well-defined hypotheses of the data generating process. 
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We thus used pseudo-BMA+ weights (Yao et al., 2017), in addition to the Savage-Dickey 

ratio which is specifically for nested hypotheses that we found less demanding to specify 

(and justify). Second, because our goal was to introduce a Bayesian NL-MELSM, many 

choices were made for simplicity. For example, we did not provide an in-depth example of 

model checking, but note this is important in practical applications. Another potential 

limitation, considering we also offered some guidance for applied researchers, is the 

advocacy for fitting fully-parametrized models. This does stand in contrast to using 

“significance” to include variables in a model, but removing based on “non-significance” 

assumes evidence for the null hypothesis. We reiterate our preference in accounting for all 

sources of uncertainty rather than removing them from the model altogether.

Regarding the underlying data, we would like to point out that five repeated measurements is 

certainly at the lower end of data requirements, both in terms of accurately modeling the 

mean and/or the variance structure. While this current work served as an illustration on the 

use of a nonlinear MELSM in psychological data, for the purpose of an actual substantive 

application we would recommend at least 20 repeated measures (Rast & Zimprich, 2010). In 

our experience, recovering the fixed effects parameters for the location and scale is not 

typically an issue. However, fewer data increases uncertainty in the estimation of the 

elements in the covariance matrix. For example, Rast and Ferrer (2018) suggest that, in a 

linear MELSM, large correlations of approximately .40 require at least 75 participants with 

75 repeated measurements.

Future Directions and Conclusion

The introduced model can be extended in several ways. We only fitted one type of nonlinear 

function, but of course, the model readily allows for the implementation of other functions, 

both for the location and the scale. While there is a substantial body of literature on 

nonlinear functions for the mean structure (e.g. N. J. Evans et al., 2018; Heathcote et al., 

2000; Mazur & Hastie, 1978; Newell & Rosenbloom, 1981; Restle & Greeno, 1970; Ritter 

& Schooler, 2001; Zimprich et al., 2008), research in functions that best describe within-

person variance in the context of learning are not available yet. The NL-MELSM might 

prove fruitful in expanding the current body of literature on modeling learning and other 

nonlinear change processes.

The purpose of this paper was to present the NL-MELSM as a flexible model for 

psychological applications. Our proposed model is suited for learning, as presented in this 

work, but can also be used more generally in gerontological and/or developmental areas. By 

focusing on the within-person variance, this approach opened up possibilities for modeling a 

component that is often disregarded as unexplained residuals (i.e., “noise”). The provided 

example illustrated such possibilities and highlighted that the residual variance may show 

systematic, nonlinear patterns, that are important for understanding psychological processes.
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Appendix A: Predicting Nonlinear Parameters

Table A1

Parameter estimates.

Location Scale

Parameter M SD 90% CrI Parameter M SD 90% CrI

β0ϕ0 26.15 0.46 [25.40, 26.93] η0γ0 0.34 0.28 [−0.16, 0.74]

β1ϕ0 −0.38 0.74 [−1.56, 0.90] η1γ0 0.75 0.53 [0.05, 1.73]

β2ϕ0 −0.73 0.92 [−2.29, 0.71] η2γ0 0.51 0.48 [−0.13, 1.34]

β0ϕ1 10.37 0.30 [9.89, 10.87] η0γ1 0.61 0.11 [0.43, 0.77]

β1ϕ1 −2.49 0.40 [−3.16, −1.84] η1γ1 −0.31 0.16 [−0.59, −0.07]

β2ϕ1 −2.91 0.41 [−3.58, −2.24] η2γ1 −0.15 0.15 [−0.41, 0.06]

β0ϕ2 −0.76 0.07 [−0.88, −0.64] η0γ2 −1.56 0.98 [−2.79, 0.49]

β1ϕ2 −0.42 0.10 [−0.58, −0.25] η1γ2 −0.48 0.66 [−1.51, 0.64]

β2ϕ2 −0.64 0.11 [−0.82, −0.46] η2γ2 −0.77 0.74 [−1.87, 0.57]

Bold indicates 90% intervals that excluded zero. β0 and η0: intercept (youngest age group). β1 and η1: middle age group 

β2 and η2: oldest age group. ϕ0 and γ0: asymptote. ϕ0 and γ0: “intercept” (estimate at trial 1). ϕ2 and γ2: log rate of 
change.

