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Abstract

Inferring evolutionary history from whole genomes:
outlier tests and methods based on the coalescent with recombination

by

Débora Yoshihara Caldeira Brandt

Doctor of Philosophy in Integrative Biology

University of California, Berkeley

Professor Rasmus Nielsen, Chair

Whole genome sequences allow for new, powerful inferences of evolutionary history. In addi-
tion to increasing the scale of application of traditional population genetic inferences by using
them on an enormous amount of loci, genomic data also provide valuable information about
the location of those sites and correlations among them, which can be leveraged for inference
of evolutionary parameters. In this dissertation, I explore three types of evolutionary infer-
ences that are thriving with the increasing availability of genomic data and new methods.
In Chapter 1, I use simulations to evaluate methods for inference of ancestral recombination
graphs. In Chapter 2, I apply a new method based on the pairwise sequential Markovian
coalescent to infer population split times and migration rates from a pair of diploid genomes.
In Chapter 3, I use population-level genomic data from the population of a rural village in
Ecuador to infer signatures of selection possibly related to the beneficial effects of diet on
their cardiovascular health.
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Beatriz pelo carinho, apoio e torcida. Vocês são meus maiores exemplos e fonte inesgotável
de inspiração e motivação.

Daniel for being the best partner in everything I do. Obrigada por recarregar minhas
baterias nos melhores e piores momentos. Por cuidar tão bem de mim e me deixar cuidar
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Introduction

The use of whole genome sequences opens new possibilities for inference of evolutionary his-
tory that were not available with traditional population genetics methods developed mostly
for single loci. For decades, the field of population genetics developed without the possibility
of obtaining any DNA sequence data (Pool et al., 2010), and during this time, obtaining
genome-wide population data as easily as it is today was unimaginable. The possibility of
extending population genetics analyses to whole genomes expanded the field in many direc-
tions, and I address three of them in the chapters of this dissertation. First, the availability
of data from continuous regions of the genome allows for the explicit modeling of correla-
tions between sites, through the inclusion of recombination as a parameter of these models.
Second, genome-wide data allows inference of population demographic history from a single
diploid individual. Third, sampling genome-wide data from several individuals in a popu-
lation allows the use of genome-wide distributions of statistics as null distributions, from
which outliers can be pinpointed as candidates of selection.

1. Explicit modeling of correlations between sites with

ancestral recombination graphs

An important advance brought about by population genomics is tightly linked to an extension
of the standard coalescent model: the coalescent with recombination (Hudson, 1983). The
data structure that represents the outcome of this stochastic process is called an ancestral
recombination graph (ARG). Recent computational methods allow powerful and scalable
inference based on the coalescent with recombination. These methods can leverage all the
information about linked sites along a genome for inferences about recombination rate and its
variation along the genome, as well as understanding how recombination rate varies between
populations or species and through time. Explicitly taking recombination into account also
informs the models about correlations between sites, which itself improves further inferences
of population genetic parameters.

In Chapter 1, I, along with collaborators, use standard neutral coalescent simulations to
benchmark the estimates of pairwise coalescence times from three popular ARG inference
programs: ARGweaver, Relate, and tsinfer+tsdate. In addition to inferring the ARG, some
of these methods can also provide ARGs sampled from a defined posterior distribution.
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Obtaining good samples of ARGs is crucial for quantifying statistical uncertainty and for
estimating population genetic parameters such as effective population size, mutation rate,
and allele age. We compare 1) the true coalescence times to the inferred times at each
locus; 2) the distribution of coalescence times across all loci to the expected exponential
distribution; 3) whether the sampled coalescence times have the properties expected of a valid
posterior distribution. We find that inferred coalescence times at each locus are most accurate
in ARGweaver, and often more accurate in Relate than in tsinfer+tsdate. However, all three
methods tend to overestimate small coalescence times and underestimate large ones. Lastly,
the posterior distribution of ARGweaver is closer to the expected posterior distribution than
Relate’s, but this higher accuracy comes at a substantial trade-off in scalability. The best
choice of method will depend on the number and length of input sequences and on the goal
of downstream analyses, and we provide guidelines for the best practices.

2. Inference of population history from a pair of

individuals

A second advance of population genomics is the ability to infer evolutionary parameters of
a population from a single genome. These methods take advantage of the fact that a single
diploid genome contains fragments of many ancestors. In Chapter 2, I leverage PSMC, a
method that is able to infer past effective population sizes (Ne) from a single genome, to
infer split times and migration rates from a pair of diploid genomes with ancestry from two
populations.

In this chapter, I, along with collaborators, also explore the various definitions and ap-
plications of the concept of effective population size. The estimation of effective population
sizes through time with methods such as PSMC became widespread in genetics, and this
method has been applied in several organisms. Effective population size is a fundamental
parameter in population genetics, but the interpretation of Ne as the effective number of
breeding individuals in the population is challenged by the effect of population structure. In
fact, variation in Ne reported in many studies may be a consequence of changes in migration
rates between populations rather than changes in actual population size. We address this
long-standing problem here by constructing joint models of population size changes, migra-
tion, and divergence that can adjust temporal estimates of Ne and estimate the actual Ne

of a local deme connected to another population through migration.
We also develop a method for estimating divergence times and migration rates taking into

account complex scenarios of changing population sizes. We apply the method to previously
published data from humans, and show that, when taking migration and changes in Ne into
account, the estimated divergence between the San and Dinka populations is approximately
108 kya, and not 255 kya as reported in a previous study. Using simulations, we demonstrate
that the previously reported and surprisingly old estimates of divergence between San and
Dinka is in fact caused by a quantifiable estimation bias due to changes in Ne through time.
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3. Inference of selection with outlier-based neutrality

test

Finally, I highlight what was perhaps the first advance of population genomics to be widely
applied: outlier tests to detect natural selection. This type of neutrality test was first
proposed by Lewontin and Krakauer (1973), but with the increasing availability of genome-
wide sequences, it has been more widely applied. The rationale is simple: the effect of
genetic drift on the distributions of alleles frequencies is expected to be the same across
all loci. What Lewontin and Krakauer (1973) called “heterogeneity between loci in their
inbreeding coefficients” could then be interpreted as evidence for selection. Since then, this
rationale has been applied to statistics other than the original inbreeding coefficients, to
detect selection.

In Chapter 3, I investigate the genetic ancestry and evidence of natural selection on a
rural population from the coastal region of Ecuador (Atahualpa village). For that, I use an
outlier scan of selection using the population branch statistic (PBS), a measure of population
differentiation of one population relative to two other closely related populations. This study
was motivated by a prior hypothesis of natural selection in response to a diet rich in oily
fish in the population from Atahualpa. The consumption of oily fish among people from the
Atahualpa village has been associated with several positive effects on their cardiovascular
health. Indeed, we find evidence of selection in the Atahualpa population on genes that are
related to the metabolism of lipids. Therefore, these gene variants may mediate the benefits
of fish consumption in this population.
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Chapter 1

Evaluation of methods for estimating
coalescence times using ancestral
recombination graphs

This chapter is co-authored by Xinzhu Wei, Yun Deng, Andrew H. Vaughn and Rasmus
Nielsen and has been published in Genetics, Volume 221, Issue 1, May 2022, iyac044, https:
//doi.org/10.1093/genetics/iyac044

1.1 Introduction

The full ARG is a structure that encodes all coalescence and recombination events result-
ing from the stochastic process of the coalescent with recombination. Hudson (1983) first
described a stochastic process that combines recombination and coalescence to generate ge-
nealogies. At each given site, the genealogy resulting from this process is equivalent to the
one generated by the single-locus coalescent model (Kingman, 1982), but because recombi-
nation breaks loci apart (Figure 1.1A), the local genealogies can differ between sites.

Representations of the ARG

The full ARG can be represented as a directed graph with two types of nodes: 1) coalescence
nodes, where two or more edges merge into one (backwards in time) and 2) recombination
nodes, where one edge splits in two (backwards in time) (Figure 1.1B). Alternatively, the
full ARG can also be represented as an ordered collection of marginal coalescence trees,
annotated with the recombination nodes. These marginal trees are embedded in the graph
representation (Figure 1.1B,C).

In some representations, the collection of trees may or may not contain all the infor-
mation from the full ARG, depending on whether the times of recombination events (red
crosses in Figure 1.1) are stored with the trees (Rasmussen et al., 2014), and whether the

https://doi.org/10.1093/genetics/iyac044
https://doi.org/10.1093/genetics/iyac044
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Figure 1.1: Schematic representations of the genealogy of a sample of two diploid individu-
als. Colors denote the four haplotypes sampled, and black lines indicate lineages or sequence
tracts where at least one coalescence has occurred. Dark red crosses indicate recombina-
tion events. (A) The genealogy embedded in a pedigree. (B) An ancestral recombination
graph (ARG) that fully represents all genealogical relationships shown in A, assuming that
recombination events are annotated with the sequence coordinates. (C) An equivalent rep-
resentation of the full ARG as a set of local trees separated by a single recombination event.
(D) A set of trees that does not correspond to the full ARG. Instead, the second tree is an
average of the local trees at that region.This set of trees is missing a recombination event
that does not change topology, but changes the coalescence time. Other types of recom-
bination events that could me missing in a partial ARG are: i) recombination followed by
coalescence in the same branch, which does not change topology or other coalescence times
and ii) topology changing recombination events.
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internal nodes of the tree are labelled so they can be explicitly shared between adjacent trees.
Furthermore, in some cases only topology changing recombination events are represented,
and thus information regarding recombination events that do not lead to topology changes
can be lost (Kelleher et al., 2019). Finally, some representations of ARGs as a collection of
local trees allow more than one recombination event between trees (Speidel et al., 2019). In
the latter two cases, each tree will potentially be an average of multiple coalescence trees.
Figure 1.1D shows an example of a collection of local trees that does not correspond to the
underlying full ARG, since one of its local trees is an average of two adjacent trees with
identical topologies.

Collections of local trees with labelled internal nodes, regardless of whether they represent
a full ARG or not, can be represented efficiently in computer memory by noting that each
branch is part of many marginal trees (note repeated node numbers across trees in Figure
1.1C)). This property has been explored in the “tree sequence” format (Kelleher et al., 2018).

The full ARG contains all the information in a sample of DNA sequences regarding de-
mography. Specifically, for a set of demographic parameters θ, parameters of the mutational
process µ, sequence data x, and ARG G, p(x|θ, µ,G) = p(x|µ,G), i.e. if G is known there is
no more information in the data about θ. A similar statement can be made for recombina-
tion and selection, if the leaf nodes of G are augmented with the allelic state at the selected
loci. Therefore, the ARG is necessarily at least as informative as the combination of any
and all summary statistics traditionally used to infer evolutionary processes (such as FST ,
π, Tajima’s D, or EHH). Knowledge of the ARG is key for constructing powerful methods
for extracting population genetic information from DNA sequencing data.

Inferring ARGs

Unfortunately, ARGs cannot be directly observed but must be inferred from the data. To-
gether with an estimate of the ARG, it is desirable to quantify the uncertainty around the
inferred ARG, for example by obtaining samples of ARGs according to their posterior prob-
abilities under a given model (we discuss examples of these models in the next section).
Such samples can be used to quantify uncertainty regarding ARG inferences in downstream
analyses. Accurate sampling from the posterior distribution is especially relevant for down-
stream methods that rely on importance sampling to infer evolutionary parameters from
ARGs. In essence, these methods weight parameter inference under each sampled ARG by
the ARG probability and therefore require that the samples of ARGs accurately reflect their
probability distribution. These types of methods can be used to infer population size his-
tory, selection (Stern et al., 2019), migration (Osmond and Coop, 2021), mutation rates and
recombination rates.

Inferring full ARGs and quantifying inference uncertainty by sampling from the poste-
rior distribution is a challenging problem computationally. It requires navigating a high-
dimensional distribution of ARGs, which are themselves a complicated data structure. For
this reason, inferring ARGs and sampling from their posterior distribution seemed like a
nearly impossible endeavour some years ago, but important methodological developments
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now allow us to do so. Today, there are several methods available to estimate the full ARG
or approximations of it, including ARGweaver (Rasmussen et al., 2014), Relate (Speidel
et al., 2019) and tsinfer+tsdate (Kelleher et al., 2019; Wohns et al., 2022).

Approximations of the coalescent with recombination

The classical way to include recombination in coalescence models is to consider the temporal
process of lineage splitting caused by recombination and lineage merger caused by coales-
cences as one moves backwards in time (Hudson, 1983; Griffiths and Marjoram, 1997) (Figure
1.1A,B). Wiuf and Hein (1999) considered instead the spatial process of recombination along
a sequence. In this formulation, the ARG is constructed as a sequence of local coalescent
trees along a genome, where each tree is separated from adjacent trees by recombination
events (Figure 1.1C). At each recombination breakpoint, a new tree is formed from the im-
mediately preceding tree. To form the next tree, first one of the branches in the current tree
is detached. Next, a point earlier than the detachment point is randomly chosen from any of
the branches in any of the previous trees in the sequence. Finally, the detached branch
coalesces to this chosen point.

To improve the computational efficiency in simulations, McVean and Cardin (2005) pro-
posed approximating the spatial process as a Markovian process called the Sequentially
Markovian Coalescent (SMC). In the SMC, when a lineage is detached from a tree at a
recombination event, it can only coalesce back to one of the other lineages present at the
current tree. Marjoram and Wall (2006) proposed an improved approximation, the SMC’,
in which the detached lineage can coalesce to any branch in the current tree, including the
one it was detached from. This means that some recombination events in this model do not
generate a different local coalescent tree. This simple modification significantly improves
the model in terms of approximating the full coalescent (Marjoram and Wall, 2006; Wilton
et al., 2015).

A heuristic approximation to the coalescence with recombination proposed by Li and
Stephens (2003), extending ideas from Stephens and Donnelly (2000), approximates the co-
alescent with recombination using a copying process where one sequence is modeled as a
copy of other sequences in the sample, with errors representing mutations and switches in
the copying template representing recombination events. While this model has disadvan-
tages, such as a dependence on the input order of sequences, it has proven computationally
convenient for many purposes, including demography inference, introgression detection, and
more (Sheehan et al., 2013; Steinrücken et al., 2018, 2019).

The formulation of the coalescent with recombination approximated as a Markovian pro-
cess generating tree sequences in the SMC (McVean and Cardin, 2005) and SMC’ (Marjoram
and Wall, 2006) and as a copying process of individual sequences by Li and Stephens (2003),
paved the way for more scalable ARG inference methods. Notably, ARGweaver (Rasmussen
et al., 2014) based on the SMC or SMC’ model, and Relate (Speidel et al., 2019) and tsin-
fer+tsdate (Kelleher et al., 2019; Wohns et al., 2022) based on the model by Li and Stephens
(2003).
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Table 1.1: Genome-wide genealogy inference programs compared.

Program
Samples
topologies

Samples
coalescence

times

Supports
demographic

model

Scalability
(number of
genomes)

Outputs
full ARG

Supports
unphased

data

ARGweaver Yes Yes No ∼50 Yes Yes
ARGweaver-D∗ Yes Yes Yes ∼50 Yes Yes

Relate No Yes No ∼ 103 No No
tsinfer+tsdate No No No ∼ 105 No No

∗ Hubisz et al. (2020)

ARGweaver

ARGweaver uses Markov Chain Monte Carlo (MCMC) to sample ARGs from the posterior
distribution under the SMC or SMC’. It relies on a discretization of time (such that all
recombination and coalescence events are only allowed to happen at a discrete set of time
points) which makes the state space of ARGs finite countable and allows the use of discrete
state-space Hidden Markov Models (HMMs). It then uses a lineage threading approach,
which is a Gibbs sampling update, to sample the history of a single lineage or haplotype
from the full conditional posterior distribution given the rest of the ARG connecting all other
haplotypes.

Relate

Relate simplifies the problem of ARG inference by inferring marginal coalescence trees, in-
stead of full ARGs. Inference is divided into 2 steps. First, the Li and Stephens (2003)
haplotype copying model is used to calculate pairwise distances between samples in order
to infer local tree topologies. Next, it uses MCMC under a coalescent prior to infer coa-
lescence times on those local trees. Relate is able to output samples of coalescence times
from the posterior distribution using this MCMC approach, but it does so for the same fixed
sequence of tree topologies. This is different from the ARGweaver MCMC sampling, which
also samples the tree topology space (Table 1.1).

tsinfer, tsdate, and the tree sequence framework

Tsdate (Wohns et al., 2022) is a method that estimates coalescence times of tree sequences.
Here, we used this method to date tree sequences inferred by tsinfer (Kelleher et al., 2019).
Similarly to Relate, tsinfer is also based on the copying process from Li and Stephens (2003).
A key innovation of tsinfer is a highly efficient tree sequence data structure which stores
sequence data and genealogies (Kelleher et al., 2016, 2018, 2019; Ralph et al., 2020). Tsinfer
performs inference in two steps. First, it recreates ancestral haplotypes based on allele
sharing between samples. Next, it uses an HMM to infer the closest matches between
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ancestral haplotypes and the sampled haplotypes using an ancestral copying process modified
from the classical Li and Stephens (2003) model to generate the tree topology. Finally,
nodes in tree sequences inferred by tsinfer can be dated by tsdate. Tsdate uses a conditional
coalescent prior, where the standard coalescent is conditioned on the number of descendants
of each node on a local tree. Like ARGweaver, tsdate also discretizes time for computational
efficiency. This framework infers a fixed topology and coalescence time, but it has the
potential to sample coalescence times.

Benchmarking of ARG inference methods

Here, we use standard neutral coalescent simulations to benchmark coalescence time in-
ferences in ARGweaver (Rasmussen et al., 2014), Relate (Speidel et al., 2019), and tsin-
fer+tsdate (Kelleher et al., 2019; Wohns et al., 2022). We focus mainly on ARGweaver
and Relate because they report measures of uncertainty in inference by allowing the user to
output multiple samples from the posterior distribution. Sampling from the posterior is not
currently implemented in tsdate (Table 1.1), but we include it in this evaluation because it
is a promising framework for very fast tree-sequence inference, and it will likely provide an
option to output samples from the posterior distribution of tree-sequences in future updates.

We focus our analyses on coalescence times not only because they are a very informative
statistic about evolutionary processes, but also because they can be fairly compared across all
methods. More specifically, ARGweaver and tsdate allow for polytomies (i.e., more than two
branches coalesce at the same node). Relate, on the other hand, does not allow polytomies.
Comparing topologies with and without polytomies could bias our results depending on how
we chose to deal with polytomies, so we decided to focus on coalescence times only.

We run coalescent simulations on msprime (Kelleher et al., 2016) and compare the true
(simulated) ARGs to the ARGs inferred by ARGweaver, Relate, and tsinfer+tsdate. We
compare the ARGs with respect to their pairwise coalescence times using three different
types of evaluation (Figure 1.2). First, we compare the true pairwise coalescence time at
each site to the inferred time. Second, we compare the overall distribution of pairwise
coalescence times across all sites and all MCMC samples to the expected distribution. In
Bayesian inference, the data averaged posterior distribution is equal to the prior. Since data
are simulated under the standard coalescent with recombination the data averaged posterior
should be exponential with rate 1 in coalescence time units (2Ne generations, where Ne is the
effective population size). Third, we used simulation-based calibration (SBC) (Cook et al.,
2006; Talts et al., 2020) to evaluate if the posterior distributions sampled by ARGweaver
and Relate are well calibrated (see details in Methods).
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1.2 Methods

Simulations

We simulated tree sequences and SNP data with msprime version 0.7.4 (Kelleher et al.,
2016). For simulations with Jukes and Cantor (1969) mutational model, we used msprime
version 1.0.2 (Baumdicker et al., 2021) to add mutations to trees simulated under msprime
0.7.4, because the Jukes and Cantor (1969) model option was not available in msprime
0.7.4. Unless otherwise noted, simulations were done under the standard neutral coalescent
(Hudson model in msprime) and using the following parameters: 4 diploid samples (i.e. 8
haplotypes), total map length R = 20000 and mutation to recombination rate ratio µ/ρ = 1.
In practice, we used the following parameter values in msprime: effective population size of
10,000 diploids (2Ne = 20, 000), mutation rate and recombination rate of 2× 10−8 per base
pair per generation and a total sequence length of 100Mb.

We varied these standard simulation scenarios in several ways: using SMC and SMC’
models, different numbers of samples (4, 16, 32 and 80 haplotypes), a 10-fold increase and
10-fold decrease in the mutation to recombination ratio (in each case changing either the
mutation or the recombination rates), and changing the total length of input sequence from
100Mb to 5Mb and 250kb. These simulated sequences were then divided into 20 equally sized
segments, so that ARGweaver could be run on each in parallel (see below). The minimum
length of total simulated sequence (250kb) was chosen such that the average number of
pairwise differences between each of the 20 segments was 10, given a mutation rate of 2×10−8.

We extracted coalescence times at all sites in the simulated trees in BED format (columns:
chromosome, start position, end position, coalescence time), with one BED file for each pair
of samples. Figure 1.2 shows an overview of the metrics extracted from simulated ARGs and
from ARGs estimated by tsinfer+tsdate or sampled from the posterior by ARGweaver and
Relate.

ARGweaver

VCF files from msprime were converted to ARGweaver sites format using a custom python
script. We ran ARGweaver’s arg-sample program to sample ARGs. This was done in parallel
on 20 segments of equal size, using the –region option. We used the same values used in
the msprime simulations (–mutrate and –recombrate 2e-8 and –popsize 10000 ) and except
where otherwise noted, we ran ARGweaver using the SMC’ model (–smcprime option).
We ran ARGweaver with 1200 or 2200 iterations (–iters) (with burn-in of the first 200
or 1200 iterations, respectively), depending on how long it took to converge. Assessment
of convergence is described below and in the Appendix of Chapter 1, Evaluating MCMC
Convergence. We extracted 100 MCMC samples from every 10th iteration among the last
1,000 iterations (default –sample-step 10 ).

We extracted all pairwise coalescence times in BED format using options –tmrca and
–subset in the program arg-summarize, and we used bedops (version 2.4.35 (Neph et al.,
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Figure 1.2: Methods overview. (A) Data (ARGs and DNA sequences) were simulated from
the coalescent with recombination. In the model and simulated data, pairwise coalescence
times (CT) are exponentially distributed (Figure A.3). T1 represents the CT between samples
0 and 1, at position P in the simulated data. T̂1,k is the CT between samples 0 and 1 at

position P, in each ARG sample k. Point estimates T ∗
1 are obtained as the mean of T̂1,k, and

the rank statistic is computed as the number of T̂1,k that are smaller than the true value T1.
(B) We compare estimated to simulated values of the CT of each pair of samples, at each
position of the genome. (C) We compare the distribution of sampled CT across all sampled
ARGs, all sites and all pairs of samples to the expected exponential distribution. (D) We
compare the distribution of ranks to the expected uniform distribution.
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2012)) to match the times sampled by ARGweaver to the simulated ones at each sequence
segment. Finally, we used a custom Python script to calculate the ranks of simulated pairwise
coalescence times on ARGweaver MCMC samples per site.

