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A B S T R A C T   

Polycrystalline silicon (polysilicon) is the most commonly used structural material of microscopic electrome-
chanical devices, such as sensors and actuators. Almost all of these miniaturized devices contain mechanical 
elements experiencing high-frequency loading cycles. Due to the rapidly accumulating loading cycles and very 
small thicknesses of these microstructures, basic understanding of fatigue crack growth in polysilicon at the 
microscale is critical to the design of durable microdevices that satisfy application requirements. In this inves-
tigation, fatigue crack growth in a typical polysilicon microstructure subjected to multi-axial loading was 
analyzed with the finite element method. To account for the inherent heterogeneity and anisotropy of polysilicon 
at the microscale, a Poisson-Voronoi tessellation was incorporated in the highly stressed region of the resonating 
microdevice to model a polycrystalline microstructure. Simulation results illuminated the effect of local texture 
on the direction and rate of crack growth. Transgranular or intergranular crack growth were predicted, 
depending on the angle between the crack-path direction and the grain boundary and the fracture resistance of 
the grain and the grain boundary. From a fundamental fracture mechanics perspective, the computational 
approach developed in this study provides a capability for examining the effect of local texture anisotropy on 
cracking in polycrystalline microstructures.   

1. Introduction 

Dynamic electromechanical microdevices have been undergoing 
swift developments and increased industrial utilization. A variety of 
such microdevices have entered the microelectronics and communica-
tions marketplace, including high-resolution displays, high-density data 
storage, inkjet print heads, and pressure sensors and accelerometers 
used in the automobile industry. Despite variations in design and 
functionality, these microdevices share two important characteristics – 
they are principally made of polycrystalline silicon (polysilicon) and are 
generally subjected to millions or even billions of mixed-mode loading 
cycles during their lifetime. With device miniaturization advancing at a 
fast pace, long-term structural stability and endurance have become 
critically important for most applications. For these reasons, knowledge 
of microscale cracking in polysilicon, i.e., the main structural material of 
electromechanical components, is of paramount importance to the 
design of durable dynamic microdevices. 

Numerous studies performed with various surface micromachined 
microstructures have been carried out to elucidate crack growth in 

silicon. For instance, fracture tests with silicon microcantilevers 
revealed crack initiation and growth at the lower surface energy (111) 
planes and cracking along the (110) planes of silicon [1,2]. Stable crack 
growth with increasing crack length in pre-cracked single-crystal silicon 
microcantilevers tested at resonance was associated with a rate-limiting 
mechanism triggered by the reaction of species accumulating at the 
crack tip [3]. Premature failure of single-crystal silicon films subjected 
to a fully reversed stress equal to about one-half of the fracture strength 
in an atmosphere that contained water vapor was accredited to 
environmentally-assisted cracking of the surface oxide film [4,5]. Stress- 
corrosion cracking of the surface oxide film of notched polysilicon 
microcantilevers tested at resonance in the presence of high humidity 
levels was claimed to be a precursor of fatigue failure [5,6]. Subcritical 
crack growth in polysilicon was related to the synergistic effects of water 
and stress [7]. 

Despite important insight into polysilicon fatigue obtained from 
previous investigations (and several others), the simple microdevices 
used in these experiments did not simulate fatigue under multi-axial 
loading conditions that are typical of those encountered with most 
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micromachines. In addition, the probe tips or load cells used to actuate 
the surface micromachined specimens were prone to significant errors in 
force measurement and erroneous determination of the microscopic 
displacements of moving structural elements. Furthermore, because the 
majority of micromachines are hermetically packaged, their working 
environment is devoid of significant traces of oxygen or water vapor, 
which are required for environmentally-induced cracking to play a 
dominant role in fatigue behavior. To circumvent the foregoing in-
adequacies, on-chip electrostatic actuation of special fatigue resonators 
allowing for effective load and displacement control compared to the 
methods used in the aforementioned studies was developed for studying 
multi-axial fatigue of polysilicon microstructures in controlled atmo-
spheres [8,9]. 

