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ABSTRACT OF THE DISSERTATION

Coding Assisted Methods for Crossbar Resistive Memory

by

Zehui Chen

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2021

Professor Lara Dolecek, Chair

Living in the era of big-data, it is crucial to store vast amounts of data and process them

quickly. Resistive random-access memory (ReRAM) with the crossbar structure is one

promising candidate to be used as the next generation non-volatile memory device and

is also one essential enabler for accelerators that can drastically increase data processing

speed. In this work, we tackle problems in crossbar resistive memory and its accelerator

application based on channel coding theory and estimation theory.

In Chapter 2, under the non-negligible device variability in practical resistive memory, we

treat the problem of Hamming distance computation between two vectors, using low-level

conductance measurement, based on a novel Computation-in-Memory architecture, which

has shown great potential in reducing the burden of massive data processing by bypassing

the communication and memory access bottleneck. We study the feasibility problem of Ham-

ming distance computation in-memory under two distinct sources of memristor variability:

resistance variation, and the non-deterministic write process. First, we introduce a tech-

nique for estimating the Hamming distance under resistance variation. Then, we propose

error-detection and error-correction schemes to deal with the non-ideal write process. These
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results are then combined to concurrently address both sources of variabilities. Lastly, we

demonstrate the efficacy of our approaches on the k-nearest neighbors classifier, a machine

learning algorithm that can be accelerated by computing Hamming distance in-memory.

In Chapter 3, considering unreliable selection devices, we study mitigation techniques

for the re-occurred sneak-path problem. In a crossbar ReRAM, in which a memristor is

positioned on each row-column intersection, the sneak-path problem is one of the main chal-

lenges for a reliable readout. The sneak-path problem can be solved with additional selection

devices. When some selection devices fail short, the sneak-path problem re-occurs. The re-

occurred sneak-path event can be described combinatorially and its adverse effect can be

modeled as a parallel interference. Based on a simple pilot construction, we probabilisti-

cally characterize the inter-cell dependency of the re-occurred sneak-path events. Utilizing

this dependency, we propose adaptive thresholding schemes for resistive memory readout

using side information provided by pilot cells. This estimation theoretic approach effectively

reduces the bit-error rate while maintaining low redundancy overhead and low complexity.

In Chapter 4, dealing with the increasing resistivity of wordline/bitline in crossbar resis-

tive memory as a result of the scaled down technology node, we propose write/read com-

munication channels under high line resistance and coding theoretic solutions tailored for

this channel, targeting the storage class memory (SCM) application. By statistically relating

the degraded write/read margins and the channel parameters, we propose binary asymmetric

channel (BAC) models for the write/read operations. Method for optimizing the read thresh-

old is proposed to reduce the raw bit-error rate (RBER). Observing a large non-uniformity of

reliabilities in the memory array, we propose two schemes for efficient channel coding based

on Bose-Chaudhuri-Hocquenghem (BCH) codes. An interleaved coding scheme is proposed

to mitigate the non-uniformity of reliability and a location dependent coding framework is

proposed to leverage this non-uniformity. Both of our proposed coding schemes effectively

reduce the undetected bit-error rate (UBER).
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CHAPTER 1

Introduction

1.1 Motivation

In this era of big-data, traditional computer architecture, which is composed of three main

components: storage, memory, and processor, faces performance challenges due to the in-

creasing demand of data-intensive applications. On the storage—memory side, the de facto

memory technology, DRAM, suffers from high leakage current and low density issues, where

the main-stream technology for mass storage, NAND flash, incurs high latency and can only

be written at a block level [BKS+08]. On the memory—processor side, typically, the pro-

cessing speed of the processor is much faster than the read latency of the memory, creating

a so-called memory-access-bottleneck. This memory-access-bottleneck is the main killer of

performance in data-intensive applications as massive amount of data need to be moved from

the memory to the processor [HXN+15].

Emerging crossbar resistive memory technology, which is based on a bipolar resistive

switching device, referred as memristor [SSS+08], and the crossbar structure [VRK+09], are

promising to overcome these aforementioned challenges. Crossbar resistive memory has low

leakage current due to its resistive nature and has good scalability and high density due to

its simple crossbar structure. It is therefore one of the most suitable candidate to be used as

storage-class memory (SCM), a term that refers to memory technology that fills the latency

and density gaps between DRAM and NAND flash memory [BKS+08]. Moreover, as data is

stored as resistance/conductance, resistive memory enables many basic operations, such as
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matrix-vector multiplication [NWY+16] and Hamming distance computation [CC15], to be

performed in the memory itself, resulting in a Computation-in-Memory (CIM) architecture

[HXN+15]. Accelerators that are built based on the CIM architecture can drastically speed

up data intensive applications by bypassing the memory-access-bottleneck.

1.2 Challenges in Crossbar Resistive Memory

As an emerging technology that is still in its immature state, crossbar resistive memory

faces many reliability issues that can potentially jeopardize the data integrity in its SCM

application and the learning accuracy in its accelerator application. We briefly describe these

reliability issues here and a detailed description/modeling of these issues can be found in the

individual chapters.

1.2.1 Resistance Variation

In bipolar resistive memory, information is represented by the high resistance state (HRS)

or the low resistance state (LRS) of the memory cells. In practical resistive memory, due

to cycle-to-cycle variation and device-to-device variation, the state resistances/conductances

are distributed in a large range [CL11]. Resistance variation jeopardizes memory reliability,

for example, large resistance variation leads to overlapping resistance states which can po-

tentially lead to read error. Using a higher write current or longer write pulse reduce the

resistance variation but are costly in terms of energy and latency.

1.2.2 Non-deterministic Write Operation

The switching mechanism of memristors are non-deterministic. Literature shows that the

switching time of memristor follows a log-normal distribution [MRPC+11]. The non-deterministic

write process suggests that with finite switching time and programming voltage, unsuccessful
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switching is inevitable, which results in a write error when the former state of the memristor

is different from the data to be written. Increasing the write voltage or the write pulse in-

creases the switching probability at the cost of higher energy consumption and longer write

latency.

1.2.3 The Sneak-Path Problem

Under the crossbar structure, memory devices are placed on the intersection of horizontally

and vertically placed nanowires. Without selection devices or with failed selection devices,

when reading from cell, current can traverse through undesired cells and these paths are

referred as the sneak-paths [ZFH+13]. This problem is especially severe when a cell is in

HRS as the parallel low resistances in the sneak-paths, lower the sensed resistance and can

potentially lead to a read error.

1.2.4 Line Resistance

With technology node scaling down to the single-nm regime, the interconnect resistances

of the wordlines and bitlines in the crossbar structure scales up rapidly [LYWW13]. The

increasing line resistances reduces the read and write margin of the crossbar resistive memory

and therefore degrades the reliability of the write and read operations. The line resistance

also limits the array size which jeopardizes the scalability of crossbar resistive memory.

1.3 Research Overview

As detailed in the two previous sections, crossbar resistive memory is promising in its SCM

and in-memory accelerator applications while facing many challenges arising from device

and structure nonideality. Research efforts from both a device perspective and a system

perspective are therefore needed in order to overcome these challenges. In this dissertation,
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from a system perspective, aiming to contribute toward the maturation of crossbar resistive

memory, we focus on a single objective in the following three chapters: using system level

approaches to improve the robustness of crossbar resistive memory in its application under

these reliability issues. Based on communication theory, we first model these reliability

issues. Then we propose estimation theoretic and coding theoretic approaches to improve

the system level reliability metrics, i.e., the raw bit-error (RBER) and undetected bit-error

rate (UBER) in the SCM application, and the learning accuracy in the in-memory accelerator

applications. The reliability issues addressed in each chapter, the proposed schemes and the

targeted application are summarized in the following table.

Table 1.1: A brief overview of chapters in the dissertation

Chapter # Proposed Schemes Reliability Issues Application

2

Hamming Distance

-Estimation In-Memory

Error Detection/Correction

Resistance Variation

Non-deterministic Write
Accelerator

3 Adaptive Thresholding
Sneak-Path Problem

Resistance Variation
SCM

4

Read Threshold Optimization

Interleaved Coding

Location Dependent Coding

Line Resistance

Resistance Variation

Non-deterministic Write

SCM

4



CHAPTER 2

Hamming Distance Computation in Unreliable

Resistive Memory

2.1 Introduction

With many emerging data-intensive applications, it has become imperative to have the means

to store and quickly process vast amounts of high dimensional data. However, current

computer architectures largely suffer from communication and memory access bottlenecks.

Additionally, CMOS technology faces limited scalability issues [CZ14, HXN+15]. Resistive

Random-Access Memory (ReRAM), also simply known as resistive memory, has been shown

to have promising scalability with novel crossbar structure, and is thus a promising candi-

date for next generation none-volatile memories [SSS+08]. Enabled by this new technology,

Computation-in-Memory (CIM) Architecture has been proposed, in which certain computa-

tions are performed in the physical memory itself [HXN+15]. This idea allows us to bypass the

communication and memory access bottlenecks and can be used to speed up data-intensive

applications.

Computing similarity metrics between vectors is a critical component in machine learn-

ing algorithms; image recognition and natural language processing are just some of many

examples. It has already been shown that hashing higher dimensional data into binary

space, and using Hamming distance as the distance metric is well suited for large-scale ap-

plications [KD09, NPF12]. Allowing for Hamming distance to be computed under the CIM

Architecture is thus a promising technique to speed up many modern machine learning appli-
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cations. Recently, a technique has been proposed to compute Hamming distance in resistive

memory, assuming an ideal model for the memristors [CC15]. Following from their work,

in this chapter, we use more sophisticated models to improve and refine their scheme (to

which we refer as Hamming distance Computation-in-Memory (HD-CIM)). The feasibility of

HD-CIM is studied under two main (and complementary) sources of memristor variability:

resistance variation, and the non-deterministic switching mechanism during the memristor

write process. In order to preserve the low-latency property of HD-CIM, we assume limited

accessibility to information. First, only vector-level conductance measurement can be used,

and second, only one measurement can be used per Hamming distance computation. Dealing

with the two sources of memristor variability is thus more challenging due to these limited

accessibility assumptions, in particular, traditional ECCs based on bit-level information do

not apply. Simple yet effective solutions are proposed to deal with these sources of memris-

tor variability when the information that can be read is limited. As suggested in [CC15],

the optimal code that maps a message to a constant weight codeword while preserving the

Hamming distance is used as the foundation for our solutions. The efficacy of our approaches

under these sources of memristor variability are studied in detail for the k-nearest neighbors

classifier, one promising application for HD-CIM.

The outline of Chapter 2 is as follows. Section 2.2 provides background on resistive

memory, memristors, and the two sources of memristor variability investigated in this chap-

ter. The two sources of memristor variability, variability due to resistance variation and

variability due to non-deterministic switching mechanism, are elaborated in detail. We high-

light the trade-offs between these sources of variability and performance metrics of resistive

memory in order to emphasize the necessity of concerning these sources of variability. The

mathematical models of the adverse effects these variability sources are established in this

chapter. The solutions that deal with the adverse effects the variability sources are at first

studied separately. Section 2.3 provides a solution to estimate the Hamming distance from

a single conductance measurement in resistive memory where the resistances of memristors
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are formulated as Gaussian random variables. To generalize our solution, inversion coding is

used to provide a priori knowledge about vector weights. The estimation error probability

and its bounds are also studied in Section 2.3 for the case with inversion coding and the

case without inversion coding. In order to evaluate the effect of resistance variation on the

end application, we introduce the average-case study framework. Using this framework, we

present the performance of our estimation scheme on the k-nearest neighbors classifier as

our main application. Section 2.4 provides error-detection and error-correction schemes as

solutions to bit-errors caused by the non-ideal write process. Single error detection is first

studied and then we generalize the same idea to multiple errors detection. Two different

error correction schemes are explored in this chapter. The exact error correction scheme is

provided based on the inherent error localization capability of inversion coding and an extra

code that correct erasures. Motivated by the error tolerant nature of our application, we

also provides an approximate error correction scheme that have low latency and low over-

head. The performance of this approximate error correction scheme is evaluated under the

average-case study framework for the k-nearest neighbors classifier. Section 2.5 combines

results of Section 2.3 and Section 2.4 and provides a feasible scheme to estimate Hamming

distance in resistive memory under the adverse effects of the two sources of memristor vari-

ability simultaneously. The joint effect of the two variability sources is first studied and the

maximum a posteriori probability estimator is formulated. We then present a solution to the

MAP estimator. Adapting the concept of approximate error correction scheme discussed in

the last chapter, we provide a scheme that achieve estimation and error-detection/correction

simultaneously.
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2.2 Backgrounds

2.2.1 Memristors and Resistive Memory

In this chapter, we focus on resistive memory which uses a crossbar structure [VRK+09].

In crossbar resistive memory, a resistive switching device (also referred to as a memristor)

is placed at the intersection of each row and column [VRK+09]. The logical states of “0”

and “1” are represented by the internal resistance state of memristor, “High Resistance

State (HRS)” and “Low Resistance State (LRS),” respectively. The state of the memristor

can be programmed by applying different voltages to its terminals and can be sensed by

measuring the corresponding current. In this chapter, under the same model used in [CC15],

we are interested in inferring the Hamming distance between vectors from the conductance

measurement between rows of memristors where the two vectors are stored. Figure 2.1

shows an example of the circuit representation that stores two vectors, x = (0, 0, 0, 1, 1)

and y = (0, 1, 1, 0, 1), and the example conductance measurement between the two vectors,

G(x,y). Using conductance in our calculations (instead of resistance) allows for a simple

summation of each branch. We assume throughout this chapter that measurements between

the two rows of memristors in resistive memory can be reliably performed.

Figure 2.1: Example of an equivalent circuit for a measurement between two vectors.
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2.2.2 Variability Due to Resistance Variation

While an on/off ratio from ∼ 10 to above 1000 has been shown in many ReRAM papers as

proof of a large memory operation window, the variations of HRS and LRS are both com-

mon and significant [CL11]. Previous work on HD-CIM assumed constant valued LRS and

HRS resistances [CC15]. It is therefore of interest to take resistance variation into account

and develop corresponding schemes in order to perform Hamming distance computation in

practical resistive memory. In practice, the resistance variation is affected by many opera-

tional parameters. It is reported that LRS variability depends on two main parameters, the

write current limit Ilimit, and the write pulse width [CL11]. A smaller Ilimit favors low-power

operation but increases the variation of LRS. A shorter pulse width favors fast speed opera-

tion but it also increases the variation of LRS. As a result, studying HD-CIM solutions that

tolerate resistance variation not only makes HD-CIM feasible in practice but also provides

useful insight into the trade-off between performance and operation parameters, i.e., pulse

width and Ilimit.

Many papers have shown that the resistance distribution of LRS and HRS are Gaussian-

like [BKL+05, CLG+11, WLW+10]. The reported resistances of LRS and HRS are both

positive and large, i.e., on the order kΩ and MΩ. It is therefore reasonable to assume

that the conductance also follows a Gaussian distribution if the corresponding resistance is

Gaussian-like. We assume that the process variability in each memristor is identical and

independent. For a memristor i, let Li and Hi be random variables denoting the state “0”

conductance and the state “1” conductance, respectively. We assume Li and Hi follow the

following Gaussian distributions:

Li ∼ N (µL, σ
2
L), Hi ∼ N (µH , σ

2
H). (2.1)

In the above model, µL and µH are the mean of state “0” and state “1” conductance, and

σ2
L and σ2

H are the variance of state “0” and state “1” conductance, respectively. We define

ε = µL/µH which is also the “On/Off” resistance ratio, a key characteristic of memristor
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devices [VRK+09].

2.2.3 Variability Due to Non-deterministic Switching Mechanism

Similar to the resistance of memristor, the switching mechanism of the memristor is also

non-deterministic. It is reported that the switching time of some memristors, e.g., TiO2

cells, follows a log-normal distribution with the median switching time exponentially depen-

dent on the external voltage [MRPC+11]. Either increasing the programming voltage or

increasing the switching time will increase the switching probability. Meanwhile, increas-

ing the programming voltage will increase energy consumption and increasing the switching

time will slow down the write progress and increase energy consumption [NXX12,YPQ+11].

With finite switching time and programming volatage, instances of unsuccessful memristor

switching are inevitable; studying the effect of the non-deterministic switching mechanism

in HD-CIM and the corresponding solution is thus necessary to make HD-CIM practical.

Unsuccessful write operations lead to bit errors when the former state of a memristor is

different from the data to be written. We thus model this variability as a binary symmetric

channel (BSC) when writing to resistive memory, i.e., a write BSC. The vectors to be stored

are viewed as the input to this channel, while the vectors actually written to the resistive

memory are the output.

2.3 Hamming Distance Estimation-In-Memory Under Resistance

Variation

In 1.3.1, we provide a scheme (Hamming Distance Estimation-In-Memory) to estimate the

Hamming distance between two vectors whose Hamming weights are a priori known, as-

suming the conductance of each memristor state is modeled as a random variable. We also

provide a simplified scheme in the regime of small “On/Off” resistance ratios. In 1.3.2, an

inversion coding technique is used to generalize Hamming distance Estimation-In-Memory
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to be applicable to arbitrary vectors with unknown Hamming weights, using a single con-

ductance measurement. We then prove the optimality of this code and present a modified

estimation scheme. In 1.3.3, we provide analysis of the estimation error and show that inver-

sion coding also provides benefits in terms of estimation accuracy. In 1.3.4, the average-case

study framework is introduced to study the effect of resistance variation on the k-nearest

neighbors classifier when our estimation scheme is used.

2.3.1 Hamming Distance Estimation-In-Memory (HD-EIM)

For two vectors x,y ∈ {0, 1}n stored in resistive memory where conductances of the two

states of each memristor are modeled as Gaussian random variables, the conductance between

the two rows of memristors is as follows:

G(x,y) =
n∑
i=1

[
xiyi

Hi,xHi,y

Hi,x +Hi,y

+ xi(1− yi)
Hi,xLi,y
Hi,x + Li,y

+ (1− xi)yi
Li,xHi,y

Li,x +Hi,y

+ (1− xi)(1− yi)
Li,xLi,y
Li,x + Li,y

]
.

(2.2)

Here, xi, yi denote the i-th entry of vectors x,y respectively. Hi,x and Hi,y are random

variables denoting the ”1” state conductances of memristors that store xi and yi respectively,

and they are modeled as Gaussian random variable in (2.1). Li,x and Li,y are similarly defined

for the ”0” state conductances. Equation (2.2) follows by summing up the conductances of

each branch i, which is composed of the serial conductance of memristors that store xi and

yi. Note that Equation (2.2) is analogous to Equation (1) in [CC15] with the substitution of

our new variability model.

The following approximation can be made when µH >> σH and µL >> σL:

Hi,xHi,y

Hi,x +Hi,y

≈ Fi ∼ N (µH/2, σ
2
H/8),

Li,xLi,y
Li,x + Li,y

≈ Ti ∼ N (µL/2, σ
2
L/8),

Hi,xLi,y
Hi,x + Li,y

≈ Si ∼ N
(

µL
1 + ε

,
σ2
L

(1 + ε)4

)
. (2.3)
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These approximations are made in order to facilitate further calculation (see Appendix A

for justification of approximations). We define ε = µL/µH and provide examples of ε in

Appendix A, Table A.1.

For two vectors x, y ∈ {0, 1}n, we define N00 to be the number of element pairs that

have xi = yi = 0 for i ∈ {1, ..., n}. Similarly we define N01 to be the number of element pairs

that have xi = 0, yi = 1, N10 to be the number of element pairs that have xi = 1, yi = 0, and

N11 to be the number of element pairs that have xi = yi = 1. Using our approximations, the

conductance measurement can be expressed as follows,

G(x,y) ≈ Ḡ(x,y) =

N11∑
i=1

Fi +

N01+N10∑
i=1

Si +

N00∑
i=1

Ti,

We normalize Fi, Si, and Ti by µH/2 and denote the normalized random variables by fi,

si, and ti, (where ε = µL/µH) yielding:

fi ∼ N (1, σ2
H/2µ

2
H), si ∼ N

(
2ε

1 + ε
,

4σ2
L

µ2
H(1 + ε)4

)
, ti ∼ N (ε, σ2

L/2µ
2
H).

Similarly, we compute the normalized conductance measurement, G̃(x,y), as follows:

G̃(x,y) =
Ḡ(x,y)× 2

µH
=

N11∑
i=1

fi +

N01+N10∑
i=1

si +

N00∑
i=1

ti.

Using elementary properties of independent Gaussian distributions, we have

G̃(x,y) ∼ N
(
N11 + (N01 +N10)

2ε

1 + ε
+N00ε,

N11σ
2
H

2µ2
H

+
(N01 +N10)8σ

2
L

2µ2
H(1 + ε)4

+
N00σ

2
L

2µ2
H

)
. (2.4)

We define wx and wy to be the a priori known Hamming weights of x and y, respectively.

We define D(x,y) to be the Hamming distance between x and y. Using the following facts,

N11 = [wx + wy −D(x,y)]/2, N01 +N10 = D(x,y), N00 = n−N11 −N01 −N10, (2.5)

we can compute the following:

D̃(x,y) =
1 + ε

(1− ε)2
[(1− ε)(wx + wy) + 2nε− 2G̃(x,y)]. (2.6)

12



Note that Equation (2.6) is a substitution of the noisy D(x,y) into Equation (5) from [CC15].

Based on (2.4), (2.5) and (2.6), D̃(x,y) has the following distribution:

D̃(x,y) ∼ N
(
D(x,y),

2(1 + ε)2N11σ
2
H

µ2
H(1− ε)4

+
(N01 +N10)16σ2

L

µ2
H(1 + ε)2(1− ε)4

+
2(1 + ε)2N00σ

2
L

µ2
H(1− ε)4

)
. (2.7)

D̃(x,y) is an intermediate random variable computed using the conductance measure-

ment from which we can estimate D(x,y). Note that D̃(x,y) and G̃(x,y) will be rede-

fined per section for the appropriate context. We can now view the problem of estimating

Hamming distance from a conductance measurement as a classic communication problem.

The transmitter sends D(x,y) and the channel is Gaussian with zero mean and variance

σ2(D̃(x,y)), as specified in (2.7). The receiver sees D̃(x,y) and estimates D(x,y) from the

observation.

We note that D(x,y) takes only integer values from 0 to n. We also observe that for

any two nearby distributions which center at DH and DH + 1, their variances only differ

by a small amount when σH and σL are relatively close. Based on these observations, we

propose an estimator D̂(x,y) = nint(D̃(x,y)). We refer to this estimator as the nearest

integer estimator. The nearest integer estimator completes the last step of HD-EIM, which

estimates D(x,y) from a single measurement G(x,y).

From (2.7), we observe that σ2(D̃(x,y)) does not have a clear relationship to the message

D(x,y) which makes the analysis of the estimation error intractable. The approximation in

(2.3), which leads to (2.7), is suitable for a variety of “On/Off” resistance ratios. However,

smaller “On/Off” resistance ratios are usually reported in literature, e.g., ε = 0.01 [CL11].

Therefore, we seek to further simplify our equations in order provide a single parameter

characterization for the estimation error. When ε is small, the simplified approximations

readily follow:

Hi,xHi,y

Hi,x +Hi,y

≈ Fi ∼ N (µH/2, σ
2
H/8),

Li,xLi,y
Li,x + Li,y

≈ Ti ∼ N (µL/2, σ
2
L/8),

Hi,xLi,y
Hi,x + Li,y

≈ Si ∼ N (µL, σ
2
L). (2.8)
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With the simplified approximations, the distribution of G̃(x,y) and the calculation of

D̃(x,y) change accordingly:

G̃(x,y) ∼ N
(
N11 + (N01 +N10)2ε+N00ε,

N11σ
2
H

2µ2
H

+
(N01 +N10)8σ

2
L

2µ2
H

+
N00σ

2
L

2µ2
H

)
. (2.9)

We then compute D̃(x,y) as:

D̃(x,y) =
1

1− 3ε
[(1− ε)(wx + wy) + 2nε− 2G̃(x,y)], (2.10)

where

D̃(x,y) ∼ N
(
D(x,y),

2N11σ
2
H + 2N00σ

2
L + (N01 +N10)16σ2

L

µ2
H(1− 3ε)2

)
. (2.11)

The estimation of D(x,y) is performed using the nearest integer estimator. This simpli-

fication is used in the remaining parts of this section, Section 2.4, and Section 2.5.

2.3.2 Inversion Coding

In the previous discussion, we proposed the HD-EIM scheme which estimates the Hamming

distance between two vectors from a single conductance measurement, with the assumption

that the weights of both vectors are a priori known. However, this assumption may not

be valid for many applications. Therefore, in order to generalize our HD-EIM scheme to

applications where vectors with arbitrary weights are of interest, we require a method to

gain knowledge of vector weights. In this subsection we discuss two approaches to get vector

weights before HD-EIM is performed: weight estimation and inversion coding. We briefly

describe the idea of weight estimation and elaborate on the inversion coding technique.

In [CC15], where the ideal two-state conductance model of a memristor is considered, the

weight of a vector can be computed from the measurement between memristor that store the

vector itself and some preset vector, e.g., the all-1 vector. We can use this idea, in conjunction

with the techniques described in 1.3.1, to estimate the weight of a vector in the presence

of variability due to resistance variation. After the weights of two vectors are estimated,

the Hamming distance can be then estimated using the HD-EIM scheme. This approach
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of estimating the weight of both vectors first, and then estimating the Hamming distance

requires a total of three conductance measurements in order to complete one Hamming

distance estimation. The extra two measurements introduce extra latency which is not

favored by frequent read applications. The overall estimation accuracy then also suffers

from additional estimation errors when estimating the weights of vectors.

Alternatively, in applications where latency is the primary concern, we use the following

coding technique to force every vector to have the same Hamming weight prior to the data

being written to resistive memory, thus enabling Hamming distance Estimation-In-Memory

with only one conductance measurement.

