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ABSTRACT OF THE DISSERTATION 

 

 

 Engineering Porous Silicon for a Top-Down Approach  

to Controlled Drug Delivery 

 

by 

 

Ariella Machness 

Doctor of Philosophy in Materials Science and Engineering 

University of California, Los Angeles, 2020 

Professor Mark S. Goorsky, Chair 

 

 

Nanocarriers that localize a therapeutic to a disease site and release it “on-demand” via the 

clinician’s control will mitigate the adverse effects that reduce a patient’s quality of life while 

undergoing oncology treatment. Moreover, magnetically actuated drug delivery carriers are 

appealing platforms in next-generation targeted medicine, yet these carriers must be compatible 

with scalable fabrication techniques to realize their clinical translation. In this dissertation, a 

magnetically capped porous silicon nanocomposite (APTESPSi@Fe3O4), that responds to 

physiologically relevant temperatures, was developed using cost-effective, highly scalable 

methods such as electrochemical etching. Fourier transform infrared spectroscopy (FTIR), 

CHNS elemental analysis, and zeta potential confirmed that accelerated hydrolysis at 45 °C 

altered the porous silicon surface chemistry. This hydrolysis-mediated electrostatic degradation 

between the porous silicon and Fe3O4 caps translated to a thermoresponsive release behavior in 

dissolution studies with sorafenib (SFN), where minimal drug was released at room temperature
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and 37 °C, while an enhanced release occurred at 45 °C and 50 °C. The magnetic heat dissipation 

capabilities with application of an alternating magnetic field (AMF) was calculated by the 

specific absorption rate (SAR) through calorimetry and magnetic susceptibility measurements. 

Comparing these two methods revealed that the electrostatic interactions between the porous 

silicon and Fe3O4 do not hinder the Brownian relaxation and heat dissipation. The 

nanocomposite and its components demonstrated high cytocompatibility after 24 hours with 

RAW 246.7, MDA-MB-231, and HepG2 cells, but not with MCF-7. High cytocompatibility was 

also observed when the cells incubated with particles were heated to 45 °C for 15 min followed 

by 37 °C for the remaining 6 hour incubation period. Porous silicon and its nanocomposite 

improved the SFN solubility in in vitro studies with MDA-MB-231 and HepG2, resulting in 

increased anticancer activity in comparison to the free drug. Moreover, the anticancer activity 

was readily controlled from the magnetic nanocomposite by modulating the amount of SFN 

released with temperature. Confocal microscopy and flow cytometry showed a higher uptake of 

the amine-modified porous silicon in comparison to the magnetic nanocomposite in MDA-MB-

231 cells. The temperature increase to 45 °C showed a reduced particle uptake, yet future studies 

monitoring the fluorescence from the free drug rather than the nanocarrier will prove useful. This 

novel system has laid the groundwork for a promising tool for clinicians to lessen the burden that 

millions of cancer patients face as they receive treatment.  
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Chapter 1. Introduction 

 

According to the World Health Organization (WHO), cancer is the second leading global 

cause of death and accounted for an estimated 9.6 million deaths in 20181,2. Chemotherapy is 

currently a standard treatment for a variety of cancers3. However, a chemotherapy dose is 

typically administered systemically and is indiscriminate between killing healthy and cancerous 

cells, resulting in a high frequency and severity of patient-reported chemotherapy side effects. 

For example, in a study surveying 449 chemotherapy recipients 86% of participants reported at 

least one side effect, 67% reported experiencing six or more side effects, and 27% reported a 

grade IV side effect, most commonly fatigue or dyspnea4. These side effects, which could often 

diminish a patient’s quality of life, necessitates a transition from the “one-size fits all” approach 

in cancer therapy. As researchers and clinicians realize a patient specific, or targeted, therapeutic 

approach, cancer is viewed as a pathological relationship between an organism and an 

environment5. Cancer cells and host cells form an ecosystem, where, initially, the cancer cells are 

an invasive species to a new environment, the body, and eventually, the cell interactions modify 

this environment.  

The new era of oncology therapy is encouraging researchers to pay more attention to the 

soil5, such that the patient receives the most appropriate treatment given the environment. These 

efforts include the detection of genetic mutations within a patient that are a predictive factor of 

poor prognosis. For example, del (17p), a deletion on the short arm of chromosome 17, is a vital 

prognostic marker in chronic lymphocytic leukemia (CLL) that is associated with poor outcomes 

and rapid disease progression6,7. While precision medicine is typically associated with a genetic 

approach to patient care, it has also been noted for increasing a drug’s versatility to adapt to a 
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cohort of patients. Researchers are turning to nanomedicine, an interdisciplinary research field 

that applies nanotechnology to medicine, to improve and diversify the way chemotherapy and 

other cancer treatments interface with the body’s cancer ecosystem.  

Nanomedicines are conferring an enhanced therapeutic index to existing therapies or 

enabling new treatment approaches (i.e., CRLX101 developed by Cerulean and AZD2811 

developed by AstraZeneca) by aiming for a “right target” and “right exposure”8. By enhancing 

the therapeutic index, patient safety and tolerability can improve and enable more drug to be 

administered to achieve a more pronounced affect, such as anticancer activity. For instance, 

AbraxaneTM is an albumin-bound formulation of the chemotherapeutic paclitaxel that received 

Food and Drug Administration (FDA) approval in 2005 as a second-line treatment for metastatic 

breast cancer9. This example utilizing nanomedicine has allowed higher doses of paclitaxel to be 

administered to patients in comparison to the regular formulation TaxolTM, because AbraxaneTM
 

avoids the use of CremophorTM, which is associated with hypersensitivity8. By binding the 

protein albumin to paclitaxel, the total dose of paclitaxel being administered for metastatic breast 

cancer patients is reduced by 85%9,10. While the first generation of nanopharmaceuticals on the 

market focused on drug reformulation, the nanopharmaceutical market is expected to grow on 

the account of second-generation products, particularly the delivery of biotherapeutics (i.e. 

recombinant proteins, monoclonal antibodies, antibody fragment, and nucleic acids such as small 

interfering ribonucleic acid (siRNA) and gene editing constructs)11. Nucleic acids have emerged 

as promising candidates for drug therapy in various diseases and are now recognized as the third 

major drug discovery platform in addition to small molecules and antibodies12. While this new 

class of therapies is promising, siRNA is prone to enzymatic degradation before reaching the 

target site13. Therefore, nanomedicines will be critical in protecting the molecule during delivery 
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to the diseased site. The combination of nanomedicines and siRNA has made its way to the 

clinic, with Onpattro, a liposomal formulation of siRNA, recently gaining FDA approval for 

treating polyneuropathies resulting from the hereditary disease transthyretin-mediated 

amyloidosis (hATTR)14.  

Nanomedicines have the potential to not only increase therapeutic efficacy and promote 

patient quality of life, but also to enable remote-control access to delivery by clinicians. By using 

external stimuli (i.e. light, magnetic field, ultrasounds) to actuate the therapeutic payload in the 

vicinity of the tumor microenvironment or upon tumor cellular uptake the therapeutic efficacy 

can further improve. Moreover, a remotely actuated drug delivery system could inherently tailor 

the patient’s dose regimen. For example, a clinician can tune remotely controlled parameters 

such as magnetic field frequency and amplitude to modulate the amount of drug released. 

Therefore, the same formulation can possess varying pharmacokinetics based on the desired 

response for a patient. Progressing nanomedicine therapeutics to the clinic has been slow, as was 

the case for early antibody therapeutics8. One underlying reason for the limited clinical 

translation is the technical and cost challenges in scale-up and manufacturing15. These 

nanocarriers tend to consist of multiple components that are either costly or tedious to 

synthesize, and therefore cannot readily scale for mass commercialization. In academic 

laboratories, micrograms or milligrams of product are usually produced, while grams or 

kilograms are necessary for preclinical screening, clinical trials, and, ultimately, clinical use11. 

Therefore, a material that can be readily scaled for clinical use should be considered in drug 

delivery research.  

Porous Silicon (PSi) is a promising drug delivery carrier due to its biocompatibility, high 

surface area (up to 700-1,000 m2/g), tunable pore structure with pore volumes > 0.9 cm3/g, and 
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versatile surface chemistry16. Moreover, this material is compatible with microfabrication 

techniques commonly used in the electronics industry. Thus, PSi can potentially overcome 

challenges associated with scaling-up nanomaterial synthesis and formulation from the lab to 

industrial scale while maintaining control over their diverse properties. In this work, PSi was 

used to engineer magnetically actuated drug delivery nanocarriers that are compatible with 

scalable fabrication techniques to realize their clinical translation. Moreover, encapsulating 

poorly water-soluble or degradation-prone therapeutics inside the PSi nanocarrier can revive 

promising therapeutics that previously failed in clinical trials due to the their poor solubility.  

Overall, this dissertation aims to: 

1. Develop a magnetic PSi nanocarrier system comprised of cost-effective, highly scalable 

materials to overcome fabrication challenges typically associated with clinical translation 

of nanomedicines 

2. Investigate the biocompatibility and cellular interaction of the magnetic PSi nanocarrier 

system with various cancer cell and macrophage lines. 

3. Utilize the magnetic PSi nanocarrier system to improve the delivery of poorly water-

soluble drugs in a controlled, thermoresponsive manner. 

Chapter 2 provides an extensive literature review on the field of nanomedicine, PSi fabrication, 

magnetic NPs application in drug delivery, and the combination of PSi and magnetic NPs to 

form localized, thermoresponsive nanocomposites. Chapter 3 discusses the fabrication and 

optimization of magnetic PSi nanocomposites and its components. The magnetic and 

thermoresponsive behavior is investigated for amine-modified PSi nanoparticles (NPs) capped 

with electrostatically bound Fe3O4 NPs in Chapter 4. Chapter 5 observes the biocompatibility 

and cellular interaction of the magnetic PSi nanocomposite with cancer and macrophage cell 
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lines. Moreover, the anticancer activity of a poorly water-soluble drug encapsulated in the 

nanocomposite is investigated. In Chapter 6, a physical encapsulation method, nanoprecipitation, 

is used to fabricate thermoresponsive PSi NPs in a facile, highly scalable manner in comparison 

to typical chemical conjugation methods. Future experiments and conclusions are finalized in 

Chapter 7. Overall, this work provides a proof-of-concept of an on-command drug delivery 

system using cost-effective, highly scalable fabrication processes. This establishes an 

opportunity for the clinical translation of a nanocarrier that can potentially localize the 

therapeutic and trigger its release “on demand” once it has been endocytosed by the target cell to 

mitigate systemic exposure and reduce clinical side effects. 
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Chapter 2. Background and Literature Review 

 

2.1 Field of Nanomedicine 

With nearly 90% of therapeutics in the drug development pipeline possessing poor 

solubility17 and clinical translations hindered by adverse effects that outweigh therapeutic 

benefit18, the search remains for a “magic bullet” in the pharmaceutical industry. 

Nanotechnology has the potential to overcome some of the challenges that allow only 5% of 

therapeutics in the clinical pipeline to reach the market19. More specifically, the field of 

nanomedicine, defined by Nature publishing group as “a branch of medicine that applies the 

knowledge and tools of nanotechnology to the prevention and treatment of disease,” has 

precisely engineered nanoscale materials to develop novel therapeutic and diagnostic 

modalities20. The concepts of nanomedicine were posited as early as 1908, with Paul 

Ehrlich’s “magic bullet”, or drugs that go straight to their intended cell-structural targets, to 

specifically destroy invading microbes or tumor cells21. Moreover, in 1959 Richard 

Feynman’s lecture “There's plenty of room at the bottom” encouraged researchers to develop 

nanodevices that interact with the body at the cellular level22.  The combination of designing 

advanced nanoscale materials and increasing the molecular understanding of diseases has 

deepened the field’s knowledge on how to exploit nanotherapeutics in the clinic. This 

knowledge has led to the development of nanopharmaceuticals, nanodiagnostics, 

nanotheranostics and nanobiomaterials11.  

The growing interest in these applications is evident through the increasing number of 

publications and FDA-approved products11,23,24. A query of research publications in the PubMed 

database from 198'0 to 2017 containing the terms “NP” and “implant” or “NP” and “drug 
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delivery” are shown in Figure 2.1a, along with the number of FDA-approved products23. A 

PubMed query for the terms “NP” and “drug delivery” from 1995-2018 are shown on a complete 

scale in Figure 2.1b.  

 

Figure 2.1 a) FDA-approved medical devices (black squares) and drugs (black circles) containing nanostructures. 

The blue squares and blue circles correspond to the number of research publications for nanostructure-containing 

medical devices and drugs. b) Number of publications containing the terms ‘nanoparticle’ and ‘drug delivery’ from 

1995-2018 obtained from a PubMed query. Fig. 2.1a adapted from ref 8.  

NP drug delivery publications surged in the early 2000’s and greatly surpass the number 

of publications on NP-containing medical devices. However, the market of FDA-approved 

products has been dominated by the latter, probably due to the lower cost and regulatory hurdles 

associated with medical devices25. Nonetheless, NPs for drug delivery applications continues to 

generate interest in the clinic, with more than 200 companies across the world currently 

developing nanopharmaceuticals and market reports anticipating that 15% of the total 

pharamaceutical market would be dominated by nanopharmaceuticals in 201911. The first 

generation of nanopharmaceuticals on the market focused on drug reformulation, with the most 

successful example being Doxil, a liposomal formulation of the chemotherapeutic doxorubicin. 

The nanopharmaceutical market is expected to grow on the account of second-generation 

products, particularly the delivery of biotherapeutics (i.e. recombinant proteins, monoclonal 
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antibodies, antibody fragment, and nucleic acids such as siRNA and gene editing constructs)11,26. 

Encapsulation of next-generation therapeutics into NPs will be critical to stabilizing and 

protecting sensitive biomolecules from degradation, such as nucleic acids that readily degrade in 

biological fluids 13,27. Recently, Onpattro, a liposomal formulation of siRNA, was approved for 

treating polyneuropathies resulting from the hereditary disease transthyretin-mediated 

amyloidosis (hATTR)14.  

The oncology sector has generated the highest research and clinical translation interest in 

nanopharmaceuticals. According to WHO, cancer is the second leading cause of death and is 

responsible for about 1 in 6 deaths globally1,2. Cancers are often treated with chemotherapeutics3, 

which are administered systemically and result in adverse effects such as weakened immune 

system, increased bruising and bleeding, nausea and vomiting4. Thus, there is a need to improve 

cancer treatment regimens while improving the patient quality of life during treatment28. Around 

60.1% of nanomedicine articles published between 2013 and 2019 investigated oncology 

applications24. Moreover, oncological therapeutics comprised the highest fraction of annual sales 

of NP-based drug delivery systems in 201511. Nanomedicine has gained the highest attention in 

oncology, because these nanocarriers can deliver hydrophobic molecules, protect the free drug 

from premature degradation13, enhance absorption into a selected tissue (i.e. a solid tumor), 

improve intracellular penetration29–31, control the pharmacokinetics32, and improve the 

biodistribution profile through an extended circulating half-life33,34. Overall, these advantages 

yield nanocarriers that increase local drug concentration and reduce the systemic toxicities that 

result in patients discontinuing use of the therapeutic. 

Although conventional chemotherapy has shown some success, its main drawbacks 

include poor bioavailability, non-specific targeting and high-dose requirements that result in 
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adverse side effects, and the development of multiple drug resistance35. As previously 

mentioned, nearly 90% of drugs in the development pipeline and 40% of approved drugs are 

poorly water soluble17, including chemotherapeutics such as paclitaxel, doxetacel, and 

methotrexate. This hydrophobicity is problematic, because any drug to be absorbed must be 

present in the form of an aqueous solution at the site of absorption36. Therefore, higher doses will 

be required to reach therapeutic plasma concentrations for a pharmacological response35. 

