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Model-free test of local-density mean-field behavior in electric double layers

Brian Giera,1 Neil Henson,2 Edward M. Kober,2 Todd M. Squires,1 and M. Scott Shell1
1Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA

2Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 19 January 2013; published 29 July 2013)

We derive a self-similarity criterion that must hold if a planar electric double layer (EDL) can be captured by a
local-density approximation (LDA), without specifying any specific LDA. Our procedure generates a similarity
coordinate from EDL profiles (measured or computed), and all LDA EDL profiles for a given electrolyte must
collapse onto a master curve when plotted against this similarity coordinate. Noncollapsing profiles imply the
inability of any LDA theory to capture EDLs in that electrolyte. We demonstrate our approach with molecular
simulations, which reveal dilute electrolytes to collapse onto a single curve, and semidilute ions to collapse onto
curves specific to each electrolyte, except where size-induced correlations arise.

DOI: 10.1103/PhysRevE.88.011301 PACS number(s): 07.05.Tp, 82.45.−h, 61.20.Qg, 82.47.Uv

Nanoscale electric double layers (EDLs) form at all
interfaces between charged surfaces (including electrodes
[1], colloids [2], proteins [3], and cell membranes [4]) and
electrolytes [5] or ionic liquids [6]. EDLs form due to the com-
petition between electrostatic attraction of oppositely charged
counterions towards the interface, and osmotic repulsion down
resulting concentration gradients. EDLs play a central role
in colloidal suspensions [7,8], polyelectrolytes [9], micro-
and nanofluidics [10,11], and in supercapacitors [12,13] that
store energy electrochemically across the EDL. The EDL
structure governs differential capacitance [14], electrokinetic
flow [15–17], surface conductivity [18], capacitive desalina-
tion [19–21], and rational design of EDLCs [22,23].

For over a century, EDL structure has been almost univer-
sally modeled using the Poisson-Boltzmann equation (PBE),
which takes the form

λ2
D∇2

(
qeφ

kBT

)
= n− − n+

2nB
= sinh

(
qeφ

kBT

)
, (1)

for binary electrolytes, but can easily be generalized for
multiple ion species and valences [7]. Here φ is the elec-
trostatic excess chemical potential relative to the bulk, λD =
(8πλBnB)−1/2 is the Debye “screening” length, nB = nB

+ = nB
−

is the bulk ion density, and λB = (qe)2/(4πεkBT ) is the
Bjerrum length, beyond which thermal energy kBT exceeds
the electrostatic energy between charges ±qe in a uniform
continuum with permittivity ε. The PBE (1), solved for planar
EDLs by Gouy and Chapman (GC) [24,25], assumes ideal,
pointlike ions that establish (and respond to) a mean electric
field in a structureless, continuum solvent.

Despite its near-ubiquitous use, the GC theory (and PBE
more generally) has long been known to fail for various
reasons. Boltzmann-distributed densities grow exponentially
with φ, predicting ions of diameter σ that can exceed close
packing [26,27]. Experiments [1,28] and computations [29,30]
suggest inherently non-PBE effects due to ion shape [8,31],
solvation [32,33], size- [6,34] and electrostatically induced
ordering [35–40], dielectric inhomogeneities [41–43], and
physicochemical [44–46] and discrete charge [47,48] wall-ion
interactions.

Nonetheless, the PBE (1) remains appealing since it can
be solved rapidly for systems and geometries that would be

far larger than atomistic simulations would allow. A sustained
search for modified PBEs has thus ensued [28], seeking to
preserve the local, mean-field assumptions that give simple
PDEs such as (1), while accounting for phenomena beyond
PB and GC. Widely used local-density approximations (LDAs)
assume ions to respond to additional interactions that depend
only on local ion densities, with “excess” chemical potential
μex

± (ni), as in bulklike systems [28,49]. Wall-ion interactions
μwall

± (z) may also be included in the Boltzmann distribution,

n± = nB
± exp

(
∓ qeφ

kBT
− μex

± (ni)

kBT
− μwall

± (z)

kBT

)
, (2)

or additional ion species, which are then used in (1) to yield
a modified PBE. LDAs have been used to treat short-ranged
enthalpic [3,50] and steric interactions between equisized [26,
27] and asymmetric [51] ions, and to model ionic liquids [6],
electrochemical cells [20], and ion density profiles from x-ray
reflectivity measurements of liquid-liquid interfaces [5] and
Langmuir monolayers [52].

