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ABSTRACT OF THE DISSERTATION

Simulation and Numerical Methods for Stochastic Processes

by

Timothy Charles Stutz

Doctor of Philosophy in Biomathematics

University of California, Los Angeles, 2020

Professor Kenneth L Lange, Chair

Stochastic processes and randomness are vital features of mathematical modeling in bi-

ology. Unfortunately analytical results are rarely available for even moderately complex

stochastic processes leaving simulation and numerical techniques the main avenues of at-

tack. We begin this work by exploring coupling bounds for birth-death processes, a funda-

mental type of stochastic process that describes how populations of individuals change over

time. By forming a coupling between a truncated version of the process and the original

unbounded version, we are able to compute both moments and transition probabilities for

the true process within an acceptable error bound. Second, we present an algorithm design

framework for Interacting Particle Systems (IPSs). These are complex stochastic processes

with wide application to spatial phenomenon across many scientific disciplines. Here we de-

scribe a method for efficiently sorting particles into classes based off of their type and spatial

configuration in such a fashion that reduces the spatial simulation to that of a non-spatial

well-mixed process, albeit with a more complicated update step. This also allows us to apply

a large suite of well-developed stochastic simulation algorithms to IPSs with little additional

coding cost. Third, we return to numerical methods, this time for multi-type branching

processes applied to gene therapy. We derive a series of ordinary differential equations that

govern the evolution of the probability generating function and provide a straightforward

numerical inversion approach to obtain marginalized probability distributions for probabilis-

tic quantities of interest. We provide examples of our techniques applied to lentiviral gene

therapy and the associated risk of oncogenesis in transplanted hematopoietic stem cell lines.
ii



Finally, we conclude with a chapter on future directions, both related to the previous three

chapters as well as projects not previously addressed in this work.
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CHAPTER 1

Introduction

1.1 Stochastic Processes in Biology

No mathematical approach to biology is complete without random processes. Noise is present

in species fluctuations, switching in genetic regulation, the arrival of mutations in evolution-

ary processes, and countless other phenomenon. The cornerstone of correctly modeling these

diverse random mechanisms lies in the mathematical discipline of stochastic processes.

Population processes are frequently described by systems of ordinary differential equa-

tions that govern how concentrations of different species interact and change over time. These

models assume that there are enough particles to be accurately described by a continuous

concentration and that the dynamics of the system are purely deterministic. Both of these

assumptions fail when the system has random noise and when modeling individual parti-

cles with low counts become important. Classic examples include predator-prey dynamics,

disease outbreak, the recruitment of driver mutations in tumorigenesis, population extinc-

tion from demographic noise, and other rare events. Differential equations fail to accurately

model these phenomena, so we are required to introduce stochasticity.

Unfortunately, stochastic models are frequently too complicated to be treated analytically

outside of well-mixed systems with few particle types. Important quantities such as finite

time transition probabilities, moments and correlation functions, and statistics about first

passage times are often intractable. Numerical methods and simulation offer solutions where

none would otherwise be available.

This work focuses on both numerical and simulation based techniques for specific classes

of stochastic processes. The first chapter focuses on birth-death processes (BDPs), a well-

1



behaved class of single species stochastic models where a population of individuals changed by

at most one count per event. Classic examples of BDPs include the Poisson process, Kendall’s

birth-death-immigration process, the Moran process, and the logistic process. These form

fundamental models for disease dynamics, tumor progression, phylogenetics, and queuing

theory [NKK06].

While robust numerical techniques exist for numerically computing finite time transi-

tion probabilities for arbitrary BDPs [CS12], less work has been done on computing their

moments. Chapter 2 presents a novel coupling argument that bounds the total variation dis-

tance between a non-explosive BDP and a truncated version based on the truncation index

N [CSL16]. Once a given truncation index is found, there exist efficient numerical techniques

for computing moments and transition probabilities from the simplified Markov chain. From

this, modelers can quickly test different combinations of birth and death rates to see if a

model produces the desired average behavior. This application provides a powerful example

of how coupling arguments can greatly simplify computations for stochastic processes.

The third chapter switches focus from well-mixed processes to simulation approaches for

spatial particle processes which are prohibitavely resistant to numerical approaches. Spatial

variation is vital for accurately modeling many evolutionary processes, such as tumor growth,

dessertification, disease spreading, and maintenance of species biodiversity. Simulation re-

mains the primary approach for observing novel behavior in spatial models that cannot be

observed in their well-mixed counterparts.

We present several simulation algorithms for spatial interacting particle systems (IPSs).

IPSs are a class of stochastic models with full spatial detail, tracking each particle’s location

on a lattice [Lig12]. Interactions are assumed to be completely local, meaning particles

must be adjacent to each other to react. This limits IPSs to modeling at most bimolecular

reactions, but this is not a significant limitation; higher order reactions can be modeled as

a series of bimolecular reactions, each forming a new complex that takes part in the next

reaction. Importantly, IPSs preserve volume exclusion, meaning at most one particle can

be present on any given lattice site. Diffusive movement is typically modeled via particles

obeying random walks between sites, respecting exclusion. This is in constrast with more

2



common reaction diffusion master equation (RDME) approaches that couple compartments

obeying well-mixed dynamics.

We provide software, written in the open source language Julia, that implements differ-

ent algorithms for simulating IPSs. These include the exact stochastic simulation algorith

(SSA), a version of the celebrated τ -leaping algorithm, and a novel extension of the SSA

that is ideal for importance sampling and addressing first passage problems. Our software

provides a simple, intuitive interface through which nonspecialists can quickly observe the

behavior of spatial models with multiple interacting species and other complex behaviors.

This allows for straightforward checking for the appropriate species and interactions in a

proposed model. From this, modelers can determine which parameters are important for

producing a certain desired behavior. A recent example comes from using immune therapy

to treat cancer: a complex model of tumor-immune system interactions was analyzed to

determine which two parameters generate the appropriate hot or cold immune responses

[KPS17].

The third chapter returns to numerical methods for computing probabilistic quantities,

this time for multi-type branching processes. Here we present a method for computing the

probability generating function (PGF) of the process and describe how to invert the PGF to

obtain marginalized probability distributions. This has direct application to lentiviral gene

addition through stem cell transduction, specifically to quantifying the risk of leukemogenesis

after gene therapy. We present numerical examples of our techniques applied to gene therapy

for hematopoietic stem cells and discuss clinically relevant probabilistic quantities related to

the accumulation of mutations that lead to oncogenesis.

Finally, the fourth chapter focuses on future directions for the three previous projects.

We also include potential future projects that go beyond the extensions of the previous

chapters, particularly with regards to computing the mean time to extinction in a stochastic

model of tumor quiescence.

Chapter two has been published in Statistics and Probability Letters. Chapter three

has been submitted for publication to PLOS Computational Biology, and chapter four is in

3



preparation for submission.
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CHAPTER 2

Coupling bounds for approximating birth-death

processes by truncation

2.1 Background

A birth-death process (BDP) is a single species stochastic process X(t) that counts the

number of individuals in a system at time t > 0. The process evolves over the non-negative

integers N according to two state-specific rates, λn and µn. λndt is the probability over

a very short time interval dt that the system transitions from state n to n + 1 through

birth. µn likewise gives the rate of death from state n to n − 1. 21 BDPs have a well

developed mathematical history. Linear BDPs can be fully solved using generating functions

and partial differential equations [Fel08], while asymptotic methods exist for characterizing

processes with strong metastable behavior [AM17]. Even if a process is too complex for

either of these approaches, a robust numerical technique exists for computing the finite time

transition probabilities using a truncated continued fractions representation of the Laplace

transform [CS12].

Even so, a general method does not exist for computing the moments of an arbitrary

non-explosive birth death process. Substantial progress can be made by observing that most

BDPs are well behaved and rarely voyage beyond a certain large population threshold. If

we assumed that there is negligible probabilistic distance between the original BDP and a

version of the BDP truncated at said large population threshold, we could use standard

numerical linear algebra techniques to solve for the moments of the original process. The

linear algebra is further aided by the fact that the finite-dimensional truncated stochastic

matrix is tridiagonal, as the only transitions from state n are to n − 1 and n + 1. A

5



straightforward coupling argument gives rigor to this heuristic approach.

Once a coupling is established, we derive two different methods for choosing the large

truncation index N such that a certain error in the total variation distance between the

original and truncated processes is obtained. The first involves solving a series of recurrence

relationships for the Laplace transform of the truncated process, and the second involves a

straightforward application of Chernoff’s bound. The first is more computationally difficult,

while the second fails for certain rate functions. Which bound to use depends on the process

being considered.

2.2 Coupling bounds and hitting times

We begin by forming a coupling between the initial process X(t) that evolves fully over N

and a truncated version of X, denoted Xn(t). n ∈ N is called the truncation level, and the

birth and death rates between X(t) and Xn(t) are identical except that for Xn(t), λn = 0.

This means that Xn is truncated at n and cannot grow past it. We form a coupling between

X(t) andXn(t) through the following: first, setX(0) = Xn(0). WhileX(t) < n, the coupling

stipulates that X(t) and Xn(t) evolve together, meaning X(t) = Xn(t) provided they are

below the truncation level. When X(t) = n, the processes are still coupled, but now X(t)

has probability of jumping upwards to n + 1 via a birth event. When this happens, the

two processes evolve independently. However, if in the future X(t) drops below n and hits

Xn(t), then the two processes resume evolving together such that X(t) = Xn(t). For a

review of coupling, see [Lin02]. It is also straightforward to show that all moments satisfy

E[Xk
n(t)] ≤ E[Xk(t)].

The truncated process Xn(t) approximates the true process X(t). We measure the good-

ness of the approximation through a total variation (TV) distance. Let P n
ij(t) = Pr(Xn(t) =

j|Xn(0) = i) be the transition probability of the process truncated at n and suppose

X(0) = Xn(0) = i. Let ν be the measure induced by Pij(t) and let νn be the measure

6



induced by P n
ij(t) with i, t, and n held fixed. That is, for a subset S ⊂ N,

ν(S) =
∑
j∈S

Pij(t) and νn(S) =
∑
j∈S

P n
ij(t). (2.1)

The TV distance between the random variables X(t) and Xn(t) is

dTV (ν, νn) =
1

2

∞∑
j=0

|Pij(t)− P n
ij(t)| = sup

S⊂N
|Pr(X(t) ∈ S)− Pr(Xn(t) ∈ S)|. (2.2)

2.2.1 Hitting Times for the Full Process

Let Tn+1 be the hitting time at which X(t) first reaches state n+ 1 and let S = {0, . . . , n}.

Conditioning yields

Pr(X(t) ∈ S) = Pr(X(t) ∈ S | Tn+1 > t) Pr(Tn+1 > t)

+ Pr(X(t) ∈ S | Tn+1 ≤ t) Pr(Tn+1 ≤ t).
(2.3)

Given the event Tn+1 > t, X(t) cannot have exceeded n + 1 before time t. In this setting

X(t) has the same state space and the same transition rates as the truncated process Xn(t).

Replacing the first conditional probability produces

Pr(X(t) ∈ S) = Pr(Xn(t) ∈ S) Pr(Tn+1 > t) + Pr(X(t) ∈ S | Tn+1 ≤ t) Pr(Tn+1 ≤ t)

= Pr(Xn(t) ∈ S)[1− Pr(Tn+1 ≤ t)] + Pr(X(t) ∈ S | Tn+1 ≤ t) Pr(Tn+1 ≤ t)

= Pr(Xn(t) ∈ S) + [Pr(X(t) ∈ S | Tn+1 ≤ t)− Pr(Xn(t) ∈ S)] Pr(Tn+1 ≤ t).