Time discretization

In ARGweaver, time is discretized such that recombination and coalescence events are only
allowed to happen at a user-defined number of time points, K (default value is 20) (Ras-
mussen et al., 2014). These time points sj (for 0 <= j <= K − 1) are given by the function

sj = g(j) =
1

δ

{
e

j
K−1

log(1+δsK−1) − 1
}

(1.1)

where δ is a parameter determining the degree of clustering of points in recent times. Small
values of δ lead to a distribution of points that is closer to uniform between 0 and sK−1, and
higher values increase the density of points at recent times (default value is 0.01) (Hubisz and
Siepel, 2020). Equation 1.1 ensures that s0 is always 0, and sK−1 (or smax) is user defined
by the parameter –maxtime (default value is 200,000).

Rounding of continuous times into these K time points is done by defining bins with
breakpoints between them, such that the breakpoint between times sj and sj+1 is sj+ 1

2
=

g(j + 1
2
). All continuous values in the bin between sj− 1

2
and sj+ 1

2
are assigned the value

sj. We note that for the first and last intervals, the values assigned (s0 and sK−1) do not
correspond to a midpoint in the time interval but rather to its minimum (s0 = 0) or maximum
(sK−1 = smax)

Here, when reporting results in bins, we use the same time discretization as defined by
the ARGweaver breakpoints (sj+ 1

2
). However, we change the value assigned to times in these

bins: instead of using sj, we define tj as the median of the exponential distribution with
rate 1 at the interval between sj− 1

2
and sj+ 1

2
. To this end, we first calculate the cumulative

probability of the exponential distribution with rate 1 up to the median of the jth interval

pj =

s
j− 1

2∫
0

e−x dx +
1

2

s
j+1

2∫
s
j− 1

2

e−x dx

=1−

(
e
−s

j− 1
2 + e

−s
j+1

2

2

)
(1.2)

We then take the inverse CDF of the exponential distribution with rate 1, at the point
pj, to find the time tj = −ln(1− pj) corresponding to the median value for the interval.

This step is relevant for the simulation-based calibration (see below), where we take the
rank of true (simulated) coalescence times relative to the values sampled by ARGweaver.
If we used sj, coalescence times in the first or last ARGweaver time interval would not be
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represented by a midpoint. We correct for that by using tj, so that all time intervals are
comparable.

Relate does not use time discretization, and tsdate uses a discretization scheme where the
time points are the quantiles of the lognormal prior distribution on node ages (Wohns et al.,
2022). Here, we always apply the ARGweaver time discretization scheme when comparing
results in bins.

Relate

VCF files generated with msprime were converted to Relate haps and sample files using
RelateFileFormats –mode ConvertFromVcf and Relate’s PrepareInputFiles script. We ran
Relate (version 1.1.2) using –mode All with the same mutation rate (-m 2e-8 ) and effective
population size (-N 20000 ) used in the msprime simulations, as well as a recombination map
with constant recombination rate along the genome, with the same rate used in msprime
(2e-8 ).

We used Relate’s SampleBranchLengths program to obtain 1000 MCMC samples of co-
alescence times for the local trees inferred in the previous step in anc/mut output format
(–num-samples 1000 –format a). Similarly to the ARGweaver analysis, we also performed
this step in 20 sequence segments of 5Mb, and we thinned the results to keep only every 10th
MCMC sample. Finally, we extract pairwise coalescence times and calculate the ranks of
true pairwise coalescence times relative to the 100 MCMC samples. Due to the large num-
ber of pairwise coalescence times, for the simulations with 80 and 200 samples, we extracted
coalescence times from a subset of 210 pairs of samples. We extracted coalescence times for
every 4th vs. every 4+1th sample in the case of 80 samples, and 10th vs. every 10+1th
sample in the case of n=200.

tsinfer and tsdate

VCF files generated by msprime were provided as input to the python API using cyvcf2.VCF
and converted to tsinfer samples input object using the add diploid sites function described
in the tsinfer tutorial (https://tsinfer.readthedocs.io/en/latest/tutorial.html#r
eading-a-vcf). Genealogies were inferred with tsinfer (version 0.2.0 (Kelleher et al., 2019))
with default settings and dated with tsdate (version 0.1.3 (Wohns et al., 2022)) using the
same parameter values as in the simulations (Ne=10000, mutation rate=2e-8 ), with a prior
grid of 20 timepoints.

Pairwise coalescence times were extracted from the tree sequences using the function
tmrca() from tskit (version 0.3.4 (Kelleher et al., 2018)), and output in BED format, with
one file for each pair of samples. Finally, coalescence times at each site, for each pair of
samples were matched to the simulated ones (also in BED format) using bedops (Neph
et al., 2012).

https://tsinfer.readthedocs.io/en/latest/tutorial.html#reading-a-vcf
https://tsinfer.readthedocs.io/en/latest/tutorial.html#reading-a-vcf
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MCMC convergence

We evaluated MCMC convergence of Relate and ARGweaver through 1) visual inspection
of trace plots, 2) autocorrelation plots, 3) effective sample sizes and 4) the Gelman-Rubin
convergence diagnostics based on potential scale reduction factor (Gelman and Rubin, 1992;
Brooks and Gelman, 1998). Trace plots were also used to determine the number of burn-in
samples, and autocorrelation plots were used to determine thinning of the samples. See
Evaluating MCMC Convergence in Appendix of Chapter 1 for details.

Point estimates of pairwise coalescence times

We estimated pairwise coalescence times from the MCMC samples from Relate and ARG-
weaver by taking the average of 100 samples at each site (Figure 1.2). Since tsdate does
not output multiple samples of node times, we use its point estimate of pairwise coalescence
times directly. Point estimates of coalescence times were compared to the simulated values
for each pair of samples, at each site along the sequence.

Mean squared error (MSE) of point estimates was calculated from each point estimate
of coalescence time (for each pair of samples, at each site), as well as per bin of size 0.1 of
the simulated coalescence times (in units of 2Ne generations) for Figure A.2. We also report
Spearman’s rank correlation (r2) of the point estimates of pairwise times in each tree against
the simulated tree, averaged over all positions in the genome.

Simulation-based calibration

In addition to comparing MCMC point estimates to the true simulated values, we use sim-
ulation methods proposed by Cook et al. (2006) and Talts et al. (2020) to assess whether
Bayesian methods are sampling correctly from the true posterior distribution. (Cook et al.,
2006) proposed simulating data using parameters sampled from the prior. The posterior,
when averaged over multiple simulated data sets, should then equal the prior.

In our case, we sample ARGs, G, from the full coalescence process with recombina-
tion with a known implicit prior of pairwise coalescence times, P (t) = e−t. We simulta-
neously simulate sequence data, x, on the simulated ARGs from the distribution p(x) =∫
p(x|G)dP (G). The distribution of the averaged posterior of G, pave(G) =

∫
p(G|X)dP (x)

should then equal the prior for G (Talts et al., 2020), and hence the prior distribution for
the pairwise coalescence times, t, should equal the averaged posterior distribution for t.
Here, all population parameters relating to mutation, effective population sizes, etc., are
kept fixed and suppressed in the notation. One way we will examine the accuracy of the
posterior inferences is, therefore, to compare the average of the posterior of t to the expo-
nential distribution. In practice, we simulate data using msprime (Kelleher et al., 2016) and
pipe the data to the MCMC samplers (ARGweaver and Relate) for inference of the poste-
rior distribution. ARGweaver uses an approximation (SMC’) of the model (coalescent with
recombination) used in the data simulations, and Relate uses a heuristic method based on
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the Li and Stephens model. Thus, inadequacies of the fit of the posteriors could potentially
be caused by this discrepancy between the model used in simulations and the models used
for inference.

However, even if the averaged posterior resembles an exponential, the inferences for any
particular value of t may have a posterior that is too narrow or too broad. For a closer
examination of the accuracy of the posterior, we use a method proposed by Cook et al.
(2006) and Talts et al. (2020) that compares each posterior to the true value. To this end, we
compare each true (simulated) pairwise coalescence time to the corresponding posterior for
the same pair of haplotypes. If the posterior is correctly calculated, the rank of the true value
relative to the samples from the posterior should be uniformly distributed (Cook et al., 2006;
Talts et al., 2020). We use 100 MCMC samples from ARGweaver and Relate for each data
set, meaning our ranks take values from 0 to 100. Deviations from the uniform distribution
of ranks quantifies inaccuracies in estimation of the posterior. For example, an excess of low
and high ranks indicates that the inferred posterior distribution is underdispersed relative
to the true posterior.

Data availability

All the code and data related to this work are available in GitHub https://github.com/d

eboraycb/ARGsims.

1.3 Results

Comparison of simulated to estimated coalescence time per site

We compared coalescence times estimated by ARGweaver, Relate and tsinfer+tsdate to
the true values known from msprime simulations. In all three methods, estimates of coa-
lescence time per site are biased (Figure 1.3 and A.2). Small values of coalescence times
are generally overestimated, while large values tend to be underestimated (Fig A.2). In
tsinfer+tsdate, point estimates are apparently bounded to a narrow range (Figure 1.3G).
The mean squared error (MSE) of point estimates is larger in Relate (MSE=0.625) and
tsinfer+tsdate (MSE=1.631) than in ARGweaver (MSE=0.397), showing that point esti-
mates of pairwise coalescence times at each site are closer to the true value in ARGweaver.
Spearman’s rank correlation is also highest in ARGweaver (rs=0.761), but in this metric
tsinfer+tsdate (rs=0.705) perform better than Relate (rs=0.669).

For ARGweaver and Relate, the point estimates of coalescence times are obtained as
the means of samples from the posterior. These Bayesian estimates are not designed to be
unbiased and unbiasedness of the point estimator is arguably not an appropriate measure
of performance for a Bayesian estimator. Therefore, we also evaluate the degree to which
the posterior distributions reported by ARGweaver and Relate are well calibrated, i.e. rep-
resent distributions that can be interpreted as valid posteriors, and the degree to which

https://github.com/deboraycb/ARGsims
https://github.com/deboraycb/ARGsims
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the data-averaged posterior distributions of coalescence times equals the prior exponential
distribution.

Posterior distribution of coalescence times

We simulated data under the standard coalescent model, where the distribution of pairwise
coalescence times (in units of 2Ne generations, where Ne is the diploid effective population
size) follows an exponential distribution with rate parameter 1 (Figure A.3). As argued in
the Methods section, the same is true for the data-averaged posterior.

We compared the expected exponential distribution of coalescence times to the observed
distribution of coalescence times across all sites inferred by ARGweaver, Relate, and tsin-
fer+tsdate (Figure 1.4). For ARGweaver and Relate, we output 100 MCMC samples from
the posterior distribution and plot the distribution of pairwise coalescence times across all
sites and MCMC samples.

To facilitate visual comparison of the distributions between methods, we discretized Re-
late and tsinfer+tsdate coalescence times into the same bins as ARGweaver (Figure 1.4D,G,
see distributions without discretization in Figure A.4 and see Methods for a description of
ARGweaver time discretization). Because the time discretization breakpoints are regularly
spaced on a log scale, we use a log scale on the x-axis for better visualization.

Distributions of coalescence times from ARGweaver and Relate (Figure 1.4A and D) show
an excess around 1, when compared to the expected exponential distribution. However, that
bias is more pronounced in Relate than ARGweaver. In tsinfer+tsdate, the distribution is
truncated at 1.6, and it deviates more strongly from the expected exponential distribution
(Figure 1.4G). We note that the plots from ARGweaver and Relate are not directly compa-
rable to those of tsinfer+tsdate, since there are 100 coalescence time samples at each site
from the former two programs but only one from tsdate.

Simulation-based calibration

In this section, we use simulation-based calibration to evaluate whether ARGweaver and
Relate are generating samples from a valid posterior distribution of coalescence times (see
Methods). To that end, we simulated coalescence times at multiple sites following the stan-
dard coalescent prior distribution, and we generated 100 MCMC samples from the posterior
distribution using both ARGweaver and Relate. Finally, we analyse the distribution of the
ranks of the simulated coalescence times relative to the 100 sampled values at each site.

In the previous section, we showed that the posterior distributions of ARGweaver and
Relate are similar to the theoretically expected exponential distribution. However, in that
analysis we have not evaluated the distribution of MCMC samples relative to each simulated
value. The results of simulation-based calibration are informative about that distribution
and can reveal if the posterior distribution is well calibrated.

The distribution of ranks from ARGweaver (Figure 1.5A, Kullback-Leibler Divergence
(KLD) =0.027) is closer to uniform than that of Relate (Figure 1.5D, KLD=0.602). However,



CHAPTER 1. ESTIMATING COALESCENCE TIMES USING ARGS 17

Figure 1.3: Point estimates of coalescence times in ARGweaver (A-C), Relate (D-F) and
tsinfer+tsdate (G-I). Left column: µ = ρ = 2×10−8; middle column: µ/ρ = 10, ρ = 2×10−9;
right column: µ/ρ = 10, µ = 2× 10−7. For ARGweaver and Relate, point estimates are the
means of 100 MCMC iterations. Note that axes are in log scale. See Figure A.1 for the data
in plots A,D,G plotted in linear axes. Diagonal line shows x=y. MSE: Mean squared error;
rs: Spearman’s rank correlation.
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Figure 1.4: Distribution of coalescence times inferred by ARGweaver (A-C), Relate (D-F)
and tsinfer+tsdate (G-I). Left column: µ = ρ = 2 ∗ 10−8; middle column: µ/ρ = 10,
ρ = 2 ∗ 10−9; right column: µ/ρ = 10, µ = 2 ∗ 10−7. Plots D and G show the same data as
in Figure A.4, using different binning.
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Figure 1.5: Counts of ranks from simulation-based calibration in ARGweaver (A-C) and
Relate (D-F). Horizontal line shows expected uniform distribution. Left column: µ = ρ =
2 ∗ 10−8; middle column: µ/ρ = 10 decreasing recombination rate (ρ = 2 ∗ 10−9); right
column: µ/ρ = 10 increasing mutation rate (µ = 2 ∗ 10−7). Horizontal line shows expected
uniform distribution.

both show an excess of low and high ranks. The excess of low and high ranks indicates that
the sampled posterior distribution is underdispersed (Talts et al., 2020), i.e. the posterior
has too little variance and does not represent enough uncertainty regarding the coalescence
times.

One possible cause for this type of deviation from the uniform distribution could be
MCMC convergence, i.e., samples being autocorrelated, resulting in effective sample size
is lower than the number of samples taken, the MCMC chain not mixing well and/or the
MCMC chain not being run long enough to achieve convergence.

We show detailed results for MCMC convergence in Relate and ARGweaver in the Ap-
pendix of Chapter 1. Briefly, we have not found these types of convergence issues in ARG-
weaver or Relate with simulations of 8 haplotypes and mutation to recombination ratio of 1.
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Potential scale reduction factor (PSRF) from Gelman-Rubin convergence diagnostic statis-
tics are all close to 1 (Tables A.2, A.3), and effective sample sizes are almost all larger than
100. Therefore, MCMC convergence does not seem to explain why the rank distributions
are not uniform.

Increased mutation to recombination ratio

When inferring an ARG from sequence data, the information for inference comes from mu-
tations that cause variable sites in the sequence data. The lower the recombination rate, the
longer the span of local trees will be and the more mutations will be available to provide
information about each local tree. More generally, an increased mutation to recombination
ratio is expected to increase the amount of information available to infer the ARG.

In our standard simulations presented so far, the mutation to recombination ratio is one
(µ = ρ = 2 ∗ 10−8). We increased the simulated mutation to recombination ratio to 10,
both by decreasing the recombination rate (ρ) tenfold and also by increasing the mutation
rate (µ) tenfold. We expected that these scenarios would improve inference of ARGs, and
consequently the estimates of pairwise coalescence times. Point estimates are better with
increased mutation to recombination ratio in ARGweaver (Figure 1.3B,C), Relate (Figure
1.3E,F) and tsinfer+tsdate (Figure 1.3H,I).

The coalescence times distribution in Relate (Figure 1.4E,F) are closer to the expected
with µ/ρ = 10 relative to µ/ρ = 1 (Fig 1.4D), and the simulation-based calibration also
improved (Figure 1.5D-F, KLD=0.492 and 0.498 compared to KLD=0.602).

The results from ARGweaver with µ/ρ = 10 were more surprising, with the simulation-
based calibration showing a more pronounced underdispersion of the posterior distribution
(Figure 1.5B,C, KLD=0.286 and 0.350, compared with KLD=0.027 for µ/ρ = 1 ). The
overall distribution of coalescence times, however, showed little change (Figure 1.4B,C). One
possible explanation for ARGweaver results being worse with higher mutation to recom-
bination ratio might be that MCMC mixing is worse under those conditions, leading to
convergence issues not observed for the previous scenario. Examining convergence diagnos-
tics seems to confirm this with more coalescence times showing low effective sample size,
and with a potential scale reduction factor showing evidence of lack of convergence of some
coalescence times (see Evaluating MCMC Convergence in Appendix of Chapter 1).

We show additional simulation results in the Appendix of Chapter 1, including simula-
tions with reduced µ/ρ, which could be a realistic scenario around recombination hotspots
(Figures A.5 and A.6) and ARGweaver results on simulations with intermediate values of
µ/ρ (2 and 4), under the SMC and SMC’ genealogy models, and with the Jukes-Cantor
mutation model in the Appendix of Chapter 1.

Number of samples

Next, we evaluate ARG inference with simulations with different sample sizes. Our standard
sample size used so far was 8 haplotypes, and here we change it to 4, 16 and 32. For Relate
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and tsinfer+tsdate, which are scalable to larger sample sizes, we also evaluated inference
with 80 and 200 sampled haplotypes.

For ARGweaver, increasing sample sizes decreased the MSE of point estimates (Figure
1.6A-C), distributions of coalescence times remained similar (Figure 1.7A-C), but underdis-
persion of the posterior distribution increased (Figure 1.8A-C). As mentioned in the previous
section, this could be caused by an MCMC mixing problem. In particular, a larger num-
ber of samples will contribute to an increasing number of states for ARGweaver to explore,
possibly leading to poor MCMC convergence (see Evaluating MCMC Convergence).

With a smaller sample size (n=4 haplotypes), the coalescence time distribution from
Relate showed an excess around the mean value (coalescence time of 1) (Fig 1.7D). With
increasing sample sizes, it became more similar to the expected distribution (Fig 1.7E-H).
Calibration of the posterior distribution improved with increasing sample sizes up to 32
haplotypes (Figure 1.8D-H).

Both the point estimates and posterior distribution of coalescence times in tsinfer+tsdate
do not consistently improve or worsen with increasing sample sizes in the range tested here
(Figures 1.6I-M and 1.7I-M).

Length of input sequence

Point estimates of all programs remained similarly accurate when a much shorter input se-
quence was provided (5mb and 250kb, Figure A.7A-C and A.8A-C, compared with 100Mb in
previous analyses). The distribution of coalescence times with 5Mb input sequence remained
similar to the ones inferred with 100Mb input sequence (Figure A.7D-F). However, distribu-
tions from simulations with only 250kb input sequence are visibly more deviated from the
expected exponential distribution (Figure A.8D-F). Distributions of ranks are noisier with
decreasing input sequence length, but KLD remained similar (Figure A.8 and A.7H,G).

Runtime

We point out that runtimes differ widely among the programs compared here, and this factor
should be taken into account for users making decisions on what method to use for their
applications. For example, in the simulations with mutation rate equal to recombination rate,
with sample size of 8 haplotypes and taking 1000 MCMC samples, ARGweaver took a total
of 641 computing hours while Relate took 17 hours. The clock time was reduced by running
both programs in parallel for segments of 5Mb of the total 100Mb sequence, meaning that
ARGweaver took approximately 35h. However, this still could be a significant amount of time
for the user, depending on their utilization of the algorithm. For a systematic comparison
of runtimes between Relate and ARGweaver, see Speidel et al. (2019). Impressively, tsinfer
and tsdate took only 5 minutes.
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Figure 1.6: Point estimates of ARGweaver (A-C), Relate (D-H) and tsinfer+tsdate (I-M).
Columns show different number of simulated samples 4, 16, 32, 80 or 200 haplotypes. Mean
squared error (MSE) is shown for each plot. Note that ARGweaver is not scalable for
simulations with larger sample sizes. * indicate results for a subset of 210 pairs of samples,
instead of all pairwise coalescence times.
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Figure 1.7: Distribution of coalescence times in ARGweaver (A-C), Relate (D-H) and tsin-
fer+tsdate (I-M). Columns: sample sizes of 4, 16, 32, 80, 200 haplotypes. * indicate results
for a subset of 210 pairs of samples, instead of all pairwise coalescence times.

1.4 Discussion

ARG inference promises to be a tremendously useful tool for inferences of evolutionary his-
tory, such as natural selection or demography. However, it is also a very hard computational
problem. We compared methods that use different approaches to this problem and evaluated
their accuracy using simulated data and comparisons of three aspects of coalescence time
estimates: 1) individual point estimates of each pairwise coalescence time; 2) the overall
distribution of coalescence times across all sites; 3) the calibration of the reported posterior
distributions.

Ancestral recombination graphs are extremely rich in information, including topologi-
cal information of individual coalescence trees and information regarding the distribution
of recombination events. We have not evaluated these aspects of inferred ARGs but have
instead only focused on pairwise coalescence times. However, pairwise coalescence times are
extremely informative statistics about many population-level processes and pairwise rela-
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Figure 1.8: Simulation-based calibration for ARGweaver (A-C) and Relate (D-H). Columns:
sample sizes of 4, 16, 32, 80, 200 haplotypes. Horizontal line shows expected uniform dis-
tribution. Note that the y-axis is centralized on different values but always has the same
length. * indicate results for a subset of 210 pairs of samples, instead of all pairwise coales-
cence times.

tionships between individuals, and they are also indirectly informative about tree topolo-
gies. Other research has compared the accuracy of tree topology inference (Rasmussen et al.,
2014; Kelleher et al., 2019) and recombination rates (Deng et al., 2021) among ARG infer-
ence methods. We opted to focus on coalescence times not only because they are a very
informative statistic about evolutionary processes, but also because they can be fairly com-
pared across all methods. As described in the Introduction, comparisons of tree topologies
could be confounded by the presence of polytomies in ARGweaver and tsinfer+tsdate and
the absence of polytomies in Relate.

We found a strong speed-accuracy trade-off in ARG inference. ARGweaver performs
best in our three tests: point estimates, the overall distribution of coalescence times, and
the quality of sampling from the posterior. Importantly, it is also the only method we
compared that resamples both topologies and node times (Table 1.1). This likely leads to a
better exploration of ARG space and is one reason why it provides better samples from the
posterior. On the other hand, it also contributes to making ARGweaver much slower than
the other methods and not scalable for genome-wide inference of 50 or more genomes.