Furthermore, with the accelerating reduction in size of polysilicon mi-
crostructures, the inherent heterogeneity and anisotropy of polycrystalline 
microstructures assumed an even greater importance in fatigue crack 
growth. Due to the alternating orientation, size, and shape of polysilicon 
crystals (grains), the mechanical behavior at the microscale can be strongly 
anisotropic. For example, the elastic anisotropy of crystals and the stress 
singularities arising at grain corners [10–12] can greatly affect the stress 
distribution at the grain level, further exacerbating stress singularity effects, 
depending on the anisotropy and orientation of the grains [12]. Grain 
orientation-induced local anisotropy may lead to large variations of the 
stress intensity factor (SIF) when the crack size is of the order of a few grain 
diameters [13]. Grain anisotropy in a nickel-based superalloy yielded a 
stepwise variation of the J-integral with the crack length, which was 
attributed to changes in transgranular crack growth rate [14]. Conse-
quently, stochastic methods were used to account for the effect of local 
anisotropy at the microscale. For example, Monte Carlo-finite element 
method (FEM) modeling was used to predict the nominal elastic constants of 
a thin-film aggregate of cubic crystals and compare them with plane-strain 
Voigt and Reuss bounds [15]. In another Monte Carlo-FEM study [16], 
consistent statistical results of the microscopic (local) SIFs and the energy 
release rate of a crack embedded in a columnar aggregate of randomly 
oriented, perfectly bonded, orthotropic crystals were computed for a given 
level of anisotropy, on condition that the crack tip was surrounded by at 
least ten grains. The implementation of the Poisson-Voronoi Diagram 
(PVD), which is topologically equivalent to the microstructure of real ce-
ramics and metals, in stress analyses of polycrystalline aggregates revealed 
systematic variations in micro-stress [17]. A PVD was incorporated in FEM 
models of polysilicon micromachines to examine the effects of local in-
homogeneity and anisotropy of polysilicon on the stress distribution in the 
critical region of planar surface micromachines at resonance [18]. 

A variety of FEM models have been developed for studying crack 
growth in materials, including the element-free Galerkin (EFG) method 
[19], the extended FEM (XFEM) [20,21], and the cohesive surface 
formulation (CSF) method [22–24]. The EFG method uses a fracture 
process zone that allows for arbitrary direction and rate of crack growth. 
The XFEM is an embedded discontinuity approach that relies on a 
partition-of-unity-based enrichment method for discontinuous fields; 
however, even though remeshing due to crack advancement is not 
required, special functions must be used to span the asymptotic near-tip 
displacement field. The CSF method is based on a phenomenological 
framework in which the fracture characteristics of the material are 
embedded in a cohesive surface traction-displacement relation, obeyed 
by interface elements placed along a predetermined crack path, which 
are used to simulate grain boundary shearing and fracture. Grain-level 
micromechanics modeling of material constitutive behavior under 
quasi-static and dynamic loading was accomplished by a stochastic 
analysis of the size distribution, morphology, and location of initial 
defects in a representative volume element composed of a set of grains 
[24,25]; however, only intergranular fracture was modeled due to the 
limitations of the adopted cohesive surface formulation method. Mo-
lecular statistics simulations of single-edge cracked silicon samples 
demonstrated scale dependence of the fracture process zone at a critical 
size of a few nanometers, suggesting that brittle fracture was governed 

by atomic bond breakage [26]. 
In the present study, a PVD-FEM approach was developed to analyze 

subcritical fatigue crack growth from a tiny crack embedded in the 
critical region of a polysilicon microstructure. There are two main ad-
vantages for selecting this approach. First, the use of a standard FEM 
formulation does not require special functions, and second, arbitrary 
crack paths can be modelled since there is no need to introduce interface 
elements in the model, consequently enabling the simulation of both 
intergranular and transgranular fracture. Numerical results of multi- 
axial fatigue crack growth are presented for the most prevalent micro-
machine polysilicon textures {110} and {100} to elucidate the effect of 
local anisotropy (i.e., grain orientation, size, and shape) on the tendency 
for transgranular and intergranular fatigue crack growth. 

2. Methods 

2.1. Model 

Special micromachines that can generate sufficiently high stresses at 
resonance are desirable for investigating fatigue damage at the micro-
scale. In addition, on-chip actuation is more advantageous than 
macroscale testing because the generated force can be easily controlled 
and force measurement errors occurring with macroscale loading tech-
niques can be avoided. Fig. 1 shows a scanning electron microscope 
(SEM) micrograph of a planar resonator, specifically designed for 
simulating multi-axial fatigue of a two-beam suspension microstructure 
[8,9]. The main components of the resonator are the two long beams 
attached to a rotational ring at one end and anchored to the substrate at 
the other end, which play the role of the fatigue microstructures, a 
suspended ring structure acting as a connector, and six comb-structures 
divided in two groups A and B that provide driving and sensing capa-
bilities, respectively. To enhance the visual measurement of the in-plane 
rotation angle, two of the radial spokes were extended with verniers at 
the tips. Matching sets of stationary indicator marks were placed near 
the end to allow visual measurement of angular movements as small as 
0.1◦. Since an electrostatic driving force cannot statically generate suf-
ficiently high stresses in the two-beam suspension, the micromachine 
must be resonated to initiate the damage process. 