Consequently, higher doses of chemotherapy may result in serious complications, such as cardiac 

toxicity37, peripheral neurotoxicity38, and bone marrow39. One example of a nanocarrier that 

increased the solubility and decreased the administered dose of paclitaxel is Abraxane, an 

albumin-bound paclitaxel drug that was approved by the FDA in 2005 as a second-line treatment 

for metastatic breast cancer9. Conventional paclitaxel preparations are dissolved in Cremophor® 

EL* (polyoxyethylated castor oil) due to its poor aqueous solubility, but this solvent-based 

paclitaxel is associated with risk of hypersensitivity and requires premedication with steroids and 

antihistamines8. By binding the protein albumin to paclitaxel the total dose of paclitaxel being 

administered for metastatic breast cancer patients is reduced by 85% 9,10. Nanocarriers are also 

utilized to diminish the vulnerability of a therapeutic to premature degradation and clearance. 

Nanoparticle Administration and Biodistribution 

There are several routes of NP administration into the body, including intraosseous (IO, 

injection into the marrow bone), intraperitoneal (IP, injection into the abdomen), subcutaneous 

(SC, injection under the skin), intravenous (IV, injection into the veins), and intramuscular (IM, 

injection into the muscles). IV injection has been the most common method of administration in 

cancer-related publications40. Once the NPs are introduced into systemic circulation, they 

immediately face a biological barrier: the mononuclear phagocyte system (MPS)15,41,42. The MPS 
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consists of phagocytic cells that reside within the liver, spleen, lymph nodes and bone marrow, 

and sequesters the NPs typically into the liver and spleen before being able to reach the 

therapeutic site of interest43,44. Figure 2.2 shows how NPs are cleared from the bloodstream and 

accumulate in the MPS-related tissues or organs before entering the tumor.  

 

Figure 2.2 Systemically delivered nanoparticles are cleared from the bloodstream and accumulate in several tissues 

or organs comprising mononuclear phagocytic system (i.e. liver, spleen) before entering the tumor. The liver and 

spleen, and to a certain extent the bone marrow, can entrap large amounts of blood-borne nanoparticles as they enter 

systemic circulation. Nanoparticles less than 6 nm in diameter may be filtered from the blood by the kidneys and 

excreted in the urine. Image adapted from ref 37.  

Moreover, materials <6 nm are filtered by the kidneys and excreted renally in urine or 

feces45–47. Materials in the 20- 200 nm size range can avoid renal filtration, allowing prolonged 

residence time in the bloodstream and a higher chance of reaching the diseased tissue46. 

Encapsulating therapeutics into nanocarriers mitigates renal filtration upon introduction into the 

bloodstream. Moreover, therapeutics have widely been conjugated with poly (ethylene glycol) 

(PEG) to improve the pharmacokinetics (i.e. increasing the therapeutics’ half-life circulation in 

the bloodstream)33,48,49.  
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Tumors have the tendency to preferentially take up and retain macromolecules, in part 

due to physiological abnormalities in the blood and lymphatic vessels. Tumor vessels possess 

leaky blood vessels resulting from large interendothelial cell junctions, as shown in Figure 2.342.  

 

Figure 2.3 Unlike normal tissues, tumors have leaky vasculatures and dysfunctional lymphatics. This allows 

nanoparticles to passively extravasate and be retained within the tumor interstitium, also termed the enhanced 

permeation and retention (EPR) effect. With passive targeting NPs can interact non-specifically with different cell-

membrane receptors to extravasate into the tumor microenvironment. Image adapted from reference 37. 

Histologic evaluations have shown that pores between interendothelial junctions in some 

tumours were as large as a few micrometres in diameter, resulting in significantly higher 

vascular permeability relative to normal tissues50,51. This leaky vasculature allows NPs to 

passively extravasate between the endothelial cells and has been the mechanistic basis for the 

enhanced permeation and retention (EPR) effect that is commonly attributed to passively 

delivering nanomedicines into tumors52–54. Once the NPs are introduced into the tumor cells via 
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endocytosis, NPs are degraded by lysosomes and then soluble products are released back into the 

bloodstream for renal filtration (when products are < 6 nm) and subsequent excretion by 

urine55,56. Considering the biological barriers NPs face during IV administration before reaching 

a tumor, potential premature drug degradation and release can result in unintended off-targeting, 

toxic effects. Clinical interventions or changes in the tumor microenvironment can be exploited 

to localize and control the therapeutic release at the site of interest.  

Stimuli Responsive Nanocarriers 

Localized and controlled release can be monitored through internal stimuli (i.e. changes 

in environmental pH57–60) or external stimuli (i.e. light61–63, magnetic field64–66). Internal stimuli 

include variation in physiological parameters that often characterize the disease to be targeted. 

With cancer, local changes in the tumor region such as acidic pH67 and increased concentration 

of specific enzymes and reactive oxygen species (ROS)68 is observed. With local acidification at 

the tumor site, polymers polymerized from acrylic acid, methacrylic acid, maleic anhydride and 

N,N-dimethylaminoethyl methacrylate are widely used to dissolve the nanocarrier upon exposure 

to acidic pH69. Moreover, the FDA-approved cationic polymer aminoalkyl methacrylate 

copolymer (Eudragit E) has increased solubility in acidic environments and has been used for 

suppressing a burst drug release profile in the oral cavity70. Overexpression of enzymes such as 

matrix metalloproteinases (MMPs) and hyaluronidase (HAase) are closely associated with tumor 

invasion and metastasis71–73. For example, a cell-penetrating peptide-modified liposome core 

with a hyaluronic acid-based crosslinked shell encapsulated a tumor necrosis factor-related 

apoptosis inducing ligand (TRAIL), or a cytokine that binds to death receptors on the plasma 

membrane74. In the tumor microenvironment, the hyaluronic acid shell was dissolved by the over 

expressed HAase, resulting in the TRAIL release. Higher ROS concentrations in tumors versus 
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normal tissue is due to the presence of reducing agents such as glutathione75. The redox-sensitive 

diselenide linkage and disulfide conversion into thiols have been incorporated into material 

systems for ROS-targeted drug delivery76.  

Drug delivery systems that can actuate a payload release by external stimuli remain 

largely experimental but are particularly promising because of their potential to control drug 

localization and release “on demand”69,72. More specifically, activation by external stimuli can 

remotely localize and actuate the carrier, improving the biodistribution while mitigating toxicity 

in a highly controlled, remote manner. Some examples of external stimuli include light61,63, radio 

frequencies (RF)77, ultrasound78,79, and magnetic field65,80,81. One way in which external stimuli 

induce carrier release is by modulating the temperature of thermoresponsive carriers. For 

example, alternating magnetic fields (AMFs) generate heat in magnetic materials as a result of 

Neel relaxation, Brownian relaxation and hysteresis losses82–84 that result in nanocarrier phase 

transitions or the breaking of thermally labile bonds. Gold–gold sulfide nanoshells incorporated 

into poly(N-isopropylacrylamide-co-acrylamide) (PNIPAM-AAM) hydrogels initiated 

temperature changes with application of near-infrared light that resulted in the burst release of 

methylene blue and proteins of varying molecular weight85. While most commercialization and 

research efforts in nanomedicine have focused on polymer-based nanocarriers, inorganic 

materials have also gained attention as promising targeted drug delivery vectors. 

2.2 PSi in the Field of Nanomedicine 

Although silicon (Si) has been more commonly associated with computer chips than drug 

delivery, it has gained attention in nanomedicine applications since the discovery of PSi as a 

biocompatible material86,87. PSi was initially discovered by Uhlir at Bell Laboratories in the mid 

1950’s88 when he attempted to electrochemically machine Si wafers for their use in 
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microelectronic circuits. However, it was not until the discovery of PSi’s photoluminescent 

properties by Canham in the early 1990s89,90 where the material’s interest resurfaced. 

Subsequently, with the discovery of PSi’s biocompatibility and biodegradability in the mid-

1990s86,87,91, a surge of PSi-related publications emerged in the early 2000s (Figure 2.4a). The 

increase in PSi publications with drug delivery applications emerged a few years later (Figure 

2.4b) and currently constitutes around 20% of PSi-related publications.  

 

Figure 2.4 A query of research publications in the PubMed database was used to determine a) the number of 

publications containing the term ‘porous silicon’ from 1990-2019 and b) the number of publications containing the 

term ‘porous silicon’ and ‘drug delivery’ from 1999-2019. 

The material has also found other biomedical-related applications such as optical biosensors, 

biomolecular screening, and tissue engineering92. PSi exhibits attractive properties for controlled 

drug delivery applications, including a large surface area (up to 700-1,000 m2/g) for surface 

functionalization, tunable pore structure with pore volumes > 0.9 cm3/g, luminescence, and 

convenient surface chemistry93–95. The PSi surfaces can be readily modified to control and 

monitor the release rate of drug payloads, or to increase intracellular concentration through 

targeting moieties such as tumor-specific ligands96–98. One way of forming PSi is by 
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electrochemical etching of single crystalline silicon wafers in a hydrofluoric acid (HF) 

electrolyte solution. The wafer is anodically biased in the fluoride- based electrolyte solution.  

PSi Electrochemical Etching 

PSi formed by electrochemical etching in HF is highly controlled, allowing the tailoring of 

pore sizes and volumes from the scale of microns to nanometers. Dissolution of the Si wafer 

requires the presence of a hole for the initial oxidation steps. Lehmann and Gohele proposed that 

a divalent Si oxidation state is formed when the hole is captured, and an electron is subsequently 

injected. The Si surface continuously switches between a hydride and fluoride during the 

electron/ hole exchanges.  Moreover, Lehmann proposed that silicon hydride bonds passivate the 

surface unless a hole is available 99. Figure 2.5 shows the mechanism for the dissolution 

occurring on the silicon surface. The final products for Si in an aqueous HF solution are 

hexafluorosilicic acid, H2SiF6, and H2 gas.  

 

Figure 2.5 Proposed reaction mechanism for the a) formation of PSi through electrochemical etching b)  and 

degradation in aqueous solutions, adapted from reference 107 (i) A Si-H-terminated surface immersed in H2O. (ii) 

The Si-H bond undergoes hydrolytic attack and is converted to Si-OH, producing a hydrogen molecule. (iii) The Si-

OH at the surface polarizes and weakens the Si-Si backbonds, which are then attacked by H2O, producing 

HSi(OH)3. (iv) In solution, the HSi(OH)3 molecule is converted to Si(OH)4 releasing a second hydrogen molecule 
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Characteristic dimensions governing pore geometry and morphology, such as average pore 

diameter, distance between pores, and spacing between branches, are modelled by the width of 

the space charge region (LSCR), pore tip radius (LAV), and diffusion instabilities 100.  

The etching parameters typically used to vary the PSi morphology include electrolyte 

concentration, etching current, etching time, dopant, and dopant concentration. The electrolyte 

concentration and etching current play a role in pore sizes, porosity and layer thicknesses while 

the dopant and dopant concentration determine the pore geometry. The composition of the HF 

electrolyte solution influences the final porosity of the PSi because it determines the number of 

fluoride and hydrogen ions available for the dissolution reaction. While an increase in HF 

provides more fluoride ions to participate in the PSi formation, more hydrogen ions are present 

to effectively passivate the surface Si atoms. Therefore, fluoride ions are less likely to bond with 

Si to form the final dissolution product resulting in an inverse relationship between electrolyte 

concentration and porosity 101. In addition, hydrogen gas is a byproduct of the reaction, and 

surface wetting agents such as ethanol are used to prevent hydrogen gas bubbles from adhering 

onto the silicon surface which would lead to non-uniform films.  

Etching current varies the pore size, porosity, and layer thickness. There is a current 

threshold for the current density above which electropolishing will occur. This critical etching 

current is dependent on the electrolyte concentration and temperature of the etching solution as 

described by Equation 2.1 below.  

𝐽𝑃𝑆𝑖 = 𝐴 𝑒𝑥𝑝 (−
𝐸𝑎

𝑘𝑇
) 𝐶𝐻𝐹

3/2
 Eq. 2.1 

A is a constant of 3300 (wt% HF)3/2 A cm-2, Ea is the activation energy for pores formation 

(0.345 eV), k is Boltzmann’s constant, T is temperature, and CHF is the concentration of the 
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electrolyte solution102,103. Above this current density, for a given CHF and T, the reaction is 

limited by ion diffusion in the electrolyte, which causes a buildup of charges at the surface, 

leading to uniform removal of material on the surface, also known as electropolishing. Thus, to 

fabricate PSi films, the etching current must be below this current threshold, where preferential 

etching (vs. uniform) occurs and charge supply at the electrode is the limiting factor. At low 

current densities, the charge carriers are confined to a smaller area and the Si dissolves along the 

current path, resulting in smaller pore sizes and lower porosities. At high current densities, the 

charge carriers spread over a larger area around the pore tip to accommodate for the increased 

current to minimize the interfacial impedance, resulting in larger pore sizes and higher 

porosities104. In addition, increased etching current densities increase the dissolution reaction rate 

because more charge is present to initiate the reaction.  

Etching time affects the overall PSi layer thickness. Higher etching times allow the 

dissolution reaction to take place over a longer time, leading to larger pore channels. Moreover, 

pore branching (horizontal growth of pore channels) begins to occur after certain time periods. 

This pore branching tends to be problematic as it reduces the mechanical stability of the porous 

layer, particularly when it is a freestanding layer that has been lifted off from the substrate.  

PSi is highly susceptible to oxidation with its high surface area. Upon oxidation, the 

nanophase silica readily dissolves in water, which is a requirement for drug delivery applications 

where a vector travels through an aqueous medium. Moreover, oxidation is an intermediate step 

for further surface functionalization to increase biocompatibility, bioavailability, and tumor 

targeting as previously mentioned. The oxide has been previously formed by thermal, ozone, and 

chemical oxidation90. 
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Micron- or nano-sized particles are then achieved through ultrasonic fracture or ball milling. 

Conventional lithography techniques have also been used for obtaining particles with more 

uniform shapes105,106. PSi tends to have an irregular pore structure with heavily branched pores 

that resemble a “fir tree”-like configuration94. PSi’s hydrogen-terminated surface is not stable 

and subsequent surface treatments are crucial. It is commonly oxidized to form PSi oxide 

because the oxide increases stability, slows degradation, and is widely accepted as a 

biocompatible material107–109. Thermal oxidation in air readily forms a stable oxide, especially at 

temperatures > 600°C110. Chemical oxidants, such as dimethyl sulfoxide (DMSO), are also used 

to achieve PSi oxide, and expand pores when coupled with HF111. Aside from PSi’s formation 

and oxidation, its biodistribution and biodegradation has been widely studied.  

PSi Biodegradation and Biodistribution 

The biodegradability of PSi via a hydrolysis reaction has been confirmed87,91,112–115 . The 

reactions below demonstrate PSi oxidation in the presence of an aqueous environment along with 

its degradation into orthosilicic acid, Si (OH)4, through the hydrolysis of Si-O bonds.  

SiH4 + 2H2O → SiO2 + 4H2 

Si + O2 → SiO2 

SiO2 + H2O → Si (OH)4 

Orthosilicic acid is a form of Si that is predominantly absorbed by humans and naturally found in 

various tissues114. Silicic acid is also efficiently excreted from the human body through urine 56. 

In vitro studies demonstrated that 100% of PSi NPs incubated in phosphate buffer solution (PBS) 

degraded within 8 hours56. In BALB/c mice (an albino, laboratory-bred strain of the house 

mouse), the PSi NPs were noticeably cleared from the body within a period of 1 week and 
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completely cleared in 4 weeks56. It has been proposed that upon cellular uptake the PSi degrade 

in the lysosomes via enzymes that promote hydrolysis, and once the particles are degraded to <6 

nm they are readily removed via renal filtration114. PSi has also demonstrated enhanced 

degradation in tumor microenvironments due to the upregulation of ROS in the tumor vicinity 

that results in Si oxidation that catalyzes its degradation92.   

Extensive in vitro and in vivo studies have established the relatively low toxicity of PSi116–118. 

