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ABSTRACT OF THE DISSERTATION

Providing Fast and Safe Access to Next-Generation, Non-Volatile
Memories

by

Joel Dylan Coburn

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2012

Professor Rajesh Gupta, Co-Chair
Professor Steven Swanson, Co-Chair

Emerging non-volatile memory technologies such as phase change memory,

spin-torque transfer memory, and the memristor, will provide many orders of mag-

nitude decrease in latency compared to disk and flash memory, dramatic increases

in bandwidth, and a byte-addressable interface similar to DRAM. These new mem-

ories will offer enormous performance gains and intuitive abstractions for storage,

but fully realizing these benefits requires us to rid software of disk-centric opti-

mizations, design decisions, and architectures that limit performance and ignore

bottlenecks previously hidden by the poor performance of disk. The algorithms

that storage and database systems use to enforce strong consistency guarantees

xvi



are critical to performance, and current solutions are deeply tied to conventional

disk technology. This dissertation addresses the problem of providing transactional

support for fast, non-volatile memories that exploits their raw performance and

makes programming easy.

First, we present a prototype PCIe-based storage array that targets fast,

non-volatile memories and provides hardware support for multi-part atomic write

operations. Multi-part atomic writes atomically and durably commit groups of

writes to storage. Unlike previous approaches for flash-based SSDs, multi-part

atomic write support makes logging scalable and transparent, providing a strong

foundation for flexible ACID transactions. Using multi-part atomic writes, ex-

isting transactions mechanisms such as ARIES-style write-ahead logging can be

redesigned to make optimal use of these memories, providing up to 3.7× the per-

formance of the baseline version of ARIES.

Second, we address the problem of providing strong consistency guarantees

for storage that is directly accessible via the processor’s memory bus. We present

NV-heaps, a persistent object store which provides a familiar programming in-

terface and protects against application and system failures by avoiding familiar

programmer errors as well as new errors that only arise with persistent objects.

Compared to Berkeley DB and Stasis, two persistent object stores designed for

disk, NV-heaps improves performance by 32× and 244×, respectively, for oper-

ations on a variety of persistent data structures. To further improve safety, we

present programming language support for NV-heaps. We introduce a Java-like

language that provides the features NV-heaps require, along with a new static

dependent type system that enforces the invariants that make NV-heaps safe.
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Chapter 1

Introduction

Emerging non-volatile memory technologies such as phase change memory,

spin-torque transfer memory, and the memristor will revolutionize the role of stor-

age in computing. The introduction of these technologies represents an orders of

magnitude decrease in latency along with dramatic increases in bandwidth rela-

tive to hard disks and flash memory. As these technologies become available via

fast interconnects close to the processor, the performance of storage will approach

or equal the performance of main memory. This fundamental shift in the bal-

ance of storage, system bus, main memory, and CPU performance challenges the

traditional assumptions behind modern computer systems.

With disk as the de facto standard storage technology, decades of work

in software is predicated on the enormous gap between memory and storage per-

formance. But this gap will shrink or disappear entirely with the arrival of fast,

non-volatile memories. As a result, the current overheads required to access non-

volatile storage (i.e., microseconds for IO system calls) will severely limit perfor-

mance. The performance penalties of the operating system and file system will

void many of the performance gains provided by these new memory technologies,

so removing these overheads will be crucial to realizing their full potential.

In addition, new non-volatile memory technologies will offer a large increase

in flexibility compared to disks, particularly in their ability to perform fast, ran-

dom accesses. Unlike flash memory, these new technologies will support in-place

updates, avoiding the extra overhead of a translation layer. Further, these new

1
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memories can present a DRAM-like interface to storage, unlike disks and flash

which require a block-based interface. This removes the sector restriction on IO

read and write patterns, which means that applications may no longer need to

package their data into long byte streams for efficient transfer to and from storage.

Improved performance and flexibility will redefine the notion of non-volatile

data in applications. Currently, our applications and the tools we use to access

storage assume disk is the backing store. Hence, non-volatile data is treated as

something that must be accessed in large, sequential blocks whenever possible.

Consequently, we rely on untyped, heavy-weight file abstractions to access stor-

age. However, with fast, non-volatile memories, we can potentially manipulate

non-volatile data in the same way we manipulate volatile data: We use language

type constructs (structs and classes) combined with light-weight load and store

instructions.

This thesis is based on a model for storage that exposes non-volatile memo-

ries directly to the user with minimal software overheads. In the common case, the

operating system is removed from the critical path to exploit the full performance

of the storage technology. With a fast and flexible interface, the user can adapt an

application to best match its requirements with the characteristics of the storage

device.

In many cases, we have to maintain compatibility with legacy software and

we need to minimize the programming effort to port our applications to a new

storage device. Treating fast, non-volatile memories as a block device achieves this

goal, as it requires little to no changes to existing code. The application can imme-

diately run on the storage array. However, performance gains tend to be limited

because existing software is usually optimized for disk. These optimizations tend

to focus on ways to cache data in DRAM, and they do not often take advantage

of the performance of fast, non-volatile memories.

Alternatively, we may utilize the flexible interface of fast, non-volatile mem-

ories to build persistent data structures directly in storage. Instead of reading

bytes serially from a file and building data structures in memory, the data struc-

tures would appear, ready to use in the program’s address space, allowing quick
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access to even the largest, most complex persistent data structures. This leverages

decades of work in data structure design and integrates well with existing program-

ming languages, giving the programmer considerably more power over traditional,

untyped file IO. However, it does require significant changes to existing code.

Whether we continue to access storage as a block device or access it directly

like memory, we need guarantees that our data will not be corrupted if there are

failures. Strong consistency guarantees are what ultimately make storage useful.

Applications such as file systems, databases, and persistent object stores all depend

on being to move from one consistent state to the next. When storage is exposed

directly to the user, it is even more challenging to provide these guarantees. One

wrong pointer assignment or a system failure can permanently corrupt a persistent

data structure. The narrow, block-based interface of disk actually provides some

protection against corruption, whereas making storage accessible via loads and

stores does not. Data can be corrupted in several ways: programmer errors, stray

writes on the memory bus, or system failures such as an application/OS crash or

power loss.

This dissertation focuses on system support for transactions in next-

generation, non-volatile memories. The goal of our work is to make accessing

storage as fast as accessing the underlying technology directly, to make program-

ming easy, and to provide strong consistency guarantees in the face of failures.

These three criteria, when taken together, are challenging to meet. For exam-

ple, transactions require some form of logging which, at a minimum, doubles the

amount of data written to the device. Transactions can also require complex man-

agement of the log space and this should be hidden from the user. By providing

system support, both in software and hardware, we can keep these overheads low

and provide strong safety guarantees.

To understand the requirements for system support, we examine technol-

ogy trends in non-volatile memories and storage devices. Chapter 2 explains these

trends and presents two prototype storage system architectures based on fast,

non-volatile memories. The first architecture is an advanced storage array avail-

able over PCIe interconnect which provides a flexible interface to access data of
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arbitrary size and alignment. IO requests are serviced with a user-space driver

that minimizes software overheads by bypassing the operating system and file sys-

tem in the common case. The second architecture attaches storage directly to the

processor’s memory bus. We memory map a region of the physical address space

corresponding to storage, making it accessible with load and store instructions.

Both architectures exploit the performance of the underlying storage technology,

but, by themselves, do not provide any guarantees against failures.

The overheads of providing strong consistency guarantees are high. Trans-

actions require locking, logging, and recovery implementations to ensure data in-

tegrity in the face of failures. Existing systems that provide powerful transaction

mechanisms typically rely on write-ahead logging (WAL) implementations that

were designed with slow, disk-based storage systems in mind. However, emerging,

non-volatile memory technologies present performance characteristics very differ-

ent from both disks and flash-based SSDs, forcing us to reexamine how best to

support transactions.

Chapter 3 addresses the problem of implementing application-level transac-

tions in fast, non-volatile memory-based storage systems. We examine the features

that a system like ARIES [MHL+92], a WAL algorithm popular for databases,

must provide and separate them from the architectural decisions ARIES makes to

optimize for disk-based systems. We present a new WAL scheme optimized for non-

volatile memories, called MARS, in tandem with a novel SSD multi-part atomic

write primitive that combine to provide the same features as ARIES without any of

the disk-centric baggage. The new atomic write primitive makes the log’s contents

visible to the application, allowing for a simpler and faster implementation. MARS

provides atomicity, durability, and high performance by leveraging the enormous

internal bandwidth and high degree of parallelism that advanced SSDs will pro-

vide. We present an implementation of MARS and the our novel atomic write

primitive in a prototype next-generation SSD. We demonstrate that the overhead

of the primitive is minimal compared to normal writes, and our hardware provides

large speedups for transactional updates to hash tables, b-trees, and large graphs.

Finally, we show that MARS outperforms ARIES by up to 3.7× while reducing
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software complexity.

In addition to adapting existing systems for emerging memory technologies,

we also explore a new abstraction for fast storage. Chapter 4 presents NV-heaps, a

system designed to provide fast and safe access to persistent data through an intu-

itive and familiar programming model. NV-heaps is a persistent object store that

targets storage attached to the processor memory bus. NV-heaps protects against

application and system failures by avoiding familiar bugs such as dangling pointers,

multiple frees, and locking errors. It also prevents new types of hard-to-find pointer

safety bugs that only arise with persistent objects. These bugs are especially dan-

gerous since any corruption they cause will be permanent. NV-heaps provides

the following features for building persistent data structures: persistent objects,

specialized pointers, memory management, and atomic sections. We describe the

implementation of NV-heaps and how it achieves ACID semantics. We implement

a variety of persistent data structures using NV-heaps, BerkeleyDB [SO92], and

Stasis [SB06]. Our results show that NV-heaps outperforms BerkeleyDB and Stasis

implementations by 32× and 244×, respectively, by avoiding the operating system

and minimizing other software overheads.

While NV-heaps present a new abstraction for storage that provides strong

safety guarantees, there are several potential issues that must be addressed. First,

there are performance overheads due to the features they provide, and it may not

make sense for every application to pay for all these features when it does not need

them. Second, the flexibility of directly accessing storage attached to the memory

bus creates opportunities for data corruption that do not exist in a system with a

well-defined and restricted interface (e.g. block-based file IO in a database). Third,

there are limitations to what NV-heaps can guard against as a result of our library-

based implementation. For example, programmers can perform arbitrary pointer

arithmetic, circumventing our smart pointer types that normally guarantee safe

operations on references. In Chapter 5, we present programming language support

and a series of programming models that address these issues. We introduce a

core language based on Java that contains the features that NV-heaps require,

and we describe a novel static dependent type system that enforces the necessary
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invariants about NV-heaps and references.

Finally, in Chapter 6 we summarize the contributions of this dissertation,

including the MARS architecture and atomic write support, the design of

NV-heaps, and language support for persistence.
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Chapter 2

Storage Trends

In this chapter, we examine recent trends in non-volatile memory technolo-

gies and the corresponding trends in storage devices, highlighting the enormous

performance gains that are possible. We then identify the overheads in the existing

IO software stack that ultimately limit the performance of these new storage de-

vices to a level far below their capability. To overcome these problems, we present

prototypes for two possible storage architectures: (1) a storage array of non-volatile

memories accessible to the system through PCIe interconnect, and (2) non-volatile

memories in DIMMs attached to the processor’s memory bus in a manner similar

to DRAM. These prototypes serve as the experimental test beds for the rest of

the work in this thesis. We briefly discuss the architecture and interface of these

prototypes, and how each design removes software overheads to make access to

storage fast and flexible.

2.1 Storage Trends

Emerging non-volatile memory technologies will present a DRAM-like in-

terface and achieve performance that is within a small factor of DRAM in both

latency and bandwidth. These technologies are vying to replace flash memory as

the dominant storage technology in solid-state drives. They also have the potential

to replace DRAM as main memory as classic CMOS scaling begins to falter.

Table 2.1 describes several of the most promising technologies, using flash

8
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Table 2.1: Memory technology summary Phase change and spin-torque trans-
fer memories provide performance near that of DRAM while maintaining their data
in the absence of power.

Technology Latency Endurance
Read Write

DRAM 25ns 35ns 1018

Spin-Torque Transfer [TKM+07] 29ns 95ns 1015

Phase Change Memory [BRK+04, LIMB09] 48ns 150ns 108

Flash Memory SLC 25us 200us 105

memory and DRAM as reference points. Flash memory, although much faster

than disk especially for random accesses, has very asymmetric performance as

shown by the large difference in read and write latencies. This is due to the

program-erase nature of flash. As process geometries shrink and manufacturers

push for higher densities, the reliability of flash gets worse: The latest multi-level

cell (MLC) technologies become unusable after several thousand program-erase

cycles. In contrast, DRAM has nearly infinite write endurance and read and write

latencies tend to be nearly equal. However, data stored in DRAM does not persist

beyond system failures or power cycles.

Phase-change memory (PCM), one of the most mature technologies, stores

data as the crystalline state of a chalcogenide metal layer [Bre08]. PCM may

eventually surpass flash memory in density according to the ITRS [ITR09], and

recent work has demonstrated that it has the potential to become a viable main

memory technology [LIMB09, QSR09, ZZYZ09]. While it has a higher endurance

than flash memory, PCM does pose some reliability concerns: A PCM bit has

a typical lifetime of 108 write cycles after which point the bit can no longer be

programmed. To mitigate this problem, writes should be spread out across the

different bits in the device, maximizing the time to bit failure. Several PCM

wear leveling schemes are already available to address this issue [DAR09, LIMB09,

ZZYZ09, CL09, QKF+09a].

Spin-torque transfer memory (STTM) stores bits as a magnetic orientation

of one plane in a magnetic tunnel junction (MTJ). Depending on the orientation,

the junction’s resistance is either low (the “anti-parallel” state) or high (the “paral-

lel” state) [DSPE08]. In this respect, STTM is similar to previous magnetic RAM
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technologies. STTM differs in how it sets the orientation in the MTJ: Instead of

using electric fields as previous MRAM technologies have, STTM uses a current

of polarized electrons. This avoids the scaling limitations that plagued field-based

devices. In the near future, STTM’s density, latency, and power consumption may

approach those of DRAM. STTM does not suffer from the endurance problems of

PCM or flash memory.

Unlike flash, these new non-volatile memory technologies do not require a

separate erase operation to clear data before a write. This makes in-place up-

dates possible and, therefore, eliminates the complicated flash translation layer

that manages a map between logical storage addresses and physical flash storage

locations to provide the illusion of in-place updates. PCM still requires wear-

leveling and error correction, but there are several efficient solutions to both of

these problems [QKF+09b, QSLF11, SLSB10, ICN+10, YMC+11]. With fast, in-

place updates, the end-to-end performance of a non-volatile memory storage array

can be very close to the performance of the underlying memory technology.

As the performance of storage technologies continues to evolve, so will the

architecture of storage devices themselves. Unlike traditional spinning disks which

must perform requests serially, storage devices composed of non-volatile memories

possess an enormous amount of internal parallelism and bandwidth, making it

possible to process many outstanding requests at once. This requires an advanced

storage controller that can buffer and manage a large amount of state. Further,

the improvements in latency and bandwidth offered by non-volatile memories can

only be exploited with corresponding improvements in the rest of the system to

make access to data fast. This means storage devices will use high performance

interconnects and move closer in proximity to the processor.

Table 2.2 shows the latency and bandwidth for performing a 4 KB read

from user space for current and future storage devices. A RAID array of four

disks serves as the reference point: It takes 7.1 ms to complete the request at

2.6 MB/s. In 2007, PCIe-based flash SSDs were introduced by Fusion-IO [fus],

and these devices provide around 100× improvement in latency and bandwidth

over disks. In the near future, we envision PCIe-based SSDs containing an array
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Table 2.2: Performance for a 4 KB read Latency and bandwidth improve at
rates of 2.5× and 2.6× per year, respectively, as storage technologies and inter-
connect improve over time.

Storage Device RAID-Disk PCIe-Flash PCIe-NVM DDR-NVM
(2007) (2013) (2016)

Latency (µs) 7,100 68 8.2 1.5
1× 104× 865× 4,733×

Bandwidth (MB/s) 2.6 250 1,600 14,000
1× 96× 669× 5,384×

of PCM. Using a recent prototype (to be discussed in Section 2.3), a single read

request takes just 8.2 µs and achieves a bandwidth of 1.6 GB/s. When PCM

is put on DIMMs and placed on the processor’s memory bus alongside DRAM,

access latency shrinks to 1.5 µs and bandwidth is 14 GB/s. This results in a

4,733× latency improvement and 5,384× improvement in bandwidth. If storage

devices follow the performance numbers presented here, then latency improves at

a rate of 2.5× per year and bandwidth improves at a rate of 2.6× per year. Both

of these rates outpace Moore’s Law, but realizing these performance targets will

not be possible with existing system architectures.

2.2 Overhead of the Software Stack

The performance of storage devices based on technologies such as PCM

and STTM in modern computing systems will be severely limited by our existing

software infrastructure, and this is already evident in high-performance flash SSDs.

The traditional software stack for storage was designed for disk and requires all

requests go through the operating system and the file system using system calls

such as read and write.

Figure 2.1 shows the overhead of software, broken down into components

from the OS, the file system, and the hardware, for a 4 KB read request from user

space. For disk, the hardware latency is over 390× the latency of the OS and file

system combined, making software overheads negligible. For a flash-based SSD,

the hardware latency drops to about 13× the latency of software. For a PCIe-based

SSD, the distribution of latencies shifts: the OS and the file system take 2.3× as
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Figure 2.1: Latency breakdown for a 4 KB read The latency for a read
request is decomposed into three parts: the operating system overhead, the file
system overhead, and the hardware latency. For fast, non-volatile memories, the
software overhead makes up the majority of the total access time.

long as the hardware to service the request. For PCM attached to the processor’s

memory bus, the situation is even worse: software is 12.4× slower than hardware.

Using the existing software stack to access storage destroys the performance gains

of fast, non-volatile memories. In the next section, we describe two prototype

storage architectures that lower or eliminate these software overheads.

2.3 New Storage Architectures

In Figure 2.2, we show a computer system with two storage devices using

fast, non-volatile memories. The first is a prototype storage array called Mon-

eta [CDC+10] which sits on the PCIe bus and houses a large array of storage.

The second is a collection of non-volatile memories in DIMMs attached to the

processor’s memory bus. Because non-volatile memories are still in development

and have not yet matured to their performance targets, we use DRAM to emulate

them. In the following subsections, we describe each storage device, its interface,

and how we lower or eliminate software overheads.
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Figure 2.2: System diagram with prototype storage devices Fast, non-
volatile memories will appear in PCIe-attached storage arrays and in DIMMs con-
nected to the processor’s memory bus.

2.3.1 PCIe-attached Storage Array

Moneta [CDC+10] is a PCIe-based SSD designed around non-volatile mem-

ories like PCM. It spreads 64 GB of storage across eight memory controllers con-

nected via a high-bandwidth ring. Each memory controller provides 4 GB/s of

bandwidth for a total internal bandwidth of 32 GB/s. An 8-lane PCIe 1.1 inter-

face provides a 2 GB/s full-duplex connection (4 GB/s total) to the host system.

The prototype runs at 250 MHz on a BEE3 FPGA prototyping system [bee].

The Moneta storage array emulates advanced non-volatile memories using

DRAM and modified memory controllers that insert delays to model longer read

and write times. We model PCM in this work and use the latencies from [LIMB09]

(48 ns and 150 ns for array reads and writes, respectively). Moneta uses start-gap

wear leveling implemented at the memory controllers [QKF+09b].

Moneta is accessible through the Linux IO stack and uses a customized
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device driver. The design relies on hardware and software optimizations such as

bypassing the Linux IO scheduler, removing unnecessary context switches, and

removing locks in the driver in order to reduce latency and maximize concurrency.

Compared to the baseline IO stack, these changes reduce latency by 62%. However,

the remaining software overhead is still quite high, with the system call and file

system overheads accounting for 65% of the latency.

Recent work [CME+12] provides a user-space driver that eliminates much of

remaining software overhead by bypassing the OS and file system for most accesses.

The user-space driver provides a private, virtualized interface for each process and

offloads file system protection check into hardware. Each application communicates

directly with the storage array via a private set of control registers, a private DMA

buffer, and a private set of 64 tags that identify in-flight operations. To enforce

file protection, the user space driver works with the kernel and the file system to

download extent and permission data into Moneta, which then checks that each

access is legal. Consequently, accesses to file data do not involve the kernel at all in

the common case. However, modifications to file system metadata still go through

the kernel. Applications can use the new interface without modification, since

the library interposes on file access calls. With the user-space interface, Moneta

performs 4 KB IO operations up to 60% faster than going through the kernel and

throughput increases by 7.6×.

2.3.2 DDR-attached Storage

In the near future, we will see systems with high-performance non-volatile

memory on the memory bus capable of providing a storage capacity ranging from

gigabytes up to terabytes. However, mature products based on these memories

will take several years to appear. We prototype such a storage configuration by

emulating technologies such as PCM using existing DRAM DIMM modules. We

assume that bus negotiation and transfer times are similar to existing DRAM

interfaces, and the only additional overhead for non-volatile accesses arise from

the difference in memory technology.

We consider two methods of accessing storage attached to the memory bus:
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direct access using load and store instructions, and access through a traditional

block-based interface using read() and write() system calls. We present an

emulation system for each method. Both of these systems run applications for

many billions of instructions while simulating the performance impact of using

advanced, non-volatile memories.

Modeling byte-addressable storage

Storage attached to the memory bus can be made accessible without going

through a block-based interface because it is directly exposed to the processor in a

manner similar to DRAM. The region of physical address space corresponding to

non-volatile storage can be memory mapped into an application’s virtual address

space. This makes the data accessible via normal load and store instructions.

Normally, the kernel copies memory mapped data between a block device and

DRAM, but in this case, copying is not necessary.

Our first emulation system models the latency for memory-level load and

store operations to fast, non-volatile memories on the processor’s memory bus.

The system uses Pin [LCM+05] to perform a detailed simulation of the system’s

memory hierarchy augmented with non-volatile memory technology and epoch bar-

riers [CNF+09], which are an architectural feature we use to guarantee an ordering

of updates to memory (described in more detail in Section 4.3.2). The memory

hierarchy simulator accounts for both the increased array read time and the added

delay between a write and the operations that follow, allowing it to accurately

model the longer read and write times for PCM and STTM memories. For PCM

we use the performance model from [LIMB09] which gives a PCM read time of

67 ns and a write time of 215 ns. We model STTM performance (29 ns reads

and 95 ns writes) based on [TKM+07] and discussions with industry. The baseline

DRAM latency for our system is 25 ns for reads and 35 ns for writes, according to

the datasheet.

Our emulation system divides program execution into intervals of one billion

instructions. At the beginning of each interval, we turn on instrumentation to

perform a detailed cache simulation of the first 100 million instructions. The
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simulation provides the average latency for last level cache hits and misses and

for the epoch barriers. After the simulation phase, we use hardware performance

counters to track these events on a per-thread basis, and combine these counts

with the average latencies to compute the total application run-time. The model

assumes that memory accesses execute serially, which makes our execution time

estimates conservative.

There are several potential problems with this system. First, program be-

havior may change during the interval, invalidating the execution signature we

collect during simulation. To mediate this problem, we annotate the applications

with a special function call between phases that triggers the start of a new inter-

val. Our applications have predictable, consistent behavior, so identifying phase

boundaries is easy. For more complex workloads, a phase-based sampling method-

ology such as [SPC01] could be used. Second, this methodology does not capture

fine-grain parallelism among accesses to non-volatile memory. This is a conserva-

tive assumption, since it assumes that all non-volatile memory accesses within a

thread occur sequentially.

To calibrate our system we used a simple program that empirically deter-

mines the last-level cache miss latency. We ran the program with the simulated

PCM and STTM arrays and its estimates matched our target latencies to within

10%.

The overhead due to Pin’s instrumentation varies unpredictably with thread

count and application, although it is consistent for a particular application and

thread count combination. To account for this overhead, we run the instrumented

version several times and compare it to the run-time without Pin. We then subtract

this value from the Pin instrumented run-times we report. This methodology

delivers results accurate to within 5%.

Modeling a block device based on fast, non-volatile memory

Our second emulation system presents a block device interface similar to the

one available for disk. This makes storage accessible using read() and write()

system calls, which require going through the OS, file system, and device driver.
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To model a non-volatile memory-based block device, we modified the Linux RAM

disk driver to let us insert extra delay on accesses to match the latency of non-

volatile memories. Measurements with a simple disk latency benchmark show that

the emulation is accurate to within about 2%. This emulation system provides us

with a baseline in our experiments that demonstrates the overheads of the existing

IO software stack.