(2.4)

Rearranging (2.4) and applying Markov’s inequality give

|Pr(X(t) ∈ S)− Pr(Xn(t) ∈ S)| ≤ |Pr(X(t) ∈ S | Tn+1 ≤ t)− Pr(Xn(t) ∈ S)|Pr(Tn+1 ≤ t)

≤ Pr(Tn+1 ≤ t)

≤ eθtE[e−θTn+1 ]

(2.5)

for θ ≥ 0. The total variation bound dTV (ν, νn) ≤ eθt E(e−θTn+1) is an immediate conse-

quence.
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Now let wi(θ) = E(e−θTn+1 | X(0) = i). If we condition on the first event of the birth-

death process, then we can deduce the recurrences

w0(θ) =
λ0

λ0 + θ
w1(θ)

wn(θ) =
µn

µn + λn + θ
wn−1(θ) +

λn
µn + λn + θ

(2.6)

and, for 1 ≤ i ≤ n− 1,

wi(θ) =
µi

µi + λi

µi + λi
µi + λi + θ

wi−1(θ) +
λi

µi + λi

µi + λi
µi + λi + θ

wi+1(θ)

=
µi

µi + λi + θ
wi−1(θ) +

λi
µi + λi + θ

wi+1(θ).

(2.7)

These can be written as the matrix-vector equation

1 a0 0

b1 1 a1

b2 1

. . .
. . . an−1

0 bn 1





w0(θ)
...
...
...
...

wn(θ)


=



0
...
...
...

0

λn
µn+λn+θ


(2.8)

where ai = − λi
µi+λi+θ

and bi = − µi
µi+λi+θ

. There are well established numerical methods for

solving the above tridiagonal system for the expectations wi(θ).

According to Chernoff’s method, for fixed n one achieves the tightest bound on dTV (ν, νn)

by choosing θ to minimize eθtE(e−θTn+1). The function f(θ) = E
[
eθ(t−Tn+1)

]
is convex with

derivative f ′(θ) = E
[
(t− Tn+1)e

θ(t−Tn+1)
]
. Since f ′(0) = t−E(Tn+1), the minimum on [0,∞)

occurs at 0 where f(0) = 1 whenever t ≥ E(Tn+1). Otherwise, the minimum occurs on the

interior of (0,∞). Minimizing f(θ) for θ ≥ 0 can be achieved via Newton’s method. The

derivatives ω′i(θ) are calculated via a tridiagonal system similar to equation (2.8) derived by

differentiating equations (2.6) and (2.7). For fixed n, these maneuvers allow one to calculate

the bound

dTV (ν, νn) ≤ min
θ≥0

eθtE(e−θTn+1). (2.9)

As n → ∞, E(e−θTn+1) → 0 for any θ > 0. Therefore increasing n will decrease the bound

until a desired error dTV (ν, νn) < ε is achieved.
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2.3 Explicit Chernoff bound

Calculation of hitting probabilities via equation (2.8) is appealing, but it can be compu-

tationally burdensome. We can perform a simpler coupling that gives a looser bound by

considering a pure-birth process Y (t) that shares its birth rates with X(t) but has all death

rates µj = 0. We form the coupling by initialing having X(0) = Y (0). Again, when

X(t) = Y (t), the processes move together if the next event is a birth event. If the processes

get separated through a death event, they evolve independently. Likewise if at any point

X(t) = Y (t), the coupling is re-established. Obviously X(t) ≤ Y (t) for all t > 0, hence Y (t)

furnishes an upper bound for X(t).

We assume that Y (t) is non-explosive such that it remains finite with probability 1. This

is equivalent to
∑∞

i=0 λ
−1
i = ∞. This in turn means X(t) is non-explosive. This is required

for guaranteeing that the coupling between X(t) and the truncated version Xn(t) introduced

in the previous section is valid. It will be useful to show that limn→∞Xn(t) = X(t):

Proposition 1. Consider a BDP X(t) with X(0) = i, and assume the corresponding pure

birth process Y (t) is nonexplosive. Then the truncated processes Xn(t) are increasing in n

and converge to Xt as n → ∞. Furthermore, the conditional moments E[Xk
n(t)|Xn(0) = i]

converge monotonically to E[Xk(t)|X(0) = i], and the transition probabilities Pr(Xn(t) =

j|Xn(0) = i) converge to Pr(X(t) = j|X(0) = i).

Proof. If the increasing sequence Xn(t) converges to X(t), then the limit relation

lim
n→∞

E[Xk
n(t)|Xn(0) = i] = E[Xk(t)|X(0) = i] (2.10)

follows from the monotone convergence theorem. Likewise, the limit relation

lim
n→∞

Pr(Xn(t) = j|Xn(0) = i) = Pr(X(t) = j|X(0) = i) (2.11)

follows from the bounded convergence theorem since each transition probability in question

is the expectation of an indicator random variable and as such is bounded by the constant

1.
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To show that the truncated processes are increasing, imagine that theXn(t) are increasing

and occur in blocks. Thus, Xm(t) andXn(t) occupy the same block wheneverXm(t) = Xn(t).

Different blocks behave independently. Within a block the processes move as one except when

Xn(t) in a block takes its maximal value n. In this case a proposed birth is declined and the

process Xn(t) stays in place. Monotonicity is preserved by this protocol for updating the

participating processes. Note the total number of blocks at any time s ≤ t is bounded above

by the finite number Y (s) ≤ Y (t). Finally, convergence can be proved by considering a

typical realization of the combined processes. The state Y (t) represents the outermost limit

that X(s) or any Xn(s) can reach during [0, t]. Hence, Xn(t) = X(t) as soon as n exceeds

Y (t). In other words, Xn(t) converges monotonically to X(t).

Now that the limiting behavior is well established, we can use the pure-birth process Y (t)

to obtain an analytical TV bound between the original and truncated processes.

Proposition 2. Suppose X(0) = Xn(0) = Y (0) = i < n and t <
∑n

m=i λ
−1
m . Then the total

variation distance between the X(t) and Xn(t) is bounded above,

dTV (ν, νn) ≤ est
n∏

m=i

λm
λm + s

, (2.12)

where s > 0 satisfies t =
∑n

m=i(λm + s)−1.

Proof. First, the bound

dTV (ν, νn) ≤ Pr(X(t) 6= Xn(t) | X(0) = Xn(0) = i)

≤ Pr(Y (t) > n | Y (0) = i)
(2.13)

applies because the event X(t) 6= Xn(t) is contained in the event Y (t) > n. Furthermore,

Y (t) > n is equivalent to the event Wi + · · ·+Wn ≤ t, where Wj is the exponential waiting

time from the arrival of the pure-birth process Y (t) in state j until it moves to j+1. Applying

the Chernoff bound [Lan10], we have

Pr(Wi + · · ·+Wn ≤ t) ≤ min
s≥0

est
n∏

m=i

E
[
e−sWm

]
(2.14)
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Because Wi has exponential distribution with rate λi, its Laplace transform E[e−sWi ] =

λm/(λm + s). It follows that

Pr(Wi + · · ·+Wn ≤ t) ≤ min
s≥0

est
n∏

m=i

λm
λm + s

, (2.15)

and the optimal s for a given n minimizes the convex function

fn(s) = st−
n∑

m=i

log(λm + s). (2.16)

Differentiating fn(s) with respect to s, we find that the optimal s satisfies

t =
n∑

m=i

1

λm + s
(2.17)

for t <
∑n

m=i λ
−1
m , as claimed.

The condition t <
∑n

m=i λ
−1
m guarantees that t is less than the expected first passage

time of the pure-birth process from i to n. Clearly if this were not true, we would expect

Y (t) > n with high probability, and hence approximation of X(t) by Xn(t) would be poor.

The representation

est
n∏

m=i

λm
λm + s

= exp

[
st−

n∑
m=i

log

(
1 +

s

λm

)]
(2.18)

suggests exploiting the logarithmic inequality − log(1 + u) ≤ −u + u2/2 for u ∈ [0,∞). It

follows that

est
n∏

m=i

λm
λm + s

≤ exp

[
st+

n∑
m=i

[
− s

λm
+

1

2

(
s

λm

)2
]]

. (2.19)

The right-hand side of this inequality is minimized by the choice

s =

∑n
m=i λ

−1
m − t∑n

m=i λ
−2
m

. (2.20)

Inserting this argument in the previous inequality produces the upper bound

dTV (ν, νn) ≤ e−
a2n
2bn , (2.21)

where an =
∑n

m=i λ
−1
m − t and bn =

∑n
m=i λ

−2
m . If the BDP is nonexplosive, limn→∞ an =∞.

When the condition

lim
n→∞

(
∑n

m=1 λ
−1
m )

2∑n
m=i λ

−2
m

=∞ (2.22)

holds, one can easily find a sufficiently large n that renders dTV (ν, νn) as small as desired.
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2.3.1 Matrix exponentiation for computing moments

One approach to calculating moments and probabilities is to substitute the truncated process

just described for the actual process. Given the tridiagonal nature of the infinitesimal gen-

erator, this will deliver accurate estimates at a computational cost of O(n2) [DP04]. Let us

assume that the original process possesses a well-behaved equilibrium distribution π. Note

this precludes transient behavior. The first task is to approximate π accurately. Detailed

balance gives

π0 =
1

1 +
∑∞

k=1

∏k
j=1

λj−1

µj

πk = π0

k∏
j=1

λj−1
µj

for k > 0.

The implied products and sums can be computed in O(n) operations. The point at which

the approximation to π0 stabilizes gives a trial value of n.

Now consider the process Xn(t) with truncated equilibrium distribution π̃ and trun-

cated infinitesimal generator Ã with λn = 0. Owing to detailed balance, the matrix

B =
√
π̃Ã
√
π̃
−1

is symmetric and tridiagonal, where
√
π̃ denotes the diagonal matrix

with kth diagonal entry
√
πk. The spectral decomposition

B = V DV t =
n∑
k=1

dkvkv
t
k

of B can be computed very efficiently [DMP08]. Furthermore, the matrix exponential

esB =
n∑
k=1

esdkvkv
t
k

follows directly and gives

esÃu =
n∑
k=1

esdk(
√
π̃vk)

tu(
√
π̃
−1
vk)

for any vector u. Thus, all truncated transition probabilities and moments are available at

little additional cost. As we have emphasized, the truncated moments bound the moments

of the original process from below, providing an easily-computed criterion for finding the

truncation index n.
12



2.4 Examples

2.4.1 Logistic Growth

[CS12] give a BDP for logistic population growth,

λj = j2λ
e−αj

1 + eβ(j−M)
and µj = jµ

where M is the “carrying capacity” of the environment and α and β are non-negative pa-

rameters. This model seems to have no analytic solution, but we can easily find bounds for

matrix truncation:

dTV (ν, νn) ≤ exp

−
(∑n

m=i

[
m2λe−αm/(1 + eβ(m−M))

]−1 − t)2
2
∑n

m=i[m
2λe−αm/(1 + eβ(m−M))]−2

 . (2.23)

The birth rates in this example do not satisfy the condition (2.22) for the Chernoff bound

to converge. Figure 2.1 illustrates the superior performance of the Laplace bound.

