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Abstract

Logistic regression is the primary analysis tool for binary traits in genome-wide association 

studies (GWAS). Multinomial regression extends logistic regression to multiple categories. 

However, many phenotypes more naturally take ordered, discrete values. Examples include (1) 

subtypes defined from multiple sources of clinical information and (2) derived phenotypes 

generated by specific phenotyping algorithms for electronic health records (EHR). GWAS of 

ordinal traits have been problematic. Dichotomizing can lead to a range of arbitrary cutoff values, 

generating inconsistent, hard to interpret results. Using multinomial regression ignores trait value 

hierarchy and potentially loses power. Treating ordinal data as quantitative can lead to misleading 

inference. To address these issues, we analyze ordinal traits with an ordered, multinomial model. 

This approach increases power and leads to more interpretable results. We derive efficient 

algorithms for computing test statistics, making ordinal trait GWAS computationally practical for 

biobank scale data. Our method is available as a Julia package OrdinalGWAS.jl. Application to a 

COPDGene study confirms previously found signals based on binary case-control status, but with 

more significance. Additionally, we demonstrate the capability of our package to run on UK 

Biobank data by analyzing hypertension as an ordinal trait.
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1 Introduction

Genome-wide association studies (GWAS) have enjoyed many successes and uncovered 

many clues to the genetic etiology of common diseases (Visscher et al., 2017). Large 

international consortia are now undertaking collaborative meta-analyses of the results of 

separate GWAS, utilizing effective sample sizes of tens of thousands of individuals for 

discovery and replication of increasingly modest genetic effects. Besides larger sample sizes, 

richer information is available. For instance, UK BioBank (Sudlow et al., 2015) and the 

Million Veteran Project (Gaziano et al., 2016, MVP) contain electronic health records (EHR) 

of individuals along with their genomic information. Big data bring both blessings and 

curses. One particular challenge is to properly define phenotypes that are both meaningful 

and powerful for genetic association testing. Both classical genetic epidemiology studies and 

EHR can possess hundreds of clinically relevant variables that are associated with the 

underlying phenotypes of interest. In contrast to directly available phenotypes, derived 

phenotypes are generated by potentially complicated phenotyping algorithms. Below are two 

examples.

COPD:

For classifying chronic obstructive pulmonary disease (COPD), the Global Initiative for 

Chronic Obstructive Lung Disease (GOLD) has proposed a simple algorithm to classify 

cases into stages 1 to 4, ranging from least severe to most severe (Vestbo et al., 2013). Three 

quantitative measures - forced expiratory volume (FEV1), forced vital capacity (FVC), and 

forced predicted expiratory volume (FEV1-predicted) are used to define the GOLD 

categories. Under this classification individuals with an FEV1/FVC ratio that is less than 

0.70 are considered cases with severity increasing as FEV1-predicted value decreases. 

Individuals with an FEV1/FVC ratio that is at least 0.70 and an FEV1-predicted that is at 

least 80% are considered unaffected. Individuals with a FEV1/FVC ratio of at least 0.70, but 

have a low FEV1 predicted value (< 80%) are categorized into a GOLD unclassifiable 

category (Wan et al., 2011). These individuals are typically analyzed separately.

Not a case: FEV1/FVC ≥ 0.7 and FEV1-predicted ≥ 80%;

GOLD unclassifiable: FEV1/FVC ≥ 0.7 and FEV1-predicted < 80%;

GOLD stage 1 (mild): FEV1/FVC < 0.7 and FEV1-predicted ≥ 80%;

GOLD stage 2 (moderate): FEV1/FVC < 0.7 and 50% ≤ FEV1-predicted < 80%;

GOLD stage 3 (severe): FEV1/FVC < 0.7 and 30% ≤ FEV1-predicted < 50%;

GOLD stage 4 (very severe): FEV1/FVC < 0.7 and FEV1-predicted < 30%.
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Figure 1 shows the correspondence between GOLD values and FEV1 predicted and FVC in 

the COPDGene study (Regan et al., 2010). One can carry out association testing of the 

bivariate trait (FEV1, FVC) or (FEV1/FVC, FVC). However multivariate modeling requires 

more parameters and the SNP effects may not correlate with GOLD stages, leading to hard 

to interpret results. Current GWAS were performed as a case-control study by treating 

individuals in the not a case category as controls and individuals with GOLD stages 2–4 as 

cases (Lutz et al., 2015). This approach, although statistically permissible, is inefficient 

because it assumes that the odds of disease are the same in groups 2–4 and omits group 1 

entirely.

EHR-based phenotyping:

Recently EHRs have emerged as a major data source for clinical and health services 

research. It has been a common practice to extract a patient’s disease status by automated 

phenotyping algorithms applied to EHR. Compared to the COPD example, the output from a 

phenotyping algorithm can have more categories as the underlying information is more 

complex. For example, Eastwood et al. (2016) developed an EHR algorithm to classify Type 

2 diabetes (T2D) prevalence for the UK Biobank data, a biobank study that has phenotypic 

and genotypic data on over 500,000 people. Based on several different features in the EHR 

including diabetes diagnostic codes, diabetes medication, hyperglycemia in blood results 

defined by HbA1c and fasting glucose levels, and presence of diabetes process of care codes, 

the algorithm categorizes individuals into different categories that relate to how likely they 

are to have diabetes. The algorithm classifies individuals into categories diabetes unlikely, 

possible type 2 diabetes, probable type 2 diabetes, and probable type 1 diabetes. Excluding 

those diagnosed with probable type 1 diabetes, ordinal phenotype labels are produced.

In both cases, the derived phenotypes take discrete, ordinal values. GOLD status clearly 

correlates with lung function. Labels from the EHR phenotyping algorithm for T2D indicate 

a hierarchy in the uncertainty in disease diagnosis. Often, the analysis strategy reduces 

ordinal values to two categories and resorts to logistic regression for case-control studies. 

