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Abstract:
In this letter, we propose a new version of the rotation forest (RoF) method for the pixelwise 
classification of hyperspectral images. RoF, which is an ensemble of decision tree 
classifiers, uses random feature selection and data transformation techniques (i.e., principal
component analysis) to improve both the accuracy of base classifiers and the diversity 
within the ensemble. Traditional RoF performs data transformation on the training samples 
of each subset. In order to further improve the performance of RoF, the data transformation 
is separately performed on each class, extracting sets of transformation matrices that are 
strictly dependent on the training samples of each single class. The approach, namely, 
class-separation-based RoF (RoF CS ), is experimentally investigated on a hyperspectral 
image collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. 
Experimental results demonstrate that the proposed methodology achieves excellent 
performances, in comparison with random forest and RoF classifiers.
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SECTION I.

Introduction
In THE last few decades, hyperspectral image classification has been an 
incredibly active research topic with widespread applications [1]. However, 
classification of hyperspectral data is a challenge due to issues such as the high 
ratio of feature (spectral bands) to instance (training samples) and the 
redundant information in the feature set [2], [3]. In the past two decades, 
researchers have investigated a variety of approaches to alleviate such 
issues [4], [5].

Recently, multiple-classifier systems (MCSs), which combine different 
classification algorithms or variants of the same classifier, have shown excellent 
performances in hyperspectral image classification compared to a single-
classifier case [6]–[7][8]. Rotation forest (RoF), is a leading technique in MCSs, 
which aims at constructing multiple decision trees built on different sets of 
extracted features [9], [10]. More specifically, in RoF, the feature set is randomly
split into several disjoint subsets. Principal component analysis (PCA) is then 
applied to each subset. Furthermore, new training data are formed by 
concatenating the linear extracted features contained in each subset and then 
used in an individual decision tree (DT) classifier. A series of individual classifiers
is generated by repeating the aforementioned steps several times, fusing the 
results according to a majority decision. Studies on the use of RoF dealing with 
hyperspectral classification problems have been recently published [11]–[12]
[13][14]. RoF has proven to be effective not only in hyperspectral data analysis 
but also in very high-resolution image analysis [15], where object-based 
classification was investigated, and in synthetic aperture radar (SAR) image 
analysis [16], where RoF was applied to SAR images by integrating spatial and 
polarimetric features. Here, RoF provided better results in comparison to those 
obtained by exploiting support vector machines (SVMs) and random forest (RF). 
In general, accuracy of the base classifiers and diversity within the ensemble 
represent two important aspects that need to be taken in consideration when 
designing an MCS [6]. Diversity, in particular, can be improved by splitting the 
input feature space, where different splits on the feature space lead to different 
extracted features [9], [10]. Another strategy is represented by the employment
of feature extraction techniques, which are used to transform the original 
feature space into another one in order to extract more representative 
information. In the case of the RoF classifier, data transformation is performed 
on the whole training set of each subset.

In order to further improve the diversity within the ensemble, we propose a new 
strategy based on the use of RoF, which is called class-separation-based 
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RoF (RoFCS). Following the strategy described in [17] and [18], where class-
specific independent components were extracted to address the dimensionality 
reduction task, we perform data transformation to each class, extracting sets of 
transformation matrices strictly dependent on the training samples of each 
single class. Here, PCA is used as the data transformation technique. We would 
like to emphasize that, in this work, we focus on pixelwise classification, 
although RoF can be combined with spatial information, such as Markov random 
fields [12]. The experimental analysis, including a comparison with RF and RoF, 
is carried out on the Indian Pine test site.
The remainder of this letter is structured as follows: Section IIintroduces the 
proposed class-separation-based RoF (RoFCS). Section III presents the results 
obtained by the experimental analysis and a comparison with other state-of-the-
art classifiers. Conclusions are drawn in Section IV.
SECTION II.