Fig. 1. SEM micrograph of a two-beam resonator. Six comb drives are divided 
into two groups A and B, one for electrostatic force driving and the other for 
capacitive sensing and control. 
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2.2. Finite element modeling procedure 

Since polysilicon exhibits a predominant columnar microstructure 
[27–29], the through-thickness material properties were presumed to be 
approximately uniform. Therefore, two-dimensional FEM modeling was 
used to analyze fatigue crack growth in the critical beam-anchor region 
of the two-beam micromachine. To examine the effect of the orientation, 
shape, and size distribution of the silicon grains, the polycrystalline 
microstructure in the critical micromachine region was modeled with a 
PVD, using an approach based on a given mean grain diameter devel-
oped in another study [18]. Micromachine beams with the appropriate 
polycrystalline structures were modeled by importing the generated 
PVD into the MSC Patran code and subsequently mapping the micro-
machine geometry onto the PVD. For computational efficiency, only the 
critical region of the micromachine FEM models (i.e., the beam-anchor 
region of the polycrystalline microstructure) was modeled with the PVD. 

Fig. 2(a) shows the FEM mesh of the examined two-beam micro-
machine. Due to the symmetric geometry and the boundary conditions, 
only one-half of the micromachine structure was modeled. To prevent 
stress singularities at the beam-anchor and beam-ring connections, 0.8- 
μm-radius fillets (measured from SEM images of the micromachine) 
were introduced in the FEM models. Fig. 2(c) shows a polycrystalline 
microstructure in the beam-anchor region of the FEM mesh, with six 
neighboring grains indexed. A 15-nm-long crack perpendicular to the 
beam edge was introduced in the mesh of grain (1) in the highly stressed 
region. The initial crack length was of the order of the root-mean-square 
roughness of doped and annealed polysilicon thin films. To account for 
the square root stress singularity at the crack tip, an annulus of collapsed 
quadrilateral fracture elements [30] was incorporated around the crack 
tip (Fig. 2(b)). The FEM meshes were refined until stress convergence 
was achieved. The meshes with a polycrystalline microstructure 
included in the critical micromachine region comprised about 11,000 
eight-node, plane-stress, biquadratic elements with about 35,000 nodes. 
In all FEM meshes, the anchor nodes were fully constrained and the 
symmetry condition of the cross-sectional nodes of the suspended ring 
was satisfied by applying multi-point constraints. A static stress analysis 
[18] that yielded similar results with a computationally excessive dy-
namic stress analysis of the micromachine at the peak rotational angle of 
the ring achieved at resonance was used to compute the stresses at the 
crack tip and, consecutively, calculate the SIFs used in the crack growth 
analysis. Based on a dynamic analysis of the micromachine actuated at 
resonance [18], a displacement u = 2 μm was applied to the tip of the 
suspension beam, as shown in Fig. 2(a). 

2.3. Polysilicon microstructure 

Low-pressure chemical vapor deposition (LPCVD) is the most com-
mon process for depositing polysilicon structural layers. The growth of 
amorphous or polycrystalline silicon depends on the vacuum pressure 
and deposition temperature. For instance, LPCVD temperatures below 
~600 ◦C produce amorphous silicon, whereas temperatures above 600 
◦C produce polycrystalline silicon [27–29]. LPCVD-synthesized poly-
silicon usually possesses columnar grains and a texture strongly 
depended on deposition temperature, pressure, and doping [27–29]. For 
deposition temperatures between 620 and 650 ◦C, the prevalent out-of- 
plane texture is {110}, with the {100} texture progressively becoming 
dominant as the deposition temperature is raised to 700 ◦C [28]. Even 
though {110} is the most dominant texture in polysilicon micro-
machines [31–33], both {110} and {100} textures with columnar 
grains through the thickness of the polysilicon structure were examined 
in this study. In addition to the out-of-plane texture of polysilicon, the 

mean grain size also exhibits a strong dependence on deposition tem-
perature and pressure. Assuming circular cross sections for the columnar 
grains, the mean grain diameter of polysilicon deposited under different 
conditions was estimated to be in the range of 0.1–0.4 μm [28]. 
Consequently, a 0.38 μm mean grain diameter was chosen to represent 
the average grain size in the numerical simulations of this study. 

