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JOURNAL OF MATHEMATICAL PSYCHOLOGY 15, 109-144 (1977) 

The Relationship between Lute’s Choice Axiom, 

Thurstone’s Theory of Comparative Judgment, and the 

Double Exponential Distri butionl 

JOHN I. YELLOTT, JR. 

School of Social Sciences, University of California, Irvine 92717 

Holman and Marley have shown that Thurstone’s Case V model becomes equivalent 
to the Choice Axiom if its discriminal processes are assumed to be independent double 
exponential random variables instead of normal ones. It is shown here that for pair com- 
parisons, this representation is not unique; other discriminal process distributions 
(specifiable only in terms of their characteristic functions) also yield a model equivalent 
to the Choice Axiom. However, none of these models is equivalent to the Choice Axiom 
for triple comparisons: There the double exponential representation is unique. It is also 
shown that within the framework of Thurstone’s theory, the double exponential distribu- 
tion, and hence the Choice Axiom, is implied by a weaker assumption, called “invariance 
under uniform expansions of the choice set.” 

1. INTR~DUOTI~N 

1.1. Historical Background 

As premises for a model of choice behavior, Lute’s (1959) Choice Axiom and 
Thurstone’s (1927) Theory of Comparative Judgment seem at first glance to be not 
only different, but quite unrelated. The Axiom simply imposes an intuitively plausible 
constraint on observable choice probabilities, while the theory postulates an imaginary 
psychological process, underlying observable behavior, wherein choice objects are 
represented by random variables (“discriminal processes”) which the subject compares 
in order to arrive at a decision. However, it has been recognized since the earliest days 
of the Choice Axiom that this apparent dissimilarity is only superficial, and that the 
two ideas are in fact surprisingly closely related. In his 1959 monograph, Lute included 
a table showing that for pair-comparison experiments, the predictions of the Choice 
Axiom are virtually identical to those of Case V of Thurstone’s theory. (Recall that 
in Case V the discriminal processes corresponding to a set of objects o1 , oz ,... take 
the form ur + X, , ua + X, ,..., where u1 , ua ,... are constants (scale values) and 
x, , x, )... are independent identically distributed normal random variables.) He then 

i I thank J. Aczel, D. A. Darling, I. I. Kotlarski, R. D. Lute, A. A. J. Marley, J. E. K. Smith, 
B. Wandell, and J. L. Zinnes for helpful advice; M. Vernoy for assistance in preparing Fig. 1, and 
the Institute for Advanced Study, Princeton, for support in the form of a visiting membership 
during 19701971, when this research was begun. 
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110 JOHN I. YELLOTT, JR. 

pointed out that this near identity is not simply coincidental; instead, it reflects the 
mathematical fact that for pair-comparison experiments the Choice Axiom is equivalent 
to a version of Thurstone’s theory in which the differences between the discriminal 
processes (that is, the random variables (ui + Xi) - (uj + X,)) have a logistic distribution 
instead of the normal distribution implied by Case V. This fact had already been noted 
by Adams and Messick (1957), who had also shown that the logistic is unique in this 
respect: A Thurstone model with independent discriminal processes is equivalent 
to the Choice Axiom for pair comparisons if and only if the differences between dis- 
criminal processes are logistic random variables. (This result is proved here in 
Section 2.6.) 

Lute then raised two questions: (1) What must be the distribution of the discriminal 
processes themselves, in order for their differences to be logistic (so that the resulting 
model is equivalent to the Choice Axiom for pair comparisons) ? (2) Are there any 
discriminal process distributions for which the resulting model is equivalent to the 
Choice Axiom for experiments with larger sets of alternatives? (see Lute, 1959, open 
problem B-2, p. 144.). 

A partial answer to both questions was subsequently supplied by Holman and Marley 
(cited in Lute & Suppes, 1965), h h w o s owed that if Thurstone’s discriminal processes 
are assumed to have the double exponential distribution: 

P[u~ + Xi < X] = exp{-e-[a@-%+bl} (--co <x < co) 

(where a and b are arbitrary constants, a > 0; see Fig. lB), then Xi - Xj will be 
logistic, and the resulting model is equivalent to the Choice Axiom for any choice 
experiment, not simply for pair comparisons. (This result is proved here in Section 2.6.) 
However, Holman and Marley did not show that the double exponential is the ~ZJJ 
distribution with this property. In presenting their result, Lute and Suppes (1965) 
remarked that “it is conjectured that [the double exponential distribution is] the only 
reasonably well behaved example, but no proof has yet been devised” (p. 339). 

The present paper carries this line of development two steps further. First, it provides 
a solution to the uniqueness problem: For pair-comparison experiments the double 
exponential is not the only distribution that yields a Thurstone model equivalent to 
the Choice Axiom (Section 3.2), but for experiments involving both pair and triple 
comparisons, it is (Theorem 5, Section 3.4). Second, it provides a kind of explanation 
for the special status of the double exponential distribution: This distribution (and 
consequently, the Choice Axiom) can be derived in a straightforward way, starting 
from Thurstone’s original discriminal process notion, by applying Lute’s idea that 
observable choice probabilities ought to satisfy some intuitively plausible constraint. 
It turns out that there is a constraint (“invariance under uniform expansions of the 
choice set”) which is a good deal weaker than the Choice Axiom itself, but which implies 
that Axiom when combined with Thurstone’s discriminal process assumption. 

In order to solve the original uniqueness problem, it was natural to generalize it, 
and consequently a good deal of the paper is devoted to the uniqueness properties 
of arbitrary discriminal process distributions. 



CHOICE THEORY 

1.2. Overview and Summary of Results 

Ill 

1.2.1. Uniquen43s 

We start with Thurstone’s basic idea that choice objects or ,..., o, are represented 
by discriminal processes ur + X, ,..., u, + X, , where X, ,..., X, are independent 
identically distributed random variables with a common distribution function F, and, 
for any given set of objects, ui ,..., u, are real constants-the scale values of those objects. 
When the subject is presented with a set of objects and required to choose one, he picks 
the object with the largest discriminal process. Now we can imagine a class of Thurstone 
models of this type, each one corresponding to a different probability distribution F: 
Thurstone’s original Case V model corresponds to the assumption that F is a normal 
distribution, and Holman and Marley’s result shows that if F is a double exponential 
distribution, the resulting model is equivalent to the Choice Axiom, in the sense that 
any set of choice probabilities generated by assigning arbitrary values to the {ui} will 
satisfy the Choice Axiom, and any set of choice probabilities that satisfy the Choice 
Axiom can be duplicated by a suitable choice of values for the {ni}. Then our specific 
uniqueness problem is to determine whether any other type of distribution also yields 
a model equivalent to the Choice Axiom. 

One might suppose that this problem could be solved by appealing to Adams and 
Messick’s result, since a model with F arbitrary could be equivalent to the Choice Axiom 
for pair comparison experiments only if F is a distribution for which the differences 
Xi - Xi are logistic. However, it turns out that F need not be double exponential in 
order for Xi - Xj to be logistic: There are other distributions, technically acceptable 
as bases for Thurstone models, though not at all appealing, that have the same property. 
(This is shown in Section 3.2.) Consequently, if we restrict our attention to pair-com- 
parison experiments, the double exponential discriminal process distribution is not 
the only one that yields a Thurstone model equivalent to the Choice Axiom. 

Generalizing the problem, let 5; denote the Thurstone model corresponding to 
distribution function F, and consider the set {&} consisting of all such models, one 
for every distribution function that satisfies certain minimal constraints designed to 
preserve the spirit of Thurstone’s original idea. (See Definition 3, Section 2.6.) Then 
the general uniqueness question is whether two models YF and Yc can be equivalent 
if F and G are different distributions. We know already, from the case of the double 
exponential distribution, that this can happen if we consider only pair-comparison 
experiments, and this turns out to be true for other distributions as well; the model 
withF exponential is another example (Section 3.2. This has a bearing on the “Threshold” 
model proposed by Dawkins, 1969.) In fact the only important exception seems to be 
the normal (i.e., Case V) model, whose pair-comparison predictions cannot be entirely 
duplicated by any other Thurstone model (Section 3.2). 

Since pair-comparison predictions alone do not uniquely identify the discriminal 
process distribution of a Thurstone model, it is natural to wonder whether this is also 
true of experiments in which the subject is confronted with more than two objects 
at a time. We define a complete choice experiment to be one in which choice probabilities 
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are determined for every subset of objects, the simplest nontrivial case being a complete 
experiment with three objects. It is not difficult to show that two models & and & 
cannot be equivalent for complete experiments involving choice sets that are arbitrarily 
large unlessF and G are both distributions of the same type (e.g., both double exponential, 
but perhaps with different means and variances). This is proved in Section 3.3 
(Theorem 3). However, this still leaves open the possibility that models with different 
types of discriminal process distributions might be equivalent for all practical purposes. 

For an important subclass of Thurstone models-all those in which the distribution F 
has a nonvanishing characteristic function-this possibility can be ruled out, because 
it can be shown that if F has a nonvanishing characteristic function, and G is an arbitrary 
distribution, the models YF and .& can be equivalent for complete experiments with 
three (or more) objects if and only if F and G are distributions of the same type 
(Theorem 4, Section 3.4). Since double exponential distributions have nonvanishing 

characteristic functions, and we know that YF is equivalent to the Choice Axiom if F 
is double exponential, it follows that another model & can also be equivalent to the 
Choice Axiom (and consequently to &) for complete experiments with three objects 
only if G is also double exponential (Theorem 5, Section 3.4). 

This result provides the sharpest possible solution to our original uniqueness problem. 
However, the general version of that problem cannot be disposed of quite so neatly, 
because F can have a characteristic function with zeros and still yield a perfectly acceptable 

Thurstone model &. Thus the general question, whether YF and & can be equivalent 
for complete experiments with three objects if F and G are distributions of different 
types, remains open. Arguments given in Section 3.4 show that if there are distributions 
with this property, they must be fairly exotic, and my conjecture is that they do not 
exist at all. However, I have not been able to prove this. Technically, the answer turns 

out to depend on whether a certain functional equation involving characteristic functions 
(Eq. (23)) has only solutions of a certain form (Eq. (24)). I have not been able to answer 
this question, but I suspect that a specialist in characteristic functions would find it 
fairly straightforward. In any event, it is left here as an open problem. 