Class-Separation-Based RoF (RoFCS)
Let {X,Y}={(x1,y1),…,(xn,yn)} be a set of training samples, where xi=[xi,1,
…,xi,D]∈ℝD is a pixel vector, and yi∈{1,…,C} denotes the label information, 
where C is the total number of classes, and � be the set of D features in the 
training set. Class c has nc samples with ∑Cc=1nc=n. The training set is ordered 
according to their labels, with the matrix Xc={xc1,xc2,…,xcnc}, where xci is 
the ith sample in class c. Thus, X can be expressed as X={X1,X2,…,XC}.
The detailed steps of RoFCS are summarized in Algorithm 1. In the training 
phase, the first step consists in splitting the feature space of training 
set � into K disjoint subsets, each containing M features. In the second step, 
PCA is applied to each class, to create a projection matrix that is specifically 
suitable to represent each specific class. The size of the projection matrix is then
reduced by selecting those components that better represent each single class. 
This is usually achieved by selecting the principal components correspondent to 
the largest eigenvalues. However, in this letter, in order to provide a more 
general framework, we adopt the reconstruction error as measure of class 
information associated with a single component [17], which allows the use of 
other data transformation within this methodology.
SECTION Algorithm 1

RoFCS
Training phase

Input: {X,Y}={xi,yi}ni=1: training samples, T: number of classifiers, K: number
of subsets, M: number of features extracted in a subset, L: base classifier. The 
ensemble =∅. �: Feature set. l: number of retained components in each class
Output: The ensemble 
1: for i=1: T do
2:randomly split the features � into K subsets �ij

3:for j=1: K do
4:form the new training set Xi,j with �ij



5:calculate the optimal matrix Wopti,j using (1)–(3)
6:end for
7:the features extracted will be given by: �newi=[Wopti,1Xi,1,…,Wopti,KXi,K]
8:train an DT classifier L_{i} using \
{\mathbb{F}_{i}^{\mathrm{new}},\textbf{Y}\}
9:{\hskip 10pt}Add the classifier to the current 
ensemble, \mathcal{L}=\mathcal{L}\cup L_{i}.
10: end for

Prediction phase

Input: The ensemble \mathcal{L}={\{L_{i}\}}_{i}^{T}. A new 
sample \textbf{x}^{\ast}. Transformation matrix: \textbf{W}.
Output: class label y^{\ast}
1: for i=1: T
2:{\hskip 10pt}for j=1: K
3:{\hskip 20pt}generate the test features 
of \textbf{x}^{\ast}, \mathbb{F}_{i}^{\mathrm{test}}={\hskip28pt}
[\textbf{W}_{i,1}^{\mathrm{opt}}\textbf{x}_{i,1}^{\ast},\ldots,\textbf{W}_{
i,K}^{\mathrm{opt}}\textbf{x}_{i,K}^{\ast}]
4:{\hskip 10pt}end for
5:{\hskip 10pt}run the DT 
classifier L_{i} using \mathbb{F}_{i}^{\mathrm{test}} as input
6: end for

7: calculate the confidence \textbf{x}^{\ast} for each class and assign the 
class label y^{\ast} to the class with the largest confidence.
PCA is a linear orthogonal data transformation technique that aims at projecting 
the original features \textbf{X} into another space, where the transformed 
features \textbf{Z} are linearly uncorrelated, which are called principal 
components. Following the linear decomposition 
model \textbf{Z}=\textbf{W}\textbf{X}, where \textbf{W} represents the 
unmixing matrix, the unmixing matrix \textbf{W} and the principal 
components \textbf{Z} can be estimated by solving an eigenvalue 
decomposition problem. Reformulating the linear mixing model 
as \textbf{X}=\textbf{A}\textbf{Z}, where \textbf{A}=\textbf{W}^{-
1} represents the unknown mixing matrix, it is possible to compute the 
reconstruction error. Considering the PCA applied to each specific class, the 
reconstruction error e_{c}, which is estimated by computing the Frobenius 
norm (\|\cdot\|_{F}^{2}) between the original feature space and the back 
projection of the extracted components, is given by \begin{equation*} 
e_{c}={\|\textbf{X}^{c}-\textbf{A}^{c}\textbf{Z}^{c}\|}_{F}^{2}=\left\|\te
xtbf{X}^{c}-\sum_{i=1}^{n}\textbf{a}_{i}\textbf{z}_{i}^{T}\right\|
_{F}^{2}\tag{1} \end{equation*}