However, most of the reported PSi particles fabricated via this top-down approach are micron-

sized119. Microparticles are unlikely to cross most biological barriers due to their size, which is 

problematic for tumor accumulation via passive targeting (i.e. EPR effect)120. Their dimensions 

may also be unsuitable for IV delivery. The smallest capillaries in the body are 5-6 µm, and 

therefore particles being distributed in the bloodstream must be significantly smaller to ensure 

that particles or aggregated particles do not cause an embolism121. Moreover, for particles that 

are functionalized with targeting moieties, NPs tend to have better binding to a unit of mass than 

microparticles due to their higher surface area. Therefore, NPs are of interest for intracellular 

delivery of therapeutics with increased efficacy. While top-down PSi formation has been 

extensively studied, another approach for fabricating PSi-based nanomaterials is prevalent in the 

field of drug delivery.   

Mesoporous Silica: A Bottom-up Approach 

 As described above, PSi oxide micro- and NPs are synthesized via a top-down approach, 

whereas mesoporous silica is produced through a bottom-up approach where the fabrication is 

typically controlled through sol-gel chemistry techniques. Mobil Corporation Laboratories first 

introduced hexagonal ordered mesoporous silica NPs in 1992, which are commonly known as 

MCM-41 (Mobile Crystalline Materials)122. Through a liquid crystal templating mechanism 
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(LCT), the ionic surfactant, cetyltrimethylammonium bromide (CTAB), forms a micelle in an 

aqueous solution. The silica precursor, tetraethyl orthosilicate (TEOS), undergoes hydrolysis and 

condensation reactions in the presence of a base catalyst as the micelles self-assemble into NPs. 

Both hydrolysis and condensation reactions are shown below. 

Hydrolysis: OH- + Si (OR)4 → Si(OR)3OH + RO- 

Condensation: SiO- + Si (OH)4 → Si-O-Si + OH- 

Varying ratios between the surfactant, base catalyst, and silica source has resulted in varied 

ordering structures, including cubic and lamellar. Typical pore sizes average around 2 nm, 

although micelle swelling agents (typically small hydrophobic molecules) and lower 

temperatures resulted in larger pore sizes of around 3-6 nm123. These mesoporous silica NPs tend 

to be mesoscopically ordered yet overall possess an amorphous structure with unidirectional, 2-

dimensional pores95. Another common form of hexagonal- ordered mesoporous silica structures 

is SBA-15, which has larger pore sizes up to ~ 30 nm. These larger pore sizes are obtained by 

using amphiphilic block copolymers as organic-structure directing agents124. They tend to have 

thicker silica walls (3.1 to 6.4 nm) in comparison to MCM-41 structures, which leads to greater 

hydrothermal stability. An abundance of literature exists for targeted drug delivery systems 

based on mesoporous silica NPs synthesized through a bottom-up approach due in part to their 

high surface area (>900 m2/g), large pore volume (>0.9 cm3/g), tunable pore size with a narrow 

distribution, and good chemical and thermal stability16. However, the bottom-up approach has 

several disadvantages that hinders its successful translation to the clinic as a drug delivery 

vector. For example, the density of silanol groups on the NP surface over a certain threshold had 

a high affinity for red blood cell membranes which resulted in hemolysis (red blood cell rupture 

or destruction)125. Ionic surfactants not completely removed from the NPs after synthesis can 
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also cause severe cytotoxicity126,127. Further extraction methods are used to remove the ionic 

surfactants, but this additional step makes the fabrication process for tedious. Overall, top-down 

fabrication approaches are advantageous because of their low cost and high scalability. Although 

nonuniformity in the porosity and thickness of PSi layers has been observed, these gradients are 

easily avoided by having the Si substrate in direct contact with a conductive anode material109. 

Top-down approaches also yield larger pore sizes, which is a requirement for vectors delivering 

siRNA or microRNA (miRNA). siRNA molecules have a rigid cylindrical shape with a length of 

~5 nm and a diameter of ~2.3 nm; these dimensions are too large  to readily infiltrate into MCM-

41 mesoporous silica NPs which have typical pore diameters of 2 nm128. Therefore, a top-down 

approach for fabricating porous silica NPs is promising for clinical translation, particularly as a 

vector in the delivery of gene therapies.  

Gene Therapy Delivery with PSi-Based Materials 

Gene silencing therapeutics have witnessed a growing interest in cancer treatments 

because of their sophisticated approach to disease eradication. For example, siRNA can silence 

gene expressions that translate to cancerous cell growth. Since its discovery in 1999129, siRNA 

has seen growth in the literature and clinical translation with four RNAi-based drugs evaluated in 

early clinical trials for cancer therapy as of 2016130. Because siRNA is subject to enzymatic 

degradation, rapid renal filtration, and incompatibility with the cell membrane due to their 

negative charge, a delivery vector is required for efficient transport and uptake by target cells. 

Both bottom-up and top-down Si-based vectors were demonstrated for siRNA delivery in the 

literature. siRNA delivery systems using bottom-up mesoporous silica NPs have been more 

prominent. For example, siRNA was co-delivered with the chemotherapeutic doxorubicin in 

mesoporous silica NPs to overcome drug resistance in breast cancer in vitro and in vivo131,132. 
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However, the siRNA was bound to the porous surface which could lead to degradation before 

reaching the targeted site. More recently, cyclodextrin polyethylenimine (CP) was grafted to 

encapsulate doxorubicin and increase siRNA loading through electrostatic interactions, but the 

siRNA was not encapsulated and, therefore, not protected from degradation133. siRNA has been 

infiltrated into core-shell hierarchical mesostructured silica NPs but no encapsulation or capping 

system was used to avoid premature therapeutic release134. Stimuli-responsive mesoporous silica 

nanocarriers (i.e. pH responsive) were also demonstrated for the delivery of siRNA135. While 

siRNA delivery using magnetic mesoporous silica was demonstrated, an external stimuli (i.e. 

magnetic field) was not implemented to localize or control drug release 136. Much of literature 

utilizing mesoporous silica fabricated from a bottom-up approach adsorb siRNA onto the surface 

because pore sizes are probably too small for infiltration. Therefore, a top-down fabrication 

approach can potentially increase siRNA encapsulation in the delivery vector while protecting it 

from degradation.  

siRNA delivery by top-down (i.e. electrochemical etching) PSi particles is less prevalent in 

the literature but has nonetheless been demonstrated. Giant liposomes containing siRNA, 

doxorubicin loaded PSi NPs, gold nanorods, and magnetite NPs showed the potential to deliver 

multiple drugs with localization and controlled release capabilities137. However, no external 

magnetic fields are utilized to determine the vector’s heating capabilities or how the liposome 

reacts to the external stimuli. Moreover, graphene oxide nanosheets encapsulated PSi NPs which 

in turn delayed siRNA release by a factor of 3 while increasing cellular uptake 2-folds138. High 

concentrations of siRNA were simultaneously loaded and protected while slowing its release in 

PSi NPs by capping the pores with an insoluble shell of calcium silicate139. siRNA therapeutics 

were also encapsulated in PSi microparticles, but as previously discussed, microparticles have 
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several disadvantages that render their widespread use in IV administration140. Overall, there is 

no indication of top-down PSi NPs for siRNA delivery that utilize an externally controlled 

magnetic field to localize the therapeutic to a targeted site and release it “on demand” through a 

thermosensitive encapsulate. Using a top-down fabrication approach can yield higher siRNA 

concentrations reaching a targeted cell while maintaining a process that is cost effective and 

commercially scalable. Moreover, incorporating magnetic NPs and a thermosensitive 

encapsulate into a PSiO2 system can localize the therapeutic and trigger its release “on demand” 

once it has been endocytosed by the target cell, which mitigates systemic exposure that results in 

reduced clinical side effects. 

2.3 Iron Oxide NP Synthesis, Characterization, and Application 

Superparamagnetic iron oxide NPs (SPION) such as magnetite (Fe3O4) are used in various 

biomedical applications, including contrast agents in magnetic resonance imaging (MRI)141,142, 

tissue repair143,144, hyperthermia145–147, and targeted drug delivery148,149. SPIONs can externally 

control cancerous cell death by hyperthermia and avoid systemic toxicity by therapeutic 

localization. In vivo applications require that SPION have high magnetization values, particle 

sizes >100 nm, a narrow particle size distribution, and biocompatibility150. Iron oxide particles 

were used for in vitro diagnostics 60 years ago, and have generated increasing research interest 

in the last two decades as a versatile biomaterial151. They have shown translation to the clinic as 

Ferumoxytol, an FDA approved treatment for iron deficiency anemia and MRI contrast agent for 

various cancers152. Another product currently in clinical trials, Magnablate, uses magnetic 

thermoablation to induce cancerous cell death (https://clinicaltrials.gov/ct2/show/NCT02033447). 

Moreover, SPIONs can externally control cancerous cell death by hyperthermia and avoid 

systemic toxicity by therapeutic localization.  

https://clinicaltrials.gov/ct2/show/NCT02033447
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Since localization by an external magnetic field was first demonstrated in the early 1960s, a 

variety of magnetic NP and microparticle carriers were subsequently used to target drugs to a 

specific site in vivo153–156. Magnetic manipulation is controlled by direct current (DC) magnetic 

fields while magnetic heating is in response to alternating current (AC) magnetic fields81.  Once 

the magnetic particles reach the target site magnetic heating can be used for hyperthermia or 

drug release by magnetic actuation of a temperature-sensitive capped system157.  

SPION Heat Generation with Application of an AMF 

This heat dissipation by SPIONs is caused by delay in the changing direction of the magnetic 

moment as the magnetic field polarity changes through rotation within the particle (Neel 

relaxation) or rotation of the particle itself (Brownian relaxation)82. Brownian relaxation is 

influenced by the local environment (i.e. viscosity of the medium) and therefore particles 

dissipating heat through Neel relaxation are preferred in clinical trials83. 

 𝜏 is the effective relaxation associated with Brown and Neel relaxation shown in Equation 2.282. 

1

𝜏
=

1

𝜏𝐵
+

1

𝜏𝑁
 Eq. 2.2 

Brownian relaxation, 𝜏𝐵, is related with particle rotation as the field polarity changes 158 

𝜏𝐵 =
3𝜂𝑉𝐻

𝑘𝐵𝑇
 Eq. 2.3 

and Neel relaxation, 𝜏𝑁, is related with the magnetic moment aligning inside the particle 159 with 

field polarity changes  

𝜏𝑁 = 𝜏0 exp (
𝐾𝑉

𝑘𝐵𝑇
) Eq. 2.4 

where 𝜂 is the carrier liquid viscosity (in this case water), 𝑉𝐻 is the hydrodynamic volume 𝑉𝐻 =

(𝜋
6⁄ )𝑑𝐻

3 , 𝑑𝐻 is the hydrodynamic diameter, which has been previously estimated as three times 
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the magnetic core160, 𝐾 is the effective magnetic anisotropy constant for Fe3O4 (104 J m-3-)161, 𝑉 

is the particle volume 𝑉 = (𝜋
6⁄ )𝑑3 where d is the Fe3O4 diameter, 𝜏0 is assumed to be 10-9 s161, 

𝑘𝐵 is the Boltzmann constant, and 𝑇 is the temperature. Clinical translations, particularly for 

SPION’s application in drug delivery vectors, have motivated studies related to particle sizes, NP 

stability, magnetic properties, and heating properties.   

The heating capability of magnetic NPs is expressed by the specific absorption rate (SAR), 

which is a measure of the rate at which energy is absorbed per unit mass of the magnetic material 

when exposed to an AMF80. The SAR has been widely measured via two routes: through 1) 

magnetic susceptibility and 2) calorimetry experiments. Magnetic susceptibility, χ, is a 

dimensionless proportionality constant, as shown in Equation 2.5, that measures a material’s 

degree of magnetization in response to an applied magnetic field. 

𝑀 = 𝐻𝜒 Eq. 2.5 

M is the degree of magnetization, or the magnetic moment, and H is the applied magnetic field. 

When an AMF is applied a magnetic moment is induced as shown in Equation 2.6. 

𝑀𝐴𝑀𝐹 =
𝑑𝑀

𝑑𝐻
 𝐻𝐴𝑀𝐹 sin 𝜔𝑡 Eq. 2.6 

𝑀𝐴𝑀𝐹  is the induced magnetic moment under an AMF, χ= 
𝑑𝑀

𝑑𝐻
, 𝐻𝐴𝑀𝐹 is the magnetic field 

amplitude, and 𝜔 is the driving frequency. Equation 2.6 is only valid at lower AMF frequencies, 

where the magnetic moment remains in phase with the driving frequency. At higher frequencies, 

the magnetic moment lags behind the driving frequency which results in the susceptibility having 

an in-phase, or real, component χ' and an out-of-phase, or imaginary, component χ". This out-of-

phase or imaginary component, χ", is associated with heat dissipation of the magnetic particle. 

From χ", the SAR is estimated by Equation 2.782   
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𝑆𝐴𝑅 =  
𝜇0𝜋 χ"

𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
𝑓𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑

2  Eq. 2.7 

where 𝜇0 is the permeability of free space, 𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑  and 𝑓 is the magnetic field amplitude and 

frequency, and 𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 is the density of Fe3O4.  

 Calorimetry experiments, on the other hand, directly measure temperature changes of a 

solution as a function of time with application of an AMF. The measurements are typically 

carried out in nonadiabatic conditions. SAR is calculated using Equation 2.8. 

𝑆𝐴𝑅 =
𝐶𝑉𝑠

𝑚

𝑑𝑇

𝑑𝑡
 Eq. 2.8 

where 𝑚 is the total mass of Fe in the sample, 𝐶 is the specific heat capacity of the suspension 

water (Cwater = 4185 J L-1 K -1), 𝑉𝑠 is the sample volume, and 
𝑑𝑇

𝑑𝑡
 is the temperature profile slope. 

The slope of the curve is considered linear and, therefore, only the first few to thirty seconds of 

the temperature profile is considered. Magnetic targeting and heating of nanocarriers has been 

widely used to localize and promote the release of the therapeutic at the disease site. 

In vitro and In Vivo Magnetic Localization and Heating 

 Magnetic localization has been demonstrated in vitro and in vivo with magnetic fields 

ranging from 0.025 to 1.7 T. Figure 2.6 shows typical experimental setups for in vitro162 (Fig. 

2.6a) and in vivo (Fig. 2.6b)163 experiments. Magnetic manipulation within the body is possible 

when the magnetic forces exceed the linear blood flow rates in arteries (10 cm/s) or capillaries 

(0.05 cm/s)164. In vitro studies have flowed SPION solutions using a peristaltic pump through 

slides with micron-sized channels (µ-slides, 0.4 mm)162 and umbilical arteries165 to investigate 

the magnetic NP accumulation with application of a magnetic field under dynamic conditions. 

Older studies conducted in vitro studies with syringe pumps and polyethylene tubing (inner 
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diameter of 1-2 mm), which can model veins (~10 mm in diameter) but not capillaries (~5-6 

µm)155.   

 

Figure 2.6 a) In vitro magnetic accumulation i. Experimental setup where a peristaltic pump perfused HT-29 cells 

with medium for 1 h after bolus injection of Fe3O4 NPs. ii. Fe3O4 NP accumulation in the middle of the slide after 

magnet removal. iii. Upper row: Mitoxantrone (MTO) distribution after 1 h incubation (6×5 tiles); lower row: Fe3O4 

NP distribution in brightfield images with and without magnet application. b) in vivo magnetic accumulation i. 

Experimental setup and placement of magnetic tip on mouse for magnetic NP localization. ii. Iron in the targeted 

region was visualized by Prussian blue staining (arrows). Fig. 2.6 a) adapted from ref 154 and Fig. 2.6 b) adapted 

from ref 155. 

In vivo studies have focused more on shallow tumors (i.e. <0.5 cm from the surface) as the 

magnetic field gradient decreases with increasing targeting tumor depth166. Magnetic targeting 

has been investigated in breast, skin (histiocytoma), and cartilage (chondrosarcoma) tumors166. 