Auxiliary Code 1. (cf. [CC15]). We define an inversion encoding of the vector x to be

x(c) = [x|¬x], where ¬x is the bitwise complement of x and | denotes concatenation.

We refer to Auxiliary Code 1 as inversion coding throughout this chapter. Let us define

the weight of a vector x as w(x). With inversion coding, we have w(x(c)) = n,∀x ∈ {0, 1}n.

With inversion coded vectors stored in resistive memory, the weights are known to be n, thus

HD-EIM can be readily used. By the nature of inversion coding, we have D(x(c),y(c)) =

2D(x,y). This relationship can thus be used to estimate D(x,y) from the G̃(x(c),y(c)) using

the following equation of the redefined D̃(x,y):

D̃(x,y) =
1

2
D̃(x(c),y(c)), (2.12)

where

D̃(x(c),y(c)) =
1

1− 3ε
[2n(1− ε) + 4nε− 2G̃(x(c),y(c))]. (2.13)

The random variables G̃(x(c),y(c)) denote the normalized conductance measurements be-

tween two rows that store the coded vectors x(c) and y(c); G̃(x(c),y(c)) will be redefined per

section for the appropriate context. Adapting (2.9), we have the distribution of G̃(x(c),y(c))

as follows:

G̃(x(c),y(c)) ∼ N
(
N ′11 + (N ′01 +N ′10)2ε+N ′00ε,

N ′11σ
2
H

2µ2
H

+
(N ′01 +N ′10)8σ

2
L

2µ2
H

+
N ′00σ

2
L

2µ2
H

)
. (2.14)
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Here N ′gh is defined to be the number of coordinates having bit g in x(c) and bit h in y(c),

for g, h ∈ {0, 1}. We therefore have:

D̃(x(c),y(c)) ∼ N
(
D(x(c),y(c)),

2N ′11σ
2
H + 2N ′00σ

2
L + (N ′01 +N ′10)16σ2

L

µ2
H(1− 3ε)2

)
, (2.15)

and

D̃(x,y) ∼ N
(
D(x,y),

2N ′11σ
2
H + 2N ′00σ

2
L + (N ′01 +N ′10)16σ2

L

4µ2
H(1− 3ε)2

)
. (2.16)

We can thus estimate D(x,y) from D̃(x,y) using the nearest integer estimator D̂(x,y) =

nint(D̃(x,y)), thus adapting the HD-CIM scheme to the case where an inversion coding is

used. We now show the optimality of inversion coding in terms of its redundancy among all

constant weight codes.

Lemma 1. Define a code to be a injective mapping that maps a message x ∈ {0, 1}a to a

codeword x̄ ∈ {0, 1}b. Let D(x,y) denote the Hamming distance between two vectors x and

y. We define a code to be Hamming distance preserving if and only if D(x̄, ȳ) = f (D(x,y))

for some bijective function f . We also define a constant weight code to be a code that satisfies

the property w(x̄) = w0,∀x̄ ∈ {0, 1}b and some constant w0. The necessary conditions for a

constant weight code to be Hamming distance preserving are:

w0 ≥ a, b ≥ 2a.

Proof. Define D1 to be the range of D(x,y) for x,y ∈ {0, 1}a. We have |D1| = a+1. Define

C1 to be the set of length-b binary vectors that have weight w0. Also define C2 to be the

set of length-b codewords generated by any constant weight code with weight w0. Due to

the nature of codes, C2 ⊆ C1. Define D2 to be the range of D(x̄, ȳ) for x̄, ȳ ∈ C1, define D3

to be the range of D(x̄, ȳ) for x̄, ȳ ∈ C2. The following relationship can be easily verified,

|D2| = min(w0 + 1, b − w0 + 1). In order for the code to be Hamming distance preserving,

i.e., f to be a bijective function, we need |D3| = |D1| = a + 1. Since C2 ⊆ C1, we have

|D3| = a+ 1 ≤ |D2| = min(w0 + 1, b− w0 + 1), which proves our necessary conditions. �
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Due to the limited read accessibility to resistive memory, there is no direct access to x̄, ȳ.

For any constant weight code we could use, we can only estimate the Hamming distance

between between pairs of codewords using HD-EIM scheme. It is therefore necessary for our

constant weight code to be Hamming distance preserving so that we can directly recover the

Hamming distance between the corresponding pairs of messages. Since the rate of this code

is a/b, Lemma 1 implies that the maximum rate of a code of this type is 1/2. The inversion

coding indeed has rate 1/2 and is thus optimal in term of redundancy.

2.3.3 Estimation Error Probability and Bounds

In previous subsections, we have introduced two methods for HD-EIM: one in which vectors

with known weights are stored and the other in which inversion coded vectors are stored.

Due to resistance variation, estimation errors can occur when determining the Hamming

distance between vectors. In this subsection, the estimation error probability is studied for

the two cases and the results are compared.

Lemma 2. When two vectors x,y ∈ {0, 1}n with known weight are stored in resistive mem-

ory, relying on approximation (2.8), we can estimate D(x,y) using D̂(x,y) = nint(D̃(x,y)),

with D̃(x,y) computed from (2.10), and the normalized conductance measurement G̃(x,y)

from (2.9). Then, the conditional estimation error probability has the following bound:

P (D̂(x,y) 6= D(x,y) | D(x,y)) ≤ 2Q

(
1

2
√
β(n+ 7D(x,y))

)
, (2.17)

where β =
2max(σ2

L,σ
2
H)

µ2H(1−3ε)2 and Q(·) is the Q-function, i.e., Q(x) = 1√
2π

�∞
x

exp(−u2

2
)du.

Proof. From D̂(x,y) = nint(D̃(x,y)) and (2.11), the probability of erroneous estimation

can be calculated as:

P (D̂(x,y) 6= D(x,y) | D(x,y)) = 2Q

(
1

2σ(D̃(x,y))

)
,
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Define σ2
max = max(σ2

H , σ
2
L). The standard deviation of D̃(x,y) can be upper bounded:

σ(D̃(x,y)) =

√
2N11σ2

H + 2N00σ2
L + (N01 +N10)16σ2

L

µ2
H(1− 3ε)2

≤

√
2N11σ2

max + 2N00σ2
max + (N01 +N10)16σ2

max

µ2
H(1− 3ε)2

=
√
β(n+ 7D(x,y)).

Using elementary properties of the Q-function, Lemma 2 is proved. �

Lemma 2 provides us with a single parameter relation between β and the estimation error

probability. The parameter β serves as a measure of device reliability and examples of β are

provided in Appendix A Table A.1 It is also observed that the estimation error probability

is largely dependent on the Hamming distance. A smaller Hamming distance is associated

with a smaller estimation error probability. This property is well suited for classification

problems in which objects with smaller distances are of interest.

We also provide a bound of the unconditional estimation error probability of HD-EIM

when vectors with known weights are stored.

Corollary 2.1. The unconditional estimation error probability of HD-EIM, when vectors

with known weights are stored, is upper bounded as:

P (D̂(x,y) 6= D(x,y)) ≤ 2Q

(
1

4
√

2βn

)
.

Proof. Follows immediately from D(x,y) ≤ n,∀ x,y and Lemma 2. �

This simple bound gives insight into the trade-off between β, the device reliability and

n, the vector length (scalability). For instance, we can achieve the same level of Hamming

distance calculation accuracy with larger resistance variation by shortening the vectors.

We next adapt Lemma 2 and Corollary 2.1 to the case where inversion coding is used.

Lemma 3. When two inversion coded vectors, x(c),y(c) ∈ {0, 1}2n, corresponding to two

original vectors x,y ∈ {0, 1}n, are stored in resistive memory, relying on approximation
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(2.8), we can estimate D(x,y) using D̂(x,y) = nint(D̃(x,y)), with D̃(x,y) computed from

(2.12), and the normalized conductance measurement G̃(x,y) from (2.14). Then, the con-

ditional estimation error probability is upper bounded as:

P (D̂(x,y) 6= D(x,y) | D(x,y)) ≤ 2Q

(
1√

2β(n+ 7D(x,y))

)
, (2.18)

where β =
2max(σ2

L,σ
2
H)

µ2H(1−3ε)2 .

Proof. The proof of this lemma is similar to proof of Lemma 2 with σ2(D̃(x,y)) following

from (2.16) in conjunction with the following properties of inversion coding:

N ′11 = N ′00 = N11 +N00, N
′
01 = N ′10 = N01 +N10.

�

We also provide a simple bound of the estimation error probability of HD-EIM when

inversion coded vectors are stored.

Corollary 3.1. The unconditional estimation error probability of HD-EIM, when inversion

coded vectors are stored, is upper bounded as:

P (D̂(x,y) 6= D(x,y)) ≤ 2Q

(
1

4
√
βn

)
Proof. Follows immediately from D(x,y) ≤ n,∀ x,y and Lemma 3. �

The bounds in Lemmas 2 and 3 are tight when σ2
H = σ2

L. We observe that when these

bounds are tight, the estimation error probability using coded vectors is smaller than the

one using uncoded vectors. This observation shows that inversion coding also improves the

estimation accuracy, in addition to its ability to generalize HD-EIM to vectors with unknown

weights. Note that additional coding, e.g., encoding x to be [x|¬x|x|¬x], further improves

estimation accuracy but may not be favorable in terms of redundancy. The single inver-

sion coding technique is the maximum rate constant weight code that preserves Hamming
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distance, thus allowing HD-EIM to be efficiently performed with a single conductance mea-

surement. However, additional coding only improves estimation accuracy with diminishing

returns.

2.3.4 An Average-Case Study on the k-NN Classifier Under Computation Noise

Using HD-EIM

In the previous discussion we analyzed the estimation error of the Hamming distance Estimation-

in-Memory scheme under device variability due to resistance variation. Due to resistance

variation, the Hamming distance between vectors has to be estimated and could lead to

estimation error. From the application point of view, the estimation error can be viewed as

computation noise when Hamming distance computation is performed. We have provided a

bound on the conditional error probability. Meanwhile, erroneous Hamming distance com-

putations may not necessarily lead to erroneous results due to the error-tolerant nature of

some applications, e.g., the k-nearest neighbors classifier. In this subsection, we focus on

the k-nearest neighbors classifier as our main application and provide analysis on how this

computation noise affects the classification accuracy. Throughout this whole subsection,

we assume binary attributes (vectors) are inversion coded and stored in resistive memory.

We next introduce the framework we use to analyze the k-nearest neighbors classifier under

computation noise.

The average-case analysis framework, introduced by Pazzani and Sarrett [PS92], is a

useful theoretical framework to understand the behavior of learning algorithms. This frame-

work is based on the formal computation of the expected accuracy of a learning algorithm

for a certain fixed class of concepts [OY97]. We use this framework to formally compute the

expected accuracy of the k-NN classifier to learn the m-of-n/` concept, a boolean threshold

function, under computation noise. The m-of-n/` concept is defined by the number of rel-

evant attributes (n), the number of irrelevant attributes (`), and the threshold (m). Under

this concept, an instance is positive if m or more relevant attributes exist and is negative if
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fewer than m relevant attributes exist. Note that n is redefined in this subsection in order

to be consistent with [OY97]. We assume that relevant and irrelevant attributes occur with

probabilities p and q, respectively. The k-NN classifier classifies an instance as positive if

more than half of its k nearest neighbors are positive. When a tie occurs, the classifier

randomly decides the class. We compute the expected accuracy when the bound is tight,

i.e., σ2
H = σ2

L and the computation noise is parameterized by β, as stated in Lemma 3. The

expected classification accuracy is a function of n,m, p, q, k,N, and β, where N is the size of

the training space. We use the next example to illustrate the idea of the k-nearest neighbors

classifier and how an erroneous Hamming distance computation may not lead to erroneous

classification.

Example 1. In this example, we are interested in the classification of the testing instance

based on the 5 training instances using a k-nearest neighbors classifier. The 1 testing instance

and 5 training instances are listed in the next Table. We set k to be 3 for the k-NN classifier.

The training instances are generated according to the 4-of-8/0 concept and we use 1/0 to

mark positive/negative class labels.

Table 2.1: An example on k-NN.

Testing Instance

Attribute 11111000

Training Instances

Instance # 1 2 3 4 5

Class Label 1 0 1 0 0

Attribute 11111100 11100000 11110100 11000000 11000100

Hamming Distance to Testing Case 1 2 2 3 4

In the error-free case, i.e., all Hamming distances are computed correctly, the k-NN

classifier classifies the testing instance as positive because its 3 nearest neighbors (instance

#1, #2, and #3) have class labels 1, 0, and 1 respectively. Positive is the correct class label

21



for the testing instance based on the 4-of-8/0 concept.

Now we consider the case where Hamming distance computation is prone to estimation

error due to resistance variation. We take a special case where the Hamming distance between

the testing instance (11111000) and training instance #2 (11100000) is erroneously computed

to be 3. Note that there are two training instances (#2 and #4) at distance 3 w.r.t. the

testing instance; the k-NN classifier will randomly choose one to be the nearest neighbor of

the testing instance. Observe that although the Hamming distance computation is erroneous,

the classification result is still positive because the 2 closest training instance (#1 and #3)

are both positive. This example illustrate how erroneous Hamming distance computation may

not lead to erroneous classification.

2.3.4.1 Formal Calculation of Expected Accuracy

In [OY97], Okamoto and Nobuhiro used the average-case study framework to analyze noisy

attributes and class labels. We adapt some of their equations to the scenario involving

computation noise. For the calculations of expected accuracy that have already been done

by Okamoto and Nobuhiro, we simply state their results here (we refer readers to [OY97]

for further details). We modify the equations to incorporate the computation noise and to

reflect the fact that in our model, the attributes and class labels are noise-free.

The probability that an instance consists of x relevant attributes and y irrelevant at-

tributes can be calculated as [OY97]:

Poc(x, y) =

(
n

x

)(
l

y

)
px(1− p)n−xqy(1− q)l−y.

Then the expected classification accuracy can be calculated as [OY97]:

A(k) =
l∑

y=0

[m−1∑
x=0

Poc(x, y)(1− Ppos(k, x, y)) +
n∑

x=m

Poc(x, y)Ppos(k, x, y)

]
,

where Ppos(k, x, y) represents the probability that the k-NN classifier classifies an arbitrary

test instance with x relevant attributes and y irrelevant attributes as positive.
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To calculate Ppos(k, x, y), we first calculate Pdp(x, y, e) (Pdn(x, y, e), resp.) which is the

probability that an arbitrary positive (negative, resp.) training instance has Hamming dis-

tance e from the arbitrary testing instance t(x, y) ∈ I(x, y). The Hamming distance e is

assumed to be estimated by HD-EIM scheme from an observation ẽ. I(x, y) represents the

set of instances in which x relevant attributes and y irrelevant attributes simultaneously

occur. Pdp(x, y, e) and Pdn(x, y, e) can be represented as:

Pdp(x, y, e) =
n∑
ê=0

l∑
ŷ=0

n∑
x̂=m

Poc(x̂, ŷ)Pdis(x, y, x̂, ŷ, ê)PH(e, ê), (2.19)

and

Pdn(x, y, e) =
n∑
ê=0

l∑
ŷ=0

m−1∑
x̂=0

Poc(x̂, ŷ)Pdis(x, y, x̂, ŷ, ê)PH(e, ê). (2.20)

Pdis(x, y, x̂, ŷ, e) is the probability that an arbitrary instance in I(x̂, ŷ) has Hamming distance

e from an arbitrary instance in I(x, y). PH(e, ê) is the probability that the original Hamming

distance ê is estimated to be e.

In order to compute PH(e, ê), we consider the following scenario where the observation

ẽ is a random variable with distribution N (ê, 1
2
β(n + 7ê)). This corresponds to the case

that two attribute vectors with Hamming distance ê are inversion coded and then stored in

resistive memory. For e = nint(ẽ) if 0 ≤ ẽ ≤ n, e = 0 if ẽ < 0, and e = n if ẽ > n, using

elementary properties of Gaussian distribution, PH(e, ê) is calculated as follows:

PH(e, ê) =



1−Q
(

1
2
−ê√

1
2
β(n+7ê)

)
if e = 0,

Q

(
n− 1

2
−ê√

1
2
β(n+7ê)

)
if e = n,

Q

(
e−ê− 1

2√
1
2
β(n+7ê)

)
−Q

(
e−ê+ 1

2√
1
2
β(n+7ê)

)
otherwise.

The remaining equations in this subsection are stated directly from [OY97]; we include

them here for completeness. Pdis(x, y, x̂, ŷ, e) can be calculated as follows [OY97]:

Pdis(x, y, x̂, ŷ, e) =
∑

(zr,zi)∈S

(
x
zr

)(
n−x
x̂−zr

)(
n
x̂

) (
y
zi

)(
l−y
ŷ−zi

)(
l
ŷ

) ,
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where S is a set of all pairs of zr and zi that satisfy the following conditions:

max(0, x+x̂−n) ≤ zr ≤ min(x, x̂),max(0, y+ŷ−l) ≤ zi ≤ min(y, ŷ), zr+zi =
x+ y + x̂+ ŷ − e

2
.

Ppos(k, x, y) can be then calculated.

Ppos(k, x, y) =
n+l∑
d=0

k−1∑
a=0

N−a∑
b=k−a

Pnum(x, y, d, a, b)Psp(x, y, d, a, b).

where

Pnum(x, y, d, a, b) =

(
N

a

)(
N − a
b

)
Pl(x, y, d)a × Pd(x, y, d)b(1− Pl(x, y, d)− Pd(x, y, d)N−a−b,

Pl(x, y, d) =
d−1∑
e=0

(Pdp(x, y, e) + Pdn(x, y, e)),

Pd(x, y, d) = Pdp(x, y, d) + Pdn(x, y, d),

and

Psp(k, x, y, d, a, b)

=
a∑

u=0

b∑
v=0

{
P

(u)
lp (a, u)P

(v)
dp (b, v)

v∑
w=d k+1

2
e−u

{
P

(w)
dp (k, a, b, v, w) +

1

2
P

(w)
dp (k, a, b, v,

k

2
− u)

}}
,

where

P
(u)
lp (a, u) =

(
a

u

)
(

∑d−1
e=0 Pdp(x, y, e)

Pl(x, y, d)
)u(

∑d−1
e=0 Pdn(x, y, e)

Pl(x, y, d)
)a−u,

P
(v)
dp (b, v) =

(
b

v

)
(
Pdp(x, y, d)

Pd(x, y, d)
)v(
Pdn(x, y, d)

Pd(x, y, d)
)b−v,

P
(w)
dp (k, a, b, v, w) =

(
v
w

)(
b−v

k−a−w

)(
b

k−a

) .

This ends our derivation for the expected accuracy.

2.3.4.2 Average-Case Study Results Using HD-EIM

First we study the effects of different levels of computation noise on the 3-of-5/2 concept.

In Figure 2.2, we fix N to be 32 and we report two device reliability (noise-level), β = 0.01

and β = 0.1, for k spanning from 1 to 16.
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Figure 2.2: The performance of 3-of-5/2 concept under computation noise.
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Figure 2.3: Learning accuracy with various levels of computation noise.

In Figure 2.2, the upper line is the theoretical result for the noise-free classification accu-

racy, which is consistent with the results in [OY97]. The two lower lines are the theoretical

accuracy with different device parameter β. When k is an even number, it is observed that

the classification accuracy of the k-NN classifier drops remarkably due to the randomness

when a tie occurs. Figure 2.2 shows that the computation noise decreases the classification

accuracy for all k and the amount of decrement largely depends on the noise level β.

We next show the effects of computation noise for a wide range of noise levels on a variety

of different concepts in Figure 2.3. The classification accuracy of k-NN at each noise level
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for each concept is chosen to be the maximum accuracy out of the range 2 ≤ k ≤ 16.

In Figure 2.3, β ranges from 10−3 to 1 in order to see a clear trend. However, from

a realistic point of view, β =
2max(σ2

L,σ
2
H)

µ2H(1−3ε)2 = 1 is unlikely to occur in a real device. We

observe that for small β, i.e., β < 10−2, the influence of the estimation error is negligible.

It is interesting to note that the impact of the estimation error decreases as the dimension

of concepts increases, which could be beneficial for applications with many attributes, e.g.,

n = 22.

2.4 Error-Detection and Error-Correction Scheme Under Write

BSC

In this section we consider memristor variability due to unreliable write operations. The

adverse effect of unreliable write operation can be modeled as a write BSC and therefore

can be viewed as attribute noise in learning problems. In [OY97], the authors provide an

average-case study and observed that attribute noise decreases classification accuracy. In

order to keep the low latency property of HD-CIM, we are restricted to the conductance

measurements between rows of memristors. Therefore, traditional ECCs based on entry-

wise access can not be used to deal with the write BSC and this fact motivates us to provide

error-detection and error-correction schemes based on conductance measurements only. In

this chapter, error-detection schemes are explored in 2.4.1 and 2.4.2. Two different error-

correction schemes are explored in 2.4.3 and 2.4.4. In 2.4.5, we present the average-case

study on k-nearest neighbor classifier using one of our proposed error-correction scheme in

2.4.4. Throughout this section, we assume the memristors have no resistance variation, i.e.,

σ2
H = σ2

L = 0. We again assume inversion coded vectors are stored in the resistive memory.
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2.4.1 Single Error Detection

Define x(c) and y(c) to be two inversion coded vectors corresponding to two length-n vectors

x and y. Let x̃(c) and ỹ(c) be the noisy vectors actually stored due to the write noise (BSC).

We first establish necessary equations to compute the Hamming distance between x and

y from a measurement between rows of memristors that store x̃(c) and ỹ(c). Define the

normalized conductance measurement to be G̃(x̃(c), ỹ(c)). As resistance variability is not

considered in this section, G̃(x̃(c), ỹ(c)) is a constant rather than a random variable. We thus

have:

G̃(x̃(c), ỹ(c)) = Ñ ′11 + (Ñ ′10 + Ñ ′01)
2ε

1 + ε
+ Ñ ′00ε. (2.21)

Here Ñ ′gh is defined to be the number of coordinates having bit g in x̃(c) and bit h in ỹ(c),

for g, h ∈ {0, 1}.

A variable denoting the normalized conductance measurement between rows of memris-

tors that store x(c) and y(c) can be defined as:

G̃(x(c),y(c)) = N ′11 + (N ′10 +N ′01)
2ε

1 + ε
+N ′00ε. (2.22)

Here N ′gh is defined to be the number of coordinates having bit g in x(c) and bit h in y(c),

for g, h ∈ {0, 1}.

We again use an intermediate variable D̃(x,y) to denote the result calculated from the

measurement as follows:

D̃(x̃(c), ỹ(c)) =
1 + ε

(1− ε)2
[2n(1− ε) + 4nε− 2G̃(x̃(c), ỹ(c))]. (2.23)

D̃(x,y) =
1

2
D̃(x̃(c), ỹ(c)) =

1 + ε

(1− ε)2
[n+ nε− G̃(x̃(c), ỹ(c))]. (2.24)

Note that when no error occurs, D̃(x,y) = D(x,y). Equation (2.23) is adapted from

Equation (2.6) when inversion coding is used and write BSC is considered.
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It is useful to denote the difference in conductance measurements between the noisy and

the noise-free case as:

∆G̃(x(c),y(c), x̃(c), ỹ(c)) = G̃(x̃(c), ỹ(c))− G̃(x(c),y(c)).

Similarly, let us define ∆D(x,y, x̂, ŷ), which is later used to characterize bit errors, as

follows:

∆D̃(x,y, x̃, ỹ) = D̃(x,y)−D(x,y) = −(1 + ε)∆G̃(x(c),y(c), x̃(c), ỹ(c))

(1− ε)2
. (2.25)

We now calculate how ∆G̃(x(c),y(c), x̃(c), ỹ(c)) and ∆D̃(x,y, x̃, ỹ) are affected by a single

bit error, i.e., t = 1. Due to the symmetry of this problem, there are only four different fun-

damental types of errors for a pair of elements x
(c)
i and y

(c)
i , (0, 0) → (0, 1), (0, 1) → (0, 0),

(0, 1) → (1, 1), and (1, 1) → (0, 1), which we denote as error types A, B, C, and D, respec-

tively. All other error types are expressed in terms of these four error types. Each of these er-

ror types affects the relationship between {N ′00, N ′01, N ′10, N ′11} and {Ñ ′00, Ñ ′01, Ñ ′10, Ñ ′11}. For

example, an error that changes (0, 0) into (0, 1) will result in Ñ ′01 = N ′01 + 1, Ñ ′00 = N ′00 − 1,

Ñ ′11 = N ′11 and Ñ ′10 = N ′10. Table 2.2 lists the resulting values of ∆G̃(x(c),y(c), x̃(c), ỹ(c)) and

∆D̃(x,y, x̃, ỹ) for each error type. The above two variables are abbreviated as ∆G̃(x(c),y(c))

and ∆D̃(x,y) since the relative relationship is clear.

We use the following lemma to detect a single bit error.

Lemma 4. If exactly one of x̃(c) or ỹ(c) contains a single bit error, i.e., D(x(c), x̃(c)) +

D(y(c), ỹ(c)) = 1 and 0 < ε < 1
2
, then we can detect that D̃(x,y) 6= D(x,y).

Proof. If no error is present, we have D(x,y) = D̃(x,y), i.e., ∆D̃(x,y) = 0. For 0 < ε < 1
2
,

each error type will cause the value of ∆D̃(x,y) to be a non-integer and in turn lead to

non-integer D̃(x,y) (since D(x,y) is always an integer and D̃(x,y) = D(x,y)+∆D̃(x,y)).

A single bit error can thus be detected by first computing D̃(x,y) and checking whether it

is an integer or not. �
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Table 2.2: The four types of errors.