Relate largely undersamples tree topologies (Deng et al., 2021), and thus every marginal
tree estimate is only as good as an average over a series of true trees (Figure 1.1D). This
will naturally lead to a more centered, under-dispersed distribution, as shown by the larger
deviations from the uniform distribution in simulation-based calibration (Figures 1.5 and
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1.8, where ARGweaver KLD values range from 0.008 to 0.350, and Relate range from 0.429
to 0.938). Despite not performing as well as ARGweaver in our evaluation criteria, Relate
seems sufficient for comparisons of average trees across different regions in the genome.

Additionally, we showed that Relate’s inferences generally improve with sample size (Fig-
ures 1.6, 1.7, 1.8). This is expected from inference using the Li and Stephens (2003) copy
algorithm, which tends to better approximate the genealogical process with larger samples
sizes (Hubisz et al., 2020). Because Relate is fast enough, even for thousands of samples,
it is preferred for large numbers of genomes - not only because ARGweaver is not scalable
for such large sample sizes but also because Relate inference tends to improve with larger
sample sizes (Hubisz and Siepel, 2020).

The framework of tsinfer and tsdate is also based on the Li and Stephens (2003) model,
and it additionally takes advantage of the succinct tree sequence data structure that makes
it scalable to even larger sample sizes than Relate, and at least an order of magnitude
larger than tested here (Wohns et al., 2022). Although we did not find an improvement
of tsinfer+tsdate estimates with increasing sample sizes in the range we tested (4 to 200
haplotypes), our analyses cannot rule out the possibility of better tsinfer+tsdate inference
at larger sample sizes.

Increasing the mutation to recombination ratio in simulations improved point estimates
from ARGweaver but did not improve posterior calibration (Figure 1.5). This lack of im-
provement of the posterior sampling can be explained by lack of convergence and could
potentially be improved by increasing the number of MCMC iterations. Although the statis-
tics recorded by ARGweaver at each iteration (likelihood, number of recombinations, etc.)
show convergence (Figure A.9, Table A.1), we observed that certain pairwise coalescence
times did not converge in the simulations with increased mutation to recombination ratio
(Table A.2 see more discussion in ARGweaver in Appendix of Chapter 1).

Limitations of our analyses and future directions

The focus of this study is the inference of coalescence times under the standard neutral
coalescent, assuming all parameter values of this model are known and correctly provided
to the programs performing inference. In other words, our goal was to investigate the
performance of the ARG inference methods when the underlying assumptions are met. We
have not explored how the methods perform under more complex demographic models and
in the presence of natural selection, when the underlying assumptions are not met, but this
is clearly an important future direction.

We also restrict our analyses to small sample sizes relative to what is possible for Relate
and tsinfer+tsdate. However, increasing sample sizes up to 200 samples does not consistently
improve performances of these methods. We also note that interesting discoveries have been
made by applying ARG-based methods with similarly small sample sizes, e.g. Hubisz et al.
(2020) analysed gene flow between archaic and modern humans using five genomes: two
Neanderthals, one Denisovan and two modern humans.
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Other factors not explored here could also be relevant for applications to real data. For
example, sequencing or phasing errors could reduce the performance of all methods. Each
of the methods compared here deal with these problems in a different way. Both Relate
and tsinfer require phased data. While Speidel et al. (2019) argue that Relate is robust
to errors in computational phasing, Kelleher et al. (2019) acknowledge that phasing errors
could reduce the performance of tsinfer. ARGweaver is the only method of the three that
supports unphased data, by integrating over all possible phases. However, the performance
of the program on unphased data has not been evaluated in this study.

Relate takes sequencing errors into account by allowing some mutations that are incom-
patible with the tree topology in its tree building algorithm. Some robustness to error is
shown in Speidel et al., Figure S3 (Speidel et al., 2019). Tsdate also uses heuristics in
the ancestral haplotype reconstruction stage to increase its robustness to genotyping er-
rors (Kelleher et al., 2019), and its newest version also accounts for recurrent mutation.
ARGweaver can deal with genotyping errors statistically, using genotype likelihoods and in-
tegrating over all possible genotypes (Hubisz and Siepel, 2020). In addition, it can take into
account local variation in coverage and mapping quality, all of which are features not tested
here. ARGweaver can also incorporate a map of variable mutation rates. ARGweaver, Re-
late and tsinfer can all incorporate maps of variable recombination rates across the genome,
a feature which was not used in our constant rate simulations.

In our standard simulations, we use mutation rate equal to recombination rate, which is
believed to be approximately true for humans. In reality, even if average recombination and
mutation rates are similar, the average recombination rate is not distributed equally along
the genome in humans and other mammals but is concentrated in recombination hotspots.
Therefore, it is possible that ARG inference could be more accurate with real data, since
local trees could span longer sequences separated by recombination hotspots.

Recommendations for usage

Given that ARGweaver provides the most accurate coalescence times estimates and the most
well-calibrated samples from the posterior distribution of coalescence times, we recommend
using it whenever computationally feasible. However, it is highly computationally demanding
and its usage can become unfeasible with sample sizes close to 100. Running ARGweaver on
small segments of sequence (5Mb or 250kb Fig. A.8, A.7) gave similar results to applications
on 100Mb segments, making the program highly parallelizable, at least for the purpose of
estimating pairwise coalescence times.

When ARGweaver is computationally prohibitive, Relate and tsinfer+tsdate are viable
alternative options. However, we emphasize that we have only examined coalescence time
estimates, and for other downstream uses of ARG inference that do not rely mostly on
coalescence times, the tradeoffs between these methods could be different. See Deng et al.
(2021) (Deng et al., 2021) for a comparison of these methods in the context of estimating
recombination rates.
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Chapter 2

Estimating population split times and
migration rates from historical
effective population sizes

This chapter is co-authored by Vladimir Shchur, Anna Ilina and Rasmus Nielsen.

2.1 Introduction

Effective population size is one of the main characteristics of the demography of a population,
and an important parameter determining evolutionary processes. Although it is related to
census population sizes, it does not correspond to it in most cases. For example, for humans,
effective population size is estimated to be on the order of ten thousand, which is much
smaller than actual population size, in the order of billions (Henn et al., 2012).

Effective population size has been formally defined in many different ways. The concept
was originally introduced by Wright (1931) in the context of describing causes of random
variation in allele frequencies through time (i.e. genetic drift). In that context, effective
population size is “the number of individuals in a theoretically ideal population having the
same magnitude of random genetic drift as the actual population” (Hartl and Clark,
2007). Common models for this ideal population are standard Wright-Fisher (Fisher, 1930;
Wright, 1931) or Moran (Moran, 1958) models. In an actual population, a combination of
population size, inbreeding, unequal sex ratios and variance in offspring number all contribute
to genetic drift, and thus to the effective population size. In population models where these
parameter values are known, effective population size can be calculated directly using well-
established equations (Hartl and Clark, 2007).

In practice, because effective population size measures genetic drift, and drift determines
the amount of genetic diversity in the idealized population, effective population size is often
interpreted as a measure of genetic diversity. The definition of effective population size
then changes slightly to the number of individuals in a theoretically ideal population having
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the same amount of genetic variation as the actual population. Under this definition,
effective population size can be calculated directly from measures of genetic diversity of
real populations. In a real population, however, the level of genetic diversity is affected
by processes other than drift, such as migration and natural selection. When the effective
population size is estimated from genetic diversity, it is affected by these other processes. In
other words, when we define effective population size as a measure of genetic diversity, it no
longer reflects only drift.

The Wright-Fisher and Moran population models mentioned earlier, as well as many
others, converge to Kingman’s coalescent model when population sizes are large (Kingman,
1982; Sjödin et al., 2005; Wakeley and Sargsyan, 2009). In this model, effective population
size is a parameter determining the probability distribution for coalescence times (time to
a common ancestor) of two lineages. More specifically, the coalescent effective population
size is the inverse of the coalescence rate. Because coalescence times predict most measures
of genetic diversity in a population, the coalescent effective population size has been argued
to be the most general definition of effective population size (Sjödin et al., 2005), and it is
the definition we will use here.

Methods to estimate historical effective population size

Many methods were developed to estimate the variation of effective population size through
time. The most widely used one is PSMC (Li and Durbin, 2011), which uses a single diploid
genome (or a pair of haploid genomes) to infer past effective population sizes. PSMC is
based on a sequentially Markovian coalescent model (McVean and Cardin, 2005), where
states (coalescence times, discretized) change along a DNA sequence. A Hidden Markov
Model (HMM) approach is used to infer the distribution of coalescent times between a pair
of lineages. The emission probabilities of this HMM are the probabilities of observing a site
that is variable (heterozygous) or non-variable (homozygous), given a coalescence time. The
underlying intuition is that the probability of observing a heterozygous site increases with
coalescence time. The effective population size is then given by the inverse of the coales-
cence rate. There are many other HMM-based methods for inference of historical effective
population size: coalHMM (Hobolth et al., 2007; Dutheil et al., 2009), diCal (Sheehan et al.,
2013), MSMC (Schiffels and Durbin, 2014), SMC++ (Terhorst et al., 2017) (see (Spence
et al., 2018) for a review).

Previous studies have shown how these and other methods can infer past effective popu-
lation sizes that are very different from simulated census population sizes when populations
are structured (Heller et al., 2013; Mazet et al., 2016; Chikhi et al., 2018). These studies
showed how population structure can lead to misinterpretation of past effective population
size plots. While it is true that PSMC plots can be often misinterpreted, we argue that
the change in past effective population size due to population structure is an expected and
desirable behaviour, since these methods infer the coalescent effective population size, and
not the census population sizes.
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Migration, for example, is a phenomenon that generally increases the coalescent effective
population size of the population receiving migrants, since incoming migrants will likely
increase genetic diversity. Interestingly, if we consider the alternative definition of effective
population size as the change in allele frequency through time due to drift, the effect of
migration on effective population size is the opposite: migration introduces sudden changes in
allele frequency, which can be interpreted as strong drift, and thus small effective population
size (Wang and Whitlock, 2003). This effect is expected only in the short term, and it is
reversed in the longer term as populations approach an equilibrium (Wang and Whitlock,
2003). Here, however, we are focusing on the coalescent effective population size, which
tends to increase with immigration. We emphasize that the effective population size inferred
with PSMC should be interpreted as the amount of genetic variation in a population through
time. Therefore, PSMC results are informative about both population size and migration.
Nonetheless, as we will show, inferences of effective population size from PSMC can in some
cases be biased when the transition probabilities of the HMM underlying PSMC inferences
cannot adequately fit the true transitions in coalescence times along the genome in the
presence of migration.

In this work we make an effort to disentangle the effects of migration from effective pop-
ulation sizes. We discuss the case of two fully exchangeable populations (e.g. Wright-Fisher
populations) with migration between them. A sample from any of the two admixed popula-
tions contains footprints of historical effective population size of both parental populations.
We formalize the concept of local effective population size, which is the effective popula-
tion size of the parental populations, after accounting for the effect of migration. We show
that the local effective population size can be determined from the the ordinary effective
population size estimated by PSMC if migration rates are known or inferred.

We also develop a method called MiSTI (for “migration and split time inference”), which
infers split time and migration rates under a model of two populations that exchange migrants
after their split from a common ancestor. To do so, MiSTI combines information from the
joint site frequency spectrum (SFS) of two diploid samples with the ordinary historical
effective population sizes (as inferred by PSMC). MiSTI also uses the inferred migration
rates to recover the local effective population size, i.e. to “correct” the PSMC curves for the
effect of admixture. By applying this method to simulated data we show scenarios where
PSMC finds a good approximation of the simulated effective population size, and scenarios
where PSMC results do not correspond to the true effective population size. We also show
that MiSTI appropriately corrects PSMC curves for the effect of migration, when migration
rates are known and PSMC estimates are close to the true effective population size. Next,
we apply MiSTI to data from humans and show i) How MiSTI can correct the effect of
Neanderthal admixture on the historical effective population size of a human genome of
European ancestry (CEU) and ii) What split times and migration rates best fit a model of
split time and migration between pairs of human populations.
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Other methods that infer population split times and/or migration
rates from a pair of diploid genomes

SMC++ (Terhorst et al., 2017) is a method that infers historical effective population sizes,
combining the coalescent HMM (similar to PSMC) with information from the SFS. When
provided data from two populations, SMC++ can also jointly infer split times under a model
of a clean split, i.e. without migration between populations after the split.

Song et al. (2017) fit an isolation-migration model to infer population split times from
PSMC results. Their approach differs from ours methodologically and conceptually. In terms
of methodology, Song et al. (2017) use an ABC approach to fit parameters, while we com-
pute the composite likelihood of parameter values based on equations derived analytically.
Conceptually, we formalize the distinction between the ordinary effective population size of
admixed samples (often inflated by migration) and the local effective population size of its
parental populations, which we can recover in the presence of migration, while Song et al.
(2017) does not make this distinction.

Wang et al. (2020) developed a method, MSMC-IM, that also infers migration rates
from historical effective population sizes. MSMC-IM fits an isolation-migration model with
continuous symmetric migration to the inverse coalescence rates inferred by MSMC2. Instead
of explicitly modelling a split time point, they model population split as a continuous process.
The event of two populations merging backwards in time is represented as an increase in
migration rates, to a point where both populations exchange migrants freely. In contrast
to MiSTI, MSMC-IM does not aim to recover the local effective population size. Other
differences worth pointing out are that MiSTI allows for asymmetric migration between
populations and it uses PSMC instead of MSMC, which requires phased genomes.

Arredondo et al. (2021) use yet another approach. Their method, SNIF (Structured
Non-stationary Inferential Framework) fits the curves of coalescent effective population size
through time (which they denominate inverse instantaneous coalescence rate, IICR), as in-
ferred by PSMC, to island models with symmetric migration and constant deme size. This
method allows to infer the number of demes and migration rates among demes from IICR
curves alone.

Schlebusch et al. (2017) introduced the TT-method (Sjödin et al., 2021), which can also
infer population split times from two diploid genomes representing each of the two popu-
lations. The TT-method uses the joint site frequency spectrum of these two genomes to
analytically calculate split times. It relies on two assumptions that are relaxed in MiSTI:
1) the effective population size of the ancestral population remains constant and 2) there
is no migration between populations after the split. We compared MiSTI and TT-method
inferences of split times between human populations, and we show through simulations that
the first assumption of TT-method leads to large errors in the inferred split times for histor-
ical effective population sizes similar to those of human populations, even in the absence of
migration.
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2.2 Methods

Historical effective population size.

As previously discussed, effective population size can be defined as the average time to coa-
lescence of two lineages, measured in number of generations (Wakeley and Sargsyan, 2009).
Under the standard coalescence model with a single homogeneous population (Kingman,
1982), the interpretation is simple. For an effective population size N ≫ 1 the rate of coales-
cence is λ = 1/N per generation, and the expected waiting time to coalescence is λ−1 = N
generations. This definition can be naturally extended in order to define the historical ef-
fective population size. Consider the coalescence rate at time t, λ(t), between the pairs of
lineages from a population. The time t = 0 corresponds to the present and t increases toward
the past. The coalescent rate λ(t) determines an inhomogenous Poisson process which de-
scribes the distribution of coalescent times. Hence, the probability distribution of coalescent
times Tc is

P (Tc = t) = λ(t)e−
∫ t
0 λ(s)ds.

We define the inverse of λ(t) as the ordinary historical effective population size

N(t) =
1

λ(t)
.

This quantity depends on population structure and demography, and it is a parameter which
allows mapping of a real population with complex demography and structure on a single
idealized population (e.g., a Wright-Fisher population) that is similar with respect to some
property, as described in the Introduction. We note that this concept of historical effective
population size is useful for interpreting the results of methods such as PSMC that allow
inferences of varying effective population size through time (Li and Durbin, 2011; Spence
et al., 2018). We will show that though for some scenarios PSMC indeed infers a good
estimate of the ordinary effective population size, in other scenarios with migration, PSMC
infers a biased estimate of effective population size.

Using standard population genetic theory, it is possible to explore the effect of population
structure on effective population size (Mazet et al., 2016; Chikhi et al., 2018). Assume,
for example, that an observed (modern) population Sm is formed by admixture of several
parental populations. To determine its historical effective population size, we need to trace
pairs of lineages from Sm back in time, until their coalescence. The lineages can switch
between parental populations (Fig. 2.1), hence the genetic variation of Sm has a footprint
from each of these populations.

We here develop this concept for the case of two parental populations with admixture
(continuous or pulse). We denote the two parental populations by S1(t) and S2(t). At any
time t, a lineage ancestral to the observed population Sm is either in population S1(t) or in
population S2(t), due to migration. Within populations S1(t) and S2(t) lineages are fully
exchangeable, which means that every pair of lineages from the same population has the
same probability of coalescence. Effective population sizes of S1(t) and S2(t) are NL1(t)
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and NL2(t) respectively. NL1(t) and NL2(t) are what we define as local effective population
sizes, i.e they represent the effective number of individuals in the populations at time t after
discounting for the effect of migration. In other words, this is the rate of coalescence of two
lineages conditional on both of them being in the given population.

If two lineages are in the same population Si(t) (i = 1, 2) at time t, they can coalesce
with rate 1/NLi(t). If they are in different populations, coalescence is not possible between
them. Conditional on two lineages having not coalesced by time t, let P1(t) and P2(t) be
the probabilities that two lineages are in the population S1 and population S2 respectively.
Let P0(t) be the probability that the two lineages are in different populations. Then the
coalescence rate between a pair of lineages at time t is

λ(t) = P1(t)
1

NL1(t)
+ P2(t)

1

NL2(t)
+ P0(t) · 0, (2.1)

and the ordinary effective population size is

N(t) =
1

λ(t)
=

1

P1(t)
1

NL1(t)
+ P2(t)

1
NL2(t)

. (2.2)

The condition that the sampled population Sm is S1(0), is equivalent to setting the initial
conditions of probabilities Pi (i = 0, 1, 2) to

P1(0) = 1, P2(0) = P0(0) = 0.

The dependence of Pi on the time of observation is natural, because probabilities of migration
might change over time, and even if they are constant, the cumulative amount of migration
changes over time.

So, as shown above there is a clear difference between the local effective population size
(NL1(t) and NL2(t)) of parental populations and the ordinary effective population size of an
observed admixed population (N(t)). The estimates of effective population size obtained by
PSMC and similar methods are estimates of the ordinary effective population size (N(t))
and not local effective population size (NL(t)).

Continuous and pulse migration

Equation 2.2 defining the ordinary effective population size, depends on the probabilities
Pi(t) (i = 1, 2, 0) of two lineages being in population i at time t, given they have not
coalesced at t. These probabilities can be found by solving a set of differential equations.
The past dynamics of two lineages is described by a coalescent model, which is a Markovian
process going back in time. There are four possible states for this process:

• both lineages are in the first population at time t with probability p1(t),

• both lineages are in the second populations at time t with probability p2(t),
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• the lineages are in different populations at time t with probability p0(t),

• the lineages have coalesced by time t with probability pc(t). This is an absorbing state.

Transitions between the first three states are possible through migration (either contin-
uous or pulse). Transitions into the last absorbing state occur through coalescences, and
pc(t) = 1− p1(t)− p2(t)− p0(t). By definition of conditional probabilities,

Pi(t) =
pi(t)

1− pc(t)
=

pi(t)

p1(t) + p2(t) + p0(t)
, (2.3)

for i = 1, 2, 0.
The continuous migration rate mij(t) (for i = 1, j = 2 or i = 2, j = 1) is the rate with

which a single lineage from population Si(t) moves into population Sj(t), backwards in time.
Considered forward in time, these migration rates correspond to the fraction of population
Si made of lineages from population Sj (i ̸= j), when scaled in units of a reference effective
population size N0 ≫ 1. This is the same definition as used in standard coalescence models
with migration (Slatkin, 1982, 1987; Notohara, 1990; Wilkinson-Herbots, 1998) including
Hudson’s ms simulator (Hudson, 2002).

Henceforth, we omit the dependence of these functions on t in our notations to improve
readability. From standard definitions of the coalescent with migration, we then have the
following system of differential equations:

p′1 = −
(
2m12 +

1

NL1

)
p1 +m21p0,

p′2 = −
(
2m21 +

1

NL1

)
p2 +m12p0,

p′0 = 2m12p1 + 2µ21p2 − (m12 +m21)p0.

(2.4)

where p′i indicates the derivative of pi with respect to t.
Pulse migration acts instantaneously at time tπ. Backwards in time, it drags a lineage

from one population to the other with a certain probability π. Forward in time, π is the
proportion of a recipient population made up of individuals from the donor population due
to pulse admixture. Assume that the donor population is population 1 and the recipient
population is population 2. We write t+π to indicate the time right before the pulse migration
and t−π to indicate the time right after the pulse migration, forward in time (see Figure 2.1
for clarification). Then the probabilities pi (i = 1, 2, 0) change as follows

p1(t
+
π ) = p1(t

−
π ) + π2p2(t

−
π ) + πp0(t

−
π ),

p2(t
+
π ) = (1− π)2p2(t

−
π ),

p0(t
+
π ) = (1− π)p0(t

−
π ) + 2π(1− π)p2(t

−
π ).

(2.5)

The parameter π is equivalent to the parameter 1 − p of the -es switch in Hudson’s ms
simulator (Hudson, 2002).
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Figure 2.1: Notations for continuous migration (on the left) and pulse migration (on the
right) models. In the continuous migration case, mij is the migration rate from population
i to population j, backwards in time. In the pulse migration case, π is the probability of
migration of a lineage, tπ is the instantaneous time of migration, t+π and t−π are the times
right before and right after the migration pulse.

Disentangling the effect of migration on effective population size.

Assume that we observe two populations S
(1)
m = S1(0) and S

(2)
m = S2(0), which had ancestral

admixture with each other. Writing equation 2.2 for samples from both populations, we get
the system of equations relating the ordinary effective population size of S

(1)
m and S

(2)
m (N1

and N2) with the local effective population size of each of the two parental populations (NL1

and NL2). 
N1(t) =

1

P
(1)
1 (t) 1

NL1(t)
+ P

(1)
2 (t) 1

NL2(t)

,

N2(t) =
1

P
(2)
1 (t) 1

NL1(t)
+ P

(2)
2 (t) 1

NL2(t)

,
(2.6)

where P
(j)
i is the probability that both ancestral lineages from population S

(j)
m are in popula-

tion i (see equation 2.3). These functions can be derived from equation 2.2 by setting initial

conditions to P
(1)
1 (0) = 1 for the first populations and P

(2)
2 (0) = 1 for the second population.

As we already mentioned, PSMC or similar methods can be used to estimate the ordinary
effective population size, N(t). Given samples from two admixed populations, the underlying
local effective population size (NL1 and NL2) of their parental populations S1(t) and S2(t)
can be estimated from equation 2.6.