1.2.2. Deriving the Choice Axiom 

When Thurstone decided to assign normal distributions to his discriminal processes, 
his choice was tentative, and he clearly envisioned the possibility that some other 
distribution might do a better job: 

The residuals [discrepancies between observed and predicted results] should be investigated 
to ascertain whether they are a minimum when the normal or Gaussian distribution of dis- 
criminal processes is used as a basis for defining the psychological scale. Triangular and other 
forms of distribution might be tried. Such an experimental demonstration would constitute 
perhaps the most fundamental discovery that has yet been made in the field of psychological 
measurement. Lacking such proof and since the Gaussian distribution of discriminal processes 
yields scale values that agree very closely with the experimental data, I have defined the 
psychological continuum that is implied in Weber’s Law, in Fechner’s Law, and in educational 
quality scales, as that particular linear spacing of the stimuli which gives a Gaussian distribution 
of discriminal processes (I 927, p. 285). 
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Now if Thurstone had, for some reason, decided on the double exponential distribution 
instead of the normal, he would in effect have discovered the Choice Axiom. Since 
this distribution was in those days quite unknown (it only began to become prominent 
in statistics in 1928, when Fisher and Tippet showed that it is one of three possibilities 
for the limit distribution of the maximum of a sequence of random variables. See 
Section 2.6) Thurstone would not have been likely to think of it offhand. But it is 
interesting to speculate on how he might have been led to it in a logical way, starting 
from some intuitively plausible premise about choice behavior. Section 4 describes 
one such premise: that choice probabilities should be “invariant under uniform expansions 
of the choice set.” This notion is motivated by examples of the following kind: Imagine 
a subject confronted either with a choice set containing a cup of coffee, a cup of tea, 
and a glass of milk, or with a set containing K cups of coffee, all indistinguishable from 
the first one, and similarly k identical cups of tea and K identical glasses of milk. In 
both cases the subject only gets to choose one object. Under these circumstances it 
seems fairly reasonable to suppose that the probability of choosing coffee (that is, the 
sum of the probabilities for each individual cup) should be the same in both cases, 
no matter what the value of k. Invariance of this sort is implied by the Choice Axiom, 
but taken alone it is clearly a weaker assumption than the Choice Axiom, and does not 
imply it. However, Section 4 shows that a Thurstone model rr guarantees this sort 
of invariance only when F is a double exponential distribution (Theorem 6). Thus 
within the framework of Thurstone’s basic discriminal process idea, invariance under 
uniform expansions of the choice set is an axiomatic filter that singles out the double 
exponential distribution, which in turn implies the Choice Axiom. It is natural to wonder 
whether, if Thurstone had thought along these lines, he would still have settled on 
the normal distribution, or whether the prominent role played by that distribution 
in the history of psychometrics might not have fallen instead to the double exponential. 

Outline of the Balance of the Paper 

Section 2 deals with preliminary matters: Sections 2.1 and 2.2 introduce the notation 
for choice probabilities and systems of such probabilities; Section 2.3 explicates the 
notion of equivalence between choice models (that is, theories); Sections 2.4 and 2.5 
review Lute’s Choice Axiom and Thurstone’s Theory of Comparative Judgment; 
Section 2.6 defines the general class of Thurstone models and discusses three cases 
of special interest: the normal (Case V) model, the double exponential model (earlier 
work on the relationship between this model and the Choice Axiom is reviewed here), 
and the exponential model (which turns out to be equivalent to Dawkin’s (1969) Threshold 
Model, but only for pair comparisons). Then Section 3 deals with the uniqueness 
problem: Section 3.1 provides an overview of the results; Section 3.2 considers the special 
case of pair comparisons, with particular emphasis on the three specific models just 
mentioned; Section 3.3 considers the case of complete experiments with choice sets 
of arbitrary size, and Section 3.4 deals with triple comparisons-this section contains 
the final solution for the special problem of the Choice Axiom. Section 4 defines the 
idea of “invariance under uniform expansions of the choice set” and, by appealing 
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back to an earlier result, shows how this principle implies the double exponential 
distribution. Finally, Section 5 comments briefly on an “irreversibility” theorem proved 
by Lute in his 1959 monograph, and also outlines the relationship between Thurstone 
models and the more general class of “independent random utility models” defined 
by Lute and Suppes (1965). New results of central interest are called theorems; old 
results and those that are only preparatory are called lemmas. To make the paper self- 
contained, explicit proofs are given for every important step in the mathematical develop- 
ment, even though in a few places this has meant re-proving results already available 
in the literature. 

2. NOTATION, DEFINITIONS, CONVENTIONS 

2.1. Basic Notation 

Suppose oi , oa ,..., o, is a set of n choice objects (e.g., n tones, to be compared for 
loudness), and that on each trial of an experiment the subject is presented with a subset 
of these objects and required to choose one (e.g., “which tone seems loudest I”). In a 
pair-comparison experiment only subsets containing exactly two objects are presented, 
and here p, denotes the probability that oi is chosen when {oi , oj} is presented. In the general 
case, when the subsets are not always pairs, we identify each subset of objects with the 
set of integers that are the indices of these objects, and then ps(i) denotes the probability 
that oi is chosen when {oj 1 j E S> is presented. C, denotes the total set of indices of the n 
choice objects, i.e., C, = (1, 2 ,..., n}. Thus, pij is shorthand for pf&i); PC,(i) = 

PIl.2.4d (i); the probability of choosing oi from the set (oi , oj , ok} is p(i,j,k)(i), etc. 
An experiment that determines the probability ps(i) for every i in every subset S 

(S C C, , 1 S j > 2) will be called a complete choice experiment with n objects. 

2.2. Systems of Choice Probabilities 

A pair-comparison experiment with n objects results in (2”) binary probability distribu- 
tions, each of the form (pij , pj,>. The entire set ((P,~ , pji} 1 i, j E C, , i < j> will be 
called a system of pair-comparison probabifities for n objects, and be denoted by {p,,/C,). 

The result of a complete choice experiment with tl objects is a set of the form 

containing 2” - (n + 1) discrete probability distributions; one for each subset of two 
or more objects. A set of this form will be called a complete system of choice probabilities 
for n objects, and be denoted by (p,/C,}. 

Convention: Choice probabilities can nmer be zero OY one. The Thurstone models 
considered below all imply that no choice probability can ever be zero or one. To save 
repetition, we stipulate at the outset that every system {ps} or (pjj) mentioned later 
contains only probabilities in the open interval (0, I). 
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Convention on terminology: “Model” used in the sense of “theory.” Some writers 
use “model” to mean a numerical structure that satisfies a “theory” (e.g., Lute & Suppes, 
1965): They would say, for example, that a system {p,/C,} which satisfies the Choice 
Axiom is a “model of the Choice Axiom.” Here model has the same logical status as 
theory, as in “the Case V model is a special case of Thurstone’s Theory of Comparative 
Judgment.” 

2.3. Equivalence between Choice Theories 

Intuitively, two choice theories are equivalent (that is, indistinguishable) for a certain 
kind of experiment if no potential result of such an experiment could allow us to reject 
one theory in favor of the other. To formalize this idea in the standard way (Burke & 
Zinnes, 1965; Lute & Suppes, 1965), let R, denote the set of all possible complete 
systems of choice probabilities {p,/C,}, and R* = U,” R, . Then R, is the set of all 
possible results of a complete choice experiment with n objects, and R is the set of all 
possible results of complete experiments of any size. A theory of complete choice experiments 
(e.g., Lute’s Choice Axiom; any of the Thurstone models defined in Section 2.6) can 
be thought of as partitioning every R, into two disjoint subsets: A set of admissible 

systems (those that satisfy the theory) and a set of inadmissible systems (those that do not). 
(In line with this way of thinking, theories will be defined here by specifying the systems 
they admit.) If two theories partition R, in exactly the same way, then no complete 
choice experiment with n objects can distinguish between them. In this case, the two 
theories will be called completely equivalent for (choice experimennts with) n objects. If 
two theories are equivalent for n objects for every n (i.e., partition R* in exactly the 
same way), then no complete choice experiment can distinguish between them. In 
this case the theories will simply be called completely equivalent. 

It is also useful to define a restricted type of equivalence that reflects only the pair- 
comparison predictions of two theories. Let B, denote the set of all possible pair- 
comparison systems { pij/C,}. T wo theories will be called equivalent for pair-comparison 
experiments with n objects if they admit exactly the same systems in B, . If this is true 
for every n, the two theories are equivalent for pair comparisons. 

Relationships between different types of equivalence. Every complete system {p,/C,} 
contains a pair comparison system {p,,/C,}, and for the theories considered here, a 
given pair-comparison system is admissible iff it is contained in some admissible com- 
plete system. Thus by definition complete equivalence for n objects implies pair-comparison 
equivalence for n objects, and complete equivalence implies pair-comparison equivalence. 
By the same token, .complete equivalence for n objects implies complete equivalence fm n - 1. 

The converses of these statements, however, are not logically implied. In particular, 
pair-comparison equivalence does not imply complete equivalence: The Choice Axiom, 
for example, is equivalent to several different Thurstone models for pair comparisons 
(Section 3.2), but it turns out to be completely equivalent to only one-the model with 
double exponential discriminal processes (Section 3.3 and 3.4). In general, for the class 
of Thurstone models defined in Section 2.6, pair-comparison equivalence does not 
imply complete equivalence, except in one special case (Section 3.2). Nor does complete 
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equivalence for n - 1 objects imply complete equivalence for n. However, it will be 
shown that for an important subset of Thurstone models, complete equivalence for 
three objects implies that both models have the same type of discriminal process distribu- 
tion, and consequently are completely equivalent (Section 3.4). 

The next two sections review the Choice Axiom and Thurstone’s Theory of Com- 
parative Judgment. Then Section 2.6 defines a general class of “Thurstone models”- 
models like Thurstone’s original Case V except that their discriminal processes need 
not be normal. 

2.4. Lute’s Choice Axiom 

DEFINITION I. A complete system of choice probabilities {ps/Cn} satisfies the 

Choice Axiom (Axiom 1 in Lute, 1959) iff, for every i and S, i E S Z C,: 

The following fundamental result is proved in Lute, 1959: 

LEMMA 1. A complete system {p,/C,} satisfies the Choice Axiom z$Y there exists a set 
of numbers vl, vz ,..., v, (“v scale values”) such that 

Pdi) = %& Z!J (2) 

for every i, S; i E S C C, . The scale values vI ,..., v, are uniquely determined by the system 
(ps/C,) up to multiplication by a constant. 