Despite their appealing simplicity, there is no reason to
expect a priori that any LDA can accurately describe EDLs in a
particular electrolyte [40]. For example, molecular simulations
have revealed strong dielectric inhomogeneities [53], which
continuum EDL theories have treated using integro-differential
equations [53] or Ginzburg-Landau expansions [54]; neither
is compatible with a LDA theory. LDAs neglect structuring
effects due to ion-surface, ion-ion, and ion-solvent correlations
that may be significant in actual EDLs [40]. Increasingly
powerful atomistic simulations can reveal EDL features for
specific ion and solvent chemistries [55], but are typically
impractically expensive for even moderate size or time scales.
Ideally, a continuum theory could be developed for large-
scale modeling that nonetheless respects the physicochemical
properties of a specific electrolyte, e.g., by incorporating μex

±
obtained from molecular simulations or measurements into a
LDA.

Current LDA searches assume some (physically motivated)
form of μex

± and then assess the consequences. If a particular
μex

± fails to capture measured or simulated EDL behavior,
however, one does not know whether a different choice might
succeed, or whether the LDA approach is itself bound to fail.
It is thus crucial to know whether an EDL can possibly be
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FIG. 1. (Color online) Universality of local-density approxima-
tion electric double layers: Any ion located a distance z + �z from
an interface of surface charge density � (top right) would “feel” no
different than were the interface located a distance �z closer (bottom
right) with lower effective surface charge density � − �� given by
Eq. (3). All LDA EDLs represent a portion of a single, universal
charge density profile ρLDA (left).

captured by any LDA—and therefore whether a simple PDE
can be derived for its description in more complex geometries
and systems.

Here, we develop a “model-free” method that can be used
to systematically determine whether it is possible for any LDA
to describe EDLs in a particular electrolyte. We start with a
deceptively simple question: Does an ion in an EDL “know”
the location of the surface (Fig. 1)? In any LDA EDL, an
ion located a distance z from a surface with charge density
� would behave the same if a less-charged surface were �z

closer, provided that the effective charge density �eff at �z

obeyed

�eff = � − �� = � +
∫ �z

0
ρ(ẑ,�)dẑ. (3)

More formally, any LDA description yields an EDL whose free
charge density ρ = qe(n+ − n−) falls onto a single, master
curve ρ(z,�). LDA EDL density profiles, each with a different
�, can thus be shifted by some �z(��) to fit onto the universal
EDL profile.

This self-similarity enables an equation for the universal
EDL curve for any local-density approximation to be derived
explicitly, since charge densities in differently charged LDA
EDLs obey the underlying self-similarity

ρ(z,�) = ρ(z + �z,� + ��), (4)

where �� and �z are related via Eq. (3). For small �� and
�z, the Taylor expansion of (4) and ��/�z = −ρ(0,�) via
(3) combine to give a self-consistency equation,

∂ρ

∂z

∣∣∣∣
�

= ∂ρ

∂�

∣∣∣∣
z

ρ(0,�). (5)

Any EDL that obeys a LDA—regardless of the specific
μex

± (ni)—must obey Eq. (5). Conversely, comparing simulated
or measured EDL profiles against (5) directly reveals whether
any simple LDA μex

± can possibly exist that successfully
captures that EDL. Ion-wall interactions μwall

± (z) do not obey
this relation, but the arbitrariness of “z = 0” allows (5) to be
used with an effective origin chosen to lie beyond the ion-wall
interaction range.