Unfortunately, there is no closed form solution of equations 2.4 and 2.6. PSMC ap-
proximates historical effective population size with a piece-wise constant function. In our
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inference, we assume that migration rates are constant in each time interval, and similarly to
PSMC, we approximate local effective population sizes with a piece-wise constant trajectory.
So, instead of solving equation 2.6, we calculate piece-wise constant functions NL1(t) and
NL1(t) such that the probabilities to coalesce within each time interval is the same as inferred
by PSMC. In more details, for two lineages from population i the probability of coalescence
p̂ic within [t1, t2] inferred by PSMC is

p̂ic = pnc

(
1− e

− t2−t1
Ni

)
,

where pnc is the probability that two lineages have not coalesced by time t1.
From equation 2.4 the probability pic that two lineages from population i coalesce within

the interval [t1, t2] is
pic = pc(t2)− pc(t1).

And we fit NL1 and NL2 so that
pic = p̂ic.

Estimating migration rates and split time

In the previous subsection we show how one can calculate local effective population sizes
for given values of migration rates and split time. Of course, it is also desirable to estimate
these parameters, because they are often unknown. Our method fits the joint site frequency
spectrum (SFS) of two diploid individuals representing two populations. Let fi,j (i, j =
0, 1, 2) be the probability that a variable site has i derived alleles in the first individual and j
derived alleles in the second individual. Notice that f0,0 and f2,2 are excluded because they
correspond to non-variable sites. Then the probabilities fi,j define a multinomial distribution.

Let n = {n0,1, n1,0, n1,1, n1,2, n2,1} be the site frequency spectrum from the data, i.e. ni,j

is the non-normalised counts of sites with i and j derived alleles in the first and second indi-
vidual, respectively. We consider the composite likelihood function (which ignores possible
correlations between the sites) given by the multinomial distribution:

L(SFS|n) =
∏̂

i,j
f
ni,j

i,j .

The theoretical SFS for a given set of parameters and PSMC trajectories can be computed
by numerically solving a set of linear differential equations describing a Markov process with
44 states. These states describe all possible ways in which lineages of a coalescent tree with
four tips (two samples from each of two populations) can be distributed among populations.
These states include the possibility of coalescence between lineages and migration between
populations through time (details are given in the Appendix B.1).
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Software implementation

Our method for estimating underlying local effective population size is implemented in
Python 3 under the name MiSTI. The implementation is available at https://github

.com/vlshchur/MiSTI and distributed under GNU GPL3.

2.3 Results

Obtaining local effective population size from the ordinary
effective population size estimated by PSMC

In this section we demonstrate the effect of migration on effective population sizes, and we
will qualitatively assess the PSMC inference of historical effective population size trajectories.

We used ms (Hudson, 2002) to simulate two population size trajectories: one trajectory
(population 1) has constant size through time after the population split, and the second
trajectory (population 2) has a bottleneck after the split, followed by a recent population
expansion. Using these population size trajectories, we simulated symmetric migration be-
tween populations, as well as unidirectional migration. For each simulation, we show: 1) the
ordinary effective population size of both populations (N1 and N2) calculated using Equation
2.6, 2) the ordinary effective population size estimated using PSMC (N̂1 and N̂2), and 3) the
local effective population size (N̂L1 and N̂L2) obtained with MiSTI by correcting the effective
population size trajectories for the effect of migration.

Continuous, bidirectional migration between populations 1 and 2 from the present until
the split time generally increases the ordinary effective population size (N1 and N2) relative
to the simulated local population size (NL1 and NL2, Figure 2.2A). However, notice that
population 1 has a decreased effective population size relative to its simulated local size,
during the population 2 bottleneck (Figure 2.2A). This decrease in genetic variation observed
in population 1 is caused by the possibility that lineages from population 1 go through the
bottleneck in population 2, where coalescence rates are increased.

In this scenario, PSMC generally estimates the ordinary effective population size (Figure
2.2C) well, despite the smoothing of instantaneous populations size changes that has been
described previously (Li and Durbin, 2011). We also note that in Figure 2.2A, the historical
effective population size of populations 1 and 2 coincide before the bottleneck, but PSMC
trajectories do not coincide (Figure 2.2C). We discuss this possible bias in PSMC below.

Continuous, unidirectional migration from population 1 to 2, generates an increase in
the ordinary effective population size of population 2 (Figure 2.2B), which is detected by
PSMC (Figure 2.2D). In this scenario, the inferred PSMC trajectory underestimates effec-
tive population size of population 2 (the one receiving migrants) during the bottleneck, and
overestimates it before the bottleneck. We hypothesize that this effect, as well as the discor-
dance of PSMC curves prior to the bottleneck in Figure 2.2C, could be due to the violation

https://github.com/vlshchur/MiSTI
https://github.com/vlshchur/MiSTI
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Figure 2.2: Continuous migration (ms parameter Mij = 2) from the present to split time
(25000 generations, indicated by vertical bar). (A,C,E) Bidirectional migration. (B,D,F)
Uni-directional migration from population 1 to population 2. (A,B) Simulated local effective
population sizes and ordinary effective population sizes calculated according to equation 2.6.
(C,D) True ordinary effective population size from A,B, and estimated by PSMC. (E,F) True
local population sizes from A,B, and estimated by MiSTI.

of the SMC model assumption that samples come from a single panmictic population, as we
explore further in the next section.

Applying MiSTI correction of PSMC curves with the known migration rates and split
times used in the simulations, to estimate local population sizes (NL1 and NL2), recovers
trajectories similar to the simulated ones (Figures 2.2E,F).
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Pulse migration also increases historical effective population size. A single pulse of mi-
gration at time zero will cause effective population size to increase monotonically backwards
in time until the time when populations split (Figure 2.3A,B). Similar to the continuous
migration case discussed above, PSMC detects this increase in historical effective population
size, although it underestimates the extreme peak of effective population size preceding the
population split (Figure 2.3C,D). This underestimation is due to an smoothing effect of the
PSMC method, which has been described (Li and Durbin, 2011). MiSTI recovers the local
effective sizes of populations 1 and 2, slightly underestimating it when the PSMC smoothing
underestimated the peak in effective population size (Figure 2.3E,F).

Transition matrices and the assumption of a single panmictic
population in PSMC

PSMC assumes a model of a single panmictic population. When data come from a structured
population, PSMC can often find a best fitting transition matrix that has a stationary
distribution equivalent to that of a single population with the same effective population size
(Chikhi et al., 2018). However, in the previous section, we showed one example where the
ordinary effective population size inferred by PSMC was strongly biased (”population 2” in
Figure 2.2D). This reveals that the stationary distribution of the transition matrix fitted by
the HMM underlying PSMC is different from the true distribution.

To investigate this bias in PSMC, we simulated a single panmictic population with the
same effective population size as population 2 (i.e. following the trajectory of N2 in Figure
2.2D). In other words, this population has the same stationary distribution of the coalescence
time transition matrix as population 2, but it did not receive any migrants. Let us call this
population P, for panmictic. We found that the empirical transition matrix of population P
(Figure 2.4C) differs more from the empirical matrix of population 2 (Figure 2.4E) than the
transition matrix inferred by PSMC (Figure 2.4D). This indicates that the matrix inferred
by PSMC is a better fit of the empirical matrix, and therefore the PSMC bias we detected
is not due to an optimization problem.

Next, we compare the empirical transition matrix from population 2 (Figure 2.4A) to the
transition matrix inferred by PSMC (Figure 2.4B). One difference between those matrices
is that the PSMC matrix (Figure 2.4B) shows mostly vertical bands, while the true transi-
tion matrix (Figure 2.4A) shows a horizontal band corresponding to the time between the
bottleneck and the split of populations (7-25k generations).

The horizontal band in the true transition matrix in Figure 2.4A is caused by a correlation
in coalescence times between adjacent sites that can not arise in a panmictic model, assumed
by PSMC. If two lineages coalescence during the bottleneck at a site, then there is an
increased probability that both these lineages are in the bottlenecked population at other
sites. Furthermore, if recombination happens during the bottleneck period, and both lineages
are in the bottlenecked population, then there is an increased probability that the two
lineages again will coalesce in this time interval in the next site after recombination. This
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Figure 2.3: Pulse migration of 20% at the present time. (A,C,E) pulse from population 1
to population 2. (B,D,F) pulse from population 2 to population 1, forward in time. (A,B)
Simulated local effective population sizes and ordinary effective population sizes calculated
according to equation 2.6. (C,D) True ordinary effective population size from A,B, and
estimated by PSMC. (E,F) True local population sizes from A,B, and estimated by MiSTI.

contrasts with a standard SMC coalescence model in a panmictic population, in which the
time of coalescence in site i+ 1 is independent of the coalescence time in site i, conditional
on it being older than the time of recombination between the sites. A structured model
with a bottleneck, therefore, creates a correlation structure that cannot be modeled by the
standard SMC model used in PSMC.

The bias in PSMC can therefore be explained by the fact that PSMC fits the transition
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Figure 2.4: Matrices representing the (empirical or estimated) probability of transitions from
one coalescence time to another along a sequence. (A) Transition matrix from simulated data
from a population receiving migrants (population two of Figure 2.2B). (B) Transition matrix
estimated by PSMC. (C) Transition matrix from simulated data from a single population
(no migration) with historical effective population size equal to population two of Figure
2.2B. (D) Difference between matrices A and B. (E) Difference between matrices A and C.

matrix, and not its stationary distribution. Importantly, it fits the transition matrix of a
panmictic model. As we mentioned previously, in many cases, fitting the best panmictic
transition matrix also fits the best stationary distribution, but in this case, the best fit of a
panmictic transition matrix by PSMC leads to a very different stationary distribution.

We also note that the single population model assumed by PSMC differs from the struc-
tured model with migration in the way that recombination rate scales with effective popu-
lation size through time. In a single population model, an increase in effective population
size (N) increases the effective recombination rate (ρ = 4Nr, where r is the rate of re-
combination per locus per generation). In a model with two populations, an increase in
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effective population size that is due to migration would decrease the effective recombination
rate, since two lineages can only recombine when they are in the same population. In other
words, in a model with a single population, the effective recombination rate scales with the
effective population size, while it is not necessarily true in a model with two populations and
migration, where it can in fact scale inversely with effective population size.

Correcting European effective population size for the Neanderthal
component

In this section, we show an application of the MiSTI correction of PSMC curves using known
split time and admixture rates.

Non-African human populations admixed with Neanderthals 52-58 thousand years ago
(Prüfer et al., 2014). Villanea and Schraiber (2019) recently reported that it is likely that
there were multiple admixture events, but for simplicity we consider the case of a single pulse
admixture event. This admixture would result in a number of very old coalescences which
would increase the overall estimate of effective population size. In order to estimate the local
effective population sizes of non-African populations, we need to correct for this admixture.
One way of doing that is to call and mask the Neanderthal introgressed regions in a modern
genome before running PSMC. Alternatively, one can estimate the proportion of Neanderthal
ancestry in a modern genome, and use MiSTI to correct its PSMC trajectory for that ad-
mixture proportion. We compare these two approaches to verify that MiSTI’s correction of
effective population size is consistent with masking of known tracts of introgression.

We removed the Neanderthal tracts in an European genome (CEU population) and con-
firmed that the PSMC trajectory inferred from the Neanderthal-masked genome has lower
effective population sizes than the non-masked, original genome (Figure 2.5). Next, we used
MiSTI to correct the PSMC trajectories of the non-masked European genomes assuming
1.5% Neanderthal introgression, which has been reported by Steinrücken et al. (2018), and
3.0%, which was the previously reported estimate (Green et al., 2010) (Figure 2.5). Cor-
recting the CEU PSMC trajectory for 1.5% Neanderthal admixture using MiSTI gives very
similar estimates of local effective population size as masking the known regions of Nean-
derthal ancestry from that same genome. This suggests that MiSTI, at least in this case,
correctly recovers the effective population size of parental populations, when applied to real
data.

In the Appendix B.2, we show another application of MiSTI to obtain local effective pop-
ulation size by correcting PSMC curves for the effect of migration, using known parameters
from Puma concolor populations, and we discuss limitations of applying MiSTI to that case.

Estimating split time in human-like simulations

Most often, split times and migration rates are unknown, and MiSTI can be used to estimate
these parameters from PSMC curves combined with a joint (2D) site frequency spectrum
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Figure 2.5: (A) MiSTI correction of PSMC effective population size trajectory of a genome
from the CEU population assuming 1.5% introgression and (B) 3% introgression from Ne-
anderthals.

for the pair of samples. In this section, we estimate split times from simulations replicating
effective population size trajectories similar to those of human populations.

We simulated populations approximating the historic effective population size of human
populations (Dinka, San, Sardinian, French and Han) (see ”Simulations” in Appendix B.1).
Briefly, we simulated historic effective population size similar to the estimated by PSMC
for each of those populations (Figures 2.6A,2.7A,2.8A). We simulated population splits at
various times, with no migration following the split. We then estimate these split times using
MiSTI and the TT-method (Sjödin et al., 2021) (Figures 2.6B, 2.7B, 2.8B). We found that
the TT method estimates negative split time in simulations where the split time happens
during or immediately at the end of the bottleneck (Figure 2.8B), as has been previously
described (Sjödin et al., 2021). In other scenarios of intermediate split times, the TT method
largely overestimates the split times, due to violations of the assumption of constant effective
population sizes in the ancestral population (Sjödin et al., 2021). In contrast, MiSTI provides
substantially less biased estimates.

Estimating split time and migration rates from human data

Here, we estimate split times and migration rates from real data from the same populations
we simulated in the previous section. We used MiSTI to estimate split-times and migration
rates between the Han Chinese and French (Table 2.1), Dinka and Sardinian (Table 2.3),
San and Dinka (Table 2.2) and San and Sardinian (Table 2.4) populations. From MiSTI, we
recorded the maximum composite likelihood values of three models: no migration, unidirec-
tional migration in each direction, and bidirectional migration. In all models with migration,
we assumed a constant rate of migration between the split time and the present.
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Figure 2.6: Simulations of San-Dinka split, no migration. (A) Continuous lines show effective
population size inferred by PSMC from real data, dotted lines show simulated population
sizes that approximate the inferred trajectory. (B) Inferences from MiSTI and the TT
method for ten replicate simulations of each split time. 3728 generations was the split time
inferred by MiSTI from real data; 8556 was the split time inferred by the TT method (see
Table 2.2) - note that when we simulate 3728 generations, the TT method infers close to
8556 generations.

For Han-French divergence, the model with the highest composite likelihood was one with
a split time of 1505 generations (i.e. 43,645 years ago assuming 29 years per generation)
and a mostly unidirectional migration rate of 2.92 from Han to French (Table 2.1). We also
replicate the results from Sjödin et al. (2021), in which the TT method infers nonsensical
negative split times between Han and French. The unidirectional migration inferred from
Han to French is in line with current models of the peopling of Europe through waves of
farmers coming from central Eurasia (Haak et al., 2015).

The best fit model for the San-Dinka population pair includes a split time of 3729 genera-
tions ago (i.e. 108,141 years ago assuming 29 years per generation), and mostly unidirectional
migration from Dinka to San. For the same data, the TT method infers a much larger split
time (over 8500 generations ago) (Table 2.2, see also Appendix B.3 for a validation of this
result with simulations).

The Dinka-Sardinian split time inferred by MiSTI is approx. 3963 generations ago, with
bidirectional migration between these populations. The migration rate detected from Dinka
to Sardinian is in line with previous results indicating migration from sub-Saharan Africa
to South Europe (Moorjani et al., 2011). In this case, in contrast to the previous case, the
TT method infers a more recent split time than MiSTI (2550 generations ago, see Table
2.3). The split time between San and Sardinian is older (approx. 4484 generations ago, see
Table 2.4). We notice that these estimates are not strictly compatible with a population
tree, which likely is a consequence of complex ancestral population structure and migration



CHAPTER 2. EFFECTIVE POPULATION SIZE AND MIGRATION RATES 44

Figure 2.7: Simulations of Dinka-Sardinian split, no migration. (A) Continuous lines show
effective population size inferred by PSMC from real data, dotted lines show simulated
population sizes that approximate the inferred trajectory. (B) Inferences from MiSTI and
the TT method for ten replicate simulations of each split time. 3960 generations was the
split time inferred by MiSTI from real data; 2560 was the split time inferred by the TT
method (see Table 2.3).

Table 2.1: MiSTI estimates of split times and migration rates between the Han Chinese
and French populations in models with bidirectional migration (top row), unidirectional
migration, or no migration (bottom row).

MiSTI TT
m1 m2 split time split time

French to Han Han to French (generations) log(lik) (generations)

8.37× 10−9 2.92 1505 -2331 -
- 2.92 1505 -2331 -

3.84 - 1505 -2373 -

- - 1505 -2787
T1 = -3587
T2 = -3545

between populations that is not modeled here, including archaic admixture into Sardinians.
We note that archaic admixture will tend to inflate divergence time estimates, so the true
divergence times might be smaller than our estimates, particularly for the splits between
Sardinians and the two African populations.
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Figure 2.8: Simulations of Han-French split, no migration. (A) Continuous lines show effec-
tive population size inferred by PSMC from real data, dotted lines show simulated popula-
tion sizes that approximate the inferred trajectory. (B) Inferences from MiSTI and the TT
method for ten replicate simulations of each split time. 1504 generations was the split time
inferred by MiSTI from real data; -3566 was the split time inferred by the TT method (see
Table 2.1).

Table 2.2: MiSTI estimates of split times and migration rates between the San and Dinka
populations in models with bidirectional migration (top row), unidirectional migration, or
no migration (bottom row).

MiSTI TT
m1 m2 split time split time

Dinka to San San to Dinka (generations) log(lik) (generations)

2.5 2.03× 10−9 3729 -4381 -
2.5 - 3729 -4381 -
- 1.49 3210 -4582 -

- - 3001 -4607
T1 = 8582
T2 = 8527

2.4 Discussion

The MiSTI method

The coalescent effective population size, defined as the reciprocal of the coalescence rate,
is proportional to the census population size in a panmictic model, but can be very dif-
ferent from it when there is migration. The idea of disentangling the effect of migration
on effective population size has been explored before. For example, (Wang and Whitlock,
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Table 2.3: MiSTI estimates of split times and migration rates between the Dinka and Sar-
dinian populations in models with bidirectional migration (top row), unidirectional migra-
tion, or no migration (bottom row).

MiSTI TT
m1 m2 split time split time

Sardininan to Dinka Dinka to Sardinian (generations) log(lik) (generations)

2.63 9.96 3963 -5337 -
6.92 - 3484 -5819 -
- 14.40 2286 -10877 -

- - 2264 -13166
T1 = 2529
T2 = 2577

Table 2.4: MiSTI estimates of split times and migration rates between the San and Sardinian
populations in models with bidirectional migration (top row), unidirectional migration, or
no migration (bottom row).

MiSTI TT
m1 m2 split time split time

Sardininan to San San to Sardinian (generations) log(lik) (generations)

1.68 7.2× 10−9 4484 -3377 -
1.22 - 3963 -3497 -
- 1.59 3484 -4359 -

- - 3483 -4604
T1 = 8269
T2 = 8253

2003) introduced methods to jointly estimate the local effective population size and migra-
tion rates from samples taken over time and space. Here, we are motivated by the same
idea of disentangling migration and effective population size, and we do so in the context
of inferring changes in effective population size through time from present-day samples of
different populations, with methods such as PSMC (Li and Durbin, 2011).

We defined the ordinary effective population size of an admixed population as a function
of the local effective population size of its parental populations. The local effective popu-
lation size corresponds to the effective population size of unadmixed individuals from the
parental populations. We developed a method, MiSTI, that uses the ordinary effective pop-
ulation sizes (e.g. estimated by PSMC (Li and Durbin, 2011)) of two samples from different
populations that exchanged migrants, together with their joint SFS, to estimate the local
effective population sizes and migration rates.

We note that MiSTI depends on the results of PSMC, and will be subject to its biases.
MiSTI relies on a model of a population split possibly followed by migration, which itself
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violates the assumption of panmixia made in PSMC and similar methods. We have shown
that PSMC estimates are particularly sensitive to this violation when there is asymmetric
migration (Figure 2.2D). In other scenarios, we (Figures 2.2C,2.3C,D) and others (Chikhi
et al., 2018) have shown that PSMC provides good estimates of historical effective population
size in the presence of population structure. Other studies have shown, using simulations,
that estimates from PSMC and other methods can be biased even in the absence of popula-
tion structure (Spence et al., 2018). We have not extensively explored those biases here, but
we note that as less biased methods are developed, MiSTI can be adapted to use those and
thus improve its inference of local effective population size, split times and migration rates.

When applied to infer population split times and migration rates in human populations,
MiSTI helps settle a previous controversy. Schlebusch et al. (2017) found surprisingly deep
divergence times for some Southern African populations, including the San. Their estimate
for the split time between Dinka and San is 255 ± 5 years ago (Figure 3C in (Schlebusch
et al., 2017)). We applied the TT method used in Schlebusch et al. (2017) (Schlebusch et al.,
2017) to estimate the San-Dinka split time in our data and we found a similar result (split
time 8554 generations ago, or 248 thousand years with 29 years per generation, Table 2.2),
replicating their results. However, with MiSTI, we estimate a much more recent split time
around 3729 generations ago (108 thousand years ago with 29 years per generation, Table
2.2). Our estimate is similar to the estimates of the earliest population divergence among
modern human populations obtained with methods such as MSMC (Pagani et al., 2016; Fan
et al., 2019), and momi2 (Kamm et al., 2020) (see (Bergström et al., 2021) Figure 2C for a
synthesis of estimates from various studies).

The TT method makes a strong assumption that there are no changes in population
size in the ancestral population, before the population split (Schlebusch et al., 2017; Sjödin
et al., 2021). We simulated historical effective population size similar to the one estimated
by PSMC for San-Dinka, and showed that the TT method strongly overestimates split times
in this scenario (Figure 2.6). Notably, when we simulated data assuming a split time of
3728 generations ago (as inferred by MiSTI), the TT method estimated a split time close to
the one it estimated from the real data (8556 generations ago), showing that the previously
reported deep split time estimated by the TT method is in fact likely an estimation artifact.
The TT method can be highly biased because of the assumption of constant population size
and should not be applied to populations that may have experienced changes in effective
population size over time.

The application of MiSTI to human data also illustrates the importance of including
migration a the model is used to infer split times. In all cases (Tables 2.1-2.4), composite
likelihoods were higher in models that allowed migration, and a difference of 1000 or more
generations is seen in some split times inferred with models that include migration (Tables
2.3-2.4). Inferring asymmetric migration is also an interesting feature of MiSTI aimed at
determining the direction of gene-flow.
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Why estimate local effective population size?

Finally, we would like to highlight the broader relevance of disentangling the effect of mi-
gration on effective population size. The ordinary effective population size is important for
understanding patterns of neutral genetic variability. It is a good predictor of summary
statistics of neutral genetic variation such as the expected heterozygosity and average num-
ber of pairwise differences. However, for questions related to the efficacy of selection or
genetic drift, the effective population size defined in terms of the number of individuals and
their variance in offspring number is what matters most, not the effective population size
inflated by migration. Since the ordinary effective population size is generally increased by
migration, recovering the local effective population size after accounting for the effect of mi-
gration will recover values that are more informative for selection dynamics and predictions
regarding the efficacy of selection, such as the rate of purging of deleterious alleles.