2.4 Summary

The two storage architectures just presented remove software overheads to

expose the performance of the underlying non-volatile memory technology. While

this dramatically improves performance for raw read and write operations, it does

not necessarily translate into commensurate application-level gains, as shown in a

recent study [CCM+10]. The primary reason for this is that applications are often

highly optimized for disk, and these optimizations tend not to take full advantage

of fast, non-volatile memories. In particular, the way in which databases and

other applications provide consistency guarantees for their data tends to be very

disk-specific. In the next chapter, we address this problem by examining existing

transaction mechanisms that rely on write-ahead logging, and we propose a new

approach designed for fast, non-volatile memories.
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Chapter 3

Redesigning Transaction

Mechanisms for Advanced SSDs

As discussed in the previous chapter, emerging fast non-volatile memory

(NVM) technologies are orders of magnitude faster than existing storage technolo-

gies (i.e., disks and flash). This increase in performance shifts the balance between

storage, system bus, main memory, and CPU performance and will force designers

to reorganize storage architectures to maximize application gains and exploit mem-

ory performance and parallelism. While recent work focuses on optimizing read and

write performance for storage arrays based on these memories [CDC+10, CME+12],

systems must also provide strong guarantees about data integrity in the face of

failures.

Applications such as file systems, databases, persistent object stores, and

other persistent data structures are only useful if they provide strong consistency

guarantees. Typically, these applications use some form of transaction to move

the data from one consistent state to another. Most systems implement trans-

actions using software techniques such as write-ahead logging (WAL) or shadow

paging. These techniques are based on complex, disk-based optimizations designed

to minimize the cost of synchronous writes and leverage the sequential bandwidth

of disk.

NVM technologies provide very different performance characteristics, and

exploiting them requires new approaches to implementing application-level trans-

20
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actional guarantees. NVM storage arrays provide parallelism within individual

chips, between chips attached to a memory controller, and across memory con-

trollers. In addition, the aggregate bandwidth across the memory controllers in an

NVM storage array will outstrip the interconnect (e.g., PCIe) that connects it to

the host system.

In this chapter, we present a novel WAL scheme, called MARS, optimized

for NVM-based storage. The design of MARS is based on an examination of

ARIES [MHL+92], a popular WAL-based recovery algorithm for databases, that

separates the features it must provide from the architectural decisions it is built

on that optimize for disk-based systems. MARS uses a multi-part atomic write

primitive to implement ACID transactions on top of a novel NVM-based SSD

architecture. As we will show, multi-part atomic writes are a useful building block

for a range of applications and transaction mechanisms in addition to ARIES.

The multi-part atomic write interface supports atomic writes to multiple

portions of the storage array without alignment or size restrictions, and the hard-

ware shoulders the burden for logging and copying data to enforce atomicity. This

interface exposes the logs to the user and allows the user to manage the log space di-

rectly, providing greater flexibility for software to implement transactions. In con-

trast, recent work on atomic write support for flash-based SSDs [PRZ08, ONW+11]

hides the logging in the flash translation layer, restricting user interaction with the

logs.

We will present an implementation of multi-part atomic writes in the Mon-

eta [CDC+10] PCIe-based storage array. Our design achieves high performance by

distributing logging, commit, abort, and recovery functions across multiple mem-

ory controllers to leverage the internal bandwidth of the storage device. Shifting

support for logging and commit into hardware relieves pressure on the PCIe link

and minimizes operating system overhead, since issuing an atomic write requires

just a single IO request and a single DMA transfer.

The remainder of this chapter is organized as follows. Section 3.1 exam-

ines existing transaction mechanisms in the context of fast NVM-based storage,

deconstructs ARIES, and proposes MARS as an alternative for fast NVM-based
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storage. In Section 3.2, we describe a new set of IO primitives that support multi-

part atomic write operations for MARS and other applications. Section 3.3 places

this work in the context of prior work on support for transactional storage. In

Section 3.4, we describe the hardware architecture in detail. Section 3.5 evaluates

our multi-part atomic write support and its impact on the performance of MARS

and other persistent data structures. Section 3.6 summarizes the contributions of

MARS and multi-part atomic writes.

3.1 Revisiting Transaction Support

This section examines existing transaction mechanisms, focusing on ARIES

write-ahead logging. We describe the features that a system like ARIES must

provide to implement flexible ACID transactions. We analyze the design decisions

that make ARIES a good fit for disk but are not well-suited for fast NVM-based

storage. Then, we propose MARS, a novel WAL architecture that takes advantage

of the multi-part atomic writes provided by our prototype storage array. MARS

provides the features required by ARIES while exploiting the performance of fast

NVMs.

3.1.1 Transaction mechanisms

Transaction implementations depend on the requirements of the applica-

tion and the underlying storage technology. For many applications, relational

databases are a good fit because they provide full ACID semantics and accommo-

date a wide variety of data formats and operations on that data. Many databases

are built on top of ARIES (Algorithm for Recovery and Isolation Exploiting Seman-

tics) [MHL+92], a powerful algorithm for providing strong consistency guarantees.

ARIES-style transactions are scalable and support different levels of isolation.

For web services or file systems, simpler approaches are often the best option

because the class of transactions they must support is narrower. Transaction size

is often fixed or bounded, and transactions often need not have the flexibility to

read back or update data multiple times. Previous systems [GHKdJ96, PRZ08,
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ONW+11] provided an atomic write interface that is limited to these types of

transactions. The writes would be batched up in memory and sent to the storage

array in a single IO operation. Our multi-part atomic write interface, on the other

hand, allows transactions to be specified in multiple IO requests, offering scalability

and better programmability. Also, this interface provides visibility to each logged

part of a transaction prior to commit.

Transaction implementations typically include a concurrency control

scheme (e.g. two-phase locking [BHG87]), some form of data versioning, and a

recovery algorithm. The most common ways to implement data versioning are ei-

ther by using write-ahead logging and updating data in-place or by using shadow

paging. Both of these techniques are optimized heavily for disk. With this is

mind, we now re-examine existing transaction mechanisms in the context of fast

NVM-based storage and the high-level features that applications demand.

3.1.2 Deconstructing ARIES

We focus on ARIES because it influenced the design of many industrial-

strength databases and is a key building block in providing fast, flexible, and

efficient ACID transactions. ARIES uses WAL and has been tuned to exploit

the sequential write performance of disk. In Table 3.1, we list several of the

important features that ARIES provides to higher-level software (e.g., the rest of

the database) and make it useful to a variety of applications. For example, ARIES

offers flexible storage management since it supports objects of varying length. It

also allows transactions to scale with the amount of free disk storage space rather

than with available main memory. Features like operation logging and fine-grained

locking improve concurrency. Recovery independence makes it possible to recover

some portion of the database even when there are errors. Independent of the

underlying storage technology, ARIES must export these features to the rest of

the database.

To provide these features and achieve high performance, ARIES incorpo-

rates a set of design decisions (Table 3.2) that exploit the properties of disk: They

optimize for long, sequential accesses and avoid short, random accesses whenever
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Table 3.1: ARIES features ARIES-style WAL provides the above features to
the rest of the system regardless of storage technology.

Feature Benefits Available
in MARS?

Flexible storage management Supports varying length data Yes
Fine-grained locking High concurrency Yes
Partial rollbacks via savepoints Robust and efficient transactions Yes
Operation logging High concurrency lock modes N/A
Recovery independence Simple and robust recovery N/A

possible. Also, because disk drives are effectively serial devices, these design deci-

sions do not exploit parallelism in the backing store. As we will show, this makes

them a poor fit for advanced, solid-state storage arrays which provide fast random

access, high internal bandwidth, and a high degree of parallelism. Alternatively,

we present a novel multi-part atomic write IO primitive which can exploit the

characteristics of fast NVM-based storage. In Section 3.1.3, we describe the design

of MARS, which is a new version of ARIES engineered to take advantage of multi-

part atomic writes. Next, we discuss each of the major design decisions behind

ARIES.

No-force In ARIES, the system writes log entries to the log in storage before

any changes to an object are written to storage. Then, if a crash occurs, ARIES

can redo the partially completed operation. To hide the latency of random writes

to disk, ARIES implements a no-force policy, which means the system writes

updated pages back to disk after commit. ARIES flushes redo log entries to disk

in a synchronous sequential write during commit, making the updates available for

the recovery routine to reapply in case of a failure. In fast NVM-based storage,

however, random writes are no more expensive than sequential writes, so the value

of a no-force policy is much lower.

Steal ARIES relies on a steal policy which improves performance for disk but

provides little to no benefit for fast NVM-based storage. A steal policy allows the

buffer manager to write dirty pages back to disk before commit. By stealing pages

for early write back, the buffer manager can reclaim buffer space during transaction
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Table 3.2: ARIES design decisions ARIES relies on a set disk-centric opti-
mizations to maximize performance on conventional storage systems. However,
these optimizations are a poor fit for the characteristics of storage based on fast,
non-volatile memories. Instead, MARS uses an alternative set of design decisions.

Design Advantage for disk Implementation
decision

No-force Eliminate synchronous ARIES: Flush redo log entries to
random writes storage on commit

MARS alternative: Force write
backs at memory controllers

Steal Reclaim buffer space ARIES: Write undo log entries
Eliminate random writes before writing back dirty pages
Avoid false conflicts MARS alternative: Hardware does

all in-place updates and the log always
holds the latest copy of the data

Pages Simplify recovery and ARIES: Perform updates on pages
buffer management assuming page writes are atomic

MARS Alternative: Hardware uses
pages and software operates on objects

Log Simplify recovery ARIES: Order updates to storage
Sequence Enable high-level features using LSNs
Numbers MARS Alternative: Hardware
(LSNs) enforces ordering with commit

sequence numbers
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execution (supporting larger transactions), group writes together to take advantage

of sequential disk bandwidth, and avoid data races on pages shared by overlapping

transactions. Stealing requires undo logging because it is only safe to write back

dirty pages if copies of old values have been written to disk. After a crash or abort,

the system may use the undo log entries to recreate the overwritten data.

For disk, the performance benefits greatly outweigh the overhead of the

extra logging. With fast NVMs, because the performance of random writes and

sequential writes is the same, the overhead of undo logging can actually hurt overall

performance. The cost of writing a log entry to storage before making an update

occurs on every update, but the benefit of writing pages back early occurs far less

frequently. While stealing eliminates costly seek time for disk, writing pages back

early as part of a larger write to fast NVM-based storage only helps amortize the

setup/completion cost of an IO request.

Pages and LSNs In ARIES, disk pages are the basic unit of recovery and each

page contains a log sequence number (LSN). LSNs provide an ordering on disk

updates. At recovery, ARIES uses LSNs to decide which updates to reapply to

bring the system into a consistent state. While the design of ARIES is not restricted

to pages per se, pages simplify the implementation of recovery. Assuming a single

page write is atomic, the system uses them as a foundation for larger atomic

updates. When the system logs an update, it writes the LSN in the same page

as its matching log record, guaranteeing that the two are updated atomically. To

be useful for recovery, LSNs must be generated with a unique order and must be

written out to disk in that order [JPS+10]. This adversely affects performance. It

also complicates situations where objects span multiple pages or multiple objects

fit in a single page. Recent work [SB09] proposes segments as an alternative to

pages, making it possible to efficiently handle objects of various sizes and copy

them directly between the application and storage array.

Pages and LSNs are even more restrictive for fast NVM-based storage arrays

because they limit parallelism, waste bandwidth, and increase latency. Maintaining

headers in log records and forcing log records out to disk in LSN order serializes

execution, resulting in under-utilization of the storage array. Because objects may
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share pages, LSNs may artificially order updates when the system could in fact

perform those updates in parallel. Also, when objects consume less than a page

of storage, the system must pay the additional cost in IO processing to update an

entire page. This is particularly wasteful because fast NVM-based storage has no

sector or page restriction on access size and can handle arbitrarily-sized requests

efficiently.

3.1.3 Building MARS

We now describe the design of MARS, an alternative transaction mechanism

based on ARIES but adapted to the characteristics of fast NVM-based storage.

MARS relies on our multi-part atomic write primitive, presented in Section 3.2,

and ensures that the most recent copy of an object is always directly accessible,

whether the most recent copy lives at the object’s home location or somewhere in

a log. Using multi-part atomic writes, MARS can eliminate the need for pages and

LSNs. MARS replaces the no-force and steal policies designed for disk with more

efficient mechanisms that utilize the internal bandwidth of the storage array and

the flexible interface of our IO primitive. For each design option in Table 3.2, we

propose an alternative method better suited to fast NVM-based storage.

No-force Instead of performing in-place updates asynchronously from software,

we implement a force policy in hardware at the memory controllers. This takes ad-

vantage of Moneta’s large internal bandwidth—32 GB/s at the memory controllers

compared to 4 GB/s PCIe link bandwidth—and eliminates the extra IO requests

required for commits and write backs. Also, moving write backs into hardware has

other benefits: It eliminates the need for checkpointing the log, and the system

immediately reclaims the log space. We choose a force policy over no-force because

it allows our hardware to utilize idle cycles, make better use of limited hardware

transaction resources, and minimize the amount of work needed to be done at

recovery time.
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Steal Instead of writing dirty pages back early, we propose simply dropping

pages from the buffer pool to acquire free space when needed. Our multi-part

atomic write architecture makes this possible: The system first writes an update

out to the log and then proceeds to update the buffer pool page. Unlike other

systems [GHKdJ96, PRZ08, ONW+11], we do not wait to flush the log at commit.

Consequently, the system can page in the updates from the log later as needed. To

do this, the system must maintain a mapping of buffer pool pages to log entries,

which is possible using our atomic write interface because software controls the

placement of log entries in the log files (see Section 3.2).

Pages and LSNs Because fast NVM-based storage directly supports updates

of arbitrary sizes and our IO primitive makes those updates atomic, MARS can

eliminate the use of pages as the basic unit of update. Objects are visible to

software in a contiguous and unmodified form while our hardware support keeps

track of objects internally using pages. This means that MARS pays for only the

amount of storage it needs. It also means that it is possible to maintain the same

contiguous layout of application-level objects in both storage and main memory.

This has two chief advantages. First, it avoids the significant cost of translating

objects back and forth between pages and their native contiguous format. Second,

because software no longer needs to intervene on a per-page basis, it enables the

use of DMA and zero-copy IO operations [SB09].

Our multi-part atomic write interface eliminates the need for software man-

aged and enforced LSNs. Instead, the storage array maintains ordering in hardware

by assigning a unique commit sequence number to a transaction at commit time.

This effectively removes the serialization of write requests due to LSNs, allowing

log writes from different transactions to proceed in parallel.

With an implementation based on multi-part atomic writes, MARS pro-

vides many of the features (shown in Table 3.1) that ARIES exports to higher-

level software while significantly reducing software complexity. MARS provides

flexible storage management and fine-grained locking by making objects directly

accessible. Partial rollbacks are achieved using an abort function provided by our

hardware that can rewind to any point in the log. Operational logging and re-
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covery independence are currently out of the scope of our atomic write primitive,

requiring customizations to the interface specific to ARIES. However, they are a

possible topic for future work.

3.2 Multi-part atomic write overview

To take advantage of storage array architectures based on fast NVMs, we

present a novel multi-part atomic write interface that provides efficient and safe

updates to storage. Multi-part atomic writes offer a simple, flexible, and general-

purpose way to implement transactions at the application-level. This section de-

scribes our atomic write interface, highlighting how transactions execute and how

the interface makes the log visible to the application. We discuss the rationale

behind our design.

3.2.1 The transaction model and interface

Our system provides the means to group multiple write operations into

transactions and ensure they execute atomically and durably. To achieve full

ACID semantics, the application implements consistency and isolation in software.

The writes in a transaction can be scattered throughout the storage array and be

of any size or alignment. The total size of data that a transaction can update is

limited only by the space available for storing the log in the storage array.

Applications create and execute transactions using the commands in Ta-

ble 3.3. Each application accessing the storage device has a private set of 64

transaction IDs (TIDs), and the application is responsible for tracking which TIDs

are in use. The commands in the table move a transaction between three possible

states: Free, Pending, or Committed (shown in Figure 3.1).

To create a new transaction with TID T , the application issues a LogWrite

command with T as the first parameter. LogWrite records the data, size, and tar-

get location in a log, but does not modify the contents of the target location. After

the first LogWrite, the state of the transaction changes from Free to Pending,

indicating that the transaction is in progress but not committed. Additional calls
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Table 3.3: Multi-part atomic write commands These commands allow the
application to perform atomic and durable updates to the storage array. LogWrite
returns a TID to the user that must be used on subsequent operations in the same
atomic write.

Command Description

LogWrite(TID, file, offset, Record a write to the log at the
data, len, logfile, logoffset) specified log offset.

After commit, copy the data to the
offset in the file.

Commit(TID) Commit a transaction.
Abort(TID) Cancel the transaction entirely,
Abort(TID, logfile, logoffset) or perform a partial rollback

to a specified point in the log.
AtomicWrite(TID, file, offset, Create and commit a transaction
data, len, logfile, logoffset) containing a single write.

Committed 

Free 

Pending 

LogWrite 

LogWrite or 

Abort(partial) 

Commit 

WriteBack 

Abort 

AtomicWrite 

Figure 3.1: Transaction state diagram The system tracks the state of each
transaction to guarantee that updates are atomic and durable.
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to LogWrite add new writes to the transaction.

The writes in a transaction are not visible to other transactions until after

commit. However, the transaction can see its own writes prior to commit by

keeping track of the log offsets that it associates with each piece of data. After an

initial log write for a particular piece of data, a transaction may update that data

again before commit simply by writing to the correct log location.

To complete a transaction, the application issues Commit(T ). The call to

Commit assigns the transaction a commit sequence number inside the storage array

that determines the commit order of this transaction relative to others. When the

command completes, the transaction has logically committed, and the transaction

moves to the Committed state. If a failure should occur after a transaction

logically commits but before the system writes the data back, then the recovery

mechanism will replay the log to successfully complete the in-place updates.

The hardware can notify the application that the Commit is complete before

the hardware copies the contents of log into their target locations, but during the

commit process, reads and writes to the affected areas stall. This ensures that

from the perspective of any application accessing the storage array, commit occurs

atomically. When the copy is complete, the TID returns to Free and the hardware

notifies the application that the transaction finished successfully. At this point, it

is safe to read the updated data from its target locations.

The application can also abort a transaction, freeing any log entries asso-

ciated with it and returning it to Free. Our model supports partial rollbacks of

transactions by allowing the user to specify an Abort command with an offset into

the log. The log offset acts as a savepoint: Any log entries starting from the log

offset and going up through the most recent log entry log will be freed, effectively

canceling those updates.

Our system provides flexibility by allowing the application to specify atomic

write operations in multiple parts. However, this interface adds some overhead

because each operation requires a separate IO request. To mitigate this cost,

AtomicWrite combines LogWrite and Commit requests into a single request, al-

lowing the system to quickly execute transactions that comprise a single write or
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to avoid the separate Commit when it can identify the final write in a transaction.

The system stores the logs as regular files in the storage array, and the

logs may expand or shrink in size as the working sets of transactions demand.

Conventional storage systems must allocate space for logs as well, but they often

use separate disks to improve performance. Our system relies on the log being

internal to the storage device, since our performance gains stem from utilizing the

internal bandwidth of the storage array’s independent memory banks.

The application manages log space by operating on the log files directly

with POSIX file IO. The log file can be extended by writing past the end of the

file with write(), and the log can be truncated with ftruncate().

3.2.2 Design rationale

Our simple multi-part atomic write model strikes a balance between imple-

mentation complexity and functionality. Our model does not provide full ACID

transactions, only atomicity and durability. In particular, our system does not

provide isolation between transactions or any locking facilities to mediate access

to shared data. The application must implement those if needed. However, our

system does provide facilities to make implementing these features easier (e.g., up-

dateable log entries) by letting the application access and manage the log space

directly. Consequently, transactions may grow in size as needed and they see the

results of their own previous but uncommitted updates. This is a key feature for

supporting scalable ARIES-style transactions in MARS.

The algorithm our implementation uses to manage and commit transac-

tions is simple. We use redo logging alone and always update the target location

on commit (i.e., we use no-steal and force policies in the memory controllers). The

high internal bandwidth of our storage array and the fast random access perfor-

mance of NVMs minimizes the impact of using such a simple logging protocol. It

also simplifies the hardware, since replaying the logs of committed transactions is

sufficient for recovery. Finally, it avoids the remapping of addresses in hardware

that a steal or no-force policy would require to hide uncommitted updates.

Offloading logging to the storage array has several performance benefits.
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From the host’s perspective, an atomic write operation requires no more external

bandwidth than a normal write operation. Unlike traditional WAL schemes, we

do not need to use a separate checkpoint process to update data in-place. Instead,

we write data directly after commit as it is less expensive to wait for the IO to

complete than it is to checkpoint and clean the logs in software. Similarly, it is

faster to perform this write back than to avoid the extra write with a copy-on-write

scheme because of the extra complexity required to manage the address space.

We could implement a more complex transaction model with conflict de-

tection, locking, roll back, etc., but crafting a one-size-fits-all solution to those

problems is not possible. Instead, we focus on using atomic writes to acceler-

ate and simplify ARIES, which provides full-fledged ACID transactions for exist-

ing applications. In addition, atomic writes can be used as a building block for

transactional updates to persistent data structures and key-value stores such as

Memcached. Section 3.5 evaluates the benefits of our transactional model.

3.3 Related Work

Atomicity and durability are critical to storage system design, and system

designers have explored many different approaches to providing these guarantees.

These include approaches targeting disks, flash-based SSDs, and non-volatile main

memories (i.e., NVMs attached directly to the processor) using software, special-

ized hardware, or a combination of the two. Below, we describe existing systems

in this area and highlight the differences between them and the system we describe

in this work.

3.3.1 Disk-based systems

Most disk-oriented systems provide atomicity and durability via software

with minimal hardware support. Many systems use ARIES-style [MHL+92] write-

ahead logging to provide durability, atomicity, and to exploit the sequential perfor-

mance that disks offer. Our system, unlike previous ones, implements write-ahead

logging in hardware at the memory controllers. ARIES-style logging is ubiquitous
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in storage and database systems today.

Recent work on segment-based recovery [SB09] revisits the design of

write-ahead logging for ARIES with the goal of providing efficient support for

application-level objects. By removing LSNs on pages, segment-based recovery

enables DMA or zero-copy IO for large objects and request reordering for small

objects. Our system can take advantage of the same optimizations because the

hardware manages logs without using LSNs and without modifying the format or

layout of logged objects.

Traditional implementations of write-ahead logging are a performance bot-

tleneck in databases running on parallel hardware. Aether [JPS+10] implements

a series of optimizations to lower the overheads arising from frequent log flushes,

log-induced lock contention, extensive context switching, and contention for cen-

tralized, in-memory log buffers. These bottlenecks will be exacerbated by fast

NVM-based storage, but our system eliminates them almost entirely. Because we

offload logging to hardware, we remove lock contention and the in-memory log

buffers. With fast storage and a customized driver, our system minimizes context

switching and log flush delays.

Stasis [SB06] uses write-ahead logging to support building persistent data

structures on disk. Stasis provides full ACID semantics and concurrency for con-

structing high-performance data structures such as hash tables and B-trees. It

would be possible to port Stasis to use our atomic write support, but achieving

good performance would require significant changes to its internal organization.

Our system provides atomicity and durability at the device level. The

Logical Disk [dJKH93] provides a similar interface and presents a logical block

interface based on atomic recovery units (ARUs) [GHKdJ96] – an abstraction

for failure atomicity for multiple writes. Like our system, ARUs do not provide

concurrency control. Unlike our system, ARUs do not provide durability, but they

do provide isolation.

File systems including WAFL [HLM94] and ZFS [Cor] use shadow paging

to perform atomic updates, and recent work on transactional support for flash-

based SSDs [PRZ08, ONW+11] relies on similar copy-on-write schemes. Although



35

fast NVMs do not have the restrictions of disk or flash, the atomic write support

in our system would help make these techniques more efficient. Recent work on

BPFS [CNF+09] extends shadow paging to work in systems that support finer-

grain atomic writes. They target non-volatile main memory (see below), but our

atomic write support could implement their scheme as well.

Researchers have provided hardware support atomicity in disks.