COPDGene study reports GWAS results using not a case as controls and GOLD stages 2–4 
as cases (Lutz et al., 2015). In the T2D phenotyping algorithm (Eastwood et al., 2016), there 

are 3 possible case groups. Similarly the algorithm for T2D control can also have multiple 

categories leading to at least three possible case-control cohorts. This freedom in the choice 

of case and control labels necessitates multiple analyses of the same data. Besides needing to 

pay a price for more testing, inconsistent findings from these correlated analyses can be 

difficult to reconcile. To address this issue, we propose using the ordered multinomial 

regression in association studies of ordinal traits. Taking ordinality into account can 

significantly boost the power in association studies.

Ordinal categorical data analysis has been a well studied area in statistics (Agresti, 2010). 

However it has attracted relatively less attention in genetic association studies. Morris et al. 

(2010) use multinomial regression for GWAS on multi-category traits. However,ignoring 

order information may lead decreased power. Several authors (O’Reilly et al., 2012; Wang, 

2014) treat genotypes as ordinal responses and regress genotype dosage on multiple 

phenotypes. This retrospective approach ignores the ordinal feature of the phenotypes, is not 
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easily generalized to multilocus models and gene-by-environmental interactions, and the 

results can be difficult to interpret. Treating the ordinal values as a univariate quantitative 

trait is also commonly used in practice. In the binary case, this strategy can be justified as a 

first order approximation to logistic regression (Agresti, 2018). For multiple categories, 

unequal distances between the categories can violate the assumptions of linear regression 

and lead to incorrect inference. For instance the distance between mild pain and moderate 

pain can be different from that between moderate pain and intense pain. However, the 

ordering is clear.

In this article we make several substantial contributions to GWAS for ordinal phenotypes. 

First, we systematically investigate the performance (type I error and power) of the ordered 

multinomial model in comparison with linear regression (treating ordinal traits as continuous 

traits), logistic regression (by dichotomizing ordinal traits), and multinomial regression 

(ignoring ordinality), in a variety of genetically plausible scenarios. Second, we derive an 

efficient testing strategy that is scalable to GWAS on biobank data. Our test applies to a 

single SNP, SNP-sets, or SNP-environment interactions. Third, we implement the 

methodology in the open source, high performance language Julia, which is available for 

free at https://github.com/OpenMendel/OrdinalGWAS.jl.

2 Methods

2.1 Association mapping with ordered multinomial models

We assume that trait Y takes ordinal values j ∈ 1, …, J . For example, in the COPD 

example J = 5 (excluding the unclassifiable category). Denote the cumulative probabilities of 

the trait value Yi of i-th individual by

αij = ℙ Yi ≤ j .

Since αiJ = 1, we only need to model J − 1 cumulative probabilities. Ordered multinomial 

model (Agresti, 2010) links αij to covariates xi by

g αij = θj − xiTβ, j = 1, …, J − 1,

where g is a strictly increasing link function, the intercepts θj satisfy the monotonicity 

constraint θ1 ≤ θ2 ≤ ⋯ ≤ θJ − 1, and β are the regression coefficients for covariates. This 

assumes regression coefficients β have the same effects on each of the the response 

categories but each category has its own intercept. The maximum likelihood estimate (MLE) 

of parameters θ = θ1, …, θJ − 1  and β is the maximizer of the sample loglikelihood. 

Different choices for the link function g lead to the classical proportional odds model (logit 

link), ordered Probit model (Probit link), or proportional hazards model (cloglog link). In 

practice, we choose the link function based on data according to goodness of fit measures 

such as the deviance (−2 × loglikelihood) at respective MLEs.
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Under the logit link, the effect size can be interpreted as the expected change of the response 

variable in the ordered-log odds scale for a one unit increase in the predictor. For example, 

an effect size of 0.25 gives odds ratio of 1.28, which can be interpreted as the odds of being 

in a higher grouping (e.g. severe and most severe) is 1.28 times greater than being in a lower 

grouping (e.g. mild and moderate). Other link functions yield less interpretable effect sizes.

Suppose x ∈ ℝp contains p non-genetic covariates, such as age, sex, smoking status and 

ethnic ancestry proxies (e.g. first few principal components of the genotype matrix), and 

G ∈ ℝq contains the genetic information to be tested. For a single SNP, G is the scalar 

genotype dosage. For a SNP-set, G is the genotype dosage vector of q SNPs. To test gene-

by-environment (G×E) including gene-by-drug interactions, G contains both genotype 

dosage and its interaction with other covariates. The likelihood ratio test (LRT) compares the 

loglikelihood at the MLE of the full model g αij = θj − xTβ − GTγ to that at the null model 

g αij = θj − xTβ. LRT enjoys higher power than the score test and Wald test at small to 

moderate sample sizes and also outputs effect sizes. However, in the GWAS setting, the full 

model needs to be re-fitted at each single SNP or SNP-set, which becomes computationally 

challenging for biobank scale data. In contrast, the score test only requires fitting the null 

model once for the entire GWAS. Testing each SNP only involves forming the score test 

statistic and is computationally cheap. A practical strategy is to perform a score test on all 

SNPs first and then only the top SNPs with the most significant score test p-values are 

reanalyzed by the slightly more powerful, but much slower, LRT. When sample size (e.g., n 
= 2500 or greater) is reasonable, score test provides comparable power with LRT 

(Supplementary Material Section S.6 and Supplementary Figure 9).

