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Abstract 

Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause 
significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, 
with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of 
SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well 
characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, 
neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders 
(HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on 
patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies 
on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on 
patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help  
elucidate the mechanisms of CNS dysfunction in both conditions. 
 

Keywords: HIV, COVID-19, HIV-associated neurocognitive disorders, Long COVID, Post-COVID conditions, Neuropathology 

 

Introduction 

Human immunodeficiency virus (HIV) and se-
vere acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) are both human viruses that cause 
neurologic disease. HIV is a retrovirus and is clearly 
neurotropic, with tropism for microglial cells in the 
central nervous system (CNS), infection of which 
generates downstream effects that injure brain pa-
renchyma. Its clinical and pathologic manifestations 
are fairly well characterized. By contrast, corona-
virus disease 2019 (COVID-19) caused by the novel 
coronavirus SARS-CoV-2 leads to neuropsychiatric 
morbidity in a significant percentage of infected pa-
tients, but the mechanisms for this are heterogene-
ous and may include indirect effects on the brain 
through activation of inflammatory cascades, possi-
ble microangiopathic changes and disruption of the 
neurovascular unit. However, knowledge of HIV 
neuropathogenesis may be instructive for under-
standing many aspects of COVID-19 neuropathogen-
esis. The Brain Research Institute at UCLA sponsored 
two half-day “Neurovirology Affinity Group” meet-
ings in the spring of 2022 and 2023 at which a mul-
tidisciplinary team of representatives from neuropa-

thology, cardiovascular pathology, microbiology, 
radiology, infectious disease, cardiology, neurology, 
and psychiatry convened to address the CNS compli-
cations of COVID-19, considering what we have 
learned from the HIV pandemic over the past several 
decades. The meeting aims were to identify gaps in 
current knowledge on CNS disease in COVID-19 and 
HIV and potential directions for future study. This 
selective review summarizes the main topics 
discussed and conclusions reached. 

Human immunodeficiency virus (HIV) 

An immunodeficiency disease, later named ac-
quired immunodeficiency syndrome (AIDS), started 
to become recognized in the summer of 1981 in the 
United States [1,2]. This discovery was followed 
soon after by the identification of human immuno-
deficiency virus-1 (HIV-1) as the causative agent 
[3–5]. At the time, nearly all patients infected with 
HIV progressed to end stage AIDS with fatal oppor-
tunistic infections and malignancies, many involving 
the CNS [6]. A few years later, HIV-2, primarily 
restricted to West Africa, was discovered [7–9]. With 
the advent of combined antiretroviral therapy 
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(cART) in the mid 1990s, HIV has become a chronic 
disease with near normal life expectancies, at least 
in industrialized countries [6,10]. There have been 
approximately 40 million deaths since the beginning 
of the pandemic and currently 38 million infected 
worldwide according to the Joint United Nations 
Programme on HIV/AIDS (UNAIDS) [11]. 

HIV-1 and HIV-2 are lentiviruses of the retrovi-
rus family and predominantly infect mono-
cytes/macrophages, as with all lentiviruses, but also 
CD4 T-cells by binding to CD4 and the chemokine 
co-receptors CXCR4 and CCR5 [12,13]. Other 
co-receptors such as CCR2 and CCR3 have also been 
reported to mediate infection in vitro [12,13]. Infec-
tion of macrophages (and microglia) is primarily 
through CCR5 [14,15]. The entrance of virus into the 
cell may result in productive infection or latent 
infection [7,12,16,17]. HIV is neuroinvasive, charac-
teristic of lentiviruses, and enters the CNS at the 
initial stage of infection [13,18–20]. 