Local effective population size is also often more relevant for conservation genetics than
the ordinary effective population size, which reflects overall genetic diversity of a meta-
population. For example, a meta-population of an endangered species which occupies a
fragmented habitat might have increased effective population size if considered as a whole.
Their apparent high levels of neutral genetic diversity might be misleading regarding their
fragile conservation status. If there is weak migration between isolated subpopulations, the
ordinary effective population size of each subpopulation will be inflated by migration and
will not be representative of the actual size of the local population. Correcting for the effect
of population structure and migration provides measures of local effective population size
that are closer to the effective number of breeding individuals in the population and thus
more informative for conservation efforts.
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Chapter 3

Genetic ancestry and signatures of
natural selection in the people from
Atahualpa village, Santa Elena,
Ecuador

This chapter is co-authored by Oscar Del Brutto and Rasmus Nielsen.

3.1 Introduction

The region of Santa Elena province in Ecuador has long been inhabited by humans. Its
location at the extreme West of South America suggests that it could have been home to
the first humans of South America, since it is likely that the first people to invade the con-
tinent arrived using a Pacific coastal route (Dillehay et al., 2008). Early evidence of human
settlements in the extreme Southern tip of South America supports the Pacific coastal route
hypothesis (Dillehay et al., 2008). More concretely, archaeological studies in Santa Elena
revealed a rich history of human life in the region with evidence of plant (squash) domes-
tication as early as 11k years ago and the presence of diverse cultures, including Las Vegas
(8500-4600 B.C.E.) (Raymond, 2008), Valdivia (4400-1450 cal B.C.E.), Machalilla (1430-830
cal B.C.E.) and Chorrera (1300-300 cal B.C.E.) (Zeidler, 2008). Later, the Manteño and
Huancavilca cultures became predominant in the North and South (respectively), until the
expansion of the Inca empire towards the region (around 1470 C.E.) (McEwan and Delgado-
Espinoza, 2008). Most recently, in 1532, Spanish people arrived to Ecuador and spread
through the country.

Atahualpa is a rural village located in Santa Elena. There is historical evidence that
this village has been settled in the same area since before the Spanish arrival, and there is
little migration to or from the village, which suggests its inhabitants are likely to have a
large proportion of indigenous ancestry (Del Brutto and Zambrano, 2017). The 2010 Census
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reports 3532 inhabitants, 90.3% of whom self report as Mestizos, 4.9% Afro-Ecuatorians,
1.3% Montubios, 1.3% White, 0.5% Indigenous and 1.7% as other categories. The proportion
of self-reported Mestizos in Atahualpa is higher than in the country as a whole, where 71.9%
of the population identify as Mestizos. Although the Mestizo ethnicity suggests admixture,
previous studies have shown that people who are ethnically Mestizos in Ecuador can have a
high proportion of indigenous genetic ancestry (Nagar et al., 2021).

People from the Atahualpa village consume high amounts of oily fish as part of their tra-
ditional diet, and oily fish intake in this population has been associated with several positive
outcomes on their cardiovascular health, including: low blood pressure levels (Del Brutto
et al., 2016), reduced arterial stiffness (Del Brutto et al., 2018), reduced severity (Del Brutto
et al., 2021) and progression (Del Brutto et al., 2022) of white matter hyperintensities (a
biomarker for cerebral small vessel disease). Oily fish, and marine animals in general, are
rich in omega-3 fatty acids, which have been implicated in positive cardiovascular effects in
many studies (although not replicated in broad scale studies, see Manson et al., 2019). For
this reason, omega-3 was also proposed as a mediator between the positive cardiovascular
effects and the oily fish rich diet in the Atahualpa population.

In another population that consumes a diet extremely rich in omega-3 fatty acids, the
Greenland Inuit, previous studies found a strong signature of natural selection in FADS genes
(Fumagalli et al., 2015). Variants of FADS genes present in the Greenland Inuit regulate
metabolic pathways to compensate for the high dietary intake of omega-3, which indicates
that this population is genetically adapted to its high omega-3 intake (Fumagalli et al.,
2015). A posterior study showed that the same genes had strong signatures of selection in
many Native American populations (G. Amorim et al., 2017). This result indicates that the
selective pressure on FADS genes could have acted in the ancestors of all Native American
populations, possibly during the Beringia standstill (G. Amorim et al., 2017).

These observations motivated us to search for signatures of natural selection in the people
from Atahualpa, and investigate whether natural selection has also acted in this population
on genes related to fatty acid metabolism. We hypothesize that selection may have acted
in response to their traditional diet rich in omega-3 fatty acids, and that selected variants
could mediate the beneficial effects of this diet on their cardiovascular health.

Here, we describe the genetic relatedness of the people from the Atahualpa village to
populations from the Americas and other parts of the world. We also perform a genomic
scan for natural selection and report several regions that show genetic signatures of selection,
including some genes related to fatty acid metabolism.

3.2 Methods

Participant consent

Participants of this study were informed and signed an informed consent document attest-
ing that they agree with using their blood samples for DNA extraction and using their
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anonymized genetic data for research and publications. The Institutional Review Board of
Hospital Cĺınica Kennedy, Guayaquil, Ecuador (FWA: 00030727), approved the study.

DNA extraction

DNA was extracted from 50 blood samples from individuals with the five most common last
names in Atahualpa as part of the Atahualpa Project (Del Brutto et al., 2014). There were
no first-degree relatives in this sample. DNA samples were numbered and no identifiable
information about these samples was provided to the authors of this study by the Atahualpa
Project team.

Library preparation

Five samples were excluded due to low concentrations of DNA in the extractions, and we
proceeded to prepare libraries from the remaining 45 samples for short-read massive parallel
sequencing.

Extracted DNA was fragmented using Covaris m220 Focused-ultrasonicator for a target
fragment size of 350bp to 400bp. Then, we proceeded to library preparation for 150bp
paired-end sequencing on an Illumina HiSeq 4000 sequencer.

Fragment ends were repaired with NEBNext® End Repair Module (Catalog num. E6050):
21.25µL of DNA extract, 2.5µL of 10X end repair buffer (E6052) and 1.25µL of end repair
enzyme mix (E6051), with a 20min incubation at 12°C and 15min at 37°C. Next, DNA
fragments were purified with MinElute® PCR purification kit (5X volume of PB, 2min cen-
trifugation at 8g, 700µL of PE, 2min centrifugation at 8g, discard flow-through, centrifuge
for 1min at 8g, elute DNA with 10 µL EB, 15min incubation at 37°C followed by 2min cen-
trifugation at 16g). The eluate containing end-repaired DNA fragments was then directed
to adapter ligation using NEB quick ligation module (Catalog number E6056) following the
product protocol except for the incubation, which was done at 20°C for 30min. Next, another
round of purification with MinElute columns was done (10X volume of PB, 2min centrifu-
gation at 8g, 700 µL of PE, 2min centrifugation at 8g, discard flow-through, centrifuge for
1min at 8g, add 25 µL EB, 15min incubation at 37°C followed by 2min centrifugation at
16g).

Next, adapter fill-in was performed with Bst DNA polymerase large fragment (M0275)
with a 20min incubation at 65°C and 20min at 80°C. Finally, indexing PCR was done with
Invitrogen Platinum Taq DNA Polymerase High Fidelity, for dual indexing with P5 and P7
indices. PCR was performed with an initial 60s at 94°C (60s), followed by 8 cycles of 30s at
94°C, 30s at 55°C and 30s at 68°C, and a final period of 5min at 68°C.

The PCR product was then submitted to size selection using AMPure magnetic beads
to remove fragments smaller than 150bp or larger than 1000bp.

Four samples were excluded from further steps due to low concentrations at the expected
library size distribution, measured with BioAnalyzer. The 41 libraries with good concentra-
tion at the library target size (350-400bp) were pooled into two pools with 22 and 19 samples
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each. Each pool was sequenced in two lanes for 150 paired-end reads on an Illumina HiSeq
4000 instrument.

Read processing

The ends of raw sequencing reads were trimmed for adapter sequences and low quality
bases, and filtered for minimum length after trimming using trimmomatic v. 0.38 with
parameters ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDING-
WINDOW:4:15 MINLEN:75.

Next, reads were mapped to the human reference genome human g1k v37.fasta down-
loaded from the 1000 Genomes Project https://ftp-trace.ncbi.nih.gov/1000genomes/f
tp/technical/reference/human g1k v37.fasta.gz, using bwa mem with default options.
Mapped reads were filtered for a maximum edit distance of 7 (taken from the NM tag of sam
files, using a custom script NMfilter.py available on https://github.com/deboraycb/).
Mapped reads were also filtered for a minimum mapping quality score of 15.

Next, we sorted bam files, added sample and lane tags, and merged reads of the same
sample sequenced in different lanes into a single bam file per sample, using samtools. We
marked and removed duplicated reads with picard, and remapped reads around potential
indels using GATK IndelRealigner. We used samtools to filter out unmapped reads, reads
with an unmapped mate, alignment not primary and reads that failed platformQC (sam flag
4 + 8 + 256 + 512 = 780). Finally, we recalibrated base quality scores with GATK using
dbSNP151 know sites.

Eight samples were excluded from further analyses due to average coverage below 0.5X.
The remaining 33 samples kept for further analyses had an average coverage of 1.94539X.

Site filters

We used snpCleaner v2.4.3 https://github.com/tplinderoth/ngsQC/ to filter sites
for coverage and various types of bias. Mapped reads were pre-filtered for minimum base
quality of 20 and proper pairs of reads using samtools options -Q 20 --rf 2 before gen-
erating unfiltered genotype calls for snpCleaner. Sites were then filtered for a minimum of
10 individuals covered by at least 1 read (-k 10 -u 1), showing no excess of heterozygous
genotypes on an exact test (-H 1e-6), no strand bias (-S 1e-4), no base quality bias (-b
1e-10), no mapping quality bias (-f 1e-4), and no end distance bias (-e 1e-4). A total of
2,561,742,893 sites passed these filters, including variable and non-variable sites within the
sample.

We downloaded genome accessibility http://ftp.1000genomes.ebi.ac.uk/vol1/ftp

/release/20130502/supporting/accessible genome masks/20140520.strict mask.au

tosomes.bed and mappability http://hgdownload.soe.ucsc.edu/goldenPath/hg19/en

codeDCC/wgEncodeMapability/wgEncodeCrgMapabilityAlign100mer.bigWig masks and
selected sites that pass those masks (with mappability score >= 0.5). The intersection of
those sites with the ones that passed the previous filters contains 2,029,003,071 sites.

human_g1k_v37.fasta
https://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz
https://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz
NMfilter.py
https://github.com/deboraycb/
https://github.com/tplinderoth/ngsQC/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessible_genome_masks/20140520.strict_mask.autosomes.bed
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessible_genome_masks/20140520.strict_mask.autosomes.bed
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessible_genome_masks/20140520.strict_mask.autosomes.bed
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeCrgMapabilityAlign100mer.bigWig
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeCrgMapabilityAlign100mer.bigWig
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With the goal of analyzing data from the Atahualpa population in the context of other
populations from the region, we merged our dataset to the dataset from (Crawford et al.,
2017). That dataset contained 59,568,964 sites that passed the accessibility and mappability
masks above. The intersection of those sites with the ones that passed our filters contained
58,059,354 sites.

Genotype likelihoods

We did SNP calling on the 58M sites described above using ANGSD (Korneliussen et al.,
2014). We calculated genotype likelihoods (GATK method, with -GL 2) from the bam files
using ANGSD with parameters -remove bads 1 -only proper pairs 1 -uniqueOnly 1,
filtering for minimum mapping quality of 30 and minimum base quality of 20. We output
the genotype likelihoods in Beagle format and convert it to vcf using a custom Python
script. We then proceeded to merge this vcf with the dataset from (Crawford et al., 2017)
containing genotype likelihoods calculated with the same filters and methods. The VCF files
were merged using bcftools merge for a total of 375 samples, whose locations are shown in
Figure 3.1. After filtering for biallelic SNPs, we obtained a final dataset with 21,423,891
SNPs.

Population genetics analyses

Since samples were sequenced at low coverage, we take advantage of population genetics
methods that use genotype likelihoods and thus take into account uncertainty in genotypes
in all downstream analyses. We use the program PCAngsd (Meisner and Albrechtsen, 2018)
for principal component analysis, and the program Ohana (Cheng et al., 2017) to infer
population structure and perform a selection scan after correcting for admixture. These
programs required the input to be in Beagle format, which was obtained using vcftools
--BEAGLE-GL option (Danecek et al., 2011).

For Ohana, we prepared a subset of the data containing only SNPs with minor allele
frequency (MAF) over 0.05. MAF was calculated from the merged VCF file using ANGSD,
and the merged VCF files were filtered for sites with MAF > 0.05 using bcftools (Danecek
et al., 2021). We ran Ohana three times for each value of k, for 1000 iterations. We report
results from the replicate number and iteration number with the best likelihood for each
value of k.

We performed population branch statistic (PBS) selection scan using ANGSD (Kor-
neliussen et al., 2014). PBS is calculated from pairwise FST values among three populations.
PBS for a focal population i is given by PBSi = (FSTi,j + FSTi,k − FSTj,k)/2, and measures
the length of the branch connecting population i to populations j and k, at a position or
window of the genome. The selection scan was performed on windows of 50kb, slid by 10kb.
Candidate peaks were selected as those that had at least 6 windows within the top 0.1%
of PBS values. We also performed PBS scans with windows of 1kb and slide of 500bp in
candidate regions identified in the scan with 50kb windows, to show more detailed plots of
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Figure 3.1: Location of populations included in this study: people from Atahualpa in Santa
Elena province (Ecuador) sequenced in this study (ATA), Aymara from Tiwanaku and La
Paz (Bolivia) from (Crawford et al., 2017) (AYM), and the following populations from the
1000 Genomes Project (The 1000 Genomes Project Consortium, 2015): Colombians from
Mendelĺın (CLM), Peruvians from Lima (PEL), Puerto Ricans from Puerto Rico (PUR),
Utah (USA) residents with Northern and Central European ancestry (CEU), Los Angeles
(USA) residents with Mexican ancestry (MXL), and Yoruba from Ibadan (Nigeria) (YRI).
(Google, 2022)

these regions. Plots of selection scan peaks with UCSC RefSeq genes were generated using
R package Gviz (Hahne and Ivanek, 2016).

To infer recent demographic history of the Atahualpa population, we ran GADMA
(Noskova et al., 2020) with the moments engine (Jouganous et al., 2017), using a joint site fre-
quency spectrum (2D SFS) of Atahualpa and Aymara generated with ANGSD (Korneliussen
et al., 2014). We initiated 8 GADMA runs with structured models for 2 populations. The
two-population models were specified using an initial structure of [1,1] and a final structure
of [1,2], i.e. in each run we tested models with one time interval before the split and one
after, and with one time interval before the split and two after. In each time interval of these
models, a single dynamic of effective population size is maintained for each population and
migration rates are constant. The allowed dynamics of change in effective population size
are: constant size, sudden change in size, linear change or exponential change. We report
the model with the highest likelihood among all runs.
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3.3 Results

Population structure

Atahualpa samples cluster with other Native Americans in a Principal Component Analysis
(PCA) including European and African populations (Figure 3.2). The people from Atahualpa
are closest to the Aymara from Bolivia (Crawford et al., 2017) and the Peruvians from Lima
(The 1000 Genomes Project Consortium, 2015) along the two main axes of genetic variation
that together account for 14% of total genetic variation (Figure 3.2). Some individuals
show evidence of admixture with European and African ancestry components, which is also
observed in structure plots (Figure 3.3).

Figure 3.2: Principal component analysis. Two main axes of variation show three clusters
of populations at the extremes of the distribution corresponding to African, European and
Native American ancestries. The third main axis of variation separates the people from
Atahualpa from other Native American populations.

The Ohana structure results with three clusters (k=3) show European and African in-
dividuals (CEU and YRI) are best described by a single component, while the other popu-
lations from the Americas are composed of a mixture of those ancestry components and a
third component that likely reflects Native American ancestry (Figure 3.3). On average, the
people from Atahualpa are composed of 94.1 % of this Native American ancestry, which is
the second highest proportion among our sampled populations, only lower than the Aymara
(Table 3.1).

Clustering with four components (k=4) splits the Native American component from
k=3 into two. The Atahualpa samples are composed predominantly of one of these Native
American sub-ancestries, while Aymara and the other populations from the Americas are
predominantly composed of the other Native-American sub-ancestry. Increasing the number
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of clusters to 5 and 6 reveals components that are prevalent in the Mexicans (MXL) and
Puerto Ricans (PUR), respectively (Figure 3.3).

Figure 3.3: Population structure. Best clustering of genetic variation into 3, 4, 5, and 6
groups, and corresponding trees illustrating genetic covariance among clusters.

Demographic model

We inferred the split time between Atahualpa and Aymara, the population the most closely
related to Atahualpa in our dataset. Our inference was based on the 2D SFS of this pair of
populations and allowed for population size changes and migration between populations.

The best inferred demographic model has a population split 94.77 generations ago (2748
years ago, considering 29 years per generation), followed by a bottleneck in both populations
(with the size of the population from Atahualpa decreasing to 21% of the ancestral population
size, and the size of the Aymara decreasing to 12% of the ancestral population size) (Figure
3.4). The best model also includes a high and constant migration rate between populations



CHAPTER 3. GENETIC ANCESTRY AND SELECTION IN ATAHUALPA 57

Table 3.1: Percentages of ancestry components (k=3) reflecting Native American, European
and African ancestry in the populations from the Americas sampled in this study.

Population
Native American

(C3)
European

(C2)
African
(C1)

Atahualpa 94.1 3.8 2.1
Aymara 96.6 2.8 0.6
Peruvians 78 19.8 2.2
Mexicans 45.2 50.4 4.4
Colombians 26.1 65.7 8.1
Puerto Ricans 12.8 71.6 15.6

from the split time to the present (rate of 10), and a population size increase in both Aymara
and the population from Atahualpa 66.75 generations ago (1936 years ago), where Aymara
increases to 12 times its population size following the split, and Atahualpa increases to 100
times its population size following the split.

Figure 3.4: Best two-populations model fitted to the 2D SFS between Aymara (AYM) and
the population from Atahualpa (ATA).

Population differentiation and signatures of selection

Genome-wide differentiation measured by FST is 0.044 between Atahualpa and Aymara,
0.040 between Atahualpa and Peruvians, and 0.016 between Aymara and Peruvians. We
use this trio of closely related populations to perform a population branch statistic (PBS)
genome-wide scan for natural selection. Sites with high values of PBS demonstrate high
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genetic differentiation between the focal population (in this case, Atahualpa) and the other
two populations, which is a signature of natural selection. Figure 3.5 shows PBS values
for 50kb windows distributed along the genome, sliding by 10kb. The genome-wide average
value of PBS for Atahualpa is 0.034. We identified seven peaks that show more than six
windows with values of PBS on the 0.1 percentile of the genome-wide distribution (Table
3.2). We describe the candidate genes within those peaks in more detail next.

Figure 3.5: PBS scan for selection in the population from Atahualpa. Dashed blue line shows
0.1 percentile of PBS.

Table 3.2: Top selection candidate peaks from a PBS scan in the Atahualpa population
relative to Aymara and Peruvians. The scan was performed with windows of 50kb, slide of
10kb. Only the windows with highest PBS values within 1Mb are listed in the table. Other
candidate windows within the 0.1 percentile of the genome-wide distribution and within 1Mb
of a window with higher PBS value are counted in the column “Windows”.

Chromosome Position (Mb) PBS Windows

10 105.185 0.441709 14
2 190.915 0.434677 27
1 155.545 0.352242 46
2 16.865 0.331273 9
2 132.665 0.319347 6
8 49.045 0.317198 51
1 25.965 0.298016 7
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The most striking peak is at position 105Mb of chromosome 10. Figure 3.6 zooms into
this region and reveals that it is a wide peak spanning almost 1Mb and including at least
20 genes. We list the functional information about each of those genes in Supplementary
Table C.1. We highlight the SUFU gene, which is a repressor of Hedgehog pathway signaling.
Activation of the Hedgehog pathway was recently shown to be involved in preventing obesity
in adult mice under a high-fat diet (Shi and Long, 2017). Knockdown of SUFU led to lower
triglyceride levels in Drosophila and decreased the mass of white adipose tissue in mice
(Pospisilik et al., 2010). Therefore, this gene is clearly involved in fat metabolism and thus
could play a role in the positive effects of a diet rich in oily fish on the cardiovascular health
of people from the Atahualpa village (Del Brutto et al., 2016).

There are three peaks on chromosome 2: at 191Mb, 17Mb and 133Mb. The peak at
191Mb is also wide, spanning approximately 500kb and overlapping with at least 6 genes
(Figure C.1). At position 17Mb, there is a sharper peak upstream of the gene CYRIA (Figure
C.2). When we zoom into the region at 133Mb with windows of 1kb, we find a minor peak
with only three windows on the gene ANKRD30BL (Figure C.3). Next to this region in
chromosome 2, at 143Mb, two new peaks arise when we use windows of 1kb instead of 50kb
(Figure 3.7). These peaks are upstream of the genes LRP1B and at KYNU. Interestingly,
LRP1B encodes “low-density lipoprotein (LDL) receptor related protein 1B”, and variants of
this gene have been associated with childhood obesity (Lee, 2019). Due to its function, this
gene is also a good candidate to mediate the relationship between diet and cardiovascular
health in the people from Atahualpa.

We identify two peaks at chromosome 1: at 155Mb and 26Mb. The peak at 155Mb spans
700Kb and at least 29 genes (Figure 3.8), which we list and describe in Supplementary Table
C.2. Among those, we highlight FAM189B, which has been associated with Gaucher disease,
a disease that results from a buildup of fatty substances mainly in the liver and spleen. This
disease association suggests that this gene could also be a good candidate related to fat
metabolism.

The peak at 26Mb of chromosome 1 contains several windows with high PBS values in a
narrow region of 100Kb that is next to two genes: LDLRAP1 and MAN1C1. MAN1C1 is
related to the metabolism of proteins and LDLRAP1 encodes “low-density lipoprotein (LDL)
receptor adapter protein 1”, a protein that helps remove cholesterol from the bloodstream.
Thus, we also highlight this peak as a candidate of selection driven by the diet rich in oily
fish in the people from Atahualpa.

Lastly, the wide peak on chromosome 8 can be attributed to a region of increased mutation
next to the centromere, which has been described by Logsdon et al. (2021) (Figure C.4).
Therefore, we will not discuss this region further as a potential candidate of selection.
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Figure 3.6: PBS scan peak on chromosome 10. We highlight the SUFU gene, which has
been implicated in fat metabolism. Scan performed with windows of 1kb, slide of 500bp.
Dashed blue line shows 0.1 percentile of PBS. Black lines show genomewide FST values for
each population pair.
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3.4 Discussion

Genetic ancestry

The people from Atahualpa show a large proportion of Native American ancestry (94.1%,
Table 3.1), which is even higher than the proportion of Native American ancestry among
members of the officially recognized Ecuadorian indigenous group Tsáchila (87.12%), in the
study by Nagar et al. (2021). Although other populations such as the Aymaras and the
Peruvians share a similarly high proportion of Native American ancestry, the population
from Atahualpa is genetically differentiated from them, with a distinct ancestry component.