2.2 Score tests for individual SNPs, SNP-set or G×E

Let μ denote the inverse link function g−1. The loglikelihood of a single observation yi, xi  is

ℓi(θ, β) = ln αij − αi, j − 1
= ln μ θyi − xiTβ − μ θyi − 1 − xiTβ
= lnpiyi

with score (gradient)

∂
∂θj

ℓi(θ, β) =
pij−1μ′ θj − xiTβ

−pi, j + 1
−1 μ′ θj − xiTβ

0

yi = j
yi = j + 1
otherwise

∇βℓi(θ, β) = − piyi
−1 μ′ θyi − xiTβ − μ′ θyi − 1 − xiTβ xi

and Hessian
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∂2
∂θj∂θj′

ℓi(θ, β) =

pij−1μ″ θj − xiTβ − pij−1μ′ θj − xiTβ 2 yi = j = j′

−pi, j + 1
−1 μ″ θj − xiTβ − pi, j + 1

−1 μ′ θj − xiTβ 2 yi = j + 1 = j′ + 1

pij−2μ′ θj − xiTβ μ′ θj − 1 − xiTβ yi = j = j′ + 1

pi, j + 1
−2 μ′ θj + 1 − xiTβ μ′ θj − xiTβ yi = j′ = j + 1

0 otherwise

∇β
∂

∂θj
ℓi(θ, β) =

−pij−1μ″ θj − xiTβ + pij−2 μ′ θj − xiTβ − μ′ θj − 1 − xiTβ μ′ θj − xiTβ xi yi = j

pi, j + 1
−1 μ″ θj − xiTβ − pi, j + 1

−2 μ′ θj + 1 − xiTβ − μ′ θj − xiTβ μ′ θj − xiTβ xi yi = j + 1
0 otherwise

∇β
2ℓi(θ, β) = piyi

−1 μ″ θyi − xiTβ − μ″ θyi − 1 − xiTβ − piyi
−2 μ′ θyi − xiTβ − μ′ θyi − 1 − xiTβ 2 xixiT .

The Fisher (expected) information matrix (FIM) has entries

E − ∂2
∂θj∂θj′

ℓi(θ, β) =

pij−1 + pi, j + 1
−1 μ′ θj − xiTβ 2 j = j′

−pij−1μ′ θj − xiTβ μ′ θj − 1 − xiTβ j = j′ + 1

−pi, j + 1
−1 μ′ θj − xiTβ μ′ θj + 1 − xiTβ j′ = j + 1

0 otherwise

E − ∇β
∂

∂θj
ℓi(θ, β) = pij−1μ′ θj − 1 − xiTβ − pij−1 + pi, j + 1

−1 μ′ θj − xiTβ

+pi, j + 1
−1 μ′ θj + 1 − xiTβ μ′ θj − xiTβ xi

E − ∇β
2ℓi(θ, β) = ∑

j = 1

J
pij−1 μ′ θj − xiTβ − μ′ θj − 1 − xiTβ 2xixiT .

We partition the FIM at the null model, i.e., γ1 = ⋯ = γq = 0, as
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and denote the score vector (gradient) with respect to γ at null model as R. To test 

significance of γ, we calculate the score test statistic as

S = RT Q − W TP−1W −1R

and compare to the Chi-square distribution with q degrees of freedom. P−1 is pre-computed 

and, for each SNP or SNP set, we only need to update W and Q, which cost O(q3 + nq2) 

flops. Since q is typically small, the computation cost scales linearly with sample size, 

making it scalable to biobank data with 105 ∼ 106 samples and millions of SNPs.

2.3 Software

We have developed a package using the high performance dynamic programming language 

Julia (Bezanson, Edelman, Karpinski, & Shah, 2017) to perform GWAS analyses on single 

SNPs, SNP sets, or G×E interactions (https://github.com/OpenMendel/OrdinalGWAS.jl) as 

part of the OpenMendel umbrella (Zhou et al. (2019)). Users can run the software on Julia 

version 1.0 or later, or use Docker without installing Julia. Our package allows easy 

specification of the type of test (score or LRT), link function, covariates to include in null 

model, masks for SNPs or samples, and formula for interactions. The package requires a 

covariate file, genotype data, and a formula for the null model. It outputs a text file in 

comma separated values (CSV) format with p-values and relevant information for each SNP, 

including fitted effect size coefficients if the LRT option is specified, and another text file 

with the fitted null-model.

For large data sets, a practical strategy is to perform score tests first, then re-do an LRT for 

the most promising SNPs according to score test p-values. Running the score test allows 

very quick screening of significant SNPs compared to the LRT, which is especially 

advantageous for large datasets. As mentioned in the methods section, the two tests are 
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asymptotically equivalent and when tested through simulations, the two tests yielded similar 

power even at a modest sample size of 2500. It is recommended to screen SNPs using the 

score test if time and computational resources are limited, and then evaluate the LRT on 

SNPs that meet a threshold significant to the investigator to retrieve the LRT p-value along 

with the estimated effect size. If the investigator needs effect size estimates of all SNPs or if 

computational resources and time are not important, then using the LRT for all SNPs will be 

preferable. The choice of link function may depend on several factors. The logit link 

function yields easily interpretable results and is widely used as it results in the proportional 

odds model, but the results can change based on the link function used. In our analyses, we 

use the link function that yields the highest loglikelihood for the null model.

3. Results

3.1 Simulated data examples

To assess the adequacy of the ordered multinomial model in a GWAS setting, we performed 

type I error and power comparisons between ordered multinomial regression with logit link 

function, linear regression, logistic regression, and multinomial regression in a simulation 

setting. We generated covariates age and gender from Normal(μ = 45, σ2 = 64) and 

Bernoulli(pmale = 0.51) distributions respectively. The effects of the gender and standardized 

age variables were set to 1.0 and 2.0 respectively. The genotype vector was generated 

according to Hardy-Weinberg Equilibrium (HWE) with varying minor allele frequencies 

(MAFs) between 5% and 20%. The response variable was generated using a proportional 

odds assumption from the simulated covariates, genotype vector, and effect sizes with a total 

of 4 ordered categories. For the logistic regression, we dichotomized the ordered response 

variable as ylogit = 0 if the ordinal variable was 1 or 2, and ylogit = 1 if the ordinal variable 

was 3 or 4.