2.4.2 Faddy Distributions

Pure-birth processes are a special case of BDPs with µj = 0 for all j ∈ N. [Fad97] proposes

a generalization of the Poisson distribution with λj = λ(γ + j)c. Setting c = 0 recovers

the Poisson process, c > 0 indicates over-dispersion, and c < 0 indicates under-dispersion

relative to the Poisson distribution. [Fad97] employs a diffusion approximation to compute

moments of the process, but the bounds derived in this paper apply directly. The Chernoff

bound is

dTV (ν, νn) ≤ exp

{
− [
∑n

m=i(γ +m)−c − λt]2

2
∑n

m=i(γ +m)−2c

}
. (2.24)

Figure 2.2 shows examples of the bounds.
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Figure 2.1: Probability bounds on the log scale for the total variation distance obtained

between the Logistic process truncated at index n and the untruncated process, where

X(0) = i = 4, t = 1, α = 0.2, β = 0.3, M = 20, µ = 1, and λ = 1. The solid line

shows the derived bound (2.23). The dashed line shows the bounds obtained from the

Laplace transforms (2.9). The dotted line shows the error tolerance ε = 10−4.
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Figure 2.2: Probability bounds on the log scale for the total variation distance obtained

between the Faddy process truncated at index n and the untruncated process, where X(0) =

i = 4, t = 1, γ = 1.1, µ = 1, and λ = 1. The solid line shows the derived bound (2.24). The

dashed line shows the bounds obtained from the Laplace transforms (2.9). The dotted line

shows the error tolerance ε = 10−4.
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CHAPTER 3

Stochastic Simulation Algorithms for Interacting Particle

Systems (IPSs)

3.1 Background

Stochastic effects are crucial for accurately modeling evolutionary and biological processes

such as tumor growth, desertification, disease spread, embryonic development, maintenance

of species biodiversity, and pattern formation in general [WBP15, KRA07, RMF07]. The

associated spatial mathematical models are commonly analytically intractable. Fortunately

the advent of efficient computing has allowed simulation to serve as a common first approach

to stochastic modeling. Non-spatial well-mixed versions of these models are often substituted

due to their tractibility and ease of use. Many celebrated simulation algorithms such as the

exact Stochastic Simulation Algorithm (SSA), τ -leaping, and the next-reaction method have

been developed and extensively modified to address a wide range of well-mixed stochastic

phenomena [AG07]. However, well-mixed models fail to capture the appropriate statistics

and pattern formation seen in the spatial setting. Phenomenon due to volume exclusion and

spatial dispersion cannot be accurately captured via well-mixed Chemical Reaction Network

(CRN) simulation. One common approach to stochastic spatial simulation is to partition the

spatial domain into well-mixed voxels. This approach utilizes a Reaction-Diffusion Master

Equation (RDME) to model the movement of particles between voxels and the reaction of

particles within the same voxel. While this method has substantial algorithmic development

[GHP13], it fails to take into account important volume exclusion effects and fine-grained

spatial variation.

Interacting Particle Systems (IPSs) provide an alternative to both well-mixed CRN and

16



RDME based modeling. IPSs are a class of stochastic models with full spatial detail, tracking

each particle’s location on a lattice [Lig12]. Interactions are assumed to be local, meaning

particles must be adjacent to each other to interact. Notions of locality and adjacency are

details that must be specified in a given model. For a set of example reactions, see Table 3.1.

Importantly, IPSs preserve volume exclusion, meaning at most one particle can be present

on any given lattice site. Diffusive movement is typically modeled as particles undergoing

random walks between sites, respecting exclusion. This is in contrast with more common

RDME approaches that couple compartments obeying well-mixed dynamics through non-

excluding Brownian motion. Example IPSs include the voter and contact processes as well

as the classic Ising model from statistical mechanics [Lig13]. These specific models have

a large body of theoretical results from the mathematics community, specifically on their

critical behavior. Unfortunately these results do not readily extend to multi-type processes

and complicated spatial domains. Numerical approaches are computationally prohibitive,

leaving direct simulation as the first and frequently only line of attack.

Type Example reactions Processes

On-site ∅ → A Immigration

A→ ∅ Death

A→ B Transformation

Pairwise A+ ∅ → A+ ∅ Migration

A+ ∅ → A+ A Binary fission

A+ A→ B + ∅ Dimerization

A+B → C +D Pairwise transformation

Table 3.1: Example processes with reaction diagrams. ∅ denotes an open site that is part of

a reaction.

The current paper extends the classic n-fold simulation method, defined later, to IPSs

[BKL75]. Our extension enjoys three major advantages over previous approaches. First,
17



we generate the minimum number of required reaction channels for a simulation, avoiding

the combinatorial difficulties that arise from counting adjacent configurations of particles.

Second, we provide efficient local updates after a reaction channel fires; thus only particles

adjacent to a reaction are updated. Critically, this prevents the computational complexity of

the simulations from scaling with the size of the lattice. Third, and perhaps most important,

we separate the time and reaction sampling steps from the configuration update steps in the

algorithm. This reduces our spatial process to the computational complexity of a CRN

simulation, albeit with an additional complicated update. Accordingly, we can implement

any CRN sampling algorithm for our spatial setting with little additional effort. Well-

mixed CRN simulation is extensively developed [Gil77, Gil01, CGP06, SAL09, MB07, And08,

ACK06]; therefore, spatial IPSs directly benefit from these prior innovations.

We build on the software package BioSimulator [LSK18], written in the open source

programming language Julia [BEK17]. BioSimulator implements different algorithms for

simulating IPSs, including the exact stochastic simulation algorithm (SSA) and versions of

the next reaction method and the sorting direct method [MPC06]. Our software provides

a simple, intuitive interface through which nonspecialists can quickly observe complex be-

haviors of spatial models with multiple interacting species. Summary statistics and particle

count trajectories permit straightforward model checking for the proposed systems. Within

this framework, modelers can determine which reactions and parameters are important for

producing a certain desired behavior. A recent example of an IPS in action has been re-

ported in a recent immunotherapy model for cancer treatment [KPS17]. This complex model

of tumor-immune system interactions illustrates which parameters generate the appropriate

immune responses and spatial patterns.

Our software is primarily directed at systems biologists, cancer researchers, ecologists,

evolutionary biologists, epidemiologists, and other scientists who are interested in the spatio-

temporal effects of discrete actors. We anticipate that BioSimulator’s ease of use and

flexibility will encourage researchers unfamiliar with stochastic processes to investigate the

stochastic and spatial features of their models via simulation. Additionally, we expect that

applied probabilists, physicists working in statistical mechanics, and mathematicians familiar
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with the field of stochastic simulation can take advantage of our software and avoid tedious

re-implementation of different algorithms.

The remaining exposition is organized as follows. First we give a mathematical descrip-

tion of IPSs. We then enumerate the different sample classes for probabilistically equivalent

particles using the species types and neighborhood configurations of the lattice or graph. This

enumeration plus a description of the reaction rates across these sample classes provides a

straightforward means of extending the well-mixed SSA to IPSs. Lastly, we summarize how

our software implements each reaction, including updating the sample classes and reaction

rates. This is followed by a series of examples of complex, multi-species spatial stochastic

phenomenon. We conclude with a brief description of the benefits of writing BioSimulator

in the Julia programming language.

3.2 Design and Implementation

3.2.1 IPSs and pairwise reactions

An IPS models a collection of particles moving and reacting stochastically over some spatial

domain. Particles are discrete entities that may model animals, proteins, wildfire patches,

or cancer cells. Like well-mixed CRNs, these particles interact through a series of reaction

channels. While stochastic CRNs assume every particle interacts uniformly with every other

particle, IPSs restrict these interactions to neighboring particles. Each IPS has an associated

graph describing the spatial domain over which the process evolves. Nodes on the graph are

sites that a particle may occupy. Edges specify that two nodes are adjacent and hence liable

to interact. Typically we restrict nodes to contain at most one particle at a time; we refer

to this effect as volume exclusion.

Fortunately, embedding the IPSs on a graph allows us to restrict the reactions to being

pairwise. We use the term pairwise instead of bimolecular deliberately; unimolecular reac-

tions that produce two product particles require an open adjacent site due to the volume

excluding effect. For example, birth through binary fission is written in well mixed reaction
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notation as A −→ A+A. On a graph with exclusion, birth requires an open adjacent site and

becomes A+ ∅ → A+A where ∅ denotes an open site that becomes occupied by one of the

offspring particles. This schema emphasizes volume exclusion since birth cannot occur when

the A particle has no open adjacent sites. We classify reactions into two groups, on-site and

pairwise. For a non-exhaustive list of examples, see Table 3.1; for a specific predator-prey

example see Table 3.2.

Name Diagram Type

Fox Predation F +R→ F + F Pairwise

Fox Migration F + ∅ → ∅+ F Pairwise

Fox Death F → ∅ On-site

Rabbit Reproduction R + ∅ → R +R Pairwise

Rabbit Migration R + ∅ → ∅+R Pairwise

Rabbit Death R→ ∅ On-site

Table 3.2: Predator-prey reactions. Foxes (F ) and rabbits (R) interact on a 2D hexagonal

lattice with open sites (∅). Reactions are either on-site involving a single animal interacting

only with itself, or pairwise involving an animal interacting with an adjacent site.

These two reaction types, on-site and pairwise, are sufficient for describing the majority of

biological applications. Higher-order reactions are reduced to pairwise interactions through

the formation of intermediate complexes.

3.2.2 Markovian dynamics, reaction channels, and sample classes

Particles evolve on the graph according to standard Markovian dynamics where the waiting

time to the next reaction is exponentially distributed [Lan10]. If a particle can take part in

multiple reactions, then its exponential waiting time has rate equal to the sum of the rates

of each individual reaction under mass-action kinetics. Note that more complicated kinetics
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are allowed provided that we restrict the interactions to neighboring particles. Longer range

interactions are feasible in principle, though they introduce combinatorial complexity in enu-

merating the neighboring configurations. The current version of BioSimulator is restricted

to mass-action kinetics for immediate neighbors.

The rate at which a particle undergoes reactions depends on both the species of the

particle and the number and species of its neighboring particles. Although open sites are

not collectively considered a species, open sites next to occupied sites play a negative role in

volume exclusion. In order to draw parallels with well-mixed CRNs, we split each pairwise

reaction into a series of reaction channels. Each pairwise reaction channel is associated with a

center particle interacting with up to D neighboring particles of the appropriate type, where

D is the number of adjacent neighbors. D takes the values 4, 6, and 8, respectively, on a

square planar lattice, a hexagonal planar lattice, and 3-dimensional cubic lattice. Therefore

the total number of reaction channels is R = D×# pairwise reactions +# on-site reactions.

See Figure 3.1 for a depiction of a predator-prey process involving foxes and rabbits on a

hexagonal lattice and Table 3.3 for its associated reaction channels. For instance, when the

third predation reaction channel fires, the simulation searches for a fox adjacent to exactly

three rabbits to undergo the predation.

There are two approaches to sampling a reaction channel and associated particle. The

more rudimentary approach is to scan through the particles in the lattice, sum the per-

particle reaction rates, and select a particular particle to fire with probability proportional

to its contribution to this sum [CV07]. A more sophisticated method is given by Bortz,

Kalos, and Lebowitz under the n-fold way [BKL75]. Here particles are grouped into classes

such that all members of a given class take part in a specific reaction with the same rate.

This explicitly forms a series of reaction channels for sampling using Markovian dynamics

and avoids time consuming searches of the lattice.