Equation (2) implies that the pair-comparison probabilities of any complete system 
satisfy the following relationship: 

LEMMA 2. For tvery i, j, k E C, 

Pik = PijPjk/(PijPik + PjiPkj). (3) 

Proof. Equation (3) follows directly from the fact that 

Pik/Pki = (Pij/Pji)(Pjk/Pki), 

which follows in turn from the relationship wi/wk = (vi/wj)(erj/wk). 1 

2.5. Thurstone’s Theory of Comparative Judgment 

This theory (Thurstone, 1927) . b d IS ase on the idea that choice objects or , o2 ,..., o, 
are represented in an underlying psychological space by real valued random variables 

D, , D, ,..., D, called discriminal processes. When oi and 05 are presented the subject 
picks oi i f f  Di > Dj, SO that pij = P[D, > Dj] = P[D, - DC < 01. TO generate 
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testable predictions, Thurstone arbitrarily (but not thoughtlessly) assumed that the 
discriminal processes were normal random variables, and considered five special cases 
corresponding to increasingly severe constraints on their variances and covariances. 
Of these, only Case V is directly comparable to the Choice Axiom-the others have 
too many free parameters. In Case V, the discriminal processes are assumed to have 
identical variances (Var Di = u”) and a common covariance (Cov(D, , Dj) = ru2), 
so that their marginal distributions differ only in their locations along the axis. Then 
Di - Dj has a normal distribution with mean E(D,) - E(D,) and variance 2a2(1 - r). 
To capture the idea that the discriminal process Di of an object oi represents a “true” 
scale value that is perturbed by random noise, it is natural to express Di in the form 
ui + Xi , where ui is a real number (the Thurstone scale value of oi) and Xi is a normal 
random variable, with E(X,) 3 p, Var(X,) = a*, Cov(X, , Xj) = ru2. Then the pair 
comparison probability pij is the probability that ui + Xi is greater than Uj + Xi, 
and consequently it can be expressed as 

pij = N[(Ui - ui)/“(2 - 2r)1’2], 

where N is the normal distribution function 

N(x) = Ss (1/(2~)l/~) e-o/2)t2 dt. 
--m 

Equation (4) is Case V of Thurstone’s Law of Comparative Judgment for pair comparisons. 
Its testable consequences are entirely captured by the following well-known relationship: 

LEMMA 3. If a system of pair-comparison probabilities {&/C,} satisfies (4), then for 

every i, j, k E: C, 

pik = NIN-l(pij) + N-‘(Pjk)l. (5) 

Proof. (5) follows directly from (4). 1 

Equation (5) is analogous to Eq. (3). Th us for both the Choice Axiom and Case V 
of Thurstone’s law, there is a triples function t(p, p’) from (0, 1) @ (0, 1) + (0, 1) 
such that for any pij , pi, , pi, , p, = t(pji ,pik). It turns out (Section 3.2) that all of 
the generalized Thurstone models defined in Section 2.6 also imply triples functions- 
of the same form as (5), but with N not necessarily a normal distribution function. 
These functions play a central role in determining whether two models are equivalent 
for pair comparisons, because the triples function of a model completely determines 
the pair-comparison systems admitted by that model, and consequently two models 
can be equivalent for pair comparisons iff they imply the same triples function. (This 
is shown explicitly in the proof of Theorem 2, Section 3.2.) 

Thurstone developed his Case V model explicitly only for the case of pair-comparison 
experiments, but the following generalization to complete experiments is straightforward: 
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DEFINITION 2. A complete system of choice probabilities {pJC,> satisfies the 
Case E’ model T(p, 02, r) iff there exist numbers (scale vahes) ur , u2 ,..., U, such that 
foreveryiandS,iESCC,, 

ps(i) = P[u, + Xi = Max{r+ + Xi 1 j E S}], (6) 

where X, , X, ,..., X, are normally distributed random variables with common mean CL, 
common variance u2, and Cov(X, , Xj) = ruz for all i and j, i # j. The random variable 
ui + Xi is the discrimi?~al process associated with object oi . 

Definition 2 is stated in such a way that to every triple (p, u2, T) there corresponds 
a distinct Case V model. However, it is well known that in the case of pair comparisons, 
the parameters CL, u2, and r cannot be identified. That is, if a pair-comparison system 
satisfies any T(p, u2, r), then it satisfies all of them, and in particular it satisfies the model 
T(0, 1,O) in which the Xi have mean zero, variance 1, and are independent. The same 
is true of the generalization to complete experiments represented by Definition 2, as 
the following Lemma shows. 

LEMMA 4. Every Case V model T(p, u2, r) is completely equivalent to the model 

T(O, 1,O). 

Proof. Suppose (ps/C,J is a complete system of choice probabilities admitted by 
T(p, u2, r), with scale values or , u2 ,..., u, . To show that this system is also admitted 
by T(0, 1, 0), observe that if (ui + Xi / i = l,..., n> are the discriminal processes of 
T(p, u2, r), their joint moment generating function m(0, ,..., 0,) = E[exp(C Bi(ui + Xi))] 
is 

exp 
[ 
f M4 + PCL) + *a” i Bi2 + ru2 C Sitlj 
i=l i=l i#i 1 . 

However, a straightforward calculation shows that this is also the joint m.g.f. of a set 
of tt normal random variables of the form X%’ = ui + p + Xi* + Y, where XI*, 
x2*,..., X,* are n independent identically distributed (i.i.d.) normal R.V.‘s with mean 
zero, variance a2(1 - r), and Y is another normal random variable, independent of 
all the others, with mean zero, and variance YU 2. Consequently for any ps(i) in {p,/C,} 

ps(i) = P[IQ + Xi = Max{u, + X, 1 j E S}] 

=P[ui+~+Xi*+Y=Max{u~+~+Xi*+YIjES}] 

= P[Ui + X* = Max{uj + Xi* 1 je S}] 

= f’[(u&) + Q&*/c) = M~{(uj/c) + (J&*/C) I j E s}]. 

where c = (~~(1 - r))li2. The random variables X,*/c, Xs*/c,..., X,*/c are normal, 
i.i.d., and have mean zero and variance one. Consequently if (p&J is admitted by 
T&, u2, I) with scale values or , u, ,..., u, , it is also admitted by Z’(0, 1,O) with scale 
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values uJ(u”( 1 - r))li2,..., un/(u2(1 - y))li2. Th e converse is proved by working back- 
ward along the same route. 1 

Remark on nonidentijable correlations. The proof of the last lemma shows explicitly 
why correlated and independent discriminal processes in a Case V model yield the same 
results: If (~4~ + Xi 1 i = l,..., n) is a set of jointly distributed normal discriminal 
processes with common variances and a common nonzero covariance, then there is 
another set (ui + Xi* + Y 1 i = l,..., n>, with {X,*} i.i.d., and Y independent of the 
IX,*}, which have the same joint distribution and consequently yield the same predictions. 
In this equivalent set of processes the correlation between the original Xi is represented 
entirely by the extra random variable Y. Because this random variable has no effect 
on the probability of an inequality of the form ui + Xi* + Y > ui + Xi* + Y, its 
distribution has no effect on choice probabilities based on such inequalities, and in 
particular we can assume that Y is a degenerate R.V. equal to zero. In fact, we could 
assume that Y has a nonnormal distribution and the resulting model (in which the 
discriminal processes would no longer be normal or independent) would yield the same 
results, since 

P& = p[% + xi* + Y = Max{~+ + X,* + Y 1 i E S}] 

is independent of the distribution of Y. This shows that if we start with a Case V model 
with independent normal discriminal processes, we can then construct an infinite number 
of distinct models with correlated nonnormal discriminal processes, all of which will 
yield the same predictions as the original. 

The same argument applies also in the general case developed in the next section, 
and so it can be seen that in general, if the discriminal processes are not assumed to be 
independent, there is no hope of identifying their distribution from their predictions 
for choice experiments. 

2.6. Generalization: Thurstone Models with Independent Discriminal Processes 

The essential features of Case V of Thurstone’s Theory of Comparative Judgment 
are (1) the idea that choice objects or, o2 ,..., o, are represented on an underlying 
psychological continuum by random variables ui + X1 ,..., u, + X, , with 

ps(i) = P[q + Xi = Max{z+ + Xi ]j~ S}]; 

(2) the Xi are independent and identically distributed, so that the discriminal processes 
{ui + Xi} are themselves independent and identically distributed except for shifts 
along the axis; (3) the (cumulative) distribution function of the difference Xj - Xi 
is continuous and strictly increasing, so that pi3 = P[x, - Xf < ut - uj] is a continuous 
and strictly increasing function of the scale value difference ui - Uj . 

A general class of models that share these properties without presupposing normal 
distributions can be defined as follows. 
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Notation. IfF is a distribution function, its d$ference distribution D, is the distribution 
function 

D,(x) = ly F(” + Y) WY). --a 

(Thus if X, , X, are i.i.d. with common distribution function F, D, is the distribution 
function of X, - X, .) 

DEFINITION 3. Suppose F is a distribution for which D, is continuous and strictly 
increasing over (--CO, co). A complete system of choice probabilities {p,/C,} satisfies 
the Thurstone model YjF if and only if there exist numbers u1 , u2 ,..., u, (scale values) 
such that for every i E S C C, 

ps(i) = P[u, + Xi = Max{uj + X, I j E S}] 

where X, , X, ,..., X, are n independent random variables with F as their common 
distribution function (i.e., P(Xi < x) = F(x)).~ 

In other words: A given Thurstone model 9-F can be thought of as a specific collection 
of complete systems of choice probabilities, all those that can be generated by the 
distribution function F together with every possible set of scale values u1 , u2 ,... . F here 
is regarded as completely specified: It has no free parameters of its own. Thus, the 
model corresponding to the normal distribution with mean zero and variance 1 is 
conceptually distinct from the model corresponding to the normal distribution with 
mean 1 and variance 2. Lemma 4 showed that in the case of normal distributions this 
distinction is artificial, and as might be expected the same is true for any other type of 
distribution. Theorem 1 in Section 3.1 makes this explicit: Models with distributions 
of the same type are completely equivalent. Consequently there is usually no harm 
in talking about, e.g., “the normal model,” without specifying precisely which normal 
distribution we have in mind. Still, it is necessary to have some convention in this regard 
to keep things logically straight, and the one adopted here has at least the advantage 
of not taking anything for granted. 

For pair-comparison experiments the difference distribution D, plays a central role, 
because 

pij = P[ui + Xi > uj + Xi] = D,(ui - uJ. 

The assumption that D, is continuous and strictly increasing over the whole line 
guarantees the third essential Thurstone condition, i.e., that pij be a continuous strictly 
increasing function of ui - Uj . Note that the scale values of a Thurstone model are 
uniquely determined by a system {p,/C,} up to addition of a constant (i.e., if YF generates 

2 It should perhaps be emphasized that the class of “Thurstone models” defined here represents 
a generalization only of Thurstone’s Case V, and consequently the theorems proved below for this 
class need not apply to generalized version of his other cases. 
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(p,/C,} with c 1 s a e values (ui}, scale values of the form (a + Us} will work also-but 
no others, since ui - uj = D>r(p,)). 

Definition 3 excludes discriminal process distributions concentrated on finite intervals. 
Models of that sort are intriguing, because they admit the possibility that choice proba- 
bilities can be zero and one, but they are awkward to deal with for the same reason. 
We can afford to exclude them here without loss of generality, because-for reasons 
spelled out in Section 4-none of them can be equivalent to the Choice Axiom. 