The heterozygous ordered log odds multiplicative effect size for each minor allele of the 

genotype vector, γ, was varied from the null value of 0 to 0.5. Different intercept values, θ, 

were also tested. We used 106 replicates for each null effect size scenario to evaluate the 

type I error. We used 1000 replicates at each non-zero effect size to test the power of the 

model. Sample size varied from 2000 to 10, 000. The p-values of the ordered multinomial 

regression are derived from using the score test statistic. Results of different settings for type 

I error are shown in Table 2. QQ plots where θ = (0.1, 3.0, 3.1), the MAF = 0.2, and the 

sample size was 5, 000 are displayed in Figure 2. The p-values for the logistic and 

multinomial regression show heavy tails, indicating overall significant (inflated) p-values.

The results of our power analysis are displayed in Figure 3 where a significance level of 

10−5 was used. We show that there are conditions where the ordered multinomial model has 

distinctively higher power than other commonly used existing methods. When the 

underlying intercept values, θ, are disproportionately non-uniform (right panel of 3), which 

can happen in a real-world setting, using logistic regression can have over 30% reduced 

power over the ordered multinomial regression. When θ is set to a more favorable scenario 

for logistic regression, there is less of a difference in power, but the ordered multinomial 

method still performs well, where the multinomial regression does less favorably.
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In terms of power, the ordered multinomial method has several advantages. It does not 

assume linear spacing between ordinal categories, so it applies to real-world settings where 

the definition of ordered variables depends on several different measures. The ordered 

multinomial model also only needs to estimate one more parameter for each category added 

(K − 2 more parameters than binary logistic regression for K ordinal categories). In contrast 

the multinomial regression requires an additional set of all parameters for each additional 

category, which can result in overfitting and a loss in power. The use of logistic regression in 

ordinal data has been ad hoc. It is common to run several regressions on different grouping 

of cases and controls and then examine the overlap. Another approach is to omit the in-

between categories, which reduces sample size and power. Using an ordered multinomial 

regression allows for much of the data to be used while maintaining a rather parsimonious 

model.

We detail power simulation results for G×E and SNP-set analysis in supplementary material 

S.5. In summary, our results are similar to the single SNP results in that there are highly 

plausible scenarios in which the ordinal multinomial model outperforms the common 

existing methods for both G×E and SNP-set analyses.

3.2 COPDGene GWAS

We apply our method to COPDGene, a large case-control sample of well-characterized 

smokers from a genome-wide association study of respiratory disease. Data were requested 

through NCBI’s dbGAP repository under study accession: phs000179.v6.p2. It includes 

10,192 non-hispanic white (NHW) and African American (AA) current and former smokers 

with airflow obstruction ranging from none to GOLD stage 4 (very severe) COPD. The 

study design of COPDGene has been reported previously (Regan et al., 2010). Briefly, the 

subjects are included between the ages of 45 and 80 with at least a 10 pack-year smoking 

history. Exclusion criteria include pregnancy, history of other lung disease except asthma, 

prior lobectomy or lung volume reduction surgery, active cancer undergoing treatment, or 

known or suspected lung cancer. Because Lutz et al. (2015) analyzed AA and NHW 

separately, we applied our method to the larger of the two populations, the NHW population, 

which includes 6678 individuals after data quality control and exclusions. Details 

concerning genotyping, quality control, and imputation are posted on the COPDGene 

website (http://www.copdgene.org). Variable final gold based on the GOLD’s guidelines for 

classifying COPD was used. Summary statistics of the cohort are shown in Supplementary 

Material section S.1 and Supplementary Table 1. Histograms of minor allele frequencies, 

missing SNPs per person, and missing people per SNP of the NHW COPDGene genotype 

data are shown in Supplementary Material Figure 1.

We compare our method using the logit link function to the method previously used to 

analyze the data, logistic regression, and find that our ordinal regression method produces 

similar, and in some cases more significant results. After excluding data from the individuals 

with missing data (19 individuals), and those in the unclassifiable category (FEV1/FVC ratio 

≥ 0.7 but predicted FEV1 ≤ 80%) (698 individuals), ordinal multinomial GWAS was run on 

data from a total of 5,953 individuals and 630,860 SNPs controlling for gender, age, pack 

years, height, and the first ten principal components as was done in Lutz et al. (2015). For 
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logistic regression, we ran the model using category 0 as controls and categories 2–4 as 

cases. The score test was used on all SNPs, with the LRT run for the top hits (p-value < 

10−6). Figure 4 presents the Manhattan plots of the results of the logistic and ordered 

multinomial GWAS. The ordered multinomial and logistic regressions produce similar 

results with peaks appearing on chromosome 15 (p-value = 2.761 × 10−11 for ordered 

multinomial and p-value = 1.232 × 10−8 for logistic). The difference in the magnitude of the 

p-values is quite impressive, with the more significant signal coming from the ordered 

multinomial regression. Ordered multinomial regression produces potential signals on 

chromosomes 3 and 4, whereas logistic regression produces a signal on chromosome 4 and 

but no clear sign of a potential signal on chromosome 3. The nearest gene to the SNP 

relating to the potential signal using ordered multinomial regression (p-value = 5.731 × 

10−7) on chromosome 3 is EEFSEC, which has been shown to be associated with COPD 

(Hobbs et al., 2017). Locuszoom plot of association results, linkage disequilibrium and 

recombination rates around the top hits can be found in Supplementary Material section S.2 

and Supplementary Figure 2.