2.4. Effective elastic modulus 

In the crystal-axis coordinate system, the stiffness matrix C of single- 
crystal silicon is given by [34] 

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

165.6 63.8 63.8 0 0 0
63.8 165.6 63.8 0 0 0
63.8 63.8 165.6 0 0 0

0 0 0 79.5 0 0
0 0 0 0 79.5 0
0 0 0 0 0 79.5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

GPa (1) 

The effective elastic modulus Eeff
1 along the beam length for different 

textures obtained by transformation [35,36] is shown in Fig. 3. It is 
noted that the {110} texture demonstrates a higher range of Eeff

1 than 
the {100} texture and that the periodicity of the {110} and {100} 
textures is 180◦ and 90◦, respectively. An in-plane orientation angle was 
randomly defined for each grain in the critical region. For the beam 
structure outside the critical region, the effective elastic modulus was 

Fig. 2. (a) FEM mesh of a two-beam (30 × 2 × 2 μm) resonator, (b) detail of the 
mesh around the crack tip, and (c) detail of mesh in the critical beam-anchor 
region with six neighboring grains indexed. 
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determined by the Voigt-Reuss-Hill (VRH) average, which is the best 
possible estimate when only the orientation distribution function of a 
polycrystalline material is known [37]. The calculated VRH average for 
the {110} and {100} textures was found to be equal to 166 and 149 
GPa, respectively. 

2.5. Crack growth 

In linear elastic fracture mechanics (LEFM), the mode I and mode II 
SIFs, KI and KII, respectively, are defined by 

KI = lim
r,θ→0

̅̅̅̅̅̅̅
2πr

√
σyy(r, θ)

KII = lim
r,θ→0

̅̅̅̅̅̅̅
2πr

√
τxy(r, θ)

(2)  

where (r, θ) and (x, y) are cylindrical polar and Cartesian coordinates, 
respectively, centered at the crack tip. 

For a node on the crack plane, the corresponding mode I and mode II 
SIFs, K*

I and K*
II, respectively, can be calculated by 

K*
I =

̅̅̅̅̅̅̅̅̅
2πr*

√
σyy(r*, 0)

K*
II =

̅̅̅̅̅̅̅̅̅
2πr*

√
τxy(r*, 0)

(3)  

where r* is the distance of a node from the crack tip and the tensile and 
shear stresses σyy(r*, 0) and τxy(r*, 0) are the stresses at that node. The 
actual values of KI and KII can be obtained by linear extrapolation to 
r* = 0 of a least-square line fit through the K*

I and K*
II data [38]. 

To determine the crack growth direction, it was necessary to calcu-
late the tensile and shear SIFs, Kσ and Kτ, respectively, at different angles 
φ measured from the initial crack plane, defined by 

Kσ(φ) =
̅̅̅̅̅̅̅
2πr

√
σφφ(r,φ)

Kτ(φ) =
̅̅̅̅̅̅̅
2πr

√
τrφ(r,φ)

(4)  

with the actual values of Kσ and Kτ obtained by linear extrapolation of 
the least-square line fit through the K*

I and K*
II data, as mentioned pre-

viously. 
For anisotropic materials, Kσ and Kτ are expressed by [39] 

Kσ = K11KI + K12KII
Kτ = K21KI + K22KII

(5)  

where KI and KII are the mode I and mode II SIFs, respectively, obtained 
from the FEM analysis, and the four coefficients in Eq. (5) are given by 

K11 = Re
{

1
λ2 − λ1

[
λ2(cosφ + λ1sinφ)3/2

− λ1(cosφ + λ2sinφ)3/2
]}

K12 = Re
{

1
λ2 − λ1

[
(cosφ + λ1sinφ)3/2

− (cosφ + λ2sinφ)3/2
]}

K21 = Re
{

1
λ2 − λ1

[
λ2(cosφ + λ1sinφ)1/2

(sinφ − λ1cosφ)

− λ1(cosφ + λ2sinφ)1/2
(sinφ − λ2cosφ)

]}

K22 = Re
{

1
λ2 − λ1

[
(cosφ + λ1sinφ)1/2

(sinφ − λ1cosφ)

− (cosφ + λ2sinφ)1/2
(sinφ − λ2cosφ)

]}

(6)  

where λ1 and λ2 are the roots with a positive imaginary part of the 
characteristic equation 

S11λ4 − 2S16λ3 +(2S12 + S66)λ2 − 2S26λ+ S22 = 0 (7)  

where Sij are components of the compliance matrix S of single-crystal 
silicon with a Cartesian coordinate system affixed to the crack tip. 