Of the following three examples, only (c) requires special motivation. It is included 
partly because of its uniqueness properties, which are similar to those of (b), the case 
of central interest, but easier to demonstrate explicitly. Example (c) also shows that the 
Choice Axiom is not the only theory of choice behavior that inadvertently turns out 
to be equivalent to a Thurstone model. However, in (c), this equivalence only extends 
to pair comparisons. 

Examples of Thurstoue Models (Fig. 1) 

(a) The Normal Model (Thurstone’s Case V). If F is the normal distribution with 
mean U, and variance aa, FF is the Case V model T(p, u2, 0) of Definition 2. Here D, 

is again normal, with mean zero and variance 20s. 

(b) The Double Exponential Model (Lute’s Choice Axiom). If Y is an exponential 
random variable with density e- 8, the random variable X = -log Y has distribution 
function 

P(X < x) = F(x) = e-8-2 (-co <x< co). (6) 

Equation (6) is the double exponential distribution function, with mean y (where y is 
Euler’s constant 0.5772,...) and variance rr2/6. (The mean can be derived from formulas 
found in most handbooks of integrals. The variance takes more work, but it can be 
obtained using a formula for the derivatives of the y function given by Whittaker and 
Watson (1963, p. 241).) This distribution is famous in statistics, because it is one of 
three possible distributions for the limit (as n -+ 00) of the maximum Z,* of n i.i.d. 
random variables Z, ,..., Z, . Of course if the Zi are not bounded from above, Z,* -+ co 
with probability 1, but in many cases sequences of normalizing constants {a,}, {b,}, 

can be found such that the distribution of anZn* - 6, converges to a nondegenerate 
limit. If this is true when a, = 1 (i.e., if Z, * - b, has a limit distribution), then that 
distribution must be of the double exponential type, (Gumbel (1958) discusses all this 
very throughly.) This fact is used in Section 4 to derive the Choice Axiom from a weaker 
assumption about choice probabilities in experiments with “redundant” objects. 

The difference distribution corresponding to (6) is quickly found to be the logistic 
distribution 

DF(x) = (1 + e-“)-‘. (7) 

Relationship to the Choice Axiom. Adams and Messick (1957) showed that a Thurstone 
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FIG. f. Discriminal process distributions (shown as probability density functions) for three 
different Thurstone models. Each panel depicts the density functions f(x) for three discriminal 
process random variables of the form ui + Xi , with or = 0, ur = 1, ua = 2 in each case. Every 
distribution has variance 1. (A) The Normal (Case V) Model: f(x) = (2rr)-r/sexp[-4(x - r@]. 
(B) The Double Exponential (Choice Axiom) Model: f(x) = a exp[ -a(x -uJ] exp[-exp[-a(x - ui)]], 
a = ?r/6r/s. (The means are ui + y-r, y = Euler’s constant.) (C) The exponential model: f(x) = 
exp[-(x - ~31. (The means are 1,2, 3.) 

model is equivalent to the Choice Axiom for pair comparisons if and only if its difference 
distribution is logistic (any logistic with mean zero, not just (7)): 

LEMMA 5 (Adams and Messick’s theorem). A Thurstone model FF is equivalent to the 
Choice Axiom for pair-comparison experiments $7 DF(x) = (1 + e+‘=)--l, with a > 0. 

Proof. One method (the original) is to show by a functional equation argument 
that only the logistic implies the triples function (3). Here we can take a shorter route. 
Suppose DG(x) is (1 + e-=)-l, and & admits {pi&}. Then 

pij = P[u, + xi > uj + Xj] 

= D,(u, - uj) 

= (1 + e--(%-%~)-l~ 
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Setting ui = log vi , the last line becomes 

pij = Vi/h + q). 

Consequently (via Lemma l), the system {pli/Cn} satisfies the Choice Axiom. Con- 
versely, if {pii/C,} satisfies the Choice Axiom, with scale values vr ,..., vn , then it satisfies 
.Fc with ui = log vI . Then to establish uniqueness, we appeal to Theorem 2 below, 
which shows that in general, two Thurstone models FF and Fo can be equivalent for 
pair comparisons iff D&) = DG( ux ) f or some positive constant a. 1 

In view of (7) and Lemma 5, it is clear that the double exponential Thurstone model 
(6) is equivalent to the Choice Axiom for pair comparisons. Holman and Marley (cited 
in Lute and Suppes, 1965) showed that this is also true for complete choice experiments 
for any model of the double exponential type: 

LEMMA 6 (Holman and Marley’s theorem). If F is a distribution function of the double 
exponential type 

F(x) = e-e-(m+a) (a > 0, b arbitrary) 

then the Thurstone model & is completely equivalent to the Choice Axiom. 

Proof. It is sufficient to prove this only for the particular case a = 1, b = 0, and 
then appeal to Theorem 1 below, which shows that two models rF and Fc with distribu- 
tions of the same type (i.e., F(x) = G(ax + b)) are always completely equivalent. Suppose 
then that a complete system {p,/C,} is admitted by Fc (G(x) = e+-=) with scale values 

Ul ,.‘., u,, . Set ui = log vd , and Xl = -log Yi . Then Y, has the exponential distribution 
function 1 - e-u, and 

ps(i) = P[Ui + Xi = Max(uj + Xj 1 j E S}] 

= P[vi/Yi = Max{v,/Y, 1 j E S}] 

= Ppi/vc = Min(Yj/vi \ j E S)] 

= jam vie-‘@ (,$, e-‘~‘) dy 

= erg 
I 

1 vj . 
IES 

Consequently (ps/Cn} al so satisfies the Choice Axiom, with v scale values vi = eUi. 
The converse is immediate. 1 

Notice that Lemma 6 does not say that the double exponential is the mly Thurstone 
model that is completely equivalent to the Choice Axiom. In citing Holman and Marley’s 
result, Lute and Suppes (1965, p. 339) mentioned that the uniqueness question was 
open. At that time all that was known by way of uniqueness was Adams and Me&k’s 
theorem, which shows that any other model that is completely equivalent to the Choice 

480/x5/2-2 
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Axiom must, like the double exponential, have the logistic as its difference distribution. 
That property, however, does not uniquely characterize the double exponential distribu- 
tion, for reasons elaborated in Section 3.2. Subsequently, both the author (1971) and 
McFadden (1974) have independently given proofs (along quite similar lines) that a 
Thurstone model YF can be completely equivalent to the Choice Axiom only if F is a 

double exponential distribution. Both proofs depend on extra assumptions about F: 

Mine assumed that F has a density f, with iim,,, xf (log x) # O;3 McFadden’s assumed 
that F is translation complete (e.g., has a nonvanishing characteristic function). Theorem 3 
below has as a consequence the somewhat better result that without any additional 
assumptions (beyond those of Definition 3) YF is equivalent to the Choice Axiom if 

and only if F is double exponential. This result, however, is still weak; the strongest 
one possible is proved in Section 3.4 (Theorem 5). 

(c) The Exponential Model (Dawkins’ Threshold Model). I f  F(x) is the exponential 

distribution 1 - e-x, then D, is the Laplace distribution 

This model turns out to be equivalent, for pair comparisons, to the Threshold Model 
proposed by Dawkins (1969). That model assumes the existence of a set of “thresholds” 

4 7 t, ,.‘.> t, > corresponding to the choice objects o1 , o2 ,..., 0,: The more preferred 
the object, the lower its threshold-if t, < t, < -4. < t, , then o1 is most preferred, 

o, least. V denotes an “excitation” random variable, with P(V < 8) = H(v). (We 
assume 0 < H(o) < 1 and strictly increasing for all w. H turns out to be unidentifiable.) 
When a pair oi , oj is presented, with tj < ti , the subjects’ choice depends on where V 
is relative to these thresholds: If  V < tj < tj , the subject makes no choice, and instead 
draws another sampie of V. If  ti < V < tj , he chooses oi . I f  ti ,( t3 < V, he picks 
either oi or oj , each with probability S. Dawkins (1969) s h owed that the triples function 
for this model (analogous to (3) and (5)) is given by 

Pik = 1 - 2PkjPii (8) 

in the casepij 2 0.5, pj, 3 0.5. The remaining cases can be derived from this expression. 

(Since the subject might not choose either object-if V falls below both thresholds- 
it is necessary to redefine & here to mean the probability that i is chosen when {oi , oj} 
is presented and the subject actually chooses an object.) 

Any Thurstone model with the LapIace distribution as its difference distribution 
will also imply this same triples function, and consequently be equivalent’ to Dawkins’ 
model for pair-comparison experiments. The following lemma also shows that ihis 
representation is unique: The Laplace stands in the same relationship to Dawkins’ 
model that the logistic does to the Choice Axiom. 

3 This condition makes somewhat more sense in the context F(x) = P(X < x); Y = emX: Then 
it implies that the density of Y is positive at the origin. 



CHOICE THEORY 125 

LEMMA 7. A Thurstone model FF is equivalent to Dawkins’ Threshold model for pair 
comparisons [f and only if its difference distribution DF is a Laplace distribution: 

D&x) = $eaz, x < 0, 

= 1 - +-as, x > 0. 

Proof. Here again we need only show that (9) implies the triples function (S), and 
then Theorem 2 below establishes uniqueness. Assuming pij and pj, both 30.5, Ui - Uj 
and uj - uk are both nonnegative, and 

pi, = DF(u~ - Uj + Uj - Uk) 

= 1 - +e- ahi-uj)e-ahj-u,) 

= 1 _ 2(&ea(uj-ui )(.$eacukeuj)) 

= 1 - 2pjipkj * 1 

Surprisingly, this equivalence breaks down as soon as we consider complete experi- 
ments. In fact, for complete experiments with three objects, Dawkins’ Threshold model 
is not equivalent to any Thurstone model. To see why, suppose or is preferred to oa 
is preferred to os , so that in the Threshold model t, < t, < t, , and in any corresponding 
Thurstone model ur > u2 > ua . In this case the Threshold model implies that the 
following relationship holds regardless of where t, is located in the interval (tl , t,): 

P(W)(3) = 6(1 - W&/(1 - WI)) = QP31 . WV 

No Thurstone model can duplicate this prediction, because to do so would mean that 
the probability of the event 

ua + X, = Max{ui + Xi 1 i = 1,2, 3) 

depended only on the difference between ui and ua , and not on the location of us within 
the interval (ua , ur). For any Th urstone model, however, this probability clearly must 
always be a strictly decreasing function of us . 