Error Type (x
(c)
i , y

(c)
i )→ (x̃

(c)
i , ỹ

(c)
i ) ∆G̃(x(c),y(c)) ∆D̃(x,y)

A (0,0) → (0,1)
2ε

1 + ε
− ε −ε

1− ε

B (0,1) → (0,0) −
(

2ε

1 + ε
− ε
)

ε

1− ε

C (0,1) → (1,1) −
(

2ε

1 + ε
− 1

)
−ε

1− ε
− 1

D (1,1) → (0,1)
2ε

1 + ε
− 1

ε

1− ε
+ 1

This process of error detection is later referred to as an integer check. When error-free,

D̂(x,y) = D̃(x,y) = D(x,y) where D̂(x,y) is the estimated result from the intermediate

variable D̃(x,y).

Lemma 4 suggests that a single bit error is detectable under certain reasonable constraints

on ε. However, the error type can not be uniquely determined from D̃(x,y). For example,

a vector with D(x,y) = DH incurring error type B would result in an identical value for

D̃(x,y) as a vector with D(x,y) = DH − 1 incurring error type D. Note that this multiple

solution result is due to the nature of the underlying problem and is thus unavoidable if only

vector-level information is used.

2.4.2 Multiple Errors Detection

So far we have shown that a single bit error in a pair of inversion coded vectors can be

detected by checking whether D̃(x,y) is an integer or not. Next, we generalize the idea of

an integer check to multiple errors.
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Lemma 5. If together x̃(c) and ỹ(c) contain an odd number of bit errors t, i.e., D(x(c), x̃(c))+

D(y(c), ỹ(c)) = t (odd), then we conclude that D̃(x,y) 6= D(x,y) for the following constraint

on ε:

0 < ε <
1

t+ 1
.

Proof. Define ei,p, i ∈ {1, ..., t}, p ∈ {x(c),y(c)} to be the error vectors corresponding to the

i-th error in the vector indexed by p. For clarity, the superscript in p is omitted. For example,

if the i-th bit flip is at the j-th position of x(c), ei,x is the all-0 vector with 1 at the j-th

position and ei,y is an all-0 vector. (We permit error at the j-th position in yc but there will

be another pair of error vectors corresponding to it.) We further define ∆D̃(ei) to be the

change in output induced by ei,x and ei,y, i.e.,

∆D̃(ei) = −(1 + ε)∆G̃(x(c),y(c),x(c) + ei,x,y
(c) + ei,y)

(1− ε)2
.

The following relation is observed:

∆D(x,y, x̃, ỹ)

=
t∑
i=1

{−(1 + ε)[G̃(x(c) + ei,x,y
(c) + ei,y)− G̃(x(c),y(c))]

(1− ε)2
}

=
t∑
i=1

∆D(ei).

Each ∆D(ei) can be viewed as the change of the output for a single bit error, thus assuming

the same value as the last column in Table 2.2. For 0 < ε <
1

t+ 1
, D̃(x,y) has a non-integer

value because any odd t choices from those values of D(ei) will be summed to ∆D(x,y, x̃, ỹ),

where 0 < |∆D(x,y, x̃, ỹ)| (mod 1) < 1. Here and elsewhere, the operation x (mod 1) is

defined as the fractional part of x. As a result, any odd number of bit errors can be detected

by an integer check.

�

We next present the result for an even number of errors, t.
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Lemma 6. We denote the fraction of errors that are detectable for even t as rd(t). If together

x̃(c) and ỹ(c) contain an even number of bit errors t, i.e., D(x(c), x̃(c)) + D(y(c), ỹ(c)) = t

(even), and the channel parameter satisfies 0 < ε <
1

t+ 1
, then

rd(t) = 1−

(
t
t/2

)
2t

.

Proof. For an even number of errors, some error patterns are undetectable. We define tA,C

to be the number of errors of either type A or C and similarly for tB,D. Notice that error

types A and C (and error types B and D) have the same integer parts in ∆D(ei), thus

contributing equally to |∆D(x,y, x̃, ỹ)| (mod 1). The analysis on tA,C and tB,D thus covers

all the possible error combinations. The error pattern is undetectable when tA,C = tB,D =

t/2. By viewing this error detection problem as a fair-coin flipping problem in which t/2

heads and t/2 tails occur in t trials, we calculate the probability of an undetectable pattern

occurring to be
(
t
t/2

)
/2t. When tA,C 6= tB,D, let t′ = |tA,C − tB,D|. We have |∆D(x,y, x̃, ỹ)|

(mod 1) = εt′

1−ε , 0 < t′ ≤ t. With 0 < ε <
1

t+ 1
, we have 0 < |∆D(x,y, x̃, ỹ)| (mod 1) < 1

which directly allows for error detection. �

Lemma 5 and Lemma 6 show that multiple errors are sometimes detectable by an integer

check. Note that by an integer check alone, we are unable to differentiate the detected

multiple errors and the detected single error.

2.4.3 Exact Error Correction with Additional Coding

From previous discussion, we have error detection schemes to detect erroneous computation

of D(x,y) by an integer check of D̃(x,y). Our ultimate goal is to recover the correct Ham-

ming distance between vectors x and y. In this subsection, we provide an error correction

scheme based on acquiring the full error profile, i.e., error location and error value, in vectors

x̃(c) and ỹ(c) and we call this scheme the Exact Hamming scheme. Error localization is done

by comparing with preset vectors while utilizing property of inversion coding. x(c) and y(c)
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can thus be successfully recovered relying on extra error correction code.

2.4.3.1 Error Localization

Claim 1. Define L to be the set of vectors li ∈ {0, 1}2n, 1 ≤ i ≤ n whose all bits are one

except the the i-th and the (i+n)-th bits. Also define 1 to be the all-1s vector with length 2n.

Assume error is detected in a pair of vectors x̃(c) and ỹ(c), with n+1 pairwise measurements

between rows of memristors that store x̃(c) and vectors in L ∪ 1, we can narrow the location

of each error (if any) to two positions, i and i+ n except rare cases. Same applies to ỹ(c).

Without loss of generality, we assume there are bit errors in x̃(c). With the measurement

of G̃(x̃(c),1), we compute D̃(x̃,1) using Equation 2.24. We then perform n measurements

between rows of memristor that store x̃(c) and each of the vectors in L to compute D̃(x̃, li)

using the same equation. Error localization is achieved by computing ∆Di(x̃
(c),1, x̃(c), li) =

D̃(x̃, li)−D̃(x̃,1) for all 1 ≤ i ≤ n. Let Ierror = {i ∈ I|∆Di(x̃
(c),1, x̃(c), li) =

2ε

1− ε
+2}∪{i ∈

I|∆Di(x̃
(c),1, x̃(c), li) =

2ε

1− ε
}. There is an error either at position i or at position i+n for

each i ∈ Ierror.

By Auxiliary Code 1, for a given li, if both the i-th and the (i + n)-th positions

of x̃(c) are error-free, the error patterns are (1,1) → (0,1) and (0,1) → (0,0) which re-

sult in ∆Di(x̃
(c),1, x̃(c), li) = 2ε

1−ε + 1. If a bit error occurs at either the i-th or the

(i+ n)-th position of x̂c, then the corresponding error patterns are two (1,1) → (0,0) which

lead to ∆Di(x̃
(c),1, x̃(c), li) = 2ε

1−ε + 2 for bit flip from 1 to 0 or two (0,1) → (0,0) with

∆Di(x̃
(c),1, x̃(c), li) = 2ε

1−ε for bit flip from 0 to 1. If errors occur at both the i-th or the

(i+ n)-th positions of x̂c, we are unable to localize those two errors.

2.4.3.2 Bit Value Reading

Using the same idea of comparing with preset vectors, we are able to read bit-value at

arbitrary location using conductance measurements between rows of memristor.
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Claim 2. Define B to be the set of vectors bi ∈ {0, 1}2n, 1 ≤ i ≤ 2n whose bits are all one

except the i-th bit. The i-th bit value of a given vector, say ỹ(c), can be inferred from two

pairwise measurements between, ỹ(c) and bi; ỹ
(c) and 1.

Two measurements, G̃(ỹ(c),1) and G̃(ỹ(c), bi), are taken and the corresponding D̃(ỹ,1)

and D̃(ỹ, bi) are computed using equation 2.24. The inference of the i-th bit value in ŷc is

based on ∆Di(ỹ
(c),1, ỹ(c), bi) = D̃(ỹ, bi) − D̃(ỹ,1). For y

(c)
i = 1, the error pattern is (1,1)

→ (1,0) with ∆Di(ỹ
(c),1, ỹ(c), bi) =

ε

1− ε
+ 1 and for y

(c)
i = 0, the error pattern is (0,1) →

(0,0) with ∆Di(ỹ
(c),1, ỹ(c), bi) =

ε

1− ε
.

2.4.3.3 Error Correction with Additional Coding

For each error we localized using technique described in 2.4.3.1, we have ambiguity among

two locations. One of these locations is in the first half of the erroneous vector and the other

is in the second half. Based on the underlying inversion coding, the values at those two

positions are complement of each other when error-free. We can thus focus on recovering

the value of the first position by viewing it as an erasure. Here we propose adding extra

redundancy by encoding the first half of x(c) using a standard erasure correcting code. After

error is detected, these parity bits can be accessed using technique described in 2.4.3.2.

Because of this additional coding, we are able to correct every erasure that is conveyed

by the error localization step. With the bit-value information of the corresponding vector

(acquired using technique in 2.4.3.2), we are able to recover the Hamming distance between

the uncorrupted vectors. The error correction capability of this Exact Hamming Scheme

depends on the erasure correction capability of this exact code.

The caveat here is that for this erasure correcting code, the Hamming distance may

not be preserved. As a result, error correction capability requires the ability to measure

the conductance between sub-rows of memristor that store two sub-vectors in the resistive

memory.
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2.4.4 Soft Hamming Scheme for Single Error Correction

The Exact Hamming scheme can correctly find the exact error location and error value thus

achieving the goal of recovering the original Hamming distance. However, it suffers from

many aspects. First, the error correction capability of Exact Hamming scheme requires

extra erasure correction code which adds redundancy and also requires sub-vector reading.

Second, the error localization procedure incurs many costly read operations between rows of

memristors. Lastly, the error localization procedure may fail if rare error patterns occur and

the erasure correction procedure may fail if there is bits error in the corresponding parity

bit. These drawbacks of the Exact Hamming schemes make it not favorable in terms of its

cost in space and time.

We notice that some of the potential application of HD-CIM, e.g., the k-nearest neighbor

classifier, have certain error tolerant capability. This observation motivate us to provide

an approximate error correction scheme focused on correcting the most frequent error, the

single bit error. This approximate error correction scheme will improve the performance

of our application under the write BSC while keep a small error-detection/error-correction

latency. This scheme is based on the following corollary.

For single bit error that occurs, although the error type can not be uniquely determined

by an integer check, with further constrains on ε, we are able to determine whether the error

is of type {B,D} or {A,C} .

Corollary 6.1. If D(x(c), x̃(c)) + D(y(c), ỹ(c)) = 1 and 0 < ε < 1
3
, then we conclude that

D̃(x,y) 6= D(x,y) and we determine whether the error is of type {B,E} or {A,C}.

Proof. The ε range here, 0 < ε < 1
3
, falls within the range of ε in Lemma 4, thus a single

bit error is detectable. Since | ε
1−ε |<

1
2
, if the error belongs to type {B,D}, D̃(x,y) −

nint(D̃(x,y)) < 1/2. Similarly, if the error belongs to type {A,C}, we have nint(D̃(x,y))−

D̃(x,y) < 1/2. This relationship between D̃(x,y) and its nearest integer uniquely determine

whether the error is of type {A,C} or {B,D}. �
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We say D̃(x,y) lies on the right-hand-side (or left-hand-side) of its nearest integer if

D̃(x,y)− nint(D̃(x,y)) < 1/2 (or nint(D̃(x,y))− D̃(x,y) < 1/2).

As a result of Corollary 6.1, if 0 < ε < 1
3
, for the detected single bit error, we have two

possible Hamming distances that could be the original one. We summarize the candidate

original Hamming distance as follows:

If D̃(x,y)− nint(D̃(x,y)) < 1/2,

then D(x,y) = nint(D̃(x,y)) orD(x,y) = nint(D̃(x,y))− 1;

if nint(D̃(x,y))− D̃(x,y) < 1/2,

then D(x,y) = nint(D̃(x,y)) orD(x,y) = nint(D̃(x,y)) + 1.

We now seek to provide a correction scheme to the detected single bit error. We first realize

that choosing randomly between the two candidate solutions is functionally the same as

always choosing D̂(x,y) = nint(D̃(x,y)). Therefore, choosing randomly would not be wise

because it does not take advantage of the extra information we can get from Corollary 6.1.

We propose the following scheme for error-detection and error-correction.

If D̃(x,y) = nint(D̃(x,y)), then D̂(x,y) = nint(D̃(x,y));

if D̃(x,y)− nint(D̃(x,y)) < 1/2, then D̂(x,y) = nint(D̃(x,y))− 1/2;

if nint(D̃(x,y))− D̃(x,y) < 1/2, then D̂(x,y) = nint(D̃(x,y)) + 1/2.

(2.26)

The previous scheme is derived by taking the average of the two candidate Hamming

distances after an error is classified as either type {A,C} or {B,D}. As this error-detection

and correction scheme has the possibility to give non-integer Hamming distance as the result,

we refer it as the Soft Hamming scheme. Analysis of this Soft Hamming scheme on the k-

nearest neighbors classifier will be provided in the next subsection.
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2.4.5 An Average-Case Study on the k-NN Classifier Under Attribute Noise

Using the Soft Hamming Scheme

In order to incorporate the Soft Hamming scheme into the average-case study framework,

we assume all error patterns, except the undetectable errors, are detectable and can be

separated into the two classes—{A,C} or {B,D}—. We also assume ε is sufficiently small

and the Soft Hamming scheme is used to correct the detected error.

The next example helps to illustrate how the Soft Hamming Scheme can be used to

improve classification accuracy under the write BSC.

Example 2. In this example we use the same setup as Example 1. Consider the case that

under the adverse effect of write BSC, the attribute of training instance #3 (11110100) is

changed to 01110100. Without the Soft Hamming scheme, the Hamming distance between

training instance #3 and the testing instance is 3. Both instance #3 (class: positive) and

instance #4 (class: negative) now have distance 3 w.r.t. the testing instance. Choosing

randomly among instance #3 and #4 to be the third nearest neighbor of the testing instance,

the k-NN classifier have 50% chance to have erroneous classification.

If we implement the Soft Hamming scheme, the error pattern (1, 1) → (0, 1) can be

detected when computing the Hamming distance between the testing instance and training

instance #3. The Soft Hamming scheme will therefore set the Hamming distance between

them to be 2.5 based on previous discussions. As a result, the k-NN classifier can correctly

classify the testing instance as positive.

2.4.5.1 Formal Calculation of Expected Accuracy

We define an augmented variable e(s) = 2D̂(x,y), where D̂(x,y) is the result of the Soft

Hamming scheme. For example, e(s) = 3 corresponds to the case that either D̃(x,y) is on

the left-hand-side of 1 or D̃(x,y) is on the right-hand-side of 2. As another example, e(s) = 4

corresponds to the case that D̃(x,y) = D̂(x,y) = 2. Most calculations from subsection 2.3.4
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are applicable in this context by setting β = 0 since resistance variation is not considered.

We recalculate P
(s)
dp (x, y, e(s)) (P

(s)
dn (x, y, e(s)), resp.) which is the probability of an arbitrary

positive (negative, resp.) training instance having distance e(s) from the arbitrary testing

instance t(x, y) ∈ I(x, y). This calculation is separated into two cases. We assume, in this

subsection, an arbitrary attribute is flipped with probability p.

In the first case, we consider an even value for e(s) where no error is detected. From

previous discussion, no error is detected when the number of bit flips from 0 to 1, s, is equals

to the number of bit flips from 1 to 0, r. When e(s)is even, P
(s)
dp (x, y, e(s)) and P

(s)
dn (x, y, e(s))

can be expressed as:

P
(s)
dp (x, y, e(s)) =

n+l∑
ê=0

Pdp(x, y, ê)P
s=r
dif (ê, e(s)/2), P

(s)
dn (x, y, e(s)) =

n+l∑
ê=0

Pdn(x, y, ê)P s=r
dif (ê, e(s)/2),

(2.27)

where Pdp(x, y, e) and Pdn(x, y, e) are the probabilities calculated from subsection 2.3.4 and

P s=r
dif (ê, ê′) is the probability that D̂(x,y) = ê′ given that D(x,y) = ê and s = r. We can

calculate this probability by examining Table 2.2. We observe that each bit flip from 0 to

1, neglecting the fraction parts, will either decrease D̃(x,y) by 1 or keep it the same. Also,

each bit flip from 1 to 0, neglecting the fraction parts, will either increase D̃(x,y) by 1 or

keep it the same. P s=r
dif (ê, ê′) can therefore be calculated as:

P s=rdif (ê, ê′) =

n+l∑
s=|ê′−ê|

min(s+|ê′−ê|,s)∑
w=|ê′−ê|

[(
s

w

)
(
1

2
)s
(

s

w− | ê′ − ê |

)
(
1

2
)s
(
n+ l

s

)(
n+ l

s

)
p2s(1−p)2n+2l−2s

]
.

(2.28)

In the case that e(s) is an odd number, e(s) can arise from two cases: either D̃(x,y) is on the

left-hand-side of (e(s) − 1)/2, i.e., r < s, or D̃(x,y) is on the right-hand-side of (e(s) + 1)/2,

i.e., r > s. When e(s)is odd, P
(s)
dp (x, y, e) and P

(s)
dn (x, y, e) can be expressed as:

P
(s)
dp (x, y, e(s)) =

n+l∑
ê=0

{Pdp(x, y, ê)[P s>r
dif (ê, (e(s) − 1)/2) + P s<r

dif (ê, (e(s) + 1)/2)]},

P
(s)
dn (x, y, e(s)) =

n+l∑
ê=0

{Pdn(x, y, ê)[P s>r
dif (ê, (e(s) − 1)/2) + P s<r

dif (ê, (e(s) + 1)/2)]}.
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P s>r
dif (ê, ê′) is defined to be the probability that nint(D̃(x,y)) = ê′ given D(x,y) = ê and

s > r. P s<r
dif (ê, ê′) is defined to be the probability that nint(D̃(x,y)) = ê′ given D(x,y) = ê

and s < r.

From Table 2.2, we can express P s>r
dif (ê, ê′) and P s>r

dif (ê, ê′) as following:

P s>r
dif (ê, ê′)

= 1(ê > ê′)

n+l∑
s=ê−ê′

s−1∑
r=0

min(r+ê−ê′,s)∑
w=ê−ê′

{(
s

w

)
(
1

2
)s+r

(
r

w − ê+ ê′

)(
n+ l

s

)(
n+ l

r

)
ps+r(1− p)2n+2l−s−r

}

+ 1(ê ≤ ê′)
n+l∑

r=ê−ê′

n+l∑
s=r+1

min(r+ê−ê′,s)∑
h=ê−ê′

{(
s

h

)
(
1

2
)s+r

(
r

h− ê+ ê′

)(
n+ l

s

)(
n+ l

r

)
ps+r(1− p)2n+2l−s−r

},

P s<r
dif (ê, ê′)

= 1(ê ≥ ê′)
n+l∑

s=ê−ê′

n+l∑
r=s+1

min(r+ê−ê′,s)∑
w=ê−ê′

{(
s

w

)
(
1

2
)s+r

(
r

w − ê+ ê′

)(
n+ l

s

)(
n+ l

r

)
ps+r(1− p)2n+2l−s−r

}

+ 1(ê < ê′)

n+l∑
r=ê−ê′

s−1∑
s=0

min(r+ê−ê′,s)∑
h=ê−ê′

{(
s

h

)
(
1

2
)s+r

(
r

h− ê+ ê′

)(
n+ l

s

)(
n+ l

r

)
ps+r(1− p)2n+2l−s−r

} ,

where 1 denotes the indicator function.

This ends our derivation for P
(s)
dp (x, y, e(s)) and P

(s)
dn (x, y, e(s)). These two probabilities

can then be used in place of Pdp(x, y, e) and Pdn(x, y, e) from 1.3.4. We proceed with the rest

of the calculation in 1.4.5.1 using e(s) instead of e and calculate the classification accuracy

accordingly.

2.4.5.2 Average-Case Study Results Using Soft Hamming Scheme

We use the above equations to calculate the expected accuracy of the k-NN classifier where

the Hamming distance is computed using the Soft Hamming scheme on the 3-of-5/2 concept.

We set N = 32 and the accuracy is selected to be the maximum accuracy for 2 ≤ k ≤ 16.

The attribute noise levels are characterized by the cross over probabilities of the write BSC,

Pbsc.

We also plot the expected classification accuracy of the noise-free case and the expected

classification accuracy under attribute noise without error-detection/error-correction. We
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Figure 2.4: Learning accuracy with various levels of attribute noise.

observe that in the region where attribute noise is small, e.g., pbsc < 10−2, the attribute noise

has little effect on classification accuracy. In the region where attribute noise is large, e.g.,

pbsc > 10−2, our Soft Hamming scheme can successfully improve the classification accuracy

under attribute noise.

2.5 Error-Detection and Error-Correction under Resistance Vari-

ation and Write BSC

In previous sections, we proposed HD-EIM to feasibly compute Hamming distance in resistive

memory under the adverse effect of memristor variability due to resistance variation. We also

provided the Soft Hamming scheme to deal with single bit error introduced by memristor

variability due to nondeterministic switching mechanism. In this section, we seek to combine

the two approaches in order to deal with memristor variability due to both sources. Again,

we suppose x(c) and y(c) are inversion coded vectors to be stored. And we define x̃(c) and

ỹ(c) to be the noisy vectors actually stored due to write BSC. In order to make the math

tractable, we provide a solution to a simpler problem, where σ2
H = σ2

L = σ2
0.

With resistance variation taken into account, the normalized conductance measurement
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is a random variable that is additionally affected by the write BSC. Combining Equations

(2.14) and (2.21), we have the distribution of the normalized conductance measurement as

follows:

G̃(x̃(c), ỹ(c)) ∼ N
(
Ñ ′11 + (Ñ ′01 + Ñ ′10)2ε+ Ñ ′00ε,

Ñ ′11σ
2
0

2µ2
H

+
(Ñ ′01 + Ñ ′10)8σ

2
0

2µ2
H

+
Ñ ′00σ

2
0

2µ2
H

)
. (2.29)

Here G̃(x̃(c), ỹ(c)) is a random variable denoting the normalized conductance measurement

between rows of memristors that store x̃(c) and ỹ(c). Ñ ′gh is defined to be the number of

coordinates having bit g in x(c) and bit h in y(c), for g, h ∈ {0, 1}. We use the following

equation to calculate an intermediate random variable D̃(x,y):

D̃(x,y) =
1

1− 3ε
[n+ nε− G̃(x̃(c), ỹ(c))]. (2.30)

Once again, there are four different fundamental types of errors for a pair of elements x
(c)
i

and y
(c)
i , (0, 0) → (0, 1), (0, 1) → (0, 0), (0, 1) → (1, 1) and (1, 1) → (0, 1), which we define

them as error types A, B, C, and D, respectively.

Let us define a random variable E that represents the error type of a single bit error and

whether the error occurs or not.

P (E) =


pe, if E = A,B,C,D

1− 4pe if E = 0,

where E = A,B,C,D stands for the case that a single type A, B, C or D error occurs,

respectively; E = 0 stands for the error-free case. We define pe to be the probability that a

single bit error occurs in a pair of coded vector x(c) and y(c), which can be calculated from

the BSC parameter.

We then study the conditional distribution of D̃(x,y). Given D(x,y), for the error-free

case, i.e., E = 0, D̃(x,y) assumes the following distribution:

N
(
D(x,y),

(n+ 7D(x, y))σ2
0

µ2
H(1− 3ε)2

)
. (2.31)
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Table 2.3: Fundamental error types under resistance variation.

Error Type Mean Variance

A D(x,y)− γ λ(n+ 7D(x,y) + 7/2)

B D(x,y) + γ λ(n+ 7D(x,y)− 7/2)

C D(x,y)− γ − 1 λ(n+ 7D(x,y)− 7/2)

D D(x,y) + γ + 1 λ(n+ 7D(x,y) + 7/2)

In the Table 2.3, we summarize the distribution of D̃(x,y) for a single error of each

type, in terms of its mean and variance. To simplify notation, we define γ = ε
1−3ε and

λ =
σ2
0

µ2H(1−3ε)2 . Table 2.3 is derived by examining (2.29) and Equation (2.30) for each error

type.

From Table 2.3 and Equation (2.31), we have the conditional pdf, f(D̃(x,y) | D(x,y), E)

for each pair of D(x,y) ∈ {0, ..., n} and E ∈ {0, A,B,C,D}. We can therefore estimate E

and D(x,y) given the observation D̃(x,y). Denoting our estimation of the pair {E,D(x,y)}

to be the pair {Ê, D̂(x,y)}, respectively, we have the following MAP (maximum a posteriori

probability) estimator:

{Ê, D̂(x,y)} = arg max
{E,D(x,y)}

f(D(x,y), E | D̃(x,y))

= arg max
{E,D(x,y)}

f(D̃(x,y) | D(x,y), E)f(D(x,y), E)

f(D̃(x,y))

= arg max
{E,D(x,y)}

f(D̃(x,y) | D(x,y), E)f(D(x,y), E)

= arg max
{E,D(x,y)}

f(D̃(x,y) | D(x,y), E)P (E)P (D(x,y))

= arg max
{E,D(x,y)}

f(D̃(x,y) | D(x,y), E)P (E).

(2.32)

Next, we present a solution to the above MAP estimator. Define sm(DH) for DH ∈
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{0, ..., n− 1} to be a solution of equation:

f(D̃(x,y) | D(x,y) = DH , E = B) = f(D̃(x,y) | D(x,y) = DH + 1, E = A), (2.33)

such that DH + γ < sm(DH) < DH + 1.

Note that for Equation (2.33), there always exists a solution that satisfies the constraint

of sm(DH) therefore sm(DH) always exist.