We provide an extension to the n-fold way that decouples the sampling of the reaction

channels, an inherently non-spatial maneuver, from the sampling of a particle to undergo

the reaction. This in turn separates the spatial dependencies inherent in IPSs from the

Markovian dynamics of the reaction channels. Thus, spatial correlations are handled during
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Per Particle Sample
Reactants Products Rate Index

F R F F α 1
F R F F 2α 2
F R F F 3α 3
F R F F 4α 4
F R F F 5α 5
F R F F 6α 6
R ∅ R R β 7
R ∅ R R 2β 8
R ∅ R R 3β 9
R ∅ R R 4β 10
R ∅ R R 5β 11
R ∅ R R 6β 12
F ∅ ∅ F γ 13
F ∅ ∅ F 2γ 14
F ∅ ∅ F 3γ 15
F ∅ ∅ F 4γ 16
F ∅ ∅ F 5γ 17
F ∅ ∅ F 6γ 18
R ∅ ∅ R γ 7
R ∅ ∅ R 2γ 8
R ∅ ∅ R 3γ 9
R ∅ ∅ R 4γ 10
R ∅ ∅ R 5γ 11
R ∅ ∅ R 6γ 12
F ∅ µ 19
R ∅ µ 20

Table 3.3: Reaction channels and associated sample indices. Each initial pairwise reaction

in Fig. 1a is split into six reaction channels, one for each number of adjacent reactants.

Each reaction channel has an associated per particle rate and sample index. This sample

index points to the collection of particles that the reaction channel samples a reactant from.

The total rate of each reaction channel is equal to the per animal rate times the number

of animals in the associated sample class. Note that the rabbit reproduction and migration

channels share the same sample indices because they share the same reactants.
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Figure 3.1: Initial configuration: Sites are color coded by occupancy; vermillion denotes a

fox F , and cyan denotes a rabbit R. A site can be occupied by at most one animal at a time.

Open sites are left blank.

the update step. We do this via generating sample classes, which are collections of particles

that can be sampled by one or more reaction channels. The sample classes are motivated by

the observation that the exact configuration of neighboring particles does not matter for a

given reaction channel firing. Only the number of neighboring particles of the appropriate

type influence the reaction rate. Therefore each sample class contains particles of a specific

species that are adjacent to a specific number of particles of a type that the particle under

consideration can react with.

This is best demonstrated by an example; see the sample classes associated with each

reaction channel in Table 3.3. The rabbits in the predator-prey example are sorted into

seven different sample classes, numbers 7 through 12 and 20, one for each central rabbit

interacting with one to six open adjacent sites and a final class containing only rabbits. As

an example for the pairwise reaction channels, sample class 9 contains rabbits adjacent to

three open sites. This sample class is targeted by two different reaction channels, one for

rabbit migration with three neighbors and one for rabbit reproduction with three neighbors.

Likewise there is a sample class associated with each on-site reaction; sample class 20 contains

every rabbit that can undergo death.
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Because multiple reaction channels may sample particles from the same sample class,

the total number of sample classes is less than or equal to the number of reaction channels.

Specifically, the number sample classes is equal to D× # unique pairs of reactants + #

unique on-site reactants. Using the list of reactants, we assign each reaction channel to its

appropriate sample class. Multiple reaction channels will map to the same sample class when

the reactions use the same pair of reactants, for example rabbit migration and reproduction

in Table 3.3.

3.2.3 Local updates

For a reaction channel to fire, a particle is sampled uniformly from the appropriate sample

class. This particle, possibly along with a neighbor of the appropriate interacting species,

then undergoes the reaction. At this point, the reaction rates must be updated to reflect

the changing configuration. Again there are two possible methods for updating these rates

[CV07]. The first, called a global update, scans the entire lattice grouping particles into classes

and calculating reaction rates. While straightforward, this is inefficient due to the fact that

configuration changes take place over at most two neighboring particles. In contrast, we use

a local update that changes the rates associated with particles immediately adjacent to or

involved in the reaction. There is overhead associated with sorting the particles by class and

the local updates, but these improvements prevent the simulation step from scaling with the

number of particles in computational complexity.

We now expand upon how we perform local updates. Because each particle’s behavior

depends only on its adjacent particles, it suffices to enumerate these different neighborhood

configurations. Specifically, we count the number of ways L species can be distributed across

D neighboring sites. The standard stars-and-bars argument shows that the total number of

configurations K is equal to the binomial coefficient
(
D+L
L

)
. Highly efficient algorithms exist

to systematically enumerate all configurations [NW14]. For example, with D = 4 neighbors

and L = 2 species, the configuration 1 + 1 + 2 corresponds to one open adjacent site, one

adjacent particle of the first type, and two adjacent particles of the second type. See Figure
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3.2 for an example predator-prey model using the neighborhood configurations.

Figure 3.2: Initial configuration with sample indices and neighborhood configurations. Note

that the number of adjacent open sites can be inferred from the number of foxes and rabbits.

The naive approach to sampling particles for each reaction channel would be to group

particles together by species and neighborhood configuration k ∈ {1, 2, ..., K}. However, K

scales factorially with the number of species in the simulation. This scaling issue further

motivates our previous discussion of the sample classes, which scale with the number of

reaction channels. We therefore restrict the use of neighborhood configurations purely for

updating the sample classes after a reaction has occurred. We will now expand on how the

neighborhood configurations, sample classes, and reaction channels interact.

Figure 3.3 provides an example of the local update procedure after a reaction channel

has been chosen to fire. In this scenario, reaction channel 1 is firing, meaning the simulation

searches for a fox F adjacent to exactly one rabbit R to undergo the predation reaction.

Foxes that satisfy this condition are contained within sample class 1 as denoted in Figure

??. Suppose the bolded fox in the first configuration of Figure 3.3 is sampled from sample

class 1 to undergo the reaction. Since it has only one adjacent rabbit, also bolded, this

rabbit is likewise sampled to be the target of the predation reaction. At this point the rabbit

changes type to a fox, shifting from vermillion to cyan. The neighboring indices and sample
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classes of both particles and their adjacent species now are updated to reflect the rabbit

changing type. For example, the sampled fox loses an adjacent rabbit and is removed from

sample class 1 to reflect this change. Lastly we update the rates of the reaction channels

that have changed in terms of numbers of associated particles.

Figure 3.3: Updating the neighborhood and sample indices after a reaction. Suppose the

highlighted fox and rabbit sites undergo a predation event. The rabbit is replaced with a fox,

and so the neighborhood and sample indices of the sites surrounding the former R require

updating to reflect the new configuration. The sample indices of the new F will change as

well, but its neighborhood index will not. This update procedure need only be done for and

around sites that change species.

This approach has two major benefits. First, it decouples the size of the simulation from

the size of the lattice. The most intensive operations required are searches to find a particle

in a given sample class, which scale O (log n) with the number of elements n in the sample
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class. Second, this decouples the sampling algorithm from the update step, allowing us to

extend our approach to arbitrary simulation algorithms.

3.2.4 Extension to arbitrary simulation algorithms

We begin by demonstrating how our IPS sampling method maps neatly onto the SSA. Let

r = 1, 2, ..., R denote the index of a reaction channel, and let λr denote the associated

reaction rate for the r-th reaction channel. λ0 =
∑

r λr is the total reaction rate for the

process. Given U1 and U2 independent uniform [0, 1] random variables, we determine the

time T to the next reaction and the next reaction channel j to fire by the conditions

T = − log (U1)

λ0
and

j−1∑
r=1

λr < U2λ0 ≤
j∑
r=1

λr.

Since the update step is kept separate from the time and reaction channel sampling

steps, we are able to decouple the stochastic simulation algorithm of choice from the spatial

considerations of the system. This applies to arbitrary simulation algorithms. For example,

τ -leaping proceeds exactly as described in [CGP06]: the time increment is chosen to satisfy

the leap condition, and a Poisson number of events from each reaction channel is chosen to

fire. However, the update step is no longer commutative as updates after a reaction must be

carried out sequentially. We cannot sum the total changes to the sample classes in the same

fashion as in the well-mixed case. Thus a small additional overhead is needed to randomly

shuffle the order in which each reaction channel fires. Similarly we can use a dependency

graph to restrict the reaction rates that are updated after each event to the subset that is

dependent on the fired reaction channel. As mentioned earlier, we will follow this manuscript

with an extensive review of the many different available well-mixed simulation algorithms

applied to IPSs.

3.3 Results

We provide four example simulation outputs generated by our software for models of varying

complexity. Each demonstrates a phenomenon that is observed in the spatial IPS version
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of the process but not in the well-mixed CRN version. We also provide Jupyter notebooks

[Per18] that were used to generate each animation at https://github.com/alanderos91/

BioSimulator.jl. Additional tutorial notebooks explaining syntax, model construction,

and simulation output are also provided through the link. For a list of reactions and param-

eters for each example, see the supplementary materials, Tables I-IV.

First, we have the predator-prey model previously described in Figure ??. The output

from the simulation is visualized in Figure 3.4. An animation of Figure 3.4 shows spiral

wave patterns created by the prey migrating into unoccupied areas while being chased by

predators, see the supplementary materials. The predators at the end of the wave die off,

leaving space for the prey to migrate into and repeat the process. In this example, spatial

dispersion promotes increased biodiversity. It prevents the large spike in predators that can

lead to extinction or dramatic fluctuations in the number of predators and prey commonly

seen in the CRN version of the model.

Second, we have a three species rock-paper-scissors game shown in Figure 3.5. Each

species undergoes a birth-death-migration process and has an additional predation reaction:

rock preys on scissors, scissors prey on paper, and paper preys on rock. Spiral wave pat-

terns are also observed in the animation. Spatial dispersal similarly maintains biodiversity.

Migration at a high rate can destroy this diversity as the populations mix [RMF07].

Third, we have a more complicated model of an immune system interacting with a growing

tumor in Figure 3.6. The cancer cells undergo a standard birth-death-migration process.

Immune cells migrate in from the barrier cells at a constant rate and destroy tumor cells

on contact. This predation may produce a fibrotic cell that is weakly porous to immune

cells, simultaneously blocking the spread of the cancer and the eradication of the cancer by

the immune system. The formation of a protective shell of fibroblasts is not seen in the

well-mixed or RDME cases due to the lack of volume exclusion. Our simulations recapture

the immune-excluded response result shown in [KPS17]. This model is useful for exploring

potential barriers to tumor eradication during immuno-therapy.

Lastly, we have a model of polyunsaturated fatty acid (PUFA) oxidation in lipid mem-
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Figure 3.4: A realization of the predator-prey process. Foxes (predators) and rabbits (prey)

diffuse within a bounded domain, undergoing the reactions described in Fig 1a.

branes. Certain PUFAs are susceptible to oxidation which creates a kink in their long un-

saturated hydrocarbon tails. As a result, a membrane with a significant number of oxidated

PUFAs loses flexibility and can lead to neurodegeneration and aging [FFB19]. Replacing the

affected hydrogen atoms with deuterium significantly reduces the rate of oxidation, acting

as a vaccine of sorts against the infective nature of reactive oxygen species. Figure 3.6 shows

the trail of depleted (kinked) PUFAs left behind a reactive oxygen species jumping to unoxi-

dated PUFAs. There exists a phase transition where having approximately a 20% frequency

of deuteration drastically reduces the length of the depleted PUFA chains left by an oxidated

species. This reduction has been observed in vitro through mortality experiments on yeast.

It can be observed using our software as a consequence of the oxidated species becoming
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Figure 3.5: A realization of the rock-paper-scissors game. Three different species undergo a

birth-death-migration process. Additionally, rock preys on scissors, scissors prey on paper,

and paper preys on rock in a cyclic fashion.

trapped by its own tail and the deuterated PUFAs.

3.4 Availability and Future Directions

We have presented a principle for algorithm design that stresses elegance, performance,

reproducibility, and wide applicability. These benefits can be broken down into three larger

points.