In his 1969 paper, Dawkins reports a great deal of pair comparison data which is 
all very well fit by either his model or the Choice Axiom or Thurstone’s Case V (the 
predictions of all three models are nearly identical-not surprisingly, in view of the 
similarity of their difference distributions). Equation (lo), however, seems much too 
strong to be generally true, and so it seems fair to attribute the success of Dawkins’ 
model for pair-comparison experiments to the fact that in that special case it happens 
to be a Thurstone model. 
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3. UNIQUENESS PROPERTIES OF THURSTONE MODELS 

3.1. Preliminaries 

The general question here is whether two Thurstone models 9F and & can be 
equivalent even though F and G are different distributions. An overview of the results 
was given earlier in Section I .2.1, and Fig. 2 shows a graphical summary. Theorem 1 
disposes of the trivial case in which F and G are distributions of the same type (e.g., 
F and G are both double exponential distributions, differing only in their means and 
variances). 

with any number of choice objects 

Definition 

FIG. 2. Logical structure of the relationship between two discriminal process distributions F 
and G and various types of equivalence (-) between their corresponding Thurstone models FF 
and & . Arrows signify the direction of implication. 

THEOREM 1. If YF and & are Thurstone models, and F and G are distributions of 
the same type (i.e., F(x) = G(ax + b) fur all x and some pair of constants a, b, with a > 0), 
then Yp is completely equivalent to YG . 

Proof. Suppose YF admits the system {p,/C,} with scale values ul , u2 , . . . . u, , 
and that ps(i) is an arbitrary probability in that system. Then 

p,(i) = P[u, + Xi = Max{uj + Xj I j E S}] 

=P~aui+aXi+b=Max(aui+~,+bIjES}] 

= P[aui + X,* = Max@, + X,* 1 j E S}] 

where 

f-v,* < xl = P[aXi + b < x] 

= F[(x - WI , 
= G(x). 

Consequently {p,/c,} is also admitted by YG , with scale values uul , aus ,..., au, . B 
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In view of Theorem 1 it is unnecessary to maintain a strict distinction between 
Thurstone models whose discriminal process distributions belong to the same type: 
There is no ambiguity in talking about, e.g., “the double exponential model” without 
specifying exactly which double exponential distribution we mean, because all such 
models are completely equivalent. 

3.2. Implications of Pair-Comparison Equivalence 

The starting point is the following result: 

THEOREM 2. Two Thurstone models FF and .9$ are equivalent fw pair comparisons 
;f and only if their d$%rence distributions satisfy 

&(X) = a&4 

f or some a ;> 0 and all x. 

Proof. Note first that any model FF implies a triples function analogous to Eq. 5 
for the Case V Model. Since 

pij = P[xj - Xi < Ui - U*] 

= D,(Ui - Uj), 

it follows that for any three pairwise probabilities p, , p, , pi, in a pair-comparison 
system admitted by 9-r: 

Pik = DF(D;‘(Pii) + &bjk))- (11) 

Equation (11) is the triples function for .FF . 
Next, observe that the triples function (11) completely determines the set of pair- 

comparison systems admitted by &: That set consists exactly of those systems in which 

(4 $5, , h 9.-P Pn-l.n are arbitrary probabilities; (b) p,i is the probability obtained by 
applying the triples function t of 5: to this chain, i.e., 

and (c) 

Pl3 = t(p13 9 P33>* 

Pli = t(Plsi-l 3 Pi-1.i)~ 

Consequently two models FF and 9c are equivalent for pair comparisons iff they 
have the same triples function, i.e., iff for every p, p’ in (0, 1) 

D&q(p) + DF1( p’)) = &(WP) + WP’N. (12) 
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To solve this functional equation, let x = D;‘(p), x’ = D;‘(p’). Then 

D,lDp(x + x’) = D$Dp(X) + D$DF(X’), 

so D;lD, satisfies the Cauchy equation f(x + x’) = f(x) + f(x’) for every x and x’. 
Since Do’D, is continuous, the only solution is D;lDr(x) = ax, and so Dr(x) = D&ax). 
The constant a must be positive because a = D,‘Dr(l) and D,(l) > 0.5 (since Dr(0) = 
0.5, and D, is strictly increasing by assumption), so that D,lD,(l) > 0. 1 

The following is included here for use later in Sections 3.3 and 3.4. 

COROLLARY 1 (to Theorem 2). If Yr and To are equivalent for complete experiments 
with three (or more) objects, then: (1) Th y e are equivalent for pair-comparison experiments 
with any number of objects; and (2) if {ps/C,} is a system admitted by both modeh, and 
the scale values for this system are u1 ,.,., u, according to Ye, and Us’,..., u,’ according 
to To , then 

ui’ - uj’ = a(ui - uj) (13) 

where a is the positive constant for which D*(x) = Do(ax). 

Proof. (1) Complete equivalence for three objects implies pair-comparison equivalence 
for three objects, which implies that Yr and Yc have the same triples function. The 
proof of Theorem 2 shows that this implies pair-comparison equivalence for any number 
of objects. (2) Pair-comparison equivalence implies Dr(x) = Do(ax). If p, is in { p,/C,], 
pij = D,(ui - uj) = Do(ui’ - uj’). Then 

DG1(piJ = ui’ - uj’ 

= D-,‘DF(ui - uj) 

=a(u,-uj). 1 

Now suppose that two models Yr and To are equivalent for pair comparisons, and 
that one of them has a known distribution-say, F is the double exponential distribution 
(6). What can we infer about G ? From Theorem 2 we know that pair-comparison 
equivalence implies only that Dr(x) = Do(ax). Clearly one solution is F(x) = G(ax + b), 
with a > 0: That corresponds to the case in which F is the distribution function of X 
and G is the distribution function of aX + b (a > 0), so that F and G are distributions 
of the same type. The other obvious solution is F(x) = 1 - G( -ax + 6) (again, a > 0): 
This corresponds to G being the distribution of -aX + b. In this case G is a distribution 
of the same type as -F, where 

-F(x) = 1 - F(-x), 

i.e., % is the distribution function of -X. (If F is not a symmetrical distribution, -F 
and F are not of the same type. For example, if F is a double exponential, hence not 
symmetrical, as can be seen from Fig. lB, % is not.) 

If the only solutions to Dr(x) = Do(ax) were F(x) = G(ax + b) and F(x) = 
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1 - G(--ax + b), Adams and Messick’s theorem (Lemma 5) would permit a simple 
solution to the uniqueness problem for the Choice Axiom, because we would know 
that To could be equivalent to the Choice Axiom only if G were either a double 
exponential distribution, or a distribution function of the same type as 1 - e+‘. Then 
a quick calculation would show that the latter possibility does not yield the Choice 
Axiom for complete experiments, and so the problem would be solved. 

However, things are not that simple, because in addition to the obvious solutions, 
which correspond to linear transformations of random variables, Do = Do(ux) 
also has other solutions, in which F and G are not related to one another in any readily 
interpretable way. These hidden possibilities emerge when things are considered from 
the standpoint of characteristic functions. Recall that if X has distribution function F, 
its characteristic function (c.f.) cr(t) is the complex valued function of a real variable t 
defined by d:r(t) = E(eitx): Th is f unction always exists; two distributions F and G are 
identical iff cr and cG are identical; the c.f. of olX + /3 is e%,(at); and the c.f. of a sum 
of independent random variables is the product of their individual c.f.‘s (e.g., Feller, 
1966, Chap. XV). Thus if X1 , X, are i.i.d. with distribution function F, their difference 
Xl - X2 has the c.f. cDF(t) = cF(t) cr(--t). 

In terms of characteristic functions, our original equation Do = DC(x) (where 
to simplify appearances we set a = 1, without loss of generality) takes the form 

c&) CF(--4 = cc(t) ccc---q7 

and the two obvious solutions are represented by 

and 

cc(t) = eibtc,(t) (F(x) = ‘3~ + W, 

cc(t) = eibtc,(-t) (F(x) = 1 - G(--x + b)). 

However, in general, these are not the only possible solutions: In the theory of charac- 
teristic functions there are many examples in which cr(t) cr(--t) = cc(t) cc(-t) even 
though cc is not either of the obvious solutions. (Lukacs, 1960, discusses the problem 
in detail.) In these cases the extra solutions G are not related to F in any probabilistically 
obvious way,4 but they can nevertheless often be shown to be well-behaved distributions, 
with continuous densities and finite moments-distributions, in other words, that 
would yield. plausible Thurstone models in their own right. 

The Exponential Case 

Suppose, for example, that F is the exponential distribution function 1 - e-=. Then 
cF(t) = (1 -- it)-l, and DF( x is the Laplace distribution, with c.f. (1 + P-l. But ) 
Lukacs (1960, p. 94) notes that the function 

(1 + it/v)(l + it/@) 
CG(t) = (1 - it)(l - it/v)(l - it/@) 

4 In fact these extra solutions are distributions whose Fourier components have the same am- 
plitudes as those of F, but differ in phase. 
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(where w = 1 + ir, 5 = 1 - ir, Y 3 2(29) is also a c.f. (of a continuous density) 
and it is easy to see that co(t) c&-t) = (1 + P)-l = cF(t) cF(-t) even though co(t) 
is not of the form eibtcF(t) or eibtc,(--t). Thus Do(x) = DF(x), even though G is not 
an exponential distribution, or the distribution of the negative of an exponential random 
variable. 

This counterexample shows there is a Thurstone model .Fo that is equivalent to the 
exponential model for pair comparisons even though neither G or -G is an exponential 
distribution. Consequently Dawkin’s Threshold model is equivalent to both exponential 
and nonexponential Thurstone models for pair comparisons, and (as noted earlier) 
not equivalent to any Thurstone model for complete experiments with three or more 
objects. 

The Double Exponential Case 

If F is the double exponential distribution F(x) = e-+-‘, cF(t) = I’(1 - it) (where 
r is the gamma function), and so the difference distribution DF(x) = (1 + e-*)-l has 
c.f. P(l - it) F(l + it). However, an example due to Laha (1964) shows that this c.f. 
can also be factored into co(t) cc(-t), where neither factor is the c.f. of a double expo- 
nential distribution. Laha studied the general question: If Yr and Y, are i.i.d. and positive, 
and Y,/(Y, + Ys) has the /? distribution, must Y1 and Y, be y distributed? The special 
case where Y1 and Y, are exponential is relevant here. In this case Y1/(Y1 + YJ has 
the uniform distribution on (0, 1) (a special case of the p) which implies that log Y1 - 
log Y, has the logistic distribution function (7). Thus if there exist positive nonexponential 
i.i.d. random variables Y1 , Y, such that Y,/(Y, + Ye) is uniform, then X, = -log Yr 
and X, = -log Ya (and also-but less interestingly, -X1 , -X,) will be a pair of 
i.i.d. random variables that are not double exponential, but nevertheless have the logistic 
as their difference distribution. 

