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Neurostructural subgroup in 4291
individuals with schizophrenia identified
using the subtype and stage inference
algorithm

A list of authors and their affiliations appears at the end of the paper

Machine learning can be used to define subtypes of psychiatric conditions
based on shared biological foundations ofmental disorders. Here we analyzed
cross-sectional brain images from 4,222 individuals with schizophrenia and
7038 healthy subjects pooled across 41 international cohorts from the
ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and
Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural
subgroups by mapping the spatial and temporal ‘trajectory’ of gray matter
change in schizophrenia. Subgroup 1 was characterized by an early cortical-
predominant loss with enlarged striatum, whereas subgroup 2 displayed an
early subcortical-predominant loss in the hippocampus, striatum and other
subcortical regions. We confirmed the reproducibility of the two neuro-
structural subtypes across various sample sites, including Europe, North
America and East Asia. This imaging-based taxonomy holds the potential to
identify individuals with shared neurobiological attributes, thereby suggesting
the viability of redefining existing disorder constructs based on biological
factors.

Schizophrenia is one of the most severely disabling psychiatric dis-
orders with a life-time prevalence of 1%; it affects approximately 26
million people worldwide1. The etiology of schizophrenia is still not
fully understood. Current knowledge implicates multiple neurobio-
logical mechanisms and pathophysiologic processes2,3. Furthermore,
people diagnosed with schizophrenia show a substantial hetero-
geneity in clinical symptoms4, disease progression5, treatment
response6, and other biological markers7,8. In addition, currently
available treatments are not aligned with specific pathophysiological
pathways/targets, which limits effectiveness of treatment selection9.
Establishing a new taxonomy by identifying distinct subtypes based
on neurobiological data could help resolve some of these
heterogeneity-induced challenges. A key goal is to define biological
subtypes, based on objective measures derived from imaging and
other biomarkers10.

Artificial intelligence methods such as machine learning can be
applied to brain imaging11 to categorize individuals based on their
profiles of brain metrics, and holds the potential for revealing the
underlying neurobiological mechanisms associated with disorder
subtypes12. Machine learning algorithms are increasingly used to sub-
type brain disorders13–16. Prior studies have primarily focused on
grouping individuals into distinct categories without considering dis-
ease progression17,18. A major obstacle to identifying distinct patterns
of neuro-pathophysiological progression (referred to as progression
subtypes) stems from the lack of sufficient longitudinal data covering
the lifespan of the disorder. Recently, a data-driven machine learning
approach known as Subtype and Stage Inference (SuStaIn) was
introduced19. SuStaIn uses a large number of cross-sectional observa-
tions, derived from single time-point MRI scans, to identify clusters
(subtypes) of individuals with common trajectory of disease
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progression (i.e., the sequence of MRI abnormalities across different
brain regions) in brain disorders20–23. It should be noted that SuStaIn
estimates the pseudo-longitudinal sequence (i.e., SuStaIn trajectory)
based on only cross-sectional data. Therefore, the fitted SuStaIn tra-
jectories do not directly reflect the actual pathophysiological pro-
gression of the illness. By applying SuStaIn to MRI data from
individuals with schizophrenia, primarily collected from the Chinese
population, we found that the progression of gray matter loss in
schizophrenia can be better characterized through two distinct phe-
notypes: one characterized by a cortical-predominant progression,
originating in the Broca’s area/fronto-insular cortex, and another
marked by a subcortical-predominant progression, starting in the
hippocampus22. Such brain-based taxonomies may reflect neuro-
structural subtypes with shared pathophysiological foundations, with
relevance for neurobiological classification22. However, the general-
izability of the two neurostructural subtypes to diverse populations
outside of China, and external validation of the subgrouping is
required before applying this knowledge to stratify clinical trials.

The Enhancing Neuro Imaging Genetics through Meta-Analysis
(ENIGMA, http://enigma.ini.usc.edu) consortium is dedicated to con-
ducting large-scale analyzes by pooling brain imaging data from
research teams worldwide, using standardized image processing pro-
tocols. Previously, ENIGMA published findings revealing thinner cere-
bral cortex, smaller surface area, and altered subcortical volumes in
schizophrenia compared to controls24,25. Here, we included structural
MRI data obtained from 4291 individuals diagnosed with schizo-
phrenia and 7078 healthy controls from 41 international cohorts from
ENIGMA schizophrenia groups worldwide and other non-ENIGMA
datasets (Supplementary Table 1–2). The large sample size allowed us
to conduct systematic and comprehensive analyzes to verify the
reproducibility and generality of neurostructural subtypes of schizo-
phrenia across regions/locations and disease stages. This study’s aims
were: (1) to validate the two neurostructural subtypes with distinct
trajectories of neuro-pathophysiological progression in schizophrenia,
(2) to verify the reproducibility and generality of the neurostructural
subtypes, in subsamples across the world and across disease stages,
and (3) to characterize subtype-specific signatures in terms of neu-
roanatomy and clinical symptomatic trajectory.

Together, these analyzes aim to create an easily accessible (with a
single anatomical MRI), interpretable (based on ‘progressive’ pathol-
ogy) and robustly generalizable (across ethnic, sex and language dif-
ferences) taxonomy of subtypes that share common neurobiological
mechanisms in schizophrenia. If proven effective, other complex
neuropsychiatric disorders with high heterogeneity26,27, such as major
depressive disorder, autism spectrum disorder, and obsessive-
compulsive disorder, could also benefit from such a subtyping para-
digm. This has the potential to transition the field of psychiatry from
syndrome-based to both syndrome- and biology-based stratifications
of mental disorders.

