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Abstract

Superconducting Circuits for Quantum Metrology with Nonclassical Light

by

Andrew Wilson Eddins

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Irfan Siddiqi, Chair

The laws of quantum mechanics imply the existence of an intrinsic uncertainty, or noise, in
the electromagnetic field. These noise fluctuations are central to many processes in atomic
physics and quantum optics, including spontaneous emission of radiation by an atomic sys-
tem, backaction on an atomic system during non-demolition measurement by probe light,
and intrinsic bounds on the noise performance of an ideal amplifier. While quantum noise
cannot be eliminated, the noise of one observable quantity may be reduced provided that
of the conjugate observable is increased in accord with the relevant Heisenberg uncertainty
relation; this process is known as squeezing.

Recently, superconducting circuits have emerged as a powerful platform for studying the
interaction of squeezed light and matter, leveraging the low-dimensionality of the circuit
environment to efficiently couple atomic systems to squeezed radiation. Beyond enabling
the verification of canonical predictions of quantum optics, these experiments explore the
potential utility of squeezing for the state readout of quantum bits, or qubits, used for
quantum information processing.

In this thesis, we present three experiments probing the interaction of a superconducting
qubit with squeezed radiation. First, we observe how the fluorescence spectra emitted by
a two-level atomic system are modified by squeezing of a resonant drive. The subnatural
linewidths of the resulting spectra provide the first successful verification in any system
of predictions from nearly three decades prior, and provide a tool for characterization of
microwave squeezed states. Second, we combine injected squeezed noise with a stroboscopic
measurement scheme to demonstrate the first improvement of the signal-to-noise ratio of
qubit state readout due to input squeezing. This study includes a characterization of the
effect of squeezing on measurement backaction, exhibiting the first use of squeezing to slow
measurement-induced dephasing. Finally, we develop a circuit incorporating the qubit inside
of a squeezed-microwave source and extensively study the measurement physics of this hybrid
system. This device enables the transfer of quantum information from the qubit at ∼30
milliKelvin to a room temperature detector with a marked increase in steady-state efficiency.
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Chapter 1

Introduction

1.1 Quantum circuits and measurement

The development of increasingly complex quantum-coherent systems using superconduct-
ing circuits has been driven by potential high-impact applications including cryptanalysis
[5], database search [6], simulation of chemical properties and dynamics [7, 8, 9], and basic
research into quantum mechanics. In comparison with other popular quantum platforms
such as trapped ions, nitrogen-vacancy centers, or semiconducting qubits, superconducting
circuits have several strengths. These strengths include system-size scalability facilitated
by well-established lithographic fabrication and materials processing technology, high cus-
tomizability of atomic properties and couplings, and ready availability of microwave control
electronics and associated microwave engineering knowledge already developed by the com-
munications and defense industries. Exploiting these strengths has enabled steady improve-
ment of superconducting qubit lifetimes from the first reported value of 1 ns in 1999 [10] to
modern qubits which commonly exhibit lifetimes on the order of 10 to 100 µs [11, 12, 13, 14],
making accessible increasingly complex classes of experiments. Despite this progress, to date
the requirements for universal quantum computation remain daunting, requiring integration
of large numbers of individually controllable qubits on-chip with minimal crosstalk effects,
high-fidelity single- and multi-qubit gate operations, and high-fidelity qubit measurement
for error-correction and final state readout.

Qubit measurement poses a particularly interesting problem, requiring first the efficient
transfer of information from a qubit to an itinerant microwave field, and second the room-
temperature detection of this signal, which originates inside a dilution refrigerator and often
corresponds to only a few microwave photons (energetically comparable to∼100 milliKelvin).
The first step was largely addressed by the development of circuit quantum-electrodynamics
(cQED) techniques [15], the circuit analogue of cavity quantum-electrodynamics [16], en-
abling, among many other results, the approximately ideal transfer of state information
from a qubit to a microwave transmission line by means of a highly detuned linear resonant
circuit. The second step has driven the development of superconducting microwave am-
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plifiers capable of increasing signal powers by orders of magnitude while adding almost no
more noise than required by fundamental quantum mechanics. These amplifier technologies,
first explored in the 1970’s and 80’s [17], then more recently intensely developed for cQED
applications, have culminated in qubit readout with fidelities of ∼99% or more with acqui-
sition times on the order of ∼100 ns [18, 19], and have enabled a generation of experiments
studying e.g. wavefunction-collapse dynamics such as discrete quantum jumps [20], contin-
uous quantum trajectories [21, 22], measurement-induced entanglement [3], and quantum
feedback [23] including application to quantum error-correction [24], among others. How-
ever, as the major scientific goal of universal quantum computation requires increasing both
system size and algorithmic complexity by many more orders of magnitude, improvements
in measurement technology are expected to remain desirable for facilitating error-correction
and final state readout.

Standard qubit measurements are performed by probing the qubit using coherent elec-
tromagnetic states, arguably the closest quantum analogue to the sinusoidal behavior of a
classical light field; a natural question is whether other, more distinctly quantum fields might
be advantageous for performing measurements faster or with lower power. Specifically, su-
perconducting amplifiers have long been recognized not only as a means of achieving gain
with ultra low-noise but also as a source of squeezed radiation [25, 26, 27, 28], famous as
a means of lowering the noise-floor in some measurements below that set by the intrinsic
fluctuations of the electromagnetic vacuum. The development of squeezing in the optical
spectrum has a long history [29, 30], leading to recent applications including enhancing the
sensitivity of gravitational wave detectors [31, 32]. Squeezing microwave-frequency fields has
surged as a topic of interest in the modern contexts of cQED and dark matter detection
[33] given the ability to couple squeezed fields to low-dimensional quantum systems such
as superconducting qubits [34, 1, 35], optomechanical circuits [36, 37], or spin ensembles
[38]. The interaction of squeezed microwaves with superconducting qubits with an emphasis
on potential applications to measurement is the subject of the experiments in this thesis.
The remainder of this chapter introduces some of the basic building blocks underlying these
experiments.

1.2 The Josephson junction as a nonlinear inductor

Here we briefly motivate the AC and DC Josephson relations [39] from basic quantum me-
chanics, following an argument akin to the more complete presentation in [40], then proceed
to derive the Josephson inductance, the nonlinear quantity central to all superconducting
qubits and amplifiers in this thesis. Consider two superconducting regions separated by a
thin non-superconducting barrier. We model the superconducting state as the wavefunction
ψ(x) =

√
neiφ(x), where n is the density of Cooper-pairs of electrons and φ is the phase of

the field. We label the wavefunction phases just to the left and right of the barrier, respec-
tively, as φ(x < 0) = φ1 and φ(x > 0) = φ2 for sufficiently small |x|, where for simplicity
we assume the barrier has negligible width (delta-function approximation). We represent
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the Josephson junction as the narrow tunnel-barrier in the energy potential U(x) for a sin-
gle Cooper pair as drawn in Fig. 1.1. Applying an electrical potential difference V across
the junction as depicted in the inset circuit diagram causes the potential energy difference
U(x < 0) − U(x > 0) = −qV , where q = −2|e| = −2e is the charge of a Cooper pair. Kir-
choff’s current rule and the assumption n is approximately independent of x implies the same
current and same kinetic energy on both sides of the junction, so the total energy difference
between the left and right regions is −qV . Thus over time t we expect ψ2 to accumulate the
additional phase δ = −qV t/~ = 2eV t/~ relative to ψ1 per the time-dependent Schrödinger
equation [41]. Taking the time derivative of this phase yields the AC Josephson relation,

δ̇ = V/ϕ0, (1.1)

where ϕ0 = ~/2e is the reduced flux quantum. The AC Josephson relation gets its name from
how the tunneling of a Cooper pair necessarily produces a photon with frequency ω = qV/~,
such that applying a constant voltage produces an AC response at ω.

The DC Josephson relation describes the current passing through the junction in terms
of δ. The quantum mechanical expression for electrical current in one dimension is

I =
~q

4ime

(ψ∗ψ′ − ψψ∗′). (1.2)

The spatial derivative at the junction should be proportional to the difference of the wave-
function just to the right and left of the junction, ψ′ ∝ limε→0 ψ(ε)−ψ(−ε), while symmetry
requires the wavefunction itself takes the mean value ψ = limε→0(ψ(ε) + ψ(−ε))/2, giving

I ∝ (e−iφ1 + e−iφ2)(eiφ2 − eiφ1)
2

− (eiφ1 + eiφ2)(e−iφ2 − e−iφ1)
2

= (eiδ − e−iδ). (1.3)

Identifying the overall proportionality constant as the critical current I0 gives

I = I0 sin δ, (1.4)

a consequence of which is that a DC current may flow through the Josephson junction even
when V = 0.

Taken together, the Josephson relations imply the junction acts as a nonlinear inductance.
Combining the equations gives

İ =
I0 cos δ

ϕ0

V. (1.5)

Since inductance is generally defined by L = V/İ, we identify the Josephson inductance

LJ =
ϕ0

I0 cos δ
=

ϕ0√
I2

0 − I2
= LJ,0

(
1 +

1

2
(I/I0)2 + ...

)
, (1.6)

which for small current approaches the value LJ,0 = ϕ0/I0.
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-qV

V

x

U(x)

0

0

Figure 1.1: Simple model of a Josephson junction with an applied voltage bias.

Putting two Josephson junctions within a superconducting loop forms a Superconducting
Quantum Interference Device (SQUID, specifically a dc-SQUID), which has a net inductance
that can be tuned via an applied flux. This can be shown mathematically by requiring that
the phase φ be single-valued at all points around the loop, the end result of which is an
inductance of the same form as Eq. 1.6 but with the replacement

I0 → Ic(Φapp) = 2I0 cos(
πΦapp

Φ0

), (1.7)

where Φapp is the magnetic flux applied through the SQUID loop. When Φapp = 0, the
standard prediction for two inductors in parallel is recovered. Inspecting the expression for
the SQUID inductance,

LJ =
ϕ0

2I0 cos(πΦapp

Φ0
) cos δ

, (1.8)

we see the inductance can be modulated either by varying the flux through the loop Φapp,
or by running a large oscillating current through the loop to cause δ to vary. Later chapters
discuss how these two 1/ cos factors respectively enable amplification produced by flux-
pumping or current-pumping methods.

1.3 Superconducting quantum bits

An ideal quantum bit, or qubit, is a quantum system with only two levels, such that
its properties are isomorphic to those of a spin-1/2 object. In contrast, an electromagnetic
field mode such as the resonant mode of an LC circuit is a harmonic oscillator, which has
an infinite number of equally spaced energy levels corresponding to the presence of integer
numbers of photons. Whereas a resonant drive applied to a qubit shuttles probability density
back and forth between the two levels (Rabi oscillations), resonantly driving an LC circuit as
in Fig. 1.2(left) drives transitions between all levels at once, producing a Poisson distribution
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of probability density over the ladder of levels. Achieving qubit-like behavior thus requires
the introduction of some nonlinear element to lift the degeneracy of the energy level spacing
so as to spectrally isolate a single transition.

From the previous section, we conclude that replacing the linear inductance of an LC
resonator with a Josephson junction of sufficiently small I0 will create a nonlinear, or an-
harmonic, oscillator whose energy levels are no longer evenly spaced, as in Fig. 1.2(right).
Each transition may now be individually addressed by driving at the respective resonance
frequency, such that the lowest pair of levels acts as an effective qubit. The experiments
in this thesis employ transmon-style qubits [42, 43], a popular, simple design consisting of
a Josephson-junction in parallel with a large capacitance that helps reduce sensitivity to
charge noise, though a variety of other architectures are possible, e.g. capacitively-shunted
flux qubits [13] or fluxonium qubits [44]. A typical transmon qubit design has a fundamental
resonance frequency in the 4-5 GHz range, and an anharmonicity (detuning of lowest two
transitions in the ladder) on the order of 200 MHz.

A qubit requires the use of a low critical-current junction such that the nonlinearity is
significant even for a single quantum excitation. Alternatively, the same circuit topology
may be made with a high critical-current junction (and the capacitance adjusted accord-
ingly), such that the nonlinearity does not become significant until the excitation number is
well into the classical regime; this realizes a quantum-limited amplifier known as the Joseph-
son parametric amplifier. These amplifiers are the subject of the next two chapters. The
experiments described in later chapters are built out of combinations of qubits and ampli-
fiers, which one might lyrically describe as the quantum and classical versions of the same
nonlinear circuit.

1.4 Thesis Overview

This thesis consists of the following parts. The first half of Chapter 2 deliberately neglects
quantum mechanics in order to provide a gentle introduction to the Josephson Parametric
Amplifier (JPA), the workhorse of this thesis, including the underlying general operating
principle of parametric amplification and its particular realization in the JPA circuit. The
second half of Chapter 2 aims to make these ideas more concrete by presenting several JPA
devices and discussing circuit design in some detail, including a presentation of measurements
indicating that Josephson junction arrays can improve amplifier performance. Chapter 3
provides a quantum description of the JPA and of the microwave squeezed states produced
by the circuit. This chapter aspires to be a pedagogical tutorial for any experimentalist
desiring an understanding of squeezed-state and quantum-amplification fundamentals, and
includes the prerequisite theory common to the experiments discussed in later chapters. The
cheat-sheet of equations relating measures of squeezing to measures of amplifier gain in this
chapter will hopefully be a convenient reference for future experimentalists.

Chapters 4, 5, and 6 discuss experiments with the common theme of the interaction of
squeezed light (microwaves) and matter. Chapter 4 presents measurements of resonance
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Figure 1.2: Introducing a strongly nonlinear component such as a low critical-current Joseph-
son junction produces a ladder of unequally spaced energy states, such that the lowest pair
of levels forms a spectrally isolated two level system, or qubit.

fluorescence from a two-level system under squeezed excitation, confirming two canonical
predictions that had gone unverified for nearly three decades. Chapter 5 presents the first
use of injected squeezed microwaves to improve the signal-to-noise ratio of a qubit measure-
ment, along with the first demonstration of using squeezed microwaves to slow measurement
backaction by increasing pointer-state overlap. Finally, Chapter 6 presents measurements of
a hybrid device integrating a qubit on-chip with a JPA enabling qubit measurement with
record-breaking steady-state efficiency of the transfer of qubit state information from the
qubit to room-temperature.

While hopefully readable as a stand-alone reference, this thesis spends little time on
several relevant topics that have been covered in some detail by other recent theses from the
same lab, including the Jaynes-Cummings Hamiltonian and dispersive readout [45, 46, 47,
48], device fabrication procedures [45, 46, 49], and the Josephson Traveling Wave Parametric
Amplifier (JTWPA) [50]. The curious reader may consult those sources for further details.
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Chapter 2

The Josephson Parametric Amplifier:
Fundamentals and Hardware

2.1 Classical intuition for parametric amplification

A minimal classical model of a parametric amplifier provides intuition capturing many
aspects of device behavior, extending even to the generation of squeezing. We consider
a particle oscillating in a time-dependent one-dimensional parabolic potential, V (x, t) =
x2(1+ε cos(ωpt)), as shown in Fig. 2.1. Here ε represents a small modulation of the steepness
of the parabolic potential; in the following we assume ε� 1. If ε = 0, the particle oscillates
in the harmonic potential with a resonance frequency ω0. When ωP = 2ω0 with non-zero ε,
phase-sensitive amplification occurs in which the gain depends on the phase of the oscillation
being amplified relative to the modulation. If the particle was initialized such that it oscillates
in-phase with the modulation (x(t) ∝ cos(ωt)), then the potential does work on the particle
by steepening when the particle is near the extrema of its oscillations, transferring energy
to the spatial oscillations twice per cycle. In contrast, if the particle oscillates out-of-phase
with the modulation (x(t) ∝ sin(ωt)), the reverse process occurs and energy is transferred
from the particle to the drive modulating the potential. The more general case of a particle
oscillating with some arbitrary initial phase can be written as a sum of in-phase and out-
of-phase components, often referred to as the I and Q quadratures of the oscillation. Thus
one quadrature (cos) of the oscillation is amplified while the other (sin) is deamplified. This
classical picture leads one to correctly guess that, if we initialize the oscillator in its quantum
ground state (vacuum state), which has equal fluctuations in both quadrature phases, the
fluctuations in one quadrature will be deamplified, producing a squeezed state.

In contrast, if we detune the modulation frequency sufficiently, then any oscillation will
drift in and out of phase with the pump. This averages over the amplification and deamplifi-
cation conditions, resulting in an average gain that is lower than phase-sensitive amplification
for the same ε, but now amplifying both oscillation quadratures. Because both quadratures
are amplified equally, the phase of the oscillation is not changed by the amplification pro-
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x(t)
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Figure 2.1: Dynamics of a classical parametric amplifier. We consider two particles oscillating
in a parabolic potential initialized here with equal amplitudes but orthogonal phases. These
represent the two quadrature components of the field in a parametric amplifier. The three
lower panels indicate snap-shots of the positions and movements of the particles and of the
potential itself. Initially the particles oscillate with fixed amplitude (blue snapshot). After
some time (vertical dashed line), an energy source we call the pump begins modulating the
potential at twice the oscillation frequency (ε(t) corresponds to ε cos(ωpt) in the text). The I
particle is in-phase with the modulation such that the potential raises when the particle is at
an extremum (green snapshot), doing work on the particle by raising it and thus increasing
the oscillation amplitude of over time, whereas the opposite process occurs for Q. (Contact
me if you would like the animated version of this figure).

cess. This mode of operation is thus often referred to as phase-preserving amplification. As
discussed later in this chapter and the next, these two modes of operation produce strikingly
different outcomes when amplifying signals with noise, such as vacuum-noise limited signals.

2.2 The Josephson parametric amplifier

The Josephson parametric amplifier (JPA) is a superconducting amplifier widely used for
qubit measurement and for generating squeezed microwaves. The JPA utilizes the general
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Figure 2.2: Schematic and false-colored photograph of a Josephson parametric amplifier
(JPA), reproduced from [1]. The JPA is an LC oscillator wherein the inductance LJ, and
thus the resonant frequency, can be modulated by a pump tone. Several pumping schemes are
possible; here, the pump line (red) carries a drive at twice the oscillator resonance frequency
which modulates LJ via inductive coupling to the SQUID loops (orange).

process described above, consisting of a microwave resonator whose resonance frequency
can be modulated via an applied pump tone. The large number of photons in the pump
tone permits understanding and simulating many aspects of JPA performance via classical
intuition, while the very low loss in the JPA makes the device quantum coherent, allowing
for efficient detection of very small measurement signals (usually ∼ −120 dBm or less) and
for the reduction of quadrature noise below that of vacuum.

Figure 2.2 shows an example of a JPA. A typical JPA consists of one or more Supercon-
ducting Quantum Interference Devices (SQUIDs, orange in the figure) shunted by a capacitor
(cyan) and connected to a transmission line1. The device operates in reflection, with a mi-
crowave circulator (not shown) routing signals into and out of the JPA via the port (purple)
near the top of the figure2. The SQUIDs act as a nonlinear inductance LJ which increases
with current. Per Eq. 2.1, the inductance can be increased either by applying flux through
the SQUID loops, thus producing circulating currents in the SQUIDs, or by driving current

1Alternately, a distributed resonator such as a λ/4 resonator may be used instead of a lumped-element
circuit. This introduces additional high-frequency modes into the amplifier, which can be useful [51] or
detrimental depending on the application.

2In the differential circuit geometry shown here, a microwave hybrid (gray) first converts the incoming
single-ended signal (voltage excitation referenced to ground) into a differential signal (antisymmetric voltage
across the JPA), which protects the device from any noise on ground or other common-mode noise. Single-
ended JPA geometries are also possible and commonly used.
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Figure 2.3: Example qubit-measurement circuit. A qubit (purple) is capacitively coupled to
a readout resonator (green), causing the cavity resonance frequency to shift depending on
σ̂z of the qubit. A readout tone near ωc is transmitted through the cavity and routed to a
JPA (blue). A microwave pump tone, here a current-pump at or near the signal and JPA
frequencies, modulates the JPA frequency, producing near quantum-limited amplification of
the signal.

across the SQUIDs directly. Thus the resonance frequency of the circuit can be modulated
by applying a flux-pump [52] via the shorted coplanar waveguide (red), or by applying a
current-pump via the signal port (purple). A static flux-bias Φdc allows the JPA operating
frequency to be tuned by up to an octave in some devices. Since the JPA resonance frequency
is locally odd in flux (when Φdc 6= 0) but even in current, modulation at 2ω0, and thus para-
metric gain and squeezing, is produced by a flux-pump at 2ω0 or by a current-pump near
ω0. Several other pumping schemes exist, including sideband pumping (“double-pumping”)
[53, 2, 54] and even subharmonic pumping [55].

Flux-pumping can be understood as a 3-wave mixing process in which a pump photon
at ωp = 2ω0 is converted to a pair of signal (ωs) and idler (ωi) photons with ωp = ωs + ωi,
while current-pumping is a 4-wave mixing process in which two pump photons are converted
to the signal and idler photons with 2ωp = ωs + ωi. Of central importance to squeezing,
both processes populate the field inside the JPA with correlated pairs of photons (as directly
measured in [35]), producing e.g. reduced amplitude fluctuations of the microwave field
corresponding to photon antibunching3

By efficiently amplifying the input signal, a JPA allows qubit measurements to be per-
formed with less time spent averaging away noise. Fig 2.3 shows one possible qubit measure-
ment circuit incorporating a JPA. A microwave tone transmitted through the readout cavity

3Though in general it is possible for a quantum state to exhibit squeezing without photon pairs, e.g. the
superposition |0〉+ |1〉. [56, 29]
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(green) acquires a phase shift that depends on the state of the qubit (purple). This measure-
ment tone is typically quite small, perhaps ∼ −130 dBm, and therefore must be amplified
by many orders of magnitude before it can be detected in the presence of room-temperature
thermal noise. It is very generally true that the signal-to-noise ratio (SNR) at the output of
an amplifier is less than or equal to the SNR at its input. Ideally, the noise added by each
amplifier will be small compared to the noise incident to that amplifier, preserving SNR.
Fig. 2.4(a) illustrates how even the lowest-noise commercial non-superconducting amplifier
(a high electron-mobility transistor (HEMT) amplifier from Low Noise Factory) adds the
equivalent of ∼ 10 photons of noise, degrading the power SNR by a factor of ∼ 20. A JPA or
other superconducting preamplifier upstream of the HEMT, as in Fig. 2.4(b), can be used
to amplify the signal by ≥ 20 dB such that the noise added by the HEMT or other lossy
components becomes negligible. An ideal JPA operated in phase-preserving mode adds only
half a photon of noise, dramatically improving SNR at the end of the amplification chain
and reducing necessary averaging times by the same factor. Empirically, overall SNR im-
provements of 12-16 dB are typical. For measurements of a single known quadrature, the
JPA may be operated in phase-sensitive mode in which it ideally adds no noise, providing
an additional 3 dB of SNR at the cost of experimental complexity.