There are three commonly used fracture criteria for determining the 
crack growth direction, namely maximum KI, zero KII, and maximum 
energy-release rate for quasi-static crack growth. Although these criteria 
lead to similar results for isotropic materials, crack path predictions for 
anisotropic materials have been reported to differ [40-42]. Instead, a 
fracture criterion based on the fracture resistance (surface energy) of the 
cleavage plane and the tensile stress normal to the cleavage plane can be 
used to predict crack growth in anisotropic materials [41,42]. Never-
theless, because single-crystal silicon has a diamond structure in which 
the crystallographic dependence of the surface energy is modest (the 
smallest surface energy ratio is γ{111}/γ{100} = 1/

̅̅̅
3

√
[43]), the cleavage 

tendency is also generally modest. Therefore, the commonly imple-
mented fracture criteria of maximum KI and zero KII were used in this 
study to predict the crack growth direction. Consequently, the driving 
force for crack growth was determined from the SIF range ΔK, defined 
by 

ΔK = Kσ,max − Kσ,min (8)  

where Kσ,max and Kσ,min are the maximum and minimum tensile SIFs in a 
given loading cycle, respectively. It has been argued that the crack 
growth behavior of brittle materials exhibits a much stronger depen-
dence on Kσ,max than ΔK [44]. In addition, as the crack faces come into 
contact during the compressive portion of a loading cycle, the resulting 
Kσ,min is at least an order of magnitude smaller than Kσ,max in the tensile 
portion of the cycle. Accordingly, the driving force for fatigue crack 
propagation ΔK was set equal to Kσ,max, i.e., the maximum tensile SIF 
arising when the crack was fully open. 

3. Results and discussion 

Fig. 4 shows a comparison of analytical (Eqs. (5) and (6)) and FEM 
results of the tensile and shear SIFs, Kσ and Kτ, respectively, versus kink 
angle φ measured from the initial crack plane. The results are in good 
agreement, especially for |φ| < 15◦. Since all the calculated kink angles 
during the simulated crack growth were found to be less than 15◦ (as 
shown below), the analytical method based on Eq. (5) was used to 
determine Kσ,max and the corresponding kink angle, which was rounded 
off to the nearest integer. It is also noted that Kσ,max occurred for φ ≈ 0◦, 
at which kink angle Kτ ≈ 0. 

Because the orientation of the initial crack was randomly varied, it 
was necessary to examine different textures in the critical beam-anchor 
region of the beam to determine the highest value of Kσ,max, hereafter 
denoted by max Kσ,max. Considering the periodicity of the effective 

Fig. 3. Effective elastic modulus Eeff
1 in the length direction of the beam versus 

in-plane orientation angle θ for {100} and {110} texture. 
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elastic modulus (Fig. 3), the orientation of each grain in the critical re-
gion was uniformly varied in the 0–180◦ and 0–90◦ range for the {110} 
and {100} texture, respectively. Consequently, 20 FEM models of each 
texture with randomly generated PVD microstructures in the beam- 
anchor region were used to compute Kσ,max. At that juncture, the 
model that yielded the max Kσ,max was modified by varying only the 
orientation angle of grain (1) from 0 to 180◦ in 20◦ increments for the 
{110} texture and from 0 to 90◦ in 10◦ increments for the {100} 
texture. Accordingly, two data sets of Kσ,max and associated kink angle φ 
were generated – a randomized set obtained from the randomly gener-
ated FEM models and a fixed set obtained from the FEM models with 
grain orientations those of the model that yielded the max Kσ,max but 
with a varying orientation of grain (1). 