Results
Two biotypes with distinct pathophysiological progression
trajectories
Distinct patterns of spatiotemporal progression of pathophysiological
progression were identified using SuStaIn, based on cross-sectional
MRI data from 4222 individuals diagnosed with schizophrenia (1683
females, mean age=32.4 ± 11.9 years) and 7038 healthy subjects (3440
females, mean age=33.0 ± 12.6 years) (Table 1). A 2-fold cross-valida-
tion procedure resulted in an optimal number of K = 2 clusters (sub-
types) as determined by the largestDice coefficient (Fig. 1a), indicating
the best consistency of the subtype labeling across all individuals for a
model in two independent schizophreniapopulations. Figure 1b shows
that only 1.2% of people were moved from subtype 1 to subtype 2, and
7.5% were moved from subtype 2 to subtype 1, indicating that 91.3% of
individuals’ subtype labels were consistent between the SuStaIn

classifications from two non-overlapping data folds. These findings
suggest the presence of two stable schizophrenia biotypes with dis-
tinct ‘trajectories’ of pathophysiological progression (here, we put
SuStaIn trajectory in quotes as it is not an actual longitudinal trajectory
but rather a typical sequence of disease progression reconstructed
from cross-sectional data).

Region of interest (ROI)-wise gray matter volume (GMV) z-scores,
at each stage of the ‘trajectory’ for each subtype, show the sequence of
regional volume loss across the 17 brain regions for each ‘trajectory’
(Fig. 1c). To visualize the spatiotemporal pattern of each ‘trajectory’,
z-score whole brain images were mapped to a glass brain template
(Fig. 1d). These maps show a progressive pattern of spatial expansion
along with later ‘temporal’ stages of pathological progression distinct
for each ‘trajectory’ (Supplementary Movie 1 and 2). Specifically, ‘tra-
jectory’ 1 displayed an ‘early cortical-predominant loss’ biotype. It was
characterized by an initial reduction in Broca’s area, followed by
adjacent fronto-insular regions, then extending to the rest of the
neocortex, and finally to the subcortex (Fig. 1d). Conversely, ‘trajec-
tory’ 2 exhibited an ‘early subcortical-predominant loss’ biotypewhere
volume loss began in the hippocampus, spread to the amygdala and
parahippocampus, and then extended to the accumbens and caudate
before affecting the cerebral cortex (Fig. 1d). The two ‘trajectories’
were highly consistent with our previous findings in a predominantly
Chinese schizophrenia cohort22. We also re-estimated trajectories
based on a validation dataset (N = 3120) that has removed the original
data used in our previous SuStaIn study22. In the validation dataset, we
replicated the two ‘trajectories’ that begin in either the Broca’s area or
the hippocampus (Supplementary Fig. 1). We also observed a high
similarity of ‘trajectory’ spatiotemporal pattern between the original
dataset and the additional dataset (‘trajectory’ 1, r =0.879, p < 0.001;
‘trajectory’ 2, r = 0.631, p <0.001; Spearman correlation test). The
phenotypic subtypes, based on the different pathophysiological ‘tra-
jectories’, are thus replicated in a large cross-geography sample, con-
firming thepresence of twodifferent neuropathological pathwayswith
different anatomical origins in schizophrenia22.

Trajectories are repeated in first-episode and medication-naïve
samples
The sample size of this study was large enough to allow further
exploratory analyses to identify pathophysiological progression tra-
jectories in more homogeneous subsamples of schizophrenia. Here,
we re-estimated the SuStaIn ‘trajectories’based on a subsample of data
from individuals with first-episode schizophrenia with illness duration
less than two years (N = 1122; 513 females, mean age=25.4 ± 8.6 years),
and a subsample of medication-naïve individuals with schizophrenia
(N = 718, 353 females, mean age = 23.7 ± 7.8 years) (Supplementary
Table 3). In both subsamples, we replicated the two ‘trajectories’ with
either the Broca’s area or the hippocampus as the sites of origin
(Supplementary Fig. 2), indicating that the two initiating regions -
ranking aheadof other regional deficits—are the pathological effects of
the disease itself, rather thanmedication-induced effects. Broca’s area
and the hippocampus may, therefore, be candidate targets for inter-
vention in schizophrenia, as these two brain regions were affected
early in the disease process.

Trajectories are reproducible for samples fromdifferentparts of
the world
To examine whether the ‘trajectories’ were reproducible for samples
from different parts of the world, we divided all samples into several
sub-cohorts based onwhere the sampleswereobtained. Here, samples
from China, Japan, South Korea and Singapore were classified into the
East Asian ancestry (EAS) cohort. Samples from Europe, the United
States, Canada andAustraliawere classified into the Europeanancestry
(EUR) cohorts (SupplementaryTable4). In addition, Chinese, Japanese,
European and North American cohorts were further classified by their
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site locations in terms of geographic distribution (Supplementary
Table 4). Such a division was based on the similar ethnic or environ-
mental factors for each country, region, or continent and the size of
subsample, which need to be sufficient to conduct a reliable inference
of the SuStaIn trajectory. We found that two ‘trajectories’ (the optimal
number was also K = 2, which separately re-estimated in each cohort)—
with Broca’s area leading and the hippocampus leading—were also
repeated in EAS (Fig. 2a) and EUR (Fig. 2b) cohorts. In addition, the
spatiotemporal pattern of each ‘trajectory’ showed strong, significant
correlations between the EAS and EUR cohorts (‘trajectory’ 1, r = 0.948,
p <0.001; ‘trajectory’ 2, r =0.842, p <0.001; Spearman correlation
test). This high level of similarity in the trajectories was also observed
between cohorts from other locations (Fig. 2c). This suggests that the
two biotypes with distinct ‘trajectories’ of pathophysiological pro-
gression in schizophrenia are robust, and their classification patterns
are independent of macro-environmental or ethnogenetic factors.

Trajectories are associated with neurophysiological, pathologi-
cal and neuropsychological progressions in schizophrenia
The SuStaIn calculated the probability of each patient belonging to a
specific ‘trajectory’ and further assigned them to a sub-stage within
that ‘trajectory’. Individuals who were assigned to the later stages of
the ‘trajectory’ showed a significant correlation with less GMV of Bro-
ca’s area (Fig. 1e, r =0.651, p <0.0001) and hippocampus (Fig. 1f,
r =0.615, p <0.0001). In addition, the later stages were correlated with
longer disease duration (Fig. 1g, r =0.105, p <0.0001), worse negative
symptoms (Fig.1h, r =0.101, p <0.0001) and worse cognitive symp-
toms (Fig.1i, r =0.080, p =0.004). These results suggest that the SuS-
taIn ‘trajectory’ reflects the underlying neural progression in
schizophrenia.