View Source where \textbf{a}_{i} is a column vector of the mixing 
matrix \textbf{A}^{c}, and \textbf{z}_{i}^{T} is a row vector of estimated 
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components. Furthermore, the pairs (\textbf{a}_{i}, \textbf{z}_{i}^{T}) are 
ranked based on their relative contribution to the minimization of the 
reconstruction error.
TABLE I Classification Results Obtained for the Indian Pines Image Using 240 Training Samples (20 
Samples Per Class). For Each Method, “OA (%),” “AA (%),” “\kappa,” and “CA (%)” are Reported. No. 
Means the Total Number of Samples for Each Class in Reference Map

The following iterative procedure is used to perform the ranking and identifies 
the lth couple with the smallest reconstruction error [17]: \begin{align*} 
idx=&\,\arg\min_{i}\mathrm{err}(i)=\left\
{i|\min_{i}\left\|\textbf{X}_{l}-\textbf{a}_{i}\textbf{z}_{i}^{T}\right\|
_{F}^{2}\right\}\tag{2}\\ \textbf{X}_{l+1}\leftarrow &\, 
\textbf{X}_{l}-\textbf{a}_{idx}\textbf{z}_{idx}^{T}\tag{3} \end{align*}

View Source where idx is the index of the chosen lth pair at the lth 
iteration. \textbf{X}_{l} is initially set as \textbf{X}^{c} and updated at each 
iteration by subtracting the contribution provided 
by \textbf{a}_{idx}\textbf{z}_{idx}^{T} computed at the previous iteration 
[see (3)]. The tuning parameter l, which represents the number of pairs to retain
after the ranking, is the only parameter required in the procedure [17]. For each 
class c, a matrix \textbf{A}^{c}, which is composed of the best 
elements [\textbf{a}_{1},\ldots,\textbf{a}_{l}], is defined. It is worth noting 
that the aforementioned steps are applied to each specific class, and thus, the 
process of extraction can be done in parallel fashion, decreasing the 
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computational time, which can be approximated to the one of a single-class PCA.
The final mixing matrix \textbf{A}_{\mathrm{opt}}, which integrates all the 
specific class information, is represented 
by \textbf{A}^{\mathrm{opt}}=[{(\textbf{A}^{1})}^{\prime},\ldots,
{(\textbf{A}^{C})}^{\prime}]. The obtained \textbf{A}^{\mathrm{opt}} is 
an M\times(C\times l) matrix. The unmixing 
matrix \textbf{W}^{\mathrm{opt}} is obtained 
by (\textbf{A}^{\mathrm{opt}})^{-1}.
In the third step, \textbf{W}^{\mathrm{opt}} is obtained for each subset, and 
a new training set is constructed by concatenating the extracted 
features \textbf{W}_{j}^{\mathrm{opt}}\textbf{X}_{j} (j=1,\ldots,K is the 
index of subset), which are then used to train an individual DT classifier. The size
of \textbf{W}^{\mathrm{opt}} in each subset is (C\times l)\times M. Then, the 
final ensemble is produced by integrating the individual DT classifiers that are 
generated, by repeating the aforementioned steps T times.
In the prediction phase, for a new sample \textbf{x}^{\ast}, the final result is 
generated by combining the results from individual DT classifiers in the 
ensemble based on the transformation matrix \textbf{W} using a majority 
voting rule.
SECTION III.