Fig. 5 shows the kink angle φ and Kσ,max as functions of the orien-
tation angle θ of grain (1) for {110} texture. The data indicate that both 
φ and Kσ,max were mainly determined by the orientation of grain (1), 
which contained the crack. In all simulation cases of the {110} texture, 
φ < 15◦ and the variation of Kσ,max resembled that of the effective elastic 
modulus for the {110} texture (Fig. 3), implying a strong dependence of 
Kσ,max on the effective elastic modulus of grain (1), i.e., a secondary ef-
fect of the orientation of neighboring grains. Fig. 6 shows the variation 
of φ and Kσ,max with the orientation angle θ of grain (1) for {100} 
texture. Similar to the {110} texture, both φ and Kσ,max were mainly 
determined by the orientation of grain (1) and the variation of Kσ,max was 
similar to that of the effective elastic modulus for {100} texture. 
However, the variation of Kσ,max for {100} texture was less than that for 

{110} texture and φ ≈ 9◦ almost throughout the entire range of θ. The 
foregoing trends can be attributed to less variation in effective modulus 
for {100} than {110} texture (Fig. 3). Considering the exponential 
dependence of the crack growth rate on Kσ,max, a strong dependence of 
the fatigue crack growth rate on the texture of the grain containing the 
growing crack can be presumed. Moreover, the relatively narrow range 
of variation of φ for both textures suggested that the crack growth di-
rection was mainly determined by the geometry and boundary condi-
tions at the beam-anchor edge instead of the local grain texture. 

Considering the negligibly small effect of the far-field grains on 
Kσ,max, the variation of max Kσ,max with the orientation angle of the 
neighboring grains (2)–(6) of grain (1) (Fig. 2(c)) was examined to 
obtain additional insight into the effect of local texture on crack growth. 
Because Kσ,max exhibited two peaks for {110} texture (Fig. 5(b)), two 
cases with similar Kσ,max but different kink angles (henceforth referred to 
as cases (1) and (2) of the {110} texture) were examined. Table 1 gives 
the calculated orientation angles of the neighboring grains that yielded 
the max Kσ,max for both {110} and {100} texture. 

In addition, to examine the effect of loading on Kσ,max, different 
displacements were applied to the beam end attached to the rotational 
ring. Although the effect of the beam-end displacement on the kink angle 
was insignificant, Fig. 7 shows a linear variation of Kσ,max with the beam- 
end displacement u for both {110} and {100} texture, implying a 
negligible influence of the intrinsic nonlinear deformation behavior of 
the beam on crack growth. These results suggested a similar crack 
growth path for different beam displacements, the only difference being 

Fig. 4. Analytical and FEM results of (a) the tensile stress intensity factor Kσ and (b) the shear stress intensity factor Kτ versus kink angle φ measured from the initial 
crack plane for {110} texture (star symbols correspond to the analytically determined direction of Kσ,max). 

Fig. 5. (a) Kink angle φ and (b) maximum tensile stress intensity factor Kσ,max versus orientation angle θ for grain (1) and {110} texture (star symbols correspond to 
the direction of Kσ,max). 
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the magnitude of Kσ,max, calculated by the linear interpolation method 
mentioned previously. For that reason, fatigue crack growth was 
analyzed for a beam-end displacement equal to 2 μm. 

Simulations of the crack advancement encompassed sequential 
remeshing. After using the analytical method discussed in section 2.5 to 
determine the kink angle of the existing crack, the FEM mesh was 
modified by incorporating a crack length increment Δa in the direction 

of the analytically predicted kink angle. This procedure was repeated in 
each step of incremental crack growth until the crack propagated to the 
grain boundary. The selection of an appropriate crack length increment 
was critical because it could affect the simulated crack path. In the 
absence of an established approach, two crack length increments that 
were an order of magnitude smaller than the mean grain diameter (0.38 
μm), i.e., Δa = 30 and 60 nm, were used in the simulations for grain 
orientation angles θ corresponding to the max Kσ,max in grain (1) and 
both {110} and {100} textures (Table 1). Fig. 8 shows crack paths 
through grain (1) obtained from the foregoing simulations. There are 
several important findings worthy of mentioning. First, the extremely 
small spacing (<2 nm) between the crack paths for {110} texture, 
θ = 144◦, and Δa = 30 and 60 nm, indicated a negligible effect of the 
crack length increment on crack growth. Consequently, to reduce the 
computational time, Δa was set equal to 60 nm in all simulations. Sec-
ond, despite significant differences in the initial kink angle, crack 
growth followed approximately straight paths, evinced by the very small 
kink angles (<2◦) obtained in each increment step. Third, although the 
crack paths appeared to differ appreciably from each other, this was only 
due to the scale used to plot the data. In view of the close similarity of the 
crack paths, despite the significantly different initial kink angles, it may 
be inferred that the texture effect on the crack path through grain (1) 
was minor. Although the polycrystalline microstructure exhibited a 

Fig. 6. (a) Kink angle φ and (b) maximum tensile stress intensity factor Kσ,max versus orientation angle θ for grain (1) and {100} texture (star symbols correspond to 
local maxima of Kσ,max). 