We define s
(1)
0 and s

(2)
0 to be solutions of the following equation:

f(D̃(x,y) | D(x,y) = 0, E = A) = f(D̃(x,y) | D(x,y) = 0, E = C), (2.34)

such that:

−1− γ < s
(1)
0 < −γ, and s

(2)
0 < −1− γ.

We also define sn to be a solution of the equation:

f(D̃(x,y) | D(x,y) = n,E = B) = f(D̃(x,y) | D(x,y) = n,E = D), (2.35)

such that:

n+ γ < sn < n+ 1 + γ.

We define s+(DH) for DH ∈ {0, ..., n} to be a solution, if exist, of the equation:

(1− 4pe)f(D̃(x,y) | D(x,y) = DH , E = 0) = pef(D̃(x,y) | D(x,y) = DH , E = B),

(2.36)

such that:

DH < s+(DH) < sm(DH) for DH ∈ {0, ..., n− 1},

n < s+(DH) < sn for DH = n.

Similarly, we define s−(DH), DH ∈ {0, ..., n} to be a solution, if exist, of the equation:

(1−4pe)f(D̃(x,y) | D(x,y) = DH , E = 0) = pef(D̃(x,y) | D(x,y) = DH , E = A), (2.37)
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such that:

sm(DH) < s−(DH) < DH for DH ∈ {1, ..., n},

s
(1)
0 < s−(DH) < 0 for DH = 0.

Note that there exist cases where none of the solutions of Equation (2.36) or Equation

(2.37) satisfies the constraint of s+(DH) or s−(DH). Hence s+(DH) or s−(DH) may not exist

for certain device parameters.

If s+(DH) and s−(DH) exist for all DH , and the following conditions are true:

pef(sm(DH) | D(x,y) = DH , E = B) = pef(sm(DH) | D(x,y) = DH + 1, E = A)

≥(1− 4pe)f(sm(DH) | D(x,y) = DH , E = 0), for DH ∈ {0, ..., n− 1};

and

pef(sm(DH) | D(x,y) = DH , E = B) = pef(sm(DH) | D(x,y) = DH + 1, E = A)

≥(1− 4pe)f(sm(DH) | D(x,y) = DH + 1, E = 0), for DH ∈ {0, ..., n− 1};

and

pef(s
(1)
0 | D(x,y) = 0, E = A) = pef(s

(1)
0 | D(x,y) = 0, E = C)

≥(1− 4pe)f(s
(1)
0 | D(x,y) = 0, E = 0);

and

pef(sn | D(x,y) = n,E = B) = pef(sn | D(x,y) = n,E = D)

≥(1− 4pe)f(sn | D(x,y) = n,E = 0);
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then the MAP estimator has a solution as follows:

If s−(DH) < D̃(x,y) ≤ s+(DH) for some DH , then Ê = 0, D̂(x,y) = DH ;

if s+(DH) < D̃(x,y) ≤ sm(DH) for some DH ,

then Ê = B, D̂(x,y) = DH , or Ê = D, D̂(x,y) = DH − 1;

if sm(DH − 1) < D̃(x,y) ≤ s−(DH) for some DH ,

then Ê = A, D̂(x,y) = DH , or Ê = C, D̂(x,y) = DH + 1;

if s
(1)
0 < D̃(x,y) ≤ s−(0) then Ê = A, D̂(x,y) = 0, or Ê = C, D̂(x,y) = 1;

if s+(n) < D̃(x,y) ≤ sn then Ê = B, D̂(x,y) = n, or Ê = D, D̂(x,y) = n− 1;

if s
(2)
0 < D̃(x,y) ≤ s

(1)
0 , then Ê = C, D̂(x,y) = 0;

if D̃(x,y) > sn, then Ê = D, D̂(x,y) = n;

if D̃(x,y) ≤ s
(2)
0 , then Ê = A, D̂(x,y) = 0, or Ê = C, D̂(x,y) = 1.

(2.38)

Note that the MAP estimator has multiple solutions when an error is detected, i.e.,

E 6= 0. This is similar to what we observed in Section 2.4 and it is due to the underlying

problem, e.g., f(D̃(x,y)|D(x,y) = DH , E = B) = f(D̃(x,y)|D(x,y) = DH − 1, E = D).

As a solution, we adapt the same idea of the Soft Hamming scheme and propose the following

estimator:

If s−(DH) < D̃(x,y) ≤ s+(DH) for some DH , then D̂(x,y) = DH ;

if s+(DH) < D̃(x,y) ≤ sm(DH) for some DH , then D̂(x,y) = DH − 1/2;

if sm(DH − 1) < D̃(x,y) ≤ s−(DH) for some DH , then D̂(x,y) = DH + 1/2;

if s
(1)
0 < D̃(x,y) ≤ s−(0), then D̂(x,y) = 1/2;

if s+(n) < D̃(x,y) ≤ sn, then D̂(x,y) = n− 1/2;

if s
(2)
0 < D̃(x,y) ≤ s

(1)
0 , then D̂(x,y) = 0;

if D̃(x,y) > sn, then D̂(x,y) = n;

if D̃(x,y) ≤ s
(2)
0 , then D̂(x,y) = n− 1

2
.

(2.39)
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Note that we do not specify the error type in the above estimator. D̂(x,y) is estimated

by taking the average between two candidate estimation in Estimator (2.38). This estimator

therefore can successfully estimate the Hamming distance between vectors in resistive mem-

ory under the adverse effect of resistance variation while also have the capability to detect

and correct a single bit error caused by the write BSC. Also note that the threshold values,

e.g., s±(DH), can be precomputed and stored in table to improve efficiency.
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CHAPTER 3

Pilot Assisted Adaptive Thresholding for Sneak-Path

Mitigation in Resistive Memories with Failed Selection

Devices

3.1 Introduction

Crossbar Resistive random-access memory (ReRAM), in which a memristor is positioned

on each row-column intersection of the crossbar structure, is considered to be a promising

candidate to be used as a next generation non-volatile memory device because of its many

unique advantages including a simple structure and high density [SSS+08]. One fundamental

problem in purely passive crossbar ReRAM that demands detailed attention is the sneak-

path problem [ZFH+13]. When a cell in a crossbar array is read, a voltage is applied to

the memristor and the resistance is measured to determine whether it is in Low-Resistance

State (logic 1) or High-Resistance State (logic 0). Sneak paths are undesirable paths in

parallel to the selected cell; they traverse through unselected cells. This problem is especially

severe when a cell in High-Resistance State (logic 0) is read because parallel low resistances,

due to sneak-paths, lower the resistance measured from the cell at High-Resistance State,

thus causing difficulties in distinguishing between the High-Resistance State and the Low-

Resistance State. The sneak-path problem is commonly solved by adding a selection device in

series of each memory cell [DHC+13]. Adding diodes results in the 1D1R structure [ZDL+13,

TGK+11]; adding transistors results in the 1T1R structure [CGC+13]; and adding selectors

results in the 1S1R structure [HTL+11].
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Although introducing selection devices can eliminate the sneak-path problem, selection

devices are also prone to failure [AN97,Han88]. As modern storage devices have ultra high

reliability requirements, it is of interest to study crossbar resistive memories with failed

selection devices. A study on crossbar resistive memories with failed selection devices can

also aid a memory architecture designer in understanding how selection device reliability

affects the memory reliability. In this work, we first focus on 1D1R structured arrays with

shorted diodes, and then we generalize the results to 1S1R structured arrays with shorted

selectors [BHC17]. The case that diodes/selectors fail open is not considered in this work. In

this case, the information stored in the cells to which the open diodes/selectors are connected,

is lost, and this case is best treated with erasure correcting codes.

In a 1D1R or 1S1R structured array, the sneak-path problem re-occurs when some diodes

or selectors fail short, motivating the study on the re-occurred sneak-path problem and

approaches to mitigate it. Similar to what is observed in [CKY16], the events that cells on the

same row/column are affected by the re-occurred sneak path problem are highly dependent.

This dependency causes natural difficulties for standard coding theoretic solutions which

assume independent bit-errors. Investigation of alternative techniques which can utilize this

dependency is therefore of interest.

In Chapter 3, our goal is to study the re-occurred sneak-path problem and to provide

simple yet effective approaches to mitigate it. When viewing the effect of the re-occurred

sneak-path problem as a parallel interference, the dependency between cells can be utilized

to mitigate the re-occurred sneak-path problem. From an estimation theoretic point of

view, we utilize the dependency between cells to provide improved estimation schemes based

on our probabilistic characterization of the inter-cell dependency. We propose adaptive

thresholding schemes that adaptively change the threshold using side information provided

by pilot cells. With a simple pilot construction and our proposed adaptive thresholding

schemes, we demonstrate up to 50% reduction in bit-error rate (BER) comparing to the fixed

threshold scheme. In addition to ReRAM that is built out of memristors, our approaches
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are also applicable to other memory with crossbar structure, such as the Phase Changing

Memory (PCM).

The content of this chapter is organized as follows. Section 3.2 provides modeling of the

re-occurred sneak-path event and its adverse effect in two types of memory structure. The

pilot construction used in this chapter is also introduced in Section 3.2. Section 3.3 formally

characterizes the dependency of the re-occurred sneak-path event between the pilot cells and

the information cells by calculating joint probabilities of the re-occurred sneak-path events

among cells. In Section 3.4, the adaptive thresholding idea is introduced and the thresholds

for different cases are derived. Section 3.5 provides bit-error rate analysis and present results

comparing our proposed scheme with the fixed threshold scheme for various parameters. We

present a case study comparing our proposed schemes with a comparable coding theoretic

solution in Section 3.6.

3.2 Sneak path Modeling and the Diagonal-0 Coding

In this chapter, since it is clear that we are addressing the “re-occurred” sneak-path problem,

we drop the repeated attribute “re-occurred” for simplified language. As an initial step, we

use the sneak-path definition in [CKY16] with modification to model the sneak-path event.

In this work, we restrict ourselves to the sneak-path of length 3 because a sneak-path of

length 3 is more likely to occur than sneak-paths of other lengths and the adverse effect of

a sneak-path of length 3 is more prominent than the adverse effects of a sneak-path of other

lengths. Other factors that affect the occurrence of the sneak-path problem, such as wire

resistance, are not considered in this chapter and are left for future work. In this section, we

first propose the model of a sneak-path event for crossbar resistive memory with the 1D1R

structure and then extend the model to the 1S1R structured array. Our models assume that

the selection devices fails short i.i.d. with probability pf due to reliability issues. Note that

these models can be easily extended to crossbar resistive memory without any selection device
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by setting pf = 1. We define A ∈ {0, 1}m×n to be the data matrix representing data stored

in a crossbar resistive memory of size m × n, and let Aij denote the bit value at cell (i, j).

For simplicity, we assume m ≤ n and that m divides n with n/m = r. The case when m does

not divide n will be briefly discussed at the end of subsection 3.2.4. After presenting the

modeling of the sneak-path event for the two different crossbar resistive memory structures,

we describe a modeling of the adverse effect of a sneak-path event. At the end of this section,

we provide the pilot construction that we use throughout this chapter.

3.2.1 Modeling of the Sneak-path Event for the 1D1R Structure

By our definition, a sneak-path event occurs at cell (i, j) for an array with a 1D1R structure

if the following three conditions are met:

1. The bit value stored is 0.

2. There exists at least one combination of c ∈ [1, · · · ,m], s ∈ [1, · · · , n], c 6= j, r 6= i that

induces a sneak-path, defined by

Aic = Asc = Asj = 1. (3.1)

3. The diode at cell location (s, c) fails short.

We define eij to be a boolean random variable denoting the occurrence of the sneak-

path event at location (i, j), conditioned on the bit value stored at cell (i, j) being 0. That

is, eij = 1 if and only if the cell storing a 0 at position (i, j) incurs a sneak-path event.

We also refer to the realization of eij as the sneak-path state of cell (i, j). Note that the

sneak-path event is defined only for those cells that store 0’s because the adverse effect of

a sneak-path event on a cell that stores 1 is not detrimental to the read process. We have

the third condition because in a 1D1R structured array, the diode in series prevents current

from flowing in the reverse direction. The failure of the diode at cell location (s, c) to short

circuit is therefore necessary to allow current flowing along the sneak-path.
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3.2.2 Modeling of the Sneak-path Event for the 1S1R Structure

The only difference between our definition for the sneak-path event in a 1S1R structured array

and the definition in a 1D1R structured array is the third condition. The third condition for

a sneak-path event to occur at cell (i, j) in a 1S1R structured array is:

• The selectors at cell location (i, c), (s, c) and (s, j) fail short.

A cell selector is a device that has a high resistance when the voltage across it is below a

certain threshold, e.g., when the cell is on the sneak-path. Therefore, all three selectors in

series of the three cells on the sneak-path, i.e., cells that store Aic, Asc and Asj, need to fail

short for the sneak-path event to occur. Modeling for the 1D1R and 1S1R structures share

the same notation. In this chapter, when it is necessary to differentiate these two set-ups, it

will be clear from the context which one is being considered.

3.2.3 Adverse Effect of a Sneak-Path Event

As this is an initial study, and with limited prior work, we focus on a simplified model

described as follows. Our modeling of the adverse effect of a sneak-path event is adapted

from [BHC17] as a parallel interference. We first define the 0 state resistance of the memristor

to be R0, and the 1 state resistance of the memristor to be R1. The adverse effect of a sneak-

path event is modeled as a parasitic resistor with value Rs that is parallel to the read cell.

We then denote rij to be the measured resistance value of cell (i, j), with an additive noise

η. This additive noise captures two noise sources: the noise introduced by the resistance

variation of resistive memory cells [CL11], and the measurement noise introduced by the

sensing circuit [BHC17]. To consider the noise introduced by the resistance variation, we first

model the noise caused by the variation of HRS resistance and LRS resistance as Gaussian

[CLG+11,WLW+10]. As shown in [CSD18a], parallel combination of two Gaussian random

variables can be approximated with another Gaussian random variable. As a result, we also
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model the noise caused by the variation of the sneak-path resistance as a Gaussian additive

noise added to the parallel combination of the sneak-path resistance and HRS resistance.

Collectively, and for mathematical simplicity, we assume η to be Gaussian with mean 0 and

variance σ2, i.e., the same noise is added to the LRS resistance, the HRS resistance, and

the parallel combination of the sneak-path resistance and HRS resistance. Adaptation to

different noise models, including Gaussians with different variances are discussed at the end

of subsection 3.4.2.

Together, we have the following model:

rij =


(

1
R0

+
eij
Rs

)−1
+ η when 0 is stored,

R1 + η when 1 is stored.

(3.2)

In this chapter, we assume R1 < (1/R0+1/Rs)
−1 to avoid analyzing degenerate scenarios.

3.2.4 Pilot Construction

In a crossbar resistive memory, and as noted in [CKY16], it is not hard to observe that

the occurrence of a sneak-path event at one cell is not independent of the occurrence of a

sneak-path event at another cell. For example, knowing that eij = 1 increases the proba-

bility of eij∗ = 1, j∗ ∈ [1, · · · , n], j∗ 6= j, as well as ei∗j = 1, i∗ ∈ [1, · · · ,m], i∗ 6= i. This

special behavior of resistive memory presents natural difficulties to standard coding theoretic

solutions when viewing the occurrence of a sneak-path event as a bit error. However, when

viewing the effect of a sneak-path event as a parallel interference, one can utilize this inter-

cell dependency to develop better estimation schemes based on side information provided by

cells with known bit values.

We note that two cells are correlated the most when they are on the same row or column.

It is also observed in [ZFH+13] that the location of the cell (i and j) does not affect the

probability of eij. Moreover, the event that two cells in the same row (column) simultaneously
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incur sneak-path events is also independent of the relative position of cells, i.e., the (joint)

probability that these two cells simultaneously incur sneak-path events is independent of

their positions, given that we do not consider wire resistance in this study. As a result,

knowledge of the occurrence of a sneak-path event at a cell provides the same information as

for all other cells on the same row (column). Based on this observation, we wish to explore

robustness to selection device failure when a cell is allowed to access a few other cells with

known states by utilizing their inter-cell dependency. The simplest yet effective case is that

each information cell (a cell that can store either 0 or 1), has at least one pilot cell (a cell

with known state) on its row and at least one pilot cell on its column. We therefore propose

the following pilot construction.

Pilot Construction 1. Let A ∈ {0, 1}m×n denote the data matrix representing data stored

in a crossbar resistive memory array of size m×n, and let Aij denote the bit value at cell (i, j).

We assume m ≤ n (A is fat) and m divides n with n/m = r. We preset all cells (i, j) such

that i ≡ j (mod m) to store 0, i.e., Aij = 0, if i ≡ j (mod m),∀i ∈ {1, ...,m}, j ∈ {1, ..., n}.

These preset cells are pilot cells and the rest of the cells are information cells.

For an array of size m× n, to have at least one pilot cell on the row of each information

cell, we need at least m pilot cells. To have at least one pilot cell on the column of each

information cell, we need at least n pilot cells. Together, to have at least one pilot cell on

both row and column of each information cell, we need at least n pilot cells. Therefore the

rate is at most (m− 1)/m. It is easy to check that Pilot construction 1 achieves this upper

bound and satisfies our pilot cell requirements.

The general term “pilot cells” can be thought of as the set of some pre-selected cells that

are accessed first in order to infer certain characteristics of the array. In lithium battery, pilot

cells are tested to determine the charge and discharge current for the entire battery. In [?],

pilot cells are used to estimate the sneak current in resistive memory. In our work, pilot

cells are used to estimate the sneak-path states of other cells on their rows and columns.

Specifically, we use the resistance of pilot cells with known resistance states to infer the
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probabilities of other cells incurring the sneak-path events. We provide details on the usage

of pilot cells in both Section 3.3 and Section 3.4.

With this simple pilot construction, each cell at location (i, j), with i 6≡ j (mod m), has

1 pilot cell that stores a 0 in its column and r pilot cells that store 0’s in its row. We will use

these pilot cells for our improved estimation schemes in latter section. Although there are r

pilot cells in the row of an information cell, we only use one of them. Here and elsewhere,

we define j′ = j mod m+m1(j mod m = 0), i′ = mbj/mc+ i−m1(j mod m = 0) where

1(·) is the indicator function. For an information cell that stores Aij, with i 6≡ j (mod m),

we refer to the cells that store Aj′j and Aii′ to be its two reference cells. This construction

generalizes the construction in [CSD18b] that is only applicable to a square array, i.e., m = n.

For an array where m does not divide n, Pilot Construction 1 is still applicable. In this case,

some of the information cells at the lower right side of the array do not have reference cells

in their rows as defined before. Instead, they can use other pilot cells on their rows as the

reference cells. The probabilistic characterization for this case could be done using the same

techniques that will be discussed in the following section. We omit the explicit discussion of

it because, while considerably more tedious, it does not provide further insight.

3.3 Probabilities and Joint Probabilities of the Sneak path Event

In the previous section, we proposed a pilot construction for the resistive memory array.

In order to utilize the known 0’s stored in pilot cells for more informed estimation schemes,

several important probabilities need to be calculated analytically. First, in order to determine

the sneak-path state of a pilot cell, we need P0(eij) for i ≡ j (mod m). Second, in order to use

the sneak-path state of pilot cells for improved estimation schemes, we need P (eij|eii′ , Aij =

0), P (eij|ej′j, Aij = 0) and P (eij|eii′ , ej′j, Aij = 0) for i 6≡ j (mod m). The three sets

of conditional probabilities are used in different estimation schemes in latter sections. To

make a comparison with the scheme that does not use any side information, we also need
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P (eij|Aij = 0). Although similar probabilistic characterizations of sneak-path event(s) for

a single cell and for two cells can be found in [CKY16], modifications need to be made to

consider the pilot construction. In addition, characterizing dependency between three cells

is necessary to allow for a more accurate estimation scheme.

To keep the discussion clear, in this section, we simply state the probabilities that are used

to obtain the necessary probabilities mentioned above, and we refer readers to Appendix B for

the lemmas that calculate these probabilities. All probabilities that we stated are conditioned

on the usage of our pilot construction, and, for clarity, we omit explicitly specifying this

condition. Apart from P0(eij), the probabilities stated in this section also conditioned on the

event Aij = 0. We also omit specifying this condition explicitly, and instead use the subscript

0 to highlight that P0(eij) is not conditioned on a known information cell. We assume that

the bit values to be stored in information cells are chosen i.i.d. Bernoulli with parameter q

representing the prior probability of a 1 being stored. Note that although we include the

indexes i and j in the argument of probabilities, these probabilities are independent of i and

j. We only require i and j to satisfy certain conditions based on the context.

All probabilities have two versions, one for the 1D1R structure and one for the 1S1R

structure. In this section and the following sections, we do not differentiate them in most

cases unless specified. In Appendix B, we provide lemmas that calculate the stated proba-

bilities for the 1D1R structure. The corresponding probabilities for the 1S1R structure can

be calculated using the following claim, which readily follows from the definitions of the

sneak-path event in subsection 3.2.1 and subsection 3.2.2.

Claim 3. For a 1S1R structured array, let p
(1S1R)
f be the selector failure probability, and

q(1S1R) be the prior probability of a 1 being stored. In order to calculate a certain probability

for the 1S1R structured array for which the corresponding equation for the 1D1R structure

is already available, it suffices to use that equation for the 1D1R structure with substitution:

pf = 1 and q = q(1S1R) × p(1S1R)
f .
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To obtain the set of probabilities P0(eij), we calculate P0(eij = 0) (Lemma 8 in Appendix

B). To obtain the set of probabilities P (eij), we calculate P (eij = 0) (Lemma 9 in Appendix

B). There are two reference cells for each information cell. We first consider the case of using

the sneak-path state of only one reference cell. To obtain probabilities of form P (eij|eii′) and

P (eij|ej′j), we first need P (eij = 0, eii′ = 0) (Lemma 10 in Appendix B) and P (eij = 0, ej′j =

0) (Lemma 11 in Appendix B). We also need P (eii′ = 0) (Lemma 12 in Appendix B) and

P (ej′j = 0) (Lemma 13 in Appendix B). When using the sneak-path states of two reference

cells, we need P (eij|eii′ , ej′j). To obtain the set of probabilities P (eij|eii′ , ej′j), we first need

P (eij = 0, eii′ = 0, ej′j = 0) (Lemma 14 in Appendix B). We also need the set of probabilities

P (eii′ , ej′j) obtained by calculating P (eii′ = 0, ej′j = 0) (Lemma 15 in Appendix B).

3.4 Adaptive Thresholding Schemes

With all necessary conditional probabilities calculated, we propose our adaptive thresholding

schemes. We propose two schemes, the Single Reference Scheme based on a single reference

cell, and the Double Reference Scheme based on two reference cells. The Single Reference

Scheme is further separated into two sub-schemes, the Single Reference (Row) Scheme that

uses the reference cell on the row of an information cell, and the Single Reference (Column)

Scheme that uses the reference cell on the column of an information cell. We need to consider

both the Single Reference (Row) Scheme and the Single Reference (Column) Scheme because

in a strictly non-square array, due to asymmetry, the two reference cells do not provide the

same side information. For comparison, we also state the No Reference Scheme which uses

no side information. For the two adaptive thresholding schemes, first we determine the

sneak-path states of the reference cells for a targeted information cell, then, based on these

sneak-path states, we choose appropriate thresholds to decide the states of the information

cells to be read. All decisions are made through threshold estimators for implementation

simplicity. In this section and the next section, the probability density function of the
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Gaussian noise η in Equation (3.2) is defined to be fη(·).

In the remainder of this section, we first calculate the threshold of the threshold estimator

that determines the sneak-path states of pilot cells. Then, we calculate the thresholds of the

threshold estimators that determine the states of information cells, assuming known sneak-

path states. Afterwards, we further discuss the proposed adaptive thresholding schemes that

are based on the derived threshold estimators.

3.4.1 Optimal Threshold Estimation for Pilot Cells

We define τ0 to be the threshold of the threshold estimator used to determine whether or

not a sneak-path event occurs at a pilot cell. For a given resistance measurement rij, taken

for a pilot cell (i, j) where i ≡ j (mod m), the output of this threshold estimator is

êij =


1 if 0 ≤ rij ≤ τ0,

0 if τ0 ≤ rij ≤ ∞.
(3.3)

Next, we derive the optimal threshold for this threshold estimator. For an arbitrary pilot

cell that stores Aij = 0 with i ≡ j (mod m), there are two hypotheses, eij = 0 and eij = 1.

Based on our modeling in Equation (3.2), the posterior functions of the two hypotheses can

be expressed as,

Λeij=0(rij) = fη (rij −R0)P0(eij = 0), (3.4)

and

Λeij=1(rij) = fη

(
rij −

(
1

R0

+
1

Rs

)−1)
P0(eij = 1), (3.5)

where P0(eij = 0) and P0(eij = 1) can be calculated using Lemma 8 in Appendix B.

Minimizing the average error probability of this threshold estimator by Bayes Criterion

gives the condition:

Λeij=1(τ0) = Λeij=0(τ0). (3.6)
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Solving (3.6) gives the following optimal threshold:

τ0 =
1

2

R2
0 −

(
1
R0

+ 1
Rs

)−2
+ 2σ2 log

(
P0(eij=1)

P0(eij=0)

)
R0 −

(
1
R0

+ 1
Rs

)−1 . (3.7)

3.4.2 Optimal Threshold Estimation for Information Cells

In this subsection, we calculate the optimal thresholds for the three thresholding schemes,

assuming the sneak-path states of the pilot cells are known. The three thresholding schemes

are alike and only differ in the side-information used for each scheme. It is thus convenient to

use c to denote the side-information, i.e., sneak-path state(s), used in each scheme to describe

the three schemes collectively. Depending on the corresponding scheme, c may be nothing,

a scalar or a vector. For an arbitrary information cell with i 6≡ j (mod m), we let c = none

for the No Reference Scheme, c = eii′ for the Single Reference (Row) Scheme, c = ej′j for

the Single Reference (Column) Scheme, and c = [eii′ , ej′j] for the Double Reference Scheme.