Neurologic manifestations 

HIV causes neurologic complications, due to 
opportunistic infections and HIV infection itself, in 
over half of patients not receiving cART [21,22]. 
With the advent of cART, the rates of opportunistic 
infections of the CNS such as by cytomegalovirus, 
toxoplasma, cryptococcus and progressive multifo-
cal leukoencephalopathy caused by JC virus, as well 
as primary CNS lymphoma, have decreased in some 
series [21,23]. HIV-associated neurocognitive disor-
ders (HAND), with revised consensus nomenclature 
and criteria in 2007 [24], previously referred to as 
AIDS dementia complex and HIV-1 associated cogni-
tive/motor complex [25–28], comprise a spectrum 
of cognitive dysfunction associated with HIV infec-
tion [24,25]. HAND includes, with increasing sever-
ity, asymptomatic neurocognitive impairment (ANI), 
mild neurocognitive disorder (MND) and HIV-associ-
ated dementia (HAD), and continues to affect 
approximately 33-50 % of treated HIV-positive indi-
viduals [24,29–31]. HAD is the most severe and was 
the most common form of HAND in the pre-cART era 
but has decreased with the advent of cART, now 
comprising less than 10 % of those with HAND [6]. 
However, the overall proportion of individuals with 
HAND has not changed in the cART era due to a 

relative increase in the milder forms of HAND, the 
pathogenesis and neuropathologic substrates of 
which are unclear [6,31]. 

The clinical features of HAND have also 
changed before and after cART [32]. In the pre-cART 
era, patients commonly presented with extrapyram-
idal signs (bradykinesia, rigidity and tremor) and 
more frequent subcortical features with motor dys-
function and speed of processing deficits 
[26,32–35]. In the cART era, extrapyramidal signs 
are less common with more cortical features with 
deficits in learning, memory and executive function-
ing [32–34,36]. Risk factors for HAND include older 
age [37], cerebrovascular disease risk factors 
[38,39], duration of HIV infection and history of AIDS 
defining illness [40], lower CD4 nadir [40,41], and in 
treatment naïve patients, burden of HIV DNA in 
monocyte-enriched peripheral blood cells [42]. Cur-
rently, the only treatment for HAND is cART, but 
cART is effective in only a subset of patients with 
HAND [32,43]. After the advent of cART, the median 
survival of HAD patients increased to 38 months 
compared to 5 months pre-cART [44], and most 
individuals with HAND on cART remained stable 
[29,32]. However, even in patients on cART, HAND is 
associated with shorter survival and is an important 
cause of morbidity and mortality in the aging HIV-
positive population [45–47]. A recent study showed 
that cognitive decline in HIV positive individuals was 
not associated with age or markers of HIV disease 
but rather comorbidities such as hypertension and 
diabetes [48]. 

Before cART, brain magnetic resonance imag-
ing (MRI) studies showed accelerated global white 
matter atrophy and cerebrospinal fluid (CSF) volume 
increase (corresponding to tissue loss) as well as 
atrophy of the caudate in HIV-positive individuals 
[49,50]. Postmortem MRI studies demonstrated 
that increase in volume of abnormal white matter 
and decrease in volume of deep gray matter corre-
lated with increasing viral burden as assessed by im-
munohistochemistry for HIV protein [51]. Even after 
cART, compared to HIV-negative individuals, HIV-
positive individuals show higher rates of white mat-
ter atrophy, which correlate with lower CD4 counts 
[52]. MRI changes can be seen in all degrees of 
HAND, with individuals with HAND showing greater 
abnormality in cerebral white matter compared to 
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neurocognitively intact HIV-positive individuals [53]. 
Utilizing dynamic contrast enhanced perfusion 
(DCE-P) MRI, a marker of capillary permeability, to 
assess for blood-brain barrier (BBB) disruption, 
Chaganti et al. showed impaired BBB in the frontal 
white matter and basal ganglia in virally suppressed 
patients with HAND compared to controls [54]. 

Neuropathologic findings 

Neuropathologic studies have made important 
contributions to understanding HIV infection in the 
CNS [7,12,55–57]. HIV has been isolated from the 
CSF, brain including frontal and temporal lobes, cau-
date, and cerebellum, spinal cord, and sural nerve 
from AIDS patients with meningitis, encephalopa-
thy, myelopathy, and peripheral neuropathy 
[58-60]. Even in asymptomatic patients, HIV specific 
antibodies can be detected and HIV isolated from 
the CSF [19,61]. HIV-1 has also been isolated from 
the brain 15 days after a patient accidentally inocu-
lated himself with HIV-1 infected white blood cells 
[62]. HIV is thought to enter the CNS predominantly 
through a Trojan horse-like mechanism in which 
HIV-1 infected monocytes cross the blood-brain 
barrier (BBB) and release viral particles in the brain 
parenchyma [16,19,63] although entry may also be 
facilitated through a disrupted BBB [64]. HIV-1 has 
been shown to productively infect brain micro-
glia/macrophages [65–69]. Although HIV-1 DNA and 
proteins have been detected in other CNS cell types, 
such as astrocytes and endothelial cells in postmor-
tem brain [17,18,70,71] and shown to infect other 
cell types in vitro, their role in propagation of CNS 
infection is unclear [12]. 