Targeting was also observed in VX-2 squamous cell carcinoma implanted in the hind limb of 

rabbits156. Histological evaluations showed that iron oxide NPs were distributed throughout the 

tumor in comparison to rabbits not treated with a magnetic field, where the presence of iron 

oxide NPs were not observed. Moreover, iron oxide NPs were concentrated at the endothelium 

closest to the applied magnetic field. Although magnetic targeting is ideal for shallow tumors, as 
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most fields are only strong enough to manipulate particles over a few cm, studies have also 

localized magnetic NPs to the liver and lungs, which have an 8-12 cm targeting depth167. Table 

2.1 summarize various in vitro and in vivo examples of magnetic NP localization. 

Table 2.1 Summary of in vitro and in vivo magnetic localization studies. 

 Targeted Cell Line/ Organ Magnetic Field Applied Particle Size Reference 

In 

Vitr

o 

HT-29 (colorectal cancer) 72 T/m 53-56 nm Alexiou et al. 2018163 

Umbilical arteries 72 T/m NA Alexiou et al. 2017. 

2019165,168  

NA, magnetic accumulation in 

dynamic environment 

0.024- 1.15 1 µm Senyei et al. 1978155 

0.1- 1.5 1.2 µm Viroonchaptan et al. 

1995169 

Brain tumor NA Microsphere Pulfer et al. 1997170 

Fibrinolysis for thrombosis 

prevention 

0.025 NA Inada et al. 1987171 

Head and neck squamous cell 

carcinoma 

~0.001 0.5-2 µm Allen et al. 1997172 

In 

vivo 

Atherosclerosis (lower abdominal 

aorta) 

72 T/m 63-64 nm Cicha et al. 2018163 

 Liver, lung swine model 0.025- 0.1 T 0.5-5 µm Goodwin et al. 1999167 

 VX-2 squamous cell carcinoma 1.7 T 100 nm Alexiou et al. 2000156 

 Breast, histiocytoma, 

chondrosarcoma, Ewing sarcoma 

0.8 T 100 nm Lübbe et al. 1996166 

  

 Actuating temperature changes in a nanocarrier system by application of an AMF has 

been widely studied both in vitro and in vivo because therapeutic release is triggered on-demand 

by the clinician once it reaches the disease site. Consequently, toxicity is strongly localized and 
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side effects are dramatically reduced. Moreover, thermal treatments are particularly promising in 

oncology since the tumor tissues dissipate heat less effectively than healthy tissues, resulting in 

preferential damage to tumor tissues at elevated temperatures (i.e. 45 °C)173. Previous studies 

have also used an external magnetic field to temporarily disrupt and increase the permeability of 

vascular endothelium junctions, resulting in an increase in the amount of iron oxide NPs 

internalized174. A magnetic field of 0.5 T generated an intracellular magnetic force on the same 

order of magnitude compared to the shear force on vascular endothelium in capillaries in the 

body175. Magnetic heating has been reported for both hyperthermia and thermoresponsive drug 

release applications. Under application of an AMF, in vitro temperature increases up to 50 °C 

were observed within 4 min for Fe3O4 NPs encapsulated in a PNIPAM microgel176. Table 2.2 

shows various magnetic nanocarriers with in vitro temperature-mediated drug release upon 

application of an AMF.   

When moving from in vitro to in vivo experiments, the magnetic NP heating capabilities 

become even more stringent because a larger amount of NPs are needed to generate relevant 

temperatures as the magnetic field strength decreases for deeper tumors.  One way to increase the 

magnetic heating rate is by increasing the AMF frequency (f) and magnetic field amplitude (H). 

However, these parameters are limited by a biocompatible value for the product of H and f. 

Brezovich found that for H*f = 6.7 x 109 A/ m s given a loop diameter of about 30 cm, patients 

withstood treatment for more than one hour without major discomfort 177. This field amplitude 

and frequency product has been widely accepted as the biocompatibility limit for patient 

exposure 146,147,178,179 and may exceed for smaller diameter exposures and for patients with less 

severe illnesses. From a material synthesis perspective, varying the magnetic NP shape and 

doping with transition metals has increased the SAR value and enabled hyperthermia-relevant 
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temperature increases in vivo. Nanocubes with an average diameter of 19 nm reached SAR 

values up to 2452 W/gFe at 520 kHz and 29 kA m-1 180 in comparison to commercially available 

spherical iron oxide NPs181 (SAR: 145.9 W/gFe at 420 kHz and 10.6 kA m-1). Although the 

frequency and magnetic field amplitude are lower for the latter which contributes to the lower 

SAR value, the increase in these parameters tends to be linearly proportional to the SAR. 

Therefore, extrapolating the SAR to the higher field frequency and amplitude would not yield a 

17 times difference. Moreover, magnetic nanoclusters doped with manganese (Mn) and cobalt 

(Co) demonstrated a temperature increase in vivo to 44 °C within 30 min application of an 

AMF181. The nanoclusters reached this temperature with a 6 mg Fe/ kg dose, which is 

comparable to a dose of Ferumoxytol.  

Table 2.2 Summary of in vitro and in vivo magnetic heating studies. 

 Nanosystem Targeted Cell 

Line/ Organ 

AFM Parameters ΔT Drug 

Release 

Reference 

In 

Vitro 

Fe2O3 

Nanocubes, 

PNIPAM-co-

PEGMAa 

NA 220 kHz; 20 kA m-1 25- 80 

°C, 15 

min 

3 x 10-1 

mg/mL, 4h 

at 80 °C 

Pellegrino 

et al. 

2015182 

 Fe2O3 

P(OEGMAs-co-

MAA)b 

PC-3 (Prostate 

cancer) 

335 kHz; 12 kA m-1, 

(4x30min) 

37-  65 

°C ,30 

min 

100% at 

pH 5 

Wilhelm et 

al. 2017183 

 Fe3O4 PNIPAM NA 380 kHz;10.3 kA m-1 50 °C, 4 

min 

1% of 

drug/min 

Lawes et al. 

2010176 

 Zn0.9Fe2.1O4 U87-MG 

(Malignant 

glioma) 

700 kHz, 2.7 kA m-1, 1h 41 °C, 6 

min 

78% 

viability  

Ammar et 

al. 2016184 
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 Nanocubes KB (Human 

epidermoid 

carcinoma) 

 

110 kHz and 20 kA m-1, 

1h 

62 °C, 

1h 

0% 

viability 

Pellegrino 

et al. 201280 

In 

vivo 

Zn0.47Mn0.53Fe2O4 

PZCc 

U87-MG 

(Malignant 

glioma) 

366 kHz; 13.3 kA m-1 

(2 × 1h) 
43 °C, 8 

min 

80% 

release in 

20 days 

Zhang et al. 

2017185 

 Co, Mn-doped, 

hexagon-shaped 

Fe3O4 

ES-2 (Ovarian 

cancer) 

420 kHz, 26.9 kA m-1, 

30 min 

42 °C, 

30 min 

Tumor 

volume 

reduced 

>20x 

Taratula et 

al. 2019181 

aPNIPAM-co-PEGMA: poly(N-isopropylacrylamide)/PEGMA: polyethylene glycolmethyl ether acrylate 
bOEGMAs-co-MMA: oligo-(ethylene glycol)methyl ether methacrylatemonomers /MMA: methyl methacrylate 
cPZC: poly(organophosphazene) 

Iron Oxide Nanoparticle Synthesis 

Various approaches have been described to synthesize iron oxide NPs, including high-

temperature reactions, sol-gel reactions, and by decomposition of organometallic precursors. 

While these synthesis routes yield NPs with a narrow size distribution, the co-precipitation 

method has been most widely used because of its high scalability. In this method, Fe2+ and Fe3+ 

ions are precipitated in alkaline solutions such as ammonium hydroxide. The chemical reaction 

for magnetite (Fe3O4) formation is shown below.  

Fe2+ + Fe3+ + OH- → Fe3O4 + H2O 

Complete precipitation of Fe3O4 from an aqueous solution is typically expected at a pH between 

8 and 14, and at a Fe3+/Fe2+ stoichiometric ratio of 2:1. Magnetite may oxidize into maghemite 

(ϒ-Fe2O3) in air, which is undesirable because bulk maghemite has a lower saturation 
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magnetization value than bulk magnetite (60-80 emu/g vs. 92-100 emu/g) 186. The oxidation 

reaction is shown below. 

Fe3O4 + 2H+ → ϒ-Fe2O3 + Fe2++ H2O 

Various Fe3O4 synthesis parameters have been adjusted to control particle size, shape, magnetic 

properties, and surface properties. Increasing the Fe2+/Fe3+ precursor injection rate into a 

tetramethylammonium hydroxide (TMAOH) solution from 1 to 5 mL/min found no significant 

variation in mean size except for the 1 mL/min rate which had a slightly larger size 141. 

Moreover, decreasing the Fe2+/Fe3+ ratio yielded a decrease in particle size 187 and established a 

range of ratios in which magnetite formation occurs. An increase in the hydroxide concentration 

resulted in a significant increase in NP size 188. Temperature and surfactant coatings were other 

parameters used to vary the size, shape, and surface properties 189. Overall, tuning Fe3O4 NP 

sizes, particularly with a narrow size distribution, is relevant because magnetic properties are 

size dependent. For example, theoretical estimates of heat dissipation (considering Neel and 

Brownian relaxation) as a function of NP size showed the highest dissipation at a size of around 

12 nm 83. There is motivation to achieve optimal heating properties by tailoring the NP size so 

that during clinical translation, the applied magnetic field remains within the biocompatibility 

limit. 

While Fe3O4 NPs are shown to effectively induce temperature changes under the 

application of an AMF 190,191, their application in targeted drug delivery as bare particles is 

limited because therapeutics cannot be loaded into the NPs. Instead, they are either physically 

adsorbed 192 or covalently conjugated 193–195 to the magnetic NP surface which can induce 

unintended drug release or degradation. Thus, magnetic NPs have been incorporated into PSi 

NPs, amongst other types of carriers, to deliver therapeutics to a site of interest. 
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2.4 PSi@Fe3O4 Composites for Magnetically Modulated Drug Release 

PSi@Fe3O4 nanocomposites are promising materials in magnetically responsive drug 

delivery vectors and have been fabricated through both bottom-up and top-down approaches. 

Top-down PSi@ Fe3O4 composites have been demonstrated (Sailor196–200 and Granitzer201–204, 

for example)- but their application for targeted drug delivery systems is limited. Fe3O4 NPs are 

typically infiltrated into PSi NPs by physical adsorption into the pores198 or by infusing the 

magnetic suspension into a PSi film with the guidance of a magnet followed by ultrasonic 

fracture197,205.  

The nanocomposites are typically prepared by infiltration of a Fe3O4 solution into Si’s 

porous matrix either as a film or as micro, NPs206,202,207. The infiltration process was also 

facilitated by the application of a magnetic field under the film208. Energy dispersive X-ray 

spectroscopy (EDX) confirmed the presence of Fe3O4 in the PSi matrix;  X-ray diffraction 

(XRD) also corroborated Fe3O4 infiltration209. A decrease in magnetization was observed with 

decreasing NP size (from 8 to 4 nm) through a superconducting quantum interference device 

(SQUID) magnetometer208.  Moreover, these nanocomposite structures demonstrated 

biocompatibility with human embryonic kidney (HEK) 293 cells203.   

Micro-and NP composites have been fabricated by a top-down approach for a variety of 

applications such as microfluidic reactors, drug delivery by magnetic manipulation, and contrast 

agents in MRI imaging. A microreactor was designed by magnetically manipulating and 

combining two small volumes of composite microparticle solutions to form a chemical 

reaction199. Magnetic manipulation and heating of composite microparticles by an external 

magnetic field were performed subsequently for hybridization of DNA strands197. Magnetic 

manipulation was used to localize the delivery of composite microparticles with a 
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chemotherapeutic payload, and localized cell death was confirmed200. Finally, increased 

magnetic resonance contrast was observed in PSi NPs infiltrated with Fe3O4 
198,196. The study 

also showed that increasing the Fe3O4 concentration increased saturation magnetization values 

until a Fe3O4: pSi mass ratio of 25%. For concentrations above this ratio, saturation 

magnetization values approached that of bulk magnetite, and for mass ratios > 50% the 

composite transitioned from superparamagnetic to weakly ferromagnetic. The transition was 

speculated to be magnetic NP aggregation as they are confined within the pores. Additionally, a 

majority of the top-down PSi, Fe3O4 composites previously mentioned were oxidized after 

infiltration to trap the Fe3O4 NPs in the PSi matrix. The magnetic properties of Fe3O4 NPs with 

optimal heating properties (i.e. around 12 nm) infiltrated into PSi has not been studied. Other PSi 

morphology considerations such as pore size and porosity have not been studied by SQUID to 

determine their effect on the nanocomposite’s magnetic properties. Moreover, no studies 

observed how the heating capabilities vary with pore morphology, NP size, and NP 

concentration. Therefore, there is motivation to determine a PSi, Fe3O4 nanocomposite with 

optimal heating properties towards improved clinical translation. While these nano- and 

microparticle formulations were successfully demonstrated as MRI contrast agents196,198 and in 

Fluorescence Resonance Energy Transfer (FRET) Assays197, their application in magnetic 

controlled drug delivery remains limited, as the exposed pores would lead to premature drug 

release. Capping agents have been widely used to prevent premature drug release until the NPs 

reach the site of interest, and several examples have been demonstrated in bottom-up PSi, Fe3O4 

composites63,210–212. 

 Capping agents can be either small molecular nanovalves that block individual pores or 

polymer networks that encapsulate the nanocarrier. These gatekeepers possess thermally labile 
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covalent bonds213, electrostatic interactions214 or phase transitions215–217 that can be stimulated 

through AMFs with the presence of magnetic materials, to release a high local concentration of 

the therapeutic. Extensive efforts have demonstrated the AMF-mediated release of therapeutics 

from magnetic mesoporous silica NPs capped with molecular nanovalves based on β-

cyclodextrin that are removed by dissociation at elevated temperatures or lower pH 211,213,218,219. 

Thermodegradable polymer coatings have also been widely investigated with magnetic 

mesoporous silica NPs216,217,220. Overall, bottom-up nanocomposites with capping systems 

controlled by “on demand” magnetic actuation and manipulation have shown promising results 

in localized, targeted drug delivery.  

 While more extensive literature exists for magnetically controlled PSi@Fe3O4 

nanocomposites for targeted drug delivery synthesized via a bottom-up approach, top-down 

fabrication approaches are favorable due in part to its low cost, highly controllable and scalable 

fabrication that is compatible with common microfabrication techniques. Top-down approaches 

also yield larger pore sizes, which is a requirement for vectors delivering nucleic acids such as 

small interfering RNA (siRNA) or microRNA (miRNA). siRNA molecules have a rigid 

cylindrical shape with a length of ~5 nm and a diameter of ~2.3 nm 128; these dimensions are 

difficult to readily infiltrate into MCM-41 mesoporous silica NPs which have typical pore 

diameters of 2 nm 123. Much of the literature utilizing mesoporous silica fabricated from a 

bottom-up approach adsorb siRNA onto the surface because pore sizes are probably too small for 

infiltration 132,220–222. A top-down fabrication approach can potentially increase siRNA 

encapsulation in the delivery vector while protecting it from degradation. Therefore, a top-down 

approach for fabricating magnetically responsive porous silica NPs is promising for clinical 
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translation, particularly as a vector in the delivery of gene therapies, which have witnessed a 

growth in both research interest and clinical translation 41,223.  

Remaining Gaps in the Literature 

In an effort to overcome synthetic challenges associated with magnetic and thermally 

responsive PSi NPs towards clinical translation, there is motivation to combine top-down PSi 

NPs with the thermosensitive capping agents previously discussed. However, combining these 

two components is more widely observed in sensors224, MRI contrast agents198,225, and 

fluorescence- based assays 197 and remains limited in targeted drug delivery applications. 