Subtype-specific signatures in neuroanatomical pathology
To characterize subtype-specific neuroanatomical signatures, we
assessed regional morphological measures using FreeSurfer in a sub-
sample including 1840 individuals with schizophrenia and 1780 heal-
thy controls. A total of 330 regional morphological measures in
cortical thickness, cortical surface area, cortical volume, subcortical
volume and subregion segmentation were quantified (see “Methods”).

Regional morphological z-scores (i.e., normative deviations from
healthy control group) for each subtype were computed and com-
pared (Fig. 3). Morphological z-scores of all brain regions and inter-
subtype comparisons are provided in Supplementary Table 5. Briefly,
compared to healthy controls, average cortical volume/area reduction

was only observed in subtype 1 (Supplementary Fig. 3a–b), though
both subtype 1 and subtype 2 exhibited a moderate reduction in
average cortical thickness (Supplementary Fig. 3c). Additionally, lar-
gest effects for cortical thickness/volume/area were located within the
superior frontal regions for subtype 1 and in the superior/medial
temporal regions for subtype2 (Supplementary Table 5). As for sub-
cortical volume, larger effects for volumes of hippocampus, amygdala,
thalamus, accumbens and brain stem were observed in subtype 2
compared to subtype 1 (Supplementary Fig. 3d–h). The hippocampal/
amygdala subregions with themost significant reduction for subtype 2
were located in the molecular layer and cortico-amygdaloid transition
area (Supplementary Fig. 4–5). Interestingly, we observed that, com-
pared to healthy controls, the striatum (i.e., caudate, putamen) was
larger among subtype 1 patients and smaller among subtype 2 patients
(Supplementary Fig. 3i–j). The difference in the striatum between the
two subtypes was also replicated in a subsample of medication-naive
individuals with schizophrenia (Supplementary Table 6). The main
findings of subtype-specific neuroanatomical signatures are described
in Table 2. Taken together, subtype 1 exhibited greater deficits in
cortical morphology but enlarged volume of the striatum, whereas
subtype 2 displayed more severe volume loss in the subcortical
regions, including the hippocampus, amygdala, thalamus, brain stem
and striatum.

Clinical characterization of subtypes
A total of 2622 (62.1%) individuals with schizophrenia were assigned to
subtype 1 and the remaining 1600 patients (37.9%) were assigned to
subtype 2. The two subtypes exhibit no significant difference in the
age, sex, illness duration or PANSS scores (Table 1). To further char-
acterize the psychotic symptomatic trajectory as the disease pro-
gresses for each subtype, we further defined three subgroups
according to illness duration (early stage [<2 years], n = 926; middle
stage [2–10 years], n = 578; late stage [>10 years], n = 682). The results
suggested distinct trajectories of psychotic symptoms between the
two subtypes (Fig. 4 and Table 3). Specifically, lower positive symptom
severity was observed in late stage patients compared early stage
patients in both subtypes (subtype 1, F = 37.4, p = 1.60e − 16; subtype2,
F = 41.9, p = 4.68e − 18). With the increase of the disease course, sub-
type 1 showed a gradual worsening of negative symptoms (F = 4.6,
p = 9.98e − 3), whereas the negative symptoms of subtype 2 remained
stable across the three stages of the disease course (F = 0.1, p =0.884).
Additionally, a gradual worsening of depression/anxiety was only
observed in subtype 1 (F = 5.9, p = 2.86e − 3). Inter-subtype

Table 1 | Demographic and clinical characteristics in the primary sample including 4222 schizophrenia patients and 7038
healthy controls

HC(n = 7038) SCZ(n = 4222) SCZ subtype1(n = 2622) SCZ subtype2(n = 1600)

n mean(SD) n mean(SD) n mean(SD) n mean(SD)

Sex (Female/Male) 3440/
3598

- 1683/2539 - 1044/1578 - 639/961 -

Age (years) 7038 33.0(12.6) 4222 32.4(11.9) 2622 32.4(11.8) 1600 32.4(12.0)

Illness duration (years) - - 2333 10.5(10.4) 1442 10.4(10.5) 891 10.5(10.4)

FES/Chronic/Unknown - - 1112/
1623/1477

- 696/1002/924 - 426/621/553 -

PANSS Positive scale (P1-P7) - - 2651 17.2(6.8) 1622 17.3(3.9) 1029 17.0(6.7)

PANSS Negative scale (N1-N7) - - 2651 17.5(7.6) 1622 17.6(7.6) 1029 17.3(7.6)

PANSS General scale (G1-G16) - - 2651 34.8(11.6) 1622 35.2(11.6) 1029 34.3(11.6)

PANSS Total score - - 2651 69.5(22.4) 1622 70.0(22.4) 1029 68.6(22.5)

PANSS excitement dimension (P4, P7, G44, G14) - - 1322 8.2(3.5) 823 8.2(3.4) 499 8.2(3.5)

PANSS depression/anxiety dimension (G1, G2, G3,
G6, G15)

- - 1322 11.3(4.1) 823 11.4(4.1) 499 11.1(4.2)

PANSS cognitive dimension (P2, N5, G5, G10, G11) - - 1322 10.6(4.0) 823 10.5(4.0) 499 10.6(4.0)

Abbreviation: HC, healthy control; SCZ, schizophrenia; FES, first-episode schizophrenia; PANSS, Positive and Negative Syndrome Scale.
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comparisons showed that at the late stage (illness duration>10 years),
subtype 1 exhibited worse positive symptoms (t = 2.9, p = 0.003),
general psychopathology (t = 2.5, p = 0.010) and worse depression/
anxiety (t = 2.1, p = 0.033) compared to subtype 2, after regressing out
the effects of age, sex and SuStaIn stage.