Neuropathologic changes can be seen early in 
HIV infection [20,72]. In asymptomatic HIV-positive 
patients who died from other causes, lymphocytic 
leptomeningitis, perivascular mononuclear cell infil-
trates, microgliosis and astrocytic gliosis, which is 
more prominent in white matter compared to gray 
matter, myelin pallor, and elevated cytokines, have 
been seen along with HIV-1 proviral DNA (but no 
HIV-1 protein) in a subset [20,72,73]. Before the ad-
vent of cART, most HIV-positive individuals pro-
gressed to AIDS [6], and the majority 70-90 % 
demonstrated neuropathologic abnormalities at 

autopsy [27,55,56,68,74–77]. In addition to fre-
quent opportunistic infections and lymphomas seen 
in the context of immunodeficiency, there are char-
acteristic neuropathologic findings attributed to HIV 
infection itself [19,27,68,74]. These were summa-
rized in consensus guidelines in 1991 [28] and 
include HIV encephalitis (HIVE), HIV leukoencepha-
lopathy, lymphocytic (aseptic) leptomeningitis, and 
diffuse microgliosis and astrogliosis in cerebral gray 
matter (“diffuse poliodystrophy”) [7,56,78]. HIV en-
cephalitis, seen in 10-63 % of autopsies, is character-
ized by microglial nodules and multinucleated giant 
cells (Figure 1) and/or evidence of HIV in the brain 
[57,79,80] typically affecting the white matter most 
severely, followed by the deep gray matter and then 
cortex [27,28,65,80]. Multinucleated giant cells, 
often seen in a perivascular distribution and more 
commonly in the subcortical white matter or deep 
gray matter, are the hallmark finding in HIVE and 
result from virus-induced fusion of macrophages 
which have been shown to contain HIV protein 
[65,81–83]. 

In the post cART era, the majority of HIV posi-
tive individuals show no HIV related neuropathology 
at autopsy, although HIVE has been reported in 
8-25 % of case series with equal or even increased 
frequency post cART in some series [84–87]. Oppor-
tunistic infections, albeit decreased in frequency 
after cART, are still seen [84–92]. HIVE indicates 
active viral replication and is an important patho-
logic substrate of HAD [93], but not all subjects with 
cognitive impairment have HIVE and not all patients 
with HIVE have cognitive impairment, which was 
seen before but especially after the advent of cART 
[56,68,81,84,88,94]. In the post cART era, HIV asso-
ciated neuropathologic findings have not correlated 
with cognitive impairment [84]. 

AIDS patients demonstrate cortical atrophy 
and neuronal apoptosis [95,96], but neither neu-
ronal apoptosis [97] nor neuronal loss in the frontal 
and temporal cortices of patients with AIDS [98] cor-
relate with dementia. On the other hand, decreased 
cortical synaptic density and dendritic complexity 
were demonstrated even with mild cognitive impair-
ment and have been shown to correlate with sever-
ity of cognitive impairment [99–101]. Disruption of 
the BBB has been seen in patients both with AIDS 
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Figure 1. Neuropathologic findings in COVID-19 and HIV infection. A) Acute/subacute microinfarct (arrows) in the internal capsule and 
B) sparse leptomeningeal (arrow) and parenchymal (arrowhead) T lymphocytes highlighted by CD3 immunohistochemistry in patients 
with COVID-19. C) HIV encephalitis with multinucleated giant cells (arrows) and D) microglial activation (arrowheads) highlighted by 
immunohistochemistry for Iba-1 in patients with HIV infection. Scale bars: A = 50 μm, B,D = 100 μm, C = 20 μm 

 

with and without dementia as well as with and with-
out HIVE [64,102]. Several gene expression profiling 
studies performed on the brains of HIV positive indi-
viduals have found upregulation of endothelial cell 
type transcripts [103] and dysregulation of micro-
glial transcripts [104] in patients with HAND but 
without HIVE and increased expression of a subset 
of cytokines in white matter [103–107]. 