Our implementation in OrdinalGWAS.jl is fast. GWAS analysis on a standard laptop running 

Mac OS with a quad-core processor took just under 3.5 minutes.

Under an extreme case, where we remove all individuals in the middle and only run the 

GWAS on individuals falling under not a case and GOLD stage 4, we see a general trend 

that effect sizes are larger, but p-values are less significant. Manhattan plot for this analysis 

is in Supplementary Figure 3. Here we see that using different criteria for binary variables 

can lead to different, and therefore less interpretable results. Since the cutoff point for 

generation of binary variables from ordinal ones is arbitrary, two analyses on the same data 

may yield different results. Although linear regression on ordinal variables leads to problems 

with interpretability, we ran linear regression GWAS on the COPDGene data and have 

included the Manhattan plot in Supplementary Figure 4. Interestingly, but not completely 

unexpected when dealing with real data, the peak on chromosome 15 is slightly more 

significant with linear regression than with ordinal multinomial regression.

3.3 Hypertension GWAS in UK Biobank

Hypertension is a heritable trait (Muñoz et al., 2016) and a modifiable driver of risk for 

stroke and coronary artery disease. It is a leading cause of global mortality and morbidity 

(GBD 2015 Risk Factors Collaborators, 2016). GWAS meta-analyses and analyses of 

custom or exome content have identified and replicated genetic variants associated with 

elevated blood pressure (BP) and severe hypertension at over 120 loci (Warren et al., 2017). 

These researchers carefully construct a single quantitative measure of blood pressure and 

find many associated loci, replicating previous findings and discovering new potential loci. 

However none of the existing studies look at SNPs associated with hypertension as an 

ordinal trait due to the lack of computational tools for analyzing ordinal outcomes at 

biobank scale. Here we demonstrate the ability of our software by applying it to the UK 

Biobank blood pressure dataset. The UK Biobank is a prospective cohort study of 

approximately 500,000 men and women aged 40 to 69 years with extensive baseline 

phenotypic measurements, stored biological samples and follow-up by EHR linkage 
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(Sudlow et al., 2015). In this section, we report the association between five categories of 

hypertension (defined using 2017 guidelines (Whelton et al., 2018)) and genetic variants 

among participants in UK Biobank.

We define hypertensive phenotype based on 2017 Guideline for the Prevention, Detection, 

Evaluation, and Management of High Blood Pressure in Adults (Whelton et al., 2018).

Normal: SBP/DBP less than 120/80 mm Hg;

Elevated: SBP between 120–129 mm Hg and DBP less than 80 mm Hg;

Stage 1: SBP between 130–139 mm Hg or DBP between 80–89 mm Hg;

Stage 2: SBP at least 140 mm Hg or DBP at least 90 mm Hg;)

Hypertensive crisis: SBP over 180 mm Hg and/or DBP over 120 mm Hg.

Our GWAS analysis is performed using data from the second release of UK Biobank 

participants. Individuals from UK Biobank were genotyped at ~800,000 SNPs with a custom 

Affymetrix UK Biobank Axiom array. Non-imputed data were used in the analysis. 

Information on UK Biobank array design and protocols is available on the UK Biobank 

website. Following quality control procedures already carried out centrally by UK Biobank, 

we excluded samples with quality control failures, sex discordance and high heterozygosity/

missingness (n=968). We further restricted our data to a subset of individuals of European 

ancestry and exclude first- and second-degree relatives using kinship data leading to the 

exclusion of data from another 150,832 individuals. This leads to a sample of n = 337,545 

individuals. We filtered samples by 98% genotyping success rate on all chromosomes and 

SNPs by 99% genotyping success rate and a MAF of at least 2% over the whole population. 

These measures result in n = 185,565 individuals and 464,137 SNPs for analysis.

Baseline characteristic of 185,565 participants are shown in Supplementary Material section 

S.3 and Supplementary Table 2. There are 34,009 (10.0%) participants who had undertaken 

hypertension related medications at baseline. These people were excluded from the analysis. 

Five categories of hypertension were first defined by their systolic and diastolic blood 

pressure (SBP and DBP). The final set of individuals are distributed as 16% with normal 

blood pressure, 13% with elevated blood pressure, 27% in stage 1 hypertension, 40% in 

stage 2 hypertension, and 2% in hypertension crisis. We compare our method to GWAS 

using logistic regression, defining hypertension cases as belonging to stage 2 or higher as 

done in Warren et al. (2017). We recalculated principal components using FlashPCA after 

filtering individuals and SNPs through QC filters, because the subset of individuals we 

analyze are exclusively of British ancestry, and the original principal components were 

calculated before filtering (Abraham, Qiu, & Inouye, 2017). Our hypertension GWAS 

analysis includes the following covariates: sex, center, age, age2, BMI, and the top ten 

principal components to adjust for ancestry/relatedness. We used the logit link function for 

the ordered multinomial GWAS as it yielded the highest loglikelihood for the null model. 

The score test was used on all SNPs, with the LRT run for the top hits (p-value < 10−8). The 

Manhattan plots are displayed in Figure 5 and the QQ plots in Supplementary Figure 5. 
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Information on the top hits from OrdinalGWAS on the UK Biobank data is included in the 

Supplementary Tables. The genomic inflation factor from OrdinalGWAS is 1.252, a high, 

but expected value for polygenic traits like blood pressure in a GWAS that includes a large 

sample size and many SNPs in high LD (Evangelou et al., 2018). The analysis took 181 

minutes to run on a standard laptop with a quad-core processor running on Mac OS.