Generalization of SuStaIn subtyping and staging to unseen
cohorts
We investigated whether the SuStaIn subtyping and staging can be
generalized to unseen cohorts. A flowchart is shown in Supplementary
Fig. 6a. Specifically, the Asian and Europe SuStaIn models were

separately built based on the Asian ancestry cohorts and Europe
ancestry cohorts, as described in 2.3. The two models were used for
subtyping and staging those unseen samples. We compared whether
those subtype and stage assignments match the result of the original
model that has been built on all cohorts. We observed thatmost of the
unseen individuals can keep the same subtype label with the original
model (88.83% for the Asian model; 89.98% for the European model)
(Supplementary Fig. 6b). In addition, there was a high consistency of
individual staging between stages of unseen data and original model
result (Asian model, r =0.976, p < 0.001; Europe model, r = 0.979,
p <0.001, Spearman correlation test) (Supplementary Fig. 6c). These
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Fig. 1 | Two pathophysiological progression trajectories in schizophrenia.
aDice coefficient indicates that K = 2 is the optimal number (marked by asterisk) of
subtypes with best consistency of the subtype labeling between two independent
schizophrenia populations using non-overlap 2-folds cross-validation procedure.
This procedure was repeated ten times (n = 10) to avoid the occasionality of one
split. Data are presented as median values +/- standard deviation (SD). b The pro-
portion of individuals whose subtype labels keep consistent by a non-overlap cross-
validation procedure. c Sequences of regional volume loss across seventeen brain
regions for each ‘trajectory’ via SuStaIn are shown in y-axis. The heatmap shows
regional volume loss in which biomarker (y-axis) in a particular ‘temporal’ stage
(T0-T16) in the ‘trajectory’ (x-axis). The Color bar represents the degree of gray
matter volume (GMV) loss in schizophrenia relative to healthy controls (i.e., z
score). d Spatiotemporal pattern of pathophysiological ‘trajectory’. The z-score

images are mapped to a glass brain template for visualization. The spatiotemporal
pattern of graymatter loss displays a progressive pattern of spatial extension along
with later ‘temporal’ stages of pathological progression that are distinct between
trajectories. e–f Pathological stages of SuStaIn are correlated with reduced gray
matter volumeof Broca’s area andhippocampus.g–i Pathological stages of SuStaIn
are correlated with longer disease duration, worse negative symptoms and worse
cognitive symptoms. Spearman correlation test is conducted for data analysis in
figures (e–i). Two-sided p value is reported after multiple comparisons correction
by FDR. The error bands in figures (e–i) represent 95% confidence interval. n = 4222
biologically independent samples in figures (e–f). n = 2333 biologically indepen-
dent samples in figure (g). n = 2651 biologically independent samples in figure (h).
n = 1322 biologically independent samples in figure (i).
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Fig. 2 | Trajectories are reproducibility for samples from different locations of
the world. Two sets of ‘trajectories’ are separately derived from two non-
overlapping location cohorts, that are (a) East Asian ancestry (EAS) cohort, and (b)
European ancestry (EUR) cohort. The Color bar represents the degree of gray
matter volume (GMV) loss in schizophrenia relative to healthy controls (i.e., z-
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represents the similarity, which is quantified via the Spearman correlation coeffi-
cient between the trajectories from two cohorts. A total of six location cohorts are
classified by where the sample locate at, including the EAS, EUR, China, Japan,
Europe and North American. The whole sample is labeled as a cross-ancestry
cohort.
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Fig. 3 | Subtype-specific signatures in neuroanatomical pathology. Brain mor-
phological measures include (a) cortical thickness, (b) cortical surface area, (c)
cortical volume, and (d) subcortical volume. For each morphological measure,

regional z-scores (i.e., normative deviations from healthy control group) in each
subtype are mapped to a brain template for visualization. Effect size of inter-
subtype difference is quantified using Cohen’s d.
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results indicates a high generalized ability of SuStaIn model to
unseen data.

Discussion
Our study, applying a machine learning algorithm to brain MRI data
from over 4000 individuals with schizophrenia, has revealed two dis-
tinct neurostructural subtypes based on patterns of neuro-

pathological progression. These subtypes are reproducible and gen-
eralizable across different subsamples and illness stages, independent
of macroeconomic and ethnic factors that differed across collection
locations. Specific patterns of neuroanatomical pathology for each
subtype were uncovered. Subtype 1 is characterized by early cortical-
predominant loss that first occurs in the Broca’s area/fronto-insular
cortex, and shows adverse signatures in cortical morphology and an

Table 2 | Main findings of subtype-specific neuroanatomical signatures

Morphometry measures Subtype-specific neuroanatomical signatures

Cortical Thickness/Volume/Area a) Both subtype1 and subtype2 exhibit a moderate degree in the average cortical thickness reduction.

b) Reduction of average cortical volume/area is only observed in the subtype1.

c) The worst reduction of cortical thickness/volume/area is located within the superior frontal regions for the subtype1, but in the
superior/medial temporal regions for the subtype2.

Subcortical Volume a) Enlargement of lateral ventricle is found in both subtype1 and subtype2, but much larger in the subtype2.

b)Worse loss volumes of the hippocampus, amygdala, thalamus, and accumbent are observed in the subtype2, compared to the
subtype1.

c) Volumes of striatum (i.e., caudate, putamen) are increased in the subtype1, but decreased in the subtype2, compared to the
healthy population.

Hippocampus segmentation a) Volume loss in hippocampal subregions is worse in the subtype2, compared to the subtype1.

b) The most significant volume loss is in the molecular layer for the subtype2.

Amygdala segmentation a) The subtype2 shows worse volume loss in amygdala subregions, compared to the subtype1.

b) The most significant decrease in volume is in the cortico-amygdaloid transition area for both the subtypes.

Thalamus segmentation a) The subtype2 shows worse volume loss in thalamus subregions, compared to the subtype1.