Mime [CEJ+92] is a high-performance storage architecture that uses shadow copies

for this purpose. Mime offers sync and barrier operations to support ACID seman-

tics in higher-level software. Like our system, Mime is implemented in the storage

controller, but its implementation is more complex since it maintains a block map

for copy-on-write, and maintains more metadata to keep track of the resulting

versions.

3.3.2 Flash-based SSDs

Flash-based SSDs offer improved performance relative to disk, making la-

tency overheads of software-based systems more noticeable. They also include

complex controllers and firmware that uses remapping tables to provide wear-

leveling and to manage flash’s idiosyncrasies. The controller provides a natural

opportunity to provide atomicity and durability guarantees, and several groups

have done so.

Transactional Flash (TxFlash) [PRZ08] extends a flash-based SSD to im-

plement atomic writes in the SSD controller. TxFlash leverages the fast random

write performance and the copy-on-write nature of flash to perform atomic up-

dates to multiple, whole pages with minimal overhead using “cyclic commit,” a

commit protocol that chains together log records using the out-of-band data as-

sociated with each flash page. Unlike SSDs based on flash, storage arrays of fast

NVMs do not require a map, are not inherently copy-on-write, and are byte ad-

dressable. Consequently, our system logs and commits requests quite differently

from TxFlash, and it allows arbitrarily sized and aligned requests.

Recent work from FusionIO [ONW+11] proposes an atomic-write interface

in a commercial flash-based SSD. Their system uses a log-based mapping layer
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in the drive’s flash translation layer, but it requires that all the writes in one

transaction be contiguous in the log. This prevents them from supporting multiple,

simultaneous transactions.

3.3.3 Non-volatile main memory

The fast NVMs that our system targets are also candidates for non-volatile

replacements for DRAM, potentially increasing storage performance dramatically.

Using non-volatile main memory as storage will require atomicity guarantees as

well, and several groups explored options in this space.

Recoverable Virtual Memory (RVM) [SMK+93] provides persistence and

atomicity for regions of virtual memory. It buffers transaction pages in memory

and flushes them to disk on commit. RVM only requires redo logging because

uncommitted changes are never written early to disk, but RVM also implements

an in-memory undo log so that it can quickly revert the contents of buffered pages

without rereading them from disk when a transaction aborts. Rio Vista [LC97]

builds on RVM but uses battery-backed DRAM to make stores to memory persis-

tent, eliminating the redo log entirely. Both RVM and Rio Vista are limited to

transactions that can fit in main memory.

More recently, Mnemosyne [VTS11] and NV-heaps [CCA+11] provide trans-

actional support for building persistent data structures in byte-addressable, non-

volatile memories. Both systems map NVMs attached to the memory bus into the

application’s address space, making it accessible by normal load and store instruc-

tions. Our atomic write hardware support could help implement a Mnemosyne- or

NV-Heaps-like interface on a PCIe-attached storage device, but the details of the

implementation would be very different.

3.4 Implementation

In this section, we present the details of the implementation of our inter-

face described in Section 3.2, including how we issue commands to the array, how

our software layer makes logging flexible and efficient, and how the hardware im-
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plements a distributed scheme for redo logging, commit, and recovery. We also

discuss testing the system.

3.4.1 Software support

To make logging transparent and flexible, we leverage the existing software

stack. First, we extend a user-space driver to implement our transaction API (see

Section 3.2). In addition, we utilize the file system to manage the logs, exposing

them to the user and providing an interface that lets the user dictate the layout

of the log in storage.

User-space driver Our prototype SSD provides a highly-optimized (and uncon-

ventional) interface for accessing data [CME+12]. It provides a user-space driver

that allows the application to communicate directly with the array via a private set

of control registers, a private DMA buffer, and a private set of 64 tags that identify

in-flight operations. To enforce file protection, the user space driver works with the

kernel and the file system to download extent and permission data into Moneta,

which then checks that each access is legal. As a result, accesses to file data do

not involve the kernel at all in the common case. Modifications to file metadata

still go through the kernel. Applications can use the new interface without modi-

fication, or even recompilation, since the library interposes on file access calls via

LD PRELOAD. The user space interface lets Moneta perform IO operations very

quickly: 4 KB reads and writes execute in ∼7 µs.

Our system uses this user space interface and includes the hardware per-

mission checks on file accesses. We modify the user-space driver to implement

our transaction API and provide each application with a private set of 64 virtual

transaction IDs (TIDs), eliminating synchronization across applications. As a re-

sult, applications issue LogWrite, Commit, Abort, and AtomicWrite requests to

the storage array from user space, avoiding costly interaction with the operating

system.
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File system managed logs Our system creates and manages the log through

the file system and exposes the logs to the user. Our system uses two types of

files to maintain a log for each transaction: a log file and a metadata file. The log

file contains redo data for each update specified by the application. The metadata

file records information about each update including the target location for the

redo data upon transaction commit. Separating the metadata from the redo data

allows applications to access the redo data in the same manner as accessing regular

application data.

The user creates a log file and can extend or truncate the file, based on

the application’s log space requirements, using regular file IO. On LogWrite and

AtomicWrite requests, the user specifies the location of a write into the log, which

we call a log offset.

In order to have scalable transactions, the metadata must also be able to

grow or shrink in size according to the working set demands. Our system stores

log metadata in a metadata file that, unlike the log files, the application cannot

modify. If the user could manipulate the metadata, the log space could become

corrupted and unrecoverable. Even worse, the user might direct the hardware to

update arbitrary storage locations, circumventing the protection of the OS and file

system.

A trusted process, which we call the metadata handler, creates and man-

ages metadata files. By communicating with this process, the user space driver

can “install” and “remove” metadata files for the channel as needed. An install

operation allocates a contiguous group of metadata entries in hardware on behalf

of the application. As transactions execute, the hardware uses these metadata

entries to store log metadata from LogWrite and AtomicWrite requests. When

an application ends, the user space driver removes the metadata file, cleaning all

metadata entries and releasing the metadata file back to the metadata handler.

To take advantage of the parallelism and internal bandwidth of Moneta, we

require that data and log space be colocated at each memory controller. The user

space driver ensures the data offset and log offset for LogWrite and AtomicWrite

requests, when translated from logical to physical addresses, target the same mem-
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Figure 3.2: SSD controller architecture To support transactions, our system
adds hardware support (gray boxes) to an existing prototype SSD. The main con-
troller (to the left of the dotted line) manages transaction IDs and uses a scoreboard
to track the status of in-flight transactions. Eight loggers perform distributed log-
ging, commit, and recovery at each memory controller.

ory controller in the storage array.

3.4.2 Hardware support

The implementation of our atomic write interface divides functionality be-

tween two types of hardware components. The first is a logging module, which we

call the logger (the gray boxes to the right of the dashed line in Figure 3.2), that

resides at each of the system’s eight memory controllers and handles logging for the

local controller. The second is a set of modifications to the central controller (the

gray boxes to the left of the dashed line in Figure 3.2) that orchestrates operations

across the eight logging modules. Below, we describe the layout of the log and

the components and protocols the system uses to coordinate logging, commit, and

recovery.

Log structure Figure 3.3 shows an example log for a transaction at a logger. An

entry in a transaction table points to an entry in a metadata file. Each metadata

entry contains information about an entry in a log file and a pointer to the next
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Figure 3.3: Example log layout at a logger The transaction table entry for
transaction 15 contains the address for the first metadata entry in the log’s linked
list. Each metadata entry points to the next metadata entry in the linked list. It
also points to the address of the block in the log file.

metadata entry.

The system stripes the log file across all 8 memory controllers in 8 KB

chunks. The central controller routes log requests to the proper memory con-

trollers, ensuring that the logger logs each 8 KB chunk of data at the same mem-

ory controller where the data it will update is located. This is essential for high

performance because it enables each memory controller to write back in parallel,

leveraging the large internal bandwidth at the memory controller.

When the metadata handler installs a metadata file, the hardware divides it

into 32 B metadata entries. Each metadata entry contains information about a log

entry. The logger allocates metadata entries to each LogWrite and AtomicWrite

request, so the metadata entries for the same transaction may not be contiguous.

Each metadata entry contains an address to the next metadata entry for the same

transaction. Therefore, the log for a particular transaction is simply a linked list

of metadata entries.

The system reserves a small portion (2 KB) of the storage at each memory

controller for a transaction table. The transaction table stores the state for up

to 64 transactions. Each entry in the transaction table includes the status of the
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Figure 3.4: Logger module The logger sits between the ring and storage, al-
lowing it to implement logging operations and issue its own requests to memory.

transaction, a sequence number, the address of the head metadata entry in the log,

and the number of entries in the log.

Distributed logging Each of the eight memory controllers contains a logger

module that independently performs logging, commit, and recovery operations

and handles accesses to the 8 GB of NVM storage at the memory controller.

The logger implements LogWrite, AtomicWrite, Commit, Abort, and log

recovery operations. Figure 3.4 shows the architecture of the logger and its rela-

tionship to the memory controller. The logger sits between the ring interface and

the memory controller, allowing it to intercept operations and issue requests to the

memory controller to manipulate log data and metadata.

Before an application can make a LogWrite or AtomicWrite request, it

must first direct the metadata handler to install a metadata file. As mentioned

above, the logger will divide the metadata file into metadata entries and the logger

will use them to satisfy LogWrite and AtomicWrite requests. The logger main-

tains a free list of metadata entries for each channel in storage. When the logger

divides the metadata file into metadata entries, it creates a linked list of metadata
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entries in storage by writing the pointer field for each metadata entry. The logger

only maintains pointers to the head and tail of the free list for each channel and,

therefore, can scale with the number of metadata entries.

To begin a new transaction, an application must have access to a previously

created log file. As mentioned in Section 3.4.1, the application maintains the log

file and specifies a log offset for each LogWrite or AtomicWrite request.

For each LogWrite request, the logger allocates a metadata entry, copies

the data to the log offset, records the request information in the metadata entry,

and then appends the metadata entry to the log.

For an AtomicWrite operation, the logger writes the data to the log and

immediately marks the transaction Committed, avoiding the extra delay required

to coordinate across multiple memory controllers.

The logger implements Commit by waiting for all outstanding writes to the

log area to complete and then marking the transaction as Committed.

There are two kinds of Abort operations that the logger performs: complete

and partial. For a complete Abort operation, the logger clears the transaction

status and deallocates the metadata entries. On a partial Abort, the logger frees

the metadata entries until the specified savepoint and makes the savepoint the new

head of the transaction’s metadata linked list.

A transaction is fully committed when all loggers have marked the transac-

tion as Committed in their transaction tables. The central controller (see next

subsection) then directs each logger to apply their respective log. To apply the log,

the logger reads each metadata entry in the log linked list. The transaction table

indicates the metadata entry at the head of the linked list, as well as the number

of entries in the list. For each metadata entry, the logger copies the redo data

from the log offset to its destination address. During log application, the logger

suspends other read and write operations to make log application appear atomic.

At the end of log application, the logger deallocates the transaction’s metadata

entries. Since logging and data updates occur locally at each memory controller,

logging and commit bandwidth scale with the number of controllers.
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The central controller A single transaction may require the coordinate efforts

of one or more memory controllers. The central controller (the left hand portion

of Figure 3.2) coordinates the concurrent execution of LogWrite, AtomicWrite,

Commit, Abort, and log recovery commands across the loggers. The central con-

troller also handles AtomicWrite commands. If an AtomicWrite specifies a write

that is within a stripe of 8 KB at a single memory controller, then the central con-

troller sends the AtomicWrite directly to the target logger. Otherwise, the central

controller breaks the AtomicWrite up into the appropriate LogWrite commands

followed by a Commit. In the first case, the central controller avoids the extra la-

tency to coordinate the commit across memory controllers. In either case, system

avoids an extra IO request for an explicit Commit.

Three hardware components work together to implement transactional op-

erations. First, the TID manager maps virtual TIDs from application requests to

physical TIDs and tracks the transaction commit sequence number for the system.

Second, the transaction scoreboard tracks the state of each transaction and en-

forces ordering constraints during commit and recovery. Finally, the transaction

status table exports a set of memory-mapped IO registers that the host system

interrogates during interrupt handling to identify completed transactions.

The central controller assigns a physical TID to incoming LogWrite and

AtomicWrite requests, unless they have already received a physical TID from a

previous request.

To perform a LogWrite the central controller breaks up requests along stripe

boundaries, sends local LogWrites to affected memory controllers, and awaits their

completion. To maximize performance, our system allows multiple LogWrites from

the same transaction to be in-flight at once. If the LogWrites are to disjoint areas,

they will behave as expected. However, if they overlap, the results are unpre-

dictable because parts of two requests may arrive at loggers in different orders. In

those cases, the application can enforce an ordering by issuing a barrier command

that will force outstanding LogWrite requests to finish before proceeding.

On Commit, the central controller increments the global transaction se-

quence number and broadcasts a commit command with the sequence number
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to the memory controllers that received LogWrites. The memory controllers re-

spond as soon as they have completed any outstanding LogWrite operations and

have marked the transaction as committed. When the central controller receives

all responses, it signals the loggers to begin applying the log and simultaneously

notifies the application that the transaction has committed. Notifying the ap-

plication before the loggers have finished applying the logs hides part of the log

application latency. This is safe since only a memory failure (e.g., a failing NVM

memory chip) can prevent log application from eventually completing. In that

case, we assume that the entire storage device has failed and the data it contains

is lost (see Section 3.4.3).

Implementation complexity Adding support for atomic writes to the baseline

system required only a modest increase in complexity and hardware resources. The

Verilog implementation of the logger required 1372 lines, excluding blank lines

and comments. The changes to the central controller are hard to quantify. Once

placed and routed on the FPGAs, adding the eight loggers and changing the central

controller increased hardware consumption by 26%.

3.4.3 Recovery

Our system coordinates recovery operations in the kernel driver rather than

in hardware to minimize complexity. There are two problems it needs to solve: The

first is that some memory controllers may have marked a transaction as Commit-

ted while others have not. In this case, the transaction must abort. Second, the

system must apply the transactions in the correct order as given by their commit

sequence numbers.

On boot, the driver scans the transaction tables at each memory controller

to assemble a complete picture of transaction state across all the controllers. It

identifies the TIDs and sequence numbers for the transactions that all loggers

have marked as Committed and sorts them by sequence number. The kernel

then issues a kernel-only WriteBack command for each of these TIDs that triggers

log replay at each logger. Finally, it issues Abort commands for all the other TIDs.
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Once this is complete, the array is in a consistent state, and the driver makes the

array available for normal use.

3.4.4 Testing and verification

To verify the atomicity and durability of our multi-part atomic write inter-

face, we added hardware support to emulate system failure and performed failure

and recovery testing. This presents a challenge since the DRAM that our proto-

type uses is volatile. To overcome this problem, we added support to force a reset

of the system, which immediately suspends system activity. During system reset,

we keep the memory controllers active to send refresh commands to the DRAM

in order to emulate non-volatility. We assume the system includes capacitors to

complete memory operations that the memory chips are in the midst of perform-

ing, just as many commercial SSDs do. To test recovery, we send a reset from the

host while running a test, reboot the host system, and run our recovery protocol.

Then, we run an application-specific consistency check to verify that no partial

writes are visible.

We used two workloads during testing. The first workload consists of 16

threads each repeatedly performing an AtomicWrite to its own 8 KB region. Each

write comprises a repeated sequence number that increments with each write. To

check consistency, the application reads each of the 16 regions and verifies that they

contain only a single sequence number and that that sequence number equals the

last committed value. In the second workload, 16 threads continuously insert and

delete nodes from our B+tree. After reset, reboot, and recovery, the application

runs a function to verify the consistency of the B+tree.

We ran the workloads over a period of a few days, interrupting them peri-

odically. The consistency checks for both workloads passed after every reset and

recovery.
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Figure 3.5: Latency breakdown for 512 B atomic writes Performing atomic
writes without hardware support (top) requires three IO operations and all the
attendant overheads. Using LogWrite and Commit reduces the overhead and
AtomicWrite reduces it further by eliminating another IO operation. The latency
cost of using AtomicWrite compared to normal writes is almost negligible.

3.5 Results

This section measures the performance of our multi-part atomic write prim-

itive and evaluates its impact on MARS as well as other applications that require

strong consistency guarantees. We first evaluate our system through microbench-

marks that measure the basic performance characteristics. Then, we present results

for MARS relative to a traditional ARIES implementation, highlighting the per-

formance improvement in a database setting. Finally, we show results for a set

of three complex persistent data structures and MemcacheDB [Chu], a persistent

key-value store for web applications.

3.5.1 Latency and bandwidth

Implementing atomic writes in hardware reduces the overhead of the multi-

phase write algorithms that applications traditionally use to write reliably to disk

(e.g., writing a log entry, marking it with a commit record, and writing the data

in-place).

Figure 3.5 shows the latencies of each stage of a 512 B atomic write im-



47

plemented three different ways: Using multiple, synchronous non-atomic writes

(“SoftAtomic”), using LogWrite followed by a Commit (“LogWrite+Commit”),

and using AtomicWrite. As a reference, we include the latency breakdown for a

normal write. For SoftAtomic we buffer writes in memory, flush the writes to a

log, write a commit record, and then write the data in place. We used a modified

version of XDD [xdd] to collect the data.

The figure shows the transitions between hardware and software and two

different latencies for each operation. The first is the commit latency between

command initiation and when the application learns that the transaction logically

commits (marked with “C”). For applications using atomic writes to implement

transactions (e.g., writing to a log), the commit latency is the critical latency. The

second latency, the write back latency is from command initiation to the completion

of the write back (marked with “WB”). At this point the TID becomes available

for use again and the in-place updates finished.

The largest savings (41.4%) come from reducing the number of DMA trans-

fers from three for SoftAtomic to one for the others (LogWrite+Commit takes two

IO operations, but the Commit does not need a DMA). Using AtomicWrite to

eliminate the separate Commit operation reduces latency by an additional 41.8%.

Because an aligned 512 B access targets a single memory controller, the hardware

can perform the atomic update at a single logger, eliminating the coordination

overhead with the central controller.

Figure 3.6 plots the effective bandwidth (i.e., excluding writes to the log)

for atomic writes ranging in size from 512 B to 512 KB. Our scheme increases

throughput by between 2 and 3.8× relative to SoftAtomic. The data also show

the benefits of AtomicWrite for small requests: transactions smaller than 4 KB

achieve 92% of the bandwidth of normal writes in the baseline system.

Figure 3.7 shows the source of the performance improvement for multi-part

atomic writes. It plots the total bytes read or written across all the memory

controllers internally. For writes, internal and external bandwidth are the same.

SoftAtomic achieves the same internal bandwidth because it saturates the PCIe

bus, but roughly half of that bandwidth goes to writing the log. LogWrite+Commit
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and AtomicWrite consume much more internal bandwidth (up to 5 GB/s), allowing

them to saturate the PCIe link with useful data and better utilize the memory

controllers.

3.5.2 MARS Evaluation

This section evaluates the benefits of MARS compared to a baseline imple-

mentation of ARIES. For this experiment, our benchmark transactionally swaps

objects (pages) in a large database-style table.

The baseline implementation of ARIES performs the undo and redo logging

required for steal and no-force. It includes a checkpoint thread that manages a

pool of dirty pages, flushing pages to the storage array as the pool fills.

Our MARS implementation uses multi-part atomic writes to eliminate no-

force and steal. The hardware implements a force policy at the memory controllers

and we rely on the log to hold the most recent copy of an object prior to commit,

giving us the benefits of a steal policy without requiring undo logging. Using a

force policy in hardware eliminates the extra IO requests needed to commit and

write back data. Removing undo logging and write backs reduces the amount of

data sent to the storage array over the PCIe link by a factor of two.

Figure 3.8 shows the throughput, measured in transactions per second,

for between 1 and 16 threads concurrently swapping objects of 4 KB, 16 KB, and

64 KB. The solid lines show the performance of MARS using atomic writes and the

dashed lines show the performance of the baseline implementation of ARIES. For

small transactions, where logging overheads are largest, our system outperforms

ARIES by as much as 3.7×. For larger objects, the gains are smaller—3.1× for

16 KB objects and 3× for 64 KB. In these cases, ARIES makes better use of the

available PCIe bandwidth, compensating for some of the overhead due to additional

logs writes and write backs. MARS also scales better than ARIES: We see 1.6×
speedup going from 4 threads to 8 threads for 4 KB objects, compared to a 0.5%

performance loss for ARIES.
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Figure 3.8: Comparison of MARS and ARIES Because fast NVMs have good
random write performance, there is little benefit to no-force and steal transactions.
With hardware support, MARS eliminates undo logging and write backs in order
to maximize bandwidth and minimize resource contention.

3.5.3 Persistent data structure performance

We evaluate our system’s impact on several light-weight persistent data

structures designed to take advantage of our user space driver and transactional

hardware support. The data structures include a hash table, a B+tree, and a large

scale-free graph that supports “six degrees of separation” queries.

The hash table implements a transactional key-value store. It resolves colli-

sions using separate chaining, and it uses per-bucket locks to handle updates from

concurrent threads. Typically, a transaction requires only a single write to a key-

value pair. But, in some cases an update requires modifying multiple key-value

pairs in a bucket’s chain. The footprint of the hash table is 32 GB, and we use 25 B

keys and 1024 B values for this experiment. Each thread in the workload repeat-

edly picks a key at random within a specified range and either inserts or removes

the key-value pair depending on whether or not the key is already present.

The B+tree also implements a 32 GB transactional key-value store. It

caches the index, made up of 8 KB nodes, in memory for quick retrieval. To support

a high degree of concurrency, it uses Bayer and Scholnick’s algorithm [BS77] based
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on node safety and lock coupling. The B+tree is a good case study for our system

because transactions can be complex: An insertion or deletion may cause splitting

or merging of nodes throughout the height of the tree. Each thread in this workload

repeatedly inserts or deletes a key-value pair at random.

Six Degrees operates on a large, scale-free graph representing a social net-

work. It alternately performs Dijkstra’s algorithm to find six-edge paths and mod-

ifies the graph by inserting or removing an edge. We use a 32 GB footprint for

the undirected graph and store it in adjacency list format. Rather than storing a

linked list of edges for each node, we use a linked list of edge pages, where each

page contains up to 256 edges. This allows us to read many edges in a single re-

quest to the storage array. Each transactional update to the graph acquires locks

on a pair of nodes and modifies each node’s linked list of edges.

Figure 3.9 shows the performance for three implementations of each work-

load running with between 1 and 16 threads. The first implementation, “Unsafe,”

does not provide any durability or atomicity guarantees and represents an upper

limit on performance. For all three workloads, adding ACID guarantees in soft-

ware reduces performance by between 28 and 46% compared to Unsafe. For the

B+tree and hash table, our atomic write support sacrifices just 13% of the perfor-

mance of the unsafe versions on average. Six Degrees, on the other hand, sees a

21% performance drop with atomic writes because its transactions are longer and

modify multiple nodes. Using atomic writes also improves scaling slightly. For

instance, the AtomicWrite version of HashTable closely tracks the performance

improvements of the Unsafe version, with only an 11% slowdown at 16 threads

while the SoftAtomic version is 46% slower.

3.5.4 MemcacheDB performance

To understand the impact of hardware transactional support at the appli-

cation level, we integrated our hash table into MemcacheDB [Chu], a persistent

version of Memached [mem], the popular key-value store. The original Mem-

cached uses a large hash table to store a read-only cache of objects in memory.

MemcacheDB supports safe updates by using Berkeley DB to make the key-value
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Figure 3.9: Workload performance Each set of lines compares the throughput
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Figure 3.10: MemcacheDB performance Adding hardware support for atom-
icity increases performance by 1.7× for eight clients, and comes within 15% of
matching the performance of an unsafe version that provides no durability.

store persistent. MemcacheDB uses a client-server architecture, and, for this ex-

periment, we run it on a single computer acting as both clients and server.

Figure 3.10 compares the performance of MemcacheDB using our hash ta-

ble as the key-value store (AtomicWrite) to versions that use volatile DRAM, a

BDB database (labeled “BDB”), an in-storage key-value store without atomicity

guarantees (“Unsafe”), and a SoftAtomic version. For eight threads, our system is

41% slower than DRAM and 15% slower than the Unsafe version. It is also 1.7×
faster than the SoftAtomic implementation and 3.8× faster than BDB. Note that

BDB provides many advanced features that add overhead but that MemcacheDB

does not need and our implementation does not provide. Beyond eight threads,

performance degrades because the application uses a single lock for updates.