Previous studies have shown a signal of East-West structuring of populations in South
America, mainly separating populations from the highlands of the Andes from the popula-
tions from the Amazon lowlands (most recently Borda et al., 2020; Nakatsuka et al., 2020).
These recent studies also showed that in the Northern Andes (North of Northern Peru), pop-
ulations are not as differentiated between East and West as in the Central Andes (the region
starting from central Peru and stretching South through Bolivia, Chile and Argentina). The
Northern Andes reach lower altitudes than the Central Andes, and it seems plausible that
lower altitudes would allow more gene flow between the coastal region and the Amazon re-
gion (Borda et al., 2020). Indeed, coastal populations from Northern Peru (Tallanes and
Moche) are genetically similar to the Chachapoyas from the Amazon Yunga, a transitional
ecoregion in the Eastern slope of the Andes, between the highlands and the lowland forests
(Borda et al., 2020).

The patterns of population structure along the Andes mentioned above were described
based on Peruvian populations. However, the Ecuadorian highlands are also part of the
Northern Andes, and the coastal region of Santa Elena province belongs to a similar dry
forest ecoregion as the location of the Tallanes and Moche in Northern Peru, across the Gulf
of Guayaquil. Therefore, it is possible that the genetic component that is almost exclusively
present in the Atahualpa population (Figure 3.3, k >= 4) could be related to the component
found in coastal populations from Northern Peru (Tallanes and Moche) in Borda et al. (2020).
In addition to the proximity and environmental similarity, there is archaeological evidence of
ancient contact between the people of Northern Peru and Southern Ecuador (Guffroy, 2008).
Two possibilities then arise for the origins of this coastal ancestry component: i) it could
be the result of East-West gene flow with Amazonian populations through the Northern
Andes or ii) it could be an old component related to the first humans that invaded South
America through the Pacific coast. These possibilities remain to be tested, but the results
from Borda et al. (2020), who found similarities between populations from the coast and
from the Eastern Yunga, suggest the former.

The estimated split time between the population from Atahualpa and the Aymara (2748
years ago) corresponds to the period of the Machalilla (1430-830 cal B.C.) and Chorrera
(1300-300 cal B.C.) material cultures from coastal Ecuador (Zeidler, 2008). The Chorrera
culture maintained contact with the Andean highlands through trade (Zeidler, 2008), which
might explain the constant high migration rate we found between the people from Atahualpa
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and the Aymara from the Bolivian highlands.

Selection

The results from our PBS scan suggest different processes driving the differences in allele
frequencies between the people from Atahualpa and two closely related populations (Aymara
and Peruvians). On one hand, four PBS peaks are sharp and indicate the action of selection
at specific genes (LRP1B, LDLRAP1, CYRIA and ANKRD30BL). On the other hand, there
are three wide peaks (encompassing between 500Kb and 1Mb), which contain several genes.
The wide PBS peaks make it difficult to pinpoint specific sites that were targets of selection.
Nevertheless, the long stretches of divergent sequence in Atahualpa also raise an interesting
hypothesis: that these haplotypes were selected in this population after introgression from
a diverged population. More specifically, the fact that the PBS signal spans a long sequence
indicates a recent process, since the haplotype has not yet been broken by recombination.
Further, the fact that the divergence remains high and decreases abruptly at the edges of
the block indicates that the haplotype could have been inherited as a whole divergent unit
from another relatively distant population. The latter scenario differs from the signature
of a haplotype hitchhiking on a new mutation that recently underwent positive selection.
In this case, we would expect the signature of high PBS to gradually decrease with dis-
tance from the selected mutation. Testing the hypothesis of introgression could include the
use of methods that explicitly model recombination, such as those based on the ancestral
recombination graph (Chapter 1). Further investigations could explore the possibility of in-
trogression with archaic humans, such as Denisovans and Neanderthals, as possible sources
of these haplotypes.

Our main motivation for investigating signatures of natural selection in the genomes of the
people from Atahualpa came from the observed health benefits associated with the ingestion
of oily fish as part of their traditional diet. Therefore, we highlight genes present in regions
with high PBS scores that have been previously implicated in lipid metabolism. Interestingly,
two out of the four sharp PBS peaks include genes (LRP1B and LDLRAP1 ) that encode
cholesterol receptors. Two other genes (SUFU and FAM189B) also encode proteins that
have been associated with lipid metabolism and represent promising candidates of selection
within two wide peaks of high PBS scores. Therefore, these genes represent a starting
point for future investigations to understand the physiological mechanisms that mediate the
beneficial effects of diet on the cardiovascular health of the people from Atahualpa.

Interestingly, Fumagalli et al. (2015) recovered a signature of selection on FADS genes
associated with a diet rich in omega-3 polyunsaturated fatty acids. It is important to note
that we did not find signatures of selection in these same genes. However, this result is
expected since it has been demonstrated that FADS genes show signatures of selection in
many Native American populations (G. Amorim et al., 2017), suggesting that selection on
these genes occurred prior to the peopling of the Americas. Considering that we compared
the people from Atahualpa to the closely related Aymara and Peruvians, this selection scan
is tailored to find candidates of recent selection acting specifically in the population from
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Atahualpa, and would not find signals of selection that are shared with Aymara and Peru-
vians. Therefore, the alleles of the candidate genes that we encountered in this study have
the potential to represent new adaptations, additional to the FADS genes, to a diet rich in
oily foods.
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Figure 3.7: PBS scan peak on chromosome 2 at 143Mb. Scan performed with windows
of 1kb, slide of 500bp. Dashed blue line shows 0.1 percentile of PBS. Black lines show
genomewide FST values for each population pair.
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Figure 3.8: PBS scan peak on chromosome 1 at 155Mb. We highlight the gene FAM189B,
which has been associated to a disease (Gaucher disease) that results from buildup of fatty
substances. Scan performed with windows of 1kb, slide of 500bp. Dashed blue line shows
0.1 percentile of PBS. Black lines show genomewide FST values for each population pair.
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Figure 3.9: PBS scan peak on chromosome 1 at 26Mb. Scan performed with windows of 1kb,
slide of 500bp. Dashed blue line shows 0.1 percentile of PBS. Black lines show genomewide
FST values for each population pair.
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L. Chikhi, W. Rodŕıguez, S. Grusea, P. Santos, S. Boitard, and O. Mazet. The IICR (in-
verse instantaneous coalescence rate) as a summary of genomic diversity: insights into
demographic inference and model choice. Heredity, 120:13–24, 1 2018.

S. R. Cook, A. Gelman, and D. B. Rubin. Validation of software for Bayesian models using
posterior quantiles. Journal of Computational and Graphical Statistics, 15(3):675–692,
2006.



BIBLIOGRAPHY 68

J. E. Crawford, R. Amaru, J. Song, C. G. Julian, F. Racimo, J. Y. Cheng, X. Guo, J. Yao,
B. Ambale-Venkatesh, J. A. Lima, J. I. Rotter, J. Stehlik, L. G. Moore, J. T. Prchal, and
R. Nielsen. Natural Selection on Genes Related to Cardiovascular Health in High-Altitude
Adapted Andeans. American Journal of Human Genetics, 101(5):752–767, 2017.

P. Danecek, A. Auton, G. R. Abecasis, C. a. Albers, E. Banks, M. a. DePristo, R. E.
Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, and R. Durbin. The
variant call format and VCFtools. Bioinformatics (Oxford, England), 27(15):2156–8, 8
2011.

P. Danecek, J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, M. O. Pollard, A. Whitwham,
T. Keane, S. A. McCarthy, R. M. Davies, and H. Li. Twelve years of SAMtools and
BCFtools. GigaScience, 10(2), 2 2021.

O. H. Del Brutto and M. Zambrano. Atahualpa, una población rural ideal para la práctica
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tova, I. Khidiyatova, D. Marjanović, L. Yepiskoposyan, D. M. Behar, E. Balanovska,
A. Metspalu, M. Derenko, B. Malyarchuk, M. Voevoda, S. A. Fedorova, L. P. Osipova,
M. M. Lahr, P. Gerbault, M. Leavesley, A. B. Migliano, M. Petraglia, O. Balanovsky,
E. K. Khusnutdinova, E. Metspalu, M. G. Thomas, A. Manica, R. Nielsen, R. Villems,
E. Willerslev, T. Kivisild, and M. Metspalu. Genomic analyses inform on migration events
during the peopling of Eurasia. Nature, 538(7624):238–242, 2016.

M. Plummer, N. Best, K. Cowles, and K. Vines. CODA: Convergence Diagnosis and Output
Analysis for MCMC. R News, 6(1):7–11, 2006.

J. E. Pool, I. Hellmann, J. D. Jensen, and R. Nielsen. Population genetic inference from
genomic sequence variation. Genome Research, 20(3):291–300, 2010.

J. A. Pospisilik, D. Schramek, H. Schnidar, S. J. F. Cronin, N. T. Nehme, X. Zhang, C. Knauf,
P. D. Cani, K. Aumayr, J. Todoric, M. Bayer, A. Haschemi, V. Puviindran, K. Tar,
M. Orthofer, G. G. Neely, G. Dietzl, A. Manoukian, M. Funovics, G. Prager, O. Wagner,
D. Ferrandon, F. Aberger, C.-c. Hui, H. Esterbauer, and J. M. Penninger. Drosophila
Genome-wide Obesity Screen Reveals Hedgehog as a Determinant of Brown versus White
Adipose Cell Fate. Cell, 140(1):148–160, 2010.



BIBLIOGRAPHY 74
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Appendix A

Appendix of Chapter 1

A.1 Evaluating MCMC Convergence

To evaluate MCMC convergence in ARGweaver and Relate, we run these programs five
independent times for the same simulated sequence of 5Mb. We do this for each simulation
scenario and evaluate convergence by analysing various statistics extracted at each iteration.
For ARGweaver, we analyse statistics from in the .stats file, described below. Relate does
not generate a similar output, so we extract a subset of the pairwise coalescence times
at each MCMC iteration to evaluate convergence. We also evaluate convergence based on
selected pairwise coalescence times in ARGweaver, for comparison. Using these statistics
extracted at each iteration, we evaluate MCMC convergence by analysing 1) trace plots, 2)
autocorrelation plots, 3) effective sample sizes Taboga (2017); Roy (2020), and 4) potential
scale reduction factor (PSRF) Gelman and Rubin (1992). Analyses and plots were done in
R using the function acf for autocorrelation, and R package coda Plummer et al. (2006)
for effective sample sizes and potential scale reduction factor. These results were used to
inform our decisions on burn-in and thinning for MCMC, as well as interpreting results of
our evaluations of the methods under different simulated conditions.

ARGweaver

Convergence of likelihoods ARGweaver’s arg-sample program outputs a .stats file con-
taining several statistics for each MCMC iteration: log probability of the sampled ARG
given the model (”prior”, in Table A.1), log probability of the data given the sampled ARG
(”likelihood”), total log probability of the ARG and the data (”joint”), number of recom-
bination events in the sampled ARG (”recombs”), the number of variant sites that cannot
be explained by a single mutation under the sampled ARG (”noncompats”), total length of
all branches summed across sites (”arglen”) Hubisz and Siepel (2020). We generated trace
plots and calculated autocorrelation between consecutive samples using the likelihood per
iteration (Figures A.9 and A.11). Following visual inspection of these plots, we chose a
burn-in consisting of the first 200 samples in most simulations, except in simulations with 10
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times higher mutation rate (Figure A.9C,F) or sample sizes larger than 8 haplotypes (Figure
A.11B,C,E,F), where we chose a burn-in of 1200 samples since those chains took longer to
converge. In both cases, we ran MCMC for 1000 iterations after burn-in. Based on auto-
correlation plots (Figure A.9, A.11) and on effective sample sizes (Table A.1), we thinned
ARGweaver samples by recording every 10th MCMC iteration, thus retaining a total of 100
MCMC samples.

Results of the potential scale reduction factor suggested convergence of ARGweaver in
simulations with mutation rate equal to recombination rate, with decreased recombination
rate and with increased mutation rate (Table A.1) - see section below on convergence of
individual coalescence times.

Convergence of coalescence times For comparison with Relate, which does not output
statistics for each iteration, we also analyse convergence of pairwise coalescence times in
ARGweaver. To this end, we extract from each MCMC iteration the values of coalescence
times between two pairs of samples at 100 sites equally spaced by 50 kb along the 5Mb
simulated sequences. We use those 200 values for convergence diagnostics. Figure A.12
shows trace plots of 10 of those sites, for one pair of samples. To evaluate convergence, we
calculate potential scale reduction factor (PSRF) for each of the 200 coalescence times, and
compare their mean, variance and range (Table A.2) among different simulations. In Table
A.2 we also compare the number of coalescence times that have effective sample sizes lower
than 100 (which is our MCMC sample size). These results also lead us to conclude that
ARGweaver runs with mutation rate equal to recombination rate have converged. However,
in contrast to the results on convergence for statistics recorded in the ARGweaver stats files
(Table A.1), the evaluation of convergence based on coalescence times does not support a
conclusion of full convergence for the other simulated data sets. In particular, simulations
with mutation to recombination rate ratio of 10 had a large number of coalescence times
with effective sample size smaller than 100. The same was true for simulations with 16 and
32 haplotypes. The maximum values of PSRF in those simulations are also further from one,
thus indicating a lack of convergence for some coalescence times.

Relate

Relate estimates branch lengths using an MCMC algorithm with built in burn-in (Speidel
et al. (2019) Supplementary Note on Method details 4.2, p. 13). To obtain samples from the
posterior distribution, the tree sequence estimated in this first step was used as a starting
point. Therefore, we did not implement any extra burn-in to obtain samples from the
posterior. Visual inspection of traces plots also suggested that additional burn-in was not
necessary (Figure A.13).

We evaluated Relate’s MCMC convergence by running it 5 times for each sequence of 5Mb
simulated under each set of parameters. We then extracted a subset of pairwise coalescence
times to calculate the potential scale reduction factor and effective sample sizes as described
above for ARGweaver. We extracted coalescence times for two pairs of samples at 100
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equally spaced sites along the sequence (i.e. separated by 50kb). Table A.3 shows these
results, which indicate convergence of all Relate runs in all simulated datasets.

A.2 Tsdate prior grid

We ran tsdate with different prior grids, using the function tsdate.build prior grid(). The
observation that dates inferred by tsdate seem to be bounded to a low maximum value still
holds when changing prior grids to have more points (timepoints=100, Figure A.14) or when
manually specifying time slices with a maximum value of 12 (timepoints=np.geomspace(1e-5,
12, 50), Figure A.15).

A.3 ARGweaver subtree sampling acceptance rates

As suggested by ARGweaver authors (Melissa Hubisz and Adam Siepel, personal commu-
nication), we have verified that acceptance rates of subtree sampling steps of ARGweaver
are within a range that indicates good mixing of the chain, between 10% and 90% (Table
A.4). All simulations except for the one with reduced recombination rate were within that
range. For a visualization of the spread of the values of acceptance rate, Figure A.16 shows
the acceptance rates for subtree sampling steps of ARGweaver in one 5Mb region of each
simulation.

Additional simulations results for ARGweaver

SMC and SMC’ modes in ARGweaver

In all results shown in the main text, we simulated under the standard Hudson (1983)
coalescent with recombination, and did inference in ARGweaver under SMC’. Here, we asked
whether deviations observed in the posterior distribution of ARGweaver can be explained
by differences between the models used for simulation and inference. For this, we simulate
sequences in msprime under the SMC and SMC’ models, and run ARGweaver inference
using the same model used in the simulation. We simulated 8 haplotypes with mutation
rate and recombination rate 2 × 10−8. Results improve when simulating under SMC’ and
inferring under SMC’ (Figures A.17B, A.18B). Surprisingly, simulating and inferring under
SMC (Figures A.17A, A.18A) is not better than simulating under the full coalescent with
recombination model and inferring under SMC (Figures 1.4, 1.5).

Intermediate values of mutation to recombination rate ratio

Rasmussen et al. (2014) mention in their Figure S5 that the quality of ARGweaver estimates
generally improved in their simulations with increased mutation to recombination rates ratio
(µ/ρ), but only up to µ/ρ = 4. Motivated by this observation, we additionally ran simulations
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with values of µ/ρ in between the ones shown in the main text (µ/ρ=1 or µ/ρ=10), including
µ/ρ=2 and 4. We summarize our results under these conditions in Table A.5. We observed
a similar pattern for these intermediate values of µ/ρ = 2, 4 as we had observed from 1 to
10, i.e. point estimates improve with increased ratio (shown by lower MSE in Table A.5),
and calibration of the posterior distribution worsens with an increased ratio (show by higher
KLD in Table A.5).

Jukes-Cantor mutational model

In all results shown in the main text, we simulated mutations using an infinite sites model.
ARGweaver, on the other hand, uses a Jukes and Cantor (1969) mutational model. There-
fore, we hypothesize that differences in the mutational model between simulations and in-
ference could explain deviations in the posterior distribution of ARGweaver, especially in
simulations with increased mutation to recombination ratio (µ/ρ). We found that ARG-
weaver results with simulations under the Jukes and Cantor (1969) model are very similar
to the results under the infinite sites model and follow the same pattern under increased µ/ρ
(Table A.5, Figures A.20, A.21).
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A.4 Supplementary figures

Figure A.1: True pairwise coalescence time from msprime simulations compared to inferred
coalescence time from (A) ARGweaver (B) Relate (C) tsdate. Note that axes are in linear
scale. See Figure 1.3A, D, G for these data plotted on a logarithmic scale. These results
are for simulations with n=8 samples (haplotypes), mutation and recombination rates of
2 × 10−8. Diagonal line shows x=y, points show the mean inferred coalescence time within
a true coalescence time bin.
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Figure A.2: Mean (A,B) and mean squared error (C,D) of point estimates of pairwise coales-
cence times by ARGweaver, Relate and tsdate in each bin of size 0.1 of simulated coalescence
times. Diagonal gray line in plots A and B show 1:1 line. These results are for simulations
with n=8 samples, mutation and recombination rates of 2× 10−8. Plots B and D are in log
scale to highlight small values of coalescence times, which are the most abundant. Note that
estimates are best (i.e. means in plots a and b are closer to the simulated value) at values
near the expected mean coalescence time under the coalescent (i.e. 1 in the coalescent units
of 2Ne generations).
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Figure A.3: Histogram of the distribution of coalescence times in msprime simulations. Red
line shows expected exponential distribution with rate 1.

Figure A.4: Distributions of pairwise coalescence times in Relate and tsdate without ARG-
weaver time discretization. These results are for simulations with n=8 samples, mutation
and recombination rates of 2× 10−8. (A) Relate, (B) tsdate, both with 20 equal size bins .
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Figure A.5: Point estimates (A-C), distribution of coalescence times (D-F) and counts of
ranks from simulation-based calibration (G,H) from ARGweaver (A,D,C), Relate (B,E,H)
and tsinfer+tsdate (C,F). Simulations with reduced mutation rate (µ = 2 × 10−9 and
ρ = 2 × 10−8). Compared to simulations with mutation rate equal to recombination rate,
mean square error (MSE) values are all larger (Figure 1.3), distributions of coalescence times
deviate more from the theoretical expectation (Figure 1.4), and KLD is lower in ARGweaver
but higher in Relate (Figure 1.5).
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Figure A.6: Point estimates (A-C), distribution of coalescence times (D-F) and counts of
ranks from simulation-based calibration (G,H) from ARGweaver (A,D,C), Relate (B,E,H)
and tsinfer+tsdate (C,F). Simulations with increased recombination rate (µ = 2× 10−8

and ρ = 2×10−7). Compared to simulations with mutation rate equal to recombination rate,
Mean square error (MSE) values are all larger (Figure 1.3), distributions of coalescence times
deviate more from the theoretical expectation (Figure 1.4), and KLD is lower in ARGweaver,
but higher in Relate (Figure 1.5).
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Figure A.7: Point estimates (A-C), distribution of coalescence times (D-F) and counts of
ranks from simulation-based calibration (G,H) from ARGweaver (A,D,C), Relate (B,E,H)
and tsinfer+tsdate (C,F). Simulations with sample size of 8 haplotypes, µ = ρ = 2 × 10−8,
and input sequence length of 5Mb.



APPENDIX A. APPENDIX OF CHAPTER 1 87

Figure A.8: Point estimates (A-C), distribution of coalescence times (D-F) and counts of
ranks from simulation-based calibration (G,H) from ARGweaver (A,D,C), Relate (B,E,H)
and tsinfer+tsdate (C,F). Simulations with sample size of 8 haplotypes, µ = ρ = 2 × 10−8,
and input sequence length of 250kb. In H, KLD is not defined because counts for one
of the ranks is zero.
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Figure A.9: ARGweaver likelihood traces (top) and autocorrelation between consecutive
MCMC iterations (bottom, also showing effective sample sizes (Neff )) for the number of
iterations used in the main text. Left column: simulations with 8 haplotypes, mutation
rate equal to the recombination rate( 2× 10−8). Potential scale reduction factor (PSRF) is
1.02, upper confidence interval (CI) is 1.05. Middle column: simulations with recombination
rate decreased to 2 × 10−9. PSRF is 1.04, upper CI is 1.11. For both of these simulated
datasets we used a burn in of 200 iterations (indicated by vertical line) and ran them for 1200
iterations in total, sampling every 10th iteration. Right column: simulations with mutation
rate increased to 2× 10−7. PSRF is 1.01, upper CI is 1.02. For this dataset we used a burn
in of 1200 iterations (indicated by vertical line) and ran them for 2200 iterations in total,
sampling every 10th iteration.
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Figure A.10: Similar to Figure A.9, but running ARGweaver for 10 thousand iterations,
with a burn in of 9 thousand applied before calculating effective sample sizes, to keep the
same number of samples (1000). ARGweaver likelihood traces (A,B,C) and autocorrelation
between consecutive MCMC iterations (D,E,F). Left column: simulations with 8 haplotypes,
mutation rate equal to the recombination rate (2× 10−8). Middle column: simulations with
recombination rate decreased to 2 × 10−9. Right column: simulations with mutation rate
increased to 2× 10−7.
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Figure A.11: ARGweaver likelihood traces (top) and autocorrelation between consecutive
MCMC iterations (bottom). A,D: simulations with 4 haplotypes, mutation rate equal to
recombination rate ( 2×10−8). For this simulated dataset we used a burn in of 200 iterations
(indicated by vertical line) and ran them for 1200 iterations in total, sampling every 10th
iteration. B,E: simulations with 16 haplotypes. C,F: simulations with 32 haplotypes. For
both of these datasets we used a burn in of 1200 iterations (indicated by vertical line) and
ran them for 2200 iterations in total, sampling every 10th iteration.
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Figure A.12: Coalescence times for one pair of samples inferred by 5 independent runs of
ARGweaver at 10 sites equally spaced sites along the 5Mb sequence. Simulations with 8
samples and mutation rate equal to recombination rate.
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Figure A.13: Coalescence times for one pair of samples inferred by 5 independent runs of
Relate at 10 sites equally spaced sites along the 5Mb sequence. Simulations with 8 samples
and mutation rate equal to recombination rate.
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Figure A.14: Tsdate results with a prior grid constructed with timepoints=100. (A)
Comparisons of estimated and simulated point estimates of pairwise coalescence times. (B)
Comparisons of the distribution of coalescence times to the expected exponential distribution,
using ARGweaver time discretization bins. (C) Same as B, but without imposing ARGweaver
time discretization.