Adapted to the problem at hand, Laha’s results can be summarized as follows. If 
X, and X, are i.i.d., each having distribution function F, and X, - X, is logistic, then: 
(i) F is absolutely continuous and strictly increasing over the whole line; (ii) if F has 
finite absolute moments of all orders and is infinitely divisible, then -F or F must be 
double exponential; (iii) there exist solutions F that have finite absolute moments of 
all orders, but neither F or % is double exponential. The last result is proved by con- 
structing the characteristic function of such a distribution. The expression for this 
c.f. is very complicated, noninformative to the naked eye, and fills at least an entire 
page (Laha, 1964, pp. 296-297). So it will not be reproduced here-suffice it to say 
that no one would ever be tempted to use the corresponding distribution as the basis 
for a theory of choice behavior, even though from a technical standpoint it makes a 
perfectly acceptable Thurstone model. 

Laha’s results show that there exists a Thurstone model in which the discriminal 
process distribution is not related in any obvious way to the double exponential, but 
which is equivalent to the double exponential model (hence, to the Choice Axiom) 
for pair comparisons. This model cannot be excluded unless one is willing to require 
that “reasonable” Thurstone Models must have infinitely divisible distributions, which 
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does not seem to be a justifiable restriction. (Recall that a distribution is infinitely 
divisible if, for every n, it is the distribution of the sum of n i.i.d. random variables. 
Put another way, F is infinitely divisible if (cF)l/n is a characteristic function for every n.) 
It is true that the three examples of Thurstone models given in Section 2 all involve 
discriminal process distributions that are infinitely divisible. (For the normal, infinite 
divisibility is obvious: this is the prototype of the concept. Feller (1966, Chap. XVII) 
shows that the exponential distribution is infinitely divisible, and Laha (1966) shows 
that the double exponential is also.) But Laha’s example shows that this is not an 
essential property, and it is easy to find less exotic distributions that are not infinitely 
divisible and still lead to perfectly acceptable Thurstone models. For example, if Y 
is normal and another, independent, random variable U is uniform on (-1, l), the 
sum X = U + Y has a positive density, and consequently its distribution F satisfies 
Definition 3. This distribution is not infinitely divisible, because its c.f. vanishes infinitely 
often (since the c.f. of the uniform term is sin t/t), whereas the c.f. of an infinitely 
divisible distribution can never be zero (Feller, 1966, p. 532). 

The Normal Case 

The two examples just considered illustrate the general rule that a difference distribu- 
tion D, does not imply the type of the discriminal process distribution F, because F 
and G can be distributions of nontrivially different types (i.e., G # either F or %) and 
still yield D, = D, . However, there is one important exception. A famous theorem 
due to Cramer (Feller, 1966, p. 408) shows that if X1 and X, are independent and 
X1 + X, is normal, then X1 and X, must both be normal also. It follows that if D, 
is normal, then F itself must be normal: 

COROLLARY 2 (to Theorem 2). A Thurstone model .YF is equivalent to the normal 
(i.e., Case V) model for pair comparisons iff F is a normal distribution. 

In other words, the pair-comparison predictions of the normal model, taken altogether, 
uniquely characterize that model; they cannot be entirely duplicated by any other 
model. 

As a historical note, it is interesting that in his original 1927 paper, Thurstone seems 
to have taken for granted that experimental confirmation of the Law of Comparative 
Judgment (i.e., confirmation of the triples function (5)) would imply that the discriminal 
processes must be normal. Cramer’s theorem, however, was not proved until 1936. 
In the interim, no one could have known whether confirmation of the normal model 
for pair comparisons actually implied normal discriminal processes, or whether there 
might not also be nonnormal discriminal process distributions that could yield the 
same set of pair-comparison predictions. As things turned out, of course, Thurstone 
was right to ignore the problem for his Case V model. But if he had started with virtually 
any other distribution, he would have either been wrong, or else the answer would 
still be unknown, because Cramer’s theorem seems to be the only one of its kind (except 
for an analogous result for Poisson distributions, Raikov’s theorem (Lukacs, 1960), 
which is not helpful here). 
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3.3. Uniqueness Implications of Complete Eqztivffle-nce 

The last section showed that two models FF and Fc can be equivalent for pair com- 
parisons even though F and G are distributions of completely different types-distribu- 
tions for which ‘the corresponding random variables are not related by any linear trans- 
formation. A natural question is whether FF and Fc can be equivalent for all complete 
experiments when F and G are not the same type of distribution. The next theorem 
shows that this cannot happen: The set of all complete systems admitted byFF determines 
F, up to its type. 

THEOREM 3. Two Thurstone models YF and To are completely equivalent 11, and 
on2y if, F(x) = G(ax + b), with a > 0. 

Proof. The proof of this theorem depends on the characteristic function analysis 
developed in Section 3.4, and so is deferred to the end of that section. 

As a solution to our uniqueness problem, Theorem 3 is incomplete, because it leaves 
open the question of whether two models FF and Fn can be equivalent for complete 
experiments with a finite number of objects when F and G are distributions of different 
types. If this were true for a sufficiently large number of objects, then YF and 9; could 
be equivalent for all practical purposes even though they corresponded to different 
discriminal process distributions. The next section shows that for an important subset 
of cases, this possibility can be ruled out. 

3.4. Uniqueness Implications of Complete Equivalence for Experiments with Three Objects 

The sharpest possible result would be to show that YF and Fc can be equivalent 
for complete experiments with three objects iff F and G are distributions of the same 
type. The following lemma provides the basis for obtaining such a result by way of a 
functional equation involving the characteristic functions of F and G: 

LEMMA 8. If YF and To are equivalent for complete experiments with n objects (n >, 3), 
the characteristic functions of F and G satisfy the equation 

72-l 

= c&4 +(akJ .*. c&at,-,) CF - C at, , ( 1 i=l 

where a is the constant for which DF(x) = D,(ax). 

Proof. To avoid cumbersome expressions we prove the special case 12 = 3; the 
reasoning in the general case is exactly the same. Suppose FF and Fn are equivalent 
for complete experiments with three objects, that both admit an arbitrary system 
{p,/C,}, and that the scale values for this system according to YF are ur , us , us . Then 
from Corollary 2 to Theorem 2 we know that the corresponding scale values for Fc , 
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Ul’, us’, ua’, satisfy the relationship ui’ - uj’ = u(ui - uj) where a is the positive 
constant that makes DF(x) = D,(ax). Let {ui + Xi 1 i = 1,2,3} denote the discriminal 
processes of YF , and (a~~ + Xi’ 1 i = 1,2, 3) the discriminal processes of & . Then 

Let 

.pc,( 1) = p[x, - x, < u1 - uz , X, - X, < % - %I, 
= qx, - Xl’ < u(u1 - UJ, X,’ - Xl’ < a(241 - t(q)]. 

and 
JF(X,Y) = P(X, - Xl < x, x3 - Xl < Y), 

J&c, y) = P(X,’ - Xl’ < x, X,’ - X,’ < y). 

Then (17) implies 

J&7 Y) = J&x, UY). 

Now consider the joint characteristic function of (X,’ - X1’, Xs’ - XI’): 

qexp(~~,(& - Xl’) + ;q&’ - Xl’)] = E[eit’xe’e”tex~e-“(t’+t2)X~] 

= C&l) c&J cd-5 - tz) 

since the Xi are i.i.d. The same c.f. can also be expressed as the integral 

m cc 
s s eitl=+itey dJ&, y). 

--m -02 

Making the change of variable x = ax’, y = uy’, and using (IQ (20) becomes 

m co 
s s 

eit,ax’+it,ar’ ~J~(~I, y,~. 

-CL -* 

(17) 

(18) 

(19) 

(20) 

(21) 

However, this last integral is also the joint c.f. of (X, - X, , X, - X,) evaluated at 
(at, , ut,), so (21) equals 

E[exp[iat,(X, - X,) + &7&(X, - X,)]] = c,(ut,) cF(at,) c,(--at, - at,). (2-a 

Consequently (19) and (22) are equal, as claimedm5 1 

Specializing to the case 71 = 3, Lemma 8 says that if FF and FG are completely 
equivalent for experiments with three objects, the characteristic functions of F and G 
satisfy the functional equation 

5 It can be seen from this proof that the uniqueness problem for Thurstone models boils down 
to the question of whether the distribution of a set of independent R.V.‘s. X, , X, ,..., X, is deter- 
mined by the joint distribution of the differences X2 - X1, X3 - XI ,..., X, - X1. I. I. Kotlarski 
has pointed out to me that there is a rather extensive literature on this question, beginning with 
his 1966 paper which shows that if the joint c.f. of the differences is nonvanishing, the answer is 
yes. Although arrived at independently, Theorem 4 is essentially a corollary of Kotlarski’s result. 
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One acceptable solution to (23) is 

co(t) = fFc,(ut), (24) 

which implies F(x) = G(ax + b). (The solution cc(t) = ewte’btc,(at) (w, b real) is not 
acceptable because it cannot be a characteristic function. This follows from the fact 
that if r(t) = cl(t) + its(t) is a c.f., cr must be even and cs must be odd (Feller, 1966, 
p. 474). Consequently, e%(t) ( w real) can never be a c.f., because e%r(t) will not be 
even, and e%s(t) will not be odd. Since we know that eibtc,(at) is a c.f., ewleibtc,(at) 
is not). If (24) is the only solution to (23), then complete equivalence for experiments 
with three objects implies that F and G are distributions of the same type. The next 
theorem shows that this is always true if F (or G) has a nonvanishing characteristic 
function. 

THEOREM 4. If & and Yo are equivalent fm complete choice experiments with three 
objects and the characteristic function of F (OT G) is never zero, then F(x) = G(UX + b). 