3.6 Summary

Existing transaction mechanisms such as ARIES were designed to exploit

the characteristics of disk, making them a poor fit for storage arrays of fast, non-

volatile memories. This chapter presented a new WAL scheme, called MARS,
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designed for fast NVM-based storage. MARS provides the same set of features to

the application as ARIES does but utilizes a novel multi-part atomic write opera-

tion that takes advantage of the parallelism and performance of an advanced SSD

architecture. We demonstrated MARS and multi-part atomic writes in the Mon-

eta prototype storage array. Compared to transactions implemented in software,

our system increases effective bandwidth by up to 3.8× and decreases latency by

2.9×. When applied to MARS, multi-part atomic writes yield a 3.7× performance

improvement relative to a baseline implementation of ARIES requiring both redo

and undo logging of pages. Across a range of persistent data structures, multi-part

atomic writes improve operation throughput by an average of 1.4×.

MARS demonstrates the benefits of redesigning existing transaction mech-

anisms for fast storage. It achieves high performance and can be integrated into

established databases and other existing applications. This works well because

MARS relies on a block device abstraction for storage, as do many applications

built for disk. While this may be a good choice for PCIe-attached storage, it adds

overhead and restricts the interface to storage that could otherwise be accessed

just like main memory. In the next chapter, we consider a new abstraction for

storage that appears on the processor’s memory bus. This abstraction allows pro-

grammers to program persistent data in the same way they program volatile data.

We explore the issues related to supporting such an abstraction so that access to

data is fast, flexible, and safe.
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Chapter 4

NV-heaps

In the previous chapter, we presented hardware support for transactions

in a PCIe-attached storage array of fast, non-volatile memories and showed how

existing transaction mechanisms can be redesigned to exploit such a storage archi-

tecture. With a DRAM-like interface and similar performance, these new memories

can also be placed on the processor’s memory bus, providing the system with direct

access to fast storage. Direct access to storage enables programmers to build high-

performance, persistent data structures in the same way they build volatile data

structures. Instead of relying on untyped file-based IO operations, programmers

can use the features of modern programming languages to interact with storage.

However, for these data structures to be useful, there must be safety guar-

antees against failures and programmer errors. This means that the system must

prevent familiar bugs such as dangling pointers, multiple free()s, and locking er-

rors. In addition, the system must prevent new types of hard-to-find pointer safety

bugs that only arise with persistent objects. These bugs are especially dangerous

since any corruption they cause will be permanent.

This chapter presents a lightweight, high-performance persistent object sys-

tem called Non-volatile Memory Heaps (NV-heaps) that provides transactional se-

mantics while preventing dangerous programming errors and providing a model

for persistence that is easy to use and reason about. Section 4.1 makes the case

for NV-heaps by arguing that existing systems are a poor fit for fast, non-volatile

memories. In Section 4.2, we provide a system overview of NV-heaps and describe

56
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the guarantees it must provide for persistent data structures. Section 4.3 describes

the implementation of NV-heaps, and Section 4.4 presents an evaluation of NV-

heaps, showing both the overheads of the system and the performance relative to

existing persistent object systems. Finally, Section 4.5 summarizes the benefits of

NV-heaps in terms of both performance and safety in the presence of failures.

4.1 The Case for NV-heaps

The notion of memory-mapped persistent data structures has long been

compelling: Instead of reading bytes serially from a file and building data struc-

tures in memory, the data structures would appear, ready to use in the program’s

address space, allowing quick access to even the largest, most complex persis-

tent data structures. Fast, persistent structures would let programmers leverage

decades of work in data structure design to implement fast, purpose-built persis-

tent structures. They would also reduce our reliance on the traditional, un-typed

file-based IO operations that do not integrate well with most programming lan-

guages.

Many systems (e.g., object-oriented databases) have provided persistent

data structures and integrated them tightly into programming languages. These

systems faced a common challenge that arose from the performance and interface

differences between volatile main memory (i.e., DRAM) and persistent mass stor-

age (i.e., disk): They required complex buffer management and de(serialization)

mechanisms to move data to and from DRAM. Despite decades of work opti-

mizing this process, slow disks ultimately limit performance, especially if strong

consistency and durability guarantees are necessary. But, new non-volatile mem-

ory technologies, such as PCM and STTM, are poised to remove the disk-imposed

limit on persistent object performance. With a DRAM-like byte-addressable in-

terface and DRAM-like performance, these memories will come to reside on the

processor’s memory bus and will nearly eliminate the gap in performance between

volatile and non-volatile storage.

Neither existing implementations of persistent objects nor the familiar tools
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we use to build volatile data structures are a good fit for these new memories. Ex-

isting persistent object systems are not suitable, because the gap between memory

and storage performance drove many design decisions that shaped them. Recent

work [CCM+10, CDC+10] has shown that software overheads from the operat-

ing system, file systems, and database management systems can squander the

performance advantages of these memories. Removing these overheads requires

significant reengineering of the way both the kernel and application manage access

to storage.

Managing non-volatile memory like conventional memory is not a good solu-

tion either. To guarantee consistency and durability, non-volatile structures must

meet a host of challenges, many of which do not exist for volatile memories. They

must avoid dangling pointers, multiple free()s, memory leaks, and locking errors,

but they also must avoid several new types of hard-to-find programming errors. For

instance, pointers from non-volatile data structures into volatile memory are in-

herently unsafe, because they are meaningless after the program ends. The system

must also perform some kind of logging if non-volatile structures are to be robust

in the face of application or system failure. Trusting the average programmer to

“get it right” in meeting these challenges is both unreasonable and dangerous for

non-volatile data structures: An error in any of these areas will result in perma-

nent corruption that neither restarting the application nor rebooting the system

will resolve.

This thesis proposes a new implementation of persistent objects called Non-

volatile Memory Heaps (NV-heaps). NV-heaps aim to provide flexible, robust ab-

stractions for building persistent objects that expose as much of the underlying

memory performance as possible. NV-heaps provide programmers with a famil-

iar set of simple primitives (i.e., objects, pointers, memory allocation, and atomic

sections) that make it easy to build fast, robust, and flexible persistent objects.

NV-heaps avoid OS overheads on all common case access operations and pro-

tect programmers from common mistakes: NV-heaps provide automatic garbage

collection, pointer safety, and protection from several novel kinds of bugs that non-

volatile objects make possible. NV-heaps are completely self-contained, allowing
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the system to copy, move, or transmit them just like normal files.

In designing NV-heaps, our goals are to provide safe access to persistent ob-

jects, to make persistent objects easy to program, and to achieve high performance.

To this end, our system has the following of properties:

1. Pointer safety. NV-heaps, to the extent possible, prevent programmers

from corrupting the data structures they create by misusing pointers or mak-

ing memory allocation errors.

2. Flexible ACID transactions. Multiple threads can modify NV-heaps con-

currently. NV-heaps are robust against application and system failure.

3. Familiar interface. The programming interface for NV-heaps is similar to

the familiar interface for implementing volatile data structures.

4. High performance. Access to the data in an NV-heap is as fast as possible

relative to the speed of the underlying non-volatile memory.

5. Scalability. NV-heaps are designed to scale to very large (many gigabytes

to terabytes) data structures.

In the next section, we provide a system overview of NV-heaps and describe

its features in more detail.

4.2 NV-heaps: System Overview

The goal of NV-heaps is to make it easy to build and use robust, per-

sistent data structures that can exploit the performance that emerging non-

volatile, solid-state memories offer. To achieve this, NV-heaps provides an

easy-to-use application-level interface to a persistent object system tailored to

emerging non-volatile memories. The designs of previous persistent object sys-

tems [AH87, Cat94, BOS91, LLOW91, SKW92, WD94] focus on hiding disk la-

tency rather than minimizing software overhead, making them a poor fit for these

new memory technologies.
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collection, and transactions
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Non-volatile memory 
allocation and mapping

Non-volatile memory

Figure 4.1: The NV-heap system stack This organization allows read and
write operations to bypass the operating system entirely.

NV-heaps provide a small set of simple primitives: persistent objects, spe-

cialized pointer types, a memory allocator, and atomic sections to provide concur-

rency and guard against system or application failure. NV-heaps hide the details

of locking, logging, and memory management, so building a data structure in an

NV-heap is very similar to building one in a conventional, volatile heap.

To use an NV-heap, the application opens it by passing the NV-heap library

a file name. The library maps the NV-heap directly into the application’s address

space without performing a copy, which is possible because the underlying memory

is byte-addressable and appears in the processor’s physical address space. Once

the mapping is complete, the application can access the NV-heap’s contents via a

root pointer from which all data in the NV-heap is accessible.

Figure 4.1 shows the relationship between NV-heaps, the operating system,

and the underlying storage. A key feature of NV-heaps is that they give the

application direct access to non-volatile memory, eliminating operating system

overhead in most cases and significantly increasing performance.

In this section, we make the case for the strong safety guarantees that NV-

heaps provide. Then, we describe the transaction, pointer safety, performance,

and usability features that NV-heaps include along with a code example using
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NV-heaps. We discuss the differences between NV-heaps and existing persistent

object systems throughout. Section 4.2 describes the implementation in detail.

4.2.1 Preventing programmer errors

Integrating persistent objects into conventional programs presents multiple

challenges. Not only must the system (or the programmer) maintain locking and

memory allocation invariants, it must also enforce a new set of invariants on which

objects belong to which region of memory. Potential problems arise if one NV-

heap contains a pointer into another NV-heap or into the volatile heap. In either

case, when a program re-opens the NV-heap, the pointer will be meaningless and

potentially dangerous. Furthermore, violating any of these invariants results in

errors that are, by definition, persistent. They are akin to inconsistencies in a

corrupt filesystem.

If persistent objects are to be useful to the average programmer, they must

be fast and make strong safety guarantees. Providing a low-level interface and

expecting the programmer to “get it right” has proven to be a recipe for bugs

and unreliability in at least two well-known domains: Memory management and

locking disciplines. In both of those instances, there is a program-wide invariant

(i.e., which code is responsible for free()ing an object and which locks protect

which data) that the source code does not explicitly describe and that the system

does not enforce. A persistent object system must contend with both of these in

addition to the constraints on pointer usage in NV-heaps.

To understand how easy it is to create dangerous pointers in NV-heaps,

consider a function

Insert(Object * a, List<Object> * l) ...

that inserts a pointer to a non-volatile object, a, into a non-volatile linked list,

l. The programmer must ensure that a and l are part of the same non-volatile

structure, but there is no mechanism to enforce that constraint since it is not clear

whether a is volatile or non-volatile or which NV-heap it belongs to. One incorrect
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call to this function can corrupt l: It might, for instance, end up containing a

pointer from an NV-heap into volatile memory. In either case, if we move l to

another system or restart the program, l is no longer safe to use: The pointer to

object a that the list contains has become a “wild” pointer.

There is also real-world evidence that non-volatile data structures are dif-

ficult to implement correctly. Microsoft Outlook stores mail and other personal

information in a pointer-based Personal Folder File (PFF) file format [Met]. The

file format is complex enough that implementing it correctly proved difficult. In

fact, Microsoft eventually released the “Inbox Repair Tool” [mic] which is similar

to fsck-style tools that check and repair file systems.

Another system, BPFS [CNF+09], highlights what it takes to build a ro-

bust non-volatile data structure on top of raw non-volatile memory. BPFS imple-

ments a transactional file system directly atop the same kind of byte-addressable

non-volatile memories that NV-heaps target. BPFS uses carefully designed data

structures that exploit the file system’s tree structure and limited set of required

operations to make transactional semantics easy to implement in most cases. In

doing so, however, it enforces stringent invariants on those structures (e.g., each

block of data has only a single incoming pointer) and requires careful reasoning

about thread safety, atomicity, and memory access ordering. BPFS is an excellent

example of what skilled programmers can accomplish with non-volatile memories,

but average users will, we expect, be unwilling (or unable) to devise, enforce, and

reason about such constraints. NV-heaps remove that burden, and despite addi-

tional overheads, they still provide excellent performance (see Section 4.4).

Existing systems that are similar to NV-heaps, such as Rio Vista [LC97]

and Recoverable Virtual Memory (RVM) [SMK+93], provide direct access to byte

addressable, non-volatile memories and let the programmer define arbitrary data

structures. But these systems do not offer protection from memory allocation

errors, locking errors, or dangerous non-volatile pointers. Concurrent work on a

system called Mnemosyne [VTS11] goes further and provides a set of primitives

for operating on data in persistent regions. It would be possible to implement

the key features of NV-heaps using these primitives. Systems that target disk-
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based storage have either implemented persistent objects on top of a conventional

database (e.g., the Java Persistence API [BO06]) or in a specialized object-oriented

database [AH87, BOS91, Cat94, LLOW91, SKW92, WD94]. In these systems, the

underlying storage system enforces the invariants automatically, but they extract

a heavy cost in terms of software overhead.

4.2.2 Transactions

To make memory-mapped structures robust in the face of application and

system failures, the system must provide useful, well-defined guarantees about how

and when changes to a data structure become permanent. NV-heaps use ACID

transactions for this purpose because they provide an elegant method for mediating

access to shared data as well as robustness in the face of failures. Programmer-

managed locks cannot provide that robustness. Recent work on (volatile) trans-

actional memory [HM93, ST95, HWC+04, BDLM07, SATH+06, HLMS03, HF03]

demonstrates that transactions may also be easier to use than locks in some cases.

Systems that provide persistence, including persistent object

stores [LLOW91, LAC+96, SKW92, WD94], some persistence systems for

Java [BO06, MZB00], Rio Vista [LC97], RVM [SMK+93], Mnemosyne [VTS11],

Stasis [SB06], Argus [Lis88], and QuickSilver [HMSC87], provide some kind

of transactions, as do relational databases. However, the type of transactions

vary considerably. For example, Stasis provides page-based transactions using

write-ahead logging, a technique inspired by databases [MHL+92]. Mnemosyne

also uses write-ahead logging, but operates at the word granularity. RVM and

Rio Vista provide transactions without isolation, and RVM provides persistence

guarantees only at log flushes. Single-level stores have taken other approaches

that include checkpoints [SA02] and explicitly flushing objects to persistent

storage [Sol96].
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4.2.3 Referential integrity

Referential integrity implies that all references (i.e., pointers) in a program

point to valid data. Java and other managed languages have demonstrated the

benefits of maintaining referential integrity. They are able to avoid memory leaks,

“wild” pointers, and the associated bugs.

In NV-heaps, referential integrity is more important and complex than in a

conventional system. Integrity problems can arise in three ways, and each requires

a different solution.

Memory allocation NV-heaps are subject to the memory leaks and pointer

bugs that all programming systems face. Memory leaks, in particular, are more

pernicious in a non-volatile setting. Once a region of storage leaks away, reclaiming

it is very difficult. Preventing such problems requires some form of automatic

garbage collection.

NV-heaps use reference counting, which means that space is reclaimed as

soon as it becomes dead and that there is never a need to scan the entire NV-heap.

The system avoids memory leaks due to cycles by using a well-known technique:

weak pointers that do not affect reference counts. Several other garbage collec-

tion schemes [KW93, ONG93] for non-volatile storage have been proposed, and

integrating a similar system into NV-heaps is a focus of our ongoing work.

Previous systems have taken different approaches to memory management.

Non-volatile extensions to Java [ADJ+96, MZB00] provide garbage collection, but

Rio Vista [LC97], RVM [SMK+93], and Mnemosyne [VTS11] do not. Java’s

persistence API [BO06] requires the programmer to specify a memory manage-

ment policy via flexible (and potentially error-prone) annotations. Object-oriented

databases have taken a range of approaches from providing simple garbage collec-

tion [BOS91] to allowing applications to specify complex structural invariants on

data structures [AH87].

Volatile and non-volatile pointers NV-heaps provide several new avenues for

creating unsafe pointers because they partition the address space into a volatile
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memory area (i.e., the stack and volatile heap) and one or more NV-heaps.

This partitioning gives rise to four new types of pointers: Pointers within a

single NV-heap (intra-heap NV-to-NV pointers), pointers between two NV-heaps

(inter-heap NV-to-NV pointers), pointers from volatile memory to an NV-heap

(V-to-NV pointers), and pointers from an NV-heap to volatile memory (NV-to-V

pointers).

Ensuring referential integrity in NV-heaps requires that the system obey

two invariants. The first is that there are no NV-to-V pointers, since they become

meaningless once the program ends and would be unsafe the next time the program

uses the NV-heap.

The second invariant is that there are no inter-heap NV-to-NV pointers.

Inter-heap pointers become unsafe if the NV-heap that contains the object is not

available. Inter-heap pointers also complicate garbage collection, since it is im-

possible to tell if a given location in an NV-heap is actually dead if a pointer in

another (potentially unavailable) NV-heap may refer to it.

NV-heaps enforce these invariants via a simple dynamic type system. Each

pointer and each object carries an identifier of the heap (NV-heap or volatile heap)

that it belongs to. Mismatched assignments are a run-time error. As far as we

know, NV-heaps are the first system to explicitly identify and prohibit these types

of dangerous pointers. Rio Vista [LC97] and RVM [SMK+93] make no attempts to

eliminate any of these pointer types. Also, full-fledged persistent object systems

such as ObjectStore do not guard against these dangerous pointers, leaving the sys-

tem and underlying database vulnerable to corruption [HAG99]. However, other

systems effectively eliminate dangerous pointers. JavaCard [All09], a subset of

Java for the very constrained environment of code running on a smart card, makes

almost all objects persistent and collects them in a single heap. In Java’s persis-

tence API [BO06] the underlying database determines which NV-to-NV pointers

exist and whether they are well-behaved. It prohibits NV-to-V pointers through

constraints on objects that can be mapped to rows in the database.

Closing NV-heaps Unmapping an NV-heap can also create unsafe pointers.

On closing, any V-to-NV pointers into the NV-heap become invalid (but non-
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null). Our implementation avoids this possibility by unmapping NV-heaps only at

program exit, but other alternatives are possible. For instance, a V-to-NV pointer

could use a proxy object to check whether the NV-heap it points into is still open.

4.2.4 Performance and scalability

NV-heaps provide common case performance that is close to that of the

underlying memory for data structures that scale up to the terabyte range. All

common case operations (e.g., reading or writing data, starting and completing

transactions) occur in user space. NV-heaps make system calls to map themselves

into the application’s address space and to expand the heap as needed. Entering the

OS more frequently would severely impact performance since system call overheads

are large (e.g., 6 µs for a 4 KB read on our system) compared to memory access

time.

The result is a system that is very lightweight compared to previous persis-

tent object systems that include sophisticated buffer management systems to hide

disk latency [CDG+90, JLR+94, LLOW91, SKW92, WD94] and/or costly serializa-

tion/deserialization mechanisms [BO06]. Unlike these systems, NV-heaps operate

directly on non-volatile data that is accessible through the processor-memory bus,

thereby avoiding the operating system. Rio Vista [LC97] is similar to NV-heaps,

since it runs directly on battery-backed DRAM, but it does not provide any of the

safety guarantees of NV-heaps. Mnemosyne [VTS11] also provides direct access to

fast, non-volatile memories, but providing the level of safety in NV-heaps requires

more effort.

We have designed NV-heaps to support multi-terabyte data structures, so

we expect that the amount of non-volatile storage available in the system may

be much larger than the amount of volatile storage. To allow access to large

structures, NV-heaps require a fixed, small amount of volatile storage to access an

NV-heap of any size. NV-heaps also ensure that the running time of operations,

including recovery, are a function only of the amount of data they access, not the

size of the NV-heap.
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4.2.5 Ease of use

To be useful, NV-heaps need to be easy to use and interact cleanly with

each other and with existing system components. NV-heaps also need to make it

clear which portions of a program’s data are non-volatile and which NV-heap they

belong to.

NV-heaps exist as ordinary files in a file system in a manner similar to

previous persistent object store implementations [SKW92, WD94]. Using files for

NV-heaps is crucial because the file system provides naming, storage management,

and access control. These features are necessary for storage, but they are not

needed for systems like [QKF+09a, QSR09, ZZYZ09] that simply use non-volatile

memories as a replacement for DRAM.

Like any file, it is possible to copy, rename, and transmit an NV-heap. This

portability means that NV-heaps must be completely self-contained. The prohibi-

tion against NV-to-V and inter-heap NV-to-NV pointers guarantees this isolation.

An additional feature, relative pointers (described in Section 4.3), provides (nearly)

zero-cost pointer “swizzling” and makes NV-heaps completely relocatable within

an application’s address space.

We chose to make NV-heaps self-contained to make them easier to manage

with existing file-based tools. However, this choice means that NV-heaps do not

natively support transactions that span multiple NV-heaps. Implementing such

transactions would require that NV-heaps share some non-volatile state (e.g., the

“committed” bit for the transaction). The shared state would have to be available

to both NV-heaps at recovery, which is something that self-contained NV-heaps

cannot guarantee. It is possible to move objects between non-volatile data struc-

tures, but those structures need to reside in the same NV-heap.

While NV-heaps make it easy to implement non-volatile data struc-

tures, they do not provide the “orthogonal persistence” that persistent object

stores [LLOW91, WD94, SKW92] and some dialects of Java [DKM10, MZB00,

ADJ+96] provide. Orthogonal persistence allows programmers to designate an ex-

isting pointer as the “root” and have all objects reachable from that pointer become

implicitly persistent regardless of their type. This is an elegant abstraction, but
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using reachability to confer persistence leads to several potential problems. For

instance, the programmer may inadvertently make more data persistent than in-

tended. In addition, the abstraction breaks down for objects that cannot or should

not be made persistent, such as an object representing a network connection, a file

descriptor, or a secret key. Finally, it is possible for a single object to be reachable

from two roots, leading to the confusing situation of multiple copies of the same

object in two different persistent structures.

NV-heaps provide an alternative model for persistence. Each NV-heap has

a designated root pointer, and everything reachable from the root is persistent

and part of the same NV-heap. The difference is that the program explicitly

creates a persistent object in the NV-heap and attaches it to another object in

the heap with a pointer. This does not prevent all errors (e.g., it is still possible

to inappropriately store a file descriptor in an NV-heap), but it requires that the

programmer explicitly add the data to the NV-heap. It also prevents a single

object from being part of two NV-heaps. This model for persistence is similar to

what is imposed by the Thor [LAC+96] persistent object store, but Thor does so

through a type-safe database programming language.

4.2.6 Example

The code in Figure 4.2 provides an example of how a programmer can cre-

ate a non-volatile data structure using NV-heaps. The code removes the value

k from a linked list. Declaring the linked list class as a subclass of NV Object

marks it as non-volatile. The DECLARE POINTER TYPES, DECLARE MEMBER, and

DECLARE PTR MEMBER macros declare the smart pointer types for NV-to-NV and

V-to-NV pointers (NVList::NV Ptr and NVList::V Ptr, respectively) and declare

two fields. The declarations generate private fields in the class and public acces-

sor functions (e.g., get next() and set next()) that provide access to data and

perform the appropriate logging and locking operations.

The program uses NVHOpen() to open an NV-heap and then calls GetRoot()

to retrieve the root object of the NV-heap, in this case a list of integers. The

program stores the pointer to the linked list as a NVList::V Ptr, which is a volatile
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class NVList : public NVObject {
  DECLARE_POINTER_TYPES(NVList);
public:
  DECLARE_MEMBER(int, value);
  DECLARE_PTR_MEMBER(NVList::NVPtr, next);
};

void remove(int k)
{
  NVHeap * nv = NVHOpen("foo.nvheap");
  NVList::VPtr a = 
            nv->GetRoot<NVList::NVPtr>();
  AtomicBegin {
    while(a->get_next() != NULL) {
      if (a->get_next()->get_value() == k) {
        a->set_next(a->get_next()->get_next());
      }
      a = a->get_next();
    }
  } AtomicEnd; 
}

Figure 4.2: NV-heap example A simple NV-heap function that atomically
removes all links with value k from a non-volatile linked list.

pointer that will only exist for the duration of the function call. The AtomicBegin

operation starts a transaction. When the atomic section is complete (as indicated

by the AtomicEnd label), the NV-heap attempts to commit the changes. If the

transaction fails or if the system crashes, it will roll the operations back to restore

the list to its original state.

In the next section we describe the implementation of the NV-heaps library

in detail.

4.3 Implementing NV-heaps

Two considerations drove our implementation of NV-heaps: The need for

strong safety guarantees and our goal of maximizing performance on fast, non-

volatile memories. We implemented NV-heaps as a C++ library under Linux.