Although HIV antigen can be detected through-
out the CNS including the cerebral hemispheres, 
cerebellum, brainstem, and spinal cord using various 
methods such as immunohistochemistry, in situ 
hybridization (ISH), PCR, and electron microscopy, 
the highest levels of HIV proteins, RNA and DNA, 

primarily in macrophages, microglia and multinucle-
ated giant cells, have been seen in deep gray matter 
and hippocampus [67,81,108,109]. Even with viral 
suppression on cART, low levels of HIV-1 RNA and 
anti-HIV antibodies can be detected in the CSF 
[110,111]. HIV-1 DNA, including intact proviruses, 
and RNA have been found in the brains of virally 
suppressed HIV-positive individuals in micro-
glia/macrophages [112–114]. These reservoirs have 
been postulated to cause chronic inflammation and 
neuronal dysfunction [114,115], and microglial acti-
vation and increased cytokine levels in the brain 
have been shown to correlate with HAND 
[94,116–119]. However, although levels of HIV-1 
DNA are on average higher in brains from patients 
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with AIDS compared to patients without AIDS, there 
is overlap [18,117]. Brain viral load correlates poorly 
with neuropathologic changes or cognitive impair-
ment [94,117]. Furthermore, Gelman et al. have 
shown that subjects with HAND and HIVE have 
higher brain HIV RNA and DNA levels than patients 
without HAND, but individuals with HAND without 
HIVE show no difference compared to patients with-
out HAND [88]. Thus, complex mechanisms beyond 
viral replication in the brain likely underlie HAND, 
especially in the post cART era (Figure 2) 
[56,84,120,121]. 

Severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) 

A few weeks after a cluster of viral pneumonia 
cases, later called COVID-19, was first described in 
December of 2019 in China [122–124], the causative 
agent was determined to be a new human patho-
gen, the coronavirus later named severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) 
[123]. Several vaccines were rapidly developed 
within a year and a significant proportion of the 

 

 

Figure 2. Potential mechanisms of neurologic disease in acute/chronic HIV infection and COVID-19/PCC. HAND, HIV-associated neurocog-
nitive disorders; PCC, post-COVID conditions. Figure was created using BioRender. 
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population of many countries, mostly high-income, 
have been vaccinated, albeit with large differences 
among countries [122,125,126]. However, there 
have been approximately 6.9 million deaths and 
over 750 million infected worldwide according to 
the World Health Organization (WHO) [127]. 

Coronaviruses are classified into four distinct 
genera: Alpha, Beta, Gamma and Deltacoronavirus 
[128]. SARS-CoV-2 and SARS-CoV belong to the same 
species, severe acute respiratory syndrome-related 
coronavirus (SARSr-CoV), which is of the subgenus 
Sarbecovirus, genus Betacoronavirus which also 
includes Middle East respiratory syndrome corona-
virus (MERS-CoV), of the subfamily Orthocoronaviri-
dae [128,129]. During its spread several SARS-CoV-2 
variants have emerged, termed “variants of con-
cern”, including Alpha, Gamma, Delta, and Omicron, 
that have caused disease of similar severity except 
for Omicron which has been associated with lower 
rates of hospitalization [128,130]. 