Proof. To simplify the notation, let f(t) = cF(t), g(t) = cc(t). Then (23) becomes 

ds)g(t)g(-s - t) =fWf(at)f(-m - @th (25) 

which holds for all real s and t. The problem is to show that the only acceptable solutions 
to (25) are of the form 

g(t) = eibtf(at), (26) 

where b is an arbitrary constant. Observe first that when s = 0, (25) becomes 

g(t) A-4 = I &)I” = f  (at)f (--at) = If WI2 (27) 

(since g(0) = f  (0) = 1). Clearly if f  never vanishes, neither does g, and vice versa, 
so the factors in (25) can be divided freely. Using (27) to rewrite f  (-us - at)/g( -s - t), 
(25) becomes 

g(s) &Y(t) --= & + t) 
f@)f(at) f(m+at) * 

(28) 

Now let h(t) = g(t)/f (at). Then (28) becomes 

h(s) h(t) = h(s + t). (29) 

Functional equation (29) is a complex version of the well-known Cauchy equation- 
if h were a real valued function, the only continuous nonzero solution would be h(t) = ebt 
(Aczel, 1966, p. 38). Since h is a complex function of a real variable, the solution here 
takes a bit more work, but in the end the result (when h is a ratio of c.f.‘s) is a complex 
analog of the real solution: h(t) = e ibt. To show this, let h, and h, denote the real and 



CHOICE THEORY 135 

imaginary parts of h, i.e., h(t) = h,(t) + i&(t), and similarly, f(t) = jr(t) + i&a(t) and 

s(t) = &I + ig,(Q Th en using the fact that fi and g, are even, and fi and g, are odd, 
it is straightforward to show that h, is even and ha is odd. Writing (29) in terms of h, 
and h, , expanding, and equating the real and imaginary parts on both sides, we obtain 
a pan of real functional equations: 

h,(s) h(t) - h,(s) h&l = 46 + 4, (30) 

h,(s) h,(t) + h,(s) h,(t) = 4s + 9 (31) 

Putting --s in place of s in (30) and using the fact that h, is even, and h, odd, (30) becomes 

h,(s) h,(t) + h,(s) h,(t) = h,(t - 4. (32) 

A&l (1966, pp. 176-180) shows that the only continuous nonconstant solution to 
(32) is h,(t) = cos bt, h,(t) = sin bt. Since h is the ratio of two continuous functions 
(every c.f. is continuous) h, and h, are continuous, and h cannot be any constant except 
one (i.e., b = 0) because h(0) = 1. Consequently the only acceptable solution to (29) is 

h(t) = cos 6t + i sin bt = eibt. 

Thus (26) is the only solution to (25) under the assumption that f and g are c.f.‘s, one 
of which is known to be nonvanishing. 1 

Applying Theorem 4 to the special case of the double exponential distribution, we 
obtain finally a complete solution to the uniqueness problem for the Choice Axiom: 

THEOREM 5. A Thurstone model & is equivalent to the Choice Axiom for complete 
experiments with three (or more) o&e& if, and only if, F is a double exponential distribution, 
i.e., @F(x) = e-~-‘Oz+*‘, with a > 0. 

Proof. Holman and Marley’s theorem (Lemma 6) shows that any double exponential 
model implies the Choice Axiom, in particular, the model Yc , with G(x) = e+-O. 
This distribution has the nonvanishing characteristic function F(l - it), and con- 
sequently any model FF that is equivalent to F,o (hence, to the Choice Axiom) for 
complete experiments with three objects must have F(x) = G(ax + b). (To show 
explicitly that I’(1 - it) is never zero we can use the fact that for any complex z, 
r(2) q - 2) = /( 71 sin TZ) (e.g., Ahlfors, 1966, p. 198). Recall also that I’(1 + Z) = 
XI’(Z), and that by definition sin z = iZ (e - e-i*)/zi. Then if g(t) = I’(1 - it): 

1 g(t)12 = r(l - it) F(l + it) 
= it+in it97 

= 27rt/(ent - e+). 

Clearly this last expression could only vanish at t = 0, and applying L’Hospital’s rule 
shows that 1 g(O)ls = 1. i 
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(Notice that Theorem 5 does not simply state that the double exponential is the only 
distribution with a nonvanishing cf. that is equivalent to the Choice Axiom; that would 
be a weaker result than the one actually proved, which is completely general.) 

From a general standpoint, there remains the open question of whether Theorem 4 
can be strengthened to cover all Thurstone models, rather than just those that are 
equivalent to models with nonvanishing characteristic functions. The answer hinges 
on whether the functional equation (23) can have solutions other than (24) if we drop 
the requirement that cF never vanishes. Ignoring for the moment the fact that such 

solutions are relevant here only if they actually represent characteristic functions, it 
is not difficult to construct alternative solutions to (23) when cF is allowed to vanish 
over entire intervals. For example, suppose 

c?.(t) = 1 - I t I, t E L-1, 11, 
=l-lltj-5~, I t I E [4, 61, 
= 0, elsewhere 

(so that the graph of cF consists of three triangles, centered at -5, 0, and +5, each 

two units wide), and (for some real r) 

cc(t) = c&h I t I $ [4, 61, 
= &C&), t E [4, 61, 
= e-irc&), t E [-4, -61. 

Then clearly co(t) does not have the form eibtc,(t), but by considering the various possible 
values of s and t, one can see that 

c&) cc(t) cc(-s - t) = c&) C&) G(-S - t>, 

so co and cF satisfy (23), but not (24). (That is, if s and t both lie in [-1, 11, then either 
--s - t does also, in which case cc = cF , so the equation is satisfied, or else cF( --s - t) = 
cc(--s - t) = 0, in which case the same is true. And so on.) However, I have not been 
able to determine whether examples constructed along these lines can also be the 
characteristic functions of distributions satisfying Definition 3. This is left as an open 
problem, for someone with a better understanding of characteristic functions. 

One incomplete, but still useful, way to broaden the scope of Theorem 4 is to notice 
that even if cF has zeros, there will always be a neighborhood of the origin in which 
1 c,(t)12 is strictly positive (since ~~(0) = 1 and cF is continuous), and consequently 
if YF and & are equivalent for three objects, the ratio h = cF/cc will always satisfy 
(29) for all s and t in some neighborhood of zero. It follows (applying Theorem 1 in 
A&l, 1966, p. 46, to the real and imaginary parts of log h) that the solution (24) is 
always valid for 1 t 1 sufficiently close to zero, and consequently the cf. of F(x) always 
agrees with that of G(ux + b) in some neighborhood of the origin. This means that 
all the moments ofF agree with the moments of G(ax + b). Consequently ifF is a &r&u- 
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tion that is determined by its moments, 7; can be equivalent to FF for complete experiments 
with three. or more objects iff G is another distribution of the same type. This argument 
applies to many special cases that are not covered by Theorem 4. But F need not have 
finite moments or a nonvanishing c.f. in order to make an acceptable discriminal process 
distribution: The convolution of a Cauchy distribution with any symmetric distribution 
having one of the periodic c.f.‘s described by Feller (1966 Example “a,” .p. 594) will 
have a positive density (so that Definition 3 is satisfied), but its cf. will vanish over 
intervals, and its moment sequence will be uninformative (since only the odd moments 
will exist, and these will all be zero because of symmetry). 

To prove Theorem 3 using c.f.‘s, notice that (16) implies 

cc”(t) cc( -nt) = cFn(at) cF( -ant). (33) 

As noted in the last paragraph, (24) h o Id s in some neighborhood N. of the origin. If 
S$ and & are completely equivalent, (16) holds for every n, and for any s, there will 
be a t in N such that s = -nt for some n. Then co”(-t) = ecibscFn(-at) and sub- 
stituting in (33), we get co(s) = eibscF(as) for all s. 

4. INVARIANCE UNDER UNIFORM EXPANSIONS OF THE CHOICE SET: 

AN ASSUMPTION THAT IMPLIES THE CHOICE AXIOM 

It is evident from his 1927 paper that Thurstone’s grounds for assigning normal 
distributions to his discriminal processes were entirely heuristic, and had nothing to 
do with considerations specific to choice behavior: The normal distribution was chosen 
because of its ubiquitous role in statistics, and the suitability of this choice was left 
as an open problem, to be decided empirically. Another strategy, more in keeping with 
modern trends in choice theory, would have been to start with some intuitively plausible 
assumption about choice behavior, and then derive from this the type of the discriminal 
process distribution. For example, Thurstone might have begun (anachronistically) 
by postulating the Choice Axiom, which (in the general case, as shown in the previous 
section) would have led him to the double exponential distribution instead of the normal. 
Of course in that case the discriminal process mechanism would have been redundant 
excess baggage, because the Choice Axiom alone leads to the same predictions as the 
double exponential Thurstone model, and does so in a much more direct fashion. 

There is, however, another assumption, weaker than the Choice Axiom itself (and 
therefore perhaps intuitively more attractive), which also implies that the discriminal 
process distribution must be double exponential, and which consequently implies the 
Choice Axiom-under the assumption that some Thurstone model is true. 

To motivate this assumption, suppose that T,,, = {oll, ozl ,..., O,~) is a set of n 
choice objects (the reason for the double subscript will become clear in a moment), 
and let p,” ,(i) denote the probability of choosing object oil from T,., . Then suppose 
we expand’this choice set by adding K - 1 objects that are identical to on (call these 
ora , oia ,..., ollc), and K - 1 objects identical to oZ1 (oza , oZ3 ,..., o&, and so on for each of 
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the original objects, so that the new choice set is Tn,k = {oil ,..., elk ; ozl ,..., ozk ;...; 
o,r ,..., o,~}. This new set TnSk will be called the (&h-order) uniform expansion of the 
original set T,,l . 

Now let p&,(i) denote the probability that in choosing from the expanded set Tn,* 
(where again the subject chooses only one object), the object chosen is one of the type i 
objects, i.e., one of the objects oil , oi2 ,..., oik . In some contexts it seems intuitively 
plausible that ps, ,(i) should be constant for all values of K, i.e., the probability of choosing 
a type i object should not be affected by a uniform expansion of the choice set. 

For example, suppose the original set consists of three objects: a cup of coffee, a cup 
of tea, and a glass of milk. Then the Kth-order uniform expansion of this set consists 
of K identical cups of coffee, k cups of tea, and k glasses of milk. Assuming that the 
desirability of the choice objects themselves is the only consideration, it seems natural 
to suppose that the probability of choosing a cup of coffee from the expanded set (as 
opposed to tea or milk) will be the same as it was originally, regardless of K. 

Clearly this is what the Choice Axiom predicts, since the redundant objects in the 
expanded choice set will have the same v scale values as those in the original set: If 
oil has scale value Vi , then oi2 , oi3 ,..., oik must also have scale value vi , since they are 
all identical to oil , and consequently 

To state our assumption concisely, we will say that the predictions of a choice model 
are invariant under uniform expansions of the choice set ar pzS,,(i) = pCn,,(i) for all k. 

Now consider what it would mean for a Thurstone model YF to imply this sort of 
invariance. Suppose the original objects on , oal ,..., o,r have discriminal processes 
Ul + x,1 , 112 + x,1 ,***, u, + X,, (where the Xii are all i.i.d.), so that 

PC,,,(i) = P[ui + Xi, = Max{uj + Xji 1 i = 1 ,..., n}] 

= + ui - 4-j Wx). 
In the kth-order uniform expansion of this set the discriminal processes of the type i 

objects will be Ui + X1 , Ui + X,s ,..., pi + Xik , and the probability of choosing a 
type i object (as opposed to a type i object, i # i) will be the probability that one of 
these random variables is the maximum of the entire set of discriminal processes 

{a+ + X,, lj = l,..., n; m = I,..., k}. 