First, our design allows for model standardization based on interacting particle systems.
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Figure 3.6: A realization of the model of immunotherapy. Tumor cells grow under a birth-

death-migration process. Immune cells immigrate from the barrier at constant rate, migrate

to cancer cells, then destroy the cancer cells occasionally producing fibrotic cells after this

predation. Fibrotic cells are slightly porous to the immune cells but block the diffusion of the

cancer cells. FI stands for a fibrotic cell that has an immune cell currently passing through

it.
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Many in-silico studies of spatial particle processes are haphazard in their construction and do

not follow continuous time Markovian reaction dynamics. This limits the comparisons that

can be made between models and creates barriers for new researchers looking to perform their

own simulation studies. Adopting IPSs as a standard mathematical model enhances the most

useful application of spatial stochastic simulation, namely generating hypotheses for given

phenomena. Having a set of concrete, mechanistic rules with a straightforward probabilistic

interpretation allows researchers to develop a hypothesis based off reaction dynamics that

reproduce a given behavior in-silico and then take these dynamics back to an experimental

setting for verification. The PUFA oxidation example serves as a demonstration of how

hypotheses about an experimentally observed phenomenon can be tested using our software.

Second, our software is open-source and easily modifiable to individual needs. We have

coded our implementation in Julia, a fast, expressive, and flexible open-source program-

ming language designed for scientific computing [BEK17]. Notably Julia aims to solve the

two-language problem where prototyping is done in a high-level language like Python but

implementation is reserved for a fast low-level language like C++. Julia succeeds in pro-

ducing high performance code using high-level programming language syntax and design,

including easy parallelization. In particular, Julia’s ease of use readily allows for individ-

ual extensions to our software, for example genealogies, particle tracking, and potentially

long-range interactions between particles. The ease of use and model standardization taken

together make any research done with our software easily reproducible and straightforward

to document.

Finally, our algorithm design allows us to apply arbitrary well-mixed stochastic simulation

algorithms to spatial IPSs. This will be explored later in a review article that compares how

each algorithm behaves in the spatial setting. Regardless, we can now apply a large swath

of algorithms to spatial stochastic simulation without tedious re-implementation.
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Figure 3.6: A realization of the model of lipid oxidation. Polyunsaturated fatty acids (PU-

FAs), denoted by open sites, are present in the lipid membranes of cells. Reactive oxygen

species can oxygenate a PUFA, resulting in a depleted PUFA that reduces the flexibility of

the lipid membrane. Deuterated PUFAs are resistant to the oxygenation. Adding a certain

percentage of deuterated PUFAs to the membrane can drastically reduce the length of the

depleted lipid chain. The simulation was initiated with a single oxygenated PUFA at the

origin.
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CHAPTER 4

Numerical Methods for Multi-type Branching Processes

4.1 Background

Branching processes comprise a class of stochastic process that describe how individuals

reproduce, die, and transform type in the multi-type case. These processes were first studied

in relation to the extinction of family names among the aristocracy by Francis Galton and

the Reverend Henry Watson [Ken66]. Branching processes have since been used across a

wide array of scientific disciplines, from phylogeny [BF06] to cancer biology [Dur15] and

even nuclear physics [PP07].

The main mathematical tool used for studying branching processes is the probability

generating function (PGF). The PGF greatly simplifies the computation of transition prob-

abilities, the fundamental quantities that determine how a stochastic process behaves. One

avenue of attack is to work with a series of infinite coupled ordinary differential equations

(ODEs), frequently called the Master Equations, that govern the evolution of the transition

probabilities. Instead we exploit the independence of particle lineages to reduce the com-

putation to a small number of ODEs for the PGFs of the process originating with a single

particle of each type. This use of particle independence makes the mathematical manipu-

lations much easier by simplifying the computation of expectations greatly. Independence

specifically enables the application of the pseudo-generating function technique shown later

in section 4.3 upon which this chapter hinges [Bai90].

Notably our manipulations are limited to linear branching processes, meaning we assume

that there are no interactions between particles. Most biological systems will be nonlinear due

to resource limitations and inbuilt carrying capacities. Our computations are thus generally
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restricted to the initial growth phases of the population before a sufficient density is reached

at which interactions become non-negligible.

In this chapter we develop a numerical method for computing a wide range of quantities

with regards to a multi-type system of branching processes. We focus primarily on computing

marginalized transition probabilities, such as the probability of observing a double-mutant

occur by time t, but we are also able to handle the computation of expectations and other

probabilistic quantities with ease. Our derivations revolve around three core steps. We first

factorize the PGF for the full process into a product of PGFs of the process beginning with

a single particle of each type. Second, we solve for these PGFs using the pseudo-generating

function technique which involves a simple numerical computation of a small series of coupled

ODEs. Finally, we invert the PGF to obtain our desired quantities using the Fast Fourier

Transform.

Previous literature has focused on the long-time limiting behavior of these branching

processes [Dur15] or the emergence of a specific double-mutant [BRA13]. These series of

manipulations enable us to compute transient behavior beyond the specific scenarios that

have already been studied. Additionally, we aim to apply our techniques to performing in-

ference on multi-type branching processes in a future work. This will provide an extension of

previous work that has focused on using simulation for inference which requires considerable

computation time [LJC17].

We finish the chapter with a numerical examination of gene therapy in hematopoietic

stem cell lines. Stochastic modeling via branching processes, specifically using the methods

we describe below, can quantify the probability of rare events occurring such as mutational

oncogenesis and engraftment failure that may occur during stem cell transplant. We inves-

tigate multiple phenomenon involving gene therapy, including the time until two oncogenic

events occur leading to leukemogenesis as well how changing the proliferative advantage of

the transduced population alters the probability of observing oncogenesis. Finally, we out-

line how our methods may be used to study other clinical scenarios in cancer research such

as inactivation of the two alleles of a tumor suppressor gene and the acquisition of multiple

driver mutations.
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4.2 Mathematical Notation for Branching Processes

X1 X2

λ1 λ2

µ1
∅ µ2

∅

ν

Figure 4.1: Reaction diagram for the two-type branching process. λi corresponds to repro-

duction through binary fission, µi corresponds to removal via death, and ν corresponds to

transformation via mutation.

We begin with a linear, multi-type branching process whose counts are denoted by the

vector X(t). Each component Xi(t) denotes the number of particles of type i at time t ≥ 0.

For simplicity’s sake, we shall restrict ourselves to a two-type branching process with time-

homogeneous rates for the remainder of the definitions and derivations, as shown in Figure

4.1. Let ai(k, l) denote the rate at which a particle of type i produces k particles of type one

and l particles of type two upon completion of its lifespan. For example, a1(2, 0) is the rate

at which a single particle of type one reproduces, producing two offspring through binary

fission. We define the negative total rate as

αi ≡ ai(1, 0) = −
∑

(k,l) 6=(1,0)

ai(k, l)

which sets the total sum
∑

(k,l) ai(k, l) = 0. Linearity implies that the overall rate of each

event is the individual particle rate multiplied by the number of particles of the appropriate

type.

As is expected from our branching process being a time-homogeneous continuous time

Markov chain [Lan10], the short-time probability of jumping from only j particles of type 1

to k particles of type one and l particles of type two is given by

Pr (X(h) = (k, l) | X(0) = (j, 0)) = j × a1(k, l)× h+ o(h) (4.1)
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as h ↓ 0. Additionally, the lifespan of each particle of type i is exponentially distributed with

rate −αi.

We define the transition probabilities

P(i,j),(k,l)(t) ≡ Pr (X(t) = (k, l) | X(0) = (i, j)) . (4.2)

Similarly we have the PGF

φij(t, s1, s2) ≡
∞∑
k=0

∞∑
j=0

P(i,j),(k,l)(t)s
k
1s
l
2 = E

[
s
X1(t)
1 s

X2(t)
2 | X1(0) = i,X2(0) = j

]
(4.3)

with complex arguments s1 and s2. We will frequently shorten the notation for the PGF to

φij(t).

The PGF is the primary mathematical object that our derivations will focus on. Notably,

it is straightforward to invert the PGF using the FFT to obtain the transition probabilities

(4.2). This is not an entirely trivial numerical task; it requires O (max(k, l)2) computations

[XM15]. It is often the case that we are concerned primarily with the distribution of a single

count, typically the number of particles in the mutant or second-type population. These are

easy to obtain by marginalizing out the first type by plugging s1 = 1 into the PGF (4.3),

φij(t, s1, s2)
∣∣
s1=1

=
∞∑
l=0

P(i,j),(·,l)(t)s
l
2.

Obtaining these marginalized probabilities is much more straightforward as it requires in-

verting a univariate probability generating function.

4.3 Computing the Probability Generating Function

Using a technique detailed in [Bai90], we shall generate a series of Ordinary Differential

Equations (ODEs) that govern the evolution of the PGF over time. We first make the

observation that, by particle independence,

φij(t) = φ(1,0)(t)
iφ(0,1)(t)

j. (4.4)

Since each clan of particles is independent of every other clan, we can view the full PGF as

being composed of the individual contributions from each original ancestor particle present

at time t = 0. For simplicity’s sake we shall shorten the notation φ(1,0) ≡ φ1 and φ(0,1) ≡ φ2.
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This means that it suffices to work with the PGF of the process starting with a single

particle of type one and the PGF of the process starting with a single particle of type two.

Consider the small-time expansion of the PGF φ1 using (4.1),

φ1(t, s1, s2) = E
[
s
X1(t)
1 s

X2(t)
2 | X1(0) = 1, X2(0) = 0

]
=
∞∑
k=0

∞∑
l=0

P(1,0),(k,l)(t)s
k
1s
l
2

=
∞∑
k=0

∞∑
l=0

[1k=1,l=0 + a1(k, l)t+ o(t)] sk1s
l
2 = s1 + t

∞∑
k=0

∞∑
l=0

a1(k, l)s
k
1s
l
2 + o(t) (4.5)

as t ↓ 0. 1 denotes the indicator function. (4.5) involve the pseudo-generating function

[Bai90]

ui(s1, s2) =
∞∑
k=0

∞∑
l=0

ai(k, l)s
k
1s
l
2. (4.6)

We can rearrange (4.5), divide by t, then send t ↓ 0 to get an expression for the derivatives

of the single-particle PGFs based off the pseudo-generating functions (4.6),

dφ1(t, s1, s2)

dt

∣∣∣
t=0

= u1(s1, s2),
dφ2(t, s1, s2)

dt

∣∣∣
t=0

= u2(s1, s2). (4.7)

Now we use the Chapman-Kolmogorov equations for φ1 along with (4.4) to show that

φ1(t+ h, s1, s2) =
∞∑
k=0

∞∑
l=0

P(1,0),(k,l)(t+ h)sk1s
l
2

=
∞∑
k=0

∞∑
l=0

[
∞∑
i=0

∞∑
j=0

P(1,0),(i,j)(t)P(i,j),(k,l)(h)

]
sk1s

l
2

=
∞∑
i=0

∞∑
j=0

P(1,0),(i,j)(t)

[
∞∑
k=0

∞∑
l=0

P(i,j),(k,l)(h)s
k
1s
l
2

]

=
∞∑
i=0

∞∑
j=0

P(1,0),(i,j)(t)φij(h, s1, s2)

=
∞∑
i=0

∞∑
j=0

P(1,0),(i,j)(t)φ1(h, s1, s2)
iφ2(h, s1, s2)

j

= φ1

(
t, φ1(h, s1, s2), φ2(h, s1, s2)

)
.