Experimental Results and Analysis
Here, the proposed \text{RoF}_{\mathrm{CS}} is evaluated on the Indian Pines 
AVIRIS hyperspectral data, which were acquired over Northwestern Indiana, USA,
in June of 1992. The AVIRIS image is composed of 145 \!\times\! 145 pixels, with 
a spatial resolution of 20 m/pixel and 220 spectral channels in the spectral range
from 400 to 2500 nm. The original reference data contain 16 classes, whereas in
this letter, we kept 12 classes, which contain large numbers of labeled samples. 
After removing 20 noisy and water absorption bands, the final data set is 
composed of 200 bands. In order to investigate the performance of the proposed
method in noisy environments, the full spectral image is also used. In order to 
provide a more exhaustive analysis, a comparison with the RF [19] and 
RoF [10] classifiers is also provided. The parameters M and Kneeded in RF, RoF, 
and \text{RoF}_{\mathrm{CS}} are set to be 10, whereas the parameter l used 
in \text{RoF}_{\mathrm{CS}} is set to 7. In this work, classification and 
regression tree (CART) is considered as the base classifier.
The classification results achieved by the different methods, considering both 
the cleaned and the full data sets, are presented in Table I. For each method, the
table reports the percentage of correctly classified samples, i.e., “overall 
accuracy (OA)”; the average percentage of correctly classified samples for 
individual class, i.e., “average accuracy (AA)”; the percentage of correctly 
classified samples for each class, i.e., “class accuracy (CA)”; and the percentage
agreement corrected by the level of agreement that could be expected to 
chance alone, i.e., “kappa coefficients (\kappa).” In order to test the method in a
practical scenario, where limited training samples are available, we perform the 
analysis considering only 240 training samples (i.e., 20 samples per class). From
the obtained results, we can see that the 
proposed \text{RoF}_{\mathrm{CS}} can better exploit the information present



in both the scenarios, providing the best results, even in very noisy conditions. 
Moreover, all the ensemble classifiers appear to be robust in noisy 
conditions. Fig. 1 shows the classification maps produced by the classifiers 
under the noisy condition (one of the ten Monte Carlo runs). As it can be 
seen, \text{RoF}_{\mathrm{CS}} exhibits much less classification errors than 
RF and RoF. In addition, considering the low number of samples used for the 
training of the classifier, the obtained results indicate 
that \text{RoF}_{\mathrm{CS}} can properly deal with the high ratio between 
high dimensionality and limited training samples. Moreover, the proposed 
method performs well also in the presence of mixed pixels, as it is in the Indian 
Pines scene.
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Fig. 1.
Classification maps of Indian Pines image obtained by the classifiers using 20 training samples per 
class. Results with 220 bands: (a) RF, \text{OA}=55.19\%; (b) RoF, \text{OA}=58.31\%; 
(c) \text{RoF}_{\mathrm{CS}}, \text{OA}=67.57\%. Results with 200 bands: (d) 
RF, \text{OA}=58.02\%; (e) RoF, \text{OA}=60.14\%; 
(f) \text{RoF}_{\mathrm{CS}}, \text{OA}=69.23\%.