The use of logistic regression on the binary hypertension variable yielded hits at similar 

locations, with less significance. The genomic inflation factor was similarly high at 1.173. 

As in the case of our COPD analysis, the logistic and ordinal multinomial regression 

analyses gave qualitatively similar results with, in general, the ordinal multinomial 

regression providing more power than the ordinal regression. Overall our results are 

consistent with the polygenic nature of blood pressure with log odds ratios of significant hits 

ranging between −0.0773 and 0.1107. In general, rare variants tended to have higher effect 

sizes than common variants.

We also performed SNP-set and G×E analysis to demonstrate our software’s capability to do 

so on the UK Biobank data. G×E was run with sex as the environmental variable on the 

SNPs that passed (p-value < 10−8) from the original analysis. Results of this analysis are 

found in Supplementary Table 4. The Manhattan plot for the SNP-set analysis with a 

window size of 20 SNPs is in Supplementary Figure 6.

4 Discussion

We have developed a method tailored to GWAS on ordinal traits. In many instances, it 

increases power and allows for a more simplified setup and interpretation than existing 

approaches, since cutpoints for transforming ordinal traits into binary traits are usually 

arbitrary and not agreed upon. The strategy of conducting a score test on each SNP and then 

only running a likelihood ratio test on the top SNPs allows our method to scale to biobank 

scale GWAS data sets.

We have shown that the model has appropriate type I error when looking at various sample 

sizes and minor allele frequencies, while logistic and multinomial regression can result in 

inflated type I error under certain conditions. We have shown situations where using ordered 

multinomial regression can lead to significant power gains over logistic regression when the 

specification of the logistic case/control response variable is poor. Our framework will be 

most useful in finding causal loci related to complex diseases that have no clear distinction 

between what constitutes a case versus a control, but where disease progression can be well 

specified.

Besides single-SNP GWAS, our software also implements GWAS for SNP sets and G×E 

interactions. This allows for many more types of GWAS to be performed with ordinal 

outcomes and covers much of the current existing needs.

Other models that relax the proportional odds assumption may be useful to explore. These 

models, such as a partial proportional odds model (Peterson & Harrell, 1990), allow for 

some covariates to violate the proportional odds assumption, but they lead to less 
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parsimonious models and less interpretable results since a separate effect size and p-value is 

produced for each group of ordered outcomes.

For the COPDGene data, our method had a much stronger signal than logistic regression on 

chromosome 15. Ordered multinomial regression had a suggestive signal on chromosome 3 

that has been associated with COPD from another study, but missed by the logistic 

regression. Although we did not recover the Bonferroni-corrected signal that logistic 

regression did in the COPDGene data, the signal on the SNP was still suggestive and the 

lowest p-value above the threshold. We suspect the lower p-value could be due to the fact 

that the SNP heavily violated the proportional odds assumption. However, it is difficult to 

verify this. Current tests for the proportional odds assumption have been described as very 

liberal, often leading to rejection when there are many parameters in the model or the sample 

size is large (Allison, 1999).

Our software scales to biobank data with hundreds of thousands of individuals genotyped at 

hundreds of thousands of SNPs. Our goal in analyzing the UK Biobank blood pressure data 

were not to report new findings for hypertension, but to demonstrate the scalability of our 

method and to show how the results of ordinal multinomial regression differ from those of a 

standard logistic regression analysis. When applied to the UK Biobank data, signals were 

generally substantially stronger than those from logistic regression on the binary 

hypertension variable using the same individuals in both analyses. Comparison to other 

analyses of the UK Biobank blood pressure data is not straightforward and we do not 

recommend it. There are a number ways of our treatment of the data deviates from previous 

studies besides treating the outcomes as ordered categories (Evangelou et al., 2018; Warren 

et al., 2017). We used non-imputed, hard genotype calls whereas other studies used imputed 

fractional dosage data. By not using imputation we analyzed far fewer markers and excluded 

more individuals. We used genotype and phenotype data on 185,565 individuals of British 

ancestry, whereas other studies used genotype and phenotype data on individuals with 

European ancestry. We excluded individuals who took blood pressure medications whereas 

other studies adjusted for medication use. Our results use only UK Biobank data whereas 

other studies report results of meta-analyses. It is thus not surprising that our results differ 

from previous blood pressure trait GWAS with UK Biobank. Still, even with all the caveats, 

a large number of the loci, notably CACNB2, MTHFR, and PLCD3, have been reported to 

be linked to hypertension in previous studies (Levy et al., 2009; Newton-Cheh et al., 2009; 

Thomsen et al., 2017).

In summary, we have developed an ordinal multinomial regression approach for GWAS of 

hundreds of thousands of individuals. The method has similar computational requirements as 

score tests for logistic regression but it is more powerful for analyzing ordinal data. Our 

software is easy to use and freely available at https://github.com/OpenMendel/

OrdinalGWAS.jl as part of the OpenMendel ecosystem (Lange et al., 2013; Zhou et al., 

2019).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

German et al. Page 13

Genet Epidemiol. Author manuscript; available in PMC 2021 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/OpenMendel/OrdinalGWAS.jl
https://github.com/OpenMendel/OrdinalGWAS.jl


Acknowledgements

This research was partially funded by the Burroughs Wellcome Fund Inter-school Training Program in Chronic 
Diseases (CAG) and grants from the National Institute of General Medical Sciences (GM053275, JSS and HZ), the 
National Human Genome Research Institute (HG009120, JSS; HG006139, HZ), the National Science Foundation 
(DMS-1264153, JSS), and the National Institute of Diabetes and Digestive and Kidney Disease (K01DK106116, 
JJZ). COPDGene data were granted through NCBI’s dbGAP repository under study accession: phs000179.v6.p2 
(“[ Dataset ] Genetic epidemiology of COPD (COPDGene). NCBI dbGaP study session ID: phs000179.v6.p2.”, 
2019). We also use the data from UK Biobank (Project ID: 48152 (“[ Dataset ] Developing statistical methods and 
computational algorithms for identifying biomarkers at Biobank-data scale for cardio-metabolic traits (UK Biobank 
Project ID: 48152).”, 2019)). and 15678 (“[ Dataset ] Genetic basis of circulating biomarkers, cardiometabolic 
disease, body composition and lifestyle (UK Biobank Project ID: 5678).”, 2019). We thank both cohorts and 
research teams for the important resources.