The system is fully functional running on top of a RAM disk backed by DRAM.

Below, we describe the technologies that NV-heaps target and the support they
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require from the OS and hardware. Then we describe our implementations of

memory management, reference safety, and transactions. Finally, we discuss the

storage overheads and how we validated our implementation.

4.3.1 Fast, byte-addressable non-volatile memories

NV-heaps target solid-state memory technologies that present a DRAM-like

interface (e.g., via LPDDR [jed09]) and achieve performance within a small factor

of DRAM. To evaluate NV-heaps we consider two advanced non-volatile memories:

phase change memory (PCM) and spin-torque transfer memory (STTM).

PCM stores data as the crystalline state of a chalcogenide layer [Bre08]

and has the potential to become a viable main memory technology as DRAM’s

scaling falters [LIMB09, QSR09, ZZYZ09]. PCM may also eventually surpass

flash memory in density according to the ITRS [ITR09]. The analysis in [LIMB09]

provides a good characterization of PCM’s performance and power consumption.

STTM stores bits as a magnetic orientation of one layer of a magnetic tunnel

junction [DSPE08]. We assume 22nm STTM technology and base our estimates

for performance on published papers [TKM+07, KTM+08] and discussions with

industry.

PCM and, to a lesser extent, STTM, along with most other non-volatile

memories require some form of wear management to ensure reasonable device life-

time. Many wear-leveling schemes are available [DAR09, LIMB09, ZZYZ09, CL09,

QKF+09a] and some can provide excellent wear-leveling at the memory controller

level for less than 1% overhead. NV-heaps (like BPFS [CNF+09]) assume that the

system provides this service to all the applications that use the storage.

4.3.2 System-level support

NV-heaps rely on a few simple facilities provided by the system. To the

file system, NV-heaps appear as normal files. To access them efficiently, the file

system should be running on top of the byte-addressable, non-volatile memory that

appears in the CPU’s physical address space. To open an NV-heap, the system uses
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mmap(). Normally, the kernel copies mmap()’d data between a block device and

DRAM. In a system in which byte-addressable, non-volatile memories appear in

the processor’s address space, copying is not necessary. Instead, mmap() maps the

underlying physical memory pages directly into the application’s virtual address

space. In our kernel (2.6.28), the brd ramdisk driver combined with ext2 provides

this capability.

The second requirement is a mechanism to ensure that previous updates to

non-volatile storage have reached the storage and are permanent. For memory-

mapped files, msync() provides this functionality, but the system call overhead

is too high for NV-heaps. Instead, NV-heaps rely on architectural support in the

form of the atomic 8-byte writes and epoch barriers developed for BPFS [CNF+09]

to provide atomicity and consistency. Epoch barriers require small changes to

the memory hierarchy and a new instruction to specify and enforce an ordering

between groups of memory operations. BPFS also provides durability support by

incorporating capacitors onto the memory cards to allow in-progress operations to

finish in the event of a power failure. We assume similar hardware support.

4.3.3 Memory management

The NV-heap memory management system implements allocation, auto-

matic garbage collection, reference counting, and pointer assignments as simple,

fixed-size ACID transactions. These basic operations form the foundation on which

we build full-blown transactions. The memory management system also provides

the support required to reload NV-heaps.

Atomicity and Durability The allocator uses fixed-size, non-volatile, redo-logs

called operation descriptors (similar to the statically-sized transactions in [ST95])

to provide atomicity and durability for memory allocation and reference-counted

pointer manipulation. There is one set of operation descriptors per thread and the

design ensures that a thread only ever requires one of each type of descriptor for

all operations. Epoch barriers ensure that the descriptors are in a consistent state

before the operation logically commits.
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void RCAssign(RefCountPtr& dstPtr, RefCountPtr& object) {

object->Lock();

/* Set up the operation descriptor */

opDescriptor->dstPtr = &dstPtr;

opDescriptor->newCount = object->refCount + 1;

EpochBarrier();

opDescriptor->valid = true;

EpochBarrier();

/* Apply the operation descriptor */

*(opDescriptor->dstPtr) = opDescriptor->object;

opDescriptor->object->refCount = opDescriptor->newCount;

EpochBarrier();

opDescriptor->valid = false;

EpochBarrier();

object->Unlock();

}

Figure 4.3: Pseudo-code for assignment to a reference counted pointer
This code uses a two-phase commit protocol to atomically and durably assign a
new value to a reference counting pointer and update the reference count on the
object.

Figure 4.3 contains the pseudo-code for atomically assigning the address of a

reference counted object to a reference counting pointer that is initially NULL. The

allocator uses a simple two-phase protocol to provide atomicity and durability. It

uses a non-volatile operation descriptor to record the changes required to perform

the assignment. In this case, the descriptor contains the address of the pointer

receiving the new value, the address of the reference counted object, and the new

value of the object’s reference count.

To gather this data, the code starts by recording the address of the ob-

ject. It then acquires a lock stored in the object that will prevent other threads

from concurrently modifying its reference count and/or destroying it. Once it has

gathered the rest of the data, the code uses an epoch barrier to guarantee that

the data is recorded in non-volatile memory. Then, it sets a valid bit and issues

another epoch barrier. At this point, the assignment has logically completed. It

then “plays” the operation descriptor by performing the necessary assignments.

Once the assignments are complete, it issues a third epoch barrier and then marks
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the descriptor invalid. In the case of one or more system failures, it can replay the

assignments as many times as needed.

Concurrency To provide support for concurrent accesses to objects, each per-

sistent object contains a lock that protects its reference count. The transaction

system protects the other data in the object.

Locks are volatile by nature because they only have meaning during run-

time. Therefore, to operate correctly, all locks must be released after a system

failure. This could necessitate a scan of the entire storage array, violating our

scalability requirement.

We avoid this problem by using generational locks : We associate a current

generation number with each NV-heap, and the system increments the generation

number when the NV-heap is reloaded. A generational lock is an integer. If the

integer is equal to the current generation number, a thread holds it, otherwise, it

is available. Therefore, incrementing the NV-heap’s generation instantly releases

all of its locks.

Allocation The allocator uses per-thread free lists and a shared global free list

to reduce contention. On allocation, if a thread’s free list does not contain a

suitable memory block, the thread acquires a lock on the global free list and uses

its operation descriptor to complete the allocation. If free space for the allocation

is not available in the global free list, the NV-heap library expands the file that

holds the NV-heap and maps that storage into the address space (similar to sbrk()

in a conventional volatile memory allocator).

During allocation, storage must atomically move from control of the alloca-

tor to control of the code that requested the allocation to prevent orphaned data.

The default behavior of a statement like

Foo * a = new Foo();

in C++ does not allow this, since there is a moment between the allocation and

the assignment when the allocated storage would be lost if the system crashed. To
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avoid this, NV-heaps provide a static allocator method, NVNew(), which allocates

storage, calls an object’s constructor if one exists, and performs the assignment to

the requester’s pointer all as part of one atomic operation.

A useful side-effect of NVNew() is that the allocate-assign operation can

atomically allocate and append a link in a singly-linked list. Our transaction

implementation uses this ability to, for instance, atomically append entries to a

non-volatile write log.

Prior work in memory management for multi-core systems played a part in

the design of the NV-heap allocator. Memory allocators such as Hoard [BMBW00]

use a global heap and per-thread heaps to efficiently support parallel applications.

McRT-Malloc is a memory allocator designed specifically for a software transac-

tional memory system in a multi-core environment [HSATH06].

Deallocation When the reference counting system discovers that an object is

dead, it deallocates the storage. The deallocation routine atomically calls the

destructor, deallocates the memory, and sets the requester’s pointer to NULL.

Deallocation is a potentially complex process since the destructor may cause the

reference counts on other objects to go to zero, necessitating their destruction as

well. NV-heaps must be able to restart this recursive destruction process in the

case of a system failure.

To implement atomic recursive destruction, the NV-heap records the top

level object to be destroyed in the root deletion operation descriptor and then

calls its destructor. When the destructor encounters a pointer to another object,

it checks that object’s reference count. If the reference count is one (i.e., this is

the last pointer to the object), it performs that deallocation using the non-root

deletion descriptor. This means that it calls the object’s destructor, and when the

destructor completes, it atomically deallocates the memory and sets the pointer

to NULL. If the reference count is greater than one, it atomically decrements the

reference count and sets the pointer to NULL.

This algorithm provides the useful guarantee that, if a destructor finds a

non-null pointer, it must point to a live object, albeit one that may have been

partially destroyed. However, even if the object has been partially destroyed,
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Figure 4.4: Restartable object destruction Durable, atomic reference count-
ing requires being able to restart the recursive destruction of a potentially large
numbers of objects. In this example the root node of a tree is destroyed and trig-
gers the deletion of the entire tree. After a system failure, the process resumes and
completes during the recovery process.

calling the destructor is still safe: The non-null pointers in the object point to live

objects and the NULL pointers have already been properly disposed of.

If a deletion causes a further recursive deletion, the non-root descriptor is

reassigned to that deletion. The combination of the root and non-root descriptors

provide a snapshot of the recursive deletion process that 1) requires only two

descriptors regardless of recursion depth and 2) allows the process to restart in the

case of failure.

On recovery, the NV-heap processes the non-root descriptor first to restore

the invariant that all non-null pointers in the structure point to valid objects. It

then restarts the root deletion, which will try to perform the same set of recursive

destructions. It will encounter NULL pointers up until the point of the system

failure and then resume deletion where it was interrupted.

Figure 4.4 shows the algorithm in action. The system has just begun to

delete a tree rooted at Root since the last pointer to it has just been set to NULL

by the application. In (a), the operation descriptor for the starting point for the

deletion holds the address of Root. The destruction proceeds by destroying the

left child, L, and setting the left child pointer in Root to NULL.



76

At this point (b), the system fails. During recovery, it finds a valid operation

descriptor and restarts the delete. Since the original destruction of L was atomic,

the pointer structure of the tree is still valid and the destruction operation can

destroy R (c) and Root before invalidating the operation descriptor (d).

The only caveat is that an object’s destructor may be called more than

once. In most cases, this is not a problem, but some idioms that require the

destructor to, for instance, track the number of live instances of an object will be

more difficult to implement. In our experience using the system, however, this has

not been a significant problem.

Reloading NV-heaps It must be possible for one program to load an NV-heap

created by another. This presents two challenges. The first is that the NV-heaps

may end up mapped into any part of the application’s address space. To support

this, our system implements NV-to-NV pointers as relative pointers: Instead of

holding the actual address (which would change from application to application

or execution to execution), the relative pointer holds an offset from the pointer’s

address to the data it points to. The conversion between relative pointer and

virtual addresses requires just a single add instruction.

The second challenge is the virtual table pointers stored in objects with

virtual methods. There is no guarantee that the virtual tables or virtual func-

tions will be at the same virtual address across executions. There are (at least)

two solutions: The first is to use generation numbers to determine if the virtual

table pointer has been update during the current generation (i.e., during the cur-

rent program’s execution), and, if it has not, overwrite it with the correct value

(obtained using the dynamic loader). In the common case, this adds an extra

integer comparison and branch (to check the generation) to each virtual method

call. To call a virtual method, a simple non-virtual stub function can implement

the generation-based scheme and call the virtual method. A second approach is

to modify the compiler to emit relocatable virtual pointer tables for non-volatile

classes and then store the necessary code in the NV-heap. This approach is prefer-

able, but requires changing C++’s application binary interface and type system.
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We have implemented the first option.

Recovery To recover from a system failure, the memory allocator performs the

following two steps. First, it replays any valid operation descriptors for basic

storage allocation and deallocation operations. Then, it replays any reference

count updates and reference counting pointer assignments, which may include the

recursive destruction process described above. When this is complete, all the

reference counts are valid and up-to-date and the recovery process moves on to the

transaction system.

4.3.4 Pointers in NV-heaps

The NV-heap library uses operator overloading to implement pointer types

for NV-to-NV, V-to-NV, and weak NV-to-NV pointers. Their assignment op-

erators, copy constructors, and cast operators work together with the memory

allocator to enforce correct semantics for each pointer type.

The pointers play a key role in preventing the creation of inter-heap NV-

to-NV pointers and NV-to-V pointers. NV-to-NV pointers are “wide” and include

a pointer to the NV-heap they belong to. Non-volatile objects contain a similar

pointer. The assignment operators for the pointer check that the assignment is

valid (i.e., that the pointer and the object belong to the same NV-heap).

The smart pointer types also allow NV-heaps to be relocatable. Instead of

holding the actual address (which would change from application to application or

execution to execution), the pointer holds an offset from the pointer’s address to

the data it points to.

Below we describe the implementation of each pointer type.

NV-to-NV pointers NV-heaps support two types of NV-to-NV pointers. Nor-

mal NV-to-NV pointers affect reference counts and are the most common type of

pointer in the applications we have written. They reside in the NV-heap and point

to data in the same NV-heap.

Weak NV-to-NV pointers are similar but they do not affect an object’s
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Figure 4.5: Implementing weak pointers In (a) two weak pointers and one
non-weak pointer all refer to an single object. The weak pointers access the object
indirectly via a proxy. When the object is destroyed (b), the weak pointers all
instantly become NULL, avoiding unsafe pointers.

reference count. Weak pointers are required to implement cyclic data structures

(e.g., doubly-linked lists) without introducing memory leaks. Ensuring that non-

null weak NV-to-NV pointers point to valid data requires that when the object

they refer to becomes dead (i.e., no more non-weak pointers refer to it), all the

weak pointers should atomically become NULL. This may lead to an unexpected

NULL pointer dereference, but it cannot result in corrupted data.

There are several options for implementing this behavior. One is to keep

a list of all the weak pointers and atomically set them to NULL serially. This

would be inefficient if the number of weak pointers were large, and it also requires

a variable-sized operation descriptor, which would add considerable complexity.

Instead, we use proxy objects to implement this behavior. Weak NV-to-NV

pointers refer indirectly to the object via a proxy that contains a pointer to the

actual object. When an object dies, its destructor sets the pointer in its proxy

to NULL, instantly nullifying all the weak pointers. The system manages proxy
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objects with reference counting, similar to regular objects, because they must

survive as long as there are weak pointers that refer to them.

Figure 4.5 gives an example. In (a) two weak and one non-weak pointers

refer to a single object. In (b) the non-weak pointer becomes NULL, triggering the

deallocation of the object. This sets the proxy’s non-reference counting pointer to

NULL. This makes all weak pointers effectively become NULL as well. The proxy

remains intact, since its reference count is non-zero. When the weak references are

assigned a different value or are destroyed, the proxy object’s reference count will

go to zero, and the system will reclaim it.

V-to-NV pointers There are three key requirements for V-to-NV references.

First, a V-to-NV reference must be sufficient to keep an object alive. Second,

when a program exits and all the V-to-NV references are destroyed, the objects’

reference counts must be adjusted accordingly. Third, the system must eventually

reclaim any objects that become dead when a program exits and destroys all of

the V-to-NV pointers.

To address these issues, we add a second count of V-to-NV references to

each object. One attractive solution is to store these counts in volatile memory.

This would ensure they were reset correctly on exit, but, in the event of a system

or application failure, the V-to-NV reference counts would be lost, making any

dead objects now impossible to reclaim.

Our implementation stores the count of volatile references in non-volatile

memory and uses the generation number technique we used for non-volatile locks

to reset it. To locate orphaned objects, the NV-heap maintains a per-thread list

of objects that only have V-to-NV references. On startup, the NV-heap reclaims

everything in the list.

4.3.5 Implementing transactions

NV-heaps provide fine-grain consistency through atomic sections that log all

updates to the heap in non-volatile memory. Atomic sections for NV-heaps build

on previous work developing transactional memory systems for volatile memo-
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ries [HM93, ST95, HWC+04, BDLM07, SATH+06, HLMS03, HF03]. The NV-heap

transaction system is software-only (except for epoch barrier support, and it re-

lies heavily on the transactional memory allocator and reference counting system

described in Sections 4.3.3 and 4.3.4. It uses reference-counted objects for all its

internal data structures.

Transactions in NV-heaps Our implementation of NV-heaps provides ACID

semantics for programs that meet two criteria: First, a program must use the

accessor functions to access object fields and it must not use unsafe casts to cir-

cumvent the C++ type system. Second, transactions should not access shared

volatile state, since the NV-heap transaction system does not protect it. We have

not found this to be a significant problem in our use of NV-heaps, but we plan to

extend the system to cover volatile data as well. Failure to adhere to the second

condition only impacts isolation between transactions.

The transaction implementation consists of three key data structures: (i)

an NV-heap base class from which all transactional objects inherit, (ii) a set of logs

(one per thread) implemented as a linked list of log entries, and (iii) an ownership

record table. The object base class provides per-object data including the reference

count, object size information, and an object ID.

The ownership record table is the only volatile structure that NV-heaps

rely on. Ownership records enforce exclusive write access and detect read-write

conflicts during transactions. Each ownership record is protected by a lock, and

it stores a pointer to the transaction that currently owns the data, if there is one,

and a version number. We use a table of ownership records stored in volatile

memory and indexed by the low-order bits of the unique object ID that the system

assigns at object creation time. Using a table of ownership records leads to some

unnecessary transaction aborts, but it has two key advantages. First, volatile locks

are faster than non-volatile locks. Second, using an array indexed by an ID avoids

the need for a more complicated map lookup on lock acquisition. In practice, we

find that the number of unnecessary aborts to be very low.

NV-heap’s log processing is the main difference relative to conventional

volatile transactional memory systems. NV-heaps must ensure that if the system
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fails in the midst of a transaction, the startup recovery code can restore memory

to the state it was in before any failed transaction began. This means that the

write log must be non-volatile. It also means that, in the case of multiple system

failures, it must be safe to re-start the restore procedure at any point. Similarly,

in the case of a commit, it must be safe to restart the log deletion at any point.

The read log, on the other hand, is volatile.

For each thread accessing the heap, the system maintains a read log and

a write log, implemented as linked lists of log entries. When a transaction wants

to modify an object, it must first be opened for writing, meaning the system will

make a copy of the object so that any changes can be rolled back in the case of

an abort or system/application failure. Figure 4.6 contains the pseudo-code for

TXOpenWrite(). The running transaction must take ownership of the object. If

another transaction owns the object already, then a write conflict has occurred

and the transaction aborts. After the transaction successfully retries and becomes

the owner, the NV-heap copies the object into the log along with a pointer to the

original object. To open an object for reading, NV-heaps store a pointer to the

original object and its current version number in the log.

The pointer in the log is a reference-counting pointer, just like all other

pointers to a transactional object, so creating the copy increments the original

object’s reference count. Likewise, when we create the copy, the reference counting

system also increments the reference counts on any objects referred to by pointers

in the object. This is necessary to postpone the deletion of objects until the

transaction commits.

When the copy is complete, the application can safely modify the original

object. If a system failure occurs or the transaction aborts, the NV-heap rolls back

the log entries by restoring the original data from the log, marking the log entry

as invalid, and then dropping the pointer to the log entry so that the reference

counting system deletes it. Note that is safe to perform the restore multiple times

(as might happen if the system crashed during recovery) since, during the re-

executions, previously completed assignments will have no effect.

It is also possible that the system will fail during the initial copy. In this
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void TXOpenWrite(RefCountPtr& p) {

TransactionPtr trans = getCurrentTransaction();

int index = hash(p->objID);

orecTable[index].acquireLock();

if (orecTable[index].owner == NULL) {

orecTable[index].owner = trans;

}

else if (orecTable[index].owner != trans) {

orecTable[index].releaseLock();

TXAbort();

return;

}

orecTable[index].releaseLock();

NVNew(log->tail->next);

newEntry = log->tail->next;

log->tail = newEntry;

NVNew(newEntry->copy);

*(newEntry->copy) = *p;

EpochBarrier();

newEntry->valid = true;

EpochBarrier();

}

Figure 4.6: Pseudo-code for opening a transactional object for modifi-
cation Before modifications are allowed, the NV-heap copies the object to the log
and marks the entry valid.
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case, the log entry will be invalid on restart, and dropping the pointer to the

entry will trigger its destruction. Here, the danger is in calling a destructor on

an object whose constructor has not completed and which might contain garbage

pointer values. The memory allocator prevents this by ensuring that the memory

it returns is all zeros, guaranteeing that all pointers are initially NULL.

We choose to copy entire objects to the log rather than individual object

fields, and this is a common trade-off in transactional memory systems. In NV-

heaps, each log operation requires an epoch barrier which has some performance

cost. Copying the entire object helps to amortize this cost, and it pays off most

when transactions make multiple updates to an object, which is a common feature

of the data structures that we studied.

NV-heaps borrow ideas from DSTM [HLMS03], RSTM [MSH+06], Dra-

coSTM [GC07], and McRT-STM [SATH+06]. NV-heaps is a blocking transactional

memory implementation that relies on writer locks and read versioning. The sys-

tem performs eager conflict detection of writes by requiring a transaction to become

the owner of an object before modifying it. Read conflicts are detected lazily by

validating objects version numbers at commit time. NV-heaps allow direct update

of objects in memory by making a copy of each object in the log as it is opened

for writing. The system maintains durability by storing undo logs for outstand-

ing transactions in non-volatile memory and rolling back uncommitted changes at

restart. The contention management scheme [SS05] backs off and retries in case of

conflict. NV-heaps flatten nested transactions into a single transaction.

Transaction abort and crash recovery The processes for aborting a transac-

tion and recovering from a system or application failure are very similar: NV-heaps

roll back the transaction by restoring data from the write log into the application’s

objects, marking log entries invalid, and deleting them as it goes. In the case of

a crash, the system first follows the recovery procedure defined in Section 4.3.3 to

ensure that the memory allocator is in a consistent state and all reference counts

are up-to-date.

An additional concern with crash recovery is that recovery must be

restartable in the case of multiple failures. NV-heaps recover from failure by only
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rolling back valid log entries and using an epoch barrier to ensure that an en-

try’s rollback is durably recorded in non-volatile storage before marking the entry

invalid.

4.3.6 Storage and memory overheads

The storage overheads of NV-heaps are small. Each NV-heap contains a

control region that holds the root pointer, pointers to the free lists, the operation

descriptors, version information, and the current generation number. The storage

requirement for the control area is 2 KB plus 1.5 KB per thread for operation

descriptors. The NV-heap also uses 0.5 KB of volatile memory.

NV-to-NV and V-to-NV pointers are 128-bits which includes a 64-bit rel-

ative pointer and dynamic type information to prevent assignments that would

create unsafe pointers. Each object includes 80 bytes of metadata including ref-

erence counts, a unique ID, ownership information, a generational lock, and other

state. For small objects such as primitive data types and pointers, we provide an

array object type to amortize the metadata overhead across many elements.

Supporting transactions requires 80 bytes of per-thread transaction state

(e.g., pointers to logs) in addition to storage for the write logs.

4.3.7 Validation

To validate our implementation of the NV-heap allocator and transaction

system, we created a set of stress tests that create complex objects and perform

concurrent transactions on them. These tests exercise the concurrency and safety

of the memory allocation operations, pointer assignments, and the user-defined

transactions which run on top of them. We run these tests with up to eight threads

for long periods (many hours) and observe no deadlock or data corruption.

To test recovery from failures, we run the tests and kill the program with

SIGKILL at random intervals. During the recovery process we record which logs and

operation descriptors the recovery system processes. Then we perform a consis-

tency check. After killing our test programs thousands of times, we have observed
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numerous successful recoveries involving each descriptor and log type. In all cases,

the recoveries were successful and the consistency checks passed.

4.4 Results

This section presents an evaluation of NV-heaps. We describe the test

system and then present experiments that measure basic operation latency. Next,

we evaluate its scalability and performance on a range of benchmarks. We examine

the overheads that NV-heaps incur to provide strong safety guarantees. Then, we

compare NV-heaps to Stasis [SB06] and BerkeleyDB [ora], transactional storage

systems that target conventional block devices. Finally, we evaluate performance at

the application level by implementing a version of Memcachedb [Chu], a persistent

key-value store for dynamic Web applications, using NV-heaps.

4.4.1 System configuration

We present results collected on two-socket, Core 2 Quad (a total of 8 cores)

machines running at 2.5 GHz with 64 GB of physical DRAM and 12 MB L2

caches. These machines are equipped with both a conventional 250 GB hard drive

and a 32GB Intel Extreme flash-based SSD. We configure the machines with a

32GB RAM disk. We use 24 GB for emulated non-volatile memory and 8 GB for

program execution. For the experiments that use disks and the SSD we report

“wall clock” timing measurements.