There are two hypotheses for an information cell (i, j), Aij = 0 and Aij = 1. We are inter-

ested in the threshold estimators that decide between these two hypotheses, while considering

different realizations of c. Let τ(c) be the threshold used for a particular thresholding scheme

under a certain realization of the corresponding c. For example, τ(none) is the threshold

to be used when no sneak-path state of reference cells is used; τ(eii′ = 1, ej′j = 1) is the

threshold to be used when the Double Threshold Scheme is used and both reference cells of

this information cell incur sneak-path events. Therefore, when reading cell (i, j), the output

of the threshold estimator, using the selected threshold τ(c) where c is known sneak-path

state(s) of reference cell(s), is:

Âij =


1 if 0 ≤ rij ≤ τ(c),

0 if τ(c) ≤ rij ≤ ∞.
(3.8)

Based on the selected thresholding scheme and the realization of c, the posterior functions
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of each hypothesis as a function of rij are

ΛAij=0(rij) = (1− q)

[
fη(rij −R0)P (eij = 0|c) + fη

(
rij −

(
1

R0

+
1

Rs

)−1)
P (eij = 1|c)

]
,

(3.9)

and

ΛAij=1(rij) = qfη(rij −R1), (3.10)

where P (eij = 0|c) and P (eij = 1|c) can be calculated using Lemmas 9-15 in Appendix B.

Minimizing the average error probability of the threshold estimator by Bayes Criterion

gives the following condition for the optimal threshold:

ΛAij=1(τ(c)) = ΛAij=0(τ(c)). (3.11)

Note that unlike in Equation (3.6) where both sides have simple Gaussian density func-

tions, Equation (3.11) has the right hand side expressed as an addition of two Gaussian

density functions. As a result, Equation (3.11) has two solutions, and the solution lying in

the middle of the two distributions (3.9) and (3.10) is the desired threshold that minimizes

the error probability. We can solve τ(c) easily using available numerical methods, e.g., using

vpasolve(ΛAij=1(τ(c)) = ΛAij=0(τ(c)),[R1, R0]) in MATLAB.

We quickly remark that in the case that a closed form solution of τ(c) is needed, one can

use the following approximation:

τ(c) ≈ 1

2

(
1
R0

+ 1
Rs

)−2
−R2

1 + 2σ2 log
(

q
(1−q)P (eij=1|c)

)
(

1
R0

+ 1
Rs

)−1
−R1

. (3.12)

This approximation follows by replacing the two Gaussian density functions in (3.9) with a

single Gaussian density function, i.e., (1 − q)fη
(
rij −

(
1
R0

+ 1
Rs

)−1)
P (eij = 1|c), which is

closest to the Gaussian density function in (3.10). As a result, this approximation is valid
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when R0 and
(

1
R0

+ 1
Rs

)−1
are sufficiently apart, and when fη

(
rij −

(
1
R0

+ 1
Rs

)−1)
P (eij =

1|c)� fη(rij−R0)P (eij = 0|c) around
(

1
R0

+ 1
Rs

)−1
. While being closed-form, this approxi-

mation loses the optimality of the threshold estimator. For the BER results in latter section,

we use the thresholds that are solved numerically.

Note that although Gaussian additive noise with the same variance and zero mean is

used for mathematical simplicity, other models of the additive noise, such as log-normal

distribution [GYW+12], or Gaussian additive noise with different variances for the HRS, LRS,

and sneak-path resistances, can be easily adopted with appropriate changes in the thresholds

calculations, e.g., by using different η in (3.2) and replacing fη(·) with an appropriate density

function(s). The case that the diode is partially shorted (ohmic) can be considered as a bias

term among the noise modeling for the sneak-path resistances. If the noise distribution is

unimodal, the validity of the approximation in (3.12) follows analogously to the Gaussian

case.

Also note that, for mathematical tractability, only one sneak-path of length 3 is consid-

ered in this chapter. As a result of this simplification, the sneak-path resistance Rs is the

dominant term when the sneak-path event occurs. In a more precise model, one storage

cell can be affected by multiple sneak-paths with different structures, [BHC19]. Proba-

bilistic characterization of how a single cell is affected by multiple sneak-paths is provided

in [BHC19]. Meanwhile, characterization of how multiple cells are affected by differently

structured multiple sneak-paths is still an open problem. To adopt the adaptive threshold-

ing schemes, one would need to consider sneak-path(s) with different structures as separate

events. For example, the content within the bracket of Equation (3.9) would be replaced

with the summation of many terms. Each term would be the product between the pdf of the

measured resistance given a sneak-path event with a particular length and structure, and

the probability of this sneak-path event given the sneak-path state(s) of the reference cell(s).

The sneak-path state of a reference cell would also have multiple states (not just 0 and 1)
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when multiple sneak-paths with different structures are considered. In this chapter, given

the limited space, we only provide an analysis for the to the elementary case to illustrate

the basic idea of adaptive thresholding.

3.4.3 Estimation Using Adaptive Thresholding Schemes

Because the failures of selection devices are hard and are typically found during the writing

process, we seek to re-estimate the sneak-path states of pilot cells after a write operation:

• Whenever new data is written to the memory, except for the case when the No Refer-

ence Scheme is used, measure rij for each pilot cell (i, j) with i ≡ j (mod m). Then

use τ0 to decide êij, and store these estimated sneak-path states of pilot cells.

To read an information cell (i, j), i.e., the cell that stores Aij with i 6≡ j (mod m), the

following procedure is performed depending on the selected adaptive thresholding scheme:

• If the No Reference Scheme is used, measure rij and use τ(none) to decide Âij.

• If the Single Reference (Row or Column) Scheme is used, retrieve the previously stored

êii′ or êj′j. Then measure rij and use τ(eii′ = êii′) or τ(ej′j = êj′j) to decide Âij.

• If the Double Reference Scheme is used, retrieve the previously stored êii′ and êj′j.

Then measure rij and use τ(eii′ = êii′ , ej′j = êj′j) to decide Âij.

From the above statements, we notice that the adaptive thresholding schemes are par-

ticularly efficient for applications in which memory cells are read more frequently than they

are written. In addition, the Single Reference (Column) Scheme, in a fat array, possesses a

special property amenable for simple implementation: all memory cells on the same column

use the same threshold, which depends on the estimated sneak-path state of the pilot cell

in this column. Therefore, this threshold could be hardware configured to be used for the

entire column.
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3.5 BER Analysis and Results

In Section 3.4, we proposed adaptive thresholding schemes and the associated threshold

estimators. Based on these proposed methods, in this section, we derive an analytical result

for the bit-error rate (BER), and present a comparison between different schemes.

To read an information cell (i, j), we assume resistance measurements rij, rii′ and rj′j are

available. Which r is being used depends on which thresholding scheme is being selected.

Let c = [eii′ , ej′j] denote the true sneak-path states for the two reference cells, and let C

denote the support of c. Let ĉ denote the estimated sneak-path state(s) for zero (ĉ = none),

one (ĉ = êii′ or ĉ = êj′j) or two (ĉ = [êii′ , êj′j]) reference cells, depending on the selected

thresholding scheme, and let Ĉ be the support of the corresponding ĉ. Since the sneak-

path events involving the two reference cells are only weakly dependent, for the sake of

simplified analysis of Pr(c) in Equation (3.13), and without sacrificing qualitative findings,

we shall assume that they are independent. Specifically, since Pr(c) is only a weight term

in Equation (3.13), unlike in the threshold calculations, this calculation is insensitive to

the small error introduced by the independence assumption. For the exact evaluation of

Pr(eii′ , ej′j), one can use Pr(eii′ = 0, ej′j = 0) = (1−q)P (eii′ = 0, ej′j = 0|Aij = 0)+qP (eii′ =

0, ej′j = 0|Aij = 1),where P (eii′ = 0, ej′j = 0|Aij = 0) is calculated in Lemma 15 and

P (eii′ = 0, ej′j = 0|Aij = 1) can be obtained using an argument similar to Lemma 15.

Let P (Âij 6= Aij) be the average probability of a decision error. We have the following

expression:

P (Âij 6= Aij) =
∑
c∈C

Pr(c)
∑
ĉ∈Ĉ

P (ĉ|c)P (Âij 6= Aij|c, ĉ). (3.13)

In Equation (3.13), Pr(c) is the probability of certain realizations of c, and can be calcu-

lated using Pr(c) = P0(eij = eii′)P0(eij = ej′j); P (ĉ|c) is the probability of deciding ĉ given c;

P (Âij 6= Aij|c, ĉ) is the decision error probability given certain realizations of c and ĉ, where

the latter governs the choice of the threshold. Probabilities P (ĉ|c) for the No Reference
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Scheme and the Single Reference (Row/Column) Scheme are summarized in Table 3.1.

Table 3.1: List of P (ĉ|c).

No Reference Scheme

P (none|c) 1

Single Reference (Row) Scheme

case êii′ = 0, eii′ = 0 êii′ = 1, eii′ = 1 êii′ = 1, eii′ = 0 êii′ = 0, eii′ = 1

P (êii′|c) Q
(
τ0−R0

σ

)
Q

(
R0Rs
R0+Rs

−τ0
σ

)
Q
(
R0−τ0
σ

)
Q

(
τ0− R0Rs

R0+Rs

σ

)
Single Reference (Column) Scheme

case êii′ = 0, eii′ = 0 êii′ = 1, eii′ = 1 êii′ = 1, eii′ = 0 êii′ = 0, eii′ = 1

P (êii′|c) Q
(
τ0−R0

σ

)
Q

(
R0Rs
R0+Rs

−τ0
σ

)
Q
(
R0−τ0
σ

)
Q

(
τ0− R0Rs

R0+Rs

σ

)

Probability P (ĉ|c) for the Double Reference Scheme is calculated as follows using the

probabilities in Table 3.1:

P ([êii′ , êj′j′ ]|c) = P (êii′|c)P (êj′j′|c). (3.14)

The decision error probability P (Âij 6= Aij|c, ĉ) is given by the following equation:

P (Âij 6= Aij|c, ĉ) = qQ

(
τ(ĉ)−R1

σ

)
+ (1− q)

[
P (eij = 1|c)

×Q

(
R0Rs

R0+Rs
− τ(ĉ)

σ

)
+ P (eij = 0|c)Q

(
R0 − τ(ĉ)

σ

)]
,

(3.15)

where q is the prior probability of 1 being stored. In the above equations, Q(·) is the

Q-function, i.e., Q(x) = 1√
2π

�∞
x

exp(−u2

2
)du. These probabilities are obtained using our

modeling, the estimators introduced in Section 3.4, and simple estimation theory.
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With the theoretical expression for the bit-error rate derived, we evaluate the results for

different schemes. In the following evaluations, we use prior probability q = 0.5 and the

following resistance values, which are the same as in [BHC17]: R1 = 100Ω, R0 = 1000Ω,

Rs = 250 (the value of the parameter Rs will be changed for the upcoming Figure 3.4) and

q = 0.5. We vary the parameters σ, n and pf to test their influence on the performance of

our proposed schemes.
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Figure 3.1: BER for a 1D1R structured square array with various noise magnitude.

We first evaluate results for a square array, i.e., r = 1. In this case, there is no need to

differentiate the Single Reference (Row) Scheme and the Single Reference (Column) Scheme.

We first set m = 8, pf = 0.001, and vary σ from 10 to 100. The results are shown in Figure

3.1. We observe that both the Single Reference Scheme and the Double Reference Scheme

offer noticeable improvements in terms of BER compared with the No Reference Scheme.

Using the Double Reference Scheme provides better BER than using the Single Reference

Scheme. We observe that under moderate noise (σ from 20 to 40), we can get consistently

over 40% reduction in BER by using the Double Reference Scheme, and over 20% reduction

in BER by using the Single Reference Scheme. In the high noise regime (σ > 40), all three

schemes start to saturate and the improvement offered by our proposed schemes becomes

smaller. However, by using our proposed schemes, the saturation of BER becomes slower.
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For example, for a targeted BER of 1.6× 10−3, in terms of the noise standard deviation σ,

50% more noise can be tolerated by using the Single Reference Scheme and almost 100%

more noise can be tolerated by using the Double Reference Scheme.
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Figure 3.2: BER for a 1D1R structured square array with various pf .

Next, we set σ = 40, m = 8, and vary pf from 1 × 10−1 to 1 × 10−5. The results are

shown in Figure 3.2. We observe that as the diode becomes more reliable, i.e. as pf becomes

smaller, the improvement resulting from our proposed schemes increases. We conjecture

that as the diodes become more reliable, the sneak-path events become more rare so that

the information provided by the reference cells impacts the threshold more profoundly. For

example, for pf = 1 × 10−1, knowing eii′ = 1 only changes P (eij = 1|none) = 0.3017 to

P (eij = 1|eii′ = 1) = 0.5609. In contrast, for pf = 1 × 10−4, knowing eii′ = 1 changes

P (eij = 1|none) = 0.0003749 to P (eij = 1|eii′ = 1) = 0.4168. The relative larger change of

P (eij = 1|c) in the latter case shifts the threshold more towards the left thus reducing the

estimation error more effectively.

Next, we set σ = 40, pf = 0.001 and vary m from 8 to 16 to test the performance of

our proposed schemes in arrays with different sizes. The results are shown in Figure 3.3.

We observe consistent improvement in using the proposed schemes in the range of tested
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Figure 3.3: BER for a 1D1R structured square array with various array dimension.

array size. We also observe that as the array size gets larger, the relative improvement using

our proposed scheme decreases by a small amount, akin to the reasoning for decrease in

performance improvement in the case of increased pf . For a large array, one can divide the

large array into small sub-arrays to keep the relative larger improvement. However, this

approach induces a larger circuit overhead and a larger storage overhead, resulting in the

familiar trade-off between reliability and overhead observed in e.g., channel coding. Also,

for a large array, i.e., large m, the probabilities in Appendix B are hard to compute due to

the combinatorial nature of these calculations. This difficulty can potentially limit the usage

of the proposed schemes but it can be mitigated in two ways. First, these probabilities are

only computed once for an array of a given size so these probabilities along with the induced

thresholds can be precomputed at the design stage. Second, if the exact probabilities are

prohibitively difficult to compute, one can use the approximations mentioned at the end of

the Appendix B to compute the approximated probabilities and then the induced suboptimal

thresholds. This simplified approach still maintains most of the relative gain of the adaptive

thresholding schemes while reducing the burden of computing those probabilities exactly.

We also test the sensitivity of our proposed schemes under different values of the sneak-
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Figure 3.4: BER for a 1D1R structured square array with various sneak-path resistance.

path resistance Rs, which is governed by cell nonlinearity [JYZP+12]. We set σ = 40,

pf = 0.001 and vary Rs from 150 to 950. As shown in Figure 3.4, the improvement using

our proposed schemes is consistent throughout this range, except when Rs is very small,

i.e., in the case when R0Rs

R0+Rs
is very close to R1. When R0Rs

R0+Rs
is very close to R1, knowledge

of the sneak-path state(s) of reference cell(s) does not change threshold significantly. As a

result, the adaptive thresholding schemes are ineffective. From this result, we can also infer

the performance of our proposed scheme for other values of the R0, R1 parameters, as the

Q-function in the BER calculation is invariant to the same scaling of R0, R1, Rs, and σ.

Next, we turn our attention to the performance of the proposed schemes for an array with

non-unity aspect ratio, i.e., for r 6= 1. We first set m = 8, r = 2, pf = 0.001 and vary σ from

10 to 100. The results are shown in Figure 3.5. From the results, we note that the Single

Reference (Row) Scheme outperforms Single Reference (Column) Scheme. This observation

suggests that the reference cell in the row of an information cell provides more information

than the reference cell in the column of this information cell. Intuitively, with more available

information cells in the row than in the column, an information cell is more likely to incur
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Figure 3.5: BER for a 1D1R structured 8×16 array with various noise magnitude.

a sneak-path event given that we know a sneak-path event occurs at the reference cell in its

row than given that we know a sneak-path event occurs at the reference cell in its column.

For example, for the parameters in Figure 3.5, we have P (eij = 0, eii′ = 0) = 0.9959 and

P (eij = 0, ej′j = 0) = 0.9955.

Next, we present the results for two arrays with the same total number of cells, one

array being a square array and the other array being a non-square array. We set σ = 40,

pf = 0.001. The square array is 16×16 with 240 information cells, and the non-square array

is 8 × 32 with 224 information cells. The results are reported in Figure 3.6. We observe

that although the non-square array has fewer information cells relative to the square array,

the non-square array is less susceptible to bit-errors relative to the square array under the

same amount of noise and the same thresholding scheme. Intuitively, this can be partially

explained by the observation that a decrease in one dimension (here from 16 to 8), which

decreases the probability of a sneak-path event, has a stronger effect on the occurrence of

sneak-path event than the same simultaneous multiplicative increase in the other dimension

(here from 16 to 32), which in contrast increases the probability of a sneak-path event. For
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example, the extreme case of the array of size 1× 256 is indeed free of sneak-path events.

(a) 16× 16 array. (b) 8× 32 array.

Figure 3.6: BER for two 1D1R structured arrays with same number of cells.

Finally, we report the performance for an array with a 1S1R structure. We set m = 8,

pf = 0.1, and vary σ from 10 to 100. We choose pf = 0.1 because the 1S1R structure is less

susceptible to the sneak-path event compared to the 1D1R structure. 1S1R structure with

pf = 0.1 gives P (eij = 0), comparable to P (eij = 0) for 1D1R structure with pf = 0.001.

The result is reported in Figure 3.7.

We observe that although the Single Reference Scheme and the Double Reference Scheme

still offer improvements in terms of BER, the improvements are incremental. This obser-

vations suggests that, in the 1S1R structured array, with the stronger isolation provided

by the cell selectors, the dependency of the sneak-path event between the reference cells

and the information cell is weaker than this dependency is in the 1D1R structured array.

For example, in a 1S1R structured array, with m = 8, r = 1 and pf = 10−0.5, we get

P (eij = 0) = 0.8896, P (eij = 0|eii′ = 0) = 0.8961, P (eij = 0|eii′ = 0, ej′j = 0) = 0.8325,

and P (eij = 0|eii′ = 1, ej′j = 1) = 0.3899; in a 1D1R structured array, with m = 8,

r = 1 and pf = 10−1.5, we get P (eij = 0) = 0.8961, P (eij = 0|eii′ = 0) = 0.9433,
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Figure 3.7: BER for a 1S1R structured 8×8 array with various noise magnitude.

P (eij = 0|eii′ = 0, ej′j = 0) = 0.9709, and P (eij = 0|eii′ = 1, ej′j = 1) = 0.1208. It is

clear from this example that with comparable P (eij = 0), in an array with the 1S1R struc-

ture, the reference cells provide less side information than the amount of side information

provided by reference cells in an array with the 1D1R structure.

3.6 A Comparison with the BCH (239, 255) Code

The adaptive thresholding approach proposed in this chapter is not a direct substitute to the

channel coding approaches. First, the adaptive thresholding approach requires extra read

operations and multiple threshold detectors while the channel coding approaches require a

channel encoder/decoder. Second, this adaptive thresholding approach, which is estima-

tion theoretic, reduces the BER for a certain noise magnitude while some channel coding

techniques have guaranteed error-correction capability.

A comparison between the adaptive thresholding approach and the channel coding ap-

proaches is nonetheless valuable, as it can help in better understanding the property of this

special problem (the re-occurrence of sneak-path due to selection device failure) and can
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provide insight into the memory design. We therefore present the following case study.

We consider 1D1R structured 16×16 arrays. For a 16×16 array, 16 cells are used as pilot

cells when our proposed pilot construction is used. We compare our adaptive thresholding

schemes using the pilot construction with the standard BCH (239, 255) code, which corrects

up to 2 bit-errors also also uses 16 bits of redundancy. To make the BCH code compatible

with the array architecture, we assume that the BCH (239, 255) code can correct up to 2

bit-errors among 256 (instead of 255) bits. In our simulations, we set pf = 0.001, R0 =

1000, R1 = 100, Rs = 250, q = 0.5 and vary σ. Note that for the BCH coded array without

the pilot construction, we also use the optimal threshold, which is calculated similar to

τ(none), to determine the state of a cell.

Figure 3.8: A Comparison with the BCH (239, 255) Code.

In Figure 3.8, under both linear and log scale, we report our simulation results of the

raw bit-error rate (RBER) for an array with pilot cells, with the No Reference Scheme and

the Double Reference Scheme. We also report the RBER and undetectable bit-error rate

(UBER) for an array that is coded with the BCH (239, 255) code. To gain further insight on

how the inter-cell dependency of sneak-path events affects the coding performance, we also

report a lower bound of the UBER for BCH (239, 255) coded array assuming bit-errors are

independent.
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It is first worth noting that by simply using the pilot construction without adaptively

changing the threshold, i.e., using the No Reference Scheme, we get better RBER perfor-

mance comparing to the RBER of the array without the pilot construction. This can be

explained as follows: by using the pilot construction, we effectively reduce the fraction of

cells with LRS. The pilot construction can be considered as a simple shaping code in this

case. As a result, the probability of a sneak-path event is also reduced, as noted in [CKY16].

The reduced sneak-path probability therefore reduces the RBER. Second, by comparing the

UBER of the BCH (239, 255) code with its lower bound, which is obtained using the RBER

in the BCH coded array under the independence assumption, we note that the bit-errors are

highly dependent. In the rare case that a diode fails, all cells are more prone to error due

to the adverse effect of the sneak-path. Most of bit-errors are concentrated in this case and

are therefore dependent.

Next, we compare the performance of the coding approach and the adaptive thresholding

approach in two representative noise regimes. In the low noise regime (σ < 25), even if the

sneak-path event occurs, the number of bit-errors is usually less than 3, i.e., the number

is within the error-correction capability of the BCH (239, 255) code. We observe that in

this case, the BCH (239, 255) code reduces BER very effectively. The implication for the

memory design is that if the additive noise is small, e.g., there is a large read margin, the

sneak-path problem is not severe and it can be handled with an appropriate ECC. In the

high noise regime we studied, when a diode fails, the number of bit-errors is often beyond

the error-correction capability of the BCH (239, 255) code because the adverse effect of

the sneak-path event dominates in this setting. In this case, we observe a much smaller

coding gain compared to the improvement achieved by using the Double Reference Scheme

with pilot cells. Note that in this high noise regime, while this simple error-correction code

is ineffective, the Double Reference Scheme only reduces the number of errors but does not

eliminate them entirely, in most cases. This observation opens up the possibility of combining

our proposed adaptive thresholding schemes with more sophisticated error-correction code
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over large (multiple) array(s). In this sense, the adaptive thresholding schemes can be viewed

as a preprocessing set that provides a lower RBER for the subsequent ECC solution.
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CHAPTER 4

Channel Models and Coding Solutions for 1S1R

Crossbar Resistive Memory with High Line Resistance

4.1 Introduction

The crossbar resistive memory, whereby bistable memristors are placed at the crosspoint

of wordlines and bitlines, is one promising candidate for the next generation nonvolatile

memory due to its inherent 4F 2 device density and its simple crossbar structure [IW15].

One of its most appealing applications is storage-class memory (SCM), a term that refers to

memory technology that fills the latency and density gaps between DRAM and NAND flash

memory [BKS+08]. Meanwhile, as semiconductor technology scales down to single-digit-nm,

simultaneously scaled wordline/bitline resistances increasingly become a limiting factor to

device reliability and hence memory scalability [LYWW13].

Previous literature has extensively shown that even moderate line resistance significantly

degrades the reliability of the write and read operations. The degradation of the write/read

margins due to high line resistance for the wort-case memory cell, i.e., the cell that is furthest

from the source and ground, are studied in [LYWW13, CLY16, KKC15]. The adverse effect

of the line resistance on the write/read margins for cells across the memory array are studied

in [Che13, SKK10] by solving a system of Kirchhoff’s current law (KCL) equations. While

these studies focused on the degradation of the write/read margins, it remains unclear how

the degraded write/read margins affect the system level reliability metric, e.g., the bit-error

rate (BER). In other words, channel models are not yet well-established for this problem.
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It is demonstrated in [Che13] that, when considering the line resistance in resistive mem-

ory, the write margins are non-uniform across the array, which leads to non-uniform reliabil-

ity levels in the memory array. Designing error correction codes (ECCs) for the worst-case

often leads to overly conservative code design and is therefore not rate efficient. For ex-

ample, in [ZFW+19], the authors designed a non-stationary polar code targeting channels

with different reliability levels, which are characterized empirically by simulations. More-

over, [ZFW+19] also showed that using more precise channel modeling, i.e., using the binary

asymmetric channel (BAC) instead of the binary symmetric channel (BSC), provides an order

of magnitude improvement in BER, which proves the necessity of precise channel models.

In this work, we propose BAC models for writing to and reading from memory devices

in crossbar memory, parameterized by device parameters, array size, wordline/bitline re-

sistances, and device location by statistically relating the degraded write/read margins of

cells at different locations to the channel parameters. Our analytical channel models, which

take into account the device location, provide quantitative tools for analyzing the aforemen-

tioned non-uniformity and the trade-off between device parameters and memory reliability.

These models are therefore beneficial for system engineers when designing the next genera-

tion storage systems. Previous studies on the write/read margins assume deterministic High

Resistance State (HRS) and Low Resistance State (LRS) for the memory device whereas

the HRS and LRS are nondeterministic in nature [JLY+15, CL11]. Our write/read channel

models, which are derived probabilistically, allow us to take the resistance variability of LRS

and HRS into consideration for more precise modeling.