Brain stem segmentation a) Volume loss of brain stem subregions is only observed in the subtype2.
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Fig. 4 | Symptomatic trajectories across three stages of disease duration.
Individuals of each subtype are divided into three subgroups according to their
illness durations (early stage: ≤2 years; middle stage: 2−10 years; late stage: >10
years). Two sample t test was performed to compare the inter-subtype difference
separately within each of the stages after regressing out the effects of age, sex and
SuStaIn stage. * two-sided p <0.05, uncorrected. At the late stage, subtype 1
exhibited worse positive symptom (t = 2.9, p =0.003), general psychopathology

(t = 2.5, p =0.010) and worse depression/anxiety (t = 2.1, p =0.033) compared to
subtype 2. Data are presented asmean values +/- standard error (se). n = 579 (347),
362 (216), and 400 (282) biologically independent samples in the early stage,
middle stage and late stage in subtype 1 (subtype 2) for positive, negative and
general subscales. n = 377 (220), 144 (86), and 166 (109) biologically independent
samples in the early stage, middle stage and late stage in subtype 1 (subtype 2) for
depression & anxiety, cognitive dimension and excitement dimension.
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enlarged striatum. In contrast, subtype 2 is marked by early
subcortical-predominant loss that first appears in the hippocampus,
and displays significant volume loss in subcortical regions, including
the hippocampus, amygdala, thalamus, brain stem and striatum.
Additionally, we observed distinct trajectories of specific symptoms
clusters in these two subtypes: as disease progresses, subtype 1
exhibited a gradual worsening of negative and depression/anxiety
symptoms, and less of a decline in positive symptoms compared to
subtype 2.

Despite the growing body of evidence pointing to group-level
gray matter volume deficits in various brain regions - especially in
frontal and temporal regions - as well as altered subcortical volume in
schizophrenia28, substantial individual variations persist within this
population8,29. These inter-individual differences in brain structure
may stem from two primary sources of variation. First, differences in
underlying etiology and pathogenesis could result in varying clinical
characteristics (referred to as phenotypic heterogeneity)3,30. Second,
relative differences among subjects in the stage of dynamic progres-
sion (known as temporal heterogeneity) could further increase dif-
ferences in the clinical presentation31,32. Such variations suggest that
the pathological progression of schizophreniamight not be attributed
to a single unified pathophysiological process. Indeed, our neuro-
structural subtypes uncovered two SuStaIn trajectories of gray matter
loss through brain structural imaging. Several studies also reported
dynamic patterns of accelerated gray matter loss over time in indivi-
duals with schizophrenia33,34. In addition, the staging of SuStaIn tra-
jectory within the subtype reflects the underlying neurophysiological,
pathological, and neuropsychological progressions in schizophrenia.
Furthermore, we demonstrated that the phenotypic difference in the
intrinsic neuro-pathophysiological trajectory was reproducible across
samples worldwide, independent of macroeconomic and ethnic fac-
tors that differed across these sites.

The Broca’s area/fronto-insular cortex and hippocampus are
identified separately in subtype 1 and subtype 2 as the first regions to
show gray matter deficits. This is consistent with our prior finding
based on individuals with schizophrenia primarily collected from the
Chinese population22. Furthermore, the current study replicates the
same two primary regions in a medication-naïve and a first-episode
cohort, suggesting that these neuropathological changes are a reflec-
tionof thediseaseprocess, rather thanmedication effects. Broca’s area
and the fronto-insular cortex have been extensively implicated in
schizophrenia35, supportingCrow’s linguistic primacyhypothesis36 and
a triple-network model of the disorder37. Abnormalities in Broca’s area
and related regions have been linked with hallucinations in
schizophrenia38,39. The early involvement of Broca’s area in the
pathology could be related to the presence of these core symptoms of

schizophrenia. Moreover, in individuals with psychosis, reductions in
the inferior frontal cortex preceding the initial psychotic episode have
been reported40,41. A prior study reported reduced dopamine release in
the prefrontal cortex in patients with schizophrenia42. In relation to
hippocampal pathology, researchhas emphasized thehippocampus as
one of the initial regions to display volumetric loss in
schizophrenia25,43. The hippocampus is thought to be involved in
potential glutamatergic dysfunction in schizophrenia3. Decreased
levels of the NMDA co-agonist D-serine were linked to neurobiological
alterations similar to those seen in schizophrenia, including hippo-
campal volume loss44. Gray matter loss in schizophrenia is associated
with medication, stress, drug use and inactivity45,46. In addition, schi-
zophrenia is related to dopaminergic dysregulation, disturbed gluta-
matergic neurotransmission and increased proinflammatory status of
the brain45. The causal interrelationships between these processes and
gray matter loss are still unclear. These findings offer evidence
regarding the specific neuroanatomical locations where gray matter
loss is observed in the schizophrenia subtypes. These two potential
origins could also offer a viewpoint on the pathological ‘spread’ of the
disorder.

The subtyping method exhibits high potential for distinguishing
neurostructural subtypeswith shared pathophysiological foundations.
Notably, subtype 1 displayed larger volume of the striatum, while
subtype 2 demonstrated reduced volume. This was consistent with a
previous study, which also identified two anatomical subtypes of
schizophrenia: one shows enlarged volume in the basal ganglia;
whereas the other shows widespread volumetric reduction in the
cortical and some subcortical areas relative to healthy controls15. The
striatumplays a key role in the dopamine system,which contributes to
psychotic symptoms47. Nevertheless, studies of striatal pathology have
reported inconsistent differences between patients and controls3. The
variability of the striatum is greater in patients than in controls, which
relates to overall structural morphometry28, dopamine D2 receptor
and transporter levels48. This indicates that differences might exist
within subgroups of the disorder3. Alterations in striatal activation are
associated with reward-related deficits in schizophrenia49. A previous
study suggests that disrupted putamen-cortices connectivity during
reward-related processing is directly linked to structural changes in
the putamen50. Despite the unclear causal relationship, this suggests
that the differential effects on striatal volume between the two sub-
types may be related to striatal dysfunction in schizophrenia. In
addition, it is still uncertain whether the discrepancy in striatum
between cases and controls indicates a primary pathology or an effect
of antipsychotic treatment3. Interestingly, this study’s subtype-specific
striatal differences were replicated in a subset of individuals who had
not received antipsychotic treatment, suggesting that striatal

Table 3 | Symptom scores for each subtype at different stages of disease duration

Symptoms Subtype 1 F test Subtype 2 F test

Early Middle Late F p Early Middle Late F p

PANSS Positive scale (P1–P7) 19.5(6.4) 16.0(6.7) 16.7(7.0)* 37.4 1.60E–16 19.6(6.4) 16.0(6.7) 15.2(6.2)* 41.9 4.68E–18