References

Abraham G, Qiu Y, & Inouye M. (2017). FlashPCA2: principal component analysis of Biobank-scale 
genotype datasets. Bioinformatics, 33, 2776–2778. doi: 10.1093/bioinformatics/btx299 [PubMed: 
28475694] 

Agresti A. (2010). Analysis of ordinal categorical data (Second ed.). John Wiley & Sons, Inc., 
Hoboken, NJ. doi: 10.1002/9780470594001

Agresti A. (2018). An introduction to categorical data analysis. Wiley.

Allison PD (1999). Logistic regression using the SAS system: Theory and application. SAS Institute 
Corp., USA.

Bezanson J, Edelman A, Karpinski S, & Shah VB (2017). Julia: A fresh approach to numerical 
computing. SIAM Review, 59, 65–98. doi: 10.1137/141000671

Eastwood SV, Mathur R, Atkinson M, Brophy S, Sudlow C, Flaig R, … Chaturvedi N. (2016). 
Algorithms for the capture and adjudication of prevalent and incident diabetes in uk biobank. PLOS 
ONE, 11, 1–18. doi: 10.1371/journal.pone.0162388

Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, … Million Veteran 
Program (2018). Genetic analysis of over 1 million people identifies 535 new loci associated with 
blood pressure traits. Nature genetics, 50, 1412–1425. doi: 10.1038/s41588-018-0205-x [PubMed: 
30224653] 

Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, Breeling J, … O’Leary TJ (2016). Million 
Veteran Program: A mega-biobank to study genetic influences on health and disease. Journal of 
Clinical Epidemiology, 70, 214–223. doi: 10.1016/j.jclinepi.2015.09.016 [PubMed: 26441289] 

GBD 2015 Risk Factors Collaborators. (2016). Global, regional, and national comparative risk 
assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of 
risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet 
(London, England), 388, 1659–1724. doi: 10.1016/S0140-6736(16)31679-8

Hobbs BD, de Jong K, Lamontagne M, Bossé Y, Shrine N, Artigas MS, … International COPD 
Genetics Consortium (2017). Genetic loci associated with chronic obstructive pulmonary disease 
overlap with loci for lung function and pulmonary fibrosis. Nature Genetics, 49, 426 EP −. doi: 
10.1038/ng.3752 [PubMed: 28166215] 

Lange K, Papp J, Sinsheimer J, Sripracha R, Zhou H, & Sobel E. (2013). Mendel: the Swiss army 
knife of genetic analysis programs. Bioinformatics, 29, 1568–1570. [PubMed: 23610370] 

Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, … van Duijn CM (2009). Genome-
wide association study of blood pressure and hypertension. Nature genetics, 41, 677–687. doi: 
10.1038/ng.384 [PubMed: 19430479] 

Lutz SM, Cho MH, Young K, Hersh CP, Castaldi PJ, McDonald M-L, … ECLIPSE Investigators, and 
COPDGene Investigators (2015). A genome-wide association study identifies risk loci for 
spirometric measures among smokers of european and african ancestry. BMC Genetics, 16, 138. 
doi: 10.1186/s12863-015-0299-4 [PubMed: 26634245] 

Morris AP, Lindgren CM, Zeggini E, Timpson NJ, Frayling TM, Hattersley AT, & McCarthy MI 
(2010). A powerful approach to sub-phenotype analysis in population-based genetic association 
studies. Genetic Epidemiology, 34, 335–343. doi: 10.1002/gepi.20486 [PubMed: 20039379] 

German et al. Page 14

Genet Epidemiol. Author manuscript; available in PMC 2021 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Muñoz M, Pong-Wong R, Canela-Xandri O, Rawlik K, Haley CS, & Tenesa A. (2016). Evaluating the 
contribution of genetics and familial shared environment to common disease using the UK 
Biobank. Nature Genetics, 48, 980. doi: 10.1038/ng.3618 [PubMed: 27428752] 

Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, … Munroe PB (2009). 
Genome-wide association study identifies eight loci associated with blood pressure. Nature 
genetics, 41, 666–676. doi: 10.1038/ng.361 [PubMed: 19430483] 

O’Reilly PF, Hoggart CJ, Pomyen Y, Calboli FCF, Elliott P, Jarvelin M-R, & Coin LJM (2012). 
MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PLoS ONE, 7, 
1–1. doi: 10.1371/journal.pone.0034861

Peterson B, & Harrell FE (1990). Partial proportional odds models for ordinal response variables. 
Journal of the Royal Statistical Society. Series C (Applied Statistics), 39, 205–217. doi: 
10.2307/2347760

Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, … Crapo JD (2010). Genetic 
epidemiology of COPD (COPDGene) study design. COPD: Journal of Chronic Obstructive 
Pulmonary Disease, 7, 32–43. doi: 10.3109/15412550903499522 [PubMed: 20214461] 

Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, … Collins R. (2015). Uk biobank: an 
open access resource for identifying the causes of a wide range of complex diseases of middle and 
old age. PLoS medicine, 12, e1001779–e1001779. doi: 10.1371/journal.pmed.1001779