Further, many of these capping agents require complex, small scale synthesis that is 

incompatible with the mass commercialization techniques used to fabricate the top-down PSi 

NPs, which could potentially hinder clinical translatability. Moreover, the Fe3O4 NPs previously 

infiltrated into the PSi could be released from the nanocarrier during subsequent surface 

functionalization or encapsulation with capping agents. Thus, it would be advantageous to 

simplify the nanocarrier system by using the magnetic component as both a heat generator and 

capping agent. 

 Magnetic NPs have been utilized as capping agents in both top-down225 and bottom-up 

PSi NPs226–228. Top-down PSi had ω-alkene-terminated Fe3O4 NPs covalently bonded to the PSi 

surface, but the hydrocarbon linker was not thermosensitive and therefore could not modulate 

drug release with temperature 225. Incorporating a thermoresponsive linker between the PSi 

surface and Fe3O4 NP capping agents would greatly reduce the complexity in fabricating 

magnetic responsive PSi NPs. The following Chapters will discuss the fabrication and 

application of a magnetically, thermally responsive PSi NP drug delivery vector. The work 
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demonstrated in this thesis outlines a promising nanocarrier in externally triggered drug delivery 

and will be of great interest for on-command nanomedicine applications in oncological therapy. 
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Chapter 3. Porous Silicon, Iron Oxide and Magnetic Nanocomposite 

Fabrication and Optimization 

 

 Magnetic PSi nanocomposites are appealing materials in magnetically actuated drug 

delivery carriers, as previously discussed in Chapter 2. Yet, these carriers must be compatible 

with commercially-scalable fabrication techniques to realize their clinical translation. Top-down 

fabrication of PSi is favorable due in part to its low cost, highly controllable and scalable 

fabrication that is compatible with common microfabrication techniques. Moreover, top-down 

approaches yield larger pore sizes that can hold large molecules that are gaining attention in drug 

delivery applications, such as siRNA or miRNA.  

 In this Chapter we discuss the fabrication and optimization of magnetic PSi 

nanocomposites and its components. PSi layers were initially optimized to readily incorporate 

Fe3O4 NPs, and the layer fabrication scalability was investigated. We then optimized the 

synthesis of Fe3O4 NPs with typical dimensions needed for PSi infiltration with high 

reproducibility and stability. Initial magnetic PSi formation by Fe3O4 NP infusion into the layers 

yielded low infiltration efficiency, which was overcome by physically adsorbing the Fe3O4 NPs 

onto PSi NP surfaces through electrostatic interactions. We overcome synthetic challenges 

associated with magnetic and thermally responsive PSi NPs towards clinical translation by 

combining top-down PSi NPs with a thermosensitive capping agent. 

3.1. Experimental 

 

PSi Layer and NP Formation  
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PSi was formed by electrochemically anodizing silicon wafers (p++-type, diameter 100 

mm, 0.01- 0.02 Ω-cm B-doped <001> oriented, University Wafer) in 140 mL of an aqueous HF 

(38%), ethanol electrolyte solution. Anodic etching was conducted with a homemade Teflon 

etcher with a rubber sealing ring that can accommodate up to 100 mm diameter wafers (~7850 

mm2 surface area). However, initial optimization experiments were conducted with an O-ring 

sealed aperture (around 15 mm in diameter, ~ 200 mm2 surface area) inserted between the wafer 

and the electrolyte. The cathode is an Au plated mesh that evenly distributes the electric field 

over the etching area for a homogeneous porous layer formation. Good electrical contact 

between the wafer and anode was maintained by placing under the wafer an aluminum foil 

wrapped 100 mm Si wafer supported by an array of metal springs on the anode disk. A schematic 

drawing of the electrochemical etching system is shown in Figure 3.1. A Keithley 220 

programmable current source in constant current mode with a set voltage compliance of 30 V 

was used for etching.  

 

Figure 3.1 Schematic of the electrochemical etching system. 
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 For PSi layer formations, current densities ranging from 0.3 mA/cm2 to 50 mA/cm2 and 

HF electrolyte concentrations between 5 vol% and 25 vol% were used. Etching steps were 

typically on the order of 5 min to 45 min. Multilayers were fabricated with subsequent etching 

steps that required changing the current density or HF concentration. For the multilayer 

structures the final current density step is within the electropolishing region, which allows for the 

porous layer to detach from the substrate as a film with thickness on the order of ~1-50 µm. 

After etching the desired porous structure, the layers were rinsed deionized (DI) water for several 

minutes and dried with an air flow to eliminate any remnant HF in the pores. PSi layer 

morphology was observed with scanning electron microscopy (Nova Nano 230, FEI Company). 

 PSi layers underwent surface functionalization treatments to achieve versatile surface 

charges and hydrophilicities. The layers were initially exposed to 49 vol% aqueous HF to 

eliminate any native oxide layer and resemble freshly etched films. Thermally oxidized PSi 

(TOPSi) layers were formed by a pre-oxidation step at 300 ° C for 1h to avoid pore coalescence 

at higher temps followed by oxidation at 600 ° C for 2h. Oxidation occurred in a quartz tube 

under ambient pressure. Amine-functionalized PSi (APTESPSi) layers were fabricated by 

treating thermally oxidized films with 10 vol% (3-Aminopropyl) triethoxysilane (APTES) in 

toluene for 1 hr at 25 °C. The layers were subsequently washed with toluene, a toluene-ethanol 

mixture, and ethanol to remove loosely bound APTES from the porous structure. The layers were 

dried in an oven at 65 °C overnight. Thermally hydrocarbonized PSi (THCPSi) layers, which 

possess hydrophobic characteristics, were initially washed with HF to remove any native oxide 

layers, as the thermal carbonization process requires a fresh hydrogen-terminated PSi surface. 

After drying the layers overnight the PSi layers were inserted in a quartz tube under N2 flow (1 

L/min) for 30 min at room temperature to remove oxygen and adsorbed moisture. The quartz 
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tube was then flushed with 1:1 N2 and acetylene (C2H2) with a 1 L/min flow for 15 min at room 

temperature. The quartz tube was then placed in a tube furnace at 500 °C for 15 min under a 1:1 

N2−acetylene flow. After the thermal carbonization treatment, the tube furnace was cooled to 

room temperature under N2 flow. Surface functionalization was confirmed by a Spectrum BX 

Fourier-transform infrared (FTIR) spectrometer (PerkinElmer Co.) equipped with a horizontal 

attenuated total reflectance accessory (MIRacle ATR, Pike Technologies Ltd.). Measurements 

were taken from 4000 to 450 cm-1 with a resolution of 2 cm-1 and averaging 32 scans. APTESPSi 

layers were further characterized for nitrogen presence through cross-section EDX.  

 Nitrogen sorption measurements on freshly etched and TOPSi films were conducted at 77 

K with TriStar 3000 (Micromeritics Inc.) to determine the specific surface area, pore volume, 

and pore size distribution. The specific surface area was calculated using the Brunauer−Emmett− 

Teller (BET) theory, and the pore volume was determined from the isotherm using the total 

adsorption value at relative pressure p/p0 = 0.97. The pore size distribution was calculated from 

the desorption branch of the isotherm using the Barrett−Joyner−Halenda (BJH) theory.  

 PSi NPs were formed either by ultrasonication fracture overnight in ethanol or by milling 

with a high-energy ball mill (Pulverisette 7, Fritsch GmbH). Milling occurred in a 50 mL 

zirconia grinding jar with 18-22 zirconia 10mm grinding balls at 300 rpm in pulsed intervals 

overnight. The milling mediums varied for the layers with different surface functionalization. 

Ethanol was used as a milling medium for TOPSi. Toluene with 5 vol% APTES was used as the 

milling medium for APTESPSi layers and 1-decene for THCPSi. Before size-separating the 

particles through centrifugation, the APTESPSi layers were washed with a toluene-ethanol 

mixture, followed by pure ethanol. The THCPSi layers were washed in 5 w-% of succinic acid 

(SA) in ethanol several times to remove the 1-decene. Once the 1-decene is removed, THCPSi is 
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dispersed in pure ethanol for size separation. The milled NPs were size separated by repeatedly 

centrifuging the solution at 1500 rpm, 15 min and collecting the supernatant, which contained 

NPs on the order of ~200 nm as determined by dynamic light scattering (Zetasizer Nano ZS, 

Malvern Instruments Ltd.).   

Magnetite (Fe3O4) Synthesis 

 Magnetite NPs were synthesized via the co-precipitation method similar to previous 

work229. The co-precipitation method has been most widely used because of its high scalability. 

In this method, Fe2+ and Fe3+ ions are precipitated in alkaline solutions such as ammonium 

hydroxide. The chemical reaction for magnetite (Fe3O4) formation is shown below.  

Fe2+ + Fe3+ + OH- → Fe3O4 + H2O  (1) 

Complete precipitation of Fe3O4 from an aqueous solution is typically expected at a pH between 

8 and 14, and at a Fe3+/Fe2+ stoichiometric ratio of 2:1. 

 In the original synthesis, 4.0 mL of 2M FeCl3 and 1.0 mL of 1 M FeCl2 were combined, 

and 50 mL of 0.5 M ammonium hydroxide (NH4OH) was added to precipitate Fe3O4 out of the 

solution. The black precipitate was collected with a strong Neodymium magnet (N48, Applied 

Magnets) and the supernatant was decanted. The precipitate was washed with DI water twice, 

with the precipitate collected by the magnet each time. The magnetite NPs were stored in DI 

water until further use. We optimize the Fe3O4 synthesis by varying the NH4OH addition rate to 

the FeCl2 and FeCl3 mixture, the NH4OH concentration, and the FeCl3 concentration. 

 The NPs were characterized by XRD (Parallel Beam Bede D1, Jordan Valley) and 

transmission electron microscope (TEM). A Jordan Valley (now Bruker) x-ray diffractometer 

with incident parallel beam optics, Cu Kα radiation (λ= 1.5406 Å), and scattered beam slits 

confirmed the magnetite phase.  Williamson-Hall plots generated from the peak’s full width half 
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maximum (FWHM) determined the NP size. The size was further corroborated by high 

resolution TEM (HRTEM) (Titan S/TEM 80- 300 kV, FEI). The average NP size and standard 

deviation was determined from 20 measurements through ImageJ. 

Magnetic PSi Formation 

 PSi and Fe3O4 NPs were combined to form a magnetic composite. The composite was 

initially formed by infusing the magnetic suspension into the PSi layer with the guidance of a 

magnet followed by ultrasonic fracture 197,205. Magnetite solutions of 1, 10, and 25 mg/mL in 

aqueous solution (~100 µL) were dropcasted onto the PSi trilayer with the larger pore size, 

porosity end facing up and a strong Neodymium magnet directly underneath the PSi layer. The 

magnetite suspension was left to infuse into the PSi layer until the solvent evaporated 

(overnight). Magnetite infusion into PSi layers was characterized by cross-section EDX (SEM 

Nova Nano 230, FEI Company).  

 Magnetic nanocomposites were also formed by physically adsorbing the negatively 

charges Fe3O4 NPs onto positively charged APTESPSi NP surfaces via electrostatic interactions. 

A 2mL solution containing a 1:1 ratio of APTESPsi in ethanol to Fe3O4 NPs in Milli-Q water 

was stirred at 300 rpm for 1h at room temperature. The mixture was then centrifuged at 13,200 

rpm, 10 min to remove any loosely bound Fe3O4 NPs. The particles were subsequently washed in 

Milli-Q water once and stored in ethanol until further use. 

 The amount of Fe3O4 NPs electrostatically bound to the APTESPSi NPs was quantified 

by vibrating-sample magnetometer (VSM), which is discussed in further detail in the magnetic 

characterization section, and inductively coupled plasma optical emission spectrometry (ICP-

OES, Atomic Emission Spectroscopy Perkin Elmer Optima 8300). The ICP-OES samples were 

prepared by digesting an APTESPSi@Fe3O4 mixture (434.8 µL APTESPSi and 9.25 µL Fe3O4) 
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in 1 mL 5M sodium hydroxide (NaOH) for 3h to initially dissolve the APTESPSi. Fe was then 

digested by adding 500 µL of the Si-dissolved solution to 500 µL of 37% hydrochloric acid 

(HCl) and stirring at 300 rpm for 3h. The solution was then diluted with 9 mL Milli-Q water to 

give a final HCl concentration of 1.85%.     

 NP size and zeta (ζ)- potential was measured in Milli-Q water using a Zetasizer Nano ZS 

(Malvern Instruments Ltd.). APTESPSi binding to Fe3O4 NPs was further confirmed by TEM 

(Jeol JEM-140, Jeol Ltd., Japan) and EDX. TEM samples were prepared by dropcasting 7 µL of 

a 100 µg/mL solution onto carbon-coated copper grids (300 mesh; Electron Microscopy 

Sciences, USA). Samples settled down for 5 min on the grid prior to removing excess liquid with 

filter paper. 

3.2. PSi Layer and NP Formation 

 

Single Layers 

 PSi films were fabricated by electrochemically etching highly p-doped Si wafers with 

various current densities and HF electrolyte concentrations. Single PSi layers formed by a single 

etching step were initially fabricated to investigate porous morphology changes without any 

influence from subsequent etching steps. While previous reports have shown that subsequent 

etching steps do not affect previous ones in a multilayer structure, this claim is not valid when 

there is a large gradient between the two layers230. This phenomenon is further discussed for 

trilayer PSi architectures later in this section.  

 Overall, increasing the current density increased the pore size, porosity, and layer 

thickness as expected and as shown in Table 3.1.  
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Table 3. 1 Changes in porous silicon layer morphology with current density. 

Current Density (mA/cm
2
)  Layer Thickness (µm)  Pore size (nm)  Porosity (%)  

12.5 31.9 + 2.5 5.1 + 0.1 ~12 

25 44.4 + 2.2 30.3 + 5.8 ~18 

50 85.1 + 8.8 25.3 + 5.7 ~38 

The variation in pore morphology with increasing current density (12.5, 25, and 50 mA/cm2) is 

shown in Figure 3.2.  

 

Figure 3.2 Plan-view SEM images of porous silicon layers etched at a) 12.5 b) 25 and c) 50 mA/cm2. 

The average pore size follows an exponential growth where the size increases significantly by 

almost 500% (from 5.1 to 30.3 nm) when the current is raised from 12.5 to 25 mA/cm2, while 

there is no significant difference in pore size when the current is further raised to 50 mA/cm2. 

The average pore sizes between 25 and 50 mA/cm2 are both within their standard deviation, and 

therefore pore size increases significantly only up to a certain current density. The porosity 

changes with current density also follow a non-linear trend, where greater porosity increases 

(from 18% to 38%) were observed when the current was varied from 25 to 50 mA/cm2. This 

suggests that at lower current densities, pore growth is the dominating process while at higher 

current densities a larger number of pores are formed.  
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The current density was not linearly proportional to the PSi layer thickness. Table 3.1 shows 

thickness measurements determined by cross-section optical microscope images of the PSi layers 

previously mentioned. All samples were etched in a 25% HF solution in ethanol for 30 minutes. 

In accordance with previous literature, the porous layer thickness increases with increasing 

current density, from 31.9 to 44.4 µm, where changes in thickness are more pronounced at higher 

currents. When increasing the current density from 25 to 50 mA/cm2, the PSi layer thickness was 

doubled. Increasing thickness with current density is in agreement with locally enhanced 

dissolution rates at the pore tips as a more intense electric field is presented at the pore tip- 

electrolyte interface101. For p-type PSi the growth is determined by the direction of the current 

lines in the space charge region, as previously discussed in Chapter 2. The electric field 

enhancement, in terms of the ratio of the local field magnitude at the pore tip to the average field, 

increases with decreasing radius. For example, theoretical field calculations using space charge 

region considerations for needle-plane electrodes demonstrated a field enhancement increase 

from 15 to 400 when the tip radius decreased from 139 µm to 5 µm231. Considering that the 

mesopores fabricated in these instances are < 50 nm, the driving force for pore growth along the 

<100> direction is highly influenced by the current density. Moreover, increasing the current 

density can lead to a greater number of pores nucleated since it more readily overcomes the 

driving force for pore nucleation, and once pores are nucleated then the driving force is greater 

for growing down the <100> direction. Therefore, while the pore size faces a growth limit the 

increased current density contributes to a higher driving force to overcome more nucleation sites 

(leading to higher porosity) and to drive the pore growth along the current line (leading to thicker 

layers).  
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Changes in HF concentration were also investigated to confirm this parameter’s effect on the 

PSi morphology. The HF concentration was decreased from 25% to 10% for a sample etched at 

50 mA/cm2 for 30 minutes, but no porous layer was observed. Instead, the area exposed to the 

electrolyte solution was in the electropolishing regime, as evident by a uniform decrease in the 

wafer thickness around the exposed aperture area. Upon understanding how to tune the 

morphology with various etching parameters, porous multilayers were investigated to remove the 

PSi from its substrate.  