2.3 JPA design guidelines

JPA design has been rigorously theoretically analyzed in a number of sources [57, 58,
59, 2]. Here we provide a brief overview of design guidelines light on derivations, focusing
on the case of a lumped-element JPA. A starting point for JPA design is an LC resonator
consisting of a Josephson inductance LJ in parallel with a capacitance C, with the two nodes
respectively connected to the center-pin and ground of a transmission line of characteristic
impedance Z, similar to the JPA in Fig. 2.3. We use these two design degrees of freedom,
LJ and C, to set the resonant frequency of the JPA, ω0 = (LJC)−1/2, and the coupling of
the JPA to the transmission line, κext = ω/Qext = (ZC)−1. Per Eq. 1.6, a static flux bias
applied through the SQUID loop(s) increases LJ according to

LJ ≈
ϕ0

Ic(Φapp)
=

ϕ0

Ic,0 cos(πΦapp

Φ0
)
, (2.1)

allowing ω0 to be tuned downward from its zero-flux value. Here Ic(Φapp) is the critical cur-
rent of the SQUID when the SQUID is threaded by the externally applied flux Φapp. Equation
2.1 is strictly valid only when the current driven across the SQUID is small compared to
Ic(Φapp), so this equation is used to predict the linear or low-power resonance frequency, with
the expectation that an applied current pump will shift the resonance down by an amount
∼ κ (usually a negligible distinction at the design stage).

The coupling κext influences device behavior in several ways. For a given gain, the am-
plifier bandwidth, defined here as the full-width half-max (FWHM) of the gain as a function
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Figure 2.4: A comparison of SNR degradation due to a typical amplification chain (a) without
and (b) with a JPA. A JPA can provide large power gain (≥ 20 dB) such that the ∼ 10 noise
photons typically added by the next amplification stage become negligible. An ideal JPA
operating in phase-preserving mode adds only half a photon of noise, such that the total
SNR degradation is only a factor of ∼ 2 instead of a factor of ∼ 20, reducing averaging times
∼ 10x. The same reasoning applies if the JPA is swapped for another near quantum-limited
amplifier such as the Josephson Traveling Wave Parametric Amplifier (JTWPA). When it is
only necessary to detect one electromagnetic quadrature, phase-sensitive amplification can
recover the remaining factor of 2 such that SNRout ≈ SNRin.

of frequency4, increases with greater κext. Larger bandwidth implies a faster response time
of the JPA, allowing for shorter measurement pulses (typically one wants κext of the JPA to
be large compared to that of the readout resonator), for frequency multiplexed readout of
multiple qubits, and for greater spectral separation of the JPA pump tone and the readout
resonator(s). Increasing κext can also increase the dynamic range of the JPA [60], or the
signal power at which the amplifier response saturates. However, increasing κext too much
leads to device instability that can destroy the amplification process. When designing this
style of lumped-element device, choosing C to give a quality factor of Q ∼ 10− 15 is usually
a safe compromise between capability and stability. Recent experiments have shown that
significantly greater bandwidth can be achieved with a modest increase in device complexity

4Strictly, the bandwidth is the FWHM of the curve G(ω) − 1. For large gains, G ≈ G − 1, so one can
approximate the bandwidth as the maximum gain minus 3 dB, but when low gains are of interest, as in some
squeezing experiments, the distinction can be significant.
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using an appropriate impedance transforming circuit outside the JPA to modify the effective
complex impedance Z [61, 62, 57].

It is sometimes desirable to keep κext small, for example when the goal is to pro-
duce squeezed noise at one frequency but not at other nearby frequencies. A natural
means of weakening the coupling to the transmission line is to introduce a capacitance
Ccoup (Fig. 2.2, green), increasing the effective impedance Z. (For Ccoup � C, we have
ω0 ≈ (L(C + Ccoup))−1/2). However, reducing κext has the side effect of decreasing dynamic
range. To compensate for this effect, one can introduce a geometric inductance Lgeom in
series with LJ, reducing the voltage drop across the nonlinear elements and thus increasing
the characteristic energy scale of the device. However, making Lgeom too large also intro-
duces the same instability as when κext is too large. If we define the participation ratio
pJ = LJ/(LJ + Lgeom), a rough rule of thumb is to keep QpJ ' 5 − 10 [63, 58]. This trend
of instability is demonstrated by the rudimentary numerical simulations shown in Fig. 2.5.
A simple way to estimate Lgeom in a JPA design is to simulate the design with a variable
lumped element inductance LJ in place of the SQUIDs for several values of LJ, then fit the
results to the expression ω0 = ((Lgeom + LJ)C)−1/2, modeling the geometric inductance as
being in series with the SQUID inductance. This procedure can be performed efficiently us-
ing, for example, AWR’s Microwave Office software, where the finite-element analysis need
be performed only once and LJ can be subsequently varied instantly as a tunable parameter.

A few more subtleties should be considered before deliberately adding geometric induc-
tance. Since tuning the JPA in frequency changes LJ, typically QpJ can be optimized only
over some range within the tunable band. Moreover, in the limit of large Lgeom, tuning the
JPA frequency requires making Φapp very close to half a flux-quantum, which has produced
instability in some devices, possibly due to the increased sensitivity to flux noise or to satu-
ration of the JPA. Section 2.6 discusses an alternative method of increasing dynamic range
using SQUID arrays.

Addition of a second port with mutual inductance to the JPA SQUID loop(s), as in Fig.
2.2, enables flux pumping of the JPA. The port shown uses shorted coplanar waveguide, but
many line geometries are possible [52, 64, 65]. The flux pump is typically set to twice the
JPA resonance frequency, advantageously keeping the pump spectrally separate from most
experimental resonances and moreover making it possible to block the pump with a low pass
filter5. This spectral separation comes at the cost of JPA tunability. In order for a meaningful
amount of power to be transduced from the flux pump to the cavity mode via parametric
modulation of ω0, the modulation amplitude approximated as Φfp

dω0

dΦapp
must be made on the

order of κ, where Φfp is the amplitude of the flux put through the SQUID by the pump, and
the derivative is computed using Eq. 2.1. Heating effects often constrain the achievable Φfp,
even with fast pulsing of the pump and with light attenuation on the pump input line, so a

5Such filtration is often necessary after the JPA due to the large pump-powers and non-zero leakage
of power from the pump port to the signal port. Without a filter or cancellation scheme, the transmitted
pump can, for example, disrupt the amplification process in a broadband Josephson traveling wave parametric
amplifier (JTWPA) downstream, or populate a higher mode of a 3D-transmon cavity. See the wiring diagrams
in Appendix A.
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Figure 2.5: Numerical simulations indicating JPA stability at low junction participation.
Each subplot corresponds to a simulated circuit with a particular value of pJ (macro vertical
axis) and of Q (macro horizontal axis). Within each subplot, the color-scale indicates the
phase accumulated by a microwave tone reflecting off the JPA with no other drives applied,
as a function of the power (vertical axis, log scale) and frequency (horizontal axis) of that
tone. At low powers (bottom region of a subplot), the JPA response is approximately lin-
ear, and a 360-degree phase-shift is accrued sweeping from far-below to far-above resonance,
with resonance indicated in yellow. At higher drive powers, the JPA nonlinearity becomes
significant, causing the resonance (yellow) to shift downwards in frequency and then bifur-
cate. This region of leftward-curvature also corresponds to the regime of parametric gain
for a current-pumped JPA. As a crude proxy for unstable dynamics, settings for which the
numerical simulator (Mathematica’s NDSolve) raised a warning or error were colored white;
as the value of QpJ is lowered, the instability regime moves closer to, then obliterates the
parametric-gain regime. Note that while the vertical axis extends for 50 dB on each subplot,
the vertical range on each subplot has been shifted independently to include the gain and
instability regimes.
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Figure 2.6: Measured phase response of a JPA with low QpJ . Axes and color-scale are as in
Fig. 2.5. Background features have been divided out by repeating measurements with the
JPA tuned away. These data are incomplete, missing the values on the axes, but are provided
as a qualitative example of the response of a JPA with a low value of QpJ . Comparison with
Fig. 2.5 suggests QpJ ∼ 5 for this device. Notably, no clear bifurcation regime appears,
and an extra resonance feature extends upwards and to the right from the vicinity of the
expected critical point. Compare to the clean behavior of the narrowband JPAs measured
in Fig. 2.11. Despite these anomalies, this device could be pumped for over 20 dB gain with
an estimated 12 dB of steady-state SNR improvement in a test setup. Other devices with
significantly lower estimated values of QpJ did not show gain, or exhibited limited gain.

sufficiently large static flux bias must be applied to transduce enough pump power to realize
appreciable gain. For example, the maximum operating frequencies at which the squeezing
devices used in this thesis could achieve useful gain were ∼ 100−200 MHz below their Φ = 0
frequencies. At the same time, the minimum operating frequency may be raised when the
devices contain significant Lgeom due to stability issues mentioned above. The flux-pumped
devices in this thesis were thus designed with very specific operating frequencies in mind.

Even in current-pumped devices, where tunability is less constrained, tuning by an oc-
tave requires, generously assuming Lgeom � LJ(Φapp), decreasing Ic(Φapp) by a factor of 4,
expected to reduce the saturation power of the device by a factor of roughly ∼ 16. Thus
increasing saturation power can also increase the usable tunable range for some applications.

2.4 Examples of JPA circuits

Here we present several JPA designs we developed for projects unrelated to the published
works covered in later chapters.

Three JPAs designed to operate in the 4-8 GHz band (C-band) commonly used for circuit
QED experiments are shown in Fig. 2.7. The circuit in the upper-left panel is a single-
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Figure 2.7: False-colored photomicrographs of three C-band (4-8 GHz) JPAs showcasing
different design possibilities.

ended JPA. The schematic is coded to match the false-coloring of the photomicrograph. As
usual we have a nonlinear LC resonator, here consisting of a parallel plate capacitor (blue
and orange rectangles) in parallel with a series array of SQUIDs (red) providing Josephson
inductance LJ . The ∼ 3.3 pF capacitor consists of two layers of aluminum sandwiching 16
nm of evaporated alumina (aluminum oxide) with an effective dielectric constant of ≈ 5.4
inferred from the empirical specific capacitance. The Josephson junctions of the SQUIDs
were deposited by standard resist-bridge double-angle evaporation techniques, such that
each SQUID has a critical current of approximately 5 µA. Here all features were defined
with electron-beam lithography, and all materials deposited with electron-beam evaporation.
The upper plate of the capacitor is connected to ground and to one end of the SQUID array
using additional aluminum rectangles deposited separately after ion milling to ensure good
electrical connectivity. This device is unusual in that it was intentionally made narrowband
by introducing a coupling capacitor (yellow) between the resonator and transmission line.
In hindsight, this design employing a coupling capacitor would benefit from addition of
geometric meander inductance to increase dynamic range by bringing QpJ closer to ∼ 5−10.

The circuit in the upper-right panel has a differential geometry, and is connected to the
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transmission line via a microwave hybrid that rejects common-mode or ground noise. In the
device shown, the capacitor is again an alumina parallel plate capacitor, though here for
simplicity of fabrication the capacitance consists of two capacitors in series.

The bottom panel in Fig. 2.7 shows a JPA employing an interdigitated finger capacitor
(IDC) instead of a parallel plate capacitor, which reduces loss and simplifies the fabrication
process from three or four steps (1: alignment marks, 2: SQUIDs and bottom of capacitor,
3: dielectric and top of capacitor, 4: ion milling and shorts to connect to top of capacitor
if needed) to one step (1: make the JPA). We necessarily increase Lgeom as we make the
capacitor larger; from finite-element simulations, we estimate that we cannot make C larger
than ∼ 0.5 pF without making Lgeom too large for stable amplifier performance. This is
significantly smaller than the value of C we use in standard parallel plate designs, which
if uncorrected will change ω0 and Q from their desired values. To restore Q = ω0CZ, we
introduce coupling capacitors (yellow) to increase the effective value of Z. To restore ω0, we
increase the total inductance, achieved here with a series array of 15 SQUIDs. Using many
SQUIDs also increases the amplifier saturation power as discussed below. This device was
cooled once and demonstrated excellent bandwidth and compression powers, as indicated in
the inset gain profiles at three operating frequencies. However, on subsequent cooldowns in
other experimental setups the device performed poorly for reasons not understood, providing
limited gain and with reduced bandwidth. While it is not unheard of for devices to fail
in between cooldowns, further study would be needed to determine if this failure was a
coincidental event or due to some inherent vulnerability of the design, perhaps related to
inhomogeneous aging of the junctions in the array while exposed to atmosphere or due to
a different magnetic environment. We can say with more confidence that devices with only
∼ 5 SQUIDs, such as that in the upper left panel, showed consistent performance across
multiple cooldowns.

Figure 2.8 shows two JPAs developed for projects not involving superconducting qubits.
The Axion Dark Matter Experiment (ADMX) based at the University of Washington hopes
to detect microwave radiation produced by decays of the hypothesized axion dark matter
particle. To do so, they have developed a tunable microwave cavity which they place in a
large dc magnetic field. The magnetic field is predicted to stimulate the decay of axions
into microwave photons, and this process is enhanced when the cavity mode is resonant
with the energy of the emitted photon. However, the average power due to this process is
in the ballpark of -200 dBm, such that detection requires very long averaging times. Thus
superconducting amplifiers are poised to greatly facilitate this search. Towards this end, we
developed and characterized single-ended JPAs operating over the 1-2 GHz band of primary
interest to ADMX. The amplifier and example gain profiles are shown at left in Fig. 2.8.
In our measurement setup, turning on the JPA produced 10-13 dB of SNR improvement
at room temperature for small signals (the relevant limit for axion radiation power). The
device was delivered to ADMX.

We used a similar design to develop an even lower frequency JPA for use in measurements
of quantum dot qubits. The device is shown at right in Fig. 2.8. This device operated a full
order of magnitude below the usual 4-8 GHz band of circuit QED, so some reduction in the
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nominal circulator band

Figure 2.8: False-colored photomicrographs of two JPAs, one developed to work over the
1-2 GHz band (left) for ADMX, the other developed for quantum-dot state readout below 1
GHz. Inset plots (upper left) show gain profiles acquired at several operating frequencies to
demonstrate tunability.

energy scale of the device and bandwidth were expected ab initio. Multiple SQUIDs were
used to try to increase the dynamic range of the device as discussed later in this chapter,
but even so the input P1dB of a measured device was estimated to be only ∼ −140 dBm. For
small signals we still observed over 13 dB SNR improvement in our test setup. Increasing the
signal size resulted in compression of the JPA gain but still appreciable SNR improvement.

We suggest a modification on these designs to anyone looking to imitate them. As shown,
a complete loop of superconducting aluminum encircles the array of SQUIDs. Starting in
the top capacitor layer, the loop goes up the plane of the page to ground (purple), down to
the right of the SQUIDs, then back up to the top capacitor pad. While evidently tolerable
for aluminum devices, similar superconducting loops in niobium JPAs (not shown) provided
sufficient magnetic shielding to prevent the off-chip coil from passing flux through the SQUID
loops, preventing tunability. Using an ion mill to create a break in the ground plane on one
niobium JPA solved this problem: before ion milling the JPA did not respond to applied
flux, and after ion milling the JPA tuned readily. This problem does not obviously manifest
in aluminum devices, but in all recent designs we leave a gap in the ground plane as a
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precaution against flux-blocking ground loops.

2.5 JPA cryopackaging

The fabricated JPA chip needs to be packaged in some kind of housing that connects
the JPA to one or more microwave lines while isolating the circuit from other, disruptive
environmental elements. The chip is typically connected to a microwave circuitboard using
aluminum wirebonds, and the circuitboard is connected via an SMA adapter to the coaxial
microwave line. We used circuitboard substrate TMM6 from Rogers Corporation for the
thermal stability of its dielectric material, though future designs may benefit from a lower
loss substrate6. As usual with microwave design, shorter trace lengths are preferable, though
the minimum board size is sometimes limited by wirebonding accessibility. The chip is
affixed to oxygen-free high conductivity (OFHC) copper using a thin layer of GE varnish,
chosen for its desirable mechanical and thermal properties at cryogenic temperatures. A
small pedestal in the OFHC copper bracket keeps the top surface of the chip approximately
coplanar with that of the circuit board to minimize wirebond lengths. The chip is positioned
such that the JPA SQUID loops are approximately centered above a superconducting coil
to allow for application of a static flux-bias (Φdc). Coil currents of 1 to 10 mA are typical,
with up to at least ∼ 50 mA possible with no indication of resistive heating. Shielding
from other environmental magnetic fields, such as that of the Earth or of nearby microwave
circulators, is achieved by enclosing the circuit board and copper bracket within an aluminum
box. To ensure that no enviromental magnetic flux is trapped as the aluminum device and
box are cooled through their critical transition temperature (1K), the aluminum box is in
turn mounted inside of a cryoperm layer which provides magnetic shielding for T ≥ 1K.
Nonmagnetic or less-magnetic materials were used inside the magnetic shields (for screws,
connectors, etc) when convenient, though good JPA performance was commonly observed
even when e.g. stainless-steel SMA connectors were used. As superconductors have low
thermal conductivity, an OFHC copper strap is routed through a small, high aspect-ratio
hole in each box to enable thermalization of the chip and circuitboard to the cold stage of
the dilution refrigerator.

Figure 2.9 shows several examples of JPA housing. The top photo is housing for a
JPA requiring a differential excitation (“double ended”), while the bottom two photos are
different views of housing for a JPA requiring an excitation with respect to ground (“single
ended”). The differential design isolates the JPA from electrical ground, improving device
stability in the presence of an imperfect or noisy ground inside the dilution refrigerator7.
The downside of using a differential design is the need for a 180◦ hybrid (or some equivalent

6When choosing a circuitboard dielectric, it may make sense to choose a dielectric constant near that of
the chip itself (∼ 10 for silicon), but mind that greater dielectrics tend to lower the frequency of the first
parasitic environmental modes. Problems with such modes can often be solved using vias and finite-element
simulation of the board and enclosure as necessary.

7Grounding problems sufficient to disrupt superconducting circuits arise easily and can be very difficult
to track down. A contributing factor seems to be the grounding scheme of the widely used LNF HEMT
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Figure 2.9: Examples of JPA cryopackaging.
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Figure 2.10: A more compact JPA cryopackage, also produced in a 1” cube single-port
version not shown. Design credit to D. Wright and R. Lolowang.

balun) to convert between common mode and differential excitations; these circuit boards
take up space, introduces some loss, and can constrain the frequency band over which the
JPA functions optimally. Single-ended designs eliminate the need for a hybrid, allowing for
more compact cryopackages, as in Fig. 2.10 which allows for testing 4 JPAs patterned on
a chip, or for testing two JPAs each with a flux-pump connection. The larger aluminum
boxes in Fig. 2.9 suffer from sparse but inconvenient electromagnetic box modes; these were
suppressed by lining the box with RF absorber, but using a more compact geometry as in
Fig. 2.10 is a preferable solution when possible.

amplifiers, as the amplifier chassis is internally connected to the ground of the power source for the device,
often a wall outlet, such that noise on the outlet ground or picked up by the ground loop contaminates the
otherwise clean fridge ground. A workaround is to use an isolation transformer in a configuration isolating
the wall ground from the fridge ground. This technique enabled the use of a JTWPA (highly sensitive to
ground noise) in a fridge where it previously would not provide gain. Another plausible approach is to
electrically isolate the chassis of the HEMT from the fridge using GE-varnish coated cigarette paper, nylon
screws, and inner/outer dc blocks.
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2.6 Multi-SQUID JPAs

Beyond optimizing the value of QpJ , further increases in dynamic range, roughly the
maximum signal power the JPA can amplify, are possible by utilizing SQUID arrays [59].
We quantify dynamic range in terms of the compression power P-1dB, here defined as the
input signal power at which the JPA gain decreases 1 dB from its small-signal value. In this
section we motivate why using multiple SQUIDs is expected to increase P-1dB, then present
an experimental comparison of several devices characterizing this enhancement.

One generic model for amplifier compression is pump-depletion. In typical JPA opera-
tion, a large pump tone biases the JPA into a nonlinear regime in which gain occurs. The
addition of a much smaller signal tone perturbs these nonlinear dynamics such that power
is transferred from the pump to the signal as desired. Because the pump is so much larger,
the overall JPA dynamics, and thus also the gain, are approximately independent of the
signal. This ideal small-signal condition is sometimes referred to as the stiff-pump regime,
characterized by GPsig � Ppump. As the size of the signal is increased, the perturbative
approximation breaks down, and a non-negligible amount of power must be drained from
the pump in order to amplify the signal. This depletion of the pump power suppresses the
nonlinear dynamics providing gain, and compression of the output field occurs. See e.g. [54]
for a recent experimental investigation of the effect of pump-depletion on JPA squeezing.