Thomsen LCV, McCarthy NS, Melton PE, Cadby G, Austgulen R, Nygård OK, … Iversen A-C 
(2017). The antihypertensive mthfr gene polymorphism rs17367504-g is a possible novel 
protective locus for preeclampsia. Journal of hypertension, 35, 132–139. doi: 10.1097/
HJH.0000000000001131 [PubMed: 27755385] 

Vestbo J, Hurd SS, Agust AG, Jones PW, Vogelmeier C, Anzueto A, … Rodriguez-Roisin R. (2013). 
Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary 
disease. American Journal of Respiratory and Critical Care Medicine, 187, 347–365. (PMID: 
22878278) doi: 10.1164/rccm.201204-0596PP [PubMed: 22878278] 

Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, & Yang J. (2017). 10 years of 
GWAS discovery: biology, function, and translation. The American Journal of Human Genetics, 
101, 5–22. doi: 10.1016/j.ajhg.2017.06.005 [PubMed: 28686856] 

Wan ES, Hokanson JE, Murphy JR, Regan EA, Make BJ, Lynch DA, … COPDGene Investigators 
(2011). Clinical and radiographic predictors of gold–unclassified smokers in the copdgene study. 
American journal of respiratory and critical care medicine, 184, 57–63. doi: 10.1164/
rccm.201101-0021OC [PubMed: 21493737] 

Wang K. (2014). Testing genetic association by regressing genotype over multiple phenotypes. PLoS 
ONE, 9, 1–9. doi: 10.1371/journal.pone.0106918

Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, … UK Biobank CardioMetabolic 
Consortium BP working group (2017). Genome-wide association analysis identifies novel blood 
pressure loci and offers biological insights into cardiovascular risk. Nature genetics, 49, 403–415. 
doi: 10.1038/ng.3768 [PubMed: 28135244] 

Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, … Wright JT 
(2018). 2017 acc/aha/aapa/abc/acpm/ags/apha/ash/aspc/nma/pcna guideline for the prevention, 
detection, evaluation, and management of high blood pressure in adults. Journal of the American 
College of Cardiology, 71, e127–e248. doi: 10.1016/j.jacc.2017.11.006 [PubMed: 29146535] 

Zhou H, Sinsheimer JS, Bates DM, Chu BB, German CA, Ji SS, … others (2019). OpenMendel: a 
cooperative programming project for statistical genetics. Human Genetics, in press.

[Dataset ] Developing statistical methods and computational algorithms for identifying biomarkers at 
biobank-data scale for cardio-metabolic traits (UK Biobank Project ID: 48152). (2019).

[ Dataset ] Genetic basis of circulating biomarkers, cardiometabolic disease, body composition and 
lifestyle (UK Biobank Project ID: 5678). (2019).

[ Dataset ] Genetic epidemiology of COPD (COPDGene). NCBI dbGaP study session ID: 
phs000179.v6.p2. (2019).

German et al. Page 15

Genet Epidemiol. Author manuscript; available in PMC 2021 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
GOLD stage values plotted with FVC and FEV1 predicted values.
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Figure 2: 
QQ plots of p-values from type I error simulation for θ = (0.1, 3.0, 3.1) at MAF = 0.2 and 

sample size n = 5000. Regression type is displayed above each plot.
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Figure 3: 
These plots display the power of ordered multinomial, linear regression, logistic regression, 

and multinomial regression based on 1000 replicates of generating data with four ordered 

categories from a proportional odds assumption with a sample size of n = 5000 at a 10−5 

significance level. Minor allele frequency of the simulated causal variant is 0.20 and 

intercept values for the simulated response variable are θ = (1.0, 1.2, 1.4) for the plot on the 

left and θ = (0.1, 3.0, 3.1) for the plot on the right. Effect sizes, γ, range from 0.0 to 0.5.
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Figure 4: 
Manhattan plots for the COPD GWAS results in COPDGene. Left is the Manhattan plot 

using logistic regression. Right is the Manhattan plot using ordered multinomial regression. 

The blue line indicates the Bonferroni correction threshold.

German et al. Page 19

Genet Epidemiol. Author manuscript; available in PMC 2021 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Manhattan plots for the hypertension GWAS results in UK Biobank. Left is the Manhattan 

plot using logistic regression. Right is the Manhattan plot using ordered multinomial 

regression. The blue line indicates the Bonferroni correction threshold.
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Table 1:

Commonly used ordered multinomial models.

Link g Model

Logit g(α) = α/(1 − α) proportional odds model

Probit g(α) = Φ−1(α) ordred Probit model

Cloglog g(α) = log( − log(1 − α)) proportional hazard model
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Table 2:

Empirical type I error rates (×10−5) at significance level 10−5 based on 1,000,000 replicates. All Standard 

errors for all estimated type I errors are all smaller than 4.25×10−6.

θ = (1.0; 1.2; 1.4) θ = (0.1; 3.0; 3.1)

n MAF Linear Logistic Multinomial Ordinal Linear Logistic Multinomial Ordinal

2000 0.05 1.2 1.0 1.2 1.0 1.0 0.8 0.5 1.0

0.10 1.6 1.3 0.9 1.1 0.8 0.6 0.5 0.9

0.20 0.7 0.7 1.0 0.8 1.8 0.5 0.6 1.4

5000 0.05 0.8 0.6 1.5 0.5 1.4 0.5 0.6 1.3

0.10 0.9 0.7 0.9 0.8 0.9 1.5 0.9 0.4

0.20 1.0 0.9 1.2 0.8 0.6 1.0 0.5 1.2

10000 0.05 0.6 0.3 1.0 0.4 1.5 1.4 1.7 1.4

0.10 1.3 0.6 1.0 0.8 1.0 1.1 0.8 1.1

0.20 0.8 0.9 1.3 0.9 1.3 1.1 1.0 0.6
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