PSi Bilayers 

PSi bilayers were initially fabricated with the first etching step forming the PSi layer to be 

utilized in further applications and the second etching step exfoliating the top layer from the 

substrate. With our initial design of the magnetic PSi nanocomposite, we considered a layer with 

a pore size gradient where one side has pore sizes large enough to fit the Fe3O4 NPs while the 

other side has pore sizes small enough where the Fe3O4 NPs would not infiltrate through the 

layer. Increasing the pore size and porosity from the top to bottom layer requires an increase in 

current density and/or decrease in HF concentration. The PSi bilayer fabricated by 

electrochemical etching in a 25% HF solution at 12.5 mA/cm2 for 30 minutes, followed by a 

current density of 50 mA/cm2 in 5% HF solution for 30 minutes. Rather than exfoliating as a 

film, the porous layer came off in small, millimeter and micron-sized pieces. Figure 3.3 shows 

cross-section images of the bilayer leftover on the substrate. Figure 3.3a shows the clear 

distinction between the top layer, bottom layer, and substrate. Moreover, a void between porous 

layers, as shown Figure 3.3b, explains the mechanical instability of the films; The two layers 

lack continuity, and as separate entities they are too thin to remain stable films. Interestingly, the 

thickness of the top porous layer in Figure 3.3b is 4.6 + 0.1 µm, which is almost 8x thinner than 
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a layer etched with the first step individually. Rather, the entire porous layer thickness more 

closely resembles that of the first etching step when fabricated as a single step etch. Because the 

layer properties are claimed to not change during subsequent etching steps, this thinner layer 

from Figure 3.3b is probably not the entire top layer, but instead a portion of it.  

 

Figure 3.3 a) Cross-section SEM image of a porous silicon bilayer etched at 25% HF, 12.5 mA/cm2, 30 min 

followed by 5% HF, 50 mA/cm2, 30 min. b) Cross-section SEM image of the red inset in Figure 2a showing void 

formation between the etching steps. 

Therefore, layer exfoliation does not necessarily occur at the second etching step and 

substrate interface. Rather, void formation can occur within the two layers and is not strictly 

limited to the layer interface. While exfoliating a powder is useful given that the end product is 

NPs, an intact PSi film was desired since for Fe3O4 NP infiltration into the PSi layers. Thus, the 

PSi film architecture was further modified to increase its mechanical stability. Figure 3.4 shows 

optical images of exfoliated bilayers with different etching conditions. Increasing the HF 

concentration to 10% (Figure 3.4b) and 25% (Figure 3.4d) yielded layers that exfoliated as larger 

pieces. However, bilayer optimizations did not exfoliate the layer as a single piece corresponding 

to the exposed surface area of 200 mm2. Thus, a trilayer architecture was proposed to decrease 

the morphology gradient and increase the PSi mechanical stability for subsequent Fe3O4 NP 

infiltration. 
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Figure 3.4 Optical images of exfoliated porous silicon bilayers optimized with different etching parameters. In all 

cases, the bilayer is exfoliated in several smaller pieces rather than one piece corresponding to the exposed etching 

area. 

 

PSi Trilayers 

PSi trilayers produce stable films due to their smaller pore morphology gradient, while 

remaining suitable for Fe3O4 NP infiltration and trapping. The film resembled an ink-bottle pore 

structure232, where necks are present in the superficial layer and wider cylindrical pores are in the 

bulk of the layer. The first etching step (top layer) should yield a thin layer of small pores which 

the Fe3O4 NPs cannot infiltrate through. The second etching step will produce medium sized 

pores, large enough to host the NPs. The final etching step will remove the porous film from the 

substrate while also producing large pores that will readily allow the NPs to infiltrate into the 

film. A schematic of the trilayer is shown in Figure 3.5d. Initially, a trilayer was formed using 

the following conditions: 1) 12.5 mA/cm2, 5 min 2) 25 mA/cm2, 45 min 3) 50 mA/cm2, 5 min all 

in 25% HF. However, no exfoliation from the substrate occurred. When the third etching step 

was increased from 5 to 30 minutes, the layer was removed from the substrate, suggesting that 

pore branching occurs. This final etching step also increased the pore size of the top layer by 

more than 3x from 5.1 + 0.1 nm to 17.2 + 4.8 nm, which is contrary to the common observation 

of subsequent etching steps not influencing previous ones. Because smaller pore sizes were 

desired for the top layer, particularly about the same size or smaller than that of the Fe3O4 NPs, 
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the etching current density was decreased to 3 mA/cm2 and even further to 0.15 mA/cm2 while 

the subsequent etching steps were unchanged. Table 3.2 summarizes the pore morphology of this 

top layer as the etching current density is decreased. 

Table 3.2 Changes in top layer morphology of porous silicon trilayer with current density. 

First etching current 

(mA/cm
2
) 

Top layer pore size 

(nm)  

Bottom layer pore 

size (nm)  

Layer thickness 

(µm) 

12.5 17.2 + 4.8 37.3 + 10 38.6 + 0.3 

3 12.4 + 0.9 38.5 + 5.7 47.6 + 0.2 

0.15 7.9 + 1.3 24.6 + 4.0 45.3 + 0.8 

With an initial etching current density of 0.15 mA/cm2, the pore size decreased to 7.9 + 1.3 nm, 

which is comparable in size to the Fe3O4 NPs. Table 3.2 also shows that the pore size of the 

bottom layer remains relatively unchanged and is large enough for Fe3O4 NPs less than 20 nm in 

size to infiltrate. Figure 3.5 shows plan view SEM images of the top (Figure 3.5b) and bottom 

(Figure 3.5a) of the PSi trilayer etched with an initial current density of 0.15 mA/cm2, where a 

decrease in the pore size and porosity with decreasing current density is observed within the top 

layer. Figure 3.5c shows a cross-section of the porous layer, where current-line oriented pores 

are observed.  

A mechanically stable layer was exfoliated from the substrate in one piece corresponding 

to that of the exposed etching area. After achieving the trilayer fabrication, scalability of the 

experimental conditions was investigated. The fabrication was scaled up by increasing the 

exposed surface area by 40x and increasing the current to maintain the same current densities, 

considering the higher surface areas. Scaling up this fabrication increased the amount of PSi 

made by more than 30x (from ~13 mg to ~400 mg per run). 
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Figure 3.5 Plan view SEM images of porous silicon trilayer from the larger pore side where exfoliation from the 

substrate occurs (a) and from the smaller pore side resulting from the first etching step (b). A cross-section SEM 

image of the trilayer shows a branch-like morphology with pores growing downward in the <100> direction (c). A 

schematic of the trilayer shows the insets corresponding in color from where the SEM images were taken. 

Figure 3.6 shows optical images of the etcher with a 200 mm2 exposure area (Figure 3.6a), a 

7850 mm2 exposure area (Figure 3.6b), and the corresponding exfoliated layers.  

 

Figure 3.6 Optical images of Teflon electrochemical etcher with (a) and without (b) an aperture that varies the 

exposed wafer surface for porous silicon formation. The resulting layer diameter with (c) and without (d) the 

aperture demonstrates the scalability that is readily achieved within the same etcher. 



52 
 

 

Thus, we demonstrated a readily scalable fabrication process of PSi layers that uses minimal 

etching solution (140 mL) at both the optimization and scaled up level. Moreover, scalability and 

compatibility with common microfabrication techniques overcomes the fabrication challenges 

that are commonly associated with the clinical translation of nanomedicines.   

 The surface area, pore volume, and pore size distribution of as- anodized free-standing 

freshly etched and thermally oxidized PSi trilayer films before ball milling or ultrasonication 

fracture was determined by the BET, BJH methods. After thermally oxidizing the freshly etched 

PSi films the surface area decreased from 193 m2/g to 173 m2/g and the pore volume decreased 

from 0.57 cm3/g to 0.42 cm3/g (Figure 3.7).  

 

Figure 3.7 a) Pore size distribution and b) nitrogen adsorption/desorption isotherms of porous silicon and thermally 

oxidized porous silicon films before ball milling into nanoparticles.   

Decrease in surface area and pore volume with thermal oxidation is due to the increasing 

molecular volume of the SiO2 grown within the pores. Moreover, the average pore size decreased 

from 11.8 nm to 9.7 nm after thermal oxidation due to the SiO2 layer grown within the pores 

(Figure 3.7a).  
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PSi Surface Chemistry  

 Aside from tunable morphology, the PSi films are also readily functionalized to provide 

versatile surface chemistries in terms of hydrophilicity and surface charge. TOPSi layers are 

considered hydrophilic while THCPSi is hydrophobic. Moreover, TOPSi possesses a negative 

surface of -26.6 + 0.2 mV and APTESPSi has a positive surface charge of +31.7 + 1.4 mV 

(Figure 3.8a).  

 

Figure 3.8 a) Zeta potential measurements of PSi nanoparticles suspended in water showing negative charges 

associated with hydroxyl groups from TOPSi and positively charged amine groups on APTESPSi surfaces. b) EDX 

elemental map analysis of APTEPSi layer cross section taken under SEM. 

The surface functionalization was confirmed by FTIR (Figure 3.9). Freshly etched PSi films 

demonstrate transmission bands at 3600 cm-1 and 1100 cm-1 that are indicative of some oxidation 

due to the presence of air moisture. After dipping the film in HF the two bands disappear due to 

the acid dissolving SiO2. Thermally oxidizing the films yields a broad, prominent band between 

3400- 3600 cm-1 that indicated the presence of -OH groups. Another broad band appears at 1200 

cm-1 associated with SiO2. Amino functionalization that occurs after thermal oxidation is also 

apparent from the FTIR spectra. The appearance of bands at 1650 cm-1 and 1850 cm-1 are 
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assigned to the symmetric and asymmetric deformation of protonated amine groups (−NH3+) 

233,234.  

 

Figure 3.9 FTIR spectra for PSi films treated with different surface chemistries. PSi, as received indicates PSi films 

after electrochemical etching and for PSi, after HF the films were treated with HF to remove native oxide layers. For 

thermally oxidized PSi (TOPSi), thermal hydrocarbonized PSi (THCPSi), and amine-functionalized PSi 

(APTESPSi) their respective reactions are shown on the right.   

The asymmetric and symmetric stretch vibration modes of C−H2 and C−H3 groups between 2875 

cm-1 and 2980 cm-1 235 are related to the propylsilane chains. Amine functionalization was further 

confirmed by cross-section EDX (Figure 3.8b). Nitrogen was observed throughout the film, 

indicating homogeneous distribution of the amine functionalization. Tuning the surface 

chemistry to have various hydrophilicities and surface charges is a pertinent consideration when 

encapsulating the nanocarrier within a targeting peptide, stimuli-responsive material, and pore-

capping agents that localize or modulate a therapeutics’ release. Electrostatic interactions and 
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solvent-switching precipitation techniques57,236–238 have made it possible to encapsulate 

nanocarriers in a facile, efficient manner.  

3.3. Magnetite (Fe3O4) Synthesis 

 Fe3O4 NPs were synthesized via the co-precipitation method as previously reported229. 

Initially, the NH4OH concentration was varied from 0.375 M to 1 M. The NP sizes were 

determined from Williamson- Hall plots that were generated by the XRD spectra shown in 

Figure 3.10.  

 

Figure 3.10 a) Powder XRD of Fe3O4 nanoparticles synthesized with varying NH4OH concentrations and b) their 

respective Williamson-Hall plots used to determine the nanoparticle size. 

Overall, the NP size increased from 6.1 nm to 15.4 nm as the NH4OH concentration decreased 

from 1M to 0.375M. However, TEM measurements (not shown) revealed high aggregation in the 

samples, and the formation of rod-like structures for NPs synthesized with 0.375M NH4OH. This 

rod shape might make it difficult for Fe3O4 NPs to infiltrate the Si porous structure. 

 The NH4OH addition rate was also varied with nucleation and crystal growth 

considerations. We anticipated that faster addition rates of the NH4OH precursor would results in 

a higher supersaturated solution that in turn increases the Gibbs free energy. Given that the 

reduction in Gibbs free energy is the driving force for crystal nucleation and growth, a larger 
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number of nucleation events are expected at faster precursor addition rates239,240. The critical 

radius for nucleation, r*, is dependent on the change of Gibbs free energy per unit volume of the 

solid phase, ΔGv, as follows: 

𝑟∗ = −
2𝛾

∆𝐺𝑣
 Eq. 3.1 

where 𝛾 is the surface energy per unit area. A higher Gibbs free energy would result in smaller 

nuclei versus a lower Gibbs free energy from a lower precursor addition rate. With homogenous 

nucleation considerations, the NH4OH addition rate was varied to 3.3 mL/hr, 10 mL/hr and 25 

mL/hr. The XRD spectra and corresponding Fe3O4 NP sizes are shown in Figure 3.11.   

 

Figure 3.11 Powder XRD of Fe3O4 nanoparticles synthesized with varying 0.5 M NH4OH addition rates. The 

presence of Fe2O3 at the lowest addition rate indicates oxidation. 

The NP sizes were determined from the most intense diffracting plane (311) rather than 

Williamson-Hall plots because of the high background noise that made it difficult to determine 

the full-width half maximums (FWHM) for some of the diffraction peaks. Increasing the 

precursor addition rate from 3.3 mL/hr to 10 mL/hr doubled the NP size from ~3 nm to ~6 nm. 

The XRD spectrum for precursor added at 3.3 mL/hr showed an additional peak at ~33.2°, which 
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is typically associated with maghemite (Fe2O3), indicating that some oxidation is occurring at 

this lower addition rate. Moreover, further increasing the rate to 25 mL/hr did not result in any 

NP size difference. TEM images shown in Figure 3.12 confirmed that when considering the 

standard deviation from the size distribution, there was no significant difference in NP size 

within the precursor addition rate range.   

 

Figure 3.12 High resolution TEM images of Fe3O4 nanoparticles synthesized with varying 0.5 M NH4OH addition 

rates with the average nanoparticle size and standard deviation below each respective image. Scale bar is 2 nm. 

 The NP size was also assessed by XRD at various times after the synthesis to determine 

the overall NP stability and whether any significant Ostwald ripening, where smaller particles 

within the solution redissolve and in turn allow larger particles to grow even more 239,240, is 

occurring. The NP spectra were collected after 2, 4, and 13 days, and the spectra are shown in 

Figure 3.13. Overall, there is no significant difference between the NP sizes, indicating the Fe3O4 

NP stability. 
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Figure 3.13 a) Powder XRD of Fe3O4 nanoparticles characterized after respective days of synthesis and b) their 

Williamson-Hall plots used to determine the nanoparticle size. 

Another parameter varied in the co-precipitation synthesis was the Fe (III)/Fe (II) ratio. 

Previous literature has shown that varying relative concentrations of Fe2+ and Fe3+ determines the 

NP phase that is formed 241. Magnetite forms between 0.60 ≤ x ≤ 0.66 during alkalization, where 

x= Fe3+/ ( Fe3+ + Fe2+). As x reaches 1 and only Fe3+ ions are present, goethite formation is 

observed. For x ≤ 0.33 Fe6(OH)12SO4, xH2O, also known as “Green Rust SO4”, will form. 