Building upon our proposed channel models and the observation of non-uniform reliabil-

ity, we propose methods to reduce the raw bit-error rate (RBER) and undetected bit-error

rate (UBER) using techniques from estimation theory and channel coding theory. For the

read channel, we propose an efficient procedure to compute an optimal read threshold. We

show that the RBER of the read channel is reduced by a large factor using the optimal

read threshold. Efficient ECC solution for a crossbar resistive memory targeting the SCM
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application must mitigate and/or leverage the non-uniformity of reliability while being com-

patible with the low-latency requirement of SCM. Based on BCH codes, we propose a scheme

based on interleaving and a scheme utilizing multiple BCH codes with different error cor-

rection capabilities for improved UBER performance. For the latter scheme, we propose a

systematic framework for allocating different codes based on the location dependent channel

parameters. Both of our proposed coding schemes effectively reduce the UBER.

The content of Chapter 4 is organized as follows. Section 4.2 provides background on

crossbar resistive memory and the write/read operation. The circuit models and the vari-

abilities are also discussed in Section 4.2. Section 4.3 presents the channel characterization

for the write and read operations. Simulation results on the proposed channel models with

various parameters are also presented in Section 4.3. Section 4.4 presents our study on the

optimal read threshold and its simulation results. Section 4.5 discusses two schemes for

efficient channel coding targeting SCM applications.

4.2 Preliminaries

4.2.1 1S1R Crossbar Resistive Memory Background and Model

In crossbar resistive memory array, the logical state 0 or 1 is represented by the HRS or

LRS of a memory cell, respectively. For a bipolar memristor, the state of a cell is switched

from LRS to HRS (Reset Operation) or from HRS to LRS (Set Operation) by applying a

positive or negative voltage across the memory cell, respectively. For the write operation, we

consider the so called “V/2” write scheme (cf. [CLY16]) as it is usually more energy-efficient

than the so called “V/3” write scheme. In particular, when writing to a selected cell, the

wordline and bitline of the selected cell are biased at the write voltage (Vw set or Vw reset)

and 0, respectively, while other wordlines and bitlines are biased at half of the write voltage

to prevent unintentional write, as shown in Fig. 4.1a.
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(a) Circuit model for writing to a 8× 8 array. (b) Circuit model for reading to a 8× 8 array.

Figure 4.1: Examples of circuit models (Vw denotes Vw set or Vw reset).

For the read operation, we consider the current-mode sensing scheme as it has a smaller

latency compared with the voltage-mode sensing scheme [CLY16]. When reading a selected

cell, a read voltage (Vr) is applied on its wordline and all other wordlines and bitlines are

grounded. A current is sensed by the sensing amplifier located at the end of its bitline, and

is used to determine the state of the selected cell, as shown in Fig. 4.1b.

In this chapter, we focus on crossbar resistive memory with the widely used 1 selector

1 resistor (1S1R) structure, where highly nonlinear selectors are connected in series with

the memristors to prevent write and read disturbs. For both write and read operations,

when the voltage across a selector is close to the applied voltage, we say that this selector

is fully selected and we assume it has resistance rsf ; when the voltage across a selector is

close to 0, we say that this selector is un-selected and we assume it has resistance rsu. For

the write operation, since other cells on the wordline and bitline of the selected cell have

voltage close to half of the write voltage across them, we say that the selectors for those

cells are half-selected and we assume they have resistance rsh. In general, rsf << rsh < rrs.

An ideal selector has parameters rsf = 0 and rsh = rsu = ∞. Our proposed model is a

general one that does not have the ideal selector assumption. Meanwhile, since the main
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focus of this work is the adverse effect of line resistance, we use the ideal selector assumption

to provide mathematical insights in III.B and to simplify our simulations in III.D and IV.C.

Throughout this work, we assume that the interconnect resistances of wordlines and bitlines

are constant across the array, and they are denoted by rw and rb respectively.

4.2.2 Memristor Variabilities and Models

In this chapter, we consider two variabilities of memristor, the non-deterministic write op-

eration and the non-deterministic resistance value for each resistance state. It is widely

observed that the switching operations of memristor are stochastic and follow log-normal

switching time distributions, with distribution parameters depend on the applied voltage

[MRPC+11, NXX12]. Our models for the switching time distributions are adopted from

[MRPC+11] and more details are provided in Section 4.3.

Previous works (cf. [LYWW13] - [SKK10]) on the degradation of write and read margins

due to high line resistance assume deterministic resistance states, e.g., HRS resistance is

10000Ω and LRS resistance is 100Ω. Meanwhile, due to both device-to-device variation and

cycle-to-cycle variation, the resistance of each state is highly non-deterministic [JLY+15,

CL11]. To incorporate this variability into our reliability analysis, we use random variables

to represent the resistance of the memory cells. Based on observations in [JLY+15,CL11], we

assume they are i.i.d. and their conditional distributions, conditioned on their states, follow

log-normal distributions. For example, let i.i.d. Bernoulli(q) random variable Sij denote the

state of cell (i, j), with Sij = 1 for LRS and Sij = 0 for HRS. Let Rij be the associated

random variable denoting the resistance of cell (i, j). Then our model assumes:

ln(Rij|Sij = 1) ∼ N (µL, σ
2
L),

and

ln(Rij|Sij = 0) ∼ N (µH , σ
2
H).
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4.3 Channel Models

Our proposed channel models are depicted in Fig. 4.2. We model the write, read and

cascaded channels as binary asymmetric channels (BACs). We discuss in the following

subsections how the channel parameters are related to device parameters, line resistance,

and device location.

Figure 4.2: Proposed channel models.

We denote the state we want to write to cell (i, j) by Xij ∈ {0, 1}, the state actually

written by Yij ∈ {0, 1} and the detected (for read operation) state by Zij ∈ {0, 1}. Note

that even though the information is stored as the resistance of a cell, we choose to use

binarized state variable Yij because firstly it enables us to utilize a well-known result in the

literature [MRPC+11] that characterizes the switching of a device, and secondly it allows

mathematical tractability and the separation of the write/read channels. Information about

the resistance of a cell is instead embedded in the resistance distribution. Also note that with

a binarized state for a cell, multiple write/read operations are also independent. Therefore,

the cascaded channel model is still valid if one writes to and reads from a cell multiple times.

4.3.1 Write Channel

In this subsection, we derive the write channel. We note that the write operation is affected

by the previous state of cell (i, j). We let this state be denoted by S∗ij and the associated

resistance value be R∗ij. We assume that when the previous state is the same as the state we

78



want to write, the write operation is always successful, i.e., P (Yij = 1|Xij = 1, S∗ij = 1) = 1,

and P (Yij = 0|Xij = 0, S∗ij = 0) = 1.

When the previous state is not the same as the state we want to write, a sufficient write

voltage and a sufficient write time are required to change the state of the cell. Due to high

line resistances, the effective write voltage on a cell could be much smaller than the desired

write voltage, i.e., the write margin is decreased. We denote the effective write voltage on a

cell (i, j) as Ṽw(r∗ij, i, j) where r∗ij is a realization of R∗ij. With a method similar to the one

described in [Che13], Ṽw(r∗ij, i, j) can be obtained by solving a system of KCL equations using

the circuit model described in subsection 4.2.1. We map the degraded write margin to the

decreased write reliability by considering the log-normal switching time distribution, adopted

from [MRPC+11]. With fixed switching times tset and treset, the log-normal switching time

distributions lead to the following:

P (Yij = 1|Xij = 1, S∗ij = 0, R∗ij = r∗ij) = 1−Q

(
ln tset − ln(τ

(ij)
set )

σset

)
, (4.1)

and

P (Yij = 0|Xij = 0, S∗ij = 1, R∗ij = r∗ij) = 1−Q

(
ln treset − ln(τ

(ij)
reset)

σreset

)
, (4.2)

where Q(·) is the Q-function, i.e., Q(x) = 1√
2π

�∞
x

exp(−u2

2
)du. Parameters σ2

set and σ2
reset

are the variance of the normal distributions associated with the set and reset switching time

distribution, respectively, which are independent of Ṽw(r∗ij, i, j), according to [MRPC+11].

Parameters τ
(ij)
set and τ

(ij)
reset are the median of the set and reset switching time, respectively.

Note that in the above equations, to be consistent with the existing literature [MRPC+11,

NXX12], we use the median parameterization of the log-normal distribution. According to

the literature, the medians of the switching times (τ
(ij)
set and τ

(ij)
reset in µs) are exponentially

dependent on the effective write voltage. We therefore parameterize the medians as following:

ln
(
τ
(ij)
set

)
= αsetṼw(r∗ij, i, j) + βset,

and

ln
(
τ
(ij)
reset

)
= αresetṼw(r∗ij, i, j) + βreset.
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Using (4.1), (4.2) and marginalizing over the conditionally log-normally distributed ran-

dom variable R∗ij, we get:

P (Yij = 0|Xij = 1, S∗ij = 0) =

� ∞
−∞

1√
2πr∗ijσH

exp

−
(

ln r∗ij − µH
)2

2σ2H

Q( ln tset − ln(τ
(ij)
set )

σset

)
dr∗ij ,

(4.3)

and

P (Yij = 1|Xij = 0, S∗ij = 1) =

� ∞
−∞

1√
2πr∗ijσL

exp

−
(

ln r∗ij − µL
)2

2σ2L

Q( ln treset − ln(τ
(ij)
reset)

σreset

)
dr∗ij .

(4.4)

Putting (4.3) and (4.4) together with the prior symbol probability q = P (S∗ij = 0), we arrive

at the write binary asymmetric channel, depicted in Fig. 4.2, for the write operation with

the following channel parameters:

p
(ij)
1 = (1− q)P (Yij = 1|Xij = 0, S∗ij = 1), (4.5)

and

p
(ij)
2 = qP (Yij = 0|Xij = 1, S∗ij = 0). (4.6)

Here and elsewhere, we use superscript (ij) to highlight that the channel parameters are

dependent on the cell location (i, j).

Through equations (4.1) - (4.6), we are able to relate the write margin Ṽw(r∗ij, i, j) to the

BER of the write channel. For example, comparing the best-case cell to the worst-case cell

in the example in subsection 4.3.4 Fig. 4.3a, we observe that the write margin for Reset is

dropped from 4.9V to 1.64V while the write BER is increased from 3.35×10−4 to 1.75×10−2,

thus providing further evidence that location dependent BER analysis matters.

4.3.2 Read Channel

When reading from the cell (i.j), we consider the current-mode sensing scheme and a fixed

threshold detector. Let I
(ij)
r be the current sensed by the sensing amplifier, which can be
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also calculated by solving a system of KCL equations. I
(ij)
r is hence dependent on the cell

location, the resistance of the selected cell, and the resistances of unselected cells. Let Ith

be the threshold current. The threshold detector is as follows:

Zij =


0, I

(ij)
r ≤ Ith,

1, I
(ij)
r > Ith.

(4.7)

With the threshold detector above, the decision error probabilities are:

P (Zij = 1|Yij = 0) = P (I(ij)r > Ith|Yij = 0); (4.8)

P (Zij = 0|Yij = 1) = P (I(ij)r ≤ Ith|Yij = 1). (4.9)

This set-up leads to the read binary asymmetric channel, depicted in Fig. 4.2, for the read

operation with p
(ij)
3 = P (Zij = 1|Yij = 0) and p

(ij)
4 = P (Zij = 0|Yij = 1).

4.3.2.1 Closed form Expression with Ideal Selectors

Since we need to solve a system of equations to get I
(ij)
r , equations (4.8) and (4.9) are not

sufficient as they do not give closed-form expressions for the channel parameters. However,

if we consider ideal selectors, closed-form expressions can be derived. Note that for the

analysis with a non-ideal selector, one can still use the general characterizations in equations

(4.8) and (4.9) and find I
(ij)
r by solving a system of KCL equations. Moreover, it is reasonable

to assume ideal characteristics of the selector for the analysis of the line resistance in the

1S1R structure as near ideal selector properties are demonstrated by industry in [JKN+15].

With ideal selectors, the part of the circuit connected to the un-selected cells can be

neglected, resulting in a simplified circuit with just the selected cell and its wordline/bitline.

With this simplified circuit, I
(ij)
r is a function of the random variable Rij, which represents

the resistance of the selected cell. We therefore have:

I(ij)r =
Vr

irb + jrw +Rij

. (4.10)
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Plugging (4.10) into (4.8) and (4.9), and using the assumption that Rij is conditionally (on

Yij) log-normally distributed, we obtain the following closed form expression for p3 and p4:

p
(ij)
3 = P

(
Vr

irb + jrw +Rij

> Ith|Yij = 0

)
= P

(
Rij <

Vr
Ith
− irb − jrw|Yij = 0

)

= Q

µH − ln
(
Vr
Ith
− irb − jrw

)
σH

 ,

(4.11)

and similarly

p
(ij)
4 = Q

 ln
(
Vr
Ith
− irb − jrw

)
− µL

σL

 . (4.12)

Define Rth = Vr
Ith

. From equations (4.11) and (4.12), we observe that Rth is the effective

decision threshold between the HRS and LRS distribution in the resistance domain, when

there is no line resistance, i.e., rw = rb = 0. We can therefore interpret the adverse effect of

line resistances during the read operation as follows: the effective read threshold in resistance

domain is shifted to the left by the total accumulated line resistance. This shift results in

a higher bit-error rate if Rth is set to be the optimal decision threshold without considering

the line resistance.

The read margin is defined by the difference between the sensed current of a HRS cell

and the sensed current of a LRS cell. Using equations (4.10) - (4.12), we can now relate the

read margin to the read BER. For example, comparing the best-case cell to the worst-case

cell in the example in subsection 4.3.4 Fig. 4.3a, we observe that the read margin is dropped

from 296µA to 95µA while the write BER is increased from 4.29×10−4 to 7.33×10−2, again

demonstrating the need of a location dependent model.

4.3.3 Cascaded Channel and Channel Capacity

Combining the results of the previous two subsections, we get a cascaded channel for a single

memory cell. The cascaded channel is a binary asymmetric channel and it is depicted in Fig.

4.2, with p
(ij)
5 = p

(ij)
1 (1− p(ij)4 ) + (1− p(ij)1 )p

(ij)
3 and p

(ij)
6 = p

(ij)
2 (1− p(ij)3 ) + (1− p(ij)2 )p

(ij)
4 .

82



The capacity of this cascaded channel for cell (i, j) is as follows:

Cij = max
q

I(Xij;Zij)

= max
q

[
h
(
q
(

1− p(ij)5

)
+ (1− q)p(ij)6

)
− qh

(
p
(ij)
5

)
− (1− q)h

(
p
(ij)
6

)]
,

(4.13)

where h(·) is the binary entropy function. Because p
(ij)
1 and p

(ij)
2 are dependent on q, the

closed form capacity result for a standard BAC does not hold. The channel capacity therefore

need to be evaluated with a numerical method, e.g., the Blahut-Arimoto algorithm, as further

presented in subsection 4.3.4.

4.3.4 Simulations Results

Based on our models presented in the previous subsections, we simulate multiple arrays to

explore how memory parameters affect the memory reliability metrics, such as the bit-error

rate (BER) and the averaged capacity. We calculate the averaged capacity by averaging

the capacities of cells given by equation (4.13); this result serves as an indicator of what

fraction of the input data can be reliably stored in memory. Since this work is mainly

focused on the adverse effect of the line resistance, we only vary the array size, aspect ratio,

and line resistance in our simulations. Other memory parameters are kept the same and are

summarized in Table 4.1. As an illustrative example, the parameters are chosen to represent

a moderate reliability level, with a BER on the order of 10−3 in the best case scenario.

The considered line resistances range from 10Ω to 100Ω, in accordance with the interconnect

resistance values of interest for moderate technology nodes [LYWW13]. The chosen standard

deviation (0.3) of LRS and HRS distribution is experimentally observed in [JLY+15]. The

chosen switching parameters are based on [MRPC+11]; we use the same parameters for reset

and set operations for simplified analysis.

In Fig. 4.3a, we first present the BER of each cell in a 1024 × 1024 array to illustrate

the spatial variation of reliability due to the line resistance. According to [LYWW13], the

chosen 10Ω line resistance corresponds to the resistance per junction of Cu wire with 20nm
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Symbol Parameters Values

m,n Array Size (m× n) varies

Vw set Set voltage -5V

Vw reset Reset voltage 5V

Vr Read voltage 3V

q Prior symbol probability of 0 0.5

rw Wordline interconnect resistance 10Ω− 100Ω

rb Bitline interconnect resistance 10Ω− 100Ω

rsf Fully selected selector resistance 0

rsh Half selected selector resistance ∞

rsu Unselected selector resistance ∞

µL Associated mean of LRS distribution 4 ln(10)

µH Associated mean of HRS distribution 6 ln(10)

σL Associated std of LRS distribution 0.3 ln(10)

σH Associated std of HRS distribution 0.3 ln(10)

αset Parameter for the median set time 0.25

βset Parameter for the median set time 4.25

αreset Parameter for the median reset time −0.25

βreset Parameter for the median reset time 4.25

σset Associated std of set time distribution 0.5

σreset Associated std of reset time distribution 0.5

tset Switching time for set operation 100µs

treset Switching time for reset operation 100µs

Ith Read decision threshold 30µA

Table 4.1: Summary of parameters.

84



(a) Heatmap of BERs for a 1024x1024 array.
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(b) Capacity results of various line resistances.
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(c) Capacity results of various array sizes.

Figure 4.3: Simulation results for the proposed channel models.

technology nodes. With this moderate line resistance, we observe an order of magnitude

BER difference between the best-case cell, located closest to the voltage source, and the

worst-case cell, located furthest from the voltage source. Due to line resistance, the cell

which is further from the source and sensing amplifier, suffers from a lower voltage delivery

during the write operation and a higher resistance interference during the read operation,

85



thus has a larger BER.

Note that as the main focus of this work is the line resistance, we do not consider the line

capacitance in an array. To take line capacitance into consideration, which mainly affects the

switching time for set or reset operation when cell reliability is concerned, one can replace the

tset and treset in Table 4.1 with functions that depend on the location (i, j), the line resistance

and the line capacitance. Qualitatively, cells that are further away from the source and the

ground will get shorter effective switching time and therefore line capacitance exaggerates

the non-uniformity that is observed in 4.3a.

Next, in Fig. 4.3b and Fig. 4.3c, we present the averaged capacity per cell for arrays with

various size and line resistances, with aspect ratio fixed to be 1. We observe that a larger

line resistance, which corresponds to a smaller technology node, deteriorates the averaged

capacity almost linearly. This trade-off thus must be taken into consideration when scaling

the memory, as it is shown in [LYWW13] that the line resistance scales exponentially with

respect to the technology node. Also note that when the accumulated line resistance of the

worst-case cell gets close to the effective resistance threshold, i.e., when nrw + mrb is close

to Rth, the averaged capacity deteriorates faster, as from (4.12), when nrw + mrb > Rth,

reading from a LRS cell correctly is impossible. This explains the rapid dropping at the end

of the curve in Fig. 4.3b for the 384×384 array. From Fig. 4.3c, we notice that the averaged

capacity also deteriorates almost linearly with respect to the array size. This effect is thus

a limiting factor for the realization of a large memory array.

Array Size 128× 128 64× 512 32× 512 16× 1024 8× 2048 4× 4096

Averaged Capacity 0.9924 0.9918 0.9897 0.9845 0.9745 0.9573

Table 4.2: Capacity of arrays with different aspect ratios.

We further investigate how the aspect ratio affects the averaged capacity by simulating

arrays with the same number of cells but different aspect ratios. In Table 4.2, with a total

of 16384 cells, the square array (aspect ratio = 1) has the largest averaged capacity and
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the 4 × 4096 array, which has the largest aspect ratio, has the lowest averaged capacity.

Intuitively, this can be explained by a larger possible cumulative line resistance nrw + mrb

in an array with a larger aspect ratio. This observation presents a trade-off between the

sometimes desired high aspect ratio and a high averaged capacity.

4.4 Optimal Read Threshold

In subsection 4.3.2, we observe that the channel parameters p
(ij)
3 are p

(ij)
4 are dependent on

the read current threshold Ith — a user defined parameter that can be optimized for lower

raw bit-error rate. In this section, we study the optimal threshold for each cell and for an

entire array with the goal of reducing the raw bit-error rate. We choose to optimize the read

resistance threshold Rth = Vr
Ith

as it is equivalent to optimizing Ith with fixed read voltage Vr.

We define Rth0 be the optimal threshold when no line resistance is considered, i.e.,

Rth0 = argmin
Rth

qQ

(
µH − ln(Rth)

σH

)
+ (1− q)Q

(
ln(Rth)− µL

σL

)
. (4.14)

Rth0 can be calculated using standard result from estimation theory. Rth0 is clearly subop-

timal when the line resistance is non-negligible.

4.4.1 Optimal Threshold for Each Cell

One simple read scheme is to use the optimal resistance thresholds for cells at different

locations. We call this a different threshold for each cell (DTEC) scheme. Define the optimal

threshold for the cell (i, j) to be Rij
th. With the objective of minimizing P (Zij = Yij), and

using equation (4.11) and equation (4.12), we have:

Rij
th = argmin

Rth

qQ

(
µH − ln(Rth − irb − jrw)

σH

)
+ (1− q)Q

(
ln(Rth − irb − jrw)− µL

σL

)
.

(4.15)

Comparing equations (4.14) and (4.15), we get

Rij
th = Rth0 + irb + jrw. (4.16)
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This result is intuitive as we need to shift the threshold to the right in order to compensate

for the adverse effect of the cumulative line resistance.

4.4.2 Optimal Threshold for An Array

Requiring different thresholds for cells in a m × n array may not be desirable for circuit

designers as doing this may require a lot more comparators. In a typical memory design,

cells on the same bitline share the same sensing amplifier, so one threshold for each column

is a reasonable choice. To further simplify the memory design, one may even use the same

threshold for the entire memory array. Therefore, it is of interest to find the optimal threshold

that minimizes the averaged BER for an entire array or a sub-array (such as a column). In

this subsection, we deal with the optimal threshold for an array first; this result readily

generalizes to any sub-array. We call these schemes the same threshold for many cells

(STMC) schemes.

With the objective of minimizing 1
mn

∑
i,j P (Zij = Yij), the optimal threshold for an

array is defined as

Rth array =argmin
Rth

1

mn

m,n∑
i,j

[
qQ

(
µH − ln(Rth − irb − jrw)

σH

)

+ (1− q)Q
(

ln(Rth − irb − jrw)− µL
σL

)]
.

(4.17)

While it may be possible to heuristically optimize the single parameter Rth, in practice

we wish to provide an analytical solution based on certain approximations and an efficient

iterative search algorithm. Analytically, the optimization problem in (4.17) is hard to solve

for as it involves a summation of Q-functions. We instead replace this objective function

with its upper bound and try to minimize this upper bound. Using Jensen’s inequality and
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the fact that the Q-function is concave for a positive argument, we have the following bound:

1

mn

m∑
i=1

n∑
j=1

[
qQ

(
µH − ln(Rth − irb − jrw)

σH

)
+ (1− q)Q

(
ln(Rth − irb − jrw)− µL

σL

)]

≤qQ
(
µH − A
σH

)
+ (1− q)Q

(
A− µL
σL

)
,

(4.18)

where

A =
1

mn

m∑
i=1

n∑
j=1

[
ln(Rth − irb − jrw)

]
.

The gap between the two sides of this inequality is small when the Q-functions are close to

being linear, which is indeed the case for Q-functions with large arguments.

We reformulate the problem using the above inequality:

Rth array = argmin
Rth

qQ

(
µH − A
σH

)
+ (1− q)Q

(
A− µL
σL

)
. (4.19)

Comparing equations (4.14) and (4.19), the problem becomes of finding Rth array such that

ln(Rth0) =
1

mn

m∑
i=1

n∑
j=1

[
ln(Rth array − irb − jrw)

]
. (4.20)

Equation (4.20) is hard to solve since it contains a summation of logarithm functions. We

provide both an approximation to this equation that is easier to solve, as well as an iterative

algorithm that produces a solution to the original equation.

Approximating each term in the right hand side summation by ln(Rth array − m+1
2
rb −

n+1
2
rw), the approximate solution of (4.20) can be found:

Rth array ≈ Rth array appx = Rth0 +
m+ 1

2
rb +

n+ 1

2
rw. (4.21)

This approximation can be also interpreted as averaging of the optimal thresholds, given by

equation (4.16), of all cells.

We propose Algorithm 1 to compute the exact solution of equation (4.20).
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Algorithm 1: STMC threshold solver algorithm..

1. Initialize R
(0)
th = Rth0, l = 0.

2. l = l + 1.

Calculate R
(l)
th such that ln(R

(l)
th ) = ln(Rth0)− 1

mn

∑m
i=1

∑n
j=1 ln

(
1− irb+jrw

R
(l−1)
th

)
.

3. Repeat step 2 until a certain iteration is reached or R
(l)
th −R

(l−1)
th ≤ ε. Let

Rth array = R
(l)
th .

The STMC threshold solver algorithm is inspired by how the summation of logarithm

functions is handled in the Expectation Maximization algorithm. The convergence of the

STMC threshold solver algorithm is demonstrated in the following lemma.

Lemma 7. The STMC threshold solver algorithm converges to the solution of equation

(4.20).

Proof. Equation (4.20) can be rewritten as:

ln(Rth array) = ln(Rth0)−
1

mn

m∑
i=1

n∑
j=1

ln

(
1− irb + jrw

Rth array

)
.

With R
(0)
th ≥ Rth array, the following inequality holds:

ln(Rth array) ≥ ln(R
(1)
th ) = ln(Rth0)−

1

mn

m∑
i=1

n∑
j=1

ln

(
1− irb + jrw

R
(0)
th

)
.

By induction, ln(Rth array) can be bounded: ln(R
(2j+1)
th ) ≤ ln(Rth array) ≤ ln(R

(2j)
th ), j ∈ Z.