For definiteness we now restrict our discussion to the case of a current-pumped JPA. The
pump-depletion model suggests that increasing the available pump power should increase
P-1dB. However, for a given circuit only a narrow range of pump powers can be used; gain
occurs at pump powers slightly below a critical bifurcation power Pbif, and above Pbif the
JPA response stops being single-valued and no parametric gain occurs. To realize greater
dynamic range, we can modify the JPA circuit to increase Pbif. As the energy scale of
this nonlinear process is proportional to the square of the SQUID critical current I2

SQUID,
replacing the single SQUID of critical current ISQUID = Ic by a series array of N SQUIDs each
of critical current ISQUID = NIc leaves the cumulative low-power inductance LJ unchanged
but increases Pbif and thus P-1dB.

To investigate this scaling experimentally, we fabricated JPAs with varying numbers of
SQUIDs N = 1, 2, and 5 to compare their performance. An N = 5 device is shown in the
upper-left panel of Fig. 2.7. The widths of the Josephson junctions in each device were scaled
by N , such that the total Josephson inductance LJ ∝ (NISQUID)−1 = (N 2I0

N
)−1 = (2I0)−1 was

kept approximately constant across the devices, where I0 is the critical current of a junction
in the N = 1 device. Geometric inductance was kept approximately constant across all
arrays by including straight sections of electrical leads as placeholders in devices of lower
N ; from finite element simulations we estimate the geometric inductances to be 82, 79, and
70 pH for the 1, 2, and 5 SQUID JPAs. An input coupling capacitor was used to reduce
the JPA bandwidth (Qext ≈ 150) to reduce deviations from theoretical behavior produced
by slight impedance variations of connecting microwave circuitry. We measured the devices
on three consecutive cooldowns with the same cryopackaging, cables, and microwave test
instruments.
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Figure 2.11: Measured phase responses of JPAs with 1, 2, and 5 SQUIDs as a function
of drive frequency and power. The color scale encodes the phase of a single tone reflected
from the device. Each JPA has been flux-tuned to resonate at 6 GHz for low drive powers.
As the power is increased, the Kerr nonlinearity of the device becomes significant and the
resonance shifts downwards in frequency and narrows. Above a critical power Pbif (circled)
the response becomes bistable. The bistable regime appears as the striped region in the plot,
produced by alternately sweeping the power up and down to latch into the low- and high-
amplitude responses. A resonant drive applied to the JPA (i.e. somewhere on the yellow
stripe, approximately) with a power slightly below Pbif acts as a pump producing parametric
amplification. Comparing the plots, we see Pbif increases with the number of SQUIDs, N .

Figure 2.11 shows the response of each device to a single tone as a function of frequency
and power. At low drive powers, the oscillator’s response is that of a linear resonator. At
greater drive powers, the JPA nonlinearity becomes significant, causing the resonance to
narrow and to shift downward in frequency. At a critical power set by this nonlinearity, the
JPA response becomes bistable; interleaving upward and downward fixed-frequency power
sweeps allows the bistable regime to be seen as a striped section in each data plot. We
repeated these measurements to determine Pbif for three bias frequencies, producing Fig.
2.13. These data show a clear increase in bifurcation power as the number of SQUIDs is
increased. Relative to the N = 1 bifurcation power, the N = 2 and N = 5 bifurcations
occurred at powers on average 4 dB and 9 dB higher, respectively (averaged on a linear
scale). These increases fall short of the expected N2 scaling, but still imply a significant
increase in available pump power in the paramp regime.

To probe P-1dB directly, a signal was coupled into the JPA along with the pump to measure
amplifier saturation at several JPA operating points from 4.8 to 6.4 GHz. The signal was
detuned from the pump by an amount much smaller than the bandwidth of the JPA at each
point (detuning ∼ 50 kHz). Figure 2.13 plots JPA gain as a function of signal power at
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Figure 2.12: Relative critical powers at which bifurcation occurs in JPAs of 1, 2, and 5
SQUIDs. Here all devices are current pumped for gain at 6 GHz.

6 GHz; as the signal power is increased, the amplifier saturates and the gain rolls off. We
identify the 1-dB compression point as the incident signal power at which the amplifier gain
drops 1 dB from its small-signal value. The data from the 2 and 5 SQUID devices exhibit
compression powers several dB greater than that of the single-SQUID device. These values
are comparable to the increases in the respective devices’ bifurcation powers, consistent with
the expectation that the diluted nonlinearity increases dynamic range by extending the upper
limit of the stiff-pump approximation.

While the sub-N2 scaling was not fully understood—perhaps relating to junction inho-
mogeneity, inhomogeneity of magnetic flux coupling to the SQUIDs, or to dielectric losses in
the alumina capacitors—these measurements still confirmed the expectation that increasing
N increases P-1dB, motivating our development of multi-SQUID JPAs such as those in Figs.
2.7 and 2.8. This approach to weakening the JPA nonlinearity has also been theoretically
predicted to improve the ability of the JPA to produce electromagnetic squeezing [2], and
indeed the greatest squeezing produced to date was generated in a “Josephson parametric
dimer” consisting of two coupled JPAs each with N = 30 [28]. The generation of squeezed
microwaves is further discussed in the next chapter.
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Chapter 3

Quantum Amplification and
Squeezing with the JPA

3.1 Electromagnetic squeezed states

We begin with a discussion of what electromagnetic squeezed states are and the common
notations for describing them quantitatively, then discuss the quantum dynamics by which a
parametric amplifier produces squeezing. We focus on the case, relevant to the experiments
in later chapters, of squeezed states of a single-mode of the electromagnetic field, though
much of the discussion applies to the two-mode case as well with modest modification. A
classical electromagnetic field mode oscillating sinusoidally at ω can be represented as an
arrow in phase space, or a phasor. In the “lab frame” or dc-frame, the phasor rotates counter-
clockwise with angular velocity ω. Typically we transform to the frame co-rotating at ω such
that the arrow is stationary, with static quadrature components sometimes referred to as X1

andX2 (alternative names include I andQ, orX and P ). Quantum mechanics stipulates that
these two conjugate variables cannot both possess exact values simultaneously; there must be
some uncertainty, or noise, satisfying the Heisenberg uncertainty relation σX1σX2 ≥ 1/4. For
the common case of a Gaussian noise distribution, we can represent the noise by an ellipse
in phase space as in Fig. 3.1. The projection of the ellipse onto X1 or X2 by integrating over
the orthogonal axis describes the standard deviation in that quadrature, and the orientation
of the ellipse is determined by the covariance. More generally, we can uniquely represent any
state of the light field by its complete Wigner function1 in phase space; drawing a contour on
a Gaussian Wigner function at the 1σ level produces an ellipse. For example, the vacuum-
state Wigner function is a circular (isotropic) bivariate Gaussian in phase space, defining the
circular contour in Fig. 3.1(a) with variance 1/4 in every direction.

1The Wigner function is similar to the classical joint probability distribution of two variables, with the
additional twist that the Wigner function can have negative values at some regions in phase space. These
negative values never lead to negative probabilities for possible measurement outcomes, as the projection of
the Wigner function onto any phase-space axis (by integrating, or marginalizing, over the orthogonal axis)
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Figure 3.1: Phase-space representations of squeezed states. Shaded ellipses represent con-
tours of the Gaussian Wigner functions drawn at one standard deviation. (a) The elec-
tromagnetic vacuum appears as a circle in phase space normalized to have diameter 1,
implying a variance σ2 = 1/4. (b) Squeezed vacuum has an increased variance along
the angle ϕ, σ(ϕ)2 = (1/2 + N + M)/2, and reduced variance along the orthogonal an-
gle, σ(ϕ + π/2)2 = (1/2 + N − M)/2. The variance along an arbitrary axis is given by
σ(θ)2 = (1/2 +N +M cos(2θ−2ϕ))/2, geometrically the projection (marginalization) of the
distribution onto that axis. (c) Squeezed vacuum can be combined with a coherent state to
make a displaced squeezed state.

The single defining feature of a squeezed state is a variance along one axis that is less
than this vacuum variance, σ2

− < 1/4, as in Fig. 3.1(b). Thus a squeezed state need not be
Gaussian, nor explicitly contain pairs of photons[56], though in practice squeezed states often
meet both these conditions. The Heisenberg uncertainty relation implies that the noise in the
orthogonal quadrature must increase proportionally, σ+ ≥ 1/4

σ−
. For an ideal squeezed state,

the equality is saturated, and we can characterize both quadratures by a single squeezing
parameter r, with σ± = (1/2)e±r, such that r = 0 for no squeezing.

Experimentally, transmission losses often result in squeezed states that are still Gaussian
but for which the above equality is not saturated, i.e. σ+σ− > 1/4. Such states contain
thermal (classical) noise in addition to the intrinsic quantum noise, and thus are classified
as mixed states rather than pure states. Since σ+, σ− are independent for this class of
states, we need two squeezing parameters to define a state. A convenient choice is to use
N and M , defined such that σ2

± = (1/2 +N ±M)/2, similar to the conventions in [66, 67].
Graphically, increasing N increases the size of the ellipse in all directions, while increasing
M increases the asymmetry of the ellipse. Heuristically, we consider N to be the effective
number of noise photons, while M is loosely akin to the effective number of photons that
are each correlated with another photon such that their noise fluctuations tend to cancel in

will always be positive valued.
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one quadrature; a more rigorous definition appears below. For the case of ideal squeezing
saturating the Heisenberg equality, one obtains M =

√
N(N + 1). This parameterization

is convenient in part because transmission of a squeezed state through some channel with
power loss 1 − ε, where ε = 1 implies no loss, simply changes the squeezed state by the
mapping (N,M)→ (εN, εM). This mapping agrees with our heuristic picture, as we expect
all subsets of the photon population to experience the same attenuation regardless of whether
they possess photon-photon correlations.

b e a m  s p l i t t e r

X1

X2

squeezed
vacuum

displaced
squeezed state

large
coherent

drive

Figure 3.2: Creation of a displaced squeezed state. Here the beam splitter is assumed to
be highly reflective. The two modes (blue/dashed and green/solid) are taken to be spa-
tially separated but otherwise identical. For simplicity we assume zero phase shifts. In the
microwave regime, one might use a directional coupler instead of a beam splitter. Later
chapters discuss experiments where intra-cavity squeezed vacuum is displaced via a coherent
drive applied to a weakly-coupled cavity port.

We introduce a third parameter, ϕ, to specify the orientation of the squeezing ellipse in
phase space with respect to X1 and X2 (Fig. 3.1(b)). This angle specifies the correlation of
the noise in X1 and X2 such that the variance along an arbitrary phase-space axis making
an angle θ with X1 is σ(θ)2 = (1/2 +N +M cos(2θ − 2ϕ))/2.

Finally, we generalize to the case of a displaced squeezed state as depicted in Fig. 3.1(c).
Such states can be readily produced by using an unequal beam-splitter or equivalent to
combine a coherent state (sinusoidal drive) and a squeezed state. Fig. 3.2 diagrams this
process. If the beam splitter is made very reflective and the coherent drive amplitude made
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proportionally very large, a finite displacement is coupled into the mode containing squeezed
vacuum, yet vanishingly little squeezing leaks out from this mode (N,M → εN, εM and
ε ≈ 1). Since the displacement has an amplitude and phase, we need a total of 5 real
parameters to specify a displaced squeezed state: N,M,Φ, α, and ϕc, where α and ϕc specify
the amplitude and phase of the displacement and where we have chosen to use Φ = ϕ− ϕc

instead of ϕ to specify the orientation of the squeezing ellipse (see Fig. 3.1(c)). With this
definition of Φ, the cases Φ = 0 and Φ = π/2 respectively correspond to squeezing of phase
noise and amplitude noise. In Chapter 4 we measure how atomic fluorescence is modified
under phase- or amplitude-squeezing of the drive.

3.2 Quantum derivation of JPA dynamics

The presentation here largely follows that in Ref. [2] (a similar derivation also appears
in Ref. [68]), though for simplicity we will drop higher-order corrections considered in that
work, restrict ourselves to the immediately relevant case of squeezing with a flux-pumped
JPA, and sprinkle the discussion with additional pedagogical commentary. Many other
excellent descriptions of JPA dynamics exist in the literature, such as [58, 69, 60]. In
considering the JPA, we will encounter quantum limits on noise performance that in fact
generalize to all amplifiers, as derived in [70, 71].

A basic JPA circuit can be described by the Hamiltonian

ĤJPA =
Q̂2

2C
− EJ cos(

φ̂

ϕ0

), (3.1)

where C is the capacitance, EJ = ϕ0Ic the Josephson energy, ϕ0 = ~/2e the reduced flux
quantum, Q̂ ∝ (â+ â†) the charge operator, and φ̂ ∝ i(â− â†) the generalized flux operator,
with [φ̂, Q̂] = i~. Applying magnetic flux Φapp = Φdc + Φfp = 2ϕ0(F + δf cosωpt) through
the squid loop modulates the Josephson energy according to

EJ → EJ cos(
Φapp

2ϕ0

) = EJ cos(F + δf cosωpt). (3.2)

If we choose the pump frequency to be ωp ≈ 2ω0, this modulation of EJ ultimately produces
parametric amplification and squeezing. Now we are going to take a battery of sensible
approximations to make the squeezing operator become manifest. Fourier expansion of this
expression for EJ gives

EJ cos(F + δf cosωpt) =
∑
n

E
(n)
J cos(nωpt) (3.3)

where the coefficients E
(n)
J are found via the Jacobi-Anger formula. These coefficients include

Bessel functions which can in turn be truncated to leading order in δf with the assumption
that δf � 1 (i.e. that the modulation depth is small). After additionally taking the rotating
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wave approximation (in the phase-space frame rotating at ωp/2) and setting ~→ 1, one can
rewrite the JPA Hamiltonian as

ĤJPA = ∆fâ
†â+

iλ

2
(â†2 + â2) + Ô(â4), (3.4)

where we have ∆f ≈ ω0 − ωp/2 and λ =
E

(1)
J Φ2

zpf

2
≈ −Ejδf sin(F )e2

ω0C
. Here we have chosen λ to

be real which effectively fixes the phase of the JPA pump tone; a more general expression
would allow λ to be complex [2]. If we choose to pump resonantly, ∆f = 0, then our chosen
phase-space frame co-rotates with the cavity field per the Hamiltonian

ĤJPA =
iλ

2
(â†2 + â2) + Ô(â4). (3.5)

Thus when the flux-pump is off (λ = 0), for example, the cavity Wigner function appears
stationary. The â†2 term indicates that turning on the flux-pump produces pairs of photons
at the cavity mode, so we conclude the dynamics include a type of three-wave mixing in
which pump photons are being downconverted into pairs of cavity photons. In fact, this
form of Hamiltonian is characteristic of almost all (perhaps all) parametric amplifiers, such
that the remaining leading-order discussion applies to all pumping schemes and in part even
to optical devices. We can identify Eq. 3.5 as a generator of the standard single-mode
squeezing operator,

S(r, ϕ) = exp
(r

2
(e−iϕâ†2 + eiϕâ2)

)
. (3.6)

Naively exponentiating Eq. 3.5 gives a time evolution operator equal to a squeezing operator
with r = λt. If Eq. 3.5 were the whole story, we might infer that turning on the pump even a
tiny amount would continuously cause exponential squeezing and amplification of noise power
in the two field quadratures, respectively, at a rate λ, causing the mean photon number in the
JPA to grow unbounded until some other higher-order nonlinear effect became significant
and stopped the process. In reality this runaway behavior does not occur for arbitrarily
small λ because of dissipation out the JPA port.

We now account for this decay of energy out of the JPA into a transmission line at rate κ.
(Here we assume no dielectric or radiative loss occurs inside the JPA, such that κext = κ and
κint = 0). This connection to the transmission line also implies the coupling of the incoming
field, often unsqueezed vacuum noise, into the cavity at the same rate. The equation of
motion is thus

˙̂a = i
[
ĤJPA, â

]
− κ

2
â+
√
κâin (3.7)

subject to the input-output boundary condition
√
κâ = âin+âout, where as usual the presence

of
√
κ makes sense given that the units of â are related to

√
energy, while those of âin/out are

related to
√

power. Evaluating the commutator gives

˙̂a = −iλâ† − κ

2
â+
√
κâin, (3.8)
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which must be solved simultaneous with its Hermitian conjugate equation. Taking the
Fourier transform

ā[ω] =

∫ ∞
−∞

dt eiωtâ(t) (3.9)

allows us to replace the time-derivative operator acting on â with multiplication by −iω,
leading to the relation

ā[ω] =
√
κ

(
(κ/2− iω)āin[ω]− iλā†in[−ω]

(κ/2− iω)2 − λ2

)
. (3.10)

Finally, we apply the input-output boundary condition to determine the output field spec-
trum,

āout[ω] =

(
κ

κ/2− iω
(κ/2− iω)2 − λ2

− 1

)
āin[ω] +

(
−iκλ

(κ/2− iω)2 − λ2

)
ā†in[−ω]

= gsig,ωāin[ω] + gidl,ωā
†
in[−ω],

(3.11)

where we have identified the signal and idler amplitude gains as functions of the measured
output frequency ω, which is defined such that ω = 0 when the output field is measured at
the JPA resonance frequency.

It is informative to consider the consequences of Eq. 3.11 for various values of λ. When
λ = 0, a tone input at ωsig leaves the JPA at the same frequency and with the same
amplitude. As λ is increased, up to half the power of the incident tone is converted from
ωsig to ωidl = −ωsig, creating an output “idler” tone on the other side of the JPA resonance
frequency, as in Fig. 3.3(a). In contrast, the noise power at ωsig does not decrease, as it is
replenished by noise converted from ωidl. In the large gain limit, the signal-to-noise power
ratio (SNR) at ω is thus lower than that of the input field by a factor of 2, as alluded to
back in Fig. 2.4.

When λ > κ/2, then at very short times after the pump is switched on, the exponential
growth driven by amplification is expected to outpace the exponential decay due to leakage
out the JPA port. Approaching this critical value of λ, our simple model predicts the steady-
state photon number will diverge; a more nuanced model or numerical simulation reveals a
bifurcation of the JPA dynamics, and experimentally we observe the amplifier stops providing
parametric gain.

Ideal squeezing performance requires that the higher-order terms in Eq. 3.5 remain neg-
ligible. In the limit of small flux-pump strength δf , the leading correction is ΛJ0(δf) cosF ,
where Λ = −EJΦ4

zpf/4 = −EC/2 is the Kerr nonlinearity of the resonator. While the
Kerr nonlinearity is the mechanism used to produce parametric amplification when current-
pumping the JPA, when flux-pumping the term is purely parasitic, leading only to dynamics
that corrupt the squeezing. For both pumping schemes, reducing the ratio Λ/κ suppresses
parasitic higher-order nonlinear effects, improving squeezing performance. This reduction
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can be achieved by diluting the nonlinearity through the use of arrays of multiple SQUIDs,
as in Section 2.6, which divides Λ by the square of the number of SQUIDs.

3.3 Interlude: Phase-sensitive amplification and

squeezing

Equation 3.11 specifies the signal and idler gains, which together determine the output
field component āout[ω] in terms of the input field components at ±ω, but how does this relate
to phase-sensitive amplification and squeezing? The essential ingredient is the conjugation
of the input field component āin[−ω] in that equation. Adding a complex number to its
conjugate doubles the real-part and cancels the imaginary part; likewise, if we detect the
output field in a way that sums āin[ω] and ā†in[ω], then for large gain that field component is
doubled (amplified) along X1 and zeroed (squeezed) along X2. However, in the output field
these two pieces we want to sum may be at different frequencies: āin[ω] is part of āout[ω],
while ā†in[ω] is part of āout[−ω], spectrally positioned on opposite sides of ωJPA. This implies
that whether phase-sensitive or phase-preserving amplification is observed largely depends
on whether the detector captures output-field frequency components on both sides of ωJPA

or only on one side, and thus depends on the spectral arrangement of the signal, amplifier,
and detector. To understand this dependence, we first consider two common limiting cases
relevant to experiments in later chapters. For simplicity we suppose the JPA bandwidth is
very large in all cases.

First, we suppose that the detector (perhaps consisting of demodulation in a mixer fol-
lowed by digital sampling) is slow compared to its detuning from the JPA, with a narrow
bandwidth κdet < |ωsig − ωJPA| centered at ωsig, as in Fig. 3.3(b). The response time of the
detector (∼ 1/κdet) is so long that by comparison the coherent output-field component at ωidl

is rapidly rotating in phase-space, such that its contribution to the integrated field value av-
erages to zero and is not detected, as suggested by the gray shaded region in the figure. The
detected noise includes contributions from the input-field components āin[ωsig] and āin[ωidl]
per Eq. 3.11; since these two noise sources are uncorrelated, there is no phase-sensitive
cancellation, and their sum is still isotropic (circular) in phase-space. This scenario in which
only output-field components on one side or the other of ωJPA are detected is an example
of phase-preserving amplification. In this picture of phase-preserving amplification, we see
that the usual 3 dB reduction in power SNR may be interpreted as information transferred
to signal-idler correlations which are never detected.