SARS-CoV-2 predominantly infects nasal or 
upper respiratory epithelium and sustentacular cells 
of the olfactory mucosa [131–134] with a decreasing 
gradient of infection from the proximal to distal res-
piratory tract [135]. As with SARS-CoV, SARS-CoV-2 
uses angiotensin converting enzyme 2 (ACE2) as the 
obligate receptor for host cell entry through binding 
of the viral spike (S) protein, proteolytically acti-
vated by transmembrane protease/serine subfamily 
member 2 (TMPRSS2), although ACE2-bound virus 
can also enter the cell via clathrin-mediated endocy-
tosis without TMPRSS2 [129,136–140]. ACE2 is a 
human homologue of ACE, and both ACE and ACE2 
play important roles in the renin-angiotensin system 
[141]. ACE2 mRNA has been reported in many differ-
ent organs including, at least in some studies, the 
brain [142–145]. However, mRNA and protein levels 
of ACE2 have been shown to be discordant [146]. 
ACE2 protein has been detected in several cell types 
including ciliated cells of the nasal mucosa and bron-
chus, cardiomyocytes, enterocytes of the gastroin-
testinal tract, gallbladder epithelium, kidney proxi-
mal tubule epithelium, and Sertoli and Leydig cells 
of the testis [143,146,147]. In the brain, ACE2 pro-
tein expression has been seen by immunohisto-
chemistry in vascular smooth muscle cells and/or 
endothelial cells/pericytes in some studies but not 
others [143,147–151]. Few studies have reported 

ACE2 immunopositivity in choroid plexus, ependy-
mal cells, meningothelial cells, and neurons in the 
medulla [151,152]. 

Neurologic manifestations 

Approximately a third of patients with acute 
COVID-19 exhibit neurologic and psychiatric mani-
festations, most commonly fatigue, alterations in 
consciousness, impairment in smell and taste, 
seizures, myalgia, anxiety, and stroke [153–156]. 
Ischemic stroke is seen in approximately 2 % of 
COVID-19 patients [153–156], and occurs in younger 
individuals compared to ischemic stroke in non-
COVID-19 patients [157]. Moreover, patients with 
COVID-19 have increased risk for ischemic and hem-
orrhagic stroke compared to patients with influenza 
or other upper respiratory tract infections 
[155,158], and increased risk for ischemic stroke and 
myocardial infarct compared to the background 
population in Sweden [159]. Neurologic manifesta-
tions have been associated with increased mortality, 
especially in older individuals [154,156]. 

Neurologic and psychiatric complications are 
also seen as part of the constellation of post-COVID 
conditions (PCC), also known as post-acute sequelae 
of COVID-19 (PASC) or long COVID, defined by the 
WHO as persistent symptoms usually 3 months from 
onset of COVID-19 with symptoms lasting at least 
2 months with no alternative diagnosis [160–162]. 
Most frequent neurologic manifestations of PCC 
include fatigue and cognitive impairment, impaired 
concentration or “brain fog”, which has been shown 
to correlate with abnormal brain activation on task-
activated blood oxygenation level-dependent func-
tional MRI (BOLD-fMRI) [163], as well as psychiatric 
disorders such as post-traumatic stress disorder, 
anxiety and depression [164,165]. Similar complica-
tions were seen in the SARS 2003 pandemic [166], 
and post-viral syndromes occur in other viruses 
[167]. Cognitive decline and psychiatric symptoms 
have also been described after serious illness requir-
ing admission to the intensive care unit such as sep-
sis [168,169]. However, examining the electronic 
health records of the US Department of Veterans 
Affairs, Al-Aly et al. found a higher burden of both 
pulmonary and extrapulmonary disease, including 
neuropsychiatric and cardiovascular disorders, in 
patients who had been hospitalized for COVID-19 
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and survived for at least 30 days after admission 
compared to individuals hospitalized for influenza 
[170]. A different study using electronic health 
records of health care organizations mostly in the US 
found that neurologic and psychiatric diagnoses are 
more common in the 6 months following the diag-
nosis of COVID-19 compared to other respiratory 
infections such as influenza [155]. PCC can occur 
 regardless of the severity of acute disease but is 
more severe in hospitalized patients, and those with 
comorbidities appear to be at increased risk not only 
for acute disease but also for PCC [160,164,171]. 
Vaccination may be less effective at preventing PCC 
than severe acute COVID-19 [172]. Further clinical 
phenotyping of PCC, as with HAND in HIV, may be 
helpful in further defining research nosology [24]. 