View All
As stated in Section I, two important needed components to construct a strong 
ensemble are high accuracy of the base classifier and strong diversity within the
ensemble. Here, to compare the two ensemble classifiers, i.e., RoF 
and \text{RoF}_{\mathrm{CS}}, measures such as the “OA (%),” the 
percentage average OA of the individual DT classifier, i.e., “AOA (%),” and 
the coincident failure diversity (CFD) [20] are used. A higher value of CFD 
represents a stronger diversity. As shown in Table II, the 
proposed \textrm{RoF}_{\mathrm{CS}}produces higher values of AOAs and 
diversities than RoF, leading to better classification results.
TABLE II Comparison Between RoF and \textrm{RoF}_{\mathrm{CS}}. For Each Method, “OA (%),” 
“AOA (%),” and Diversities are Reported
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TABLE III Classification Results Using Different Training Sets. The Results Correspond to the Mean 
Values and Standard Deviations Over Ten Repetitions
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The effectiveness of the proposed \text{RoF}_{\mathrm{CS}}is also evaluated 
considering different numbers of training samples (i.e., 10, 20, 30, 40, and 50 
samples per class). Here, the experimental analysis is performed on the full data
set, since it constitutes a challenging problem due to high feature-to-instance 
ratio and noise. The obtained results are shown in Table III, which reports the 
mean values and standard deviations of “OA (%),” “AA (%),” and \kappa values. 
The obtained results show that the 
proposed \text{RoF}_{\mathrm{CS}} provides the best classification accuracy 
in all the cases, outperforming both RF and RoF. In particular, when 40 samples 
per class are considered, \text{RoF}_{\mathrm{CS}} obtains an OA of 75.64%, 
an AA of 81.36%, and a \kappa of 72.57%. This is significantly better than those 
obtained by the RF (with +14.17% of OA, +13.17% of AA, and +15.80% 
of \kappa) and the RoF (with +10.00% of OA, +7.73 of AA, and +11.07 
of \kappa). Another observation that can be derived from Table III is that, having 
a lower standard deviation, the performance of \text{RoF}_{\mathrm{CS}} is 
more stable than the ones of RF and RoF. More recent pixelwise classification 
results obtained for Indian Pines scene can be found in [21]–[22][23]. A direct 
comparison with their results, which are not reported due to the space limit, 
shows that the \text{RoF}_{\mathrm{CS}} can be considered a competitive 
classification method.
The last part of our experimental analysis focuses on the analysis of the 
sensitivity of two parameters M, which represents the number of features in a 
subspace, and l, which represents the number of retained components in each 
class. The results of such analysis are depicted in Fig. 2. As the number of 
features in a subspace (M) increases, RoF tends to have better performance. RF 
and \text{RoF}_{\mathrm{CS}}are robust to this parameter. Moreover, the 
proposed \text{RoF}_{\mathrm{CS}} is not sensitive to the number of retained 
components (l) in each class. Hence, we can conclude that the 
proposed \text{RoF}_{\mathrm{CS}} is not sensitive to the two parameters, 
which is an essential additional advantage. This should be considered during the
parameter tuning, since the computational time of 
the \text{RoF}_{\mathrm{CS}} could be reduced by choosing larger values 
of M and smaller values of l.



Fig. 2.
Sensitivity to the change of (a) number of features in a subset (M)and (b) number of retained 
components (l) in each class.
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SECTION IV.

Conclusion
In this letter, we have developed a new version of the RoF classifier. The 
proposed \text{RoF}_{\mathrm{CS}} method integrates diverse DT classifiers 
that are trained on different feature sets. Each set is defined by the 
concatenation of class-specific features extracted by applying PCA. The 
experimental analysis was performed on Indian Pines test site. Two scenarios 
(i.e., the full spectral bands and the noisy bands removed) were considered, in 
order to evaluated the proposed approach in noisy conditions. Experimental 
results demonstrated the superiority of the 
proposed \text{RoF}_{\mathrm{CS}}compared to SVM and RoF, indicating that 
the \text{RoF}_{\mathrm{CS}} can better cope with the high ratio between 
high dimensionality of the feature space and the limited number of training 
samples, as well as the presence of mixed pixels and noise in the scene. The 
main reason for the powerful capability of \text{RoF}_{\mathrm{CS}} is that 
more diversity and higher accuracy of member classifiers are introduced in the 
ensemble. An additional advantage of the \text{RoF}_{\mathrm{CS}} is the 
noncritical parameter tuning. In practice, the users might select a high value 
of M and a low value of l to reduce the computational time. In future work, we 
will test the performances of other data transformation techniques in our 
proposed \text{RoF}_{\mathrm{CS}} method.
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