In contrast, we now consider the limit of small signal-JPA detuning, and also center the
detector at ωJPA, as in Fig. 3.3(c). In the phase-space picture, the vanishingly-small detuning
of the signal and idler components means they do not rotate appreciably within acquisition
of a sample (∼ 1/κdet) or from sample to sample, allowing them to add constructively or
destructively in a phase-sensitive manner. Squeezing of the noise occurs because (for large
gain) the frequency conversion process results in two almost identical copies of the same
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Figure 3.3: Phase-sensitive and phase-preserving detection. (a) The operation of a JPA is
represented in frequency space. The JPA amplifies but also mixes the input signal and idler
modes. Coherent (classical) components of the field are represented in blue, while noise is
indicated in red. The diagonal arrows include both a scaling and conjugation of the input
field component. Figure inspired by [72]. (b) Phase-preserving amplification is observed
e.g. when the signal is captured by a detector with κdet � |ωsig − ωJPA|. Here the mixing
operation lowers the signal-to-noise power ratio of aout[ωsig] relative to that of ain[ωsig] by
up to a factor of 2. (c) With increasing gain, the spectrum (signal and noise) above ωJPA

approaches a conjugated copy of the noise below ωJPA. A detector centered at ωJPA thus
samples a field consisting of the sum of two mirror-image copies in phase-space, which add
along the mirror axis and cancel along the orthogonal axis, leading to observation of phase-
sensitive amplification and squeezing. The additional condition that ωsig = ωJPA ensures
that the amplification phase does not drift from sample to sample acquired by the detector.
Experimentally this condition is often ensured by sourcing the signal and JPA pump from the
same generator (though multi-channel direct digital synthesis may be preferable if available).
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†
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Figure 3.4: Two more detection schemes for consideration. (a) The detector centered at ωJPA

has sufficient bandwidth to detect coherent signal and idler tones which are appreciably
detuned from ωJPA. In the frame of the detector center frequency, the signal and idler
are counter rotating, such that they drift between constructive and destructive interference
(beating). As expected, the average power SNR has been reduced 3 dB compared to the SNR
of the input field. (b) Two detectors symmetric about ωJPA can be used to study two-mode
squeezing.

noise fluctuations at frequencies symmetrically above and below ωJPA, but with one copy
reflected over an axis in phase space by the conjugation operation in Eq. 3.11. These two
copies, represented by the broad red arrows and red circles, interfere constructively along
the phase-space axis of reflection, producing phase-sensitive amplification, and destructively
orthogonal to the axis, producing squeezing. The same reasoning applies to interference
of the coherent parts of the signal and idler output fields. The signal can be aligned with
the amplification axis by adjusting the relative phase of the signal and pump, producing
constructive interference of the signal and idler that yields up to 6 dB more power gain per-
ceived at the detector than occurs at the same pump strength for phase-preserving detection.
However, the usual Heisenberg rules still apply: we can amplify without immediately losing
any SNR in either quadrature, but the noise necessarily added by the remainder of the mea-
surement chain ensures that we ultimately learn about only the amplified quadrature. As
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we amplify one quadrature out of the quantum regime into the observable classical regime,
we necessarily make the orthogonal quadrature increasingly inaccessible.

Can we capture the information encoded in the signal-idler correlations even for large
detuning of ωsig? The answer depends on precisely what we are trying to do. The Heisenberg
uncertainty relations guarantee that, if we are trying to measure both quadratures of the field
at ωJPA, we inevitably will suffer 3 dB SNR reduction [70], irrespective of whether the idler
mode is detected. On its own, the idler mode carries no information not already robustly
encoded in the highly-amplified signal mode, assuming ideal high-gain JPA performance.
Figure 3.4(a) shows that if we try to use a broadband detector to capture both signal and
idler, the two drift in- and out-of-phase, averaging over the phase-sensitive amplification
and deamplification conditions such that the average SNR has still been reduced by 3 dB.
However, it is possible to split the output and capture the positive and negative frequency
bands with separate detectors; the correlations thus observed, considered an example of
two-mode squeezing, can exhibit phase-sensitive variances below the vacuum level [73, 74],
though the topic is outside the scope of this thesis.

3.4 JPA gain and squeezing parameters

Finally, we can determine the definitions of several experimentally measurable quantities
from Eq. 3.11. The phase-preserving power gain, which we call GJPA[ω], is

GJPA[ω] = |gsig,ω|2 =
((κ/2)2 + λ2 + ω2)2

((κ/2)2 − λ2 − ω2)2 + κ2ω2
. (3.12)

In contrast, in phase-sensitive mode, greater power gain is observed for the optimal choice of
pump phase. Taking the common case where ωsig = ωidl = 0, the power gain at this optimal
phase condition (i.e. along the amplified phase-space axis) is

GJPA,PS = (|gsig|+ |gidl|)2 =

(
κ/2 + λ

κ/2− λ

)2

. (3.13)

The output-field squeezing parameters can also be calculated as functions of frequency
[2, 75],

N̄out[ω] =

∫
dω′ 〈ā†out[ω

′]āout[ω]〉/2π

=
λ2κ2

((κ/2)2 − ω2 − λ2)2 + κ2ω2
,

(3.14)

and

M̄out[ω] =

∫
dω′ 〈āout[ω

′]āout[ω]〉/2π

=
κλ ((κ/2)2 + ω2 + λ2)

((κ/2)2 − ω2 − λ2)2 + κ2ω2
.

(3.15)
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What does it mean to talk about squeezing as a function of frequency? The squeezing
bandwidth describes the frequency span over which noise fluctuations above and below ωJPA

are correlated. If the squeezing is narrowband compared to κdet, much of the noise spectrum
sampled by the detector will be uncorrelated such that the detector sees minimal squeezing.
In the time domain, we imagine the signal wave as a noisy time-series, and the idler wave as an
approximate copy of that time-series that has been complex-conjugated2. Detecting the sum
of these two, we thus observe destructive interference and squeezing in one field quadrature.
However, if for example the idler wave were significantly delayed on its way to the detector,
the two waves would be out of step, and we would no longer observe any cancellation. To see
squeezing within each sample acquired, the delay must be less than ∼ 1/κdet. This artificial
example illustrates a more general rule that a large squeezing bandwidth is equivalent to noise
fluctuations in āout[ωsig] occurring close in time to the conjugated fluctuations in āout[ωidl].
Thus squeezing is often characterized in terms of time-dependent correlation functions of
the field, such as can be made explicit by Fourier transforming Eqs. 3.14 and 3.15; for an
extensive discussion of output-field correlations in the time domain see e.g. [76].

A convenient heuristic picture comes from considering signal and idler photons, mainly
because they are arguably easier to visualize and talk about than noise fluctuations. Each
pump photon creates a pair of correlated photons inside the JPA, one at ωsig and one at ωidl,
and we suppose that both photons must arrive at the detector within the integration time
of the detector in order for the noise cancellation to manifest. In this heuristic picture, the
photons bounce around inside the JPA until they randomly exit to the transmission line,
with the probability of exiting the JPA per unit time set by the bandwidth in terms of κ and
λ. If this effective JPA bandwidth is very large, both photons leave the JPA very quickly,
and thus are more likely to both arrive at the detector within the detector’s integration time,
indicating broadband squeezing.

If we operate in the regime where amplification and squeezing processes are broadband
compared to all relevant experimental bandwidths, we can approximate the ideal gain and
squeezing parameters by their ω = 0 values, summarized here:

GJPA =

(
(κ/2)2 + λ2

(κ/2)2 − λ2

)2

, (3.16)

λ =
κ

2

√√
GJPA − 1√
GJPA + 1

, (3.17)

GJPA,PS =

(
κ/2 + λ

κ/2− λ

)2

= (
√
GJPA +

√
GJPA − 1)2, (3.18)

Nout =
κ2λ2

((κ/2)2 − λ2)2
= GJPA − 1, (3.19)

2If we insist on working in non-rotating phase-space (lab-frame) and discussing only the real part of the
wave, the complex-conjugation implies the idler wave oscillates between having the same sign as the signal
wave (say, at times tω = 0, π, ...) or the opposite sign (tω = π/2, 3π/2, ...).
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Mout =
κλ ((κ/2)2 + λ2)

((κ/2)2 − λ2)2
=
√
GJPA(GJPA − 1), (3.20)

and

amount of squeezing =
σ2

vac

σ2
−

= (2(1/2 +N −M))−1 , (3.21)

where the amount of squeezing is usually reported in dB. Note that these equations are not
independent, but are listed individually as a convenient reference. Equations 3.19 and 3.20
satisfy the condition for optimal squeezing, M =

√
N(N + 1). More general forms of several

of these expressions are given in [2], allowing for nonzero pump detuning, nonzero loss inside
the JPA, and arbitrary pump phase (amplification axis)3; these complications were neglected
here for pedagogical simplicity.

3.5 Example: Cascaded attenuation and amplification

of a squeezed state

We consider the cascaded configuration of amplifiers shown in Fig. 3.5, which is similar
to experimental configurations used in later chapters. Unsqueezed vacuum, perhaps from a
cold resistive termination, arrives at the first JPA, producing a squeezed state in the JPA
output field. This squeezed state travels through loss 1 − εin before being amplified by the
second JPA and then experiencing additional loss 1 − εout. Separate measurements using a
vector network analyzer determine the phase-preserving gain of the first JPA, GSQZ, and of
the second JPA, GAMP. What are the squeezing parameters describing the field at each node
in the circuit?

SQZ AMP

Єin Єout

1 2 3 4

vacuum
input

Figure 3.5: A cascaded system of amplifiers with loss before and after the second amplifier.
The diagonal lines indicate beam splitters modeling the power losses 1− ε. The fourth port
on each beam splitter is assumed to couple in unsqueezed vacuum fluctuations such that the
loss decreases N and M but leaves the 1/2 term in each variance unchanged. We find the
squeezing parameters Ni and Mi at each node i = 1...4 indicated in orange.

The squeezing parameters at the output of the first JPA can be read off of Eqs. 3.19
and 3.20, giving N1 = GSQZ − 1 and M1 =

√
GSQZ(GSQZ − 1). The loss attenuates these

3See the arXiv version for even more equations. Note that the expression for M̄out[ω] in that paper
currently seems to be missing a factor of 1/2 in a numerator term—check that M =

√
N(N + 1) for the

case of no internal loss.
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parameters such that N2 = εin(GSQZ − 1) and M2 = εin
√
GSQZ(GSQZ − 1). We now consider

three possible configurations of the second JPA: (a) phase-sensitive amplification aligned
with the first JPA, (b) phase-sensitive amplification orthogonal to the first JPA, and (c)
phase-preserving amplification. While more rigorous quantum derivations are possible, it
is valid and often practical to simply scale the variances of the initial Gaussian Wigner
functions by the relevant gain factors and then read off the resulting variances.

(a) In the first case, the quadrature variances after the second JPA are

σ2
±,3 = (GAMP,PS)±1σ2

±,2 = (GAMP,PS)±1(1/2 +N2 ±M2)/2. (3.22)

Since it is also true that σ2
±,3 = (1/2 +N3 ±M3)/2, we can solve for N3 and M3, yielding

N3 = GAMP,PSσ
2
+,2 +

σ2
−,2

GAMP,PS

− 1/2 (3.23)

M3 = GAMP,PSσ
2
+,2 −

σ2
−,2

GAMP,PS

. (3.24)

(b) The second case, where the amplification axis of the second JPA has been rotated
π/2 in phase-space, is equivalent to (a) with the mapping GAMP,PS → 1/GAMP,PS, yielding

N3 = GAMP,PSσ
2
−,2 +

σ2
+,2

GAMP,PS

− 1/2 (3.25)

M3 = GAMP,PSσ
2
−,2 −

σ2
+,2

GAMP,PS

. (3.26)

Note that here the value of M3 may be negative, as in e.g. the case of GAMP > GSQZ with
εin = 1 where the quadrature initially containing amplified noise ends up as the squeezed
quadrature.

(c) If the second amplifier is operated in phase-preserving mode, phase-space is scaled
isotropically by

√
GAMP, so the output variances are

σ2
±,3 = GAMPσ

2
±,2 = GAMP(1/2 +N2 ±M2)/2 (3.27)

from which we can solve for N3 and M3 to find

N3 = GAMP(1/2 +N2)− 1/2 (3.28)

and
M3 = GAMPM2. (3.29)

In the limit of large GAMP, this gives N3/GAMP = 1/2 + N2. It is perhaps notable that
although the present calculations are equivalent to graphically stretching phase-space ellipses,
and thus are simple enough to be simulated in MS Paint, they capture the subtle effect that
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the large-gain limit of phase-preserving amplification necessarily adds half a noise photon
referenced to the amplifier input as alternately depicted in Fig. 3.3(a).

Finally, for cases (a), (b), and (c), we find the final state at the end of our system by
multiplying by the final power transmission factor, N4 = εoutN3 and M4 = εoutM3, which can
be readily rewritten in terms of the known quantities. We emphasize that all calculations
in this section are independent of any mean coherent displacement α, so the results also
describe the noise properties of a displaced squeezed state (granted the usual assumption
that corrections to Eq. 3.5 remain small). We employ variants of this general calculation to
determine the effects of squeezing in the experimental systems in the following chapters.

3.6 Squeezing degradation due to higher-order effects

of the JPA nonlinearity

Here we briefly present an intuition for a leading limitation on JPA squeezing. This
simple pictorial guide is designed to give experimentalists a working, directionally-correct
intuition; for a far more complete mathematical treatment see [2].

harmonic
regime

anharmonic
regime

JP
A

 p
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en
ti
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�eld amplitude

ω < ω0

ω0

0

Figure 3.6: Anharmonic potential of a JPA (cartoon). The potential is well described by a
parabola near the minimum. In this harmonic regime (gray box), small-amplitude oscillations
occur with frequency ω0. At greater field amplitudes, the potential is broadened compared
to a parabolic potential, such that the oscillation frequency is decreased. This follows from
Eq. 1.6, which indicates that a larger oscillating current in the JPA increases the Josephson
inductance, lowering the effective JPA frequency.

The nonlinearity of the Josephson inductance defines an effective anharmonic potential,
as represented in Fig. 3.6. For now we do not apply any JPA pump. Small-amplitude
oscillations of the JPA field stay near the bottom of the potential, which is well described by
a parabola, and thus oscillate at a frequency we call ωJPA,0. Accordingly, if we represent the
JPA field in the phase-space frame also rotating at ωJPA,0, the Wigner function representing
the field appears stationary. Now suppose we increase the amplitude of the field oscillations
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by squeezing as in Fig. 3.7. These large fluctuations sample the potential outside of its
parabolic regime; on average, the potential experienced by the field is broader than the
harmonic potential, so the oscillation frequency of the field is lower. If we stay in the phase-
space frame rotating at ωJPA,0, then these large-amplitude fluctuations appear to be rotating
backwards (clockwise). Supposing the JPA field is initialized in a highly squeezed state
centered at the phase-space origin, we thus expect (neglecting dissipation) the ends of the
squeezing ellipse to be sheared in the direction of negative phase, producing an S -shape.
These distortions increase the variance in the squeezed quadrature4, reducing the amount
of squeezing realized. The situation can be even worse if the JPA field is initialized in a
displaced squeezed state as in the lower panel of Fig. 3.7. We expect one end of the ellipse
to be more heavily sheared than the other end, which depending on the squeezing angle
may produce a comma-like shape (sometimes referred to as an “avocado” by Californians).
Moreover, because the squeezed state is already displaced, the amount of squeezing will be
degraded even for small amounts of initial squeezing. One implication is that pumping the
JPA with a resonant current pump, which necessarily produces a mean displacement of the
JPA field, is expected to provide inferior squeezing performance compared to flux-pumping or
sideband current-pumping. More generally, greater squeezing becomes possible by extending
the harmonic regime, i.e. by weakening the JPA nonlinearity, which can be achieved using
multiple SQUIDs [59]. Speculating further, it seems plausible that squeezing performance
might also be improved by incorporating recently developed Josephson elements hard-wired
to suppress undesired nonlinear processes [77] into future amplifier designs.

4And actually change which quadrature has the smallest variance.
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Figure 3.7: We approximately partition phase-space into a harmonic regime (inside the solid
gray circle) in which the field oscillates at ω0, and an anharmonic regime (outside) at which
the field oscillates slower than ω0, with greater radii corresponding to lower frequencies.
The shown phase-space frame rotates at ω0, such that the anharmonic regime appears to
be sheared clockwise over time. For a highly-squeezed state centered at the origin, this can
produce an S -shape distortion. Because displaced squeezed states are not centered at the
origin, a different shape is produced by the shearing effect, and the shearing effect can be
significant even for little or no squeezing. Figures are not to scale; see Ref. [2] for numerical
simulations of JPA output fields considering the full JPA nonlinearity for various conditions.
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Chapter 4

Resonance Fluorescence with a
Squeezed Drive

4.1 Introduction

Fluorescence spectra provide a powerful means of probing atomic systems and their
electromagnetic environments. Spectra such as the Mollow triplet [78] have been observed
as signatures of coherent coupling of radiation to artificial atoms based on quantum dots
[79] and superconducting qubits [80, 81]. The centrality of electromagnetic fluctuations to
relaxation processes motivates an investigation into how electromagnetic squeezing modifies
an atomic system’s fluorescence. The simplest case was first treated theoretically by Gardiner
[66], followed shortly by a paper by Carmichael, Lane, and Walls generalizing to the case of a
Rabi-driven qubit [82, 83]. Their results implied that under certain conditions any resonant
Gaussian drive field, including ideal squeezed states, could be fully characterized from the
positions and linewidths of the fluorescence spectrum. A two-level system then realizes
a nearly ideal detector of squeezed radiation, mapping the statistical correlations of the
squeezed noise field onto properties which can be read from a spectrum analyzer directly.
A multitude of theoretical predictions for various atomic interactions with squeezed light
followed [84, 85], but experimental progress did not keep apace, in part because coupling
an atom predominantly to a squeezed optical field proved challenging [86]. The central
theoretical predictions for squeezed light-matter interactions remained unrealized for nearly
three decades. The development of circuit quantum electrodynamics provided a naturally
low dimensional environment in which efficient coupling to a single electromagnetic mode is
possible [87], enabling observation of the effect of squeezing on radiative dipole decay rates
of a superconducting qubit [34]. The work discussed in this chapter extends the circuit QED
toolset to measure directly the effect of electromagnetic squeezing on resonance fluorescence
[1].
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JPA
pump

Figure 4.1: Simplified experimental setup for measurements of resonance fluorescence in
squeezed vacuum. A flux-pump tone (left) modulates the resonance frequency of a JPA,
producing squeezed vacuum which travels from the JPA to a superconducting cavity reso-
nantly coupled to a transmon qubit. The qubit-cavity system is optionally Rabi driven via
a second, weakly-coupled cavity port. The resulting fluorescence exits via the first cavity
port and is amplified by a Josephson traveling wave parametric amplifier (JTWPA) before
subsequent stages of amplification. Figure adapted from [1].

4.2 Experimental overview

We engineered the squeezed light-matter interaction using the experimental setup repre-
sented in Fig. 4.1. The JPA shined squeezed microwaves on a transmon-style qubit residing
in a 3D aluminum waveguide cavity [43] inside a light-tight copper enclosure as in [3]. The
qubit and cavity were made to be nearly resonant and were strongly coupled, such that the
two-level system fluorescing in this experiment, the effective qubit, consisted of two levels of
the hybridized qubit-cavity level structure. The predictions in [66, 82] for fluorescence from a
true two-level system still apply for this effective qubit provided no other transitions are ex-
cited by the drives [88]. To meet this condition, we deliberately made the JPA narrowband,
such that squeezing at the transition frequency of interest did not also generate significant
noise power at neighboring transitions. A second cavity port allowed for application of a
resonant Rabi drive to induce fluorescence; keeping this port weakly coupled compared to
the first cavity port prevented unsqueezed vacuum incident to this second port from signif-
icantly diluting the intracavity squeezing. Fluorescence resulting from the squeezed drive
exited the cavity via the strongly-coupled port and was amplified by a Josephson Traveling
Wave Parametric Amplifier (JTWPA), another type of superconducting parametric ampli-
fier with large bandwidth and compression power compared to a JPA [89]. After additional
stages of amplification, the fluorescence was detected by a microwave spectrum analyzer.
For a detailed wiring diagram and additional hardware-related commentary, see Appendix
A.1.
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4.3 Squeezing induced fluorescence

We first investigated the fluorescence produced by driving the qubit with squeezed vac-
uum only – that is, without any coherent drive applied to the weakly-coupled port. This
process was described theoretically by Gardiner [66], who considered the case of a two-level
atom resonantly driven by broadband squeezed noise, with no coupling to any unsqueezed
vacuum modes. Assuming all fluorescence exits via a single channel, one can use the quantum
regression theorem to calculate the correlation function of the resulting output fluorescence
field,

〈a†out(t)aout(0)〉 = Nδ(t) +
γM

2(2N + 1)
(exp(−γy|t|)− exp(−γx|t|)) , (4.1)

the Fourier transform of which gives the power spectral density,

2πS(ω) = N +
γM

2N + 1
[

(
γy

γ2
y + ω2

)
−
(

γx
γ2
x + ω2

)
], (4.2)

where ω is defined to be zero at the atomic resonance. This fluorescence spectrum consists of
three terms. The first corresponds to the broadband noise power of the input squeezed field,
set by the effective number of noise photons N , and thus depends neither on properties of the
qubit resonance (apart from the assumption that all input power is ultimately scattered to
the one output channel) nor on the squeezing parameter M . The other two terms comprise
a broad negative Lorentzian of width γx and a narrow positive Lorentzian of width γy. The
negative Lorentzian can be understood as absorption by the qubit of photon pairs from the
squeezed field, while the positive Lorentzian corresponds to the resonant reemission of that
power by the qubit, realizing the four-wave mixing process depicted in Fig. 4.2. Barring any
additional loss mechanisms, energy conservation requires the spectral weights of the emission
and absorption Lorentzians be equal, and indeed both are set by the common prefactor. We
see that without any correlated photons (M = 0) the Lorentzians vanish. In the absence
of a coherent drive, any fluorescence from the qubit thus indicates M 6= 0, indicative of a
squeezed state if the thermal component of the field is small (N < M). Since the Lorentzian
linewidths are simply the product of the quadrature variances of the drive field multiplied
by the natural qubit linewidth γ, by measuring the spectrum one can fully determine the
parameters N and M provided γ is known.