PANSS Negative scale (N1–N7) 16.8(7.3) 17.4(7.4) 18.3(7.7) 4.6 9.98E–03 17.3(7.4) 17.1(7.5) 17.4(7.5) 0.1 0.884

PANSS General scale (G1–G16) 37.6(10.0) 34.1(12.2) 35.3(13.3)* 10.6 2.80E–05 37.7(10.8) 33.7(12.4) 32.7(12.0)* 15.6 2.30E–07

PANSS Total score 73.9(19.7) 67.5(23.2) 70.2(25.0)* 9.3 9.40E–05 74.5(20.9) 66.7(23.4) 65.4(22.4)* 15.7 2.05E–07

PANSS excitement dimension (P4, P7,
G44, G14)

8.8(3.4) 7.9(3.3) 8.2(3.4) 4.9 8.01E–03 8.7(3.3) 7.8(3.4) 7.8(3.7) 4.12 0.017

PANSS depression/anxiety dimension
(G1, G2, G3, G6, G15)

11.2(3.7) 11.7(4.2) 12.5(4.9)* 5.9 2.86E–03 11.4(4.0) 10.8(4.4) 11.3(4.9)* 0.7 0.511

PANSS cognitive dimension (P2, N5, G5,
G10, G11)

10.1(3.7) 10.8(4.0) 12.0(4.6) 13.5 1.74E–06 10.3(3.8) 10.9(3.9) 11.4(4.7) 2.8 0.061

*indicates significant difference between the subtype1 and subtype2 using two sample t test (two-sided p < 0.05, uncorrected), after regressing out the effects of age, sex and SuStaIn stage. n = 579
(347), 362 (216), and400 (282) biologically independent samples in theearly,middleand late stage in subtype 1 (subtype 2) for PANSSpositive, negative andgeneral subscales and total score.n = 377
(220), 144 (86), and 166 (109) biologically independent samples in the early, middle and late stage in subtype 1 (subtype 2) for PANSS depression & anxiety, cognitive dimension and excitement
dimension.
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variability persists even in those without antipsychotic treatment. In
addition, a recent study reveals a more pronounced and widespread
pattern of thinner cortex in deficit schizophrenia, a clinically defined
subtypewithprimary, enduringnegative symptoms, compared tonon-
deficit schizophrenia51. A recent work also reveals that the neuro-
structural signature with cortical reduction was associated with pro-
gressive illness course, worse cognitive performance and elevated
schizophrenia polygenic risk scores52. This also suggests the existence
of distinct subtypes distinguished by unique neuroimaging features.
Taken together, our neurostructural subtyping differentiated sub-
groups with unique pathological features, thereby enhancing our
understanding of the neurobiological mechanisms underlying
schizophrenia.

The two identified subtypes may have several potential ther-
apeutic implications. While the underlying mechanisms associated
with a subtype-specific symptomatic trajectory remain unclear, our
research shows divergent long-term clinical outcomes between the
two neurostructural subtypes. As the disease advanced, for subtype 1,
the negative and depression/anxiety symptoms gradually worsened;
for subtype 2 these symptoms remained stable. In addition, subtype 1
experienced worse positive symptoms than subtype 2 at the late stage
of disease (i.e., duration > 10 years). This is consistent with a prior
study that reported greater gray matter reduction in frontal regions in
treatment-resistant compared with treatment-responsive individuals
with schizophrenia53. Another intriguing aspect is that our prior
research on treatment-resistant schizophrenia demonstrated that
electroconvulsive therapy (ECT) can substantially enhance the volume
of the hippocampus and insula; this is also associated with psychotic
symptom alleviation54–56. Notably, these two brain regions were also
identified as the ‘origins’of graymatter loss separately in each subtype.
This observation raises the possibility of exploring neuromodulation
interventions, such as transcranial magnetic stimulation (TMS), to
target these specific brain regions.

This study has several limitations. First, while the SuStaIn algo-
rithm estimates pathophysiological trajectories from cross-sectional
MRI data, it remains crucial to validate these outcomes with long-
itudinal data to verify the brain changes with disease progression over
time. Second, the current study benefits from a large sample size, but
the inclusion of data from various sites could potentially be influenced
by confounding factors, including diverse cohorts, scanners, and
locations. Harmonization methods have been employed to alleviate
disparities across MRI acquisition protocols. Nonetheless, it remains
essential to collect a sufficiently large sample frommulti-centers under
a standard imaging protocol and experimental paradigm. The lack of
cognitive evaluation limits to examine the association of neuro-
structural biotypewith cognitive impairment in schizophrenia. Third, a
substantial portion of individuals with schizophrenia were likely to
have received or currently usemedications, anddata frommedication-
naïve/free individuals were only available for a subset of the datasets.
One important limitation is the assumption of progressive pathology
in schizophrenia (discrete events of tissue loss or continuous down-
ward drift), when applying SuStaIn. The few existing very long-term
imaging studies in schizophrenia support this stance57 but selection
bias cannot be fully overcome in the recruitment process for neuroi-
maging studies. Routine anatomical MRI for every person with psy-
chosis seeking help, with periodic repeats, may provide better view of
the validity of progressive pathology in the future. The selection of
z-scorewaypoints andmaximumz-score used in the SuStaIn algorithm
should be careful based onprior information about degree of progress
in different diseases. The computational complexity of the SuStaIn
algorithm is highly time-consuming, which limits the exploration of
spatiotemporal patterns of trajectories at finer spatial resolutions.

In summary, our study reveals two distinct neurostructural schi-
zophrenia subtypes based on patterns of pathological progression of
graymatter loss. We extend the reproducibility and generalizability of

these brain imaging-based subtypes across illness stages, medication
treatments and different sample locations worldwide, independent of
macroeconomic and ethnic factors that differed across these sites. The
identified subtypes exhibit distinct signatures of neuroanatomical
pathology and psychotic symptomatic trajectories, highlighting the
heterogeneity of the neurobiological changes associated with disease
progress. This imaging-based taxonomy shows potential for the
identification of homogeneous subsamples of individuals with shared
neurobiological characteristics. This may be a first crucial step in the
transition from only syndrome-based to both syndrome- and biology-
based identification of mental disorder subtypes in the near future.