The free charge density ρ can be derived explicitly from
(5) using the method of characteristics, provided ρ(0,�) is
known, measured, or simulated. Furthermore, ρ depends only
on a similarity variable S(z,�; . . .), given by

S = �̃ exp

(
− z̃ −

∫ �̃

0

[
1

ρ̃(0,�̂; . . .)
+ 1

�̂

]
d�̂

)
, (6)

where we use nondimensionalized variables z̃ = z/λD, ρ̃ =
(λD/�ref)ρ, and �̃ = �/�ref , where �ref = qe/(4πλBλD)
[56]. The charge density is then given by

ρ̃(S) = ρ̃(z̃ = 0,�̃ = g−1[S]), (7)

where g[�̃] = �̃ exp(− ∫ �̃

0 [1/ρ̃(0,�̂; . . .) + 1/�̂]d�̂).
Given the free charge density at contact, S can be solved

explicitly and embeds physical quantities such as ion size σ ,
screening length λD, electrostatic strength λB, distance z, and
surface charge density �. S then collapses LDA EDLs in a
given electrolyte onto a single master curve.

The Debye-Hückel (DH) limit, valid for low EDL potentials
φ � kBT/qe and negligible excess contributions μex

± → 0,
provides an instructive example. In this restrictive regime, the
linearized Eq. (1) gives ρ̃DH(0,�̃) = −�̃ [7], and Eqs. (6)
and (7) can be solved explicitly to give SDH = �̃ exp(−z̃) and
ρ̃DH = −SDH. Beyond the linear regime, the Gouy-Chapman
contact expression ρGC(0,�) [57] yields an analytical similar-
ity variable that measures the mean-field strength between an
electrified plate and uncorrelated point-sized ions,

SGC =
(

2

1 +
√

1 + (�̃/2)2

)
�̃e−z̃, (8)

that reduces to SDH for �̃ � 1. Notably, SGC varies contin-
uously between two limiting behaviors: (i) SGC → SDH → 0
far from weakly charged surfaces (z̃ → ∞,�̃ → 0), and (ii)
SGC → 4 near strongly charged surfaces (z̃ → 0,�̃ → ∞).
The GC free charge density,

ρ̃GC = ρGC

2qenB
= −16SGC

(
16 + S2

GC

)
(
16 − S2

GC

)2 , (9)

thus diverges in the SGC → 4 limit, ρ̃GC → ρ̃DH for SGC � 1,
and approaches electroneutrality (ρ̃GC → 0) as SGC → 0.

Having derived Eq. (5)—a general, model-free condition
that must be satisfied for any planar EDL describable by
LDAs—we now use molecular dynamics to explicitly simulate
ions within fully formed EDLs for which LDA physics is by
no means guaranteed. To focus on the general applicability
of our results, we employ the simplest model for ions that
captures many-body interactions, rather than using force
fields and characteristics specific to a particular electrolyte
system. Specifically, we use LAMMPS [58] to simulate primitive
model (PM) electrolytes: charge-centered Weeks-Chandler-
Andersen [59] ions of diameter σWCA and charge ±qe in an
implicit Langevin solvent [60] with constant permittivity ε,
bound by uniformly charged repulsive 9/3 surfaces separated
by a distance L in a xy-periodic system. Defining system
parameters gives three physical length scales: the Bjerrum
length λB that reflects ion valence, permittivity, and thermal
energy; the screening length λD, which is measured from
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equilibrated bulk ion concentrations; and the effective hard-
core ion diameter σ ≈ 0.95σWCA that sets the bulk volume
fraction �B = σ 3/(24λBλ2

D) [56]. We choose the system
size L to be large enough by comparison to be irrelevant.
Nondimensionalizing lengths by λD reveals any PM electrolyte
and surface to be uniquely specified by three dimensionless
parameters: �B, λB/λD, and �/�ref .