Pumping the JPA for gain at the frequency of our effective qubit produced squeezed
vacuum, which in turn drove fluorescence. For these measurements, the weakly coupled port
was not used as we did not apply any coherent drive to the qubit. With the JPA pump power
chosen to produce 1.4 dB of phase-preserving gain, we observed the spectrum shown in Fig.
4.3(a). As expected, the spectrum consists of a broad dip superposed with a narrow peak.
Because the coupling of the second cavity port was not completely negligible, we modified
Eq. 4.2 as follows

2πS(ω) =
N

ηc
+ γ[

M − (1− ηc)N
2N + 1

(
γy

γ2
y + ω2

)
− M + (1− ηc)N

2N + 1

(
γx

γ2
x + ω2

)
], (4.3)
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Figure 4.2: The squeezed vacuum incident to the qubit contains pairs of photons (black
arrows) symmetrically detuned from the qubit center frequency. The simultaneous arrival
of a given pair of photons at the qubit drives the two-photon absorption process depicted
here. The absorption of noise power symmetrically above and below resonance produces the
broad negative Lorentzian in Eq. 4.2, while the resonant reemission of this power produces
the narrow positive Lorentzian.

where ηc represents coupling of the qubit-cavity resonance to unsqueezed electromagnetic
modes, with Eq. 4.2 recovered when ηc = 1. Using a vector network analyzer to probe the
effective qubit resonance in reflection geometry (S11 of the strongly-coupled cavity port), we
independently determined the external and internal quality factors (in this case representing
coupling to squeezed and unsqueezed modes, respectively) from which we calculated ηc =
Qint/(Qext + Qint) = 0.81. Combining this number and a separately measured value of the
radiative linewidth in ordinary vacuum, γ = 304 kHz, we observe that the observed spectrum
is well described by a fit of Eq. 4.3. For example, from the fit of the spectrum shown in Fig.
4.3(a), we infer that M −N = 0.21(1) at the qubit, corresponding to 2.4 dB of squeezing at
the qubit for this JPA pump power.

To further understand how the fluorescence depends on the squeezed nature of the drive
field, we repeated this measurement while slightly detuning the JPA pump tone above and
below the resonance condition. The results are shown in Fig. 4.3(b). Here the color scale
encodes the fluorescence power, with red indicating fluorescence and blue indicating absorp-
tion. The slice indicated by the white dashed line corresponds to the data in Fig. 4.3(a).
Measurements above (below) the white dashed line were taken with the input squeezing cen-
tral frequency (vertical axis) detuned above (below) the effective qubit resonance condition.
All pump detunings shown here are small compared to the JPA bandwidth, such that the
power incident to the qubit within the displayed span is approximately constant. However,
the statistics of the fluctuations of the incident field in the frame of the qubit do change.
Graphically, detuning the squeezing causes the squeezing ellipse to rotate in phae-space with
respect to the qubit frequency; when this rotation is fast compared to the qubit lifetime, the
qubit responds as if driven by a thermal field (circular in the IQ plane), and fluorescence
is suppressed. In the language of Chapter 3, the qubit acts as a detector with κdet = γ.
Thus we see a sharp decrease in fluorescence intensity when the squeezing is detuned by an
amount ∼ γ, even though this detuning is much smaller than the squeezing bandwidth.
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Figure 4.3: Fluorescence induced by injected squeezing. The spectrum in (a) is produced by
injecting squeezed vacuum centered at the resonance frequency of the effective qubit. The
photon correlations of the squeezed field drive a four-wave mixing process in which power is
absorbed symmetrically above and below the resonance, then resonantly emitted, producing
a broad negative Lorentzian dip (absorption) and a narrow Lorentzian peak (emission). In
the ideal case the areas of these Lorentzians are equal per conservation of energy, while
the widths of the two Lorentzians are proportional to the variances of the squeezed and
antisqueezed field quadratures. The subnatural linewidth of the positive Lorentzian, γY, is
a hallmark of squeezing. Panel (b) shows that detuning the pump breaks the symmetry
of photon correlations about the resonance, suppressing the fluorescence mechanism. The
white dashed line corresponds to the data in (a). Figure adapted from [1].
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4.4 The Mollow triplet

The fluorescence spectrum of a qubit in the presence of a strong coherent Rabi drive
with no squeezing was first derived by the eponymous Mollow [78] and first reported ex-
perimentally five years later [90]. In the limit of a weak Rabi drive, the qubit incoherently
scatters some of the incident light, producing a single fluorescence peak with a full-width
γ determined by the qubit lifetime. For a strong Rabi drive such that the Rabi frequency
ΩR � γ, the AC Stark interaction of the Rabi drive splits each of the qubit levels into a
doublet with separation ΩR, producing three distinct transition frequencies. The resulting
“Mollow triplet” spectrum consists of three Lorentzian peaks, one centered at the qubit
resonance and two sidebands detuned by ±ΩR, in addition to the elastically-scattered part
of the drive field modeled as a δ-function at ω0. These three fluorescence frequencies are
indicated on the level structure for our experiment by the red, green, and blue arrows in
Fig. 4.4. Applying a Rabi drive to the weakly-coupled cavity port produced the spectrum
shown in the second panel of Fig. 4.4. As expected the spectrum contains three fluorescence
peaks, with a greater amplitude for the central peak as it includes fluorescence from two
transitions. The peak separation is equal to the Rabi frequency, ΩR/2π, which is set by the
amplitude of the coherent drive. Fig. 4.5 shows the expected linear dependence of the peak
separation on the drive amplitude. For the measurements below, we choose our drive such
that ΩR/2π ≈ 1 MHz, which is large enough to resolve the sideband peaks but small enough
to keep the entire fluorescence spectrum well within the bandwidth of the squeezer, a key
assumption of the theoretical treatment given in [82].

4.5 Fluorescence with a squeezed Rabi drive

Carmichael et al. [82] showed that squeezing the fluctuations of a resonant Rabi drive,
such that the drive is a displaced squeezed state (Fig. 3.1) instead of a coherent state,
modifies the resulting fluorescence spectrum in a phase-sensitive manner. Introducing a
resonant Rabi drive thus enables detection not only of the field quadrature variances set by
N and M , but also of the squeezing phase. The spectrum still consists of three Lorentzians
(for ΩR � γ), but the full-widths of the central peak and sidebands in the presence of
squeezing become

γcentral = γ
σ2

amplitude

σ2
vacuum

= 2γ(1/2 +N +M cos 2Φ) (4.4)

γsideband = γ
1/2 +N + σ2

phase

2σ2
vacuum

= γ(3/2 + 3N −M cos 2Φ), (4.5)

where σ2
amplitude and σ2

phase are the field variances parallel and perpendicular to the mean-field
displacement. Squeezing the amplitude fluctuations of the drive narrows the linewidth of the
central peak below the natural linewidth and broadens the sidebands, while squeezing the
phase fluctuations broadens the central peak linewidth and leaves the sideband linewidths
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Figure 4.4: Mollow triplet level structure and spectrum. The cavity states (first column)
are modified by strong coupling with the qubit, producing polariton states (second column).
We chose the levels |0〉 , |1,+〉 to define the two levels of our effective qubit (the |0〉 , |1,−〉
transition was not chosen as it resided in the small frequency window where the dispersion
feature of the JTWPA suppressed gain). Care was taken in designing the system to avoid
driving transitions to any other states shown in the second column of the figure. Applying
a resonant Rabi drive produces the dressed states shown in the third column, defining three
distinct transition frequencies corresponding to the three peaks of the observed fluorescence
spectrum shown at right. Figure adapted from [1].

unchanged. By fitting spectra taken at several phases of the squeezer pump (or Rabi drive),
one determines not only the squeezing parameters N and M at the qubit, but also Φ, the
phase of the squeezing relative to the Rabi drive. Figure 4.6 shows example spectra with (a)
unsqueezed, (b) amplitude-squeezed, and (c) phase-squeezed Rabi drives. To further quantify
the dependence of linewidths on squeezing angle, we step the squeezing angle more finely and
fit each spectrum to an approximate model of three Lorentzian peaks, producing the inferred
linewidths plotted in (d). As expected, the linewidths exhibit a sinusoidal dependence on Φ,
with the central and sideband linewidths oscillating out-of-phase. These observations verify
the predictions of [82], and provide a tool for characterizing microwave squeezed states as
discussed further in the next section.

4.6 Squeezing characterization

The fluorescence measurements with or without a Rabi drive can be used to determine
the variances of the squeezed and antisqueezed quadratures of the field experienced by the
qubit for a range of JPA gains. Experimentally, we set the JPA gain by adjusting the JPA
pump power and measured the gain using a vector network analyzer (VNA). For each gain
setting, we measured the fluorescence spectrum with and without a Rabi drive.
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Figure 4.5: Mollow triplet spectrum vs Rabi drive amplitude. Color scale indicates fluo-
rescence power produced by a Rabi drive applied to the weakly coupled cavity port. The
Josephson Traveling Wave Parametric Amplifier (JTWPA) enables broadband detection of
the spectrum over the 50 MHz span with approximately uniform gain. The spectra are nor-
malized to the background level with no Rabi drive applied. The signal amplitude is varied
by stepping the dc voltage applied to the IF port of a microwave mixer at room temperature.
Figure adapted from [1].

Analysis of the spectra with a Rabi drive was challenging because due to bandwidth
constraints the relation ΩR � γ was not fully saturated in our system, yet this relation
is an assumption of the theory presented in [82]. To resolve this complication, our theory
collaborators in the Blais group at U. Sherbrooke extended the analytical theory to the ex-
perimental regime, including for values of Φ 6= 0, π/2 (Appendix B of [1]). This analytical
model was verified by comparison to numerical simulation of the full cascaded master equa-
tion for our system. In contrast, spectra observed with no Rabi drive could be fit directly
with the two-Lorentzian model of Eq. 4.3, with the amount of squeezing seen by the qubit
determined from the width of the narrow positive peak.

The results of these two sets of measurements are displayed in Fig. 4.7. As expected, the
amount of squeezing (right vertical axis) increases with greater JPA gain. The amounts of
squeezing inferred via the two methods show reasonably good agreement with one another
over the range of gains. As inferring the squeezing without a Rabi drive was simpler in
execution and analysis, and was also less sensitive to small spectral background features, we
believe that method to be more accurate and precise, as reflected in the smaller scatter of the
blue triangles in the plot. Measurements with a Rabi drive may be of use when determining
the squeezing phase Φ is also desired. We fit the results of this method to the expected
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Figure 4.6: Fluorescence induced by a squeezed Rabi drive. Panels (a-c) show spectra
produced by an unsqueezed, amplitude-squeezed, or phase-squeezed Rabi drive. The fits
(black, dashed) consist of three Lorentzians plus a broad parabolic background (orange,
dot-dashed). The background curvature is due to the finite bandwidth of the JPA. Spectra
were acquired for a range of Φ values; the inferred linewidths are shown in (d) for the
central (red) and sideband (blue, green) peaks. Horizontal lines indicate linewidths without
squeezing. Curves are sinusoidal fits of the data. The Lorentzian model is illustrative but
only approximate as the condition ΩR � γ is not saturated; a more complete numerical
model is used to determine squeezing levels reported in the next section. Figure adapted
from [1].
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amount of squeezing produced by an ideal JPA (Eq. 3.21) followed by loss 1− η,

(1 + 2N − 2M))−1 = (1 + 2η(N ′ −M ′))
−1

=
(

1 + 2η(GJPA − 1 +
√
GJPA(GJPA − 1))

)−1

.

(4.6)
Here N and M are the squeezing parameters of the field in the cavity, N ′ and M ′ are the
squeezing parameters at the output of the JPA, and GJPA is the phase-preserving power gain
of the JPA as measured on the VNA. The single free parameter of this model is the efficiency
η = 0.55 with which squeezing was transferred from the JPA to the qubit, where η includes
both the microwave loss between the JPA and cavity and the effect of ηc.

We performed an additional measurement to close a loophole in the above measurements
of squeezing. The measurements above demonstrate a reduction of the noise in one quadra-
ture of the field at the qubit when the JPA is turned on. However, this inference implies
squeezing only if the field is also known to be sufficiently close to the vacuum state when the
squeezer is off. As the temperature of the plate on which the experiment was mounted was
measured to be < 30 mK during the experiment, we did expect the 7.3 GHz qubit-cavity
resonance to meet this condition, but thermalization of the qubit-cavity system to the plate
could not be taken for granted, especially given the low thermal conductivity of the super-
conducting cavity. To close this loophole, we bounded the population in the excited state
of our effective qubit with no squeezing applied, following the procedure in [91] (cf. Fig.
3 therein). These Rabi measurements bounded the excited state population below 1.2%,
corresponding to a thermal population of the field Nth < 0.01, which has a negligible impact
on the inferred squeezing levels shown in 4.7.

4.7 Outlook

Both generating and characterizing microwave squeezing in the electromagnetic envi-
ronment of a qubit are central to proposed schemes for enhancing qubit measurement via
applied squeezing. The methods presented here achieve this in a resource-efficient way, with
the two-level system acting as a passive1 black box that maps squeezing parameters onto
spectra which can be detected without the need for time-domain qubit control. When it
is not necessary to determine the phase of the squeezed state, a single-port cavity may
be used, improving precision by making ηc ≈ 1. This technique can be readily extended
to confirm theory predictions for fluorescence under two-mode squeezed vacuum [92], un-
der narrow-band squeezing which realizes a non-Markovian reservoir [93], or in parameter
regimes expected to realize exotic spectral features [94]. The present experiment provided
a straightforward characterizion of the squeezing performance of our JPA, and in the next
chapter we turn to applying squeezing to qubit measurement.

1For measurements without a Rabi drive.
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Figure 4.7: Inferred squeezing levels as a function of JPA gain. Squeezing levels were inferred
by analyzing fluorescence spectra with (red circles) and without (blue triangles) a Rabi drive
applied to the weakly-coupled cavity port. The horizontal axis indicates the gain GJPA used
to produce the squeezed field. This gain is the phase-preserving power gain as measured with
a slightly detuned VNA probe tone, which is related to but distinct from the quadrature
gain (compare eqs. 3.16 and 3.18). The left vertical axis indicates the inferred amount of
squeezing at the qubit in dB, while the right axis indicates M − N , the combination of
squeezing parameters which determines the squeezed quadrature variance as indicated on
the inset in the upper left (the written expression is 2σ). The orange dashed curve is a
one-parameter theory fit to the blue triangles. Figure adapted from [1].
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Chapter 5

Stroboscopic Qubit Measurement
with Squeezed Microwaves

5.1 Proposed utility of squeezed measurement fields

A major research focus of circuit QED has been the fast readout of the state of a su-
perconducting qubit. The primary means of achieving this goal have been optimization of
the cavity-mediated dispersive coupling of the qubit to a coherent measurement pulse, and
the amplification of that pulse such that it can be efficiently detected at room tempera-
ture. Successes on these fronts have enabled qubit measurements with over 99% fidelity in
less than 100 nanoseconds [18], and for the realization of error-correction with sufficiently
low latency to extend the lifetime of a qubit [24]. Moreover, enhancements to the band-
widths and dynamic ranges of superconducting amplifiers [89, 28, 61] have made feasible
frequency-multiplexed readout of many qubits simultaneously. However, as a practical uni-
versal quantum computer will require increasing system size and algorithmic complexity
several orders of magnitude, improvements in measurement speed are expected to remain
beneficial for facilitating error-correction and final state readout.

Here we perform what is to our knowledge the first experimental demonstration of using
squeezed microwaves to speed up the measurement of a superconducting qubit. Squeezing
the noise in the measurement field provides a means of increasing the signal-to-noise ratio
(SNR) of the pulse leaving the readout cavity, or equivalently increasing the rate at which
qubit state information is encoded in the field via interaction with the qubit. Naively,
increasing the amplitude of the input readout pulse may appear to be a much simpler means
of increasing SNR than is the delicate business of squeezing vacuum noise. However, the
dispersive qubit-cavity coupling widely employed for readout intrinsically limits the usable
pulse amplitude, defining a critical photon number ncrit = ∆2/(4g2) on the order of which
appreciable state-mixing and thus errors occur 1 [95, 96], where ∆ is the qubit-cavity detuning

1A back-of-the-envelope derivation, albeit one not capturing the factor of 1/4, is to compare the energies
of |n, g〉 and |n− 1, e〉. Noting the Stark shift decreases the qubit frequency by ∼ χn, these two levels become
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and g is their coupling. This bound on photon number motivates asking whether more
information can be transmitted by each photon. In general, the best possible scaling of
SNR, known as Heisenberg scaling, is

√
SNR ∼ n̄, where we take the square-root following

the convention that SNR is quoted with respect to power (field power / variance, as opposed
to field amplitude / standard deviation). Without squeezing,

√
SNR is proportional to

the field amplitude divided by the vacuum standard deviation, and thus exhibits the more
familiar scaling,

√
SNR ∼

√
n̄. Thus squeezing in principle raises the ceiling on the speed

with which a measurement can be performed, motivating investigation of whether practical
implementation of squeezed readout is possible.

Squeezed fields are also of interest as a means of suppressing certain types of unwanted
parasitic measurements. Just as squeezing can be used to speed up a measurement by mak-
ing two output states more distinguishable, antisqueezing, i.e. squeezing of the orthogonal
quadrature, can make the two states less distinguishable, slowing the measurement and re-
ducing backaction on the qubit. It has been proposed that squeezing can be used in this way
to increase the fidelity of multi-qubit gate operations [97]. Our experimental work includes
the first demonstration of using squeezed microwaves to slow backaction of an applied mea-
surement, providing a clean demonstration of the relation between continuous measurement
backaction and SNR.

Additional details on the experiment described in this chapter may be found in [4].

5.2 Squeezing compatibility

A major obstacle to squeezed-readout implementation is that the dispersive coupling
central to standard readout techniques rotates squeezing out of, and antisqueezing into, the
signal quadrature, which severely limits the possible SNR improvement due to squeezing
[98], especially in the common parameter regime where χ ∼ κ. Figure 5.1 illustrates this
predicament. The dispersive qubit-cavity interaction Hamiltonian, Ĥ = χσ̂za

†a, produces
the readout signal as a qubit-state dependent phase-space rotation of the output field. In
a conventional measurement, injecting a coherent state resonant with the cavity thus pro-
duces an output coherent state with one of two distinct phases (Fig. 5.1(left)). In standard
homodyne measurement we choose to detect one quadrature of the output field; after project-
ing the phase-space distribution onto this axis (marginalizing the orthogonal quadrature),
we define the SNR in terms of the resulting one-dimensional probability distributions as
SNR = 2(〈Ve〉 − 〈Vg〉)2/(σ2

e + σ2
g), equal to the mean separation of the two coherent states

divided by the mean variance (some definitions of SNR differ by a factor of 2). Ideally, we
would like to apply squeezing such that the noise is reduced along the signal quadrature, as
in the utopian scenario of Fig. 5.1(middle). However, if we simply perform the measurement
by injecting a displaced squeezed state rather than a coherent state, the dispersive interac-
tion rotates not only the mean value of the field but also the noise ellipse. Since the rotation
is in opposing directions for the ground and excited states of the qubit, it is impossible

resonant when n = δ/χ ≈ ∆2/g2, enabling the measurement field to flip the state of the qubit.
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Figure 5.1: In traditional dispersive readout, the qubit-field interaction produces a qubit-
state dependent readout of the output field. We would like to apply squeezing such that the
noise is reduced along the signal quadrature, that is, along the axis connecting the mean
values of the |g〉 and |e〉 field distributions. However, if we simply perform dispersive readout
with injected squeezing, the dispersive interaction produces a rotation of the noise ellipses
in opposite directions, rotating amplified (antisqueezed) noise into the signal quadrature.

to align the squeezed axes of both ellipses with the signal quadrature simultaneously (Fig.
5.1(right)). Modest SNR improvement is still possible for small amounts of squeezing and/or
small dispersive rotations (χ � κ), but with increased squeezing the antisqueezed variance
quickly becomes large such that even a small rotation pollutes the signal quadrature with a
large amount of noise.

While proposals to better exploit squeezing for qubit measurement have been suggested,
they require more complex circuit architectures involving multiple readout modes [99, 100]
or a fundamentally different “longitudinal” coupling of the qubit to a cavity quadrature
(σ̂z(a + a†)) instead of to the photon number (σ̂za

†a) [101]. With a longitudinal coupling,
the qubit signal manifests as a displacement rather than a rotation of the output field, elim-
inating the problem of squeezing misalignment. Rather than modify the circuit as proposed
in [101], here we dynamically induce a synthetic longitudinal coupling, as demonstrated in
[102], compatible with standard qubit designs. This approach utilizes a stroboscopic tech-
nique similar to those used with “backaction evading” optomechanical systems [103, 104,
105], though these techniques have not previously been combined with injected squeezing.
The next section describes the stroboscopic technique in the context of our experimental
hardware.
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Figure 5.2: (a) Simplified experimental setup for stroboscopic measurement with squeezing.
A first JPA (“SQZ”) produces squeezed microwave vacuum, which is routed by circulators to
the strongly-coupled cavity port, producing an intra-cavity squeezed vacuum state. A Rabi
drive at ωq and strobe tones near ωc are injected simultaneously into the weakly coupled cav-
ity port, producing a stroboscopic measurement interaction yielding a qubit-state dependent
displacement of the cavity output field by ±2ā0χ/κ. Squeezing increases the distinguishabil-
ity (solid ellipses) of the two pointer states compared to the same measurement performed
without squeezing (faded ellipses). (b) Varying the relative phase φS of the strobe tones
shifts the resultant modulation envelope in time relative to the Rabi oscillations, allowing
an effective measurement of any combination of σ̂z and σ̂y of the qubit in the Rabi-driven
frame. For all measurements presented here, we choose to measure σ̂z. Figure adapted from
[4].

