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A discrete approximation to the minimal surface equation is solved 

numerically on an L-shaped domain with Dirichlet boundary conditions. The 

nature of the solution discontinuity at the vertex of the reentrant corner 

is depicted graphically. 

1. In this study, a discrete approximation to the minimal surface equation 

(1) , 

is solved numerically on an L-shaped domain D with Dirichlet boundary conditions 

(see Fig. la) • The domain D is the unit 

square [1-, 1) x a, 1) deleted from it, 

u =0 

c at 

on the outside border of D and 

(1-, 1-) along the reentrant legs. 

y=O 
u = 0 on 

{

x=o 

x=l, 0 < y < J, 
y=l, 0 < x < l 

u 2c(1-x) on y=~, 1 < X < = -2 - --

and u 2c(1-y) on x=~, 1. < Y < = .- - -

square (0,1) x (0,1) with the smaller 

and the boundary conditions are that 

that u increase linearly to the value 

That is, 

1, 

1. 

The analogous Dirichlet problem on the nonconvex quadrilateral considered 

by Rado (5, 6] is discussed by Nitsche [3, 4], who proved that a solution 

u EO if (D) n CO (D) does not exist for any value of c >0. A solution does 
. 

exist, however, if it is permitted to have a discontinuity at the vertex of 
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the reentrant corner •. It is the purpose of the present study to indicate the 

behavior of such a solution surface in the neighborhood of a reentrant corner. 

An L-shaped domain, rather than the quadrilateral one, is chosen here because 

of its practical convenience: it can be subdivided by means of a uniform 

square mesh with no special treatment required at the boundary. 

2. The discrete approximation used is that given in [1", 2]. Let Uij denote 

the approximating value to u(x,y) at the node point Xi • ih, Yj • jh on the 

1 uniform square mesh of width h = W(N an integer); then in place of (1) one 

has the system of nonlinear algebaric equations 

In (3) 

( 4) 
2 2 l W--&(l+[u+u ] __ )2 

ij X Y ij 

denotes W for the mesh cell with center (i-t, j-t), evaluated by use of 

[ui +{ ]1:3;' 12 r(UirUi_l,j l + (Uij-Ui , j_l)2 + (Ui,j_l-Ui _l , j_I)2 
2h- L 

The system of equations (3) can be derived directly from the variational 

integral A =~~ Wdxdy by using (4) to obtain the corresponding discrete 
D 

sum and then by setting equal to zero the partial derivatives with respect to 

the unknown nodal values of U. Equation (3) is to be solved for the interior 

nodal values of U subject to (2) at the boundary nodes. 

.. ! 
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3. The numerical solution of (3) was carried out using the technique of 

block nonlinear successive overrelaxation described in [2]. Approximate 

solutions, accuxate to within 10-5c , were obtained for c = 0.1(0.1)1.0 
1 1 1 1 

and for mesh spacings h = IO, 20, 40, and 80. The results are displayed 

graphically in Fig~ 2-9. (The automatic plotter that prepared the figures 

interpolated linearly between the data points.) 

In Fig. 2 are plotted the valu~s of Uij for c = 1.0 along the line 

segmentll(x-y = 0 - see Fig. Ib) for the four mesh spacings used. These 

curves indicate the behavior of the numerical solution as h is reduced. 

Figs. 3 and 4 depict the corresponding values of Uij for c = 1.0 along the 

line segments 12 and1 3 (y = .. ~. and x + y =1, resp. - see Fig. Ib). Note 
, 

that, as one woUld expect for the original problem, the solutioo.s of the 

discrete problems have the greatest jump in approaching (1,·~) along the 

direction of £1' 

Figs. 5-7 depict the analogous graphs for c = 0.1. 
1 

In Fig •. 8 are depicted the values of Uij for h = mY along the line 11 

for c = 0.1(0.1)1.0. Note that, as in the previOUS graphs, the vertical 

scale is normalized to c. These curves illustrate the behavior of the jump 

discontinuity at (~,~) as a function of c. 

Finally, in Fig. 9 is shown the extrapolated estimate as a function of c 

for the lim! ting value u( J-, -1-) along the line £1' The limiting values 

uO·_, }-) in this figure were obtained for each c by passing a parabola 

through the computed approximation to u( ;,-h, >h) for the cases with 

1 1 1 
h = 20' 40' and 80 and extrapolating to h = O. In addition to the values for 

c = 0 .l( 0.1) 1. 0, those for c = 0.05 and c = 1. 5 were calculated as well. 
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4. A rigorous estimate for the accuracy with which Fig. 9 represents the 

solution of the original non-discrete problem (1, 2) would be very difficult to 

obtain, because of the complications introduced by the discontinuity at (}, }). 

However simple heuristic checks give evidence that the extrapolation of the 

numerical results to h = 0 can legitimately be carried out. One such check 
1 

that was used was to include the value of u(}-h, -}-h) for h = 10 in the 

extrapolation to h = 0, using a cubic polynomial to estimate the limit. These 

limits differed from those plotted in Fig. 9 by less than one percent. 

The author expresses his appreciation to J.C.C. Nitsche, who, in con-

versations, suggested that these computations be carried out and to D. Johnson, 

who prepared the computer plots from the tabular data. This work was performed 

under the auspices of the U.S. Atomic Energy Commission. 

, , 
, I 
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(0,1) 

(-} ,J) 
n· 

(0,0) (1,0) -

Figure 1a 

The L-shaped domain 
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Figure lb 

Line segments 11, 12, 13 along 
which tabular data are plotted 
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U as a function of distance along 21 , for c == 1.0. Curves 
1 1 1 1 

from top to bottom are for h = 10, 20, 40, and 80. 
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Figure 3. U as a function of. distance along 2r~ for e ::: 1.0; Curves 
1 1 1 1 

from top to bottom are for h = 10, 20, 40, and 80. 
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Figure 4. U as a function of distance along i.3 for c 1.0. Curves 
. 1 1 1 1 

. from top to bottom are for h = 10, 20,40, and B6. 
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l<'igure 5. Same asF'ig. 2 exee pt that c = 0.1 
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Figure 6. Same as Fig. 3 except that c = 0.1 
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Figure 7. Same as Fig. 4 except that c = 0.1 
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1 
Figure 8. U as a function· of distance along £1 for h = 1Zo. Curves 

from top to bottom are for c = 0.1, 0.2, ... , 1.0. 
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F:igure 9. Estimate of lim u(i/z-h. i/Z-h) as a function of c. 
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