The relationship is time-symmetric, therefore we also have

φ1(t+ h, s1, s2) = φ1

(
h, φ1(t, s1, s2), φ2(t, s1, s2)

)
. (4.8)
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Naturally the same relationships exist for φ2.

We now derive the backward Kolmogorov equations for φ1 and φ2. These are obtained

by Taylor expanding φ1 around t and utilizing (4.7) and(4.8),

φ1(t+ h, s1, s2) = φ1(t, s1, s2) +
dφ1(t+ h, s1, s2)

dt

∣∣∣
h=0

h+ o(h)

= φ1(t, s1, s2) +
dφ1

(
h, φ1(t, s1, s2), φ2(t, s1, s2)

)
dt

∣∣∣
h=0

h+ o(h)

= φ1(t, s1, s2) + u1
(
φ1(t, s1, s2), φ2(t, s1, s2)

)
h+ o(h).

The same arguments produce an analogous expression for φ2.

Performing the previous rearrangement, dividing by h, and sending h to zero gives us

our desired system of backwards Kolmogorov equations with initial conditions,

d

dt
φ1(t) = u1(φ1(t), φ2(t)), φ1(0) = s1

d

dt
φ2(t) = u2(φ1(t), φ2(t)), φ2(0) = s2.

The initial conditions follow from the definition of the PGF (4.3).

We will now focus on the specific rates ai(k, l) that are used in the two-type branching

process, listed below:

a1(2, 0) = λ1, a1(0, 0) = µ1, a1(0, 1) = ν, a1(1, 0) = −(λ1 + µ1 + ν)

a2(0, 2) = λ2, a2(0, 0) = µ2, a2(0, 1) = −(λ2 + µ2).

We plug these into the pseudo-generating functions to get

u1(s1, s2) = λ1s
2
1 + νs2 − (λ1 + µ1 + ν)s1 + µ1

u2(s1, s2) = λ2s
2
2 − (λ2 + µ2)s2 + µ2.

We use these expressions in the differential equations for the single-particle generating func-

tions to get our desired backwards equations,

d

dt
φ1(t) = λ1φ

2
1 + νφ2 − (λ1 + µ1 + ν)φ1 + µ1, φ1(0) = s1 (4.9)

d

dt
φ2(t) = λ2φ

2
2 − (λ2 + µ2)φ2 + µ2, φ2(0) = s2. (4.10)
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4.3.1 Solving for φ2

The differential equation (4.10) is a nonlinear first order Riccati equation, which is fortunately

straightforward to solve. This is because the ansatz φ2 = K gives us the constant particular

solutions φ2 = 1 and φ2 = µ2/λ2. As is standard for solving a Riccati equation, we make the

substitution z = 1
φ2−1 , implying that φ2 = 1 + 1/z. Plugging this substitution into (4.10)

gives

φ′2 = −
z′

z2
= µ2 − (λ2 + µ2)

(
1 +

1

z

)
+ λ2

(
1 +

1

z

)2

= µ2 − (λ2 + µ2)−
λ2 + µ2

z
+ λ2

(
1

z2
+

2

z
+ 1

)
=
λ2 − µ2

z
+
λ2
z2
.

Multiplying through by −z2 and rearranging gives a linear first order differential that is

straightforward to solve using an integrating factor,

z′ = (µ2 − λ2)z − λ2

z =
λ2

µ2 − λ2
+ Ce(µ2−λ2)t

for some constant C that depends on the initial conditions. We plug z back into φ2 = 1+1/z

and include the initial conditions φ2(0) = s2 to get the solution

φ2(t, s2) = 1 +

[
λ2

µ2 − λ2
+

(
1

s2 − 1
+

λ2
λ2 − µ2

)
e(µ2−λ2)t

]−1
. (4.11)

Note that in the critical case λ2 = µ2, we get the following solution

φ2(t, s2) = 1 +

[
1

s2 − 1
− λ2t

]−1

4.3.2 Solving for φ1

The differential equation (4.9) governing φ1 is substantially more difficult due to the presence

of a mutation term involving φ2. We now have an inhomogeneous nonlinear Riccati equation

that cannot be solved by a simple substitution trick. In the Future Directions chapter, we

will present the beginnings of an asymptotic analysis that solves for φ1 using the fact that
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the mutation rate ν is much much smaller than the other rates of the process. For now,

it suffices to note that it is straightforward to solve φ1 numerically using any number of

differential equation solvers. We have chosen the DifferentialEquations.jl package in

the Julia programming language [RN17, BEK17].

4.3.3 Inverting the Numerical PGF

Once we have solved for φ1 and φ2 to a specified time point, we can compute the full PGF

φij via (4.4). We then use a technique from [Lan82] to invert the PGF to obtain our desired

marginalized univariate probability function. We begin with a change of variables s = e2πiw,

placing our PGF argument s on the unit circle in the complex plane. This transforms the

generating function into a periodic function,

φij
(
t, e2πiw

)
=
∞∑
k=0

ck(t)e
2πiwk

where ck(t) are the coefficients that contain our desired transition probabilities and i =
√
−1. ck is also the kth coefficient of a Fourier series, and therefore can be obtained by a

straightforward inversion

ck(t) =

∫ 1

0

φij
(
t, e2πiw

)
e−2πiwkdw.

We can now approximate the integration through a Riemann sum for large N ,

ck(t) ≡ P(ij),k(t) ≈
1

N − 1

N−1∑
l=0

φij
(
t, e2πil/N

)
e−2πilk/N .

Note that we can increase the accuracy of the approximation by increasing the size of the

gridlength, i.e. make N large. Most importantly, the FFT allows us to capture all the

coefficients for k = 0 toN−1 in a single computation. This makes obtaining the marginalized

transition probabilities very straightforward.
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4.3.4 Computing Relevant Probabilities and Expectations

Once we’ve obtained our numerical solution for φij, obtaining expectations is trivial through

numerical differentiation,

E [Xi(t) | X(0) = (m,n)] =
∂

∂si
φ(m,n)(t, s1, s2)

∣∣
s1=s2=1

.

Higher order moments can be obtained in a similar fashion, see [Lan10].

We can also obtain information about thresholds, for example the probability that a

specific population has passed a certain number. These probabilities can be obtained by

marginalizing out one population and summing the probability density of the other after the

threshold,

Pr (X2(t) ≥M | X(0) = (i, j)) =
∞∑
k=0

∞∑
l=M

P(i,j),(k,l)(t).

For populations with more than two types, we can marginalize over multiple species by

plugging si = 1 into the joint PGF.

However, we would prefer to marginalize out all but one of the populations to take

advantage of our FFT inversion technique. Specifically marginalizing over X1 can be done

via

φij(t, s1, s2)
∣∣
s1=1

=
∞∑
k=0

∞∑
l=0

P(i,j),(k,l)(t)s
l
2 =

∞∑
l=0

P(i,j),(·,l)(t)s
l
2.

This gives the marginalized PGF for X2 which is notably univariate in s2. Therefore we can

use the previous numerical approach to invert the PGF and obtain the marginal transition

probabilities P(i,j),(·,l)(t) for X2(t). We choose a suitable truncation level for inverting our

PGF such that our marginal transition probabilities capture the probability mass within a

suitable level of error. Then we can compute the desired threshold probabilities as

Pr (X2(t) ≥M | X(0) = (i, j)) = 1−
M−1∑
l=0

P(i,j),(·,l)(t).

These manipulations will be used extensively in the next section.
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4.4 Numerical Results

We will now investigate the three-type branching process as a model for diploid mutations

in a growing population of hematopoietic stem cells. This applies to a growing population of

transplanted stem cells in gene therapy, particularly to the acquisition of mutations that lead

to oncogenesis. The rate parameters are listed in Table 4.1 and the reactions are depicted

in Figure 4.2.

Rate Symbol Diagram Parameter Value

λ1 X1 → X1 +X1 2.4× 10−2

µ1 X1 → ∅ 1.4× 10−2

ν1 X1 → X2 λ1 × 10−8

λ2 X2 → X2 +X2 Varies

µ2 X2 → ∅ 1.4× 10−2

ν2 X2 → X3 λ2 × 10−8

λ3 X3 → X3 +X3 Varies

µ3 X3 → ∅ 1.4× 10−2

Table 4.1: Reactions and parameters for the three-type branching process. The parameters

have units of 1/week and were sourced from [ACM02, PDV10, PZF17, MHI05].

Again we abbreviate φ1 = φ(1,0,0), φ2 = φ(0,1,0), and φ3 = φ(0,0,1). The differential equa-

tions that govern the single-particle generating functions are as follows:

d

dt
φ1 = λ1φ

2
1 − (λ1 − µ1 − ν1)φ1 + ν1φ2 + µ1

d

dt
φ2 = λ2φ

2
2 − (λ2 − µ2 − ν2)φ2 + ν2φ3 + µ2

d

dt
φ3 = λ3φ

2
3 − (λ3 − µ3)φ3 + µ3.

Note that d
dt
φ3 has the same structure as d

dt
φ2 from the two-type case, (4.10). We can use
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X1 X2 X3

λ1 λ2 λ3

µ1
∅ µ2

∅ µ3
∅

ν1 ν2

Figure 4.2: Reaction diagram for the three-type branching process. λi corresponds to repro-

duction through binary fission, µi corresponds to removal via death, and νi corresponds to

transformation via mutation.

the same argument from section 4.3.1 to show that

φ3(t, s3) = 1 +

[
λ3

µ3 − λ3
+

(
1

s3 − 1
+

λ3
λ3 − µ3

)
e(µ3−λ3)t

]−1
.

We begin by comparing how varying the initial counts of the wild-type and single-mutants

affects the probability of observing at least one double-mutant one year after transplant.

Figure 4.3 depicts these probabilities and draws the expected conclusion that increasing

the number of single-mutants over wild-type particles initially present has a larger effect

on seeing a double-mutant occur. This has clinical relevance as it places a bound on how

mutagenic the lentiviral gene addition can be before deleterious effects can be expected.

If the mutagenesis is rare, producing only one to ten single-mutants in the transplanted

population, then there is a very small risk that a deleterious second mutation event will

occur within a year. Additionally, the number of transplanted wild-type stem cells can be

quite large before mutational events become likely, which bodes well for transplanting large

populations of stem cells.

Next we compare varying the birth rates across the population of wild-type stem cells

and single-mutants. Figure 4.4 assumes no initial single-mutants, and so the birth rate of the

wild-type population X1 is rate-limiting on the probability of observing a double mutant.

Note that changing the wild-type birth rate by a factor of ten greatly increases the odds of

observing a double-mutant, while changing the single-mutant birth rate has a much decreased
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Figure 4.3: Probability of observing at least one double-mutant at t = 52 weeks while varying

the initial counts of X1 and X2. The probability is depicted in log scale.

effect. Therefore it is relatively safe for the single-mutations to be quite proliferative if the

lentiviral gene addition avoids creating any single-mutants in the original insertion process.

Since we are solving the ODEs for the single-particle PGFs forward in time, we can

examine how the probability of observing a double-mutant changes over time based off of

varying initial population counts. There are three phases of growth corresponding to a fast

initial phase, followed by an exponential growth in the probability, and finally tapering out

towards one as a double mutant becomes guaranteed to be observed.

Finally, we note that there are significantly more probabilistic quantities that we can

study using our numerical techniques. There also are a wide variety of problems in cancer

modeling that can also be addressed. We will leave exploring these questions to the final

chapter on future directions.