5.3 Experimental setup and stroboscopic protocol

A schematic of our setup appears in Figure 5.2. The hardware is similar to that used in
the resonance fluorescence measurements of Chapter 4. Once again, we have a JPA, labeled
“SQZ”, flux-pumped to produce squeezed microwaves which travel into the strongly-coupled
port of a superconducting cavity containing a 3D-transmon style qubit [43], and we use
superconducting amplifiers downstream to detect the cavity output field. Unlike in Chapter
4, the qubit (ωq/2π = 3.898 GHz) is far from resonance with the cavity (ωc/2π = 6.694 GHz)
as in a typical dispersive measurement configuration, such that the qubit-cavity interaction
absent any drives is described by the dispersive coupling χ/2π = 0.73 MHz. We use the
weakly-coupled cavity port to inject three tones that produce the stroboscopic measurement:
a tone at ωq that drives Rabi oscillations with a frequency ΩR, and a pair of sideband tones
symmetrically detuned by ΩR above and below the cavity frequency (Fig. 5.2(b)). The
two sidebands beat against one another, such that their sum equals a tone at the cavity
frequency whose envelope is modulated at twice the Rabi frequency. This modulated drive
stroboscopically probes a single Pauli component of the qubit state in the plane of the qubit’s
Rabi oscillations around the Bloch sphere. Adjusting the relative phase of the sidebands φs
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shifts this envelope in time relative to the Rabi oscillations, varying which particular Pauli
component is probed.

To get a heuristic picture of and intuition for this measurement, consider the cavity field
in the phase-space frame rotating at the cavity frequency ωc. If no qubit were present, the
stroboscopic drive would cause the mean-field phasor to oscillate about the origin along a
phase space axis, say the vertical axis Q. Now consider a toy model in which we crudely
discretize the time evolution of the system such that the stroboscopic drive and the dispersive
qubit interaction take turns, as in Fig. 5.3. (A caveat: the model as shown here does not
accurately capture all system dynamics; the point of this model is to make it seem plausible
that the time-averaged field drifts to the right if the qubit starts in the excited state, and to
the left if the qubit starts in the ground state). First, the strobe drive displaces the mean
cavity field to a maximum vertical position indicated by the faded phasor in (1). Next, also
in (1), we briefly evolve the cavity field in time; if we assume the qubit starts in the excited
state, the cavity field evolves at a slightly lower frequency due to the dispersive shift, and
thus appears to rotate clockwise in our phase-space frame by a small amount (not shown to
scale). Moving on to (2), the strobe drive displaces the cavity field in the opposite direction,
indicated by the faded blue arrows. By this time the qubit has been Rabi driven into the
ground state (purple curve), causing the cavity field to rotate clockwise in our chosen frame.
We see that because σ̂z and Q have both changed sign, the net result of steps (1) and (2) has
been to start monotonically increasing the I-component of the field while Q remains rapidly
oscillating about zero at ΩR. Had the qubit started in the ground state with σ̂z = −1 instead,
the direction of the dispersive rotation steps would be reversed, causing the time-averaged
field to drift to negative I values, enabling state discrimination.

More precisely—and accurately—the interaction-picture Hamiltonian is ĤI = χσ̂za
†a +

ΩR

2
σ̂x + Ĥsb, where Ĥsb describes the sideband drives. We write the cavity field as the sum

of its mean-field and quantum fluctuations, â → 2ā0 cos(ΩRt) + d̂, and transform to the
Rabi-driven frame to find

ĤI = χā0σ̂
R
z (d̂+ d̂†) + (eiΩRtÂ+ ei2ΩRtB̂ + H.c.). (5.1)

The first term describes a longitudinal coupling between the cavity field and the measured
observable σ̂R

z . This observable has an explicit time dependence in the original interaction
picture, which with the right choice of φs can be written as σ̂R

z ↔ cos(ΩRt)σ̂z − sin(ΩRt)σ̂y,
such that the measurement of σ̂R

z ideally provides the same information about the initial
(t = 0) qubit state as would a measurement of σ̂z. This interaction displaces the cavity
output field in phase space by ±2ā0χ/κ [102], producing separation of the squeezed pointer
states sans rotation of the squeezing ellipses, as indicated downstream of the qubit in Fig.
5.2(a). The other terms in equation 5.2 are parasitic terms causing deviations from the ideal
QND coupling, derived explicitly in the supplemental material of [4]. These include terms
which would rotate the squeezing ellipses in a standard dispersive measurement, but now are
strongly suppressed for ΩR � κ, χ. With the qubit-dependent rotation eliminated, the minor
axes of the squeezing ellipses can be aligned to the signal quadrature in a straightforward
way by adjusting Φ via the phase of the flux-pump.
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Figure 5.3: Toy model of the stroboscopic measurement scheme. We discretize time evolu-
tion into small steps; between each step, we apply a displacement along Q representing the
stroboscopic drives, and also flip the sign of σ̂z of the qubit to approximate the Rabi oscil-
lations. By flipping the signs of Q and σ̂z synchronously, we trick the dispersive interaction
into providing a net displacement along I conditioned on the initial state of the qubit. See
text for a step-by-step description of frames (1-3).

Even with optimal alignment of the squeezing to the signal quadrature, the field must
be amplified with high efficiency η for the squeezing to have a measurable effect on the
homodyne signal acquired at room temperature. Thus we amplify the output field not only
with a JTWPA as in Chapter 4, but also with a JPA acting as a low-noise preamplifier
(“AMP” in Fig. 5.2). The flux-pump of this second JPA is phase locked with the squeezer
pump and measurement tones, producing phase-sensitive amplification of the signal. With
even modest JPA gain, the effect of the half-photon of noise necessarily added during the
phase-preserving amplification in the JTWPA can be mitigated, increasing η. Operating the
JPA at low gain can be advantageous as it reduces deleterious higher-order effects of the
device nonlinearity [2, 38].

Incidentally, this series configuration of phase-sensitive amplifiers resembles a single-mode
“SU(1,1) interferometer” [106], a nonlinear system capable of using squeezing to achieve
Heisenberg-limited sensitivity. Several recent experiments in the microwave domain not
involving superconducting qubits have employed similar configurations of superconducting
amplifiers [107, 74, 38]. The SU(1,1) interferometer gets its name from the natural repre-
sentation of phase-sensitive amplification as a hyperbolic rotation, obeying the same mathe-
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matics as a “boost” in the SU(1,1) geometry of special relativity2. In the canonical SU(1,1)
system, the signal to be detected is a phase shift on one interferometer arm. Much like
naive dispersive qubit readout with input squeezing, the interferometer can optimally exploit
squeezing only in the limit of small phase shifts. In contrast, the stroboscopic light-matter
coupling realized in our experiment in principle enables enhancement far outside these limits
(appendix of [4]). Our scheme thus eliminates a central obstacle to practical application of
squeezing to qubit measurement.

5.4 Squeezing measurement backaction

A circuit QED measurement can be divided into two parts: encoding qubit state infor-
mation in component of the microwave field, and then amplification and detection of that
field component. We characterize the first process, which occurs entirely inside the cavity,
by determining the backaction on the qubit during the measurement, and characterize the
second process in terms of the final room-temperature SNR. In this section we focus on the
first process.

Measurement backaction is caused by fluctuations in the observable conjugate to that
acquiring information about the system. For example, during a standard dispersive mea-
surement, σ̂z information is encoded in the phase of the cavity field, while backaction is
exerted on the qubit by fluctuations in the amplitude of the cavity field, which induce
dephasing via the AC Stark shift. Thus the Heisenberg uncertainty relations ensure that
squeezing quantum noise to improve SNR will necessarily also produce greater measurement
backaction due to the antisqueezed fluctuations in the conjugate variable, such that both
measurement and dephasing speed up synchronously. Likewise, antisqueezing the noise in the
signal quadrature slows the intracavity measurement process, reducing SNR while squeezing
the amplitude fluctuations producing dephasing.

Absent any squeezing, stroboscopic measurement dephases the qubit at the rate Γφ,vac =
8ā2

0χ
2/κ (note that our definition of ā0 differs from that in [102] by a factor of 2). This

expression includes a factor of 1/4 corresponding to the variance of the intracavity field
quadrature orthogonal to the signal, σ2

BA = 1/4. Using a VNA we measure negligible loss
inside the JPA, so we expect for modest gain the JPA outputs an ideal squeezed state
characterized by N and M =

√
N(N + 1), which we infer from measurements of the squeezer

gain and the relation GSQZ = N + 1 (eq. 3.19). Turning on the squeezer thus modifies σ2
BA

according to σ2
BA = 1 + 2εin(N +M cos 2Φ), where the only unknown parameter is the input

efficiency εin, which describes the the power loss 1− εin between the squeezer output and the
cavity.

Experimentally, we apply squeezing, Rabi drive, and strobe tones simultaneously, and
choose the squeezer pump phase to align the squeezing angle Φ parallel (Φ = 0) or perpen-

2The nomenclature is still applicable to, if perhaps overkill for, single-mode configurations similar to
that used in our experiment. Yurke describes the single mode case as the limit of the more conventional
two-mode case in which the interferometer arms are brought irresolvably close in space [106].
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Figure 5.4: Ramsey decays during continuous measurements using injected squeezing. With
no applied squeezing, the stroboscopic measurement dephases the qubit at a rate Γφ =
1/Tφ = 0.54 µs−1. With the squeezer flux-pumped for 3.8 dB of phase-preserving gain as
measured with a VNA, one choice of pump phase (brown, Φ = 0) squeezes noise in the signal
quadrature while amplifying the conjugate fluctuations which induce dephasing, increasing
Γφ to 2.1 µs−1. Choosing the orthogonal phase (purple, Φ = π/2) has the opposite effect,
slowing the intracavity measurement process and reducing Γφ to 0.31 µs−1. For ease of
comparison, each data trace has been normalized by its t = 0 value. Figure adapted from
[4].

dicular (Φ = π/2) to the signal, respectively speeding up or slowing down the production
of qubit information in the cavity field. We form a Ramsey sequence by sandwiching this
process between two π/2 qubit pulses followed by a projective dispersive readout pulse. The
ensemble-averaged value of this readout as a function of the duration of the stroboscopic
measurement is an exponential that decays at the dephasing rate Γφ. The three decays
plotted in Fig. 5.4 respectively correspond to measurements performed with the same strobe
drives and antisqueezed, unsqueezed, and squeezed noise along the signal quadrature. Fit-
ting these decays, we infer that the antisqueezing reduces Γφ by a factor of 1.8 compared to
its vacuum (unsqueezed) value.

We repeat these measurements for arbitrary squeezing angles Φ and at several values of
GSQZ, mapping out the dependence of measurement-induced dephasing on injected squeezing
as shown in Fig. 5.5. The horizontal line indicates the dephasing rate with no squeezing
applied, Γφ,vac. We fit the data to the expression

Γφ(Φ) =Γφ,vac
σ2

BA

1/4
= Γφ,vac

(
1 + 2εin(N +M cos 2Φ)

)
=Γφ,vac

(
1 + 2εin(GSQZ − 1 +

√
G2

SQZ −GSQZ cos 2Φ)
)
,

(5.2)

from which we infer the input efficiency εin = 0.48.
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Figure 5.5: Measurement-induced dephasing rates as a function of input squeezing. The tan
horizontal band indicates Γφ,vac, the dephasing rate for a given stroboscopic measurement
strength absent any applied squeezing. Increasing GSQZ to with the measurement strength
fixed causes Γφ to vary sinusoidally with the squeezing phase Φ. The data are fit to Eq. 5.2;
the fit is performed jointly with the fit of the SNR phase-dependence data discussed in the
next section. When Φ = nπ with n an integer, the variance conjugate to the signal quadrature
is amplified, increasing the dephasing rate and output field SNR. When Φ = (n + 1/2)π,
this backaction variance is minimized, and the dephasing rate and SNR are reduced. Figure
adapted from [4].

5.5 Enhancing SNR

Speeding or slowing measurement-induced dephasing should respectively produce an in-
crease or decrease in the SNR of the final measurement field digitized at room temperature.
We determine the SNR by repeatedly preparing the qubit in either the ground or excited
state and performing stroboscopic measurements. Each iteration of the measurement, we
record the homodyne voltage for 2 µs, and then create ensemble histograms of the time-
averaged homodyne voltages, which we use to generate the normalized plots in Fig. 5.6.
The histograms are well described by Gaussian distributions, and exhibit reduced variance
and overlap with applied squeezing. To determine the measurement rate Γm, we generate
analogous histograms using variable-length subsets of the homodyne voltage records, and
calculate the SNR = (2(V̄e− V̄g)/(σe +σg))

2 as a function of integration time. The represen-
tative examples shown in Fig. 5.7 are generated from the same data used to make Fig. 5.6.
The linear model captures the time dependence reasonably well, though at long times there
is some sub-linear behavior which is not fully understood and becomes more severe with
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greater measurement strength. We calculate the measurement rate3 from the slopes of these
fits, Γm = 1

4
d(SNR)/dt. Performing this analysis for data without squeezing determines the

output efficiency εout = Γm,vac/2Γφ,vac = 0.38.
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Figure 5.6: Measurement histograms with squeezing. The circles, squares, and stars indi-
cate normalized histograms for measurements with unsqueezed, antisqueezed, and squeezed
fields, with blues (left) indicating preparation in the ground state and reds (right) indicating
preparation in the excited state. The curves are Gaussian fits; the histogram counts have
been vertically scaled such that each fit integrates to 1. The squeezed Gaussians (solid) are
narrower than the unsqueezed Gaussians (dashed). The area of overlap with squeezing (A1,
yellow) is reduced from that without squeezing (A1 + A2, yellow + pink). Figure adapted
from [4].

As in the study of measurement backaction, we proceed to determine Γm under a range
of input squeezing conditions for fixed stroboscopic drive strength, as plotted in Fig. 5.8.
The data exhibit π-periodic variations with the squeezing angle Φ, with greater variation at
higher values of GSQZ. Near an optimal choice of Φ, we resolve a clear increase in Γm above
the unsqueezed value, Γm,vac, indicating a speed up of the measurement due to the applied
squeezing. Varying the applied squeezing changes Γm by changing the variance of (noise in)
the signal quadrature at the room-temperature detector, σ2

m; we model this dependence as

Γm(Φ) =Γm,vac
1/4

σ2
m

= Γm,vac

(
1 + 2εinεout(N −M cos 2(Φ + δ))

)−1

(5.3)

3An alternate and perhaps more natural convention defines SNR, Γm, and η using different factors of 2,
such that Γm is the decay rate of the histogram overlap region, and η = Γm/Γφ, which still ranges from 0 to
1 (see e.g. [108] and supplement).
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Figure 5.7: Room-temperature ensemble-averaged SNR vs integration time for squeezed,
unsqueezed, and antisqueezed stroboscopic measurements. Squeezing the noise in the signal
quadrature causes the SNR to increase faster. Linear fits (dashed) estimate the measurement
rate, Γm = 1

4
d(SNR)/dt. With squeezing, Γm increases 24% from 0.41(1) to 0.51(1) µs−1.

Figure adapted from [4].

In an ideal system, Γm and Γφ should both be maximal at the same value of Φ; however, we
observe a small offset δ between the maxima. We attribute this offset to imperfect alignment
of the stroboscopic signal quadrature to the amplification quadrature of the JPA downstream
of the qubit, which shifts Γm(Φ) but not Γφ(Φ). We simultaneously fit Eqs. 5.2 and 5.3 to
the results in Figs. 5.5 and 5.8, where the free parameters are εin = 0.48 as mentioned
previously, a global phase, and the offset δ = 18◦.

5.6 Increasing measurement efficiency by squeezing

Comparing Γφ and Γm reveals that one can use input squeezing to trade off measurement
speed to increase the overall measurement efficiency η = Γm/2Γφ, which ranges from 0 to
1. From one perspective, this is a surprising result, as squeezed states are notoriously sus-
ceptible to losses, such that using squeezing to make a signal more robust to losses seems
counterintuitive. The result is made less surprising by noting that since the squeezed quadra-
ture is more sensitive to loss, the antisqueezed quadrature should correspondingly be less
sensitive to loss. Dividing Γm(Φ) (Fig. 5.5) by 2Γφ(Φ) (Fig. 5.8) produces η(Φ), shown in
Fig. 5.9. For a small amount of squeezing, a slight increase in η(Φ) is resolved above the
value without squeezing, εout. This increase occurs near Φ = (n + 1/2)π, corresponding to
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Figure 5.8: Measurement rate Γm as a function of input squeezing. This plot is the analog of
Fig. 5.5, but now the vertical axis is the measurement rate, related to the room-temperature
SNR, rather than the rate of on-chip backaction. The tan horizontal band indicates the
measurement rate with no injected squeezing, Γm,vac. For an optimal range of pump phases
near Φ = δ ≈ 0 (see text), applying squeezing increases Γm above Γm,vac. The increase in
Γm saturates at modest values of GSQZ, limited by the efficiencies εin and εout. Error bars,
including the width of the tan horizontal band, indicate statistical uncertainties in the values
of Γm determined by the linear fits of SNR(t). The dashed curves result from a joint fit of
these estimates of Γm(GSQZ,Φ) and those of Γφ(GSQZ,Φ) in Fig. 5.5 to Eqs. 5.3 and 5.2,
respectively. Figure adapted from [4].

injecting amplified fluctuations in the signal quadrature, slowing the measurement process,
indicating that η can be increased by sacrificing Γm. Likewise, using squeezing to increase Γm

tends to significantly decrease η. These trends can be understood by considering the effect of
loss on the signal and noise for unsqueezed, squeezed, and antisqueezed vacuum conditions.
In the unsqueezed case, when the field passes through an element with loss 1 − εout, the
signal power is reduced by a factor of 1− εout but the vacuum noise is unchanged before and
after the loss, reducing the SNR by the factor 1− εout. In the case of antisqueezing along the
signal quadrature, the signal is reduced as before, but the noise is also attenuated, reducing
the drop in SNR such that η > εout. In terms of squeezing parameters, and with εin = 1 for
simplicity,

η =
SNR′

SNR
=
((〈V ′g〉 − 〈V ′e 〉)2

(〈Vg〉 − 〈Ve〉)2

)(σ2
m

σ′2m

)
=
(εout

1

)( 1/2 +N ±M
1/2 + εout(N ±M)

)
, (5.4)
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where primed quantities are downstream of the loss, and ± indicates antisqueezing or squeez-
ing. In the limits of large antisqueezing (N + M → ∞) or squeezing (N −M → −1/2),
η → 1 or 0, respectively.

In essence, we have a glorified version of Friis’s formula for the noise factor of cascaded
amplifiers [109], here modified from the more standard microwave engineering expression
to account for how losses at cryogenic temperatures couple vacuum noise into the channel,
and allowing the first stage of noise amplification to occur upstream of the actual signal
source. These modifications do not change the main implication: by raising the noise floor
in a way that does not result in any lost information, here by injecting antisqueezed noise
into the signal channel such that backaction is reduced proportionally, we reduce the effect
of noise added downstream, increasing η. Similar effects have been realized previously,
such as using squeezing to increase robustness of itinerant cat states [110] or to tap off
power without degrading SNR [111, 112], though to our knowledge using input squeezing
to increase superconducting qubit measurement efficiency has not been explicitly considered
before. In the next chapter we revisit this idea but generate the antisqueezing inside the
readout cavity such that εin ≈ 1, producing a more dramatic enhancement of η above εout.
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Figure 5.9: Measurement efficiency η as a function of input squeezing. Figure adapted from
[4].

5.7 Conclusion and outlook

The results in this chapter demonstrate that squeezing can be used to improve the SNR of
a qubit measurement and to slow dephasing induced by an applied measurement. Given the
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challenges of working with squeezed fields and the corresponding scarcity of systems success-
fully measured with squeezing, plus the scientific importance of investigating the potential of
squeezing for developing superconducting quantum systems at scale, this work represents a
major accomplishment. However, significant improvements are needed before this approach
to squeezed readout can become competitive with standard dispersive techniques.

First, the measurement rates Γm demonstrated here (∼ 0.5 µs−1) are much slower than
those that have been achieved with dispersive readout (∼ 50 µs−1). This is not totally sur-
prising, as we designed the qubit-cavity system to study the effect of squeezing on dephasing
Γφ, only realizing in medias res that we might also be able to resolve an SNR improvement,
so the couplings χ and κ were not optimized for fast readout. Empirically, increasing the
stroboscopic drive strengths to try to increase Γm led to the appearance of population in
higher transmon energy levels, forfeiting the QND nature of the measurement. We suspect
this quantum demolition is driven by the parasitic terms of the measurement Hamiltonian
(Eq. 5.1), in which case the effect can be further suppressed by increasing ΩR, enabling
faster measurement. Using large ΩR may be facilitated by modern high-anharmonicity qubit
designs such as the C-shunt flux qubit [13]. However, greater ΩR implies greater sideband
detuning, such that the input sideband amplitudes must be increased to appreciably drive
the cavity mode, which may be limited by heating of the input microwave line. Additional
work is needed to investigate the viability of this approach.

Second, losses must be reduced such that squeezing can have a worthwhile effect on Γm.
Currently, much more squeezing can be produced [28] than can be transported between
components. Even assuming perfect (infinite) squeezing inside the readout cavity, the mul-
tiplicative increase in Γm is bounded by 1/(1 − εout), here equal to 1.6. Superconducting
on-chip circulators or amplifiers [113, 114, 115, 116, 117, 118] are promising technologies
for significantly increasing εin and εout. In the following chapter we present an implementa-
tion of one such amplifier, the Qubit Parametric Amplifier (QPA), and investigate the new
measurement physics that arises when the qubit lives inside the squeezer.