Figure A.15: Tsdate results with a prior grid constructed with a maximum value of
12. (A) Comparisons of estimated and simulated point estimates of pairwise coalescence
times. (B) Comparisons of the distribution of coalescence times to the expected exponen-
tial distribution, using ARGweaver time discretization bins. (C) Same as B, but without
imposing ARGweaver time discretization.
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Figure A.16: Acceptance rate from ARGweaver subtree sampling steps in one 5Mb region
of each simulation.

Figure A.17: Distribution of coalescence times in msprime simulations using the SMC (A) or
SMC’ model (B). ARGweaver inference is done using the same model used in the simulations.
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Figure A.18: Simulation-based calibration results in msprime simulations using the SMC
(A) or SMC’ model (B). ARGweaver inference is done using the same model used in the
simulations.
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Figure A.19: Evaluation of ARGweaver point estimates (A,D), distribution of coalescence
times (B,E) and posterior calibration (C,F) for simulations with mutation rate to recombi-
nation rate ratio of 2 (A-C, µ = 4× 10−8, ρ = 2× 10−8) and mutation rate to recombination
rate ratio of 4 (D-F, µ = 8× 10−8, ρ = 2× 10−8)
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Figure A.20: Evaluation of ARGweaver point estimates (A,D), distribution of coalescence
times (B,E) and posterior calibration (C,F) with simulations under the Jukes and Cantor
mutational model. A-C: simulations with 8 haplotypes and µ = ρ = 2 × 10−8. D-F:
simulations with 8 haplotypes and µ = 2× 10−8 and ρ = 2× 10−9
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Figure A.21: Evaluation of ARGweaver point estimates (A,D,G), distribution of coalescence
times (B,E,H) and posterior calibration (C,F,I) with simulations under the Jukes and Cantor
mutational model. In all cases we simulated 8 haplotypes and used ρ = 2 × 10−8. A-C:
µ = 4× 10−8. D-F: µ = 8× 10−8. G-I: µ = 2× 10−7
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A.5 Supplementary tables

Table A.1: Potential scale reduction factor point estimates (PSRF), their upper confidence
intervals (C.I.) and effective sample sizes (Neff ) for ARGweaver stats. µ: mutation rate, ρ:
recombination rate.

µ = ρ = 2× 10−8 ρ = 2× 10−9 µ = 2× 10−7

PSRF C.I. Neff PSRF C.I. Neff PSRF C.I. Neff

prior 1.06 1.15 224 1.01 1.03 494 1.00 1.01 216
likelihood 1.02 1.05 294 1.04 1.11 964 1.01 1.02 499
joint 1.06 1.16 216 1.01 1.02 486 1.01 1.02 219
recombs 1.04 1.1 254 1.01 1.03 559 1.00 1.01 229
noncompats 1.02 1.04 406 1.01 1.03 1290 1.01 1.04 518
arglen 1.06 1.16 348 1.08 1.21 459 1.05 1.12 319
Multivariate 1.15 1.1 1.05

Table A.2: Potential scale reduction factor (PSRF) mean, variance and range for each of
200 coalescence times in ARGweaver, the multivariate PSRF Plummer et al. (2006) and
the number of coalescence times for each the effective sample size (Neff ) is smaller than
100. Unless otherwise noted, mutation rate (µ) and recombination rate (ρ) are 2× 10−8 and
sample sizes (n) are 8 haplotypes.

PSRF µ = ρ ρ = 2× 10−9 µ = 2× 10−7 n=4 n=16 n=32

Mean 1.055 1.069 1.211 1.028 1.242 244.152
Variance 0.005 0.010 1.053 0.001 0.233 11613699

Range
0.994 -
1.415

0.994 -
1.709

0.994 -
13.740

0.991 -
1.199

1.001 -
4.847

0.994 -
4.783× 104

Multivariate 4.92 4.29 21.2 2.78 24.9 110560
Number of
Neff < 100
(out of 200)

4 16 14 0 32 45
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Table A.3: Potential scale reduction factor (PSRF) mean, variance and range for each of 200
coalescence times in Relate, the multivariate PSRF Plummer et al. (2006) and the number
of coalescence times for each the effective sample size (Neff ) is smaller than 100. Unless
otherwise noted, mutation rate (µ) and recombination rate (ρ) are 2×10−8 and sample sizes
(n) are 8 haplotypes.

PSRF µ = ρ ρ = 2× 10−9 µ = 2× 10−7 n=4 n=16 n=32

Mean 1.007 1.007 1.008 1.008 1.009 1.008
Variance 10−4 8.7× 10−5 10−4 10−4 10−4 10−4

Range
0.991 -
1.076

0.993 -
1.051

0.992 -
1.051

0.991 -
1.102

0.992 -
1.061

0.993 -
1.049

Multivariate 2.24 2.12 2.57 2.24 3.31 2.49
Number of
Neff < 100
(out of 200)

0 0 0 0 0 0

Table A.4: Minimum and maximum acceptance rates of ARGweaver subtree sampling steps
for each simulation.

Acceptance rates
Simulation Min Max

n=8; µ = ρ = 2× 10−8 0.283 0.532
n=8; µ = 2× 10−8; ρ = 2× 10−9 0.838 0.965
n=8; µ = 2× 10−7; ρ = 2× 10−8 0.345 0.582
n=4; µ = ρ = 2× 10−8 0.262 0.511
n=16; µ = ρ = 2× 10−8 0.299 0.567
n=32; µ = ρ = 2× 10−8 0.307 0.568

Table A.5: Comparison of ARGweaver results with simulations under infinite sites mutational
model and Jukes-Cantor finite sites mutational model, including simulations with values of
mutation to recombination rate ratio in between the ones shown in the main text. * indicate
results shown in the main text and presented here again for comparison.

Point estimates (MSE) Ranks (KLD)
µ/ρ Infinite sites Finite sites (JC) Infinite sites Finite sites (JC)

2×10−8

2×10−8 = 1 0.397* 0.396 0.027* 0.026
4×10−8

2×10−8 = 2 0.285 0.285 0.049 0.053
8×10−8

2×10−8 = 4 0.195 0.197 0.113 0.112
2×10−7

2×10−8 = 10 0.117* 0.120 0.350* 0.353
2×10−8

2×10−9 = 10 0.120* 0.119 0.286* 0.291
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Appendix B

Appendix of Chapter 2

B.1 Supplementary Methods

Markov process describing state of lineages in a coalescence tree
with four tips

Let us encode a lineage state at time t by (k, l, i), where k, l ∈ {0, 1, 2}, k + l > 0 are the
number of descendants of this lineage that were sampled (at time t = 0) from populations
1 and 2 respectively, and i ∈ {1, 2} is the population where the lineage is at time t. We do
not consider equations corresponding to states with a single lineage, i.e. before the most
recent common ancestor of the 4 samples ({2, 2, i}, i = 1, 2), because they do not contribute
to variable sites.

Before split time there is one single ancestral population, so a similar approach holds but
the last index i is not needed to encode a lineage. So, there are only 8 possible states of
the Markov process, and an additional absorbing state (2, 2) which does not contribute to
SFS. We proceed with the derivation of the case of two ancestral populations, as it is a more
complex one.

Every Markov state {(kj, lj, ij)} is a set of lineages (enumerated with the index j, 1 < j ≤
4) with the condition

∑
j kj =

∑
j lj = 2. At the time of observation t = 0 the initial state is

{(1, 0, 1), (1, 0, 1), (0, 1, 2), (0, 1, 2)}. Two lineages (k1, l1, i1) and (k2, l2, i2) can coalesce only
if i1 = i2, and the resulting lineage is (k1 + k2, l1 + l2, i1).

Let us consider the state L = {(1, 1, 1), (1, 0, 1), (0, 1, 2)}, and write the equation for the
derivative PL(t) which is the change in the probability of the Markov process being in state
L at time t.

Transitions into state L are possible from the following four states

• L1 = {(1, 0, 1), (1, 0, 1), (0, 1, 1), (0, 1, 2)} through coalescence of any of two lineages
(1, 0, 1) and the lineage (0, 1, 1) with the total rate of coalescence 2/NL1,
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• L2 = {(1, 1, 2), (1, 0, 1), (0, 1, 2)} through migration of the lineage (1, 1, 2) from popu-
lation 2 into population 1 with the migration rate m21,

• L3 = {(1, 1, 1), (1, 0, 2), (0, 1, 2)} through migration of the lineage (1, 0, 2) with the rate
m21,

• L4 = {(1, 1, 1), (1, 0, 1), (0, 1, 1)} through migration of the lineage (0, 1, 1) with the rate
m12.

Transitions from state L are possible into four states

• L5 = {(2, 1, 1), (0, 1, 2)} through coalescence of the lineages (1, 1, 1) and (1, 0, 1) with
the coalescence rate 1/NL1,

• L2 = {(1, 1, 2), (1, 0, 1), (0, 1, 2)} through migration of the lineage (1, 1, 1) from popu-
lation 1 into population 2 with the migration rate m12,

• L3 = {(1, 1, 1), (1, 0, 2), (0, 1, 2)} through migration of the lineage (1, 0, 1) with the rate
m12,

• L4 = {(1, 1, 1), (1, 0, 1), (0, 1, 1)} through migration of the lineage (0, 1, 2) with the rate
m21.

So, the corresponding equation is

P ′
L(t) = −

(
1

NL1

+ 2m12 +m21

)
PL(t) +

2

NL1

PL1(t) +m21PL2(t) +m21PL3(t) +m12PL4(t).

Mutation on a lineage (k, l, i) contributes to the fk,l entry of the SFS. More specifically,
fk,l is proportional to the total probability (from t = 0 to infinity) of lineages (k, l, 1) and
(k, l, 2).

Assume that in the matrix form the equation has the form

P ′(t) = M(t)P (t),

where P is the vector of probabilities of states, and M is a transition matrix depending
on coalescence and migration rates. In order to calculate SFS, we need to compute the
corresponding integrals

∫∞
0

P (t)dt of the time spent in each of the states. We assume that
the local effective population sizes and migration rates are picewise constant, hence M is
piecewise constant too. On each time interval [t0, t1] the solution of the matrix equation is
P (t) = exp(Mt)P (t0), and the integral∫ t1

t0

P (t)dt = −M−1(exp(M(t1 − t0))− E)P (t0),

where exp is the matrix exponent and E is the identity matrix.
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Simulations

Simulations were done with the software ms Hudson (2002) and using GNU parallel Tange
(2011) to run replicates and explore parameter values. First, we simulated two types of
populations: Population 1 remained with constant intermediate size, while population 2
underwent a bottleneck followed by expansion, similar to the scenario simulated in Figure
2 of Li and Durbin (2011). The exact ms command line for simulating size changes of
populations 1 and 2 is the following: “4 100 -t 15000 -r 1920 30000000 -l -I 2 2 2 -n 1 1.5 -n
2 3.0 -en 0.025 2 0.2 -en 0.175 2 1.5 -ej 0.625 2 1 -eN 3 3”.

We added continuous migration using the -em flag in ms, and pulse migration was in-
cluded using -es to split the receiver population into a third population, followed by -ej to
merge the third population into the donor population at the exact same time.

To simulate a single panmictic population with the same historical ordinary effective
population size as population 2 (used for Figure 2.4C,E), we used the following ms command
line: “2 10000 -T -t 15000 -r 1920 30000000 -l -eN 0.0 3.233 -eN 0.01 3.69 -eN 0.02 3.996 -eN
0.025 0.311 -eN 0.03 0.359 -eN 0.04 0.436 -eN 0.05 0.531 -eN 0.06 0.644 -eN 0.07 0.777 -eN
0.08 0.926 -eN 0.09 1.088 -eN 0.1 1.369 -eN 0.125 1.723 -eN 0.15 1.928 -eN 0.175 2.274 -eN
0.2 2.049 -eN 0.25 1.859 -eN 0.3 1.703 -eN 0.4 1.597 -eN 0.5 1.545 -eN 0.625 1.5 -eN 3.0 3.0”.

We also simulated past population size changes that closely approximate those inferred by
PSMC for human populations. An approximation of the Han-French effective population
size trajectories, was simulated using the command: “4 1000 -t 1500 -r 192 3000000 -l -I 2 2 2
-n 1 6.3 -n 2 2.4 -ej x 2 1 -eN 0.0225 0.3 -eN 0.15 2.7 -eN 0.5 1.3 -eN 2.5 2.9 -eN 5 2.7”, using
the following values of the split times (x): 0.0225 (900 generations, the end of the bottleneck),
0.043 (1714 generations, the split time inferred by MiSTI, within the bottleneck), 0.15 (6000
generations, right before the bottleneck) and 0.575 (23000 generations, before the expansion
that precedes the main bottleneck).

An approximation of the San-Dinka effective population size trajectories, was simulated
using the command: ”4 1000 -t 1500 -r 192 3000000 -l -I 2 2 2 -n 1 1 -n 2 1 -ej x 2 1 -en 0.05
1 2 -en 0.11 1 3 -en 0.15 2 2.7 -eN 0.5 1.3 -eN 2.5 2.9 -eN 5 2.7”, using the following values of
the split times (x): 0.05 (2000 generations), 0.09 (3728 generations, the split time inferred
by MiSTI), 0.21 (8554 generations, the split time inferred by TT), 0.25 (10000 generations)
and 0.5 (20000 generations).

An approximation of the Dinka-Sardinian effective population size trajectories, was
simulated using the command: ”4 1000 -t 1500 -r 192 3000000 -l -I 2 2 2 -n 1 1 -n 2 1 -ej
x 2 1 -en 0.0225 2 0.3 -eN 0.15 2.7 -eN 0.5 1.3 -eN 2.5 2.9 -eN 5 2.7”, using the following
values of the split times (x): 0.0225 (900 generations, the end of the bottleneck), 0.064 (2553
generations, the split time inferred by TT), 0.099 (2963 generations, the split time inferred
by MiSTI), 0.25 (10000 generations) and 0.5 (20000 generations).

Times in the ms command lines are given in ms units, i.e. generations/(4×N0), where
N0 = 10000.



APPENDIX B. APPENDIX OF CHAPTER 2 104

Data processing

We applied MiSTI to datasets from human and puma populations. MiSTI takes as input
PSMC results for one individual from each population. If estimation of migration rates is
desired, a joint site frequency spectrum of both genomes is also required. The joint site
frequency spectrum can be generated with ANGSD Korneliussen et al. (2014), and a Python
program is provided with MiSTI to convert ANGSD 2D site frequency spectrum format to
MiSTI input format. For both humans and pumas, we applied filters to keep only sites with
mapping quality above 30 and coverage between one third and twice the average genomewide
coverage. In all analyses of human data, we applied the 1000 Genomes strict accessibility
genome mask, and a filter for positions where the ancestral state was conserved among three
species of great apes (Chimpanzee, Gorilla and Orangutan). The accessibility mask file can
be downloaded from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/2013050

2/supporting/accessible genome masks/20140520.strict mask.autosomes.bed, and
the ancestral state data were downloaded from https://zenodo.org/record/4441887. We
ran PSMC with parameters -N25 -t15 -r5 -p ”4+25*2+4+6” for both species. For humans,
we used a mutation rate of 1.25× 10−8 per base pair per generation, and generation time of
29 years. For pumas, we used mutation rate of 5 × 10−9 per base pair per generation, and
generation time of 5 years Saremi et al. (2019).

For the analysis of human data, we downloaded a modern European genome (in bam
format) from the CEPH/UTAH (CEU) population from the European Nucleotide Archive
(ENA), accession number ERR194158. Neanderthal tracts specific for that individual were
obtained from Steinrücken et al. (2018). The Neanderthal bam file was downloaded from
http://cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/bam/. Bam files from
one Han Chinese sample (HGDP00778), one French sample (HGDP00521), one San sample
(HGDP01029) and one Dinka sample (DNK02) and one Sardinian sample (HGDP00665)
were downloaded from http://cdna.eva.mpg.de/denisova/BAM/human/. When inferring
migration from real data, we allowed it to start from the 4th PSMC interval and going until
the split time, to avoid using the first PSMC intervals that have a lot of uncertainty.

We ran PSMC on the CEU genome before and after masking its tracts of Neanderthal
ancestry, and we used MiSTI to correct the PSMC of the unmasked CEU genome, assuming
1.5% and 3% of pulse admixture from Neanderthals. The split time was set to 662 kya,
considering that the average archaic-modern human split time inferred in Prüfer et al. (2014)
is 570 thousand years, with a mutation rate of 5×10−10 per base pair per year, and adjusting
for the mutation rate we use here (which translates to 4.3 × 10−10 per year). The pulse
migration time was set to 60 kya, and the sample age was set to 50 kya, using MiSTI’s
–sdate parameter.

For the analysis of puma data, we obtained bam files and masks for runs of homozygosity
(due to recent inbreeding) from the authors of Saremi et al. (2019). We focused on one
sample from Florida (EVG21) that showed an inflated PSMC trajectory in Saremi et al.
(2019), likely due to its known history of admixture with Central American pumas, and
another sample from Florida that does not have Central American ancestry (CYP47). We

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessible_genome_masks/20140520.strict_mask.autosomes.bed
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessible_genome_masks/20140520.strict_mask.autosomes.bed
https://zenodo.org/record/4441887
http://cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/bam/
http://cdna.eva.mpg.de/denisova/BAM/human/
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masked the runs of homozygosity from these genomes and we ran PSMC on them. We used
MiSTI to correct the inferred effective population size trajectories for a plausible scenario of
continuous migration and recent pulse admixture from Central America to Florida, based on
the known history of this species. Saremi et al. (2019) inferred that the split time between the
Florida pumas and Brazilian pumas was 300 thousand years ago. We have assumed a more
recent split time of 200 thousand years between the Florida pumas and the Central American
pumas that were ancestors of EVG21, which is the time when PSMC trajectories of CYP47
and EVG21 diverge. The resulting trajectory of the admixed individual, after correcting for
its Florida ancestry component, is a putative effective population size trajectory for Central
American pumas, that were not sampled.

Running MiSTI

To run MiSTI with parameter optimization, we recommend starting with inference of split
times without migration. Once the best split time for this model (T ∗) is found, the user
can optimize the migration rates in each direction under split times equal to or larger than
T ∗. The user can run the migration rate optimization from different starting values, and we
recommend using gnu-parallel Tange (2011) to provide the starting values to MiSTI.

Time discretization

MiSTI merges time points from two PSMC files, so that effective population size of both
populations are constant on each time interval. This discretization is the principal time
scale for MiSTI, and the default search of the split time is performed at the nodes of this
discretization. If more precision is needed, one may use -d N key to split all the intervals in
the search range into N equal parts.

Effective population size before split

Of course, when we choose a split time point, the estimated values for the effective population
size before the split do not necessary coincide. So, we need to find a consensus effective
population size from two estimates. The consensus effective population size before the split
time is computed so that the expected number of coalescences for two haplotypes be the
same as the sum of expected number of coalescence for the first and for the second genomes.
More formally, let P1 and P2 be the probabilities of lineages sampled from populations 1
and 2 respectively not to coalesce before given time interval based on their corresponding
distributions of effective population size. The probability not to coalesce within the time
interval of length t and with estimated effective population sizes N1 (from the first genome)
and N2 (from the second genome) is

Pnc =
P1e

−t/N1 + P2e
−t/N2

P1 + P2

.
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The consensus value for effective population size N at this time interval is

N = − t

logPnc

. (B.1)

B.2 Limitations of MiSTI: an analysis of likelihood

surfaces

The demographic history of a recently admixed puma

In Florida, USA, there is a population of pumas (or mountain lions, Puma concolor) known
as the Florida Panther. These pumas have a series of morphological signs of inbreeding
depression. Interestingly, in the Everglades National Park (EVG), a population does not
present these typical signs, likely because of an influx of genetic diversity brought by the
introduction of individuals with Central American ancestry O’Brien et al. (1990). The PSMC
trajectory from one of these individuals (EVG21) shows larger effective population sizes than
other Florida panthers, as expected due to its admixed ancestry Saremi et al. (2019).

We have corrected the PSMC trajectory of this admixed individual with MiSTI, modeling
it is a Central American puma that received admixture from a Florida Panther. We use a
sample from the Big Cypress National Preserve (CYP47) as the unadmixed Florida Panther.
This population is partially isolated from the EVG population and does not show inflated
effective population size like EVG21.

Even though we do not have data from Central American pumas, by using MiSTI to
correct the PSMC trajectory of EVG21 for the Florida admixture component (CYP47), we
aimed to recover the effective population size trajectory of the unsampled Central American
puma.

When we model a split time of 200ky between Central American and Florida panthers,
and a single pulse admixture event very close to the present, we can fit a pulse of 0.30 from
Florida to Central American. Under this model, we infer that the Central American popula-
tion had more constant effective population size through time than other puma populations
(Figure B.1).

The range of Puma concolor used to be connected from East to West of North America
until a great population decline started in the 1800s, when these animals suffered extreme
habitat loss and were hunted almost to extinction. Therefore, it is likely that there has been
some degree of continuous migration between Florida Panthers and Central American pumas
until historical times. Allowing for continuous migration, the model fits the data better (llh=-
131360 instead of llh= -172712). This model includes continuous migration (migration rate
from Central America to Florida of 1.0, and 0.65 in the other direction) and the same 0.30
recent pulse migration from Florida to Central America. Under this model, we also infer
that the Central American puma population had relatively constant effective population size
through time, and that both populations had smaller local effective population size than the
ancestral effective population size inferred by PSMC (Figure B.2). We note that the original
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Figure B.1: MiSTI correction of the PSMC curve of the admixed puma sample EVG21 with
a single pulse of 0.30 admixture from CYP47 at the most recent time interval. Split time
(200 thousand years) is indicated by a vertical gray bar.

PSMC effective population sizes are very high (over 600 thousand individuals), and likely
unrealistic for a population of large carnivores. This is likely a consequence of some degree of
population structure and continuous migration across the range of pumas until recent times.