Because magnetite forms over a small range of iron precursor ratios, we varied the Fe3+ 

concentration was varied from 0.66 to 2.5 M. Figure 3.14 shows the powder XRD spectra of 

Fe3O4 NPs synthesized with different precursor concentrations and the corresponding 

Williamson-Hall plots that were used to determine the NP size through the y-intercept 242.  

 

Figure 3.14 a) Powder XRD of Fe3O4 nanoparticles synthesized with varying Fe3+ concentrations and b) their 

respective Williamson-Hall plots used to determine the nanoparticle size. 
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Table 3.3 shows the resulting NP size determined from Williamson-Hall plots and a size increase 

with decreasing precursor concentration was observed.  

Table 3.3 Y-intercepts determined from Williamson-Hall plots for Fe3O4 nanoparticles and sizes 

calculated using the y-intercepts. 

Fe
3+

 Concentration (M) Y-intercept Size (nm) 

0.66  0.0097 14.3 

1.33 0.01 13.9 

2 0.0142 9.8 

TEM images of the Fe3O4 NPs synthesized with 2M and 1.33M Fe3+ further corroborated the 

sizes determined by the Williamson-Hall plots (Figure 3.15).  

 

Figure 3.15 TEM images for Fe3O4 nanoparticles synthesized with varying Fe3+ concentration and their 

corresponding size distribution determined from 20 measurements. 

However, considering the mean and standard deviation obtained from the size distribution, there 

is no statistically significant difference in the NP size. While there is no significant different in 

the size distribution, which can be difficult to determine with XRD methods, TEM allowed us to 

directly observe that decreasing the precursor concentration to 1.33M yielded NPs with reduced 

agglomeration, which is crucial in maintaining final formulation sizes that can pass through the 

endothelial membrane when considering the EPR effect53,54, or in avoiding particle aggregation 
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in blood vessels that can lead to thrombosis121. Thus, Fe3O4 NPs synthesized with 1.33M Fe3+ 

were used to form the final APTESPSi@Fe3O4 nanocomposite formulation. The magnetic 

properties of the Fe3O4 NPs and APTESPSi@Fe3O4 nanocomposite are discussed in Chapter 4. 

The magnetic PSi composite was initially formed by Fe3O4 NP infusion into PSi layers followed 

by ultrasonic fracture. An alternative structure where the Fe3O4 NPs are bound to the PSi surface 

via electrostatic interactions is also proposed. 

3.4. Nanocomposite Formation 

 The PSi layers and Fe3O4 NPs were subsequently combined to fabricate a magnetic PSi 

composite with the initial idea that Fe3O4 would be infiltrated inside the PSi. The Fe3O4 NPs 

were infiltrated into the PSi by an infusion method previously described243. A solution of Fe3O4 

in ethanol with three different concentrations (1, 10, and 25 mg/mL) was dropcasted on top of 

the PSi layer with the larger pore side facing up and a magnet below the layer to magnetically 

guide the solution into the pores. A picture of the experimental setup is shown in Figure 3.16a.  

 

Figure 3.16 a) Optical image showing Fe3O4 nanoparticle (10 mg/mL) infusion into Psi layer with guidance of a 

magnet and b) XRD spectra of Fe3O4-infused Psi layers that were annealed prior to infiltration at varying 

temperatures.   
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XRD measurements of PSi layers annealed at various temperatures infused with a 10 mg/mL 

Fe3O4 solution confirmed the presence of both PSi and Fe3O4 phases (Figure 3.16b). After 

infiltration, diffraction from the (220) and (311) planes indicate that the Fe3O4 phase was present 

in the PSi. EDX measurements confirmed the presence of Fe within infiltrated PSi cross-

sections. EDX spectra, linescans and elemental mapping confirmed Fe presence and its 

distribution throughout the cross-section (Figure 3.17).  

 

Figure 3.17 a) EDX linescan of Fe3O4-infiltrated PSi layer showing infiltration into the first ~10 µm of the layer and 

b) the corresponding x-section from which the linescan was taken of. 

The decreasing intensity for Si, O, and Fe is probably due to the sample being tilted at an angle 

of 45°; The sample’s distance from the electron beam increases and therefore its intensity 

decreases as the linescan progresses. A low infiltration efficiency was observed (Fig. 3.17), 

where the presence of Fe is only in the first ~10 µm of the sample. Despite the low infiltration 

efficiency, the composite was formed into NPs via ultrasonic fracture of the Fe3O4 infiltrated PSi 

layers in ethanol overnight. Larger particles were removed with a 2 µm Millipore filter and 

further characterized. An XRD spectrum of the nanocomposite (Figure 3.18a) shows the 

presence of Fe3O4 NPs and polycrystalline Si that is being formed as the layer is broken down by 
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ultrasonication. TEM images and EDX spectra of the nanocomposite are shown in Figure 3.18b 

and Figure 3.18d.  

 

Figure 3.18 a) XRD spectra of Fe3O4-infiltrated PSi nanoparticles. b) TEM image of PSi nanoparticle 

with Fe3O4 nanoparticles clustered onto the surface. c) TEM image of Psi-infiltrated Fe3O4 nanoparticles 

with an EDX spectra (d) corresponding to the red inset. 

Fe3O4 NPs are distributed through parts of the PSi NP while clusters are adsorbed on the PSi 

surface, as confirmed by EDX. However, the Fe3O4 NPs are not homogenously distributed 

throughout the PSi, and the overall amount of the magnetic is low. While the nanocomposite 

particles are formed in a simple manner that can be easily scaled for commercial applications, the 

nanocomposite synthesis efficiency remained low. Therefore, we proposed fabricating the 

nanocomposite by physically adsorbing the Fe3O4 NPs onto the PSi surface via electrostatic 

interactions.  

APTESPSi@Fe3O4 Nanocomposite 
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 Magnetic PSi nanocomposites were formed via electrostatic interactions between the 

positively charged amine-functionalized PSi surface (APTEPSi) and the negatively charged 

Fe3O4 NPs. The Fe3O4 NPs serve as pore capping agents that, upon degradation of the 

electrostatic interactions, mediate the cargo release from the PSi nanocarrier. Figure 3.19 shows 

a 3-dimensional schematic of the Fe3O4 pore-capping agents disassociating after changes in the 

PSi surface chemistry, as well as the proposed reaction where the propylsilane chain on the PSi 

surface is prone to hydrolysis and thus removal from the surface.  

 

Figure 3.19 a) 3D schematic of thermally-modulated drug release from porous silicon nanoparticles capped with 

Fe3O4 nanoparticles bound to the surface by electrostatic interactions. b) The thermally-controlled surface hydrolysis 

reaction occurring on the porous silicon surface subsequently destroys electrostatic interactions with the Fe3O4 cap 

and promotes drug release from the pores. 

Consequently, the propylsilane chain removal destroys the electrostatic interaction between the 

PSi and Fe3O4, resulting in cargo release. This hydrolysis reaction is accelerated at temperatures 

slightly above physiological temperature (i.e. 37 °C) and therefore the function of Fe3O4 NPs as 

pore caps can be modulated via temperature.  
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 The APTESPSi@Fe3O4 nanocomposite was formed by physically mixing APTESPSi and 

Fe3O4 NPs in a 1:1 ratio at 300 rpm over 1h, with the expectation that oppositely charged 

surfaces would physically bind the two particles together via electrostatic interactions. The ζ- 

potential for APTESPSi and Fe3O4 was confirmed before mixing, as shown in Figure 3.20a, with 

APTESPSi and Fe3O4 exhibiting ζ -potentials of +31.7 + 1.4 mV and -38.3 + 1.9 mV.  

 

Figure 3.20 a) Zeta potential of APTESPSi, Fe3O4 nanoparticles, and the two combined via electrostatic 

interactions. Physical adsorption of Fe3O4 on the APTESPSi surface is confirmed by the decrease in zeta 

potential. b) Hydrodynamic diameter and PDI of APTESPSi, Fe3O4 nanoparticles, and the two combined. 

Changes in APTESPSi size that correspond to the size of Fe3O4 confirms that nanoparticle adsorption 

onto the surface. 

 

After mixing the two components the ζ -potential was +9.3 + 0.3 mV, indicating the presence of 

both APTESPSi and Fe3O4 in the solution. The final zeta potential is not exactly at the halfway 

point between the two initial zeta potentials because not all Fe3O4 NP were bound to the 

APTESPSi surface and were washed away during centrifugation. Changes in the hydrodynamic 

diameter (Z-average) were also monitored before and after the components were combined using 

DLS. Before mixing the APTESPSi and Fe3O4 NPs exhibit a Z-average of 224.6 nm and 31.6 nm 

with polydispersity index (PDI)s of 0.16 and 0.14, as shown in Figure 3.20b. The discrepancy in 

the Fe3O4 NP size between DLS compared to TEM or XRD is perhaps due to some Fe3O4 

agglomeration where DLS cannot differentiate between a single particle and agglomerates in 
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comparison to TEM where particle sizes are determined through direct observation or XRD 

where Scherrer analysis is essentially calculating grain sizes. The final nanocomposite is 250.9 

nm with a PDI of 0.2, which is the sum of the individual component sizes, and an indicator that 

the Fe3O4 NPs are bound to the APTEPSi surface. The Si and Fe content in the nanocomposite 

were determined by inductively coupled plasma optical emission spectrometry, which 

determined a Fe: Si ratio of 9.3: 33.4 mg/L and by dividing the two yields a Fe content of 27.9 

wt%.  

 We also directly observed the nanocomposites under TEM to confirm that the Fe3O4 NPs 

were in fact blocking pores on the APTEPSi surface rather than agglomerating. Figure 3.21a 

shows a TEM image of several nanocomposites containing Fe3O4 on the nanocarrier surface and 

Figure 3.21b shows an image focused on one nanocomposite with Fe3O4 NPs homogeneously 

distributed throughout the APTESPSi surface.  

 

Figure 3.21 a) TEM image of APTESPSi@Fe3O4 nanoparticles and b) TEM image with higher magnification 

showing Fe3O4 nanoparticles covering the porous silicon surface. c) SEM image of APTESPSi@Fe3O4 nanoparticles 

and d) its EDX spectrum corresponding to the area within the purple rectangle confirming the presence of both 

silicon and iron elements. 
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This homogenous distribution is crucial to prevent premature release of therapeutics loaded into 

the nanocarrier pores. Moreover, the presence of Fe3O4 NPs on the nanocomposite was 

confirmed through EDX (Figure 3.21d). Such elemental analysis is crucial because the Fe3O4 

NPs resemble the nanocarrier’s porous structure and it should be confirmed that the magnetic 

NPs are in fact present and not an artefact observed in TEM. After successfully confirming the 

formation of magnetically capped- PSi NPs, we studied whether this cap could be removed at 

slightly elevated, physiologically relevant temperatures via the degradation of the electrostatic 

interactions that hold the two components together. 

3.5.Conclusion 

 A magnetic PSi nanocomposite proposed for a remotely-controlled targeted drug delivery 

system was fabricated with high efficiency and scalability. The PSi is formed via a top-down 

approach, where the pores are formed by electrochemical etching and either sonicated or ball 

milled to form NPs. PSi with a three-step gradient in porosity and pore size was fabricated, with 

a large pore size on one end for Fe3O4 NP infiltration and a small pore size on the other end to 

keep the NPs inside the PSi. Fe3O4 NPs were synthesized by the co-precipitation method, and 

parameters such as Fe (III) concentration were varied to achieve different NPs sizes. Fe3O4 NPs 

infiltrated into the three-step gradient PSi with the guidance of a permanent magnet yielded low 

efficiencies of magnetic PSi NP formation. Thus, a new synthesis route was proposed for 

fabrication magnetic-capped PSi (APTESPSi@Fe3O4) NPs with high efficiency while 

overcoming synthetic challenges associated with scaling up in drug delivery systems. The Fe3O4 

NPs were electrostatically bound to the APTESPSi surface and therefore blocking the pores for 

controlled drug delivery applications. This novel system, completely comprised of low-cost, 
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highly scalable components, is a promising candidate for future applications in externally 

triggered drug delivery 
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Ch. 4 Amine-Functionalized Porous Silicon Nanoparticles with 

Electrostatically Bound Magnetic Capping Agents Mediate Thermoresponsive 

Drug Delivery 

 

 Magnetically actuated drug delivery carriers are appealing platforms in next-generation 

precision medicine, yet these carriers must be compatible with scalable fabrication techniques to 

realize their clinical translation. Magnetically capped PSi NPs are promising targeted drug 

delivery vectors due to their low-cost, high compatibility with scalable microfabrication 

techniques and their ability to yield remotely triggered, on-demand therapeutic release. 

 This Chapter investigates whether a thermoresponsive behavior is observed in the amine-

modified PSi NPs capped with electrostatically bound Fe3O4 NPs that were developed in Chapter 

3. We determined whether the electrostatic interactions binding the PSi NPs and Fe3O4 capping 

agent are degraded through temperature changes, and whether this thermoresponsive binding 

translates to a controlled release profile. First, we demonstrate that as the amine modification on 

the PSi surface is destroyed with accelerated hydrolysis at elevated temperatures the electrostatic 

interactions with Fe3O4 are degraded, thus exposing the pores for promoting carrier release. The 

magnetic properties, magnetic localization and AMF heating capabilities of the nanocomposite 

are then discussed. This Chapter concludes with dissolution studies with a model drug 

(sorafenib), which show a thermoresponsive behavior that is attributed to the temperature-

mediated electrostatic degradation. Overall, this proof-of-concept of an on command drug 

delivery system using cheap, highly scalable fabrication processes, as discussed in Chapter 3, 

establishes the opportunity for the clinical translation of a nanocarrier that can potentially 
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localize the therapeutic and trigger its release “on demand” near a disease site to mitigate 

systemic exposure and reduce clinical side effects. 

4.1. Experimental Methods 

Surface Hydrolysis on APTESPSi Surface 

 Temperature-mediated surface hydrolysis of APTESPSi was monitored by ζ-potential 

measurements taken at different times and temperatures. 20 mL solutions of 10 µg/mL 

APTESPSi in Milli-Q water were stirred at 300 rpm at room temperature, 37 °C, and 45 °C and 

750 µL aliquots were removed for analysis with  Zetasizer Nano ZS (Malvern Instruments Ltd., 

United Kingdom) at t= 0, 15, 30, 60, 120, and 180 min. Hydrolysis was also confirmed by the 

changing mass percentage of nitrogen on the NP surface using elemental analysis of dry samples 

(vario MICRO cube CHNS analyzer, Elementar AnalysenSystem). The nitrogen surface 

coverage determination was calculated from the nitrogen content. It was assumed that the 

silanization process was completed and that all nitrogen atoms were related to the surface 

terminating −NH2 group. 

PSi@Fe3O4 Magnetic Characterization and Specific Absorption Rate 

 The magnetic behavior and Fe content of APTESPSi@Fe3O4 was verified by a vibrating-

sample magnetometer (MicroMag 3900 VSM; Lake Shore Cryotronics, Inc.). The sample was 

prepared by placing 0.56 mg of dry APTESPSi@Fe3O4 powder in a gelatin capsule. 

Magnetization curves were measured from -1.2 to 1.2 T at room temperature. The magnetic 

moment (A m2) versus applied magnetic field (T) was normalized by the amount of Fe3O4 in the 

sample and corrected for dia/paramagnetic components to obtain the final magnetization value 

(A m2 kg -1).  
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 SAR is an indicator for heating efficiency of Fe3O4 NPs in the presence of an AMF. The 

imaginary component of magnetic susceptibility is widely used to determine the Fe3O4 NP heat 

dissipation characteristics. When the particles are exposed to magnetic field frequencies with 

field direction reversals on a timescale less than the magnetic relaxation times of particles, heat is 

dissipated due to the delay in the magnetic moment relaxation, as previously discussed in 

Chapter 2. Thus, magnetic susceptibility is a valuable tool for determining heat dissipation 

values. Alternating current (AC) magnetic susceptibility measurements (SM-105 portable 

magnetic susceptibility meter, ZH Instruments, Czech Republic) were performed at frequencies 

63, 129, 257, 511, 1026, 2055, 4001, 8093, and 16037 Hz at room temperature. Since the 

instrument only measures the real component of magnetic susceptibility, the imaginary 

component was determined from equations that consider the effective relaxation associated with 

Brownian and Neel relaxation. 