67

Chapter 6

High-Efficiency Measurement of a
Qubit Inside an Amplifier

6.1 Motivation

Recall that we can decompose the measurement process into two steps, the light-matter
interaction which encodes qubit state information in the field of a microwave readout res-
onator, and the amplification of that information above the noise floor of our room temper-
ature detector. In between these two steps, i.e. before the first stage of amplification, the
itinerant information is extremely delicate, such that any multiplicative power loss L of the
microwave field reduces the information content (SNR) by the same factor1. Modern efforts
to reduce this pre-amplification loss by eliminating intermediary passive components typi-
cally plateau near 1 − L ≈ 70%. Elimination of this information loss would increase qubit
measurement rates (Γm) by 30%, facilitate experiments based on continuous-measurement
dynamics including some quantum-feedback schemes, and improve the utility of measuring
with a squeezed input field. Much of the loss can be attributed to the need for a microwave
circulator, which is typically necessary between the qubit and the superconducting ampli-
fier to protect the qubit from the high powers present at the amplifier. Inconveniently, the
desired nonreciprocal behavior of a standard circulator derives from ferrite materials which
also produce significant insertion loss. Circulators further draw the ire of experimentalists by
taking up a lot of space, not only the size of the component but also a separation to prevent
magnetic interaction of the ferrite with any superconducting devices2. Significant progress
has been made recently in the development of lossless superconducting circulators and di-
rectional amplifiers [113, 114, 115, 116, 117, 118], though to our knowledge an improvement
to qubit measurement efficiency, or simply any qubit measurement using such a circulator,
is yet to be demonstrated. We also point out interesting work done recently investigating

1Or by more if measuring with a squeezed field.
2Magnetic interactions can be suppressed with proper shielding, though this too is often bulky, and also

slow to cool at low temperatures.
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possible operation without any circulators at all by briefly pulsing the cryogenic amplifier
[119], though that work does indicate significant dephasing of the qubit state beyond that
required by an ideal quantum measurement, and does not investigate measurement efficiency.

Here we develop a complementary technology, the integration of a standard JPA on-
chip with the qubit, in which we perform the first stage of amplification on-chip, which
eliminates virtually all pre-amplification loss. On-chip qubit-amplifier integration has been
realized previously using several schemes such as [120, 121], in one case even including
four multiplexed qubit-amplifier pairs on a single chip [122], yet to our knowledge none has
demonstrated the near quantum-limited backaction required for high ηm. Similar experiments
have characterized the backaction of a current-pumped amplifier on a qubit with no separate
readout tone applied [123] or otherwise integrated the qubit to act as a probe of amplifier
dynamics [124, 125]. JPAs have also been operated as magnetometers capable of providing
on-chip gain [72, 126]. In this chapter we investigate theoretically and experimentally the
measurement physics of a Qubit Parametric Amplifier (QPA), consisting of a JPA flux-
pumped for parametric gain capacitively coupled to a qubit, and observe efficiencies of up
to ηm = 0.80 with a clear direction for further improvement.

Due diligence: as of the time of writing, these results are somewhat recent and have yet
to undergo peer-review; if by the time of reading a journal publication with these results has
become available, it may provide a more complete or refined presentation.

6.2 QPA circuit overview

The QPA circuit is shown in Fig. 6.1, in which the photographs (b) have been false colored
to match the schematic (a). The qubit (red) is dispersively coupled to a JPA (green) which
acts as the readout cavity. A shorted section of coplanar waveguide (blue) is inductively
coupled to a series array of two SQUIDs, allow flux-pumping of the JPA similar to the JPAs
in previous chapters. With no pump applied, the system behaves identically to a standard
cQED dispersive setup provided the intra-JPA field remains within the JPA harmonic region
(Fig. 3.6). Flux-pumping amplifies the intra-cavity3 field in a phase-sensitive manner.

The theory of QPA operation is the subject of Ben Levitan’s masters thesis, [116], which is
an excellent, very readable reference covering the subject in much greater detail than we can
hope to in this chapter. A central result is that the total intra-cavity measurement process is
the sum of two simultaneous processes, which we refer to as the beneficial measurement pro-
cess and the parasitic measurement process. The beneficial process encodes σ̂z information in
the mean value of the cavity field via the usual dispersive interaction, modified somewhat by
the phase-sensitive amplification. The parasitic process, on the other hand, encodes σ̂z infor-
mation in statistical properties of the output field noise fluctuations, primarily the orientation
of the squeezing ellipse of the output field as determined by the covariance of the cavity-field
quadratures. This process is parasitic as the information encoded in these noise fluctuations

3Here the generic term “cavity” is occasionally used in place of “QPA.” In this context the two words
are referring to the same resonator.
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Figure 6.1: QPA circuit schematic and false-color photograph. The transmon qubit (red)
is dispersively coupled to a differential JPA (green) connected to a transmission line via an
off-chip 180◦ hybrid (gray in (a), not shown in (b)). With no pump applied, the JPA behaves
like a linear readout resonator, permitting dispersive measurements using a readout pulse
near the resonator frequency as in standard cQED. Applying a flux-pump via the coplanar
waveguide (blue) at twice the readout frequency produces phase-sensitive amplification of
the readout field. The circuit layout is designed to minimize direct crosstalk between the
flux pump and qubit. A floating ground plane (gray in (b)) reduces dipole radiation of the
qubit into uncontrolled environmental modes (T1 increased from ∼ 1 to ∼ 4− 5 µs).

is not readily detected by our measurement setup downstream, and thus increases qubit de-
phasing without contributing to the final SNR. Thus, for high ηm, defined as in the previous
chapter in terms of SNR (∝ Γm) divided by backaction (∝ Γφ), the parasitic backaction
must be small compared to the total backaction, Γφ,parasitic � Γφ = Γφ,beneficial + Γφ,parasitic.
In the next two sections we will consider first the parasitic, then the beneficial measurement
processes both theoretically and experimentally.

We characterize the QPA using the cryogenic setup shown schematically in Fig. 6.2.
One port on the QPA connects the flux pump, while the other port allows for application of
pulses for manipulating and measuring the qubit, respectively at ωq and ωQPA. Measurement
pulses reflect from the QPA and are amplified by the three amplifiers shown at right: a JPA
in phase-sensitive mode, then a JTWPA, followed by a HEMT amplifier and additional
amplification at room-temperature. As in the setup of the previous chapter, each amplifier
ideally provides enough gain such that the noise added by the subsequent amplifier can be
neglected. Though various operating conditions were explored, in a typical measurement the
QPA is pumped for GQPA ∼ 3 dB gain to mitigate the effect of losses before the JPA; the JPA
is pumped for GJPA ∼ 6–10 dB to overcome the half-photon of noise added by the phase-
preserving JTWPA plus noise from additional inefficiency of the JTWPA; and the JTWPA
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Figure 6.2: Simplified Qubit Parametric Amplifier (QPA) measurement setup. For most
measurements involving on-chip gain, the QPA flux pump (left) is switched on several mi-
croseconds in advance, producing a squeezed field inside the QPA. Pulses for qubit control
and readout are injected via the port indicated on the left circulator. The readout field
reflects off the QPA, acquiring qubit state information while simultaneously undergoing
phase-sensitive amplification. The QPA output field is further amplified by an off-chip JPA
followed by a JTWPA and HEMT amplifier. Several passive components are omitted for
simplicity; a more complete diagram appears in Appendix A.

was pumped for GJTWPA ∼ 15 dB such that in total its output is above the noise-floor of the
HEMT amplifier. Note that we follow the convention of previous chapters such that Gamplifier

represents the phase-preserving gain as measured with a detuned vector network analyzer
(VNA), so the actual signal-quadrature power gain of the JPA was closer to 10–16 dB. We
found that about this much total gain was necessary to achieve high efficiency. This is
roughly consistent with the results in [18], which included discussion that gains significantly
greater than the 20 dB value commonly quoted in the cQED community were needed to
make the noise added downstream truly negligible. A future setup would benefit from a
higher dynamic range off-chip JPA, and probably one which is sideband current-pumped
instead of flux-pumped to facilitate tunability, as these performance constraints indirectly
ended up limiting the maximum efficiency achieved, as discussed further below.

6.3 Squeezing-induced dephasing

We first investigated the parasitic dephasing rate, Γφ,parasitic, as a function of on-chip gain.
An effective heuristic model of the physics is that the phase-sensitive amplification produces
squeezed vacuum inside the QPA at the readout frequency ωQPA, and the interaction with
the qubit rotates this squeezing in phase space depending on σ̂z per the standard disper-
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sive interaction. This is an oversimplification, as in reality the amplification and rotation
processes occur not in series but simultaneously, but it is a good working visualization for
making qualitative predictions. The resulting rotation of the output squeezing ellipse carries
qubit-state information away from the cavity, producing dephasing but not increasing the
final SNR—hence the label parasitic.

A rigorous calculation shows the steady-state parasitic dephasing rate is

Γφ,parasitic =
1

2
Re
(√

D(−λ) +
√
D(λ)

)
− κ

2
+ 1/T ∗2 , (6.1)

where D(λ) = ((κ/2 +λ)2−χ2) + iχκ, and where λ is the squeezing rate discussed following
Eq. 3.5, related to the on-chip gain by Eq. 3.17, repeated here:

λ =
κ

2

√√
GQPA − 1√
GQPA + 1

. (6.2)

Here T ∗2 is an empirical parameter describing the dephasing of the qubit due to other envi-
ronmental channels with neither pump nor measurement tones applied. The right-hand side
of Eq. 6.1 goes to 1/T ∗2 when λ = 0, and increases monotonically with λ.

The derivation of Eq. 6.1 is too involved to include here, but briefly it proceeds as
follows. Starting from the Linblad master equation for the qubit-cavity system, including an
applied coherent readout drive, one traces over the cavity to obtain the off-diagonal element
representing the qubit coherence, calculates the time-derivative of that matrix element, then
maps that differential equation onto phase-space (Wigner representation). The solution of
this differential equation after this mapping is a Gaussian in phase-space, related to the
overlap of the two possible output fields, which roughly represents the uncertainty of the
total qubit state information that has left the cavity via the output field. Over time more
information leaves via the output field and this uncertainty decreases; in the long-time limit4,
the exponential decay rate of this Gaussian (to conventional factors of 2) is given by Eq.
6.1, plus the effect of the applied readout drive (Γφ,beneficial) discussed further below.

Significantly, Eq. 6.1 indicates that the parasitic dephasing is independent of the mean
value of the cavity field; that is, Γφ,parasitic is the same whether or not the intra-cavity
squeezed state is displaced. Thus we can determine Γφ,parasitic as a function of on-chip gain
with no measurement tone applied, and expect it to be approximately unchanged when the
measurement is turned on. We do this by observing Ramsey oscillations with the QPA
pump on during the Ramsey evolution time5. Fig. 6.3(a-c) shows several example Ramsey
traces for three values of GQPA. The decay rate of one of these traces is Γφ,parasitic for that
gain. Repeating this procedure for a range of gain values between 0 and 6 dB produces the
dephasing rates shown in Fig. 6.3(d). The dashed curve is a plot of Eq. 6.1, to which we add

4The relevant timescale is 1/(κ − 2
√
λ2 − χ2); note this implies that transient ring-up effects can take

longer to stabilize with on-chip gain.
5To allow the system to stabilize, we turn on the pump ∼ 1 µs in advance of the Ramsey sequence
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Figure 6.3: Qubit dephasing induced by locally-generated squeezed microwave vacuum.
Ramsey decay traces are shown in (a-c) for varying amounts of on-chip gain, GQPA. The QPA
pump is turned on in advance such that on-chip gain occurs during the Ramsey evolution,
though no coherent measurement drive is applied during that time. (a) With no on-chip
gain, the output field is approximately independent of the state of the qubit (inset), and
the qubit coherence decays at a rate 1/T ∗2 = 0.23(7) µs−1. (b) Increasing the on-chip gain
to GQPA = 3.2 dB produces a squeezed output field where the squeezing phase dependent
on the qubit state (inset), and this parasitic measurement of the qubit causes faster de-
phasing. (c) Increasing the gain further reduces the overlap of the two possible output field
ellipses (inset), corresponding to a stronger parasitic measurement and faster dephasing. (d)
Repeated measurements exhibit good agreement with a zero free-parameter theory fit. All
inset output fields are calculated from experimental parameters, though statistical moments
beyond second order are not represented.

a small offset term capturing the dephasing rate of the qubit absent any applied squeezing,
1/T ∗2 . As χ, κ, GQPA, and T ∗2 are all readily determined using standard techniques, this curve
includes no free parameters, yet still predicts the Γφ,parasitic values reasonably well, verifying
the theoretical model for the device in this regime.

Moving back to the heuristic picture, we approximate the output field states conditioned
on the ground or excited states of the qubit as two ellipses6 that are both centered at the

6For convenience I will continue referencing and drawing ellipses, though the output field is actually not
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origin but with different squeezing axes separated by an angle set by the standard dispersive
rotation χ/κ. We analytically calculate the output field variances and covariance and use
these to plot the squeezing-ellipses shown as insets to Fig. 6.3. Increasing λ stretches the
Wigner functions away from the origin in different directions, reducing the area of overlap
and thus increasing the dephasing.

Importantly, the values of Γφ,parasitic bound how quickly the coherent readout tone must
measure the qubit in order to achieve high efficiency. For example, if Γφ,parasitic = 1 µs−1

at GQPA ≈ 2 dB, then if we apply a readout tone at this gain setting and observe a total
dephasing rate Γφ = 10 µs−1, the efficiency will be limited at 90% even with zero noise added
downstream of the QPA.

6.4 Measurement dephasing with on-chip gain

To verify the theory predictions for Γφ,beneficial, described below, we next investigated the
total backaction on the qubit produced by applying a readout tone simultaneous with on-
chip gain. Because the readout tone is sourced by the same generator used to produce the
QPA flux pump, the readout and pump are well phase-locked, and one can study how the
measurement process depends on this relative phase. Mapping out this dependence of the
measurement backaction on the pump-readout phase also provides a good means of aligning
the on-chip amplification phase with the signal quadrature.

Three possible pumping conditions are shown in the three columns of Fig. 6.4. The
applied readout power is kept constant across the three cases. The upper row depicts the
approximate QPA output field calculated from equations in [116] using empirically deter-
mined parameters (non-Gaussian moments are not represented). In the first column, the
QPA pump is left off (GQPA = 0 dB), and the QPA behaves like a linear readout resonator in
a standard cQED setup. The second column depicts “amplifier mode,” in which the pump
is turned on and the relative phase Φ chosen such that the signal quadrature Q is amplified
while the I quadrature is deamplified. The third column depicts “squeezer mode,” in which
the orthogonal phase is chosen such that Q is deamplified and I amplified. In later sections
we will focus on amplifier mode only, though it is informative and a useful diagnostic to
probe the measurement backaction for both modes.

Below the output field cartoons are the corresponding Ramsey decays observed at these
experimental conditions. Comparing amplifier and squeezer modes, we see that squeezer
mode dephases the qubit faster. Since Γφ,parasitic does not depend on the relative pump-
readout phase (Eq. 6.1), we conclude that Γφ,beneficial is greater in squeezer mode than in
amplifier mode. This is consistent with the output field pictures: the red and blue pointer
states are clearly better separated in squeezer mode, indicating a greater SNR at the output
of the QPA and thus a faster dephasing of the qubit. In contrast, amplifier mode reduces
the output-field SNR, resulting in slower dephasing than squeezer mode. For a sufficiently

quite Gaussian in this case, possessing non-zero kurtosis produced by the simultaneity of the amplification
and rotation processes.
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Figure 6.4: Qubit dephasing induced by an applied measurement tone concurrent with on-
chip gain. The three columns represent operation with no pump applied (linear), a pump
applied with the phase chosen such that the signal quadrature Q is amplified (amplifier
mode), or a pump applied with the phase chosen such that Q is deamplified (squeezer
mode). The power of the applied measurement tone Pin is fixed across the three columns
(note this implies n̄ is not fixed). The upper row indicates the analytically calculated output
fields neglecting non-Gaussian features. The lower row displays Ramsey traces indicating
dephasing rates for these approximate operating conditions.

strong measurement tone, such that Γφ,parasitic is relatively small, the dephasing in amplifier
mode can also be slower than the dephasing with no pump applied.

There are at least two puzzling questions raised by Fig. 6.4 and the associated discussion:
(1) Why is the output signal size the same in either squeezer mode or amplifier mode?, and
(2) How can amplifier mode improve the overall efficiency if it decreases the output-field
SNR?

Question (1) can be understood via the toy model presented in Fig. 6.5. In this simplified
model we discretize the time dynamics into three steps: an amplification step, a qubit-
measurement step, and another amplification step. Like the complete model, this toy model
produces the same final signal size regardless of whether I or Q is the amplified quadrature.
The takeaway is that in squeezer mode, the applied field drives the amplified quadrature,
producing a very large displacement along I. Having this longer lever-arm cancels out
the effect of deamplification along the signal quadrature Q. The reverse process happens
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Figure 6.5: Toy model illustrating how the QPA signal gain can be the same in both amplifier
and squeezer modes supposing a fixed input readout power. We artificially discretize the time
dynamics into three steps: phase-sensitive amplification of the readout field that enters the
QPA, rotation of this field per the dispersive qubit interaction, and then phase-sensitive
amplification once more. This time discretization is artificial, since in the actual device the
dispersive interaction and amplification processes occur simultaneously, but the complete
theory still predicts equal signal gains for both squeezer and amplifier modes.
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in amplifier mode, such that the net result is approximately unity7 signal gain in both
amplifier and squeezer modes. Bear in mind that, assuming no loss occurs in the QPA, the
total efficiency of the measurement is independent of the signal size, depending only on the
change in SNR between the QPA output and room temperature.

To answer question (2), we recall from the previous chapter that when we amplify the
noise in the signal quadrature, we also squeeze the noise in the backaction quadrature, i.e.
the amplitude fluctuations that produce dephasing via the Stark shift. Since ηm = Γm/2Γφ,
high ηm remains possible given a decreased output-field SNR provided the backaction on the
qubit is decreased by the same factor. A central benefit of amplifier mode is that it increases
the noise floor of the output signal quadrature; similar to the effect seen in Fig. 5.9, this
makes the SNR insensitive to noise added downstream, increasing the overall efficiency. In
contrast, squeezer mode lowers the noise floor of the QPA output signal quadrature, such
that a larger fraction of the information content is lost due to the added noise, resulting in
a lower efficiency.

Calculating the full measurement-induced dephasing rate for arbitrary pump-readout
phase Φ gives [116]

Γφ =
2χ2κ2Pin

~ωQPA

(
cos2 Φ

|D(−λ)|2
+

sin2 Φ

|D(λ)|2

)
+ Γφ,parasitic, (6.3)

where Pin is the power of the measurement tone incident to the QPA. The two Φ dependent
terms are associated with σ̂z information being encoded in the amplified or deamplified field
quadratures, respectively. Using a programmatic digital phase shifter (in combination with
a spectrum analyzer to keep the power level), we record Ramsey decays for the full range of
Φ values and for several values of on-chip gain, all at a fixed readout power Pin. The results
are displayed in Fig. 6.6; this dataset includes the three Ramsey traces in 6.4. In order
to compare these data to the predictions of Eq. 6.3, several additional measurements are
performed to pin down parameters. Ramsey data taken with the QPA pump on but no ap-
plied readout tone determines Γφ,parasitic for each gain used (colored horizontal dashed lines);
Ramsey with the readout tone applied without any on-chip gain determines the incident
readout power Pin = −141 dBm; and Ramsey with no tones applied during the Ramsey evo-
lution time determines T ∗2 (black dashed line). Plotting Eq. 6.3 using these values produces
the solid curves in the figure, exhibiting good agreement for most operating conditions. At
larger GQPA, modest disagreement is observed near Φ = ±π/2 corresponding to squeezer-
mode; this is not terribly surprising, as the output-field depicted in Fig. 6.4 indicates that in
squeezer mode the QPA field can become very large, and will eventually exceed the harmonic
regime of the QPA (Fig. 3.6) and thus violate an assumption of the theoretical model. All
subsequent measurements below are taken in amplifier mode (Φ = 0), which permits the

7The prediction of unity signal gain is a slight inaccuracy of the toy model. In reality the amplification
process is ongoing during the dispersive rotation, causing the signal size to be very slightly increased (essen-
tially producing a small amount of phase preserving gain). This is visible if you closely study Fig. 6.4. This
detail does not materially affect the discussions in this chapter.
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use of much larger measurement powers Pin without violating this assumption of a harmonic
potential8.
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Figure 6.6: Measurement-induced dephasing of a qubit superposition inferred from Ramsey
decay rates. The black horizontal dashed line indicates Γφ = 1/T ∗2 with no measurement
applied, while the color-coded dashed lines indicate Γφ,parasitic for the four GQPA values. The
data points indicate Γφ with a readout tone applied simultaneous with the on-chip gain. The
two points marked with yellow stars correspond to the example Ramsey traces shown in Fig.
6.4, with amplifier mode occurring near Φ = 0 and squeezer mode near Φ = π/2. The data
exhibit the expected π-periodicity, and agree well with the predictions of Eq. 6.3 for a range
of operating conditions.

6.5 Measurement efficiency

Recall that, in the context of experiments utilizing continuous measurements (and given
our chosen factor-of-two convention), a reasonable definition of the efficiency of a single-
quadrature measurement is ηm = Γm/2Γφ, with Γm = 1

4
d(SNR)/dt and SNR = (2(V̄e −

V̄g)/(σe + σg))
2 as introduced in the previous chapter. To determine ηm, we would like to

determine Γm and Γφ for the same measurement process. To do this, we execute the pulse
sequence represented in Fig. 6.7. As in the previous sections, we determine Γφ by varying
the Ramsey evolution time and performing a projective readout after the second π/2 pulse,
producing a Ramsey trace that can be fit to determine Γφ (right inset of figure). To determine

8This may equivalently be described as not exciting the self-Kerr nonlinearity of the cavity, or as keeping
the current inside the QPA � Icrit such that the nonlinear terms in the Josephson inductance remain
negligible.
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Γm, we additionally record the homodyne detection voltage between the two π/2 pulses; for
convenience we saved only the voltage record acquired during each execution of the sequence
with maximal time separation of the Ramsey pulses (here 500 ns). The time integrals of
these voltage records can be combined to produce histograms (left inset of figure) which can
be fit to calculate the final SNR. We are free to vary the limits on the time integrals in our
analysis code; varying the total integration time produces a series of histograms which we
fit to determine SNR as a function of integration time. Fitting a line determines the slope
of SNR(t), and thus also Γm.
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Figure 6.7: Ramsey pulse sequence for efficiency measurements. The QPA flux-pump and
the continuous measurement tone are turned on well in advance of the first π/2 pulse, and
left on until after the second π/2 pulse. The homodyne voltages produced by integrating
between the two π/2 pulses in the ensemble of measurements performed are used to generate
histograms from which we infer Γm. An additional readout pulse performed after the second
π/2 pulse provides information on the dephasing rate Γφ during the measurement. The
measurement efficiency is determined by comparing these two rates.