In conclusion, we have numerically computed the PGF φijk for a three-type branching pro-

cess. We’ve then marginalized the PGF to obtain a univariate PGF for theX3 double-mutant
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Figure 4.4: Probability of observing at least one double mutant at t = 52 weeks while

varying the birth rates λi of X1 and X2. The probability is depicted in log scale. We have

λi = 0.024 × 10yi , e.g. when yi = 0, λi = 0.024. The initial counts are X1(0) = 1000 and

X2(0) = 0.

population alone. This allows us to perform a fast, straightforward numerical inversion of the

univariate PGF using the FFT to obtain probabilistic information about the probabilities of

leukemogenesis after gene therapy. This presents clinically relevant information about how

leukemia may form under a variety of conditions including mutagenesis from the initial gene

insertion as well as differing proliferative rates among the mutant and wild-type populations.
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Figure 4.5: Probability of observing at least one double mutant over time while varying the

initial counts of X1 and X2. The probability is depicted in log scale.
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CHAPTER 5

Future Directions

5.1 Extensions of Dissertation Work

Each chapter has significant future research potential. The work on truncating birth-death

processes (BDPs) from chapter two can be extended to bivariate BDPs. This in turn enables

inference on more complex processes, such as the susceptible-infected-recovered model from

epidemiology.

There are substantial advancements to be made to the stochastic simulation algorithms

for Interacting Particle Systems (IPSs) from chapter three. First we aim to release a review

article detailing the differences in performance and accuracy between different well-mixed

stochastic simulation algorithms applied to spatial IPSs. Second we can incorporate both

longer-distance interactions between particles as well as gradient fields of nutrients, oxygen,

and other concentrated species that overlay our grid and influence the reaction rates of the

individual particles. This would be highly useful for studying how hypoxia influences tumor

structure and development, particularly with regards to vascularization present in the sur-

rounding tissue. In addition to software improvements and algorithmic comparisons, we aim

to extend the IPS simulation to study problems involving immunotherapy in growing can-

cers. We intend to model the tumor microenvironment including fibroblasts, immune cells,

cancer cells, and specific myeloid-derived suppressor cells that reduce immune activity in

response to cancer. This project will also involve additional algorithm design to incorporate

chemotaxis wherein immune cells track down cancer cells for destruction. This is non-trivial

and involves biasing the direction of diffusion during the update step.

Finally, the fourth chapter has two significant lines of expansion. The most obvious
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and scientifically relevant involves extending the previously described work on multi-type

branching processes to consider questions of parameter and model inference. The general

idea is very similar to the Method of Moments from statistics wherein we average over

observed data to find some sort of sample expectation that we can reproduce using our

model. Means and variances are the most obvious and straightforward. Second, we choose

a model design and search its associated parameter space to minimize the squared absolute

distance between the sampled quantity and the expectation obtained by our model. Since

our computations are quite fast and can incorporate multiple time points with the same

parameters, like shown in Figure 4.5, the parameter search would not be computationally

burdensome.

This has applications to inferring the structure of stem-cell hierarchies in barcoded cancers

[LJC17]. Our methodology has significant advantages over previous approaches, notably

that we can alter the structure of the underlying mathematical process without significantly

changing the numerical processes used to obtain the transition probabilities. For example,

both the shift process X1 → X2 and the mutational birth process X1 → X1 + X2 can be

incorporated into our system of equations. These alterations will change the structure of the

underlying differential equations to be solved, but they do not change the overall numerical

manipulations required to solve for and invert the probability generating function. To be

specific, our approach can handle any multitype branching process so long as each cell lineage

behaves independently. This is required by the step in the derivation where the probability

generating function φi,j can be factored into φi1φ
j
2 via independence.

In addition to the numerical applications detailed in chapter four, there are potential

analytical approaches involving asymptotics that we detail in the following section.

5.2 Asymptotic Analysis of Multi-Type Branching Processes

This builds upon the mathematical framework presented in chapter four. For the sake

of the derivations, we will again focus primarily on the two-type process. The aim, albeit

unfinished, of this section is to derive an asymptotic expansion for the probability generating
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function (PGF) (4.3). This is achieved by deriving another asymptotic expansion for the

single-particle generating function φ1 under the conditions that the mutation rate ν is much

much smaller than the other parameters in the process. From this we would like to expand

the analytic expression for the PGF in powers of s1 and s2 to obtain an asymptotic expansion

for the transition probabilities. Similar to section 4.3.4, we can also marginalize out one of

the species to greatly simplify the computation.

This work is intended to be submitted as a separate paper from Chapter four. A non-

trivial amount of work remains, particularly obtaining the coefficients that are the transition

probabilities from the asymptotic expression for the PGF.

5.2.1 Initial Equations

We begin with the differential equations for the individual probability generating functions

for the two-type case X1(t) and X2(t), starting from a single particle of each type. We focus

on the reaction diagram in Figure 5.1.

X1 X2

λ1 λ2

µ1
∅ µ2

∅

ν

Figure 5.1: Reaction diagram for the two-type branching process.

The PGF for a single particle of type X2 obeys the ODE

φ′2 − λ2φ2
2 + (λ2 + µ2)φ2 = 0. (5.1)

Chapter 4 contains the details for solving this equation,

φ2(t, s2) = 1 +

[
λ2

µ2 − λ2
+

(
1

s2 − 1
+

λ2
λ2 − µ2

)
e(µ2−λ2)t

]−1
. (5.2)
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This is coupled with the differential equation for the PGF for a single particle of type X1,

φ′1 − λ1φ2
1 + (λ1 + µ1 + ν)φ1 = µ1 + νφ2. (5.3)

Note that (5.3) contains factors of s2 through φ2. This means that φ1 will contribute to the

probability of seeing particles of type X2, as expected from the reaction diagram.

φ1 and φ2 combine to give the full PGF of the process with i initial X1 particles and j

initial X2 particles,

φi,j(t) =
∞∑
n=0

∞∑
m=0

sn1s
m
2 Pr (X1(t) = n,X2(t) = m | X1(0) = i,X2(0) = j)

= φ1(t)
iφ2(t)

j. (5.4)

This follows from the independence of the clans produced from each initial particle.

(5.3) is a Riccati equation. There are a series of manipulations we can perform to trans-

form the governing equation from being a nonlinear inhomogeneous first order ODE into

a linear second order linear ODE. These manipulations are standard for Riccati equations

[Inc26].

We begin with (5.3) and the substitution v = λ1φ1. This results in a simpler Riccati

equation

v′ = v2 − (λ1 + µ1 + ν) v + λ1 (µ1 + νφ2) . (5.5)

We make another substitution v = −u′/u to get

v′ = −
(
u′

u

)′
= −u

′′

u
+

(
u′

u

)2

= −u
′′

u
+ v2.

Rearrange and use (5.5) to get

u′′

u
= v2 − v′ = (λ1 + µ1 + ν) v − λ1 (µ1 + νφ2)

= − (λ1 + µ1 + ν)
u′

u
− λ1 (µ1 + νφ2) .

We multiply through by u and rearrange to get the final equation for u

u′′ + (λ1 + µ1 + ν)u′ + λ1 (µ1 + νφ2)u = 0 (5.6)
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where for clarity φ1 = −u′/λ1u. We also have the initial conditions

u(0) = 1 and u′(0) = −λ1s1. (5.7)

We will be working primarily with (5.6) as it is substantially simpler than (5.3).

5.2.2 Asymptotic expansion for u when ν � 1

The following depends on the mutation rate ν being quite small compared to the other

parameters. Under typical cell dynamics, it is of order 10−8× λ1. This makes ν an excellent

candidate for forming an asymptotic expansion for u. Specifically we expand u in powers of

ν,

u ∼ u0 + νu1 + ν2u2 + ... (5.8)

where ∼ denotes asymptotic equivalence as ν → 0.

5.2.3 Applications to expanding φi1

Some preliminary facts about asymptotic expansions are in order. First, we will assume

u′ ∼ u′0 + νu′1 + ..., which is not always true. Fortunately for the parameter values we

care about, it does appear to be the case. See Figure 5.2 for a comparison of u′ with the

derivative of the first term in its expansion u′0. Even the first term in the expansion is

incredibly accurate for biologically relevant values of ν.

Second we note that if f ∼ f0 + νf1 + ... and g ∼ g0 + νg1 + ..., then under mild

conditions on the coefficients of the expansions (g 6= 0 and gn 6= 0 for sufficiently large n)

we have f/g ∼ (f0 + νf1 + ...) / (g0 + νg1 + ...). These two facts together can be used to

simplify φi1 in (5.4). Using φ1 = −u′/λ1u and keeping terms up to O(ν),
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Figure 5.2: Comparisons of the numerical solution for u′ from (5.6) against the derivative

of the first term in the asymptotic expansion u′0. An explicit formula for u′0 is given by

the derivative of (5.11). We set ν = 10−8 × λ1, so ν is significantly less than 1. The full

parameters are given in Table 4.1.

φi1 ∼
(
− u′0 + νu′1 +O(ν2)

λ1 (u0 + νu1 +O(ν2))

)i
=

(
− 1

λ1

)i
[u′0 + νu′1 +O(ν2)]

i

[u0 + νu1 +O(ν2)]i

=

(
− 1

λ1

)i(
(u′0)

i + νi(u′0)
i−1u′1 +O(ν2)

ui0 + νiui−10 u1 +O(ν2)

)
=

(
− u′0
λ1u0

)i(
1 + νiu′1/u

′
0 +O(ν2)

1 + νiu1/u0 +O(ν2)

)
.

This is essentially the binomial approximation (1 + x)α ∼ 1 + αx for |αx| � 1. Given that

i can be truly enormous, this may prove to be a problem. This is a point where we could

potentially have to use higher order terms such that x is of O(ν2), which is a truly tiny

number and can probably combat how large i can get. We shall see.

We now use the geometric expansion for small x, 1
1+x

= 1 − x + x2 − ... to expand the
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denominator in powers of ν,

φi1 ∼
(
− u′0
λ1u0

)i(
1 + νi

u′1
u′0

+O(ν2)

)(
1− νiu1

u0
+O(ν2)

)
=

(
− u′0
λ1u0

)i [
1 + νi

(
u′1
u′0
− u1
u0

)
+O(ν2)

]
(5.9)

Note that every term in O(ν2) will have incredibly small contributions to the transition

probabilities once the PGF is either numerically inverted or expanded in a power series of

s1 and s2. It would of course be possible to find terms that are multiplied by ν2 to continue

the asymptotic expansion; this is a straightforward application of the binomial theorem. I

don’t particularly see the point given how incredibly small ν2 is, but it’s doable.

We also note that the first term −u′0/λ1u0 can be replaced with φ̃1, which is the same

equation (5.2) used for φ2 with λ2 and µ2 swapped for λ1 and µ1. This is skipping ahead

a bit; the section on deriving u0 makes this connection more clear. Importantly, this shows

that the dominant O(1) contributions to φi1 are given by φ̃i1, which is exactly the behavior of

the branching process without mutation. This also mirrors our intuition that the probability

contribution from the X1 population to the X2 population scales with the shift rate ν.

5.2.4 First term u0

We begin with the simplest term u0. This is obtained by plugging the expansion (5.8) into

(5.6) and collecting terms that are of O(1) (not multiplied by a factor of ν),

u′′0 + (λ1 + µ1)u
′
0 + λ1µ1u0 = 0. (5.10)

Using characteristic polynomials we find that

u0(t) = c1e
−λ1t + c2e

−µ1t

for constants c1 and c2 that satisfy BCs (5.7) such that

u0(0) = 1 = c1 + c2

u′0(0) = −λ1s1 = −λ1c1 − µ1c2
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After some algebra we find that

u0(t) = (1− C1) e
−λ1t + C1e

−µ1t (5.11)

where

C1 =
1− s1

1− µ1/λ1
. (5.12)

We make an aside regarding the second population X2 and its single-particle PGF φ2.