Brain MRI findings in patients with acute 
COVID-19 presenting with neurologic symptoms 
include acute/subacute infarct, which is the most 
common finding, abnormalities of the olfactory 
bulb, white matter abnormalities, cerebral micro-
bleeds, gray matter abnormalities, leptomeningeal 
enhancement, acute disseminated encephalomyeli-
tis (ADEM) and ADEM-like lesions, intracerebral 
hemorrhage, and posterior reversible encephalopa-
thy syndrome (PRES) [173,174]. In 18F-FDG PET stud-
ies, subacute COVID-19 patients have shown hypo-
metabolism in the frontoparietal cortex, which cor-
related with cognitive performance, with reduction 
in hypometabolism along with improvement in 
cognitive performance approximately 6 months 
after onset of symptoms [175,176]. In a large longi-
tudinal study examining participants in the UK 
Biobank who had undergone repeat imaging, a 
decrease in gray matter thickness in the orbitofron-
tal cortex and parahippocampal gyrus as well as 
decrease in global brain size were seen between two 
scans in those who had been infected by SARS-CoV-
2, likely with different variants and averaging 4-5 
months after infection, compared to those who had 
not been infected by SARS-CoV-2 [177]. Greater cog-
nitive decline was also seen in the SARS-CoV-2 posi-
tive group [177]. Subsequently, Du et al. found that 
male patients demonstrated reduced gray matter 
thickness in the parietal and occipital cortices and 
hippocampal volume after Omicron infection com-
pared to before infection [178]. In patients 

diagnosed with PCC, gray matter volume loss has 
been associated with cognitive dysfunction [179]. 

Neuropathologic findings 

Brain autopsy examination of patients who 
died from COVID-19 have shown a variety of neuro-
pathologic findings, although many are non-specific 
[180–184]. Most commonly seen are acute hypoxic-
ischemic changes with neuronal eosinophilia, 
acute/subacute infarcts (Figure 1) with macrophage 
infiltration and neovascularization, hemorrhage 
[149,185–191], microthrombi [192–194], astro-
gliosis and microglial activation occasionally with 
microglial nodules and neuronophagia especially in 
the cerebellum and brainstem [185,195–199], and 
T-lymphocytic infiltration, predominantly sparse in a 
perivascular distribution [180,182,185,186,193, 
195,200,201]. Similar features including hypoxic- 
ischemic injury, microinfarcts, hemorrhage, and 
sparse lymphocytic infiltrate as well as fibrinogen 
leakage were seen between Delta, Omicron and 
non-Delta/non-Omicron variants [202]. 

Other findings described in patients who died 
from acute COVID-19 infection include perivascular 
hemosiderin deposition/leakage [182,193], though 
perivascular hemosiderin deposition is a common 
finding in autopsy brains, especially in older individ-
uals, and can be seen in both brains with and with-
out significant vascular disease [182,203–206]. They 
have also been shown to correspond to a subset of 
cerebral microbleeds on MRI [207]. Megakaryocytes 
in cortical capillaries and in an infarct were also 
reported in acute COVID-19, but capillary megakar-
yocytes can been seen in the setting of lung injury 
due to a variety of causes [208–210]. Uncommon 
findings include multifocal necrotizing leukoenceph-
alopathy [185], acute encephalitis with lymphohisti-
ocytic infiltrate and hemorrhage [200], and 
ADEM/acute hemorrhagic leukoencephalopathy 
(AHLE) and ADEM/AHLE-like pathology 
[149,195,211–213]. Some comorbid neuropatho-
logic findings described include other infections 
such as HSV-1 encephalitis [185] and bacterial infec-
tion [193], neurodegenerative diseases including 
Alzheimer disease and Lewy body disease [185,195], 
and cerebrovascular disease such as cerebral 
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amyloid angiopathy [210], not surprising given the 
older patient age in some series [185,195,200,214]. 