Methods
Study samples
This study analyzed cross-sectional T1-weighted structural MRI data
from a total of 4,291 individuals diagnosed with schizophrenia (1,709
females, mean age=32.5 ± 11.9 years) and 7,078 healthy controls (3,461
females, mean age=33.0 ± 12.7 years). These datasets came from 21
cohorts of ENIGMA schizophrenia working groups from various
countries around the world, 11 cohorts collected from Chinese hospi-
tals over the last ~10 years, and 9 cohorts from publicly available
datasets, i.e., HCP-EP58, JP-SRPBS59, fBIRN60, MCIC61, NMorphCH62,
NUSDAST63, DS00003064, DS00011565 and DS00430266. The datasets
came from various countries around the world. Details of demo-
graphics, geographic location, clinical characteristics, and inclusion/
exclusion criteria for each cohort may be found in the Supplementary
Information (Supplementary Table 1–2).

The severity of symptoms was evaluated by the Positive and
Negative Syndrome Scale (PANSS)67, including a positive scale (total
score of P1-P7), a negative scale (total score of N1-N7), a general psy-
chopathology scale (total score of G1-G16) and total score. In addition,
phenotypic characteristics were further quantified in three dimen-
sions, such as cognitive (total score of P2, N5, G5, G10, G11), depres-
sion/anxiety (total score of G1, G2, G3, G6, G15) and excitement (total
score of P4, P7, G44, G14) via a five-factor model of schizophrenia68.

All sites obtained approval from their local institutional review
boards or ethics committees, and written informed consent from all
participants and/or their legal guardians. The present study was car-
ried out under the approve from the Medical Research Ethics Com-
mittees of Fudan University (Number: FE222711).

Image acquisition, processing and quality control
T1-weighted structural brain MRI scans were acquired at each study
site. We used a standardized protocol for image processing using the
ENIGMA Computational Anatomy Toolbox (CAT12) across multiple
cohorts (https://neuro-jena.github.io/enigma-cat12/). These protocols
enable region-based gray matter volume (GMV) measures for image
data based on the automated anatomical (AAL3) atlas69. Further details
of image acquisition parameters and quality control may be found in
Supplementary Table 1–2.

Data harmonization
The ROI-wise GMV measures were first adjusted by regressing out the
effects of sex, age, the square of age, site and total intracranial volume
(TIV) using a regression model22. Subsequently, a harmonization pro-
cedure was performed using the ComBat algorithm for correcting
multi-site data70. The adjusted values were transformed as z-scores
(i.e., normative deviations) relative to the healthy control group. We
multiplied these z-scores by -1 so that the z-score increases as regional
GMV decreases. Finally, we removed these samples if they were
marked as a statistical outlier (if any of their regional volumes
>5 standard deviations away from the group-level average). After the
quality control, 11,260 individuals were included, of which 4222 were
schizophrenia patients (1683 females, mean age=32.4 ± 12.4 years) and
7038 healthy subjects (3440 females, mean age=33.0 ± 12.4 years).
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Disease progress modeling
To uncover diverse patterns of pathophysiological progression from
cross-sectional only MRI data and cluster individuals into groups
(subtypes), we employed a machine learning approach—Subtype and
Stage Inference (SuStaIn)19. The methodology of SuStaIn has been
described in detail previously19. We also describe the applicability of
SuStaIn algorithm to schizophrenia in Supplementary Materials. Here,
we briefly describe the main parameter choices specific to the current
study. The SuStaIn model requires an M ×N matrix as input. M repre-
sents the number of cases (M = 4222). N is the number of biomarkers
(N = 17). 17 gray matter biomarkers were previously used for SuStaIn
modeling in schizophrenia22. Here, all of the AAL3 regions of whole
brain were separated and merged into 17 regions of interest (ROIs)22,
including frontal lobe, temporal lobe, parietal lobe, occipital lobe,
insula, cingulate, sensorimotor, Broca’s area, cerebellum, hippo-
campus, parahippocampus, amygdala, caudate, putamen, pallidum,
accumbens and thalamus (Supplementary Table 7). We further exam-
ine the relationship between regional volume and illness duration in
patients with schizophrenia using the Spearman correlation test
(Supplementary Fig. 7). To keep consistent with our previous study22,
we used the z-score thresholds (z = 1, 2, 3) as “waypoints” of severity in
the SuStaInmodel. Themaximum z-score in the SuStaIn algorithmwas
defined at z = 5 according to maximum z-score for each biomarker
(Supplementary Table 8). We also performed a replication analysis
with a reduced maximum z-score (z = 4) (Supplementary Fig. 8). We
then ran the SuStaIn algorithm with 25 start points and 100,000
Markov Chain Monte Carlo (MCMC) iterations19 to estimate the most
likely sequence that describes spatiotemporal pattern of pathophy-
siological progression (i.e., ‘trajectory’).

First, we used the Hopkins statistics to establish whether the
data is clustered. A high value (H = 0.7756) shows a high clustering
tendency at 90% confidence level, supporting a robust existence of
clusters. SuStaIn can identify diverse trajectories of pathophysiolo-
gical progression given a subtype number K. We fitted the model for
K = 2-6 subtypes (‘trajectories’), separately. The optimal number of
subtypes was determined according to the reproducibility of indivi-
dual subtyping via a two-fold cross-validation procedure22. Specifi-
cally, all individuals were randomly split into two non-overlapping
folds. This above procedure was repeated ten times. For each fold,
we trained the SuStaIn model. For each individual, the trained SuS-
taIn model provides a subtype label. Wemeasured the consistency of
the subtype labeling across all individuals between two folds by using
the Dice coefficient. The largest Dice coefficient was obtained for
K = 2 (see Fig. 1a), indicating the best consistency based on cross-
validation. Finally, the two-cluster model of SuStaIn was fitted to the
entire sample. The most probable sequence (i.e., the order of bio-
markers) was evaluated for each ‘trajectory’ via SuStaIn. For each
individual, SuStaIn calculated the probability (ranging from 0 to 1) of
belonging to each ‘trajectory’, and assigned the individual into a sub-
stage of the maximum likelihood ‘trajectory’ through MCMC itera-
tions. We also estimated the SuStaIn ‘trajectories’ based on a
subsample from individuals with first-episode schizophrenia whose
illness duration was less than two years (N = 1122, 513 females, mean
age=25.4 ± 8.6 years), and a subsample of medication-naïve indivi-
duals with schizophrenia (N = 718, 353 females, mean age=23.7 ± 7.8
years).