Think of what would happen to (5.6) if we set ν = 0 and swapped the parameters λ1 and

µ1 for λ2 and µ2. We would get (5.10). Explicitly, if ũ = u0 with its parameters swapped,

then φ2 = −ũ′/λ2ũ. This gives the observation about the O(1) behavior of φi1 noted in the

previous section for (5.9).

5.2.5 Second term u1

We return to the expansion (5.8) plugged into (5.6), this time keeping terms that are O(ν),

νu′′1 + (λ1 + µ1) νu
′
1 + νu′0 + λ1µ1νu1 + νφ2u0 = 0.

This gives the following equation for u1 in terms of φ2 and u0,

u′′1 + (λ1 + µ1)u
′
1 + λ1µ1u1 = −u′0 − λ1φ2u0. (5.13)

Since the BCs (5.7) have been satisfied by u0, we get the following BCs for u1,

u1(0) = 0 and u′1(0) = 0. (5.14)

(5.13) is a more complicated inhomogeneous ODE. However, it can be readily solved

in terms of a Green’s function. See Bender and Orszag’s (B&O) “Advanced Mathematical

Methods" section 1.5 for a general description of Green’s functions for second order linear

ODEs [BO13].

To begin, let y1(t) = e−λ1t and y2(t) = e−µ1t. These functions are the general solutions

to the homogeneous problem

y′′ + (λ1 + µ1) y
′ + λ1µ1y = 0

55



as seen in the previous discussion about u0. Given these general solutions, if we can find a

particular solution up to equation (5.13), then the full solution is given by

u1(t) = c1y1(t) + c2y2(t) + up(t).

This follows from a standard theorem on inhomogeneous ODEs. We will choose up(0) =

u′p(0) = 0 in a minute. This means that c1 and c2 are chosen such that the BCs (5.14) are

satisfied, which conveniently sets c1 = c2 = 0. Therefore u1(t) = up(t).

The particular solution up to (5.13) is given by the integral of the Green’s function G

times the inhomogeneous portion,

up(t) =

∫ ∞
0

G(t, τ) [−u′0(τ)− λ1φ2(τ)u0(τ)] dτ. (5.15)

G(t, τ) is given by
d2

dt2
G+ (λ1 + µ1)

d

dt
G+ λ1µ1G = δ(t− τ) (5.16)

where δ(t− τ) is the Dirac delta function. G also comes with the constraints of continuity at

the point t = τ and that the derivative jumps by 1 over the point t = τ , standard practice

for Green’s functions. We also choose the BCs G(t = 0, τ) = d
dt
G(t = 0, τ) = 0, which is how

we guarantee that up(0) = u′p(0) = 0.

We will skip over the derivation of G, again see [BO13] section 1.5 for details. It is

ultimately given as a function of the general solutions y1 and y2,

G(t, τ) =


0 0 < t < τ

y1(τ)y2(t)−y1(t)y2(τ)
y1(τ)y′2(τ)−y′1(τ)y2(τ)

τ < t

.

G can be simplified,

y1(τ)y2(t)− y1(t)y2(τ)
y1(τ)y′2(τ)− y′1(τ)y2(τ)

=
e−λ1τ−µ1t − e−λ1t−µ1τ

(λ1 − µ1)e−(λ1+µ1)τ

=
1

λ1 − µ1

(
eµ1(τ−t) − eλ1(τ−t)

)
.

Therefore

G(t, τ) =


0 0 < t < τ

1
λ1−µ1

(
eµ1(τ−t) − eλ1(τ−t)

)
τ < t

(5.17)
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and the integral (5.15) for up is given by plugging in G and u0,

up(t) =

∫ t

0

(
eµ1(τ−t) − eλ1(τ−t)

λ1 − µ1

)
[−u′0(τ)− λ1φ2(τ)u0(τ)] dτ

=

∫ t

0

(
eµ1(τ−t) − eλ1(τ−t)

λ1 − µ1

)[
λ1(1− C1)e

−λ1τ + µ1C1e
−µ1τ

− λ1φ2(τ)(1− C1)e
−λ1τ − λ1φ2(τ)C1e

−µ1τ
]
dτ

=

∫ t

0

(
eµ1(τ−t) − eλ1(τ−t)

λ1 − µ1

)[
λ1(1− φ2(τ))(1− C1)e

−λ1τ

+ (µ1 − λ1φ2(τ))C1e
−µ1τ

]
dτ

=

∫ t

0

[
λ1(1− φ2(τ))(1− C1)

λ1 − µ1

(
e−(λ1−µ1)τ−µ1t − e−λ1t

)
+

(µ1 − λ1φ2(τ))C1

λ1 − µ1

(
e−µ1t − e(λ1−µ1)τ−λ1t

) ]
dτ. (5.18)

Now we split the integral (5.18) up into four separate parts and solve each individually.

Fortunately the integrals can be paired together into two similar types, which we will now

discuss.

5.2.5.1 First Pair of Integrals,
∫
φ2(τ)dτ

We will do the more straightforward pair of integrals first. We take as an example∫ t

0

−λ1(1− φ2(τ))(1− C1)

λ1 − µ1

e−λ1tdτ

= −λ1(1− C1)

λ1 − µ1

e−λ1t
∫ t

0

−1
λ2

µ2−λ2 +
(

1
s2−1 +

λ2
λ2−µ2

)
e(µ2−λ2)τ

dτ

=
λ1(1− C1)

λ1 − µ1

e−λ1t
∫ t

0

µ2/λ2 − 1

1 +
(
µ2/λ2−1
s2−1 − 1

)
e(µ2−λ2)τ

dτ

=
λ1(1− C1)(µ2/λ2 − 1)

λ1 − µ1

e−λ1t

[
τ −

ln
[
(C2 − 1)e(µ2−λ2)τ + 1

]
µ2 − λ2

]τ=t
τ=0

where

C2 =
1− µ2/λ2
1− s2

. (5.19)
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Continuing with the integral,

=
λ1(µ2 − λ2)
λ2(λ1 − µ1)

(1− C1)e
−λ1t

[
t−

ln
[
(C2 − 1)e(µ2−λ2)t + 1

]
µ2 − λ2

+
ln (C2)

µ2 − λ2

]

=
λ1(1− C1)

λ2(λ1 − µ1)
e−λ1t

[
(µ2 − λ2)t− ln

[
(C2 − 1)e(µ2−λ2)t + 1

]
+ ln (C2)

]
=

λ1(1− C1)

λ2(λ1 − µ1)
e−λ1t

[
ln
(
e(µ2−λ2)t

)
+ ln

[
C2

(C2 − 1)e(µ2−λ2)t + 1

]]
=

λ1(1− C1)

λ2(λ1 − µ1)
e−λ1t ln

[
C2e

(µ2−λ2)t

(C2 − 1)e(µ2−λ2)t + 1

]
=

λ1(1− C1)

λ2(λ1 − µ1)
e−λ1t ln

[
C2

C2 − 1 + e(λ2−µ2)t

]
. (5.20)

This is not particularly pleasant, but it is at least tractable. I have also confirmed numerically

that this expression is correct. Expanding the logarithm in powers of s2 should be fun.

We can do the same manipulations with∫ t

0

(µ1 − λ1φ2(τ))C1

λ1 − µ1

e−µ1tdτ =
λ1C1

λ1 − µ1

e−µ1t
∫ t

0

(
µ1

λ1
− φ2(τ)

)
dτ

=
λ1C1

λ1 − µ1

e−µ1t
∫ t

0

µ1

λ1
− 1− µ2/λ2 − 1

1 +
(
µ2/λ2−1
s2−1 − 1

)
e(µ2−λ2)τ

 dτ (5.21)

This part we will save for a later date. It’s a bit tedious, and I’d rather discuss the more

interesting problem of the second pair of integrals.

5.2.5.2 Second Pair of Integrals,
∫
φ2(τ)e

−xτdτ for large x

Now we consider the second pair of integrals. For example,∫ t

0

λ1(1− φ2(τ))(1− C1)

λ1 − µ1

e−(λ1−µ1)τ−µ1tdτ

=
λ1(1− C1)

λ1 − µ1

e−µ1t
∫ t

0

(1− φ2(τ))e
−(λ1−µ1)τdτ

=
λ1(1− C1)

λ1 − µ1

e−µ1t
∫ t

0

− e−(λ1−µ1)τ

λ2
µ2−λ2 +

(
1

s2−1 +
λ2

λ2−µ2

)
e(µ2−λ2)τ

dτ (5.22)

The integral
∫ t
0
(1 − φ2(τ))e

−(λ1−µ1)τdτ appears to be intractable at first glance. Asking

Mathematica to evaluate it returns a Gauss Hypergeometric function, which makes sense
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given the previous literature. (5.3) has been solved in terms of a hypergeometric function

by [AK11] and used by [BRA13] to study the evolution of cancer under combination drug

therapy. We can solve these integrals using Integration by Parts. We shall leave the details

for publication.

Finally, given that we’ve solved for u ∼ u0+νu1, we can plug this back into our expression

for φij to obtain the PGF. This allows us to skip the numerical integration step in chapter

4. Given that the numerical integration appears to be the computational bottleneck, this

would improve our parameter searches for inference immensely. Additionally, it remains

to expand φij in powers of s1 and s2 to obtain approximate asymptotic expressions for

the transition probabilities. This would circumvent performing the numerical inversion and

would potentially provide analytical insights that we cannot obtain from numerical methods

alone.

5.3 Additional Projects

In addition to these immediate extensions of my previous work, we have several alternative

projects that we have been working on. The first involves computing the mean time to

extinction (MTE) of cancer under immunotherapy, including quiescence. We have developed

a stochastic predator-prey model for the interactions between the tumor cells, undergoing

a birth-death process, and the immune cells preying on the tumor cells, resulting in the

recruitment of more immune cells. This also includes reversible quiescence of the tumor cells

to evade the immune system. This stochasticity is required to accurately model extinction

phenonema. In particular, this model posses a metastable equilibrium that the process

evolves around for a substantial length of time prior to absorption via extinction of the

tumor. It is possible, using methods reviewed in [AM17], to use a WKB-style approximation

to compute the MTE.

This may have significant clinical relevance, considering that if the mean extinction time

is significantly large, this may give the existent tumor population time enough to evolve

resistance to immunotherapy. It would be particularly interesting to discern how quiescence
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changes the MTE. If, as suspected, quiescence dramatically increases the MTE, then it sug-

gests that discovering a drug for removing these quiescent cells may be required to completely

eradicate a tumor under immunotherapy. This could suggest a mechanism by which cancer,

particularly melanoma, evolves long-term resistance to immunotherapy.

Much in the same vein as the previous problem of computing the MTE, it is possible to

numerically compute numerous interesting properties of interacting particle systems. This

relies on several mathematical techniques developed in statistical mechanics, notably in

representing the transition probability function as a Feynman-style path integral over the

space of possible trajectories of the system. This representation can be simplified by noting

that the dominant contribution to the path integral comes from the contribution of the most

likely path. This dominant contribution is controlled asymptotically by the small distance

between lattice sites. Finding the dominant path requires solving a system of Hamilton-

Jacobi PDEs, a task which is numerically feasible if analytically intractable. We can use

this approach to compute extinction probabilities and detect critical phase transitions of the

processes at hand.
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