Few studies have compared brains from 
COVID-19 patients to controls [152,197,198,200]. 
No differences in frequencies of hypoxic-ischemic 
changes, infarcts or hemorrhages were seen 
between COVID-19 and non-COVID-19 patients in 
one study [200]. In another study, perivascular and 
leptomeningeal T-lymphocytic infiltrates were seen 
in both COVID-19 patients and in controls with sep-
sis /systemic inflammation, and microglial, activa-
tion in the pons in COVID-19 patients was greater as 
compared to controls without sepsis but similar to 
controls with sepsis [152]. However, Lee et al. 
showed that the brains of COVID-19 patients 
demonstrate increased leakage of fibrinogen, con-
sistent with BBB disruption, complement activation 
and microthrombi compared to controls, supportive 
of neurovascular injury [198,215]. Leakage of fibrin-
ogen and other serum proteins in the brain in 
COVID-19 have also been reported [150,202]. Sev-
eral gene expression profiling studies on various 
regions of the brain from COVID-19 patients have 
shown downregulation of neuronal and synaptic 
pathways in the olfactory bulb and amygdala [200], 
dysregulation that overlap with aging and neuro-
degenerative diseases in the frontal cortex 
[145,216], metabolic dysregulation in the brainstem 
[198], and inflammation in the choroid plexus 
[145,217]. Very few autopsy studies have examined 
patients who recovered from COVID-19 prior to 
death; these have also shown microglial activa-
tion/macrophages [195,197]. One of the studies in-
cluded two patients with mild COVID-19 symptoms 
who died 4-5 and 10 weeks after testing positive for 
COVID-19 from causes unrelated to the infection 
[197]. In these subjects microglial activation/macro-
phages were also seen, similar to findings in patients 
with acute COVID-19 in the brainstem and cerebel-
lum but to a milder degree in the cerebral white 
matter [197]. So far there have been no autopsy 
studies of patients diagnosed with PCC (long COVID). 

In a brief look at other pandemics, hypoxic- 
ischemic changes, infarcts, hemorrhage, microglial 
activation, and ADEM-like lesions were also seen in 
autopsies of patients who died from the novel influ-
enza A H1N1 virus in 2009 [218]. The few autopsies 
reported on SARS-CoV, the etiologic agent responsi-

ble for the SARS pandemic which emerged in 2002 
[219], described hypoxic-ischemic changes and glio-
sis in the brain [220,221]. There are only rare reports 
of SARS-CoV detected in the CSF [222,223] and in 
brain using PCR, ISH, immunohistochemistry, and 
electron microscopy [220–222,224] with isolation of 
SARS-CoV reported from the brain of one patient 
[221]. The “brain isolation” may have reflected iso-
lation of virus from brain vasculature. 

Although several studies have detected SARS-
CoV-2 RNA in the brain using PCR or transcriptomic 
analysis [152,185,193,200,225–227], including in 
the affected area of a case of hemorrhagic encepha-
litis possibly attributed to COVID-19 [200], other 
studies have not detected viral RNA or protein in the 
brains of patients with COVID-19 using a variety of 
methods [145,182,186,192,195,197,198,201,216, 
217], and SARS-CoV-2 has never been cultured from 
brain [131,180]. Few studies have performed cellu-
lar localization of viral RNA using ISH or viral protein 
using immunohistochemistry and most have shown 
that they are restricted to vessels/near vessels such 
as in endothelium, within macrophages or near 
capillaries [148,182,225,228]. There are rare reports 
of viral protein or RNA in brain tissue or cranial 
nerves [148,182,185,229–231], including a report by 
Thakur et al. which found low levels of viral RNA by 
RT-PCR but no viral RNA or protein by RNAscope  
and immunohistochemistry [185]. Viral RNA was 
seen in the adventitia of a meningeal blood vessel 
outside the medulla in one case [185]. Because of 
frequent anosmia/hyposmia and olfactory dysfunc-
tion in COVID-19, the suspicion is that the virus may 
enter the brain via the olfactory route through the 
cribriform plate, similar to neurotropic viruses 
[232–234]. Several studies have examined the olfac-
tory bulbs [185,193,201,230,231,235]. Most showed 
variable degrees of T-lymphocytic infiltration and 
gliosis without presence of viral protein, but varia-
bility in presence of viral RNA in human tissue 
[185,193,201,230,231,235]. 