For each PM electrolyte {�B; λB/λD} and surface charge
�̃, we equilibrate O(800–1400) ions for 5 000 000 MD time
steps, then evenly collect 50 000 snapshots over 50 000 000
steps, requiring 50–100 CPU hours per run. We then measure
the time-averaged free charge density and effective local
surface charge versus distance z̃ from the wall, and regression
fit ρ̃PM(z̃) vs �̃eff(z̃) to determine ρ̃PM(0,�̃). We then use (6) to
obtain a similarity variable SPM(z̃,�̃). If any viable LDA theory
exists for that electrolyte {�B; λ̃B}, then computed ρ̃PM pro-
files, replotted against SPM, must collapse onto a master curve.

Figure 2 shows EDL profiles computed in seven distinct PM
electrolytes with ions from low to moderate valence (0.05 �
λB/λD � 1) and very low volume fractions �B � 8 × 10−4,
each for 100 distinct surface charge densities (0 � �̃ � 10)
and measured at 250 distinct positions [56]. Under these
dilute conditions, one would expect the PB-GC theory to
hold, especially at small σ̃ , λ̃B, and �̃. Indeed, ρ̃PM collapses
when plotted against SPM [Fig. 2(a)], and also against �̃eff

SGC

SGC

SPM

(c)

(a)

(b)

(d)

Increasing Σ̃: 0 → 10
Decreasing z̃ → 0

Σeff(z̃)/Σref

FIG. 2. (Color online) MD simulations of dilute primitive model
electrolytes (�B � 8 × 10−4) show underlying LDA behavior. (a)
For a wide range of conditions, free charge density profiles all
collapse onto a universal curve, when plotted against a similarity
coordinate SPM, which is derived from (6) using ρPM(0,�) obtained
from simulation data. (b) The charge density ρ(z,�) collapses when
plotted against �eff (z), which is itself indicative of LDA behavior. (c)
The Gouy-Chapman similarity variable (8) also collapses simulation
data well. (d) The similarity variables SPM and SGC, independently
derived, are practically indistinguishable for SGC � 0.4, and differ by
less than 4% for 1.6 < SGC � 3.2.

SCS

0.07

(c)

(a)

0.10

(b) {
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0.01 0.020.0

Σ̃ δΣ̃
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−
ρ̃
(z

/
λ

D
)

S
P

M
/
S

C
S

lim
Φ →0

ρ̃CS ≡ ρ̃GC

↑ ΦB = 0.50

FIG. 3. (Color online) MD simulations of PM electrolytes with
large (σ/λD � 3/15), weakly charged (λB/λD � 0.1/15) ions at
constant bulk volume fraction �̄B = 0.044 ± 0.001 show LDA
behavior beyond a surface monolayer (with packing fraction �0). (a)
Charge density profiles for various surface charge densities �̃ collapse
onto a single curve when plotted against S ′

PM, obtained by evaluating
(6) using measured data. (b) EDL density profiles collapse when
plotted against �̃eff that is reduced by the measured charge density
of the monolayer δ�̃. (c) The similarity coordinate SCS generated
using the LDA-Carnahan-Starling approach also collapses simulated
density profiles beyond the correlated region. A one-parameter (�B)
family of universal EDL curves is generated from (6) and (7) using
the LDA-CS approach. (d) The theoretical SCS matches the measured
S ′

PM to within 10% for these simulations.

[Fig. 2(b)]. Furthermore, even different electrolytes collapse
onto the same curve, irrespective of the specific electrolyte
properties {�B; λ̃B}, as is true for GC theory. In fact, the
GC similarity variable SGC (8) captures the observed universal
profile very well [Fig. 2(c)], and closely matches the computed,
model-free SPM [Fig. 2(d)].

Next, we simulate semidilute electrolytes with weakly
charged but moderately sized PM ions (λB � σ < λD), where
we suspect GC will fail due to finite-sized effects. We then
determine whether such non-GC EDLs can nonetheless be
captured by LDAs using our model-free method (Fig. 3).
For these ions, specific wall-ion interactions drive surface
ion monolayers to form at high �̃ and/or �B. Since our
model-free test holds outside the range of specific wall-ion
interactions, we define “z̃ = 0” in Eq. (6) to lie beyond the
surface ion monolayer, z̃ > σ/λD, and adopt a reduced applied
surface charge density �̃′ = �̃ − δ�̃, where δ�̃ = ∫ 0

σ̃
ρ̃PMdẑ

corrects for the monolayer charge. Indeed, Fig. 3(b) shows
density profiles ρ̃ ′(z̃ = σ̃ ,�̃′; �B = 0.044) for 11 simulations
that collapse onto a single curve when plotted against �̃eff and
the similarity variable S ′

PM. Despite GC breakdown, our test
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reveals EDLs in these electrolytes to obey some underlying
LDA model.

Motivated by the existence of a viable LDA theory, we
consider the Carnahan-Starling [61] (CS) hard-sphere model
that accounts for excess hard-sphere repulsions μex

CS(�) using
the local volume fraction [7,28] of same sized ions. Evaluat-
ing the computed contact expression ρ̃CS(z̃ = 0,�̃; �B), we
calculate SCS(z̃,�̃; �B) via (6) [56], and generate a family of
universal curves for different �B in Fig. 3(c). The LDA-CS
theory correctly produces the universal curve onto which
the EDLs simulated with �̄B � 0.044 collapse against �̃eff

[Fig. 3(b)]—but only up to a point, beyond which collapse
is lost due to nonlocal ordering adjacent to the surface. The
LDA-CS approach misses the oscillatory portions of PM
EDLs, as any LDA would, but decently captures the mean-field
strength of steric interactions in noncorrelated EDL regimes.

In summary, we have presented a general and powerful
formalism to identify and elucidate local-density approxima-
tion behavior in planar EDLs, following a simple observation:
LDA ions do not know the interface location. Our model-
free approach enables EDL profiles—whether simulated or
measured—to be directly analyzed, and to determine whether
any LDA can possibly succeed. In the regimes where the
computed S does not collapse the EDL profiles, any search
for a LDA will be fruitless.

We have here focused on the simplest, nontrivial class
of electrolytes: equisized ions of equal and opposite va-
lence in a homogeneous, implicit solvent. It is completely
straightforward to apply our model-free approach, however,
to much more general electrolytes. The simplest extension

would involve asymmetric electrolytes—with two (or more)
ion species of different size and valence. In that case, one
can anticipate that some μex

± (�±) [51], analogous to μex
CS

for equisized ions, could be found to work in a trial LDA.
No obvious μex

± , however, exists for less straightforward
electrolytes—e.g., measured or computed with explicit solvent
and specific chemical force fields. Nonetheless, our model-free
test will immediately reveal whether any LDA can be found
that captures such EDL behavior.

Similarity variables from distinct LDAs have distinct func-
tional forms. For example, SGC (which collapses pointlike EDL
profiles) diverge, whereas SCS (which collapses semidilute
EDL profiles) do not. Any difference in S observed between
anodic and cathodic EDLs immediately reveals anions and
cations to have unequal size and/or valence. Indeed, these
model-free similarity variables may serve as “fingerprints”
specific to that particular electrolyte. Our approach is broadly
applicable to EDL profiles from simulations, x-ray reflectivity
measurements, etc., and will be valuable in assessing potential
LDA behavior in more general electrolytes, e.g., where sol-
vation effects, electrostatic correlations, or discrete interfacial
charges play a significant role.

Lastly, the model-free test holds for planar EDLs, which are
(fortunately) the easiest to compute and measure. Irrespective,
the results of the approach presented here hold for more general
geometries. We expect that once a LDA is revealed to be
possible for a given electrolyte, and the corresponding μex

± (ni)
determined, the modified PBE derived using the appropriate
LDA [Eqs. (1) and (2)] should hold as a three-dimensional
PDE, valid for more general geometries.
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