This general procedure is rather standard, e.g. a similar procedure was used to generate
Fig. 5.8, though this project required additional care in a few aspects of the analysis.
First, as we restricted the scope of the project to studying efficiency in steady-state only,
i.e. after the applied measurement has finished “ringing-up” the QPA field, we followed the
usual practice of choosing the start-time of the time-integration to be after the ensemble-
mean instantaneous signal size 〈Vg − Ve〉 had stabilized; however, as this timescale depends
not only on κ but also on λ, care had to be taken to ensure this steady-state condition
was obtained even at the highest gain used. Second, we had to take care not to saturate
the dynamic range of any amplifiers in our measurement chain. We expect saturation to
compress larger amplitude fields, which we feared could skew the resulting histograms by
pulling one or both of the outside tails of the Gaussian distributions9 towards the center,

9Theoretically the QPA output field does contain non-Gaussian features, though evidently the room-
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leading Gaussian fits to produce an underestimate of the variances and thus an overestimate
of ηm. This limited the readout power and amplifier gains that could be used. Third,
although our qubit T1 was about 9 times our voltage integration time, some T1 decay events
did occur during the integration, producing features that became increasingly apparent as
the ground- and excited-state distributions became increasingly well separated. We consider
these relaxation events to be dynamics of the system being measured and thus independent of
the measurement operation such that they do not count against the measurement efficiency
(the finite T1 makes only a small contribution to Γφ during the measurement anyway), though
a longer lived qubit would indeed improve measurement fidelity. However, the non-Gaussian
features produced by these decays make it more difficult to detect amplifier compression.
Thus we include the effect of these decays in our expression used to fit the histograms,
using a slight generalization of the argument and expression given in Section III-A of [127].
Initially we allowed T1 to be a free-parameter in these histogram fits, and saw the fit routine
converge to the same T1 value reported above that we had inferred from measuring the qubit
population decay directly, leading us to fix T1 in the histogram fit model for the efficiency
measurements.

Our experimental procedure hit a snag in that the QPA and off-chip JPA behaved opti-
mally at slightly different frequencies, yet needed to be operated at the same frequency for
phase-sensitive amplification. Chronologically, we first noticed that by lowering our operat-
ing frequency from ωQPA = 6.74 GHz to ωQPA = 6.7 GHz, we could achieve greater off-chip
gain GQPA which produced a greater baseline efficiency ηm ≈ 0.55 before pumping the QPA
for any on-chip gain. We took an efficiency dataset at this frequency for a range of mea-
surement strengths and on-chip gain values. We observed that, while some regions of this
parameter space exhibited histograms featuring a spurious third peak that we attributed to
population being produced in the third transmon level (f -state), there was a well-behaved
region in which high ηm was realized, presumably corresponding to drive conditions produc-
ing a lower mean photon number in the QPA field. (The photon number is monotonic in
Pin but not in GQPA). The inferred efficiency values are shown in Fig. 6.8. White asterisks
indicate operating conditions at which f -state populations greater than 1% were observed.
Despite this nonideal behavior, fitting the g and e peaks with our fit model still allowed us to
infer nominal efficiency values for these conditions. The dashed yellow box indicates a region
in which high efficiency simultaneous with low f state population were observed (see e.g.
the histograms in Fig. 6.7, taken at GQPA = 3 dB and |αin| = 0.9 (a.u.)); averaging results
from this region to reduce random scatter leads us to report a final efficiency of η = 80%.

After acquiring these data, we discovered that the parasitic dephasing rates Γφ,parasitic(λ)
at this operating frequency (ωQPA = 6.7 GHz) observed with on-chip gain but no mea-
surement tone applied are significantly greater than those observed at the original, higher
operating frequency (ωQPA = 6.74 GHz) shown in Fig. 6.3. We suspect that tuning the
QPA down in frequency (to achieve optimal performance of the off-chip JPA) reduced the

temperature noise distributions were well-described by Gaussians for the operating regime of interest. At
this time we have not analyzed this quantitatively.
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Figure 6.8: Measurement efficiency for varying amounts of on-chip gain (horizontal index)
and applied measurement amplitude (vertical index). The vertical index is not calibrated
to a power level at the device, and thus is indicated in arbitrary units. Asterisks indicate
operating settings at which appreciable (> 1%) population outside of the expected g and e
histogram peaks were observed, which we attribute to f -state population produced by having
a large intra-QPA photon number. The results corresponding to GQPA = 3 dB, |αin| = 0.9
a.u. are displayed in the inset of Fig. 6.7. The system is fairly well behaved near this
operating point; averaging the results in the indicated 3x3 square (yellow, dashed) to reduce
random scatter gives η = 80%. The three blank squares in the upper left indicate operating
conditions at which the QPA was poorly behaved; this is not surprising, as the condition
GQPA = 0 results in the largest intra-QPA field amplitudes.

QPA SQUID critical currents sufficiently to cause deviations from the theoretically predicted
measurement interaction, moving away from the condition Γφ,parasitic � Γφ,beneficial required
for maximum efficiency, though we do not fully understand the behavior. Thus we expect
with a different off-chip JPA, optimized for performance at the higher frequency 6.74 GHz
to match the optimal QPA frequency, the total efficiency could be increased to 90% or more,
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as supported by the plots in the next section.

6.6 On-chip and off-chip efficiencies

The overall measurement efficiency can be expressed as the product of the efficiency of
the measurement process occurring on the chip, and the efficiency of the transfer of that
information from the chip to room temperature; that is, ηm = ηon-chipηoff-chip. Conveniently,
ηon-chip can be estimated by looking only at Ramsey decay rates via the relation

ηon-chip =
Γφ,beneficial

Γφ
= 1− Γφ,parasitic

Γφ
. (6.4)

Experimentally, Γφ is the dephasing rate observed with both on-chip gain and an applied
readout tone, while Γφ,parasitic is the dephasing rate with only on-chip gain. This assumes
again that Γφ,parasitic is independent of the applied measurement tone, as predicted by the
theory model. Given that Γφ,parasitic is larger than predicted at this lower QPA operating
frequency, it is not obvious a priori this is a safe assumption. Further, after calculating
ηon-chip, we can use the ηm values from the previous section to determine the effect of on-chip
gain on ηoff-chip = ηm/ηon-chip. The inferred values of ηon-chip and ηoff-chip are displayed in Fig.
6.9. When GQPA = 0 dB, we calculate that ηon-chip ≈ 1 since Γφ,parasitic = 1/T ∗2 is much
smaller than Γφ. Qualitatively, we see that increasing the on-chip gain (vertical axes) causes
additional parasitic dephasing resulting in lower ηon-chip for fixed readout power (horizontal
axes, where |αin| ∝

√
Pin). Increasing the readout strength causes the inferred values of

ηon-chip to increase as expected, since (we assume) Γφ,beneficial becomes larger compared to the
parasitic squeezing-induced dephasing. Division of η (Fig. 6.8) by ηon-chip (Fig. 6.9, left)
provides an estimate of ηoff-chip, plotted in the right panel of Fig. 6.9. These values represent
information loss downstream of the QPA and ideally should be independent of the measure-
ment power used (horizontal axis), and indeed the values shown in the figure do not exhibit
a clear dependence on |αin|, at least within the random scatter of the results. Additional
results were calculated for larger measurement strengths (|αin| = 1.1 (a.u.), GJPA = 6 dB,
and high-power measurements at GJPA = 0 dB), which did exhibit significant dependence
on |αin|. We attribute this to operating conditions driving large oscillations outside the har-
monic regime of the QPA, such that by omitting these points we better restrict ourselves to
the harmonic regime assumed by theory. The colored horizontal lines are simply the means
of the values at each gain setting. This apparent flatness of the inferred values supports
our assumption that Γφ,parasitic is also independent of |αin|. As expected, ηoff-chip increases
monotonically with GQPA, coming very close to unity for 4 dB of on-chip gain. While the
lower-than-theoretically-predicted values of ηon-chip are somewhat disappointing, they also
suggest that simply swapping out the off-chip JPA for a JPA optimized for a slightly higher
frequency10 is likely sufficient to achieve ηm ≈ 90% or more.

10It may even be sufficient to keep the same off-chip JPA, but sideband current-pump it, which provides
greater tunability–though also introduces new potential for undesired device-device interactions.
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Figure 6.9: On-chip (left) and off-chip (right) efficiencies with on-chip gain.

6.7 Conclusion and outlook

In this chapter, we have presented what we believe is the first demonstration of SNR
and backaction approaching the quantum limit in measurement of a superconducting qubit
using an on-chip amplifier. Here we focused on using off-chip phase-sensitive amplification to
maximize the possible total measurement efficiency, demonstrating the value of the QPA for
continuous-measurement experiments, in which it is typically necessary to accurately track
the evolution of the qubit state during the measurement. The limited scope of this work
suggests a number of natural follow-up QPA experiments.

Although the on-chip gain does not significantly increase the output signal size for fixed
Pin (Fig. 6.4 and 6.5), it does increase the signal size for fixed intra-QPA photon number
n̄, effectively increasing the maximum Pin that can be applied. A future investigation may
determine whether this effect permits faster, or higher-fidelity, projective readout with the
QPA than can be achieved with a passive readout resonator vis-a-vis limitations on photon
number imposed by the dispersive interaction.

A second experiment—surely a challenging one—would be to perform stroboscopic read-
out in the QPA, or to realize a longitudinal qubit-resonator interaction via some other means.
In Chapter 5, stroboscopic readout was used to eliminate rotation of squeezing ellipses that
reduced the achievable SNR. In the current chapter, rotation of squeezing ellipses produced
the parasitic dephasing Γφ,parasitic, making high ηm difficult to achieve. Beyond the known
limitations of stroboscopic readout as it exists now—stroboscopic readout is relatively slow,
and difficult to stabilize—it may be especially difficult to perform stroboscopic readout in
a QPA: first, if the stroboscopic probe tones are large enough, they may act to sideband
current-pump the QPA, producing undesired nonlinear dynamics (though in principle this
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may be addressed by boosting the QPA dynamic range with more SQUIDs); second, we have
not analyzed how the stroboscopic light-matter dynamics are modified by on-chip phase-
sensitive gain. If it can be done, however, the rotation of the squeezed output field and the
associated Γφ,parasitic can be made very small, enabling greater ηm. Alternatively, performing
this experiment with the QPA operated in squeezer mode may allow effectively for a repeat
of the experiment in Chapter 5 but with the advantage that εin ≈ 1 since the squeezing is
generated locally in the readout resonator.

As the QPA adds only modest additional superconducting circuitry compared to a passive
readout resonator, it should also be possible to integrate the QPA into modern multi-qubit
architectures, with many QPAs coupled to a common readout bus leading to frequency-
multiplexed amplification in a JTWPA. Though routing the flux-pump power appropriately
to all the QPAs presents an engineering challenge, such a system would allow efficient readout
of multiple qubits on the same chip.

Bigger-picture, forecasting the ultimate utility of the measurement techniques demon-
strated in this thesis is difficult. My personal guess is that, given the substantial improve-
ments in measurement capability provided by the recent development of the JTWPA and of
very high-performance JPAs, for many applications and target milestones in the immediate
future measurement will not be the limiting process, and other aspects of quantum processors
will have to improve significantly before advanced techniques such as readout using squeezed
microwaves become worth the added technical complexity. However, it does seem very plau-
sible that such a time will eventually arrive assuming efforts towards quantum computing
continue to make progress, so it is important to explore the potential of these techniques in
advance. Moreover, with on-chip integration of superconducting circulators poised to dra-
matically reduce transmission losses and thus dramatically increase the benefits of applied
squeezing, the calculus may change such that applications of microwave squeezing become
valuable for quantum information processing at-scale in the near future.
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Appendix A

Wiring diagrams

The following pages contain detailed wiring diagrams and technical commentary thereof
for several experimental setups utilized for this thesis. It should be noted that these diagrams
provide only upper-bounds on hardware requirements; it is likely that some number of pre-
cautionary room-temperature components—namely filters and isolators—may be removed
without appreciable performance degradation.

A.1 Resonance fluorescence in squeezed vacuum

Flux pump – To ensure phase coherence of the Rabi drive and the microwave squeezing,
the flux-pump and Rabi drive are sourced by the same microwave generator. A Marki
amplifying-doubler is used to upconvert the flux-pump from 7.3 GHz to 14.6 GHz. A Hittite
switch and Hittite voltage-variable attenuator are used to programmatically control the JPA
pump power and thus the JPA gain. Flux-pumping often requires a lot of power relative
to other cryogenic drives, so an additional amplifier (Minicircuits ZVA-183-S+) at room
temperature further boosts the pump after frequency-doubling, and the cryogenic line is
only lightly attenuated. Leakage of the fundamental tone through the doubler is blocked by
bandpass filters (Marki 1450) at room temperature and at the lowest temperature stage; in
retrospect this may be excessive as these filters are both pricey and very effective but having
at least one (preferably at cryo to block thermal noise at the near ωc) is essential to avoid
inadvertently driving the qubit-cavity resonance. Likewise, a low-pass filter (K&L 10 GHz
cleanup filter 6L250-00088; for this filter series make sure the cutoff is > 2 GHz below the
pump) is needed to prevent any flux-pump power from reaching the JTWPA; without this
filter the JTWPA gain was observed to change significantly as the JPA pump was modified.
Our qubit-cavity fortunately did not respond to this flux-pump leakage; if it had, it would
have been necessary to move the low-pass filter between the JPA and circulator, which would
have reduced the transfer efficiency η. Finally, in more recent setups we have observed some
instability of JPA bias frequencies, which was resolved by putting an inner-outer dc block
on the flux-pump line as close as possible to the JPA (note that these tend to thermally
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Figure A.1: Detailed setup for measuring resonance fluorescence in squeezed vacuum. There
are four microwave inputs to the refrigerator: one for flux-pumping the JPA to generate
squeezing (1), one for probing the JPA gain using a vector network analyzer (2), one for
driving the weakly-coupled cavity port (3), and one for pumping the JTWPA.

isolate as well). The motivating hypothesis, found to be consistent with observation, was
that connecting separate lines to both ends of the device created a large, destabilizing ground
loop.

Rabi drive – To ensure phase-coherence with the flux-pump, the Rabi drive is produced
by the same generator (Agilent PSG series). We step dc offsets applied to the IF ports of a
Marki IQ mixer to programmatically control the phase and amplitude of the Rabi drive. We
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first find the dc levels which minimize (null) the power out of the mixer, then rotate about
that point in 2d voltage-space. To better ensure power-flatness as the phase is rotated, we
use a series of switches to measure the Rabi drive power each time the phase is stepped. In
principle the relative phase could also be adjusted by changing the phase of the flux-pump,
and indeed we have done this for other projects when necessary, but this has the negative
side effect of increased sensitivity to small variations in power as the phase is rotated due to
the JPA necessarily operating near a critical point.

Qubit-cavity implementation – The qubit was a conventional aluminum single-junction
3D-transmon deposited via electron-beam evaporation on double-side polished silicon. The
characteristic energies of the device were inferred to be Ec/h = 200 MHz and EJ/h = 33.1
GHz, corresponding to a fundamental frequency ωq = 7.091 GHz. To bring the qubit and cav-
ity near resonance, the frequency of the aluminum cavity was adjusted downwards to 7.1051
GHz by introducing additional silicon chips as a dielectric (simulated in Microwave Office,
though frankly empirical trial-and-error is a practical alternative); the 14 MHz residual de-
tuning was primarily due to aging of the qubit between experimental cycles. We performed
two-tone spectroscopy to determine the |0〉 → |1,+〉 transition frequency of 7.3003 GHz, the
qubit-cavity coupling g/2π = 202 MHz, and the nearest neighboring transition frequency
|1,+〉 → |2,+〉 at 7.262 GHz. To avoid driving this neighboring transition, the JPA was de-
signed to have a single-side bandwidth smaller than this 38 MHz detuning. The qubit-cavity
system was mounted on a cold-finger inside a light-tight gold-plated OFHC copper can (see
[3] for an image of the can).

A.2 Stroboscopic qubit measurement with squeezed

illumination

Getting this setup to behave was one of the hard parts of the Ph.D., despite the setup
being a near replica of that developed in our lab for [102]. That statement merits some con-
templation when considering a follow-up experiment, and in my opinion strongly motivates
the development of qubit/cavity designs with hardwired longitudinal coupling if possible.
Here most of the complexity is associated with generating the stroboscopic measurement;
applying the squeezing is, by comparison, straightforward.

Flux pumps – In the resonance fluorescence setup (Fig. A.1), we kept the phase of
the squeezer flux-pump fixed while varying the phase of the Rabi drive using an IQ mixer.
Here we instead phase shift the squeezer flux-pump directly rather to minimize complexity
of the already complex measurement line (the phase shifter would have to go just before
the four-way splitter). We achieve this programmatically using a Vaunix 802 digital phase
shifter which has a nominal 1 degree resolution. As the insertion loss of the phase shifter
is not perfectly flat vs phase, we sample the pump power using a spectrum analyzer each
time we change the phase, and feed back on these measurements using the voltage-variable
attenuator. The flux pump for the second JPA, which acts as the phase-sensitive preamplifier,
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does not require frequent phase adjustments so a manual phase-shifter and manual variable
attenuator are used on that line. Leakage of flux-pump power out the signal port of either
JPA is significant, and must either be filtered or cancelled. Filters (K&L 10 GHz “cleanup”
low pass filter) are convenient but add insertion loss which reduces efficiency. We used a filter
to block all leakage from the squeezer pump, used a phase-locked cancellation tone to cancel
leakage from the preamplifier at the qubit, and used another filter to prevent preamplifier
pump leakage from reaching the JTWPA. The amplitude and phase of the cancellation tone
can be deterministically calibrated as follows. First, pump the JPA with the cancellation
line disconnected and perform a Ramsey measurement to determine the Stark shift on the
qubit. Next, disconnect the JPA pump line, connect the cancellation line, and adjust the
cancellation tone power to produce the same Stark shift. Finally, reconnect the pump line
and adjust the cancellation phase to minimize the Stark shift. Barring extreme instability
of the ambient room temperature, this only needs to be set once.

Qubit drive – It is important to account for the Stark shift on the qubit produced by the
strobe tones and by the squeezed noise power itself. The Stark shifts can be determined by
standard Ramsey measurements. Our qubit also exhibited intermittent fluctuations in its
resonance frequency that we attribute to a larger-than-ideal anharmonicity, which produced
a slow beating in the Ramsey traces (& 15 µs) and made some calibration processes more
challenging. One central challenge was keeping Rabi frequency ΩR, which is set by the Rabi
drive amplitude, precisely equal to the 40 MHz strobe sideband detuning. This was done by
interleaving measurements of Rabi oscillations with all other data acquisition and using the
inferred ΩR values to feed back on the drive amplitude.

Strobe pulse generation – The strobe sidebands were generated via a 40 MHz modulation
applied to a carrier tone at ωc via an IQ mixer. A Minicircuits voltage-controlled phase-
shifter was used to phase shift the input to I relative to the input to Q, which can be used
to adjust the relative amplitudes of the resultant sidebands. The stroboscopic measurement
requires that the two sidebands drive the cavity field equally. For the qubit Rabi driven
about σ̂x, an imbalance in the amplitudes produce an effective cooling of the qubit state
towards |σ̂x = ±1〉. We perform additional tomographic measurements to feed back on and
zero this cooling process, thereby balancing the sideband amplitudes at the cavity.

A.3 High-Efficiency Measurement of an Artificial

Atom inside a Parametric Amplifier

In many ways the setup is similar to a standard configuration for dispersive measurement.
Pulses for qubit manipulation and readout are produced at the qubit and QPA frequencies,
respectively, and sent into the dilution refrigerator via the left-most microwave line in (a).
Readout pulses reflect off the QPA (containing the qubit), are amplified at the JPA, travel
through the JTWPA followed by the HEMT amplifier, and are detected via homodyne
demodulation. However there are a number of idiosyncrasies.
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As in the stroboscopic-measurement experiment, low-pass filters were necessary between
all superconducting amplifiers to block flux-pump leakage from producing significant amp-
amp crosstalk, especially with regard to the JTWPA. Also as in that experiment, one flux-
pump line (that of the QPA) had computer-controlled amplitude and phase control, allowing
us to scan over both QPA phase and gain, while the other pump line was only manually
controlled, as the off-chip JPA needed to be set only once assuming negligible thermal drift.
During final data runs, we turned off the air-conditioning in the lab several hours in advance
to further reduce this and other drifts.

As JPAs are pumped near a critical point, they are sensitive to small variations in pump
power. The QPA pump power was programmatically varied using a voltage-variable atten-
uator, and sampled using a spectrum analyzer to ensure power flatness as the phase was
adjusted. To ensure power flatness of the off-chip JPA pump, we did not put a phase shifter
on that pump line, instead putting a manual phase shifter before the four-way splitter sourc-
ing all other phase-locked tones. This provided a means of effectively controlling the pump
phase of the JPA without introducing any variation in the pump power. The ∼ 0.2 dB
variation of the input to the four-way splitter did not significantly affect the demodulation
performance, and was actively compensated for on the readout and QPA-pump inputs using
a spectrum analyzer.
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