4.4.2 Basic operation performance

Table 4.1 summarizes the basic operation latencies for four different versions

of NV-heaps that isolate the various overheads that NV-heaps incur. The first

version, NoDur, is a volatile transactional memory system without support for

durability. The second version is NV-heaps running on DRAM. The third and

fourth versions are NV-heaps running on emulated STTM and PCM, respectively.

The latencies we measure are meant to highlight the overhead of working
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Table 4.1: Basic operation latency for NV-heaps Support for durability and
the increased latency for PCM and STTM both extract a toll in terms of basic
operation latencies. Some latencies for “new/delete” are listed as <0.1 because of
inconsistencies due to caching effects.

NV-heaps version NoDur DRAM STTM PCM
(µs) (µs) (µs) (µs)

new/delete <0.1 <0.1 0.75 2.16
V-to-NV ptr 0.08 0.13 0.13 0.13
NV-to-NV ptr 0.13 0.25 0.72 1.68
weak NV-to-NV ptr 0.15 0.25 0.78 1.84
nop tx 0.05 0.05 0.05 0.05
log for read 0.21 0.26 0.26 0.26
log for write 1.00 1.99 5.55 12.67

with persistent objects in NV-heaps. The value for “new/delete” is the time to

allocate and deallocate a very small object. The three “ptr” rows give the time to

assign to a pointer and then set it to NULL. The “nop tx” is the time to execute

an empty transaction. “Log for read” and “Log for write” give the times to log an

object before access.

The most expensive operation is logging an object for writing. This oper-

ation only occurs once per modified object per transaction and requires an allo-

cation, a copy, one pointer manipulation, and several epoch barriers. The NoDur

version of logging an object for writing avoids epoch barriers, so it is able to com-

plete the operation in half the time. The cost of an epoch barrier depends on the

size of the epoch, meaning how much data is updated, and whether or not the

corresponding cache lines have been written back yet. Our operation descriptors

tend to be small, so the cost is often the time to flush a only single cache line.

In contrast, V-to-NV pointer manipulation and read logging are extremely

inexpensive, because they do not require durability guarantees or, therefore, epoch

barriers. In fact, these operations can occur entirely in the CPU’s caches, so the

impact of longer memory latencies is minimal.

The PCM and STTM data show the impact that slower underlying memory

technology will have on basic operation performance. PCM’s longer write latency

increases the cost of write logging by 6.4× relative to DRAM. STTM shows a
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Figure 4.7: Transaction microbenchmark performance. Graph (a) shows
update throughput as we scale the number of elements the transaction modifies,
highlighting the overheads of our software in the absence of contention. When
multiple thread contend for write access to the same array element, as shown in
(b), their execution is serialized. As contention decreases, performance scales more
linearly with thread count.

smaller increase — just 2.8×. Compared to NoDur, NV-heaps running in DRAM

suffers from an average 1.5× (2× worst case) latency increase due to the added

epoch barriers.

Figure 4.7(a) shows how performance scales with transaction size. It mea-

sures throughput for updates to an array of one million elements as we vary the

number of updates performed in a single transaction from one to 256. The overhead

of beginning and completing a transaction is most pronounced for transactions that

access only a single element. Increasing the number of elements to four amortizes

most of this cost, and beyond that, the improvement is marginal. Overall, the

scaling is good: Eight threads provide 7.5× the throughput of a single thread.

Figure 4.7(b) highlights the effect of contention for write access to shared

data. We measure write throughput for various array sizes with each transaction

accessing only a single element. Under high contention (array sizes of one, four, and

16), we see that throughput is nearly independent of the total number of threads.

For larger arrays, contention is minimized and there are fewer aborts which results

in an overall throughput that scales with the number of threads, delivering over

6× speedup with 8 threads.
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Table 4.2: NV-heap workloads We use six workloads of varying complexity to
evaluate NV-heaps.

Name Footprint Description
SPS 24 GB Random swaps between entries in an 8 GB array of

integers.
SixDegs 8 GB Concurrently performs two operations: 1) Search for

a path of length no more than six between two ver-
tices in a large, scale-free graph 2) modify the graph
by inserting and removing edges.

BTree 4 GB Searches for an integer in a B-tree. Insert it if it is
absent, remove it otherwise.

HashTable 8 GB Searches for an integer in an open-chain hash table.
Insert it if it is absent, remove it otherwise.

RBTree 24 GB Searches for an integer in a 24 GB red-black tree.
Insert it if it is absent, remove it otherwise.

SSCA 3 MB A transactional implementation of SSCA 2.2 [BM05].
It performs several analyses of a large, scale-free
graph.

4.4.3 Benchmark performance

Because existing interfaces to non-volatile storage make it difficult to build

complex data structures in non-volatile memory, there are no “off the shelf” work-

loads with which to evaluate our system. Instead, we have written a set of bench-

marks from scratch and ported an additional one to use NV-heaps. Table 4.2

describes them.

Figure 4.8 shows the performance of the benchmarks. The numbers inside

each bar are the operations (inserts/deletes for BTree, RBTree, and HashTable;

path searches for SixDegs; updates or swaps for SPS; iterations through the outer

loop of the final phase for SSCA) per second. The graph normalizes performance

to NoDur with one thread.

The difference between the NoDur and DRAM bar in each group shows that

adding durability to the transaction and memory management systems reduces

performance by 40% on average. The cost is largest for SixDegs, because it executes

complex transactions and requires frequent epoch barriers. The remaining bars

show that the impact of increasing latency of the underlying memory technology

is roughly proportional to the change in latency.
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Differences in program behavior lead to varied scaling behavior. SPS,

HashTable, and BTree scale very well (7.6×, 7.3×, and 7×, respectively, with

8 threads), while SixDegs and SSCA scale less well due to long transactions and

additional conflicts between atomic sections with increasing thread count. We

have found that much of this contention is due to the applications rather than

NV-heaps. For instance, reducing the search depth in SixDegs from six to one

improves scalability significantly.

4.4.4 Safety overhead

To understand the performance overhead of the safety guarantees that NV-

heaps offer, we created a version of NV-heaps, similar to Rio Vista [LC97], that

provides a bare minimum set of features for building persistent data structures.

This version, NV-heap Unsafe, provides checkpoint-based transactions without

support for concurrency. It does not provide automatic garbage collection or place

any constraints on pointers (e.g., NV-to-V and inter-heap NV-to-NV pointers are

allowed).

Figure 4.9 compares the performance of NV-heap Unsafe to our baseline

NV-heaps implementation. On average, NV-heap Unsafe performs 8.2× better

for these workloads. While the increase in performance is significant, the lack

of safety guarantees can be catastrophic in the event of application or system

failure. For example, one wrong pointer assignment could corrupt the heap in a

way that makes it unusable. To retain the same level of safety as NV-heaps, the

programmer must implement many of the same features that NV-heaps provides

including logging, locking, and recovery operations. This development cost is high,

and we will discuss it in more detail in the next chapter.

The figure also helps quantify the value of avoiding the operating system

for common-case accesses. We created a version of NV-heaps, NV-heap Msync,

that uses msync() in place of epoch barriers to enforce ordering. In this version,

a durable update requires a system call and a trip through the Linux IO stack,

resulting in large software overheads: NV-heap Msync is 35× slower than normal

NV-heaps running on a RAM-disk.
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Figure 4.9: Safety overhead in NV-heaps Removing safety guarantees im-
proves performance by as much as 8.2× for these workloads, but the resulting
system leaves the heap open to data corruption.

4.4.5 Comparison to other systems

This section compares NV-heaps to two other systems that also provide

transactional access to persistent state. We compare NV-heaps to Stasis [SB06],

a persistent object system that targets disk and BerkeleyDB [SO92], a lightweight

database. Both of the systems provide ACID transactions.

NV-heaps, Stasis, and BerkeleyDB have a similar high-level goal — to pro-

vide an easy-to-use interface to persistent data with strong consistency guarantees.

Stasis and BerkeleyDB, however, target conventional spinning disks rather than

byte-addressable storage. This means they must use system calls to force updates

to disk and provide durability while NV-heaps take advantage of fast epoch barriers

to enforce ordering.
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Figure 4.10: Comparison to other persistent storage systems NV-heaps
outperform Berkeley DB and Stasis by 33 and 244× on average in large part
because NV-heaps do not require system calls to provide durability guarantees.

Figure 4.10 compares NV-heap DRAM, NV-heap STTM, and NV-heap

PCM to Stasis and BerkeleyDB running on three different hardware configura-

tions: An enterprise hard disk, an Intel Extreme 32 GB SSD, and a RAM-disk.

We implemented the data structures in Stasis ourselves. We used BerkeleyDB’s

built-in BTree and HashTable implementations and implemented SixDegs by hand.

The vertical axis is on a log scale. The program runs are for four threads, and

we used 4 GB data sets to keep initialization times manageable for the disk-based

runs.

The first six bars in each group measure BerkeleyDB’s and Stasis’ perfor-

mance on disks, SSDs, and the RAM-disk. The data show that while BerkeleyDB

and Stasis benefit from running on fast non-volatile memory (e.g., BerkeleyDB on
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the RAM-disk is 3.2× faster than on the SSD and 24× than running on disk), the

benefits are only a fraction of the raw speedup that non-volatile memories provide

compared to SSDs and hard disks.

The next three bars in each group show that NV-heaps do a much better job

exploiting that raw performance. NV-heap DRAM is between 2 and 643× faster

than BerkeleyDB, and the performance difference for Stasis is between 13 and

814×. Two components contribute to this gap. The first is the fsync() and/or

msync() required for durability on a block device. Removing this overhead by

disabling these calls (and sacrificing durability) improves performance by between

2 and 10× for BerkeleyDB. The remaining gap in performance is due to other

software overheads.

Comparing NV-heap performance to BerkeleyDB demonstrates that NV-

heaps are both flexible and efficient. The NV-heap PCM BTree is 6.7× faster than

BerkeleyDB running on the same technology, despite the fact that the BerkeleyDB

version is a highly-optimized, specialized implementation. In contrast, the NV-

heap implementation uses just the components that NV-heaps provide. We see

similar performance for SPS and HashTable. For SixDegs, BerkeleyDB is nearly

as fast as the NV-heaps, but this is, in part, because the BerkeleyDB version does

not include reference counting. Removing dead nodes from the graph requires a

scan of the entire table that stores them.

It is worth noting that our results for comparing BerkeleyDB and Stasis do

not match the results in the original Stasis paper [SB06]. We suspect this is due

to improvements in BerkeleyDB over the past five years and/or inefficiencies in

our use of Stasis. However, assuming results similar to those in the original paper

would not significantly alter the above conclusions.

4.4.6 Application-level performance

This section measures the impact of NV-heaps at the application level.

We focus on Memcachedb [Chu], a version of Memcached [mem] that provides a

persistent key-value store. By default, Memcachedb uses BerkeleyDB to store the

key-value pairs and provide persistence.
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Figure 4.11: Memcached performance Using NV-heaps brings performance
to within 8% of the original, non-durable Memcached, and the NV-heaps version
achieves 39× higher throughput than Memcachedb (BDB Safe) which provides
similar safety guarantees.

Our version of Memcachedb uses the NV-heap open-chaining hash table

implementation we evaluated in Section 4.4.3 to hold the key-value store. All

operations on the key-value store are transactional.

Figure 4.11 shows the throughput of insert/delete operations for the original

Memcached application, the Berkeley DB implementation (Memcachedb), and our

NV-heap implementation. All tests use 16 byte keys and 512 byte values. The

multi-threaded client test program uses the libMemcached [Ake] library, and it

runs on the same machine as the server to put maximum pressure on the key-value

store. We measure performance of the BerkeleyDB-based version of Memcachedb

with (BDB Safe) and without (BDB Fast) synchronous writes. Memcachedb uses

the BerkeleyDB hash table implementation and runs on a RAM disk.

Compared to the original Memcached running in DRAM, adding persis-

tence with NV-heaps results in only an 8 to 16% performance penalty depending

on the storage technology. When we run NV-heaps without durability (NoDur),

performance is within just 5% of Memcached, indicating that the overhead for

durability can be low in practice.
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The data show that our hash table implementation provides much higher

throughput than BerkeleyDB and that the overhead for providing transactional

reliability is much lower with NV-heaps. NV-heap DRAM outperforms BDB Safe

by up to 39× and NV-heap NoDur outperforms BDB Fast by 3.9×. BerkeleyDB

provides many features that our hash table lacks, but for this application those

features are not necessary. This highlights one of the advantages of NV-heaps —

they allow programmers to provide (and pay the performance penalty for) only

the features they need for a particular application.

4.5 Summary

Emerging non-volatile memories will appear on the processor’s memory

bus, giving programmers direct access to fast storage. While we can build high-

performance, persistent data structures in an intuitive and familiar way, we must

have strong consistency guarantees in the face of failures or programmer errors.

NV-heaps, a system for creating persistent data structures on top of fast, byte

addressable, non-volatile memories, provides these guarantees.

NV-heaps prevent several classes of well-known programming errors as well

as several new types of errors that arise only in persistent data structures. As a

result, NV-heaps allow programmers to implement very fast persistent structures

that are robust in the face of system and application failures. The performance

cost of the protections that NV-heaps provide is modest, especially compared to

the overall gains that non-volatile memories can offer. NV-heaps outperform ex-

isting persistent object stores such as BerkeleyDB and Stasis by 32× and 244×,

respectively, because they avoid the operating system and lowers software over-

heads.

While NV-heaps present a new abstraction for storage that provides strong

safety guarantees, there are performance overheads due to the features they pro-

vide. There are also limitations to what NV-heaps can guarantee as a result of our

library-based implementation. For example, programmers can perform arbitrary

pointer arithmetic, circumventing our smart pointer types. In the next chapter, we
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present programming language support and a series of programming models that

address these issues. We introduce a core language based on Java that contains the

features NV-heaps require, and we describe a novel static dependent type system

that enforces the necessary invariants about NV-heaps and references.
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Chapter 5

Language Support

In Chapter 4, we introduced NV-heaps, a persistent object system designed

for fast, non-volatile memories that provides high performance and strong safety

guarantees. NV-heaps offer a flexible programming model for storage, but this

flexibility creates opportunities for data corruption that do not exist in a system

with a well-defined and restricted interface (e.g., block-based file IO in a database).

At the same time, the features that NV-heaps make available to ensure safety in the

presence of failures and programmer errors (i.e., transactions, garbage collection,

safe pointers) can result in significant performance overheads, relative to an unsafe

implementation. Ultimately, the usefulness of NV-heaps will depend on the level

of the safety guarantees, ease of use, and performance that it provides.

This chapter describes programming language support for NV-heaps in an

effort to address these issues. Language support hardens the NV-heaps interface,

minimizing the potential for unsafe operations. We present a Java-like language

that allows programmers to build persistent data structures, and we describe a new

static dependent type system for persistent data, along with the compile-time and

run-time support that it requires. The language and type system support several

different programming models, outlined below, which offer varying levels of safety,

performance, and ease of use.

97
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Layer 1: Base (Section 5.1) The first layer implements a basic model of NV-

heaps. It uses a static dependent type system to maintain the key invariants

essential for safety and an efficient implementation. Memory management is

largely manual, and while very efficient, it does not prevent dangling refer-

ences. It provides coarse-grained consistency guarantees through checkpoint-

ing.

Layer 2: Safe (Section 5.2) The second layer increases safety by adding auto-

matic memory management to Base, while sacrificing some performance.

Layer 3: Tx (Section 5.3) The third layer extends the Safe layer with lan-

guage support for single-threaded transactions, which allow the programmer

to enforce fine-grained consistency in the presence of application or power

failures.

Layer 4: C-Tx (Section 5.4) The fourth layer extends Tx with language support

for multi-threaded transactions, which allow multiple threads to access an

NV-heap while maintaining consistency of persistent data.

The remainder of this chapter is organized as follows. Sections 5.1

through 5.4 describe each programming model and its implementation. Section 5.5

presents a brief survey of related work in language support. Section 5.6 evaluates

the performance of the different programming models for NV-heaps. In Section 5.7,

we discuss some of the limitations of our current NV-heaps implementation, and in

Section 5.8, we present some ideas for future work that would improve the safety,

programmability, and performance of our system. Finally, Section 5.9 summarizes

the benefits of language support for NV-heaps.

5.1 Layer 1: Base

The first layer, Base, provides the bare minimum facilities for writing pro-

grams that can usefully access non-volatile memory. This layer introduces the

basic interface to NV-heaps that subsequent layers use.
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We present a core language that captures the essence of the programming

model NV-heaps expose to the developer. We start by describing the invariants

that programs must have to safely and efficiently access NV-heaps (Section 5.1.1).

Next, we give an informal overview of the programming model (Section 5.1.2).

Then, we present a type system for NV-heaps and show how it ensures the key

properties (Section 5.1.3). After that, we describe our implementation of this layer

(Section 5.1.4) and discuss the safety and performance implications of program-

ming with Base (Section 5.1.5).

5.1.1 Requirements and Invariants

Base allows developers to safely and efficiently reap the benefits of non-

volatile memory by providing a set of facilities that make it easy to use and exploit

low-level access to fast storage. Base allows programmers to directly use and ma-

nipulate references to locations in an NV-heap. We now describe the requirements

to support the Base layer.

Isolation Rather than just expose a monolithic non-volatile store, Base allows

programmers to distinguish between different NV-heaps. Explicitly separating

NV-heaps makes it easy to isolate one store from the others, making it possible to

efficiently move or copy a store.

References Effectively isolating NV-heaps from each other and the conventional

volatile heap requires us to consider four different types of references (mentioned

previously in Section 4.2.3): References within a single NV-heap (intra-heap NV-

to-NV references), references between two NV-heaps (inter-heap NV-to-NV refer-

ences), references from volatile memory to an NV-heap (V-to-NV references), and

references from an NV-heap to volatile memory (NV-to-V references). To enforce

isolation, we must ensure that NV-heaps satisfy two critical invariants:

Invariant 1: No NV-to-V references The language must disallow NV-to-V

references as they become meaningless once the program ends and would be unsafe
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the next time the NV-heap is used.

Invariant 2: No inter-heap NV-to-NV references We prohibit inter-store

NV-to-NV references as they compromise isolation in several ways. First, inter-

heap references complicate garbage collection: It is impossible to tell if a given

location in an NV-heap is actually unreachable if a reference in another (poten-

tially unavailable) NV-heap may refer to it. Second, inter-heap references make it

difficult to determine (manually, or automatically) whether a given NV-heap can

be closed, meaning it is no longer in use by a program.

5.1.2 Programming Model

Base enforces the invariants via a Java-like imperative programming model

where each type is refined with a heap-index that describes the heap in which the

associated value is stored. For expressivity, we allow programs to dynamically

generate and pass around heap-indices. However, we enforce the key invariants

by using a static dependent type system. We now describe the components of the

language defined by Base (see Figure 5.1).

Heap Indices Base refines each type with a heap index that precisely describes

the NV-heap in which the corresponding value resides. A heap index h is either a

constant like hvol which is a special constant denoting the volatile heap, or a heap

variable hx that describes some heap that will be exactly identified at run-time.

Types We use the heap indices to refine each type. Figure 5.1 summarizes the

set of types in our language. To simplify the exposition, we use a Java-like model

for references, and restrict our types, τ , to be either base values like integers (Int)

or records composed of a finite set of fields f1 . . . which have the types τ1 . . .,

respectively. In other words, the programmer does not see explicit pointers. All

variables are implicitly references and there is no address-of operation or pointer

arithmetic. For example, in our system the following code defines a doubly-linked

list of integers:
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H ::= Heap Index
| c heap constants
| hx heap variables

B ::= Base Types
| Int integer
| String string

τ ::= Types
| B base
| {τ1f1 . . .} record

T ::= Heap Types
| Heap(h) heap
| τ〈h〉 type-in-heap

e ::= Expressions
| x read-var
| e.f read-fld
| open(e) heap-open
| close(e) heap-close
| checkpoint(e) heap-checkpoint
| heapof(e) heap-of
| null in e null
| new τ in e new
| free(e) delete
| (τ)Root(e) get-root
| [h . . .]fn(e . . .) call

s ::= Statements
| skip skip
| T x; s type-decl
| s1; s2 sequence
| if e s1 s2 if-then-else
| while e s while loop
| x=e write-var
| e.f=e write-fld
| Root(e1)=e2 set-root

f ::= ∀hx . . . : T fn(T1 x1 . . .){ Functions
s; return e

| }
p ::= f1 . . . Programs

Figure 5.1: Syntax of Types The Base programming model provides a Java-
like language that allows the programmer to refine a type with a heap-index.
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type struct DList { Int data;

DList next;

DList prev;}

Heap-indexed Types A heap-indexed type (or heap-type), T , is either (1)

Heap(h) denoting an explicit index that identifies a particular NV-heap, or (2)

τ〈h〉 where τ is a type and h is the heap-index that describes where values of the

type are stored. For example, Heap(hvol) is a type whose (singleton) values de-

scribe the volatile heap. As another example, DList〈h〉 describes a doubly-linked

list that is stored in the heap h. We do not refine the individual field of each

structure, as our type system ensures that all references stored within a structure

(e.g., the next and prev fields) refer to elements stored in the heap described by

the “top-level” index. Note that our type system ensures that heap indices cannot

be stored inside records, and hence, cannot be stored inside NV-heaps.

Expressions and Statements The Java-like imperative language of Base in-

cludes the expressions and statements summarized in Figure 5.1. The NV-heap

is read from using variable (x) and field read (x.f) expressions, and written to

using variable (x=e) and field write (x.f=e) statements. Other expressions e of

our language include variable reads x, constants c (e.g., integer, string constants),

primitive operations e1ope2, and special heap operations that we describe shortly.

Other statements s of our language include sequencing s1; s2, branch statements

if e s1 s2, and while-loops while e s. The functions of our language are of the

form: fn(T1 x1 . . .){s; return e} where the heap indices appearing in the param-

eters’ types T1 are (universally quantified) type parameters. A program is a set of

functions, with a distinguished function main.

Heap Operations Our language contains several new operations that allow the

programmer to safely access NV-heaps in a manner that preserves the key invari-

ants. These operations are typed variants of well-known primitives.

open(e) opens the NV-heap identified by the string expression e and returns a

heap index corresponding to the newly opened heap. This operation creates
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or opens a new heap after a program starts.

close(e) closes the NV-heap indexed by the value that e that evaluates to.

After an NV-heap is closed, all V-to-NV references into it become invalid.

We address this danger in Section 5.2.

checkpoint(e) atomically commits changes made to the NV-heap indexed by the

value that e evaluates to since the last checkpoint or since the NV-heap was

opened. Thus, Base provides checkpoint consistency : changes to the NV-

heap become persistent only when the program asks the NV-heap to take a

checkpoint. If the program fails to take a checkpoint, none of the program’s

changes since the last checkpoint are preserved.

heapof(e) evaluates to a heap index corresponding to the heap in which the value

referred to by the expression e is stored. This operation allows the program-

mer to determine which heap a value is stored in, which helps in performing

operations such as allocating new space in that heap. This operation is in-

cluded to simplify programming: It relieves the programmer of the burden

of passing around heap indices.

null in e returns a null reference for the heap indexed by the value that e

evaluates to. This operation is used to initialize references in a heap. We

associate a heap index with null references so the heapof() operation works

for all references.

new τ in e returns a reference to a new τ record in the heap indexed by the value

that e evaluates to.

free(e) releases the storage occupied by the reference that e evaluates to. We

address the danger of multiple deletions and memory leaks in Section 5.2.

(τ)Root(e) is a get root operation that returns the root reference for the heap

that e evaluates to. When the program opens an NV-heap, it does not hold

references to any of the data in the heap, and so it cannot access them. The

root serves as the unique entry point into the NV-heap, and all “live” data
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in the heap are reachable from it. If the returned root reference is not of

type τ , this operation throws a run-time error. One can think of this as a

dynamically checked “downcast” to τ .

Root(e1)=e2 is a set root operation that sets the root for the heap that e1 evaluates

to, to be the reference that e2 evaluates to. Subsequent get root operations

on the same heap must downcast to the same type as e2, or else they will

result in run-time errors.

We now present two code examples to demonstrate the use of heap indices

in operations on doubly-linked lists. In the following section, we will describe a

set of type checking rules that allow us to statically verify that examples like these

maintain our invariants for references.

Example: List Insertion The following code inserts an element x at the head

of a list xs.