Appendix B: R-code

Example code for the final model. Data and code can be obtained from the OSF repository at 

https://osf.io/k3rsz/

library(brms)

dat ← read.csv(“dat.csv”)

###############################

######## define the model ########

###############################

b_mod1 ← bf(recall ~ betaMu + (alphaMu - betaMu) * exp(−exp(gammaMu) * 

trial),

      betaMu ~ 1 + (1|c|subject),

      alphaMu ~ 1 + (1|c|subject),

      gammaMu ~ 1 + (1|c|subject),

      nl = TRUE)
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  nlf(sigma ~ betaSc + (alphaSc - betaSc) * exp(−exp(gammaSc) * trial),

      alphaSc ~ 1 + (1|c|subject),

      betaSc ~ 1 + (1|c|subject),

      gammaSc ~ 1 + (1|c|subject))

###############################

########## define priors ##########

###############################

prior1 = c(set_prior(“normal(25, 2)”, nlpar = “betaMu”),

      set_prior(“normal(8, 2)”, nlpar = “alphaMu”),

      set_prior(“normal(−1, 2)”, nlpar = “gammaMu”),

      set_prior(“normal(0, 1)”, nlpar = “betaSc”),

      set_prior(“normal(1, 1)”, nlpar = “alphaSc”),

      set_prior(“normal(0, 1)”, nlpar = “gammaSc”),

      set_prior(“student_t(3, 0, 5)” , class = “sd”, nlpar = “alphaMu”),

      set_prior(“student_t(3, 0, 5)” , class = “sd”, nlpar = “betaMu”),

      set_prior(“student_t(3, 0, 5)” , class = “sd”, nlpar = “gammaMu”),

      set_prior(“student_t(3, 0, 1)” , class = “sd”, nlpar = “alphaSc”),

      set_prior(“student_t(3, 0, 1)” , class = “sd”, nlpar = “betaSc”),

      set_prior(“student_t(3, 0, 1)” , class = “sd”, nlpar = “gammaSc”))

## fit the model

b_fit1 = brm(b_mod1, prior = prior1, data = dat,

      control = list(adapt_delta = .9999, max_treedepth = 12),

      chains = 4, iter = 10000,

      inits = 0, cores = 4)
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summary(b_fit1)

# we encourge the exploration of a variety of non-linear functions.

Appendix C: Posterior Predictive Check
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Figure C1 . 
Posterior predictive check for NL-MELSM 1.
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Figure 1. 
Random effects centered at the population average. A blue error bar indicates that the 

respective 90% CrI excluded the population average. ϕ0 and γ0: asymptote. ϕ1 and γ1: 

“intercept” (estimate at trial 1). ϕ2 and γ2: rate of change.
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Figure 2 . 
Predicted values, using the mean of the posterior distribution, for the location and scale.
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Figure 3 . 
Predicted values, computed from the posterior distributions, for the location and scale 

components. The panels (and colors) correspond to the three age groups
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Table 1

Model comparison results

Model LOOdiff SE Pseudo-BMA+

NL-MELSM 1 - - 0.60

MELSM 713.5 46.1 0.00

NLME 71.7 19.3 0.00

NL-MELSM 2 54.5 18.3 0.00

NL-MELSM 3 13.3 6.3 0.01

NL-MELSM 4 2.7 8.7 0.39

LOOdiff: difference in LOO. SE: standard error of the difference. Positive numbers indicate NL-MELSM 1 was more accurate. The models are 

identified by what differs from NL-MELSM 1. NL-MELSM 1: fully parametrized model. MELSM: asssumes linearity for the location and scale. 
NLME: traditional nonlinear mixed-effects model. NL-MELSM 2: individual variation not allowed for the nonlinear parameters. NL-MELSM 3: 
linear mixed-effects model fitted to the scale. NL-MELSM 4: covariance between location and scale random effects not estimated.
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Table 2

Correlations between random location and scale effects.

1 2 3 4 5 6

1 τϕ0
- Location Location and

2 τϕ1
0.25 - scale

3 τϕ2
0.26 0.71 -

4 τγ0
−0.52 −0.49 −0.54 - Scale

5 τγ1
0.22 0.63 0.48 −0.37 -

6 τγ2
0.30 0.28 0.46 −0.34 0.19 -

ϕ0 and γ0: asymptote. ϕ1 and γ1: “intercept” (estimate at trial 1). ϕ2 and γ2: log rate of change.
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