With R
(2)
th > R

(0)
th = Rth0, since ln(R

(l)
th ) = ln(Rth0)− 1

mn

∑m
i=1

∑n
j=1 ln

(
1− irb+jrw

R
(l−1)
th

)
, the sub-

sequent upper bounds and lower bounds are shrinking toward ln(Rth array), i.e., ln(R
(2j+2)
th ) <

ln(R
(2j)
th ) and ln(R

(2j+3)
th ) > ln(R

(2j+1)
th ). Therefore, the STMC threshold solver algorithm con-

verges. �

For the simulations we report on in the next subsection, the STMC threshold solver

algorithm converges in 5 iterations which is more effective than performing a line search to

solve equation (4.17) empirically.
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4.4.3 Simulation Results

We simulate arrays to examine how the averaged read BERs are affected by different read

thresholding schemes. Four different thresholding schemes are compared: the naive scheme

where Rth0 is used as the threshold; the DTEC scheme; the STMC scheme with the approxi-

mated solution in (4.21); and the STMC scheme with the exact solution solved by Algorithm

1. Unless otherwise mentioned, we use parameters from Table 4.1. We first vary the array

size and fix rb = rw = 30Ω and report the result in Fig. 4.4a. We also vary the wire resistance

and fix n = m = 1024 and report the result in Fig. 4.4b.

(a) Averaged read BER v.s. array size using

different thresholding scheme.

(b) Averaged read BER v.s. wire resistance

using different thresholding scheme.

Figure 4.4: Simulation results using the optimal threshold.

From both Fig. 4.4a and Fig. 4.4b, we observe that both DTEC and STMC schemes

reduce the read BER significantly compared with the naive thresholding scheme. The DTEC

scheme compensates for each cell based on its location, and, as a result, the averaged BER

is independent of the array size and wire resistance. As expected, the averaged BERs us-

ing the exact solution of the STMC scheme is smaller than the averaged BERs using the

91



approximated solution. However, the improvement is incremental and can not be identified

on the plots. This shows that equation (4.21) approximates the solution of equation (4.20)

very well.

To investigate the effect of the optimized read threshold on the non-uniformity of read

reliability, we generate heatmaps depicting the read BER with the unoptimized read thresh-

old (Fig. 4.5a) and with the optimized read threshold by the STMC scheme (Fig. 4.5b).
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(a) Read BER heatmap with Rth0.
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(b) Read BER heatmap with STMC scheme.

Figure 4.5: Heatmap comparison between un-optimized and optimized read thresholds.

Similar to what we observed in Fig. 4.3a in subsection 4.3.4, with the un-optimized

threshold, the lower left corner cell is the most reliable one and the upper right corner

cell is the least reliable one. With the optimized read threshold, the non-uniformity pattern

changes and the reliable cells lie on the diagonal of the array. This result is expected because

from equation (4.21), we observe that the approximated solution for the STMC scheme is

the optimal read threshold for the center-most cell of an array. Note that in our simulation,

the device parameters are selected such that the read channel with un-optimized threshold is

comparable to the write channel. Because of this set-up, with the optimized read threshold,

the read channel is dominated by the write channel and the non-uniformity pattern of the
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cascaded channel is unchanged.

4.5 Channel Coding for Storage-Class Memory (SCM) Applica-

tions

Error correction codes (ECCs) have become an essential part in memory systems. In an

array with largely non-uniform device reliability, efficient ECC solutions must take this non-

uniformity into consideration by either mitigating it or leveraging it. Channels with non-

uniformity can be considered as channels with SNR variation [EHW+18] or non-stationary

channels [ZFW+19, Mah20]. These models have been studied in the ECC literature in the

context of e.g., LDPC codes and Polar codes for storage applications [ZFW+19, EHW+18,

Mah20]. However, these complex codes with long block length and high decoding latency (on

the order µs [ZZS+13]) are not compatible with the small decoding granularity and fast de-

coding requirements of the SCM applications. Therefore, in targeting the SCM applications,

we study efficient coding schemes for crossbar resistive memory with high line resistance and

base them on simple yet effective BCH codes with short block length. BCH codes, which

are characterized by the block length (n), number of information bits (k), and the error

correction capability (t), have decoding latency on the order of ns and are widely adopted

in crossbar resistive memory [NXX12,CAS+18,MCYC17].

In subsection 4.5.1, based on a single BCH code, we propose an interleaved coding scheme

to mitigate the non-uniformity by allowing cells that store different codewords to have simi-

lar averaged RBER. In subsection 4.5.2, we propose a method to use different BCH code in

different wordline to leverage the non-uniformity, and do so without interleaving. A system-

atic framework to optimize the allocations of codes to wordlines is also proposed in V.B. The

two proposed approaches are suitable for different scenarios. The interleaved coding scheme

in subsection 4.5.1 is conceptually simpler and requires only one pair of ECC encoder and

decoder. Meanwhile, the interleaved coding scheme requires interleaver and de-interleaver,
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which adds additional hardware and latency overhead. The proposed scheme in subsection

4.5.2 does not use an interleaving operation but requires an optimization process in the de-

sign stage and also requires additional ECC encoders/decoders due to the use of multiple

ECCs. Also, because the optimization steps are not typically performed on-the-fly, perfor-

mance of the proposed scheme based on an optimized allocation can deteriorate if device

parameters vary significantly in time. We present both schemes for completeness and the

usefulness of each of them in a specific application depends on their performance and the

trade-off between hardware/latency overhead of the interleaver/de-interleaver and that of the

additional encoders/decoders. Some performance trade-offs between these two approaches

will be discussed at the end of subsection 4.5.2 when performance of these two schemes are

compared. Note that in the following two subsections, our simulations consider both the

read and write channel and are based on parameters in Table 4.1. The read thresholds are

optimized using the STMC scheme in Section 4.4.

4.5.1 Single ECC with Interleaving

Suppose a codeword is stored in a wordline in the crossbar memory. When employing the

same ECC for all wordlines, the non-uniformity of raw bit-error rates (RBERs), as depicted in

Fig. 4.3a, transforms into the non-uniformity of undetected bit-error rates (UBERs) and thus

makes this coding scheme inefficient. If the ECC is designed for an averaged case, e.g., the

channel conditions in the middle wordlines, it can be an overkill for the channel conditions in

the lower wordlines while being inadequate for the channel conditions in the upper wordlines.

One approach to mitigate non-uniformity of channels is interleaving e.g., [EHW+18]. Based

on the dependency of channel parameters on the row and column indexes of the cell location,

we propose a sub-diagonal interleaved coding scheme which is illustrated in Fig. 4.6.

Based on this sub-diagonal interleaved coding scheme, we store each codeword in cells

that are located on the same diagonal or a sub-diagonal of the memory array, instead of

cells that are located on the same wordline. Note that this interleaved coding scheme can
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Figure 4.6: Illustration of the sub-diagonal interleaved coding scheme on an 8× 8 Array.

be readily generalized to a non-square array by storing a codeword in cells located on the

main diagonal or a circularly shifted main diagonal of the rectangular array.
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Figure 4.7: The averaged RBER for cells storing codewords in an 128× 128 array with

rw = rb = 50Ω.

To study the effectiveness of this interleaved coding scheme, we first compare the averaged

RBER in cells that store each codeword when using the interleaved coding scheme with the

averaged RBER in cells that store each codeword where bits of the codeword are stored in a
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wordline. The results for an 128× 128 array are shown in Fig. 4.7 and we observe that the

non-uniformity of averaged RBER among codewords is largely mitigated.
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Figure 4.8: Decoding performance of the interleaved coding scheme.

We next present the decoding performance of this interleaved coding scheme using BCH

codes with block length n = 128 and 256, and error correction capability t = 2, 3, and

4 in Fig. 4.8. In Fig. 4.8, the interleaved coding scheme effectively reduces the UBER

with a maximum reduction of 45%. We observe that the interleaved coding scheme is more

effective in the regime of short block length and moderate line resistance. We conjecture

that even though the interleaved coding scheme is able to mitigate the non-uniformity of the

averaged RBER seen by each codeword, it exaggerates the non-uniformity of RBER within

a codeword. With a larger block length and line resistance, this trade-off is less favored and

the interleaved coding scheme is less effective. We also observe that the UBER improvement

is larger with a larger error correction capability. This result is due to the observation that a

larger error correction capability gives the interleaved coding scheme more room to balance

channels where the code is an overkill and channels where the code is insufficient, under the

non-interleaved case.
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4.5.2 Multiple ECCs with Optimized Code Allocation

Although the interleaved coding scheme in the previous subsection is conceptually simple

and requires only one ECC, interleaving and de-interleaving are costly operations. More-

over, these operations create additional difficulties if one seeks to utilize the parallel read

capability of a memory with the crossbar structure [LYWW13]. Without interleaving, one

intuitive approach to leverage the non-uniform RBERs is to use a strong ECC for relatively

unreliable wordlines and use a weak ECC for relatively reliable wordlines. This approach

has a reasonable complexity overhead compared to using a single ECC because encoders and

decoders for structured codes, e.g., BCH codes, with different error correction capabilities

can share the same encoding and decoding circuitry. Given a set of ECCs with varying error

correction capability and a set of wordlines with varying channel parameters, we refer to the

problem of designating an ECC to an wordline for all wordlines as the code allocation prob-

lem. Similar problems, i.e., using different ECCs for different channel conditions, have been

studied in communications under the context of adaptive coding [Vuc91] where the channel

condition is often time dependent (instead of being location dependent as in our set-up). In

this subsection, we present a systematic framework, referred to as the location dependent

code allocation (LDCA) framework, for solving the optimal code allocation problem. We first

present the formulation of the optimal location dependent code allocation (LDCA) problem

as a standard optimization problem and then propose an effective algorithm to solve for a

sub-optimal solution, which is shown to reduce the UBER effectively.

Suppose we have a set C of L error correction codes C1, C2, · · · , CL with the same block

length n and different error correction capabilities. In our specific case, we consider BCH

codes with a corresponding set of error correction capabilities T = {t1, t2, · · · , tL}. The

memory array is of size m × n and the crossover probabilities of the cascaded BAC in Fig.

4.2, p
(ij)
5 and p

(ij)
6 , are known based on the channel model. For each wordline i, we choose

a code from C and store the encoded bits in it. Let C ∈ Rm×L be an array whose element
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cil is the UBER (cost) when code Cl is applied to wordline i and cTi be a row of C. Let

A ∈ RL×m be an array whose column ai ∈ RL is an one-hot vector denoting the code

selection for wordline i, i.e., for a given i, ali = 1 if Cl is used for wordline i and ali = 0

otherwise. Let r ∈ RL represent the rate of the codes in C and let Rgoal be the desired

storage rate for the memory array. Under the constraint of rate Rgoal, we seek to find a code

allocation matrix A such that the overall UBER is minimized. The optimal LDCA problem

can therefor be formulated as the following integer programming problem:

min
A

m∑
i=1

cTi ai = Tr(AC)

s.t. aTi 1 = 1, i = 1, · · · ,m

ali ∈ {0, 1}

1

m

m∑
i=1

rTai ≤ Rgoal

(4.22)

In the above optimization problem, 1 is the all-ones vector. To solve the above optimiza-

tion problem, we first need to estimate the cost matrix C from the channel parameters. We

calculate C based on the following approximation:

cil ≈ 1−
tl∑
e=0

(
n

e

)
(p̄i)

e(1− p̄i)n−e, (4.23)

where

p̄i =
1

n

n∑
j=1

[
qpij5 + (1− q)pij6

]
.

In (4.23), we approximate the n BAC channels of cells on a wordline by an averaged binary

symmetric channel (BSC) with parameter p̄i and calculate the analytical UBER for a BCH

code based on this approximation.

With the approximated cost matrix C, we propose Algorithm 2 to solve the integer

programming problem (4.22) by solving its relaxed linear programming problem (4.24) iter-
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atively:

min
A

m∑
i=1

cTi ai = Tr(AC)

s.t. aTi 1 = 1, i = 1, · · · ,m

0 ≤ ali ≤ 1

1

m

m∑
i=1

rTai ≤ RLP

(4.24)

Algorithm 2: LDCA solver algorithm.

1. Solve the linear programming problem (4.24) with RLP = Rgoal to get A∗.

2. Estimate the code allocation matrix Â based on the maximum in each column of

A∗. Namely, in âi, only the argmax(a∗i )-th element is set to 1 and all other

elements are 0.

3. Calculate the true rate based on Â, i.e., R̂ = 1
m

∑m
i=1 r

Tai.

4. Terminate the algorithm if R̂ is within a certain tolerance of Rgoal. Otherwise,

update RLP . Namely,

if Rgoal −Rtol ≤ R̂ ≤ Rgoal +Rtol then

Algorithm terminates;

else if R̂ > Rgoal +Rtol then

Update RLP with RLP −Rupdate;

else

Update RLP with RLP +Rupdate;

end

5. Repeat step 1-4 until termination or certain number of iterations is reached.

In Algorithm 2, Rtol and Rupdate are user defined parameter specifying the tolerance

between the true rate R̂ and the target rate Rgoal, and the step for updating the rate used

in the linear programming problem, respectively. Note that in our experiment with L = 3,

Algorithm 2 terminates in a single iteration.
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To better illustrate the effectiveness of Algorithm 2, we present rows of the solved code

allocation matrix A∗ for an array with n = m = 128 and varying line resistance in Fig.

4.9. The channel parameters are computed based on our model in Section 4.3 and device

parameters in Table 4.1. We include L = 3 codes in C: BCH(128,100,3), BCH(128,93,4) and

BCH(128,86,5) and set Rgoal to be the rate of BCH(128,93,4). Based on the definition of

A, each row of A can be interpreted as the relative “weight” of each code. We observe that

with the 10Ω line resistance, the non-uniformity is mild and the solution from Algorithm 2

suggests that using a single code BCH(128,93,4) is sufficient. As the line resistance goes up,

the solution from Algorithm 2 suggests the usage of a strong code BCH (128,86,5) for the

worse wordlines and a weak code BCH(128,100,3) for the better wordlines.
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Figure 4.9: Solutions of Algorithm 2 for arrays with various line resistance values.

We perform simulations to study the effectiveness of our proposed LDCA framework. In

our simulations, two block lengths n = 128 and n = 256 are studied, and the corresponding
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memory arrays are of sizes 128 × 128 and 256 × 256, respectively. Line resistances are

varied while the remaining device parameters are from Table 4.1. For each set of the array

parameters, four different sets of codes are tested. These sets of codes are the standard

BCH codes with T = {1, 2, 3}, T = {2, 3, 4}, T = {3, 4, 5}, and T = {1, 2, 3, 4, 5}. Their

target rates are set to equal the rate of the BCH codes with t = 2, t = 3, t = 4, and t = 3,

respectively. For each group of codes, the optimized code allocation is first solved for by

the LDCA solver algorithm, and then the UBER based on the optimized code allocation is

simulated. We compare the performance of each group of codes with the performance of the

BCH code of the same rate with and without the interleaved coding scheme. The results are

shown in Fig. 4.10.
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Figure 4.10: Decoding performance of sets of codes based on LDCA framework.

From Fig. 4.10, we observe that the scheme utilizing a set of codes based on our LDCA

framework shows consistent improvement compared to the scheme utilizing a single code.

The UBER of a set of L = 3 codes is comparable to the UBER of a single code of the same

rate with interleaving. In the 128 × 128 array, the set of codes with T = {1, 2, 3, 4, 5} does

not outperform the set of codes with T = {2, 3, 4}. Meanwhile, in the 256 × 256 array, the

set of codes with T = {1, 2, 3, 4, 5} outperforms the set of codes with T = {2, 3, 4} by a
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consistent 7% in the high line resistance regime. This observation suggests that the utility of

allowing for more ECCs to be used in the system depends on the severity of non-uniformity

in the memory array. Comparing the proposed schemes in subsection 4.5.1 and that in

subsection 4.5.2, we observe that the decoding performance of the interleaved coding scheme

and the decoding performance of the optimized sets of L = 3 codes are very similar in most

of the tested operating regime. In the regime of short block lengths, i.e., n = 128, and

low line resistance, the interleaved coding scheme outperforms the scheme based on multiple

ECCs. We conjecture that this is because interleaving is able to mitigate the non-uniformity

despite its severity, whereas the scheme based on multiple ECCs requires notable RBER

differences among the wordlines to perform well as the error correction capabilities of ECCs

are only expressed in discrete integer values. For larger block lengths, i.e., n = 256, and

high line resistance, the scheme based on the set of L = 5 codes shows notable improvement

compared to the interleaved coding scheme. This shows that when allowing for more ECCs

to be used in the LDCA framework, a scheme based on the optimized code allocation of a

larger collection of codes is more promising than the interleaved coding scheme when the

non-uniformity across the memory array is severe.

Note that as the effectiveness of the scheme utilizing the proposed LDCA framework

depends on the code length and severity of non-uniformity, other device parameters from

Table 4.1 also impact the performance of the proposed scheme. Because the main focus

of this chapter is on the effect of line resistance, we only present results with varying line

resistance and the study on the effect of other device parameters are left for future work.

Also note that although our simulations is based on BCH codes and our proposed channel

models, the LDCA framework is a general one and it is applicable to other systems with

location dependent non-uniformity even when bearing a different channel model and/or

utilizing different ECCs. The LDCA framework can be readily generalized to other channels

models and ECCs by changing how the cost matrix C is calculated in Equation (4.23).

If one seeks to take into consideration the cost of decoders with different error correction
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capability or if one seeks to find solutions that use fewer codes without manually restrict-

ing L, a simple variant of the LDCA framework can be used by adding a regularization

term cTdecA1 in the objective functions of the optimization problems where cdec ∈ RL is a

vector that contains appropriate weights for the decoders. To demonstrate the effective-

ness of this regularized variant, we present an example by generating plots similar to Fig.

4.9 with and without this regularization term in Fig. 4.11. For an 256 × 256 array with

rw = rb = 30Ω, the solution from the LDCA solver algorithm (Fig. 4.11a) suggests us to

use the BCH(256,248,1) code for the first few wordlines and the BCH(256,216,5) for the

last few wordlines. In this moderate line resistance regime, one may wish to avoid using

BCH(256,248,1) and BCH(256,216,5) as observation in Fig. 4.10 suggests that improvement

of using more codes is incremental when the non-uniformity is moderate. Instead of manual

disallowing those two codes in C, an alternative is to use the regularization term cTdecA1.

With this regularization term, we get a solution that is shown in Fig.4.11b and this solution

does not use BCH(256,248,1) and BCH(256,216,5). This regularized variant is therefore ca-

pable of automatically penalizing the use of more ECCs when the non-uniformity is moderate

while still allowing more ECCs to be used when the non-uniformity is severe.

0 50 100 150 200 250 300

Wordline #

0

0.2

0.4

0.6

0.8

1

V
al

ue
 fr

om
 A

lg
or

ith
m

 2

c
dec

=6#10-7
#[3,3,3,3,3]T

Row 1 BCH1
Row 2 BCH2
Row 3 BCH3
Row 4 BCH4
Row 5 BCH5

(a) un-regularized solution.
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Figure 4.11: An example of using the regularization term in the LDCA framework.
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CHAPTER 5

Conclusion

In this dissertation, focusing on the two applications of crossbar resistive memory, we ad-

dress the reliability issues using tools from estimation theory and channel coding theory.

Based on models from communication theory, our proposed schemes improves the robust-

ness of the system by improving the learning accuracy in the accelerator application and

reducing the RBER/UBER in the SCM application. In chapter 2, we show that comput-

ing Hamming distance in-memory is feasible under resistance variation and propose a error

detection/correction scheme that effectively improves the classification accuracy without bit-

level information. In chapter 3, by characterizing the inter-cell dependency of the sneak-path

problem, we propose an adaptive thresholding scheme that reduces the RBER. In chapter

4, we present channel models for the write and read operations under high line resistance

and propose schemes for efficient channel coding under the spatially non-uniform channel

characteristics.

This work can be extended in many directions bearing the same objective: improving

the robustness of systems that are built with crossbar resistive memory. On the accelerator

application side, future work can be done by studying the effect of resistance variation

in practical accelerator structure that accelerates binary neural networks. On the SCM

application side, one can study efficient coding construction with low decoding latency on

the order of ns.
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Appendix A

An Approximation Justification

In Chapter 2, the following approximations are made:

Hi,xHi,y

Hi,x +Hi,y

≈ Fi ∼ N (µH/2, σ
2
H/8), (A.1)

Li,xLi,y
Li,x + Li,y

≈ Ti ∼ N (µL/2, σ
2
L/8), (A.2)

Hi,xLi,y
Hi,x + Li,y

≈ Si ∼ N
(

µL
1 + ε

,
σ2
L

(1 + ε)4

)
, (A.3)

Li,xHi,y

Li,x +Hi,y

≈ Si ∼ N
(

µL
1 + ε

,
σ2
L

(1 + ε)4

)
. (A.4)

Here we show that the approximated distributions are close to the original distributions by

studying these approximations using data from a variety of memristor technology reported

in the literature [CL11]. We model the reported resistance variations for 9 types of ReRAM

devices. For each ReRAM device, let L and H denote the random variables for low state

conductance and high state conductance, respectively. We assume L and H follow the

following two Gaussian distributions respectively:

H ∼ N (µH , σ
2
H), L ∼ N (µL, σ

2
L). (A.5)

For each ReRAM device, µH and µL are set to be the reciprocal value of its mean low-

state resistance and high-state resistance, i.e. RL
avg and RH

avg, respectively. σH and σL are

calculated using the following rule:

σH =
1

2
min

(
1

RH
min

− 1

RH
avg

,
1

RH
avg

− 1

RH
max

)
, σL =

1

2
min

(
1

RL
min

− 1

RL
avg

,
1

RL
avg

− 1

RL
max

)
,
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where RL
min and RL

max are the smallest and largest low-state resistance value reported, re-

spectively. Similarly, RH
min and RH

max are the smallest and largest low-state resistance values

reported. The resulting models for the 9 ReRAM devices are summarized in Table A.1.

For each ReRAM device, we calculate four discretized distributions on the left hand side

of the approximation. We first generate 107 samples for Hi,x, Hi,y, Li,x and Li,y according

to the (A.5). Then we calculate the discretized distributions for expressions on the left-

hand-side of Approximation (A.1), (A.2), (A.3) and (A.4) by dividing all samples into 100

bins with equal bin width. We also calculate the discretized approximated distributions (the

right-hand-side of Approximation (A.1), (A.2), (A.3) and (A.4) using the same bins. For

each approximation in (A.1), (A.2), (A.3) and (A.4) we calculate the Bhattacharyya distance

for each pair of distributions using the following equations:

DB(p, q) = − ln(BC(p, q)), (A.6)

where

BC(p, q) =
∑

x∈X=1,..,100

√
p(x)q(x), (A.7)

where p is the discretized original distribution and q is the discretized approximated distri-

bution.

The four distance metrics for each ReRAM device, D1
B, D2

B, D3
B and D4

B—the Bhat-

tacharyya distance between the left distribution and the right distribution of approximations

(A.1), (A.2), (A.3) and (A.4), respectively—are listed in Table A.1. Bhattacharyya distance

close to zero means the two distribution are close. Thus we have showed our approximations

are suitable for a variety of ReRAM devices which have a large range of resistance variation.
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Table A.1: ReRAM models and Bhattacharyya distances.

µL σL µH σH D1
B D2

B D3
B D4

B

TiOx 1.0e-3 2.5e-4 2.5e-2 2.5e-3 6.5e-4 5.0e-3 8.3e-5 8.3e-5

HfOx(1) 1.0e-3 2.1e-4 5.0e-3 8.3e-4 2.0e-3 3.5e-3 9.2e-4 9.2e-4

AuZrOx(1) 3.3e-7 1.0e-7 1.4e-2 2.1e-3 1.5e-3 8.4e-3 3.2e-7 2.4e-7

SrZrO3 5.0e-7 8.3e-8 1.7e-3 3.3e-4 3.0e-3 2.0e-3 2.5e-7 2.5e-7

CuGeSe 1.7e-6 3.3e-7 3.3e-4 6.7e-5 3.0e-3 3.0e-3 1.5e-6 1.6e-6

CoOx 1.3e-5 3.8e-6 2.0e-4 3.8e-5 2.5e-3 7.7e-3 2.9e-4 3.0e-4

HfOx(2) 1.3e-5 3.8e-9 1.0e-4 2.5e-5 5.0e-3 7.7e-3 2.0e-7 2.6e-7

TiON 1.7e-7 3.3e-8 5.0e-5 1.6e-5 9.7e-3 3.0e-3 9.0e-6 9.0e-6

AuZrOx(2) 2.5e-8 6.3e-9 1.0e-5 2.5e-6 5.0e-3 5.0e-3 8.0e-7 9.5e-7
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Appendix B

Probabilistic Characterization of Inter-cell Dependency

In this appendix, under the modeling of the sneak-path event of a 1D1R structured array, we

calculate the probabilities introduced in Chapter 3. Note that although some of the latter

lemmas we present may look complicated, their nature is simple by using the combinatoric

property of the sneak-path event defined by our modeling. We include Figure B.1 that

contains some of the useful notation and indexes used in the proof of following lemmas.

We will comment on possible approximations for the following lemmas at the end of the

appendix. We use the binomial coefficient
(
n
k

)
that is defined for 0 ≤ k ≤ n and equals 0

otherwise.

Figure B.1: Some notation and indexes used in the proofs.

Lemma 8. Without conditioning on any known information cell, the probability that a pre-
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coded cell (cell that stores Aij with i = j′,i.e., j = i′) does not incur a sneak-path event

is:

P0(eij = 0) =
m−1∑
u=0

(
m− 1

u

)
qu(1− q)m−1−u [P0(eij = 0|u)]r , (B.1)

where

P0(eij = 0|u) =
m−1∑
v=0

min(u,v)∑
k=0

(
u

k

)(
m− 1− u
v − k

)
qv(1− q)m−1−v(1− pfq)uv−k. (B.2)

Proof. This probability is derived by conditioning on certain parameters and then summing,

over all possible configurations, the probabilities that each of these configurations does not

cause a sneak-path event at cell (i,j) with i = j′, i.e., j = i′. The term configuration, here

and elsewhere, refers to an array (sub-array) with known information (depending on the

parameters) on the row(s) and column(s) of cell(s) of interest, i.e., cell(s) which we want to

not incur a sneak-path event. We first condition on the number of 1’s on the j-th column

(u), i.e., we select u rows, with an index set Iu, that have 1’s on the j-th column. We then

divide the fat array into r square sub-arrays and consider each square sub-array separately

conditioned on the selected u rows. This condition allows us to consider each square sub-

array independently. For each square sub-array, we condition on the number of 1’s on the

i-th row (v), i.e., we select v columns, with an index set Iv, that have 1’s on the i-th row.