Visualization of pathophysiological progression trajectory
To visualize the spatiotemporal patterns of pathophysiological pro-
gression, we calculated the mean z-score of regional GMV across
individuals belonging to the same substageof each SuStaIn ‘trajectory’.
The images of ROI-wise GMV z-scores were mapped into a glass brain
template via visualization tools implemented in ENIGMA Toolbox
(https://enigma-toolbox.readthedocs.io/en/latest/index.html) and
BrainNetViewer (https://www.nitrc.org/projects/bnv/).

To examine whether the SuStaIn stage (a continuous indicator of
the ‘temporal’ stage of SuStaIn ‘trajectory’) is associated with patho-
logical processes and clinical characteristics in schizophrenia, we
performed Spearman correlations between the SuStaIn stages and the
degree of brain atrophy (i.e., regional GMV) in schizophrenia. We also
examined whether SuStaIn stages were linked to disease duration,
severity of symptoms, and phenotypic characteristics.

Neuroanatomical signatures using regional morphological
measures
To further characterize the neuroanatomical signatures associated
with each subtype, we conducted regionalmorphological analyzes in a
subsample including 1840 individuals with schizophrenia and 1780
healthy controls. Brain morphological measures, such as cortical
thickness, cortical surface area, cortical volume and subcortical
volume, were quantified using FreeSurfer (version 7.3, http://surfer.
nmr.mgh.harvard.edu/). A total of 68 × 3 regionalmeasures for cortical
thickness, cortical surface area and cortical volume were extracted
based on the DK atlas71, along with 14 subcortical regions (bilaterally
nucleus accumbens, amygdala, caudate, hippocampus, pallidum,
putamen and thalamus) and 2 lateral ventricles. In addition, we per-
formed an automated subregion segmentation (https://surfer.nmr.
mgh.harvard.edu/fswiki/SubregionSegmentation) for the hippo-
campal substructures (n = 38 subregions)72, the nuclei of the amygdala
(n = 18)73, the thalamic nuclei (n = 50)74, and the brain stem structures
(n = 4)75, yielding a total of 110 subregional volumetric measures.

Regional morphological measures for each individual with schi-
zophrenia were adjusted by regressing out the effects of sex, age, the
square of age, TIV and site, and then transformed to z-scores (i.e.,
normative deviations from healthy control group). The mean regional
morphological z-score across individuals belonging to each subtype
was calculated, and mapped to brain templates for visualization of
neuroanatomical signature deviation for each subtype relative to
healthy population. To further manifest subtype-specific signature in
neuroanatomical pathology, we compared the regionalmorphological
z-scores between the two subtypes using two sample t-tests. Multiple
comparisons were corrected by family wise error (FWE) correction.

Distinct symptom profiles between subtypes
To characterize the psychotic symptomatic trajectory with disease
duration increases for each subtype, we further divided the individuals
of each subtype into three subgroups according to their illness dura-
tions (early stage: <2 years; middle stage: 2-10 years; late stage: >10
years). The particular choice of bins was determined according to the
distribution of illness duration (early stage n = 926, middle stage
n = 578, late stagen = 682) and the size of subgroup enough to perform
an inter-subtype comparison. We compared the difference of symp-
toms among the three stages of disease in each subtype using ANOVA.
In addition, two sample t tests were performed to compare the inter-
subtype differences separately within each of the stages after regres-
sing out the effects of age, sex and SuStaIn stage.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw image and clinical data areprotected and are not available due
to data privacy laws. The processed data are available through the
following links. Data of NMorphCH, FBIRN and NUSDAST were
obtained from the SchizConnect, a publicly available website (http://
www.schizconnect.org/documentation#by_project). The NMorphCH
dataset and NUSDAST dataset were download through a query inter-
face at the SchizConnect (http://www.schizconnect.org/queries/new).
The FBIRNdatasetwas download fromhttps://www.nitrc.org/projects/
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fbirn/. The DS000115 dataset was download from OpenfMRI database
(https://www.openfmri.org/). The DS000030 dataset was available at
https://legacy.openfmri.org/dataset/ds000030/. The DS004302
dataset was available at https://openneuro.org/datasets/ds004302/
versions/1.0.1. The HCP-EP dataset was available at https://www.
humanconnectome.org/study/human-connectome-project-for-early-
psychosis/. The Japanese SRPBS Multi-disorder MRI Dataset was
available at https://bicr-resource.atr.jp/srpbsopen/. Requests for
ENIGMA data can be applied via the ENIGMA Schizophrenia Working
Group (https://enigma.ini.usc.edu/ongoing/enigma-schizophrenia-
working-group/). The statistical data generated in this study are pro-
vided in the Supplementary Information/Source Data file. Source data
are provided in this paper.

Code availability
SuStaIn algorithm is available on the UCL-POND GitHub (https://
github.com/ucl-pond/). T1-weighted images were processed using the
Computational Anatomy Toolbox for Standardized Processing of
ENIGMA Data (https://neuro-jena.github.io/enigma-cat12/). A protocol
for the current data processing is available at https://docs.google.com/
document/d/1lb9v0v4j_OrgAKDh6_9fl3Hz2Wcfg46c/edit/. FreeSurfer
(version 7.3, http://surfer.nmr.mgh.harvard.edu/) was used to quantify
various morphological measures, such as cortical thickness, cortical
surface area, cortical volumeand subcortical volume. The visualization
of ROI-wise z-score images was conducted using BrainNetViewer
(https://www.nitrc.org/projects/bnv/). Other custom codes developed
in the current study are available at GitHub (https://github.com/
YuchaoJiang91/ENIGMA-SCZ-SuStaIn-Subtype).
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