Table 1 
Grain orientation angles corresponding to max Kσ,max for {110} and {100} 
texture.  

Grain Grain orientation angle, θ (deg.) 

{110} texture {100} texture 

case (1) case (2) 

1 144 36 45.0 
2 60 60 67.5 
3 90 90 22.5 
4 120 120 45.0 
5 60 60 67.5 
6 144 144 45.0  

Fig. 7. Maximum tensile stress intensity factor Kσ,max versus beam tip 
displacement u for {110} and {100} texture. For all beam tip displacements, 
both {110} and {100} texture show a constant kink angle equal to 7◦ and 9◦, 
respectively. 

Fig. 8. Crack path in the first two neighboring grains for different in-plane 
orientation angles θ of grain (1), crack length increment Δa, and {100} and 
{110} texture. 
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strong effect on the stress field in the beam-anchor region, the kink angle 
was more sensitive to the far-field stresses rather than the local stresses. 

In addition to the similar crack paths, Fig. 9 shows almost identical 
variation of Kσ,max with crack length a for all simulation cases with 
{110} texture and small differences with the simulation case with 
{100} texture, further validating the selection of Δa = 60 nm in all 
simulations. Notably, all simulation cases demonstrated a square root 
dependence of Kσ,max on crack length. Since the kink angle from the 
initial crack was small (i.e., in the range of 7–9◦) for both textures 
(Figs. 5(a) and 6(a)), the direction of maximum KI was essentially un-
affected by the distribution of the grain orientation angle; thus, the crack 
advanced almost in a straight line within grain (1) after diverging from 
the initial crack that was perpendicular to the beam edge. Consequently, 
it was the far-field stress distribution (controlled by the beam geometry 
and the boundary conditions) that determined the crack growth direc-
tion rather than the local texture. Fig. 9 also shows that the {110} 
texture yielded higher Kσ,max values than the {100} texture for a given 
crack length, evidently due to the higher effective stiffness of the {110} 
texture (Fig. 3), implying faster crack growth for {110} texture. More-
over, despite the differences in initial kink angles and crack growth 
paths corresponding to cases (1) and (2) of the {110} texture (Table 1), 
these simulation cases demonstrated essentially identical variations in 
Kσ,max with crack length. 

Since cases (1) and (2) yielded almost identical crack growth through 
grain (1), case (1) of the simulations with {110} texture was selected to 
further study the grain boundary effect on crack growth. When the crack 
impinged onto the grain boundary, the crack growth direction was 
controlled by the effective SIF Keff , because Kσ and Kτ were of the same 
order of magnitude. For a given kink angle φ, Keff is defined by 

Keff(φ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K2
σ + K2

τ

√

(9) 

Fig. 10 shows analytical and FEM results of Keff versus φ for grain 
(4), which is neighbor to grain (1) (Fig. 2), for {110} and {100} texture. 
In addition to the good agreement between the results of the two ap-
proaches, the maximum value of Keff (designated by Kmax

eff ) corresponded 
to φ ≈ 1◦ and –2◦ for {110} and {100} texture, respectively, implying 
that Kmax

eff essentially ascended in the main crack direction. In addition, 
Keff along the grain boundary (denoted by Kgb

eff) was approximately 19% 
and 29% smaller than the corresponding Kmax

eff for {110} and {100} 
texture, respectively. To determine the range of Kgb

eff/Kmax
eff , at least 20 

randomized FEM simulations were performed for each texture. Fig. 11 
displays the variation of Kmax

eff with the orientation angle of grain (4) for 

{110} and {100} texture obtained from the foregoing simulations. 
Based on the results shown in Fig. 11, the mean value of Kgb

eff/Kmax
eff was 

found equal to 1.29 and 1.37 for {110} and {100} texture, respectively. 
When the crack tip impinged onto the boundary of grains (1) and (4), 
more grains were within the K-dominant zone of the crack tip, affecting 
the fracture process to some degree. Consequently, there was no strong 
correlation between kink angle, SIF, and orientation angle of grain (4). 