Here and elsewhere in the appendix, since we consider the square sub-arrays separately, all

index sets have indexes that stand for the positions in the square sub-array. Therefore, we

define all index sets to be subsets of Iall = {1, · · · ,m}\{i, j′}. For each square sub-array,

we also condition on k = |Iu ∩ Iv|. For each configuration with parameters u, v and k, in

order to guarantee no sneak-path event at cell (i,j), we need the uv − k information cells,

lying on the intersection of the u rows and v columns, to either store a 0 or store a 1 with a

non-failing diode (with probability 1− pfq). �

In the following lemmas, the probabilities are all conditioned on Aij = 0 (omitted for

clarity) where i 6= j′, i.e., j 6= i′.
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Lemma 9. The probability that an information cell does not incur a sneak-path event is:

P (eij = 0) =
m−2∑
u=0

(
m− 2

u

)
qu(1− q)m−2−uP (1)(eij = 0|u)

[
P (2)(eij = 0|u)

]r−1
, (B.3)

where

P (1)(eij = 0|u) =
m−2∑
v=0

min(u,v)∑
k=0

(
u

k

)(
m− 2− u
v − k

)
qv(1− q)m−2−v(1− pfq)uv−k, (B.4)

and

P (2)(eij = 0|u) = qP (1)(eij = 0|u)(1− pfq)u + (1− q)P (1)(eij = 0|u). (B.5)

Proof. We first condition on selecting u rows that have 1’s on the j-th column. Again, we

divide the fat array into r square sub-arrays. For an information cell, the probabilities that

no sneak-path event occurs at cell (i, j), conditioned on u selected rows, are different for

the square sub-array that contains cell (i, j) and the r − 1 square sub-arrays that does not

contain cell (i, j) and thus need to be considered separately. We use the superscript (1) and

(2) to denote this difference in our probability calculation. The calculation of P (1)(eij = 0|u)

is similar to P0(eij = 0|u) in Lemma 8 except |Iall| = m − 2. The calculation of P (2)(eij =

0|u) is divided into two cases and the probability for each case can be calculated utilizing

P (1)(eij = 0|u). In the case that the cell (i, j∗), j∗ ≡ j (mod m), stores a 0, the configuration

of this square sub-array is the same as the configuration of the square sub-array that contains

cell (i, j). In the case that the cell (i, j∗) stores a 1, we additionally require u cells on the

intersection of j∗-th column and the u rows to either store a 0 or store a 1 with a non-failing

diode. �

Lemma 10. Let P (eij = 0, eii′ = 0) denote the joint probability that both an information

cell that stores 0 and the reference cell on the same row do not incur sneak-path events
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simultaneously. We have:

P (eij = 0, eii′ = 0) =
m−2∑
u=0

m−2∑
u′=0

min(u,u′)∑
o=0

(
m− 2

u

)(
u

o

)(
m− 2− u
u′ − o

)
qu+u

′
(1− q)2m−4−u−u′

×

[
(1− q)P (1)(eij = 0, eii′ = 0|u, u′, o, Aj′i′ = 0)

[
P (2)(eij = 0, eii′ = 0|u, u′, o, Aj′i′ = 0)

]r−1
+ qP (1)(eij = 0, eii′ = 0|u, u′, o, Aj′i′ = 1)

[
P (2)(eij = 0, eii′ = 0|u, u′, o, Aj′i′ = 1)

]r−1]
,

(B.6)

where

P (1)(eij = 0, eii′ = 0|u, u′, o, Aj′i′ = 0)

=
m−2∑
v=0

min(v,u+u′−o)∑
k=0

(
u+ u′ − o

k

)(
m− 2− u− u′ + o

v − k

)
qv(1− q)m−2−v(1− pfq)v(u+u

′−o)−k,

(B.7)

P (2)(eij = 0, eii′ = 0|u, u′, o, Aj′i′ = 0) =qP (1)(eij = 0, eii′ = 0|u, u′, o, Aj′i′ = 0)(1− pfq)u+u
′−o

+ (1− q)P (1)(eij = 0, eii′ = 0|u, u′, o, Aj′i′ = 0),

(B.8)

P (1)(eij = 0, eii′ = 0|u, u′, o, Aj′i′ = 1)

=
m−2∑
v=0

min(v,u+u′−o)∑
k=0

(
u+ u′ − o

k

)(
m− 2− u− u′ + o

v − k

)
qv(1− q)m−2−v(1− pfq)v(u+u

′−o+1)−k,

(B.9)

and

P (2)(eij = 0, eii′ = 0|u, u′, o, Aj′i′ = 1) =qP (1)(eij = 0, eii′ = 0|u, u′, o, Aj′i′ = 1)(1− pfq)u+u
′−o

+ (1− q)P (1)(eij = 0, eii′ = 0|u, u′, o, Aj′i′ = 1),

(B.10)

Proof. To calculate P (eij = 0, eii′ = 0), we condition on selecting u rows, with an index set

Iu, that have 1’s on the j-th column. We also select u′ rows, with an index set Iu′ , that
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have 1’s on the i′-th column and let o = |Iu ∩ Iu′|. Conditioned on these three parameters,

we further divide the calculation into four cases. We consider whether or not the square

sub-array contains cell (i, j) and we consider whether or not cell (j′, i′) stores a 0. For the

two cases that the square sub-array contains cell (i, j), we select v columns, with an index

set Iv, that have 1’s on the i-th row. We also condition on k = |Iv ∩ (Iu ∪ Iu′)|. For each

configuration with parameters u, u′, o, v and k, the number of information cells that need to

either store a 0 or store a 1 with a non-failing diode is v(u + u′ − o) − k when Aj′i′ = 0

and v(u + u′ − o + 1)− k when Aj′i′ = 1. For the two cases that the square sub-array does

not contain cell (i, j), we consider two sub-cases, conditioning on the value stored in cell

(i, j∗) with j∗ ≡ j (mod m). When Ai,j∗ = 0, these two configurations are the same as their

counterparts when the square sub-array contains cell (i, j). When Ai,j∗ = 1, the number of

additional information cells, for which we need them to either store a 0 or store a 1 with a

non-failing diode, is u+ u′ − o when Aj′i′ = 0 and Aj′i′ = 1. �

Lemma 11. Let P (eij = 0, ej′j = 0) denote the joint probability that both an information

cell that stores 0 and the reference cell on the same column do not incur sneak-path events

simultaneously. We have:

P (eij = 0, ej′j = 0) =
m−2∑
u=0

(
m− 2

u

)
qu(1− q)m−2−u

[
(1− q)P (1)(eij = 0, ej′j = 0|u,Aj′i′ = 0)

×
[
P (2)(eij = 0, ej′j = 0|u,Aj′i′ = 0)

]r−1
+ qP (1)(eij = 0, ej′j = 0|u,Aj′i′ = 0)

×
[
P (2)(eij = 0, ej′j = 0|u,Aj′i′ = 1)

]r−1]
,

(B.11)

where

P (1)(eij = 0, ej′j = 0|u,Aj′i′ = 0)

=
u∑
k=0

m−2−u∑
w=0

k+w∑
v=0

v∑
o=0

(
u

k

)(
m− 2− u

w

)(
k + w

v

)(
v

o

)
qk+w+o(1− q)2m−4−k−w−o(1− pfq)(k+w)u−k,

(B.12)
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P (2)(eij = 0, ej′j = 0|u,Aj′i′ = 0) = q2P (1)(eij = 0, ej′j = 0|u,Aj′i′ = 0)(1− pfq)2u

+ 2q(1− q)P (1)(eij = 0, ej′j = 0|u,Aj′i′ = 0)(1− pfq)u + (1− q)2P (1)(eij = 0, ej′j = 0|u,Aj′i′ = 0),

(B.13)

P (1)(eij = 0, ej′j = 0|u,Aj′i′ = 1) = P (1)(eij = 0, ej′j = 0|u,Aj′i′ = 0)(1− pfq)u, (B.14)

and,

P (2)(eij = 0, ej′j = 0|u,Aj′i′ = 1) = P (2)(eij = 0, ej′j = 0|u,Aj′i′ = 0). (B.15)

Proof. To calculate P (eij = 0, ej′j = 0), we condition on selecting u rows, with an index

set Iu, that have 1’s on the j-th column. Next, conditioning on the selected u rows, we

consider the same four cases as in the previous proof. For the two cases that the square

sub-array contains cell (i, j), we condition on these four parameters: k, w, v and o. Let v

be the number of columns, with an index set Iv, that have 1’s on the i-th row and let v′

be the number of columns, with an index set Iv′ , that have 1’s on the j′-th row. We let

k = |Iu ∩ (Iv ∪ Iv′)|, w = |(Iv ∪ Iv′)\Iu| and o = |Iv ∩ Iv′ |. Note we do not condition on

v′ explicitly but instead use v′ = k + w − v + o. For each configuration with parameters

u, k, w, v and o, the number of information cells that need to either store a 0 or store a 1 with

a non-failing diode is u(k+w)− k when Aj′i′ = 0 and u(k+w+ 1)− k (additional u) when

Aj′i′ = 1. For the case that the square sub-array does not contain cell (i, j) and Aj′i′ = 0,

four sub-cases are considered for the values stored in cell (i, j∗) with j∗ ≡ j (mod m) and

cell (j′, i∗) with i∗ ≡ i′ (mod m). When Ai,j∗ = 0 and Aj′,i∗ = 0, the configuration is the

same as the configuration when the square sub-array contains cell (i, j). When Ai,j∗ = 1,

Aj′,i∗ = 0 or Ai,j∗ = 0, Aj′,i∗ = 1, the number of additional information cells that need to

either store a 0 or store a 1 with a non-failing diode is u. When Ai,j∗ = 1 and Aj′,i∗ = 1,

the number of additional information cells that need to either store a 0 or store a 1 with a

non-failing diode is 2u. For the case that the square sub-array does not contain cell (i, j)

and Aj′i′ = 1, the configuration is the same as the configuration when the square sub-array

does not contain cell (i, j) and Aj′i′ = 0. �

113



Lemma 12. Let P (eii′ = 0) be the probability that the reference cell on the row of an

information cell, which stores Aij = 0, incurs a sneak-path event. We have:

P (eii′ = 0) = (1− q)P (eij = 0)+

q
m−2∑
u=0

(
m− 2

u

)
qu(1− q)m−2−uP (1)(eii′ = 0|u,Aj′i′ = 1)

[
P (2)(eii′ = 0|u,Aj′i′ = 1)

]r−1
,

(B.16)

where

P (1)(eii′ = 0|u,Aj′i′ = 1) =
m−2∑
v=0

min(u,v)∑
k=0

(
u

k

)(
m− 2− u
v − k

)
qv(1− q)m−2−v(1− pfq)(u+1)v−k,

(B.17)

and

P (2)(eii′ = 0|u,Aj′i′ = 1) = qP (1)(eii′ = 0|u,Aj′i′ = 1)(1−pfq)u+(1−q)P (1)(eii′ = 0|u,Aj′i′ = 1).

(B.18)

Proof. We again separate the calculation of P (eii′ = 0) into four cases. When Aj′i′ = 0, we

have the same configuration as in the proof of P (eij = 0) in Lemma 9. When Aj′i′ = 1, we

condition on selecting u rows that have 1’s on the i′-th column and divide the fat array into

square sub-arrays. For the square sub-array that contains cell (i, i′), the calculation is similar

to the calculation of P (1)(eij = 0|u) in Lemma 9 except we have u+ 1 rows that have 1’s on

the i′-th column because Aj′i′ = 1. For the square sub-array that does not contain cell (i, i′),

we consider whether or not the cell (i, j∗) with j∗ ≡ j (mod m) stores a 0. When Ai,j∗ = 1,

the number of additional information cells that need to either store a 0 or store a 1 with a

non-failing diode is u. When Ai,j∗ = 0, the configuration is the same as the configuration

when the square sub-array contains cell (i, i′). �

Lemma 13. Let P (ej′j = 0) be the probability that the reference cell on the column of an
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information cell, which stores Aij = 0, incurs a sneak-path event. We have:

P (ej′j = 0) = (1− q)P (eij = 0)+

q

m−2∑
u=0

(
m− 2

u

)
qu(1− q)m−2−uP (1)(ej′j = 0|u,Aj′i′ = 1)

[
P (2)(ej′j = 0|u,Aj′i′ = 1)

]r−1
,

(B.19)

where

P (1)(ej′j = 0|u,Aj′i′ = 1) = P (1)(eij = 0|u)(1− pfq)u, (B.20)

and

P (2)(ej′j = 0|u,Aj′i′ = 1) = P (2)(eij = 0|u). (B.21)

Proof. We again separate the calculation of P (eii′ = 0) into four cases. When Aj′i′ = 0, we

have the same configuration as in the calculation of Pij = 0 in Lemma 9. When Aj′i′ = 1,

we condition on selecting u rows that have 1’s on the i′-th column and divide the fat array

into square sub-arrays. For the square sub-array that contains cell (i, i′), the calculation

is similar to the calculation of P (1)(eij = 0|u) in Lemma 9 except we have one additional

column that have an 1 on the j′-th row because Aj′i′ = 1. This additional column therefor

requires additional u information cells to either store a 0 or store a 1 with a non-failing diode.

For the square sub-array that does not contain cell (i, i′), the calculation is the same as the

calculation of P (2)(eij = 0|u) since they have the same configuration. �

Lemma 14. The probability that an information cell and its two reference cells do not incur

sneak-path events simultaneously is given by:

P (eij = 0, eii′ = 0, ej′j = 0) =
m−2∑
u=0

m−2∑
u′=0

min(u,u′)∑
o=0

(
m− 2

u

)(
u

o

)(
m− 2− u
u′ − o

)
qu+u

′
(1− q)2m−4−u−u′

×

[
(1− q)P (1)(eij = 0, eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 0)

[
P (2)(eij = 0, eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 0)

]r−1
+ qP (1)(eij = 0, eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 1)

[
P (2)(eij = 0, eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 1)

]r−1]
,

(B.22)
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where

P (1)(eij = 0, eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 0) =
u∑
k=0

u′−o∑
k∗=0

m−2−u
−u′+o∑
w=0

k+k∗+w∑
v=0

min(v,k∗)∑
v∗=max(0,
v−k−w)

k+k∗+w∑
v′=k+k∗
+w−v[(

u

k

)(
u′ − o
k∗

)(
m− 2− u− u′ + o

w

)(
k∗

v∗

)(
k + w

v − v∗

)(
v

v − k − k∗ − w + v′

)
qv+v

′

(1− q)2m−4−v−v′(1− pfq)uv+uv
′+vu′−ov−u(v−k−k∗−w+v′)−k−v∗

]
,

(B.23)

P (2)(eij = 0, eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 0) =
(

(1− q)2 + q(1− q)(1− pfq)u+u
′−o

+ q(1− q)(1− pfq)u + q2(1− pfq)2u+u
′−o
)
P (1)(eij = 0, eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 0),

(B.24)

P (1)(eij = 0, eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 1) =
u∑
k=0

u′−o∑
k∗=0

m−2−u
−u′+o∑
w=0

k+k∗+w∑
v=0

min(v,k∗)∑
v∗=max(0,
v−k−w)

k+k∗+w∑
v′=k+k∗
+w−v[(

u

k

)(
u′ − o
k∗

)(
m− 2− u− u′ + o

w

)(
k∗

v∗

)(
k + w

v − v∗

)(
v

v − k − k∗ − w + v′

)
qv+v

′

(1− q)2m−4−v−v′(1− pfq)uv+uv
′+vu′−ov−u(v−k−k∗−w+v′)−k−v∗(1− pf )o+v+v

′−k−k∗−w

]
,

(B.25)
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and

P (2)(eij = 0, eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 1) =
u∑
k=0

u′−o∑
k∗=0

m−2−u
−u′+o∑
w=0

k+k∗+w∑
v=0

min(v,k∗)∑
v∗=max(0,
v−k−w)

k+k∗+w∑
v′=k+k∗
+w−v[(

u

k

)(
u′ − o
k∗

)(
m− 2− u− u′ + o

w

)(
k∗

v∗

)(
k + w

v − v∗

)(
v

v − k − k∗ − w + v′

)
qv+v

′

(1− q)2m−4−v−v′(1− pfq)uv+uv
′+vu′−ov−u(v−k−k∗−w+v′)−k−v∗(1− pf )v+v

′−k−k∗−w
[
(1− q)2

+ q(1− q)(1− pfq)u+u
′−o + q(1− q)(1− pfq)u + q2(1− pfq)2u+u

′−o
]]
.

(B.26)

Proof. To calculate P (eij = 0, eii′ = 0), we condition on selecting u rows, with an index set

Iu, that have 1’s on the j-th column. We also select u′ rows, with an index set Iu′ , that have

1’s on the i′-th column and we let o = |Iu ∩ Iu′|. Next we consider the same four cases that

are considered in the previous proofs. Let v be the number of columns, with an index set

Iv, that have 1’s on the i-th row and let v′ be the number of columns, with an index set Iv′ ,

that have 1’s on the j′-th row. We let k be |(Iv ∪ Iv′)∩ Iu| and let k∗ be |(Iv ∪ Iv′)∩ (Iu′\Iu)|.

We also let w be |(Iv ∪ Iv′)\(Iu′ ∪ Iu)| and let v∗ be |Iv ∩ (Iu′\Iu)|. For the cases when the

square sub-array contains cell (i, j) and Aj′i′ = 0, for each configuration with parameters

v, v′, k, k∗, w and v∗, the number of information cells that need to either store a 0 or store

a 1 with a non-failing diode is uv + uv′ + vu′ − ov − u(v − k − k∗ − w + v′) − k − v∗ by

inclusion and exclusion. For the cases when the square sub-array contains cell (i, j) and

Aj′i′ = 1, additionally, these o+ v + v′ − k − k∗ −w = |Iu ∩ Iu′ |+ |Iv ∩ Iv′| cells on the j′-th

row and the i′-th column that we know store 1’s can not have a failed diode . For the two

cases when the square sub-array does not contain cell (i, j), four sub-cases are considered for

the values stored in cell (i, j∗) with j∗ ≡ j (mod m) and cell (j′, i∗) with i∗ ≡ i′ (mod m).

When Aj′i′ = 0, the number of additional information cells that need to either store a 0

or store a 1 with a non-failing diode is 0, u, u + u′ − o and 2u + u′ − o for the sub-cases

Ai,j∗ = 0, Aj′,i∗ = 0, Ai,j∗ = 0, Aj′,i∗ = 1, Ai,j∗ = 1, Aj′,i∗ = 0 and Ai,j∗ = 1, Aj′,i∗ = 1,

117



respectively. When Aj′i′ = 1, additionally, these v + v′ − k − k∗ − w = |Iv ∩ Iv′| cells on the

j′-th row that we know store 1’s can not have a failed diode. �

Lemma 15. Let P (eii′ = 0, ej′j = 0) be the probability that both reference cells of an infor-

mation cell, which stores Aij = 0, incurs sneak-path events simultaneously. We have:

P (eii′ = 0, ej′j = 0) =
m−2∑
u=0

m−2∑
u′=0

min(u,u′)∑
o=0

(
m− 2

u

)(
u

o

)(
m− 2− u
u′ − o

)
qu+u

′
(1− q)2m−4−u−u′

×

[
(1− q)P (1)(eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 0)

[
P (2)(eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 0)

]r−1
+ qP (1)(eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 1)

[
P (2)(eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 1)

]r−1]
,

(B.27)

where

P (1)(eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 0) =
o∑

k1=0

u−o∑
k2=0

u′−o∑
k3=0

m−2−u
−u′−o∑
w=0

k2∑
v1=0

k2−v1∑
v2

k3∑
v3

k1+k2
+k3+w∑
v=v1

+v2+v3

k1+k2
+k3+w∑

v′=k1+k2+k3
+w−v+v1[(

o

k1

)(
u− o
k3

)(
m− 2− u− u′ + o

w

)(
k2
v1

)(
k2 − v1
v2

)(
k3
v3

)(
v − v1 − v2

v + v′ − k1 − k2 − k3 − w − v1

)
(

k1 + w

v − v1 − v2 − v3

)
qv+v

′
(1− q)2m−4−v−v′(1− pfq)uv

′+vu′−o(v+v′−k1−k2−k3−w)−k1−(k2−v2)−v3

]
,

(B.28)

P (2)(eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 0) =
[
(1− q)2 + q(1− q)(1− pfq)u

+ q(1− q)(1− pfq)u
′
+ q2(1− pfq)u+u

′
]
P (1)(eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 0),

(B.29)
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P (1)(eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 1) =
o∑

k1=0

u−o∑
k2=0

u′−o∑
k3=0

m−2−u
−u′−o∑
w=0

k2∑
v1=0

k2−v1∑
v2

k3∑
v3

k1+k2
+k3+w∑
v=v1

+v2+v3

k1+k2
+k3+w∑

v′=k1+k2+k3
+w−v+v1[(

o

k1

)(
u− o
k3

)(
m− 2− u− u′ + o

w

)(
k2
v1

)(
k2 − v1
v2

)(
k3
v3

)(
v − v1 − v2

v + v′ − k1 − k2 − k3 − w − v1

)
(

k1 + w

v − v1 − v2 − v3

)
qv+v

′
(1− q)2m−4−v−v′(1− pfq)uv

′+vu′−o(v+v′−k1−k2−k3−w)−k1−(k2−v2)−v3

(1− pf )o+v+v
′−k1−k2−k3−w

]
,

(B.30)

and

P (2)(eii′ = 0, ej′j = 0|u, u′, o, Aj′i′ = 1) =
o∑

k1=0

u−o∑
k2=0

u′−o∑
k3=0

m−2−u
−u′−o∑
w=0

k2∑
v1=0

k2−v1∑
v2

k3∑
v3

k1+k2
+k3+w∑
v=v1

+v2+v3

k1+k2
+k3+w∑

v′=k1+k2+k3
+w−v+v1[(

o

k1

)(
u− o
k3

)(
m− 2− u− u′ + o

w

)(
k2
v1

)(
k2 − v1
v2

)(
k3
v3

)(
v − v1 − v2

v + v′ − k1 − k2 − k3 − w − v1

)
(

k1 + w

v − v1 − v2 − v3

)
qv+v

′
(1− q)2m−4−v−v′(1− pfq)uv

′+vu′−o(v+v′−k1−k2−k3−w)−k1−(k2−v2)−v3

(1− pf )v+v
′−k1−k2−k3−w

[
(1− q)2 + q(1− q)(1− pfq)u + q(1− q)(1− pfq)u

′
+ q2(1− pfq)u+u

′
]]
.

(B.31)

Proof. To calculate P (eij = 0, eii′ = 0), we condition on selecting u rows, with an index

set Iu, that have 1’s on the j-th column. We also select u′ rows, with an index set Iu′ ,

that have 1’s on the i′-th column and we let o = |Iu ∩ Iu′|. Next we consider the same

four cases that are considered in the previous proofs. Let v be the number of columns,

with an index set Iv, that have 1’s on the i-th row and let v′ be the number of columns,

with an index set Iv′ , that have 1’s on the j′-th row. We let k1 = |(Iu ∩ Iu′) ∩ (Iv ∪ Iv′)|,

k2 = |(Iu/Iu′) ∩ (Iv ∪ Iv′)|, k3 = |(Iu′/Iu) ∩ (Iv ∪ Iv′)|, w = |Iv ∪ Iv′/(Iu ∪ Iu′)|, v1 =

|(Iu/Iu′) ∩ (Iv ∩ Iv′)|, v1 = |(Iu/Iu′) ∩ (Iv/Iv′)| and v3 = |(Iu′/Iu) ∩ Iv|. For the cases when

the square sub-array contains cell (i, j) and Aj′i′ = 0, for each configuration with the above
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parameters, the number of information cells that need to either store a 0 or store a 1 with

a non-failing diode is uv′ + vu′− o(v+ v′− k1− k2− k3−w)− k1− (k2− v2)− v3 by noting

that |Iv ∩ Iv′ | = v + v′ − k1 − k2 − k3 − w and |(Iu ∩ Iv′) ∪ (Iv ∩ Iu′)| = k1 + k2 − v2 + v3.

For the cases when the square sub-array contains cell (i, j) and Aj′i′ = 1, additionally, these

|Iu∩Iu′ |+ |Iv∩Iv′| cells on the j′-th row and the i′-th column that we know store 1’s can not

have a failed diode . For the two cases when the square sub-array does not contain cell (i, j),

four sub-cases are considered for the values stored in cell (i, j∗) with j∗ ≡ j (mod m) and cell

(j′, i∗) with i∗ ≡ i′ (mod m). When Aj′i′ = 0, the number of additional information cells that

need to either store a 0 or store a 1 with a non-failing diode is 0, u, u′ and u+u′ for the sub-

cases Ai,j∗ = 0, Aj′,i∗ = 0, Ai,j∗ = 0, Aj′,i∗ = 1, Ai,j∗ = 1, Aj′,i∗ = 0 and Ai,j∗ = 1, Aj′,i∗ = 1,

respectively. When Aj′i′ = 1, additionally, these |Iv ∩ Iv′ | cells on the j′-th row that we know

store 1’s can not have a failed diode. �

All lemmas in Appendix B are verified with Monte Carlo simulation. These probabilities

can be approximated by neglecting the fact that the array is Diagonal-0 coded therefore

avoiding the enumeration through the overlapping indexes between the row indexes and

column indexes. The approximated versions of Lemma 9 and Lemma 11 with pf = 1 can be

found in [CKY16].
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