We note, however, that the composite likelihood surface for the split time and pulse of
migration used as a model for the Pumas is not smooth (Figure B.3). The empty area of the
composite likelihood surface indicates rates of continuous migration that are incompatible
with the PSMC trajectories. For those values of migration rates, the corrected local effective
population size would become negative, which is nonsensical. The fact that the highest com-
posite likelihoods are at the border of the likelihood surface and next to these incompatible
values of migration rates indicates that the data does not fit well with the MiSTI model of
pulse and continuous migration we used. This uneven composite likelihood surface could
also be due to some issue in the PSMC inference step. One possible source of problems
is that there is large uncertainty in the PSMC inference at the most recent time intervals,
which is when we model the pulse of migration in the Pumas.
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Figure B.2: MiSTI correction of the PSMC curve of the admixed puma sample EVG21 with
continuous migration allowed since the split time, and a single pulse of 0.30 admixture from
CYP47 at the most recent time interval. Split time (200 thousand years) is indicated by a
vertical gray bar.

Figure B.3: Composite likelihood surface for the model of Florida panther split time 200 kya,
pulse of migration at the most recent time interval, and a range of continuous migration rates.
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Figure B.4: Composite likelihood surface from MiSTI for the inferred split time between
Han and French (1505 generations ago), for different values of migration rates.

Figure B.5: Composite likelihood surface from MiSTI for the inferred split time between San
and Dinka (3729 generations ago), for different values of migration rates.

Likelihood surfaces of inferred models of split and migration
between pairs of human populations

Here we show the composite likelihood surfaces for a range of migration rates under the best
inference of split time for pairs of human populations discussed in the main text. These
composite likelihood surfaces differ from the puma case above in that their peak is not near
the steep drop in composite likelihood.
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Figure B.6: Composite likelihood surface from MiSTI for the inferred split time between
Dinka and Sardinian (3963 generations ago), for different values of migration rates.

B.3 Simulations of the San-Dinka split time with

migration

Here we show simulations of the best inference of split time and migration rates for the San-
Dinka pair. We did ten replicate simulations with the effective population size trajectories
inferred from the data with PSMC, and with split time 3729 generations ago, and migration
rate of 2.5 from Dinka to San (Table 2.2). We applied both the TT method and MiSTI to
infer split times in each simulation. The TT method largely overestimated the split time in
all cases, while MiSTI underestimated the split time when no migration is allowed in the
model (left most column, Figure B.7). When migration in the direction simulated (from
Dinka to San) is allowed, MiSTI estimates split times closer to the simulated values, and
migration rates are also estimated in the correct direction (columns 2 and 4, Figure B.7).
When migration is only allowed in the direction opposite to the simulated, it is largely
overestimated, and the split time is underestimated (third column of Figure B.7).
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Figure B.7: Ten simulations of the split time and migration rates between San and Dinka
inferred by MiSTI (split 3729 generations ago, m1=2.5 and m2=0, shown in the main text
Table 2.2). In the top panel, we show split times inferred using the TT method and MiSTI.
Middle and bottom panels shows values of inferred migration rates. In MiSTI, we inferred
split times and migration rates for 4 models: no migration, m1 only, m2 only and bidirectional
migration.



112

Appendix C

Appendix of Chapter 3

C.1 Supplementary figures

Figure C.1: PBS scan peak on chromosome 2 at 190Mb. Scan performed with windows
of 1kb, slide of 500bp. Dashed blue line shows 0.1 percentile of PBS. Black lines show
genomewide FST values for each population pair.
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Figure C.2: PBS scan peak on chromosome 2 at 17Mb. Scan performed with windows of 1kb,
slide of 500bp. Dashed blue line shows 0.1 percentile of PBS. Black lines show genomewide
FST values for each population pair.
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Figure C.3: PBS scan peak on chromosome 2 at 133Mb. Scan performed with windows
of 1kb, slide of 500bp. Dashed blue line shows 0.1 percentile of PBS. Black lines show
genomewide FST values for each population pair.

Figure C.4: PBS scan peak on chromosome 8. Peak of PBS is in a region of increased
mutation next to the centromere. Dashed blue line shows 0.1 percentile of PBS.
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C.2 Supplementary tables

Table C.1: Candidate genes in chromosome 10, at 105Mb. Gene summaries obtained from
GeneCards (Safran et al., 2022).

Gene
symbol

Gene name Entrez Gene Summary

MFSD13A Major Facilitator
Superfamily
Domain
Containing 13A

Predicted to be integral component of membrane.
[provided by Alliance of Genome Resources, Apr 2022]

ACTR1A Actin Related
Protein 1A

This gene encodes a 42.6 kD subunit of dynactin, a
macromolecular complex consisting of 10-11 subunits
ranging in size from 22 to 150 kD. Dynactin binds to
both microtubules and cytoplasmic dynein. It is
involved in a diverse array of cellular functions,
including ER-to-Golgi transport, the centripetal
movement of lysosomes and endosomes, spindle
formation, chromosome movement, nuclear
positioning, and axonogenesis. This subunit is present
in 8-13 copies per dynactin molecule, and is the most
abundant molecule in the dynactin complex. It is an
actin-related protein, and is approximately 60%
identical at the amino acid level to conventional actin.
[provided by RefSeq, Jul 2008]

SUFU SUFU Negative
Regulator Of
Hedgehog
Signaling

The Hedgehog signaling pathway plays an important
role in early human development. The pathway is a
signaling cascade that plays a role in pattern
formation and cellular proliferation during
development. This gene encodes a negative regulator
of the hedgehog signaling pathway. Defects in this
gene are a cause of medulloblastoma. Alternative
splicing results in multiple transcript
variants.[provided by RefSeq, May 2010]
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Table C.1 Continued from previous page.

Gene
symbol

Gene name Entrez Gene Summary

TRIM8 Tripartite Motif
Containing 8

This gene encodes a member of the tripartite motif
(TRIM) protein family. Based on similarities to other
proteins, the encoded protein is suspected to be an E3
ubiquitin-protein ligase. Regulation of this gene may
be altered in some cancers. Mutations resulting in a
truncated protein product have been observed in
early-onset epileptic encephalopathy (EOEE).
[provided by RefSeq, Sep 2016]

ARL3 ADP
Ribosylation
Factor Like
GTPase 3

ADP-ribosylation factor-like 3 is a member of the
ADP-ribosylation factor family of GTP-binding
proteins. ARL3 binds guanine nucleotides but lacks
ADP-ribosylation factor activity. [provided by RefSeq,
Jul 2008]

SFXN2 Sideroflexin 2 Predicted to enable serine transmembrane transporter
activity. Involved in mitochondrial transmembrane
transport. Located in mitochondrion. [provided by
Alliance of Genome Resources, Apr 2022]

WBP1L WW Domain
Binding Protein 1
Like

Predicted to enable ubiquitin protein ligase binding
activity. Predicted to act upstream of or within
CXCL12-activated CXCR4 signaling pathway;
hemopoiesis; and positive regulation of protein
ubiquitination. Predicted to be integral component of
membrane. [provided by Alliance of Genome
Resources, Apr 2022]
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Table C.1 Continued from previous page.

Gene
symbol

Gene name Entrez Gene Summary

CYP17A1 Cytochrome P450
Family 17
Subfamily A
Member 1

This gene encodes a member of the cytochrome P450
superfamily of enzymes. The cytochrome P450
proteins are monooxygenases which catalyze many
reactions involved in drug metabolism and synthesis of
cholesterol, steroids and other lipids. This protein
localizes to the endoplasmic reticulum. It has both
17alpha-hydroxylase and 17,20-lyase activities and is a
key enzyme in the steroidogenic pathway that
produces progestins, mineralocorticoids,
glucocorticoids, androgens, and estrogens. Mutations
in this gene are associated with isolated steroid-17
alpha-hydroxylase deficiency,
17-alpha-hydroxylase/17,20-lyase deficiency,
pseudohermaphroditism, and adrenal hyperplasia.
[provided by RefSeq, Jul 2008]

BORCS7 BLOC-1 Related
Complex Subunit
7

Part of BORC complex. [provided by Alliance of
Genome Resources, Apr 2022]

AS3MT Arsenite
Methyltransferase

AS3MT catalyzes the transfer of a methyl group from
S-adenosyl-L-methionine (AdoMet) to trivalent
arsenical and may play a role in arsenic metabolism
(Lin et al., 2002 [PubMed 11790780]).[supplied by
OMIM, Mar 2008]

CNNM2 Cyclin And CBS
Domain Divalent
Metal Cation
Transport
Mediator 2

This gene encodes a member of the ancient conserved
domain containing protein family. Members of this
protein family contain a cyclin box motif and have
structural similarity to the cyclins. The encoded
protein may play an important role in magnesium
homeostasis by mediating the epithelial transport and
renal reabsorption of Mg2+. Mutations in this gene
are associated with renal hypomagnesemia.
Alternatively spliced transcript variants encoding
multiple isoforms have been observed for this gene.
[provided by RefSeq, Dec 2011]

NT5C2 5’-Nucleotidase,
Cytosolic II

This gene encodes a hydrolase that serves as an
important role in cellular purine metabolism by acting
primarily on inosine 5’-monophosphate and other
purine nucleotides. [provided by RefSeq, Oct 2011]
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Gene
symbol

Gene name Entrez Gene Summary

RPEL1 Ribulose-5-
Phosphate-3-
Epimerase Like 1

Predicted to enable metal ion binding activity and
ribulose-phosphate 3-epimerase activity. Predicted to
be involved in cellular carbohydrate metabolic process;
pentose catabolic process; and pentose-phosphate
shunt, non-oxidative branch. Predicted to be active in
cytosol. [provided by Alliance of Genome Resources,
Apr 2022]

INA Internexin
Neuronal
Intermediate
Filament Protein
Alpha

Neurofilaments are type IV intermediate filament
heteropolymers composed of light, medium, and heavy
chains. Neurofilaments comprise the axoskeleton and
they functionally maintain the neuronal caliber. They
may also play a role in intracellular transport to axons
and dendrites. This gene is a member of the
intermediate filament family and is involved in the
morphogenesis of neurons. [provided by RefSeq, Jun
2009]

PCGF6 Polycomb Group
Ring Finger 6

The protein encoded by this gene contains a RING
finger motif, which is most closely related to those of
polycomb group (PcG) proteins RNF110/MEL-18 and
BMI1. PcG proteins are known to form protein
complexes and function as transcription repressors.
This protein has been shown to interact with some
PcG proteins and act as a transcription repressor. The
activity of this protein is found to be regulated by cell
cycle dependent phosphorylation. Alternatively
spliced transcript variants encoding different isoforms
have been identified. [provided by RefSeq, Jul 2008]
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TAF5 TATA-Box
Binding Protein
Associated Factor
5

Initiation of transcription by RNA polymerase II
requires the activities of more than 70 polypeptides.
The protein that coordinates these activities is
transcription factor IID (TFIID). This gene encodes
an integral subunit of TFIID associated with all
transcriptionally competent forms of that complex.
This subunit interacts strongly with two TFIID
subunits that show similarity to histones H3 and H4,
and it may participate in forming a nucleosome-like
core in the TFIID complex. Alternative splicing
results in multiple transcript variants. [provided by
RefSeq, Dec 2015]

ATP5MK,
previoulsy
ATP5MD

ATP Synthase
Membrane
Subunit K

Located in mitochondrion. Part of mitochondrial
proton-transporting ATP synthase complex.
Implicated in mitochondrial complex V (ATP
synthase) deficiency nuclear type 6. [provided by
Alliance of Genome Resources, Apr 2022]

MIR1307 MicroRNA 1307 microRNAs (miRNAs) are short (20-24 nt) non-coding
RNAs that are involved in post-transcriptional
regulation of gene expression in multicellular
organisms by affecting both the stability and
translation of mRNAs. miRNAs are transcribed by
RNA polymerase II as part of capped and
polyadenylated primary transcripts (pri-miRNAs) that
can be either protein-coding or non-coding. [provided
by RefSeq, Sep 2009]

PDCD11 Programmed Cell
Death 11

PDCD11 is a NF-kappa-B (NFKB1; 164011)-binding
protein that colocalizes with U3 RNA (MIM 180710)
in the nucleolus and is required for rRNA maturation
and generation of 18S rRNA.[supplied by OMIM, Oct
2008]

CALHM2 Calcium
Homeostasis
Modulator Family
Member 2

Predicted to enable cation channel activity. Involved
in positive regulation of apoptotic process. Predicted
to be integral component of plasma membrane.
[provided by Alliance of Genome Resources, Apr 2022]
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Table C.2: Candidate genes in chromosome 1, at 155Mb. Gene summaries obtained from
GeneCards (Safran et al., 2022).

Gene
symbol

Gene name Entrez Gene Summary

GBAP1 Glucosylcerami-
dase Beta
Pseudogene 1

GBAP1 (Glucosylceramidase Beta Pseudogene 1) is a
Pseudogene.

GBA Glucosylcerami-
dase Beta

This gene encodes a lysosomal membrane protein that
cleaves the beta-glucosidic linkage of glycosylceramide,
an intermediate in glycolipid metabolism. Mutations
in this gene cause Gaucher disease, a lysosomal storage
disease characterized by an accumulation of glucocere-
brosides. A related pseudogene is approximately 12 kb
downstream of this gene on chromosome 1. [provided
by RefSeq, Jan 2010]

EN-
TREP3,
previously
FAM189B

Endosomal
Transmembrane
Epsin Interactor 3

This gene is located near the gene for the lysosomal en-
zyme glucosylceramidase; a deficiency in this enzyme is
associated with Gaucher disease. The encoded protein
has been identified as a potential binding partner of
a WW domain-containing protein which is involved in
apoptosis and tumor suppression. [provided by RefSeq,
Dec 2010]

SCAMP3 Secretory Carrier
Membrane
Protein 3

This gene encodes an integral membrane protein that
belongs to the secretory carrier membrane protein fam-
ily. The encoded protein functions as a carrier to the
cell surface in post-golgi recycling pathways. This pro-
tein is also involved in protein trafficking in endosomal
pathways. Two transcript variants encoding different
isoforms have been found for this gene.[provided by Ref-
Seq, May 2011]

CLK2 CDC Like Kinase
2

This gene encodes a dual specificity protein kinase
that phosphorylates serine/threonine and tyrosine-
containing substrates. Activity of this protein regulates
serine- and arginine-rich (SR) proteins of the spliceoso-
mal complex, thereby influencing alternative transcript
splicing. [provided by RefSeq, Jun 2014]
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HCN3 Hyperpolarization
Activated Cyclic
Nucleotide Gated
Potassium
Channel 3

This gene encodes a multi-pass membrane protein that
functions as a voltage gated cation channel. The en-
coded protein is a member of a family of closely related
cyclic adenosine monophosphate-binding channel pro-
teins. Alternative splicing results in multiple transcript
variants. [provided by RefSeq, Aug 2012]

PKLR Pyruvate Kinase
L/R

The protein encoded by this gene is a pyruvate kinase
that catalyzes the transphosphorylation of phohspho-
enolpyruvate into pyruvate and ATP, which is the rate-
limiting step of glycolysis. Defects in this enzyme, due
to gene mutations or genetic variations, are the common
cause of chronic hereditary nonspherocytic hemolytic
anemia (CNSHA or HNSHA). [provided by RefSeq, Jul
2008]

FDPS Farnesyl
Diphosphate
Synthase

This gene encodes an enzyme that catalyzes the produc-
tion of geranyl pyrophosphate and farnesyl pyrophos-
phate from isopentenyl pyrophosphate and dimethylal-
lyl pyrophosphate. The resulting product, farnesyl py-
rophosphate, is a key intermediate in cholesterol and
sterol biosynthesis, a substrate for protein farnesylation
and geranylgeranylation, and a ligand or agonist for cer-
tain hormone receptors and growth receptors. Drugs
that inhibit this enzyme prevent the post-translational
modifications of small GTPases and have been used to
treat diseases related to bone resorption.[provided by
RefSeq, Oct 2008]

RUSC1 RUN And SH3
Domain
Containing 1

Predicted to enable actin binding activity. Involved in
protein polyubiquitination. Located in cytosol. [pro-
vided by Alliance of Genome Resources, Apr 2022]

ASH1L ASH1 Like
Histone Lysine
Methyltransferase

This gene encodes a member of the trithorax group of
transcriptional activators. The protein contains four
AT hooks, a SET domain, a PHD-finger motif, and a
bromodomain. It is localized to many small speckles in
the nucleus, and also to cell-cell tight junctions. [pro-
vided by RefSeq, Jul 2008]
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MIR555 MicroRNA 555 microRNAs (miRNAs) are short (20-24 nt) non-coding
RNAs that are involved in post-transcriptional regula-
tion of gene expression in multicellular organisms by
affecting both the stability and translation of mRNAs.
miRNAs are transcribed by RNA polymerase II as part
of capped and polyadenylated primary transcripts (pri-
miRNAs) that can be either protein-coding or non-
coding. [provided by RefSeq, Sep 2009]

POU5F1P4
POU Class 5
Homeobox 1
Pseudogene 4

POU5F1P4 (POU Class 5 Homeobox 1 Pseudogene 4)
is a Pseudogene.

ASH1L-
AS1

ASH1L Antisense
RNA 1

ASH1L-AS1 (ASH1L Antisense RNA 1) is an RNA
Gene, and is affiliated with the lncRNA class.

MSTO1 Misato
Mitochondrial
Distribution And
Morphology
Regulator 1

Involved in mitochondrion distribution. Located in cy-
tosol and mitochondrial outer membrane. [provided by
Alliance of Genome Resources, Apr 2022]

YY1AP1 YY1 Associated
Protein 1

The encoded gene product presumably interacts with
YY1 protein; however, its exact function is not known.
[provided by RefSeq, Jul 2008]

DAP3 Death Associated
Protein 3

Mammalian mitochondrial ribosomal proteins are en-
coded by nuclear genes and help in protein synthesis
within the mitochondrion. Mitochondrial ribosomes
(mitoribosomes) consist of a small 28S subunit and a
large 39S subunit. This gene encodes a 28S subunit pro-
tein that also participates in apoptotic pathways which
are initiated by tumor necrosis factor-alpha, Fas ligand,
and gamma interferon. This protein potentially binds
ATP/GTP and might be a functional partner of the
mitoribosomal protein S27. [provided by RefSeq, Dec
2010]

MSTO2P Misato Family
Member 2,
Pseudogene

MSTO2P (Misato Family Member 2, Pseudogene) is a
Pseudogene. Diseases associated with MSTO2P include
Gastric Cancer.
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GON4L Gon-4 Like Predicted to enable transcription coregulator activity.
Predicted to be involved in regulation of transcription,
DNA-templated. Predicted to act upstream of or within
B cell differentiation. Located in nuclear body. [pro-
vided by Alliance of Genome Resources, Apr 2022]

SYT11 Synaptotagmin 11 This gene is a member of the synaptotagmin gene family
and encodes a protein similar to other family members
that are known calcium sensors and mediate calcium-
dependent regulation of membrane trafficking in synap-
tic transmission. The encoded protein is also a sub-
strate for ubiquitin-E3-ligase parkin. [provided by Ref-
Seq, Apr 2010]

RIT1 Ras Like Without
CAAX 1

This gene encodes a member of a subfamily of Ras-
related GTPases. The encoded protein is involved in
regulating p38 MAPK-dependent signaling cascades re-
lated to cellular stress. This protein also cooperates
with nerve growth factor to promote neuronal develop-
ment and regeneration.[provided by RefSeq, Feb 2012]

KHDC4 KH Domain
Containing 4,
Pre-MRNA
Splicing Factor

Enables RNA binding activity. Involved in mRNA
splice site selection. Located in cytoplasm and nucle-
oplasm. Colocalizes with spliceosomal complex. [pro-
vided by Alliance of Genome Resources, Apr 2022]

SCARNA4 Small Cajal
Body-Specific
RNA 4

SCARNA4 (Small Cajal Body-Specific RNA 4) is an
RNA Gene, and is affiliated with the scaRNA class.

RXFP4 Relaxin Family
Peptide/INSL5
Receptor 4

GPR100 is a member of the rhodopsin family of G
protein-coupled receptors (GPRs) (Fredriksson et al.,
2003 [PubMed 14623098]).[supplied by OMIM, Mar
2008]

ARHGEF2
Rho/Rac Guanine
Nucleotide
Exchange Factor
2

Rho GTPases play a fundamental role in numerous cel-
lular processes that are initiated by extracellular stimuli
that work through G protein coupled receptors. The en-
coded protein may form complex with G proteins and
stimulate rho-dependent signals. [provided by RefSeq,
Jun 2009]
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SSR2 Signal Sequence
Receptor Subunit
2

The signal sequence receptor (SSR) is a glycosylated
endoplasmic reticulum (ER) membrane receptor asso-
ciated with protein translocation across the ER mem-
brane. The SSR consists of 2 subunits, a 34-kD glyco-
protein (alpha-SSR or SSR1) and a 22-kD glycoprotein
(beta-SSR or SSR2). The human beta-signal sequence
receptor gene (SSR2) maps to chromosome bands 1q21-
q23. [provided by RefSeq, Jul 2008]

SCARNA26A
Small Cajal
Body-Specific
RNA 26A

SCARNA26A (Small Cajal Body-Specific RNA 26A) is
an RNA Gene, and is affiliated with the scaRNA class.

SCARNA26B
Small Cajal
Body-Specific
RNA 26B

SCARNA26B (Small Cajal Body-Specific RNA 26B) is
an RNA Gene, and is affiliated with the scaRNA class.

SNORA80E
Small Nucleolar
RNA, H/ACA
Box 80E

SNORA80E (Small Nucleolar RNA, H/ACA Box 80E)
is an RNA Gene, and is affiliated with the snoRNA
class.

MIR6738 MicroRNA 6738 microRNAs (miRNAs) are short (20-24 nt) non-coding
RNAs that are involved in post-transcriptional regula-
tion of gene expression in multicellular organisms by
affecting both the stability and translation of mRNAs.
miRNAs are transcribed by RNA polymerase II as part
of capped and polyadenylated primary transcripts (pri-
miRNAs) that can be either protein-coding or non-
coding. [provided by RefSeq, Sep 2009]


	Contents
	List of Figures
	List of Tables
	Introduction
	1. Explicit modeling of correlations between sites with ancestral recombination graphs
	2. Inference of population history from a pair of individuals
	3. Inference of selection with outlier-based neutrality test

	Estimating coalescence times using ARGs
	Introduction
	Methods
	Results
	Discussion

	Effective population size and migration rates
	Introduction
	Methods
	Results
	Discussion

	Genetic ancestry and selection in Atahualpa
	Introduction
	Methods
	Results
	Discussion

	Bibliography
	Appendix of Chapter 1
	Evaluating MCMC Convergence
	Tsdate prior grid
	ARGweaver subtree sampling acceptance rates
	Supplementary figures
	Supplementary tables

	Appendix of Chapter 2
	Supplementary Methods
	Limitations of MiSTI: an analysis of likelihood surfaces
	Simulations of the San-Dinka split time with migration

	Appendix of Chapter 3
	Supplementary figures
	Supplementary tables