For a polycrystalline material, crack growth along a grain boundary 
occurs when the following condition is satisfied 

Kgb
eff

Kmax
eff

≥

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Eeff

gb Ggb

Eeff
c Gg

√

(10)  

where Eeff
gb and Eeff

c are the effective elastic modulus in the direction 
normal to the grain boundary and the crack, respectively, and Ggb and Gg 

denote the critical energy release rate of the grain boundary and grain, 
respectively. Generally, Ggb < Gg and the ratio Ggb/Gg strongly depends 
on the fabrication process. Since Kmax

eff was only 30–40% higher than Kgb
eff , 

either transgranular or intergranular crack growth could be predicted. 
However, in the absence of experimental measurements of the fracture 
resistance of the polysilicon grain boundary, it was presumed that 
Ggb ≈ Gg. This led to the supposition that crack growth into the next 
grain, i.e., grain (4), would occur in a direction determined by the 
magnitude of Kmax

eff . Indeed, as shown in Fig. 8 for θ = 144◦ and {110} 
texture, the crack propagated into grain (4) following approximately the 
same straight path as in grain (1). 

Fig. 12 shows Kmax
σ as a function of crack length a for crack growth 

from grain (1) into grain (4) and {110} texture. It is noted that the 
monotonic increase of Kmax

σ with a during crack growth inside grain (1) 
was interrupted when the crack tip reached the vicinity of the grain 
boundary. The decrease in Kmax

σ at the instant the crack impinged onto 
the grain boundary was due to the decrease of Eeff

1 as the crack propa-
gated into a different grain. This finding suggested a non-monotonic 
increase in crack growth rate through the silicon grains (transgranular 
fracture). However, if Ggb < Gg, the crack would markedly deviate from 
the original path and will grow along the grain boundary (intergranular 
fracture) despite the existence of the maximum SIF in the grain. An 
interface cohesive zone model of the grain boundaries can be incorpo-
rated in future PVD-FEM analyses to investigate the competition be-
tween transgranular and intergranular fracture for different textures. 

The present PVD-FEM analysis of crack growth under multi-axial 
loading is based on the validity of LEFM, which presumes linear 
elastic material behavior, except in a vanishingly small region ahead of 
the crack tip, known as the process zone or plastic zone, where the 
material exhibits significant inelastic behavior. However, when the 
process zone is small relative to the crack length, LEFM still holds and 
the stress state can be described by the SIF. Thus, the current analysis 
can also be applied to materials demonstrating limited crack-tip plas-
ticity. Alternatively, when the process zone at the crack tip is large, an 
elastic–plastic fracture mechanics approach based on other parameters, 
such as the crack-tip opening displacement and the J-integral, must be 
incorporated in the PVD-FEM analysis, under the condition that the 
stress increases monotonically throughout the fracturing component up 
to the instant of crack extension (i.e., no unloading). 

4. Conclusions 

A PVD-FEM analysis of crack growth in polysilicon micromachines 
was performed to elucidate the microstructure effect on fatigue cracking 
under multi-axial loading. Based on the presented analytical and simu-
lation results and pertinent discussions, the following main conclusions 
can be drawn from this study. 

Fig. 9. Maximum tensile stress intensity factor Kσ,max versus crack length a for 
{100} and {110} texture and different in-plane orientation angles θ of grain 
(1) and crack length increments Δa. 
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1. During subcritical crack initiation, the effective elastic modulus of a 
grain containing a submicrometer crack exhibited a strong effect on 
the magnitude of the SIF (i.e., crack growth rate), whereas the effect 
of neighboring grains was secondary. A larger variation in kink angle 
was observed for {110} texture than {110} texture due to more 

pronounced variation of the effective elastic modulus with grain 
orientation angle.  

2. While the crack path within a grain was almost straight and nearly 
insensitive to the local texture, the driving force for crack advance-
ment Kσ,max was affected by the texture, with the {110} texture 
showing higher Kσ,max values than the {100} texture. However, both 
textures demonstrated a similar dependence of Kσ,max on the crack 
length.  

3. When the crack tip reached the grain boundary, the effective SIF Keff 

was affected not only by the grain just ahead of the crack but also by 
all neighboring grains. Depending on the angle between the propa-
gating crack and the grain boundary, the critical energy release rate 
of the grain and the grain boundary and the corresponding elastic 
modulus, both transgranular and intergranular fracture could be 
encountered in polycrystalline silicon.  

4. For the simulated transgranular fracture, an abrupt decrease in Kσ,max 

occurred when the crack penetrated a neighboring grain, implying 
non-monotonic crack growth through the polysilicon microstructure.  

5. The computational methodology developed in this study can be used 
to perform fracture mechanics analyses of microstructures subjected 
to multi-axial loading with the local texture incorporated in the 
critical region(s) of the microstructures. 
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