DList<h> insert(Int x, DList<h> xs){

DList<h> r;

r = new DList in heapof(r);

r.data = x;

r.next = xs;

r.prev = null in heapof(r);

if (xs) {xs.prev = r};

return r;

}

The main difference with the usual insertion procedure is the explicit anno-

tations identifying the heap in which the operations occur. We believe that these

will be easy to synthesize using local type inference as done in modern languages

like C]and Scala.

Example: Multiplexed-Copy The following code demonstrates a function

that takes two lists from (possibly) different heaps, and copies one of them to

a third heap h (selected by a flag).
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DList<h> copy_mux(DList<hx> xs,

DList<hy> ys,

Heap h, Int flag){

Heap h’;

DList<h’> src;

DList<h> r, tmp;

if (flag) {

h’ = heapof(xs); src = xs;

} else {

h’ = heapof(ys); src = ys;

}

r = null in h;

while(src){

r = insert(src.data, r);

src = src.next;

}

return r;

}

This example shows how explicit heap variables can be used to specify target

heaps, as well as indices for references that can refer to more than one heap.

5.1.3 Type System

We use a dependent type system to statically enforce the key invariants

needed to use NV-heaps safely and efficiently. This section presents the type

checking rules that make up the type system.

Type Environments Our system tracks the prototypes of each function and the

types of each variable in-scope using a type environment Γ that maps: (1) function

names fn to prototypes that contain the types of the arguments and return value

of fn, and (2) variable names x to the declared type of the variable.

Heap Environments Base ensures that at any point where a reference to an

NV-heap is read or written the corresponding heap is open. It uses heap environ-

ments to determine which heaps are known to be open and to enable a form of

heap subtyping described later. A heap environment ∆ maps heap variables hx to
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Type Well-Formedness Γ, ∆ ` T

Γ, ∆ ` Heap(c)
[WF-HC]

∆(hx) 6= ⊥
Γ, ∆ ` Heap(hx)

[WF-HV]

Γ, ∆ ` Heap(h)

Γ, ∆ ` τ〈h〉
[WF-T]

Function Typing Γ ` f

Γ ≡ Γf ∪ {x1 :T1 . . .} ∆ ≡ Entry(T1 . . .) Γ, ∆ ` s ↓ ∆′ Γ, ∆′ ` e :T

Γf ` ∀hx :T fn(T1 x1 . . .){s; return e}
[T-Fun]

Entry Heap Environment Entry()

Entry(∅) .
= λhx.⊥

Entry(τ〈hx〉, . . .)
.
= Entry(. . .)[hx 7→ hx]

Entry(Heap(hx), . . .)
.
= Entry(. . .)[hx 7→ hx]

Entry(T . . .)
.
= Entry(. . .)

Program Typing ` f1 . . .

Γf ≡ f1 :Proto(f1), . . . Γf ` fi for each i

` f1 . . .
[T-Pgm]

Figure 5.2: Base Type Checking: Well-Formedness, Functions, Pro-
grams In a well-formed type judgement, a heap-indexed type corresponds to a
heap that is open.

one of: (1) ⊥, indicating hx may be closed, (2) h, indicating that hx is equal to h

and is definitely open, (3) >, indicating that the exact value of hx is unknown, but

it is definitely open. Well-formed type judgements, of the form Γ, ∆ ` T (shown in

Figure 5.2), state that a particular heap-indexed type corresponds to a heap that

is known to be open in the given type and heap environments.

Functions and Programs Figure 5.2 shows the typing rules for functions and

programs. The function typing judgement of the form Γ ` f states that the

body of a function is well-typed. Formally, the rule [T-Fun] checks that the



107

function implements its prototype, by checking that (1) the function’s body s is

well-typed in the type environment Γ extended with bindings for the formals and

locals and entry heap environment ∆ that maps each input heap-parameter hx to

an open heap denoted by itself, and that, (2) in the heap environment ∆′ yielded

by the body, the return value e has the output type specified in the prototype.

Finally, the rule [T-Prog] checks the entire program (a collection of functions),

by checking that each function meets its prototype specification, assuming that

the other functions meet their specifications.

Expressions Figure 5.3 shows the rules for checking expressions. The expression

typing judgement of the form Γ, ∆ ` e :T states that an expression e has the heap-

indexed type T in the type and heap environments Γ and ∆.

• For a read of a heap variable ([T-Rd-Hvar]) our system checks that

the variable corresponds to an open heap. The result type is a singleton

(“self” [OTMW04]) type that the variable refers to.

• For a read of a field ([T-Rd-Fld]) our system checks which heap the refer-

ence resides in and looks up the type of the field being read. The result type

must reside in the same heap as the one e refers to.

• For a new allocation ([T-New]) our system determines which heap h the

allocation happens in. The result type is τ indexed by the heap h.

• For a call expression ([T-Call]) our system substitutes the (implicit) actual

heap-indices h . . . for the formal heap-indices hx . . . of the callee’s prototype

and checks that each actual heap-index has the type of the corresponding

formal after substitution. The result type is the callee’s output type after

substitution.

Statements Figure 5.4 shows the rules for checking statements. The statement

typing judgement of the form Γ, ∆ ` s ↓ ∆′ states that a statement s is well-typed

in the type and heap environments Γ and ∆, and, upon finishing, yields the heap

environment ∆′.
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Expression Typing Γ, ∆ ` e : T

Γ(x) = Heap(·) ∆(x) 6= ⊥
Γ, ∆ ` x :Heap(x)

[T-Rd-Hvar]

Γ(x) = T

Γ, ∆ ` x :T
[T-Rd-Var]

Γ, ∆ ` e :τ〈h〉 τ ≡ {τf f . . .}
Γ, ∆ ` e.f :τf〈h〉

[T-Rd-Fld]

Γ, ∆ ` e :Heap(h)

Γ, ∆ ` null in e :τ〈h〉
[T-Null]

Γ, ∆ ` e :Heap(h)

Γ, ∆ ` new τ in e :τ〈h〉
[T-New]

Γ, ∆ ` e :String

Γ, ∆ ` open(e) :Heap(h)
[T-Open]

Γ, ∆ ` e :Heap(h)

Γ, ∆ ` (τ)Root(e) :τ〈h〉
[T-GetRoot]

Γ, ∆ ` e :Heap(h)

Γ, ∆ ` heapof(e) :Heap(h)
[T-Heapof]

Γ, ∆ ` e1 :Heap(h1) Γ, ∆ ` e2 :τ〈h2〉 ∆ ` h1 = h2

Γ, ∆ ` Root(e1)=e2 :Int
[T-Set-Root]

Γ, ∆ ` e :τ〈h〉
Γ, ∆ ` free(e) ↓ ∆

[T-Del]
Γ, ∆ ` e :Heap(h)

Γ, ∆ ` close(e) :Int
[T-Close]

Γ, ∆ ` e :Heap(h)

Γ, ∆ ` checkpoint(e) :Int
[T-Checkpoint]

Γ(fn) = ∀hx :T fn(T1 x1 . . .) Γ, ∆ ` ei : [h . . ./hx . . .]Ti for each ei

Γ, ∆ ` [h . . .]fn(e1 . . .) : [h . . ./hx . . .]T
[T-Call]

Figure 5.3: Base Type Checking: Expressions A heap variable used in a
expression should refer to an open heap.
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Statement Typing Γ, ∆ ` s ↓ ∆′

Γ, ∆ ` skip ↓ ∆
[T-Skip]

x 6∈ Dom(Γ) Γ; xT, ∆ ` s ↓ ∆′

Γ, ∆ ` T x; s ↓ ∆′ [T-Decl]

Γ, ∆ ` s ↓ ∆1 Γ, ∆1 ` s′ ↓ ∆′

Γ, ∆ ` s1; s2 ↓ ∆′ [T-Seq]

Γ, ∆ ` e :T Γ, ∆ ` s1 ↓ ∆1 Γ, ∆ ` s2 ↓ ∆2

Γ, ∆ ` if e s1 s2 ↓ Join(∆1, ∆2)
[T-If]

Γ, ∆ ` e :T Γ, ∆ ` s ↓ ∆′

Γ, ∆ ` while e s ↓ ∆
[T-While]

Γ(x) = Heap(·) ∆(x) = ⊥ Γ, ∆ ` e :Heap(h)

Γ, ∆ ` x=e ↓ ∆[x 7→ h]
[T-Wr-Hvar]

Γ(x) = B〈·〉 Γ, ∆ ` e :B〈·〉
Γ, ∆ ` x=e ↓ ∆

[T-Wr-Var-B]

Γ(x) = τ〈hx〉 Γ, ∆ ` e :τ〈h〉 ∆ ` h = hx

Γ, ∆ ` x=e ↓ ∆
[T-Wr-Var]

Γ, ∆ ` e1 :B〈·〉 Γ, ∆ ` e2 :B〈·〉
Γ, ∆ ` e1.f=e2 ↓ ∆

[T-Wr-Fld-B]

Γ, ∆ ` e1 :τ〈h1〉 τ ≡ {τf f . . .} Γ, ∆ ` e2 :τ〈h2〉 ∆ ` h2 = h1

Γ, ∆ ` e1.f=e2 ↓ ∆
[T-Wr-Fld]

Figure 5.4: Base Type Checking: Statements Type checking a statement
with heap-refined types requires checking that the heaps are open and that source
and target heaps are equivalent.
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• For a write of a heap variable ([T-Wr-Hvar]), our system extends the heap

environment with a binding for the heap variable. If the expression being

written is well-typed, then it corresponds to an open heap, thus maintaining

the invariant that all non-⊥ bindings in the heap environment refer to open

heaps.

• For a base type write through a variable or field ([T-Wr-Var-B], [T-Wr-

Fld-B]), our system ignores the source and target heap indices as the base

value is copied. For a non-base write through a variable or field ([T-Wr-

Var], [T-Wr-Fld]) our system checks that the source and target heaps are

equivalent under the heap environment.

• For branch statements ([T-If]) our system checks the then- and else- state-

ments. The heap environment yielded by the branch is the join of the heap

environments at the end of the two branches, which describes the heap en-

vironment that is guaranteed to hold regardless of which branch was taken.

Formally, the join is described as

Join(∆1, ∆2)
.
= λhx.Join(∆1(hx), ∆2(hx))

Join(h1, h2)
.
=


h1 if h1 = h2

⊥ if h1 = ⊥ or h2 = ⊥

> otherwise

Subtyping via Equalities We use the equalities tracked by the heap environ-

ment to add flexibility to our type system. The equalities allow us to remove the

restriction that each variable must refer to exactly one heap. This is illustrated

by the copy_mux example above, in which the variable h’ is used to refer to the

heap that src refers to. The assignments to src typecheck since the heaps that

the left- and right- hand sides of the assignments refer to are equal under their

respective heap environments. Thus, the equalities tracked by the heap environ-

ments enable a form of subtyping without imposing the nested (LIFO) lifetimes
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required by previous systems [HMGJ04].

Static Guarantees Our type system guarantees that (1) heap indices are not

stored in non-volatile storage and (2) all references stored in a heap refer to ex-

actly the same heap, meaning that there are no inter-heap NV references. In other

words, we get a compile-time guarantee that the key invariants are always main-

tained. However, the explicit free() and close() operations mean that two kinds

of dangling references may exist: A reference to an open NV-heap may refer to

deallocated storage, or a reference may refer to a location in a closed NV-heap.

5.1.4 Implementation

We have implemented the core functionality of Base as a C++ class library,

described in detail in Section 4.3. The implementation stores the contents of NV-

heaps as files in a conventional file system and uses mmap() to map them into the

application’s address space. It provides “smart pointers” that implement NV-to-

NV and V-to-NV pointers, a non-volatile memory allocator, and a checkpointing

facility. Eventually, NV-heaps should be implemented in a compiler that supports

the core language and type system directly.

Relocation A key implementation detail is how to make the NV-heap relocat-

able. It must be possible for one program to load an NV-heap created by another.

This means that the NV-heaps may end up mapped into any part of the appli-

cation’s address space. As discussed in Section 4.3.4, we implement NV-to-NV

pointers as relative pointers: Instead of holding the actual address (which could

change when an application re-opened an NV-heap), the relative pointer holds the

offset from the pointer’s address to the data it points to. The conversion between

relative pointer and virtual addresses requires just a single add instruction.

Checkpointing To implement checkpointing, we pass the MAP PRIVATE option

to mmap() which prevents changes from propagating to permanent storage until

a checkpoint is requested. To take a checkpoint, the system creates a temporary
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file, writes out the contents of the NV-heap and then replaces the existing file with

the copy. Since the rename system call is atomic, the persistent changes to the

NV-heap are atomic as well.

5.1.5 Discussion

The Base layer enforces the key invariants that NV-heaps require, and it

offers the best possible performance for read and write operations (see Section 5.6).

Accessing non-volatile data requires (at most) an extra arithmetic instruction to

convert a relative NV-to-NV pointer before dereferencing it. However, the layer

suffers from two drawbacks.

First, the explicit free() and close() operations compromise the safety of

pointers, leaving open the door to dangling pointers, multiple-frees, and memory

leaks which are especially pernicious in an NV-heap as there is no way to ever

reclaim the leaked storage.

Second, the consistency mechanism is not scalable, since each checkpoint

requires copying the entire NV-heap. The consistency mechanism is also coarse-

grained, since the program must take an explicit checkpoint to ensure durability.

Fine-grained consistency guarantees are useful in many applications as they provide

a more efficient way to maintain key invariants for important data.

5.2 Layer 2: Safe

The second layer, Safe, builds upon the first to ensure the safety of all

operations that involve references. To do so, the layer Safe uses run-time mech-

anisms for safely deallocating storage and closing NV-heaps, as described next.

Thus, the language for Safe is a strict subset of that from Base.

5.2.1 Safe Closing

Our current implementation retains the explicit close operation, and throws

an exception on accesses to closed NV-heaps. The application must catch and
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handle the exception in order to recover.

In the longer term, we would like to remove the close() operation alto-

gether and replace it with an automatic means of determining when there are no

references from (volatile) program variables to an NV-heap. To implement this

type of garbage collection, we need simply count, for each open NV-heap, the

number of live V-to-NV references that point into the heap. This count is incre-

mented whenever a new reference (or heap variable, h) is created (either by open(),

new in , Root or copying), and decremented when the reference is destroyed or

goes out of scope. An NV-heap can be closed automatically when the count goes

to zero. This is similar to the reference counting system for region-based memory

allocators described in [GA01].

5.2.2 Automatic Deallocation

The Safe layer has no explicit free() operation, so it requires a memory

management scheme that automatically reclaims any data that are unreachable

via any combination of V-to-NV and NV-to-NV references. The Safe layer uses

the reference counting scheme for automatic memory management described in

Section 4.3.3, including special support for cyclic data structures. We could not

use traditional garbage collection techniques which scan the entire NV-heap to

reclaim unused space because they would violate our scalability requirement.

To track reference-counts for NV-to-NV references, we modify our imple-

mentation of new in to allocate extra space for the reference count (and a few

other pieces of metadata, described below) and update the count when the program

modifies an NV-to-NV pointer to the allocated storage. Keeping reference counts

for V-to-NV references is similar but presents a scalability problem as programs

can take checkpoints while V-to-NV references exist that point into the NV-heap.

If the program later re-opens the NV-heap in that state, we must update the

reference counts to reflect the disappearance of the V-to-NV references.

As described in Section 4.3.4, our implementation maintains separate V-

to-NV and NV-to-NV reference counts for each piece of allocated storage, thereby

reducing the problem to that of first, resetting the V-to-NV counts when an NV-
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heap opens, and second, reclaiming storage that was only reachable from volatile

references.

Resetting volatile counts Each NV-heap maintains a generation number and

increments this number each time it opens. Each allocated region of memory

within the NV-heap keeps a (persistent) copy of the generation number for which

its V-to-NV reference count is valid. When the reference counting system creates

a V-to-NV reference to a block, it first checks the generation number. If it is stale,

it resets the count to zero and updates the generation number before incrementing

the count.

Reclaiming memory reachable from volatile references When an object’s

NV-to-NV reference count goes to zero, but its V-to-NV reference is non-zero, the

system adds the object to a non-volatile list of memory blocks that will be dead-

on-open. Creating an NV-to-NV reference to a block removes the block from the

list. Destroying the last V-to-NV reference to the block causes its removal and

reclamation. When an NV-heap opens, it reclaims any blocks in the dead-on-open

list. This approach meets our scalability criteria, since the length of the dead-on-

open list (and the time needed to reclaim it) is bounded by the amount of volatile

memory in the system, since at least one V-to-NV reference exists to each block

in the list.

Weak References Since we use reference counting to identify unreachable data,

cyclic structures require special care. To support them we provide a type of weak

NV-to-NV reference that does not affect reference counts (see Section 4.3.4). Weak

references themselves present a challenge, since the data they refer to can evaporate

at any moment, if the last non-weak reference to the data disappears. We avoid

this problem by requiring that when the system reclaims a piece of data, all weak

references to the data instantly become NULL. This prevents the program from

ever dereferencing a weak-reference whose storage has been reclaimed, but does

not prevent it from dereferencing an (unexpectedly) NULL weak reference. While

the former could lead to data corruption and must be avoided at all costs, the
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latter will lead to a thrown exception which, if not caught, will cause a program

crash. In any case, the consistency model guarantees that the NV-heap will remain

consistent.

To support instantly setting all weak references to a deallocated piece of

storage to NULL, we implement weak references using proxy objects. Instead of

pointing to the data itself, the weak references point to the data’s proxy. The

proxy contains a reference to the block, but this reference does not affect the

block’s reference count. The block, in turn, holds a reference to the proxy. When

the block’s reference count goes to zero, it sets the proxy’s reference to NULL,

instantly causing all the weak references to become NULL. The proxy itself is

reference counted and persists until all the weak references that point to it have

been destroyed.

It is important to point out that weak references guard against cycles only

if the programmer uses them correctly. This means that, while they provide some

guarantee storage can eventually be reclaimed, that guarantee is not as strong

as it could be if programming language and run-time system could enforce it.

In Section 5.8, we discuss garbage collection alternatives that could make this

guarantee stronger.

5.2.3 Discussion

The changes described for Safe make references safe and remove the prob-

lems associated with explicit memory deallocation. However, V-to-NV and NV-to-

NV reference counting add overhead to every reference assignment, and the proxies

add overhead to dereferencing and creating weak references. We will examine the

impact of these overheads in Section 5.6.

In our experience, the Safe layer makes it is easy to develop complex,

reference-based data structures and be confident that they are correct and will

not leak memory. However, taking checkpoints is expensive and requires that all

accesses to the NV-heap cease temporarily to ensure that the checkpoint is inter-

nally consistent. This suspension of activity will hurt performance significantly

when multiple threads operate on a heap concurrently. The next section removes
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these shortcomings by providing a fine-grained consistency model via atomic sec-

tions.

5.3 Layer 3: Tx

The most natural way to provide fine-grained consistency guarantees for

NV-heaps is adding support in the language for atomic sections implemented with

transactional memory. With the addition of atomic sections, we call this program-

ming model the Tx layer.

Transactional memory has received a great deal of attention in recent years

as an alternative lock-based synchronization [HM93, ST95, HWC+04, BDLM07,

SATH+06, HLMS03, HF03]. For non-volatile memory, however, transactions are

useful even in the absence of concurrency, because they provide atomicity and

durability guarantees. Transactions in Tx support only a single thread. The last

layer we present remedies this shortcoming.

We now briefly describe the application interface and then describe the

transaction system’s internal implementation.

5.3.1 Language support for fine-grain consistency

At the language level, the changes required are small. The Tx layer adds

an atomic keyword (similar to [HF03]) that requires that the operations within

a region of code are atomic and durable. IO operations are not allowed within

atomic sections, and the transaction layer flattens nested atomic regions into a

single region.

The Tx layer makes another small but important change to the language: It

prevents memory leaks in the face of crashes. Specifically, this means the new in

operation must be atomic and durable to enforce the following invariant: At any

time, every storage cell is either the property of the allocator (i.e., it is not allo-

cated) or of the program (i.e., it is allocated). In either case, the owner holds a

reference to the region. Regions of non-volatile storage must move between these

two states atomically and the changes must be permanent, regardless of unexpected
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program or system failures.

5.3.2 Implementing atomic, durable memory allocation

Since the transaction system will, itself, need to allocate memory, we cannot

rely on it to provide atomic and durable memory management. Our implementa-

tion uses special-purpose logs called operation descriptors to ensure atomicity and

durability. The descriptors record all changes needed to perform the allocation (or

deallocation) in non-volatile memory. To perform an operation, the NV-heap fills

out an operation descriptor, marks it valid, and then applies the operation. Oper-

ation descriptors are idempotent by design, so in the case of failure, the NV-heap

can replay the descriptor to complete the operation the next time it opens. Once

the operation is complete, the NV-heap marks the descriptor as invalid.

In addition to allocation and deallocation, modifications to references and

the corresponding reference count updates must be atomic and durable operations.

The system uses operation descriptors for these operations as well.

Caching effects in the memory hierarchy may reorder and arbitrarily delay

writes to non-volatile memory cells, preventing them from actually reaching non-

volatile storage. The system could reorder the writes that mark the operation

descriptors as valid relative to the writes that fill in the operation descriptor,

making it appear that an incomplete descriptor was, in fact, valid.

To avoid this, NV-heaps provides a mechanism to ensure that updates have

reached non-volatile storage and are, therefore, permanent. We assume that hard-

ware provides atomic 8-byte writes and an epoch barrier operation, as described

in [CNF+09], that blocks until a set of previous updates to non-volatile storage

locations are permanent. An epoch barrier is similar to the fsync() system call,

in that it allows the program to enforce an ordering of updates to durable storage.

Inserting a barrier before and after setting the valid bit ensures that only valid op-

eration descriptors are marked valid. Using epoch barriers to provide fine-grained

consistency guarantees, as we do for operation descriptors, is critical to applica-

tion safety. In Section 5.8, we discuss language support that could help ensure the

proper placement of these barriers in user code.
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5.3.3 Implementing single-threaded transactions for non-

volatile memory

The transaction layer must ensure that if the system fails in the midst of

a transaction, the startup recovery code can restore memory to the state it was

in before the failed transaction began. This means that the log that contains the

backup copy of the modified data must be stored in the NV-heap. It also means

that, in the case of multiple system failures, it must be safe to re-start the restore

procedure at any point. Similarly, in the case of a commit, it must be safe to

restart the log deletion at any point.

The log is a linked list of log entries, and it is created and managed by the

run-time system. Before modifying an object inside a transaction, the object must

be opened for writing, which means the system copies the object into the log along

with a reference to the original object. For reading, there is no required opening

operation prior to access.

The reference to the object that is saved in the log is an NV-to-NV refer-

ence, so creating the copy increments the object’s reference count. Likewise, when

we create the copy of the object, the reference counting system also increments

the reference counts on any objects referred to by references in the object. This

postpones the deletion of objects until the transaction commits.

After the copy is complete, the application can safely modify the original

region. If a system failure occurs or the transaction aborts, the system rolls back

each log entry by restoring the original data from the log, marking the log entry

as invalid, and then dropping the reference to the log entry so that the reference

counting system deletes it. Note that it is safe to perform the restore multiple

times (as might happen if the system crashed during recovery) since the recovery

process is just a copy operation.

It is also possible that the system will fail during the initial copy. In this

case, the log entry will be invalid on restart, and dropping the reference to the

entry will trigger its destruction. Here, the danger is in calling a destructor on

an object whose constructor has not completed and which might contain garbage

reference values. The memory allocator prevents this by ensuring that the memory
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it returns is all zeros, guaranteeing that all references are initially NULL.

5.3.4 Discussion

Atomic sections provide a more natural and composable mechanism for

implementing atomic and durable operations. However, the cost of logging copies

of all data before performing the operation adds significant overhead as we will see

in Section 5.6. The next layer allows programs to reclaim that lost performance

by providing support for concurrent transactions.

5.4 Layer 4: C-Tx

The layers described so far do not provide support for safe, concurrent

access to an NV-heap by multiple threads. Adding support for concurrency on top

of the Tx layer requires the addition of threading to our core language. It also

requires the system to provide scalable locks for non-volatile objects and significant

changes to the transaction system.

5.4.1 Locks for protecting non-volatile data

Providing concurrent access to NV-heaps requires locks to protect the ref-

erence counts for each object. Keeping these locks in volatile memory is attractive,

since access to them would be faster and all locks would be automatically released

if the system or application crashed. However, volatile locks violate our scala-

bility requirements since the number of locks required grows with the size of the

NV-heap.