These discrepancies may partly be due to dif-
ferences in patient cohorts and methods employed 
including the usage of different commercial antibod-
ies. Some antibodies, including a widely used spike 
antibody (Abcam 3A2), have subsequently been 
shown to label vessels and neurons in both COVID-
19 and control patients or have high background 
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[145,180,197,236]. Viral nucleocapsid antigen and 
RNA have only rarely been detected in CSF in acute 
disease [237–240]. CSF analysis often shows slightly 
increased white blood cell counts as well as elevated 
albumin and protein levels and an elevated albumin 
quotient, which suggests disruption of the BBB 
[238]. Similar to the brain, SARS-CoV-2 has never 
been cultured from CSF even when virus could be 
grown from paired nasopharyngeal swabs [131]. In 
electron microscopy studies, virions have mainly 
been identified in the respiratory tract, and reports 
of ultrastructural detection of virus outside the res-
piratory tract are controversial due to potential mis-
interpretation of virus-like particles [236,241–243]. 
Thus, it is unclear whether SARS-CoV-2 is neuro-
tropic or neuroinvasive, and mechanisms other than 
direct infection likely contribute to both acute and 
chronic forms of the disease (Figure 2) [167,232]. 

Conclusions and next steps 

HIV and SARS-CoV-2 are associated with signif-
icant neurologic morbidity but with differing patho-
genesis underlying acute and chronic disease. In 
acute disease, HIV directly invades the CNS while 
SARS-CoV-2 may exert its effects more indirectly 
through systemic inflammation. In chronic disease, 
HIV persists in the brain despite cART, and sequelae 
of low-level infection may contribute to HAND [115]. 
PCC may also be associated with sequelae of inflam-
mation, but in both diseases, complex interactions 
with comorbidities likely underlie neurologic mani-
festations [48,160]. Furthermore, both PCC and 
HAND have significant components of psychiatric 
disease in which functional abnormalities are 
thought to predominate over structural abnormali-
ties [244,245]. 

Mechanisms of aging related neurodegenera-
tion have also been implicated. Brain lysates from 
COVID-19 patients have shown activation of TGF-β 
signaling and increased oxidative stress as well as ac-
tivation of pathways leading to tau hyperphosphor-
ylation associated with Alzheimer disease [246]. One 
promising avenue of investigation is the cerebral 
vasculature, as vascular disease and BBB dysfunc-
tion have been implicated to play a significant role 
in HAND and acute COVID-19 [54,64,102,198]. 

Furthermore, it is well established that vascular dis-
ease plays a significant role in aging and neuro-
degenerative diseases [247], pathways which have 
been implicated in COVID-19 as well as HAND 
[145,216,248,249]. 

The following are potential “next steps” to elu-
cidate the mechanisms underlying the neurologic 
manifestations in HAND and COVID-19/PCC dis-
cussed at the two meetings: 

 Longitudinal studies of patients with HAND and 
PCC incorporating clinical, microbiology and 
pathologic findings using a multidisciplinary ap-
proach are warranted [250]. 

 Consensus on more sensitive and specific cog-
nitive assessment tools for PCC will help in 
characterizing the clinical spectrum of PCC and 
guiding further investigation [251,252]. 

 Neuropathologic studies of patients with PCC 
in comparison to control groups using stand-
ardized guidelines and quantitative morpho-
metric approaches, as has been done for HIV, 
may be helpful [251,253,254]. 

 As routine light microscopy may not be sensi-
tive enough to detect subtle changes, more in 
depth molecular investigation in conjunction 
with histopathologic examination, as has been 
pioneered by several groups showing tran-
scriptomic changes in both HIV and COVID-19, 
holds promise in shedding light on their neuro-
pathogenesis [56,103,145]. 

 Greater funding is needed to perform labor and 
resource intensive rapid autopsies on patients 
with HAND and PCC as mRNA involved in the 
immune response are more susceptible to deg-
radation from prolonged postmortem intervals 
[255,256]. 

 Additionally, increased use of formalin fixed 
paraffin embedded tissue for gene expression 
studies made possible by recent advances in 
technology will markedly expand human tissue 
available for research [198]. 
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 Further consensus on more granular and pre-
cise neuropathologic assessment of vascular 
disease, which is of increasing interest to the 
neurodegenerative and neuropathologic com-
munity, is needed to assess vascular dysfunc-
tion in HIV and COVID-19/PCC [257]. 

A better understanding of the neuropathogen-
esis of neurologic complications in HIV and SARS-
CoV-2 infection will help in the management of 
these patients. 
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