 Calorimetry experiments, where temperature changes with application of an AMF are 

recorded as a function of time, is another method for measuring SAR. The AMF was generated 

with a homemade magnetothermal setup consisting of a resonant RLC circuit and a 16 mm 

copper coil similarly used in previous reports 190. The field amplitude was set at either 9 or 18 

mT and the magnetic field frequency was fixed at 471 kHz. The temperature change was 

recorded for 200 µL of an APTESPSi@Fe3O4 and Fe3O4 solution with an infrared thermal 

imaging camera (FLIR SC7000, FLIR Systems, Inc.) at every second in a temperature range of 

25 to 60 °C. All measurements were performed in water (Cwater = 4185 J L-1 K-1) and normalized 

by the amount of iron (g Fe/L) as determined by ICP. All reported SAR values and error bars 

were calculated from the mean and standard deviation of at least three experimental 

measurements. 
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Loading Degree (LD) and Drug Dissolution, Release Studies 

 We dissolved 18.33 mg SFN in 1mL acetone at 300 rpm, 37 °C (slightly elevated 

temperature used to ensure that drug was fully dissolved) for 10 min. Simultaneously, 2.1 mg of 

APTESPSi was centrifuged at 13,200 rpm for 5 min. The supernatant from the APTESPSi was 

removed, and the 1 mL SFN solution was added and mixed at 300 rpm, room temperature for 2 

hours.  The solution was then centrifuged at 13,200 rpm for 5 min and the supernatant was 

removed. A 1 mL 2.1 mg/mL Fe3O4 NP aqueous solution was added to the SFN-loaded 

APTESPSi and mixed at 300 rpm for 1 hour to cap the drug-loaded pores via electrostatic 

interactions. The mixing occurred in an aqueous solution to minimize the release of the loaded 

drug, which is highly hydrophobic and likely to stay in the pores. After capping the surface with 

Fe3O4 NPs, the solutions were separated into two aliquots: one for loading degree determination 

and the other for the drug dissolution studies. Loading degree and drug dissolution studies were 

also conducted for SFN loaded into APTESPSi without any capping agent.  

 Loading degree was determined by centrifuging the respective aliquot and redispersing it 

in 1 mL of ethanol. The solution was stirred at 300 rpm at room temperature for 3 hours and 

centrifuged at 13,200 rpm for 5 min to remove the PSi NPs. The supernatant was collected to 

assess the drug amount encapsulated inside using an Agilent 1200 series High Performance 

Liquid Chromatography (HPLC) system (Agilent Technologies, USA). The mobile phase was 

composed of 0.2% trifluoroacetic acid (TFA) and acetonitrile (ACN) at a 42:58 volume ratio and 

the stationary phase was a Gemini 3 µm NX-C18 110 Å column (Phenomenex, USA). An 

injection volume of 10 µL, flow rate of 1 mL min-1 and detection wavelength of 293 nm was 

used.  

The loading degree was calculated as is shown in Eqn. 4.1 
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𝐿𝐷 (%) =
𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑑𝑟𝑢𝑔 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝐻𝐿𝑃𝐶

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
 𝑥 100%         (4.1) 

 The dissolution profiles of SFN from APTEPSi and APTESPSi@Fe3O4 were performed 

at room temperature, 37 °C, 45 °C, and 50 °C in sink conditions. The samples were dispersed in 

20 mL Hank’s Balanced Salt Solution (N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic 

acid]) (HBSS−HEPES, pH 7.4) 10% fetal bovine serum (FBS) and stirred at 300 rpm. At the 

respective timepoints a 200 µL aliquot was removed from the solution and replaced with the 

same volume of fresh solution. The analyte was centrifuged at 13,200 rpm and the supernatant 

was then collected for analysis by HPLC.   

4.2. Temperature Accelerated Surface Hydrolysis of APTESPSi NP Surfaces 

 The hydrolysis reaction occurring on the APTESPi surface is crucial for having thermally 

responsive electrostatic degradation that removes the pore capping agent and promotes cargo 

release. During hydrolysis the propylsilane chain reacts with water and is removed from the PSi 

surface, leaving the surface with hydroxyl groups where the PSi now resembles TOPSi, which is 

associated with a negative zeta potential. A proposed mechanism for thermoresponsive cargo 

release is shown in Figure 3.19a and a reaction schematic describing this surface hydrolysis is 

shown in Figure 3.19b. 

 Because of the dramatic differences in zeta potential between APTESPSi and TOPSi, the 

ζ- potential was monitored as a function of temperature and time to indicate the ongoing 

hydrolysis. This hydrolysis reaction is accelerated at temperatures above room temperature, as 

shown by the decrease in zeta potential in Figure 4.1. At room temperature the zeta potential 

stays the same after 180 minutes, indicating that the amine surface functionalization remains 

intact. As the solution temperature increases to 37 °C and 45 °C the zeta potential decreased to 
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8.43 mV and-13 mV after 120 minutes, indicating a greater extent of hydroxyl group formation 

on the surface with increasing temperature.  

 

Figure 4.1 Zeta potential of APTESPSi at different times and temperatures. Decreasing zeta potentials 

indicates the hydrolysis of the alkoxy groups on the nanoparticle surface, and this reaction is accelerated 

at higher temperatures. 
 

 Elemental analysis determined the nitrogen surface coverage after 3 hours at room 

temperature, 37 °C, and 45 °C. The propylsilane chains are removed from the surface during 

hydrolysis the overall surface nitrogen content should decrease. Elemental analysis revealed a 

decrease in nitrogen content with increasing temperature, as shown in Table 4.1.  

Table 4.1 Mass percentage of N element in APTESPSi determined by elemental analysis after 3 hours 

stirring in Milli-Q water at different temperatures. We assume that all nitrogen is related to amine groups 

during elemental analysis. 

Temperature 
mmol/g 

a

 Surface Area (m
2

/g) 

RT 0.87 262 

37 °C 0.66 199 

45 °C 0.61 184 
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Considering that one aminopropylsilane covers approximately 50 Å2 244, the surface area for a 

surface coverage of 0.87 mmol/g was calculated as shown below. 

(8.7 ×  10−4 𝑚𝑚𝑜𝑙/𝑔)(50 ×  10−20 𝑚2)(6.022 ×  1023 𝑚𝑜𝑙−1) = 262 𝑚2/𝑔    

As the nitrogen surface coverage decreases the surface area approaches that of TOPSi (173 m2/g) 

as determined by N2 adsorption according to the BET method (Chapter 3). The most dramatic 

decrease in nitrogen coverage occurs as the temperature is increased to 37 °C from room 

temperature, which does introduce some concern that hydrolysis of the silane groups may be 

occurring prematurely. This decrease in nitrogen coverage on the PSi surface further 

corroborates the hydrolysis reaction, where amount of nitrogen decreases as the NH3+ groups on 

the propylsilane are removed from the surface. 

 Hydrolysis is further confirmed by FTIR measurements of APTESPSi@Fe3O4 stirred in 

MilliQ water for 3 hours at room temperature and 45 °C. As the hydrolysis reaction proceeds, -

OH groups are formed on the PSi surface. Figure 4.2 shows a broad absorbance band that 

appears at 3300 cm-1
 when the particles are heated to 45 °C, which is assigned to -OH group 

formation. 
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Figure 4.2 FTIR transmission spectra of APTESPSi particles stirred in Milli-Q water at room temperature and 45 °C 

after 3h. 

 

Thus, the appearance of absorbance bands associated with -OH groups is an additional indicator 

that the hydrolysis reaction is occurring on the PSi NP surface. 

 Finally, as the hydrolysis reaction proceeds and the PSi surface charge becomes more 

negative, we anticipate electrostatic interactions between the PSi and Fe3O4 NPs to weaken, with 

repulsive forces eventually dominating. The changes in electrostatic interaction strength between 

the APTESPSi and Fe3O4 NPs were monitored with SEM/EDX. Figure 4.3 shows SEM images 

of APTESPSi@Fe3O4 dried in MilliQ water after stirring for 3 hours at room temperature 

(Figure 4.3a), 37 °C (Figure 4.3b), 45 °C (Figure 4.3c), and their corresponding EDX spectra 

(Figure 4.3d-f).  
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Figure 4.3 SEM images of APTESPSi@Fe3O4 nanoparticles dried in Milli-Q water after stirring at a) room 

temperature b) 37 °C and c) 45 °C to investigate the networks formed with varying electrostatic interaction 

strengths. Their corresponding EDX images in d- f) confirm the presence of both Si and Fe elements within the 

framework. 

 Before discussing the SEM images, it is important to note that these images are not a true 

depiction of how the nanocomposites are arranged in a colloidal solution, as DLS has previously 

indicated hydrodynamic sizes of 250.9 nm (Chapter 3). When the nanocomposite solution is 

dried during TEM grid preparation, the strong electrostatic interactions, or attractive inter-

particle forces, cause the NPs to aggregate 245. As electrostatic interactions weaken and Fe3O4 

NPs are removed from the PSi NP surface less aggregation is observed (Figure 4.4). Instead, 

there is electrostatic repulsion between the Fe3O4 and PSi NPs due to their similar surface 

charges.   
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Figure 4.4 Magnetization of APTESPSi@Fe3O4 nanoparticles as a function of magnetic field as measured by VSM. 

The hysteresis loop confirmed superparamagnetic behavior and ~30% Fe content in the final formulation. 

 For the APTESPSi@Fe3O4 NPs that were stirred in aqueous solution at room 

temperature, an ~10 µm cluster (Figure 4.3a) was observed, indicating that the electrostatic 

interactions between the two components are strong enough to form a network of particles during 

the TEM drying process. At 37 °C and 45 °C the clusters do not form as a result of weakened 

electrostatic interactions between the components, which now exhibit repulsive interactions 

(Figure 4.3b-c). The corresponding EDX spectra (Figure 4.3d-f) show an overall decrease in the 

Fe Kα signal (6.398 eV) based on the decreasing full-scale counts as the temperature increases. 

The decreasing Fe signal indicates that the Fe3O4 NPs are not associated with the PSi NP surface 

at elevated temperatures because the two components face repulsive forces. Direct observation 

through SEM/EDX is an effective approach to understand electrostatic interactions between the 

two components with temperature changes, as one can observe how the distribution of both 

populations are changing rather than an average of the two, as would be observed in DLS. After 

confirming hydrolysis on the PSi NP surface, and how accelerating this hydrolysis at elevated 

temperatures could translate into a controlled release nanocarrier mediated by electrostatic 

degradation, the magnetic properties of this carrier with application of an AMF is investigated. 
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Nanocomposites with on-demand release by remote-controlled stimuli such as AMFs is 

attractive for achieving spatiotemporally controlled drug release that can be readily tuned from 

patient to patient. 

4.3. Nanocomposite Localization and Heat Dissipation by Magnetic Field 

 This section focuses on the magnetic properties and heat dissipation capabilities of the 

APTESPSi@Fe3O4 nanocomposites to determine whether applying an AMF to the nanocarrier 

yields temperatures increases relevant in degrading the electrostatic interactions that promote 

carrier release. The SAR was determined for APTESPSi@Fe3O4 nanocomposites from magnetic 

susceptibility calculations and these results were compared with calorimetric heating 

measurements. Initial magnetic characterization was carried out by vibrating sample 

magnetometer (VSM) to determine magnetization as a function of magnetic field, as shown in 

Figure 4.4. The APTESPSi@Fe3O4 nanocomposite possessed superparamagnetic behavior, as 

demonstrated by the hysteresis curve and a saturation magnetization (Ms) of 66.2 A m2 kg-1
. An 

Fe content of 28.4 wt%. was determined by dividing Ms of the APTESPSi@Fe3O4 

nanocomposite by the Ms of pure Fe3O4 (Ms= 92.4 A m2 kg-1) 246. This Fe content is in close 

agreement with ICP measurements of 27.9 wt%.  

SAR of the APTESPSi@Fe3O4 nanocomposite was determined with application of an 

AMF. SAR measures the rate at which energy is absorbed per unit mass of the magnetic 

material, and has been used to quantify heat dissipation in MRI scanners247, magnetic fluid 

hyperthermia (MFH) 83,248, and temperature-controlled drug release 249,250. The SAR was 

determined for APTESPSi@Fe3O4 nanocomposites and Fe3O4 alone from magnetic 

susceptibility calculations with varying hydrodynamic volumes modelling the two systems (Eq. 

2.2-2.4, 2.7, 4.2) and compared with calorimetric heating measurements. Previous research 
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efforts compared SAR values for Fe3O4 NPs determined by magnetic susceptibility and 

calorimetry experiments 161. Research efforts have not compared SAR measurements between 

magnetic susceptibility and calorimetry for PSi@Fe3O4 nanocomposites to determine whether 

the electrostatic interactions between Fe3O4 and APTESPSi hinder the overall Brownian 

relaxation and, therefore, the heat dissipation.  

The out-of-phase or imaginary component, χ", was used to calculate the heat dissipation 

of the magnetic particle. As shown in Chapter 2, Eqn. 2.7, the SAR is estimated as 82   

𝑆𝐴𝑅 =  
𝜇0𝜋 χ"

𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
𝑓𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑

2  Eq. 2.7 

 The magnetic susceptibility of APTESPSi@Fe3O4 NPs is shown as a function of AMF in 

Figure 4.5a.  

 

Figure 4.5 a) Magnetic susceptibility measurements as a function of frequency for APTESPSi@Fe3O4 nanoparticles 

and b) SAR values theoretically determined from magnetic susceptibility measurements at varying frequencies. 

Different particle sizes simulating Fe3O4 alone and APTESPSi@Fe3O4 were considered in calculating the Neel 

relaxation and Brown relaxation constants. 

 

The magnetic susceptibility decreased with increasing frequency because the magnetization 

frequency of the nanocomposite cannot keep up with the AMF driving frequency. Because the 
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instrument used for measuring magnetization could not directly determine χ", we used Equation 

4.2 to convert from the real into imaginary component 82 

χ" =
2𝜋𝑓𝜏𝜒

1+(2𝜋𝑓𝜏)2
  Eq. 4.2 

where 𝜒 is the measured susceptibility and 𝜏 is the effective relaxation associated with Brown 

and Neel, as shown in Equations 2.2 through 2.4 in Chapter 2. The effective relaxation constant 

was determined for each susceptibility measurement in Figure 4.5a and were then used to 

calculate χ" from Equation 4.2 for each respective frequency. The imaginary component was 

then used to determine SAR (Equation 2.7) at each frequency, and the final SAR value was 

normalized by 𝑓𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑
2  to minimize the contributions from these experimental parameters, as 

was done in previous literature 161. Moreover, the SAR was calculated with two different 

effective relaxation constants based on the hydrodynamic volumes representative of Fe3O4 NPs 

and the APTESPSi@Fe3O4 nanocomposite. The hydrodynamic diameter for each was 

determined from DLS while the particle diameter for Neel relaxation was determined via TEM. 

The ratios of 𝑆𝐴𝑅/𝑓𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑
2  as a function of AMF frequency for particles with diameters of 14 

nm (Fe3O4) and 251 nm (APTESPSi@Fe3O4) are shown in Figure 4.5b. Using a diameter 

representative of Fe3O4 NPs yielded a normalized SAR value on the order of 10-8 W g-1 Hz-1 Oe-2 

at high frequencies while using a diameter representative of the nanocomposite resulted in SAR 

values 3 orders of magnitude smaller. The hydrodynamic volume and particle volume increase 

the Brownian and Neel relaxation constants, and therefore the effective relaxation constant, 𝜏 , 

increases. Considering Equation 4.2, χ" decreases with higher 𝜏, where χ" is proportional to  