Storing locks in non-volatile memory resolves that storage scalability con-

cern, but raises a performance scalability problem: Each time an NV-heap opens,

it would need to scan all the locks in the NV-heap and unlock them. Non-volatile

locks use the generation numbers described in Section 5.2 to address this problem:

An generation-based lock is an integer and, if the integer is equal to the NV-

heap’s current generation number, a thread holds it. Otherwise, it is available.
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Incrementing the NV-heap’s generation (as happens when the NV-heap opens)

instantly releases all the locks in the NV-heap.

5.4.2 Concurrent memory allocation

Supporting concurrency requires changes to the memory allocator and ref-

erence counting system provided by the Base and Safe layers. The concurrent

allocator provides a private free list for each thread to reduce contention. The

allocator also contains a global free list and periodically moves free space from the

per-thread lists into the global list. Each thread also has a private set of oper-

ation descriptors for performing allocations and manipulating reference-counting

pointers. This is described in detail in Section 4.3.3.

5.4.3 Concurrent transactions

Adding support for concurrency to our transaction system adds significant

complexity. It must detect conflicting accesses to regions of memory by different

threads and provide the ability to abort transactions when a conflict occurs.

To track conflicts, the transactional memory system uses a second linked

list to hold the read log. When a thread opens an object for reading, it copies

a reference to the object into the read log along with a version number. The

transactional memory system maintains a separate log for each thread.

The transactional memory system does not use generation-based locks to

protect data in storage. Instead, it uses a volatile table of ownership records. Own-

ership records [HF03] enforce exclusive write access and detect read-write conflicts

during transactions. Each ownership record is protected by a reader/writer lock.

See Section 4.3.5 for a more detailed discussion of the implementation.

The multi-threaded transactional memory system is a blocking implemen-

tation that relies on writer locks and read versioning. It performs eager conflict

detection of writes by requiring a transaction to acquire ownership of the object

before modifying it. It detects read conflicts by validating object version numbers

at access and at commit. We use a contention management scheme [SS05] that
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exponentially backs off and retries in case of conflict.

To implement abort, the transactional memory system must roll back the

current transaction. This process is similar to recovering from a failure in the Tx

layer. The transactional memory system rolls back the transaction by restoring

data from the write log into the application’s memory, marking log entries invalid,

and deleting them as it goes.

Our implementation of the C-Tx layer provides nearly ACID (atomic, con-

sistent, isolated, and durable) semantics for its transactions. Its only limitation is

with respect to isolation: Since the transactional memory system is a software-only

scheme based on C++, it is not possible to provide complete isolation. NV-heaps

do, however, require the use of “getters” and “setters” for field access and these

perform run-time checks to enforce isolation in well-behaved programs. While

this requirement places the burden on the programmer, we could provide compiler

support that would automatically generate and instantiate these methods.

5.5 Related Work

In this section, we discuss language support for NV-heaps in the context of

previous work in programming languages, compilers, and run-time systems. Specif-

ically, we focus on the techniques we use to provide safety in each programming

model (e.g., dependent types, garbage collection, transactional memory), and we

compare them to existing methods.

Our concept of heap-indices, introduced in Section 5.1 for the Base layer,

is related to the notion of region-based memory management [TT97, GA01,

HMGJ04], where instead of allocating and freeing individual pointers, the pro-

grammer first creates coarse-grained regions (also known as zones or arenas). In-

dividual cells are allocated within regions, and the programmer must pass the

region in as an explicit parameter to the allocator. The key benefits include the

fact that the entire region, including all the cells inside it, is freed at once and

type-based mechanisms ensure that the program never accesses a pointer that has

already been freed. Due to the persistence of storage, the invariants required to
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efficiently use NV-heaps are different from those that must hold for regions, which

can, for example, have inter-region references. First, persistence places a high

premium on isolation, which is delivered via the key isolation invariants, which

allow us to avoid complex, inter-heap garbage collection[ML97]. Second, persis-

tence implies that NV-heaps will typically not be used in a lexically scoped fashion.

Consequently, we cannot use nested lifetimes as a basis for a subtyping relation on

non-volatile references.

Our static dependent type system is related to several dependent and re-

finement type systems that have been developed to enforce domain specific prop-

erties [XP99, BBF+08]. Of these, the most closely related is the idea of place

types [CSSB08] which decorate references in the (distributed) X10 language with

an index denoting where the value is stored, with the goal of ensuring that all

computations are carried out on locally stored data. The invariants required by

NV-heaps are different, and hence we have a “path”-sensitive type system that

tracks equalities of heap variables (in the heap environment), allowing for a flexi-

ble form of subtyping.

The Safe layer relies on a reference counting [Col60] scheme for garbage

collection because it is deterministic and scalable. NV-heaps use weak references

for cyclic data structures, relying on the programmer to identify possible back

pointers. Alternatively, there are several existing algorithms to automatically

collect cycles [Lin92, MWL90, BR01, PBK+07] which could replace our exist-

ing approach. In addition to reference counting, there are other garbage collec-

tion schemes [KW93, ONG93, CKWZ96, MMH96] for non-volatile storage, but

they target an architecture based on disk. Also, these schemes split the heap

into partitions and require complex techniques to track inter-heap references ef-

ficiently [ML97]. Our Safe layer ensures that an NV-heap is automatically and

safely closed when the reference counts of all V-to-NV references are zero. This

is similar to the reference counting system used for region-based memory alloca-

tors [GA01], where regions are freed when there are no remaining references to

them.

Tx and C-Tx owe much of their heritage to the volatile transactional
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memory [HM93] systems that provide an alternative to locks for managing con-

current access to volatile memory. Recent work has focused on utilizing con-

ventional coherence and consistency protocols and overcoming data size restric-

tions [HWC+04, AAK+05, RHL05, BDLM07]. Given the expense of hardware

support, Shavit and Touitou proposed a software transactional memory system

which provided weak isolation and explicit statically-sized transactions [ST95].

The operation descriptors that the NV-heaps allocator and reference-counting sys-

tem use are similar. Dynamic software transactional memory (DSTM) provided

strong isolation and overcame the static limitation to allow dynamic data struc-

tures such as lists and trees [HLMS03]. The object-based transactional memory

model in NV-heaps is similar to that of DSTM and others [MSH+06, GC07]. Parts

of our internal algorithms for read versioning, write locking, and undo logging were

inspired by McRT-STM, a C++ library-based multi-core runtime system that sup-

ports software transactional memory [SATH+06].

Next, we evaluate the performance and safety of the programming models

presented in this chapter.

5.6 Results

This section describes our evaluation of the language layers for NV-heaps.

We present experiments that measure basic operation latency for each of the layers,

and we examine the performance impact of each layer on a set of benchmark

applications.

5.6.1 Basic operation performance

Table 5.1 summarizes the basic operation latencies for each of the four layers

for an NV-heap running on DRAM. The value for new in is the time to allocate

and deallocate a small region of memory. The three “reference” rows give the time

to assign to each type of reference and then set it to NULL (Base does not provide

weak references), excluding transaction and opening overheads for Tx and C-Tx.

The “nop tx” is the time to execute an empty transaction on the two transaction
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Table 5.1: Basic operation latency for NV-heaps running on DRAM
Each layer adds overhead to the basic operation latencies. Latencies for new in

are listed as <0.1 because of inconsistencies due to caching effects.

Layer Base Safe Tx C-Tx
(µs) (µs) (µs) (µs)

new in <0.1 <0.1 <0.1 <0.1
V-to-NV reference 0.03 0.05 0.11 0.13
NV-to-NV reference 0.03 0.05 0.17 0.25
weak NV-to-NV reference n/a 0.05 0.20 0.25
nop tx n/a n/a 0.05 0.05
Open for read n/a n/a 0.17 0.26
Open for write n/a n/a 1.68 1.99

systems. “Open for read” and “Open for write” give the times to open an object

for access but do not include the transaction overhead.

The features that Safe, Tx, and C-Tx provide add significant overheads,

but each layer makes it significantly easier to build reliable, persistent data struc-

tures. For example, safe reference operations take between 2.2× and 4× longer

when executing inside a transaction (Tx versus Safe). This extra cost in latency

is due to the operation descriptors and epoch barriers required to provide atomic-

ity and durability. However, writing the code to build a reliable, persistent data

structure is considerably more difficult without durable transactions.

5.6.2 The price of safety

To understand the overhead of programming language support for NV-

heaps, we have implemented our benchmarks (see Table 4.2), in the Base, Safe,

Tx, and C-Tx layers. Figure 5.5 shows the performance of each benchmark rela-

tive to its Base implementation, and the absolute performance is given in opera-

tions per second in the Base bar for each benchmark.

For a single thread, Base provides the highest performance, but Safe

results in only a modest performance hit for most applications. One exception is

BTree, which makes extensive use of NV-to-NV and weak NV-to-NV references,

resulting in 62% lower performance for Safe. Overall, this suggests that, for many
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Figure 5.5: The price of safety in NV-heaps Removing safety guarantees
improves performance by as much as 11×, but the resulting system is very difficult
to use correctly. The different layers highlight the safety and performance trade-off.

applications, the extra safety that Safe provides will be worth the performance

penalty.

Tx exacts a larger toll, reducing performance by 82% on average versus

Safe. The cost of durability is due to the copying required to log objects in non-

volatile memory. The price is especially steep for BTree, because writing a node

of the tree into the log requires many reference copies.

Adding support for concurrency and conflict detection in C-Tx has a small

effect on performance (30% on average relative to Tx), and allows HashTable,

RBTree, and SPS to reclaim much of their lost performance.

The gap in performance between Base and C-Tx, 11× on average for

single-threaded programs, is the cost of safety in our system. The increase in

performance of Base is significant, but the price in terms of usability is high.

The programmer must explicitly manage concurrency, atomicity, and failure re-
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covery while avoiding the accidental creation of unsafe references. Whether this

extra effort is worth the increased performance depends on the application and the

amount of time the programmer is willing to spend writing, testing, and debugging

the code. We found programming in this style to be tedious and error-prone.

5.7 Implementation limitations

This section describes some of the limitations in our current NV-heaps

implementation. The language support proposed in this chapter has yet to be

integrated into a compiler. Rather, NV-heaps is implemented as a library in C++

and requires the programmer to use the library interface correctly in order to

provide strong safety guarantees. Unfortunately, a programmer can write code

that circumvents the type safety provided by C++ and our library.

C/C++ do not prevent the programmer from potentially dangerous opera-

tions such as unsafe casting, manual pointer arithmetic, and exceeding the bounds

of an array. These operations are especially pernicious in the NV-heaps environ-

ment because data corruption is permanent. For example, an NV-to-NV reference

could be arbitrarily overwritten using a void* cast, creating an unsafe reference

and potentially rendering the entire NV-heap useless.

The interface that NV-heaps provides makes a contract with the user about

the safety of the data stored in the heap. The guarantees provided by each pro-

gramming model require writing code that properly extends and uses the methods

of the C++ classes we provide. For example, the programmer must use the NV-

heaps base class and smart pointers, exposed by the Base layer, to build persistent

objects that can be properly allocated and freed from within the heap, accessed

through V-to-NV and NV-to-NV references, and tracked by the NV-heap allocator.

To guard against memory leaks, the Safe layer also requires the use of our smart

pointer types for all NV-heap references. Our smart pointers override the standard

C/C++ reference, dereference, and casting operations. Using a regular C pointer

to interact with an NV-heap breaks our type system and circumvents the the ref-

erence counting system. The transactional guarantees of Tx and C-Tx depend on
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building classes that inherit from a transactional base class (which inherits from

the NV-heaps base class) and using our automatically-generated accessor methods

for reading and modifying the fields of an object.

References in NV-heaps require special care. An NV-to-NV reference to an

object whose type is of class C must be of type C::NVPtr, and it must never be

declared outside of an object that inherits from the NV-heaps base class. Doing

otherwise would create a non-volatile reference that lives in the volatile heap. If

a failure occurs, such a reference would disappear but leave the object’s reference

count in an inconsistent state, making the object impossible to garbage collect.

Any temporary references to an object of type C must be of type C::VPtr so that

they prevent an object from being garbage collected while in use but evaporate

in the case of a crash. However, C::VPtr type references must never be declared

inside a persistent object derived from the NV-heaps base class because storing a

V-to-NV reference in an NV-heap is unsafe.

It is critical to avoid creating temporary references that live on the stack

because they cannot be garbage collected in the event of a failure. These temporary

references affect an object’s non-volatile reference count but are volatile. They can

get created when passing pointers as arguments to functions or using pointers as

the return types of functions. Functions should pass pointer arguments to an object

of type C either by reference (C::NVPtr & or as V-to-NV pointers of type C::VPtr.

Similarly, functions that need to return a pointer must only return pointers of type

C::VPtr. Also, casting between C::NVPtr types is not allowed because it creates

temporary references. Instead, a user must cast a C::NVPtr to a C::VPtr using a

special volatile cast() method.

In addition to getting references right, NV-heaps require the programmer to

obey a set of rules when implementing classes that will be accessed transactionally

(with the Tx or C-Tx programming models). A user-defined class must inherit

from the transactional base class so that any instantiated objects can be correctly

monitored and updated through the transactional memory system. The class must

implement a factory method called New() to allocate an object in the NV-heap,

and the class constructor must be private. Using a private constructor forces the
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programmer to explicitly create an object with the NV-heap allocator. Any fields

defined in the class must be implemented with a set of macros that generate the

transactional accessor methods (getters and setters). These methods implement

the proper locking and logging operations to ensure ACID semantics.

The limitations of the current NV-heaps interface present a good oppor-

tunity for future work. As we will discuss in the next section, many of potential

pitfalls can be avoided by pushing the programming language requirements into

the compiler implementation.

5.8 Future work

The language support and programming models presented in this chapter

provide strong safety guarantees for NV-heaps. However, we continue to find

ways to improve on our existing implementation and provide more flexibility and

robustness. In the remainder of this section, we discuss several important areas

of future work including compiler support, safer garbage collection, and a new

language feature to assist in providing fine-grained consistency guarantees.

5.8.1 Compiler support

To get the full benefit of language support for NV-heaps, our Java-like

language and static dependent type system should be implemented in a compiler.

Compiler support will codify the requirements of NV-heaps in the language. As we

point out in Section 5.7, there are several limitations with our library-based C++

implementation. Compiler support would remove some of these potential safety

violations and convert others from run-time exceptions to compile-time errors.

There are a range of options in implementing compiler support for NV-

heaps. If we want to maintain the existing C++ interface, we could build a Lint-

like [Joh78] program checker that would flag suspicious code that might violate

the rules of the NV-heaps interface. This has the advantage of code re-use but

there may be limitations regarding the types of illegal code we can catch without

restricting the actual language syntax.
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Another option is to build a source-to-source translator, using a compiler

toolchain such as LLVM [LA04], to convert code written in our Java-like language

to the existing C++ interface for NV-heaps. This also has the advantage of code

re-use, and it has the additional benefit of controlling exactly the type of C++

source code that gets emitted.

Finally, we could augment an existing language such as Java to support

NV-heaps-style semantics. This has the advantage of being compatible with an

existing language, and it would integrate well with existing code bases. However,

extending Java requires significant modifications to both the compiler and the

run-time system. The current NV-heaps implementation would need to be rewrit-

ten to work within the Java Virtual Machine (JVM). It is unclear what sort of

performance we could achieve running inside of the JVM.

5.8.2 Safe garbage collection

Garbage collection in NV-heaps is challenging because it must be robust

against failures, it must be scalable, and it should perform very well. We chose a

reference counting scheme because objects get collected in an incremental fashion

as soon as they become dead. While this is a scalable and deterministic technique,

it has a few important drawbacks. First, reference counts require frequent updates

(i.e., whenever pointers are manipulated) and the updates must be thread-safe.

In a persistent setting, this cost is greater because the updates must be durable,

meaning the system waits until they reach non-volatile memory. Second, and per-

haps more important, reference counting by itself cannot garbage collect cyclic

data structures. Once a programmer creates a cycle, that data can never be col-

lected. In NV-heaps, we solve this problem by providing weak references for cyclic

pointers, but weak references work only if the programmer uses them correctly. So

while weak references provide some guarantee that storage will be reclaimed, this

guarantee is not as strong as it could be because it depends on the programmer to

get it right.

One promising option to make garbage collection safer in NV-heaps is to

augment our reference counting implementation to automatically collect cyclic
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garbage. Decades ago, a common approach was to use a backup mark and

sweep collector, but the development, maintenance, and overhead costs were high.

As a result, many researchers focused on specialized algorithms for cycle collec-

tors [Lin92, MWL90, BR01, PBK+07] which improve running times and worst-case

complexity. In the NV-heaps case, a cycle collector would need to detect and collect

cyclic garbage in a transactional manner. Making the operations of such an algo-

rithm recoverable may prove challenging given that they need to be implemented

with very limited support (i.e., operation descriptors).

Alternatively, we could develop a tracing garbage collector for NV-heaps.

To meet our scalability requirement, the scheme should avoid scanning the en-

tire heap, which was a limitation of some previous persistent object stores [KW93,

ONG93]. More recent work [CKWZ96, MMH96] partitioned the heap into indepen-

dently collectible areas to limit tracing to small fractions of the heap, and [ML97]

presented a scheme to reduce the overhead of inter-partition references and col-

lect cycles that span partitions while preserving the localized nature of partitioned

collection. These schemes, however, were designed with disk as the backing store

for persistent objects. NV-heaps will require an implementation that optimizes

for fast, non-volatile memories, which may look very different from previous ap-

proaches. The key challenge is minimizing and eliminating overheads while pro-

viding fully automatic collection.

5.8.3 Persistent keyword

To ensure that updates reach non-volatile storage and are permanent, NV-

heaps provides an epoch barrier operation [CNF+09]. Epoch barriers order updates

to storage, giving the programmer a way to reason about the state of data at a

particular point in a program. A common idiom to guarantee consistency is to

include a “valid” bit in a data structure, where a set valid bit indicates something

special about the state of the rest of the data (like Dekker’s algorithm for mutual

exclusion [Dij02]). For example, in NV-heaps, we use a valid bit per operation

descriptor to indicate whether or not the operation has been written to the de-

scriptor’s log. At recovery, if the valid bit is set, then the NV-heap will replay the
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operation descriptor, copying the logged contents to their in-place locations.

This programming idiom guarantees consistency as long as the program-

mer inserts the epoch barriers in the correct locations in the code. Consider the

following code snippet to complete a memory allocation operation.

...

// Fill out the operation descriptor

opDescriptor->dstPtr = dstPtr;

opDescriptor->allocatedSpace = allocatedSpace;

EpochBarrier();

// Mark it as valid

opDescriptor->valid = true;

EpochBarrier();

// Play the operation descriptor

*(opDescriptor->dstPtr) = opDescriptor->allocatedSpace;

EpochBarrier();

// Mark it as invalid

opDescriptor->valid = false;

EpochBarrier();

...

It is essential that an epoch barrier appear after filling out the operation

descriptor, after setting the valid bit, after playing the operation descriptor, and

finally after clearing the valid bit. Leaving the epoch barrier out of any of these

locations makes the operation potentially unsafe. For example, if the valid bit

is marked true before the dstPtr field of the operation descriptor gets assigned

(which could easily happen due to caching effects), then the system would assume

that the field holds a valid pointer value even though it may be garbage.

To avoid these problems, we could extend our language to support a

persistent keyword that describes the type of a variable as one that must be up-

dated in a consistent and durable manner. This means that all non-volatile memory

operations appearing before (in program order) an update to a persistent vari-

able have completed and that any non-volatile memory operations appearing after

the update to a persistent variable can occur only after the update has been

written to memory. The compiler would automatically generate epoch barriers be-

fore and after updating the variable, guaranteeing consistency and durability. In

the previous example, we would declare the valid field of the operation descriptor
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persistent. This eliminates many potential programmer errors that might result

when using (or forgetting) epoch barriers.

5.9 Summary

In this chapter, we have described a set of execution models and program-

ming language support for NV-heaps that allow programmers to build fast, safe,

and scalable persistent data structures. We evaluated the trade-offs between safety,

ease of use, and performance that each of our programming models provides. We

also discussed limitations in our library-based implementation and proposed sev-

eral topics for future work. In the next and final chapter, we will summarize the

contributions of NV-heaps and the other work presented in this dissertation.
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Chapter 6

Summary

The amount of data that we generate as a society is growing at an expo-

nential rate. Our ability to store and analyze this data has become limited by

the performance of conventional storage technologies. However, new non-volatile

memory technologies promise to deliver DRAM-like performance to meet our data

processing demands. These technologies will fundamentally change the way we

design computer systems and interact with storage. In fact, this change is al-

ready evident in systems that use highly-optimized software stacks and specialized

interfaces for flash-memory based SSDs [fus, vir, PRZ08, ONW+11].

These technologies can integrate seamlessly into the storage hierarchy, be

made directly accessible as memory, and can serve as a building block in distributed

storage systems. We began this dissertation by characterizing these new technolo-

gies and their role in future storage devices. Using technologies such as PCM, we

have shown that we can build storage devices accessible over PCIe interconnect

or the processor’s memory bus. These low latency, high bandwidth connections

to storage help expose the full flexibility and performance of these new memory

technologies. However, fully realizing these benefits requires us to rid software of

disk-centric optimizations, design decisions, and architectures that limit perfor-

mance and ignore bottlenecks that the poor performance of disks have hidden in

the past.

This dissertation has focused on one of the most important aspects of stor-

age: providing strong consistency guarantees. These guarantees allow us to reason
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about when and in what order writes to storage become durable. The software and

algorithms that current applications, particularly databases, use to enforce strong

consistency guarantees are critical to system performance, and most solutions are

tightly coupled with disk technology. We have shown that by rethinking existing

transaction mechanisms, we can engineer systems to provide both safety and high

performance. We have also shown that, with fast storage, we can move from a

block-based abstraction to a model that allows us to directly access storage in the

same way we access volatile memory. This is an incredibly powerful abstraction

because we can take advantage of the features of modern programming languages.

However, it requires software support to provide safety both from system failures

and from programmer errors that can permanently corrupt data.

Over the course of this dissertation, we have presented transactional sup-

port for fast, non-volatile memories that exploits the raw performance of these

technologies while providing strong consistency guarantees. This includes a write-

ahead logging scheme, hardware support for atomic write operations, a persistent

object store for storage on the memory bus, and language support for persistent

objects.

In Chapter 3, we introduced MARS, a new write-ahead logging scheme

for fast, non-volatile memories that supports ACID transactions in an advanced

SSD prototype. MARS is designed to be a replacement for ARIES, a popular

algorithm for transactions used by many commercial databases. MARS utilizes

a novel multi-part atomic write operation that takes advantage of the parallelism

and performance of fast, non-volatile memories. Multi-part atomic writes can also

be used to implement transactions for other applications, including persistent data

structures such as key-value stores. Compared to executing transactions in software

alone, our system increases effective bandwidth by up to 3.8× and decreases latency

by 2.9×. MARS outperforms a baseline implementation of ARIES, which requires

both redo and undo logging, by 3.7×.

In Chapter 4, we presented NV-heaps, a system designed for building fast

and safe persistent data structures in storage attached to the processor’s memory

bus. NV-heaps provides an intuitive and familiar programming model. We have
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shown how NV-heaps protects against application and system failures by avoiding

familiar programming bugs (i.e., dangling pointers) as well as new types of pointer

safety bugs that arise only with persistent objects. We described the implemen-

tation of persistent objects, specialized pointers, automatic memory management,

and atomic sections. For a variety of persistent data structures, NV-heaps outper-

forms BerkeleyDB and Stasis by 32× and 244× by avoiding the operating system

and other software overheads. In Chapter 5, we presented programming language

support for NV-heaps. We have shown that we can provide stronger safety guar-

antees by moving the implementation from a library into the compiler. We also

presented several different programming models that can trade off safety, ease of

use, and performance.

Efficient transaction mechanisms are critical to exploiting the full benefit

of fast, non-volatile memories and to bringing them into the mainstream of com-

puter storage. These versatile technologies may play various roles in the storage

hierarchy depending on their cost, performance, density, etc. Given that, we pre-

sented system support for both a traditional, block-based interface to storage and

a memory-like interface to storage. Both MARS and NV-heaps are attractive ways

to provide fast and safe access to future storage architectures. They can serve as

building blocks in redefining the role of persistence in our applications and meeting

the growing demands of storage and data processing.
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