Clearly it does not matter whether the subject ranks all of these discriminal processes 
without regard for object type, and then selects the object corresponding to the largest, 
or first ranks the discriminal processes within each type (i.e., determines Max{u, + X,, 1 
m=l ,..., k} for each 9) and then rank orders these maximums. Consequently the 
probability of selecting a type i object is the probability that the largest of the type i 
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discriminal processes is greater than the largest discriminal process for every other 
object type: 

&$,,(i) = P[Max{u, + Xi, ] m = l,..., k} = Max{Max{u, + X,, 1 m = l,..., K}, 

Max{u, + X,, / m = l,..., k} ,..., Max{u, + X,, 1 m = I,..., ti}}] 

= P[u, + Max(X,, 1 m = l,..., K} (35) 

= Max{u, + Max{Xr, ] m = l,..., K} ,..., u,, + Max{X,, ] m = l,..., k}}]. 

Since the random variable Max{Xi, ) m = 1 ,..., A} has distribution function F”(x), 
(35) can be written as 

(36) 

Now the model YF is invariant under uniform expansions iff the integrals in (34) 
and (36) are equal for every choice of scale values {uJ and every integer k. However 
this is the same as saying that the Thurstone model YFk: is completely equivalent to 
the model Yr , since a given set of scale values ur , us ,..., u, will yield exactly the same 
choice probabilities in either model (that is, when inserted into either (36) or (34).) 
Consequently it follows from Theorem 3 that 

F’i(x) = F(ag + bk). (37) 

Moreover the constant ak here must always be one, since if ur = 0, us = -u, we have 

Pc,,Jl) = w4 = P&,(l) = %W and (37) implies DFk(u) = DF(aku). Thus, the 
Thurstone model Yr can be invariant under uniform expansions of the choice set if 
and only if, for every k, 

F”(x) = qx + bk), (38) 

where b, is a constant that depends on k. 
Now functional Eq. (38) is precisely the one that Fisher and Tippet used in 1928 

to prove that the limit distribution of the (normalized) maximum Z,* of k i.i.d. random 
variables 2, ,..., 2, (that is, the limit distribution of Z,* - 6, as k -+ co) is the double 
exponential. Their original argument is explained by Gumbel(l958). However, to obtain 
a proof that is sufficiently general for the present context we use here a different argument, 
based on Feller’s version of a theorem due to Gnedenko: 

LEMMA 9. F is a distribution function that satisfies functional Eq. (38) (i.e., for every k 
there exists a b, such that Fk(x) = F(x + bk) for all x) iff F is a distribution of the double 
exponential type, i.e., 

F(x) = ,-c-(““+“). 

4W15b3 
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Proof. If F is double exponential, then 

F!s(~) = e-k,-(ar+b) 

= exp{-e-l aM/a)logk)+b]) 

= F(x + b) 

where bk = -(l/a) logk 
To show the converse, suppose X1 , X, ,..., XI, ,..., are i.i.d., with F as their common 

distribution function. Let X,* = Max(X, ,..., X,}, and Yk = exe. Then Yk* = ex*. 
Feller (1966, pp. 270-271) shows that if a sequence of constants (aJ exists such that 
G(Y) = lim,+, PlY,*I+ < Y] exists and is not concentrated at the origin, then 

G(y) = e-cg-’ (c > 0, a > 0, y > 0). 

Now 

pw,*/a, G rl = pP* < %.Yl 

= pph* < logy + log %I 

= Fk[log y + log ak] 

= F(log y + log a, + h). 

So if F satisfies (38) for some sequence b, (in fact we can readily show that b, = 
D,l(l/(k + I)), then G(y) exists (for the sequence uk = e-b*) and equals F(logy), 
which clearly is not concentrated at the origin. Thus 

i.e., 

F(log y) = e-C”-” 

as claimed. 1 

Combining Lemma 9 with the argument that preceded it, we obtain the following 
result: 

THEOREM 6. The predictions of a Thurstone model YF are invariant under uniform 
expansions of the choice set if and only if F is a double exponential distribution, i.e., iff 
F(x) = ecebccz+‘), where c > 0. 

In other words, within the class of Thurstone models, invariance under uniform 
expansions implies the Choice Axiom.g 

Theorem 6 could stand to be sharpened a bit, so that it requires only invariance 
under uniform expansions of choice sets with three objects, instead of an arbitrary 
number as in the present version. This would be straightforward if Theorem 4 could 

6 For a different approach to motivating the double exponential distribution, also based on the 
statistics of extremes, see Thompson and Singh, 1967. 
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be strengthened to cover arbitrary discriminal process distributions instead of just 
those with nonvanishing characteristic functions. (If the invariance condition is stated 
only for initial choice sets with three objects, it implies the functional equation 
c&x) c&y) cF~( --x - y) = cF(x) cF(y) cP( --x - y), by the same argument used to 
prove Lemma 8 in Section 3.4. Then if Theorem 4 held generally, it would follow that 
F”(x) = F(x + h), and applying Lemma 9 would complete the proof.) 

Thurstone Models with Discriminal Processes Concentrated on Finite Intervals 

It was noted earlier (in Section 2.6) that no Thurstone model FF with F concentrated 
on a finite interval (say (a, Is)) can be equivalent to the Choice Axiom. This is readily 
seen by considering the predictions of such a model under uniform expansions of the 
choice set. Suppose the discriminal processes of the original objects or1 , osr ,..., on1 
=eu,+& r ,..., u, + X, , where the X, are bounded between 01 and p. Then for the 
kth-order uniform expansion of this set, the probability p&,(i) of choosing a type i 
object is the probability that 

where 

ui + X& = Max{z+ + X9;, lj = l,..., n}, 

X,Tlc = M=Fj,, 4, >..., W. 

Now as K -+ co, the random variables X& will all converge to /3, and consequently 
Uj + X37, will converge to Uj + p, so that the probabilities p$ ,(i) will all converge 
to zero, except for the one corresponding to the largest scale value. In other words, 
if the discriminal processes are concentrated on a finite interval, then under uniform 
expansions the subject will always wind up deterministically choosing one of the type i 
objects, where ui is the largest scale value. 

5. REMARKS ON IRREVERSIBILITY AND ON INDEPENDENT RANDOM UTILITY MODELS 

5.1. The Irreversibility Paradox 

In his 1959 monograph Lute proved a very surprising and counterintuitive result: 
No Thurstone model can simultaneously satisfy the Choice Axiom both for choices 
based on the principle “pick the object with the largest discriminal process” and for 
choices based on the principle “pick the object with the smallest discriminal process.” 
To motivate this result, consider two complete choice experiments, with the same 
set of three objects o1 , oa , 0s: In Experiment B (for best) the subject is instructed to 
always choose the object he prefers most, and in Experiment W (for worst) he is instructed 
to always choose the object he prefers least. Let (b,(i)/C,} denote the system of choice 
probabilities resulting from Experiment B, and {ws(i)/Cs} the system resulting from 
Experiment W. It seems almost inescapable that these systems should satisfy the condition 
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It is easily shown that (39) will hold and both (6&‘,) and {wa/Ca) will satisfy the Choice 
Axiom if there exist z, scale values zli , ~a , ~a such that 

and 

b.S(i) = vi/jzs vj t (40) 

wS(i) = (livi)/x (livj)- (41) 
its 

Now suppose we apply a Thurstone model FF to the same situation. It seems natural 
to assume that the discriminai processes of the objects wili be the same in both experi- 
ments, i.e., oi corresponds to ui + Xi in both cases, and then to suppose that in 
Experiment B, the subject picks the object with the largest discriminal process, while 
in Experiment W he picks the object with the smallest. These assumptions seem quite 
innocuous, but Lute (1959, p. 57) showed that if they hold there is no distribution F 
for which the resulting systems {b,/Ca} and (wJC,> will both satisfy the Choice Axiom 
and also condition (39), except in the trivial special case in which all objects are chosen 
with equal probability. 

This impossibility theorem was proved without reference to the double exponential 
representation of the Choice Axiom. In light of the results described here in Section 3 
we can now see why it is true: In order for a Thurstone model to satisfy the Choice 
Axiom for Experiment B, the Xi must be double exponential, but when the subject 
in Experiment W picks the object with the smallest discriminal process (i.e., “pick 
Oi from S iff ui + Xi = Min{z+ + Xj 1 j E S}“) h e is actually following the rule “pick oi 
iff -ui - Xi = Max{-+ - Xj 1 j E S>“. C onsequently in Experiment W the subject 
is behaving according to a Thurstone model in which the discriminal processes are not 
double exponential (since that distribution is not symmetrical, ui + Xi and -ui - Xi 
cannot both be double exponential), and which therefore is not equivalent to the Choice 
Axiom. 

There is, however, a simple way around this difficulty. Suppose that in Experiment W 
the subject reverses only the scale values of each object (instead of the entire discriminal 
process) so that his decision rule is “pick oi from subset S iff -ui + Xi = Max{++ + 
Xj 1 i E S}“. Then if the random variables Xi are double exponential in both Experiments 
B and W, the resulting choice probabilities will satisfy the Choice Axiom in both 
directions, i.e., Eqs. 39, 40, and 41 will all hold simultaneously. (To see this explicitly, 
set Xi = -log Yj , where Yj is exponential with density e-u, and u* = log vi . Then 
all three equations fall out immediately.) 

5.2. Relationship between Thurstone Models and Independent Random Utility (IRU) Models 

Lute and Suppes (1965) have defined a class of IRU models which represent the 
ultimate generalization of Thurstone’s Case V notion: A system of choice probabilities 
{p,/C,} satisfies an IRU model iff there exist independent random variables U, ,..., U, 
such that for every i E S C C,, 

pS(i) = P[v, = Max{Uj 1 i E S}]. 
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The {Vi} here need not have any systematic relationship between their distributions, 
and in particular, these distributions need not be identical except for shifts along the 
axis-the Thurstone models of Section 2.6 represent that special case, where Ui = 
ui + Xi , with the Xi all i.i.d. Clearly if the discriminal processes of any Thurstone 
model FF are transformed monotonically (i.e., from Ui = ui + Xi to Ui’ = m(UJ, 
where m is strictly increasing), the result will be a non-Thurstonian IRU model that is 
completely equivalent to Y’ . It is natural to define equivalence classes of IRU models 
of the form MF , where MF represents the set of all IRU models obtained by applying 
monotonic transformations to the Thurstone model YF: Then the application of the 
basic uniqueness theorems of Section 3 to these classes of IRU models is straightforward. 

Starting from the other direction, Levine (1970) has considered the question, When 
can an arbitrary family of independent random variables be transformed by a common 
monotonic transformation in such a way that the resulting distribution functions are 
identical except for shifts along the axis ? The essential condition turns out to be that 
none of the original distribution functions can intersect (i.e., if F # G, then either 
F(x) < G(x) for all x, or vice versa). If Levine’s conditions hold for an arbitrary set 
of random variables that constitute an IRU model, then that model is equivalent to 
some Thurstone model, and its uniqueness status can be determined accordingly, 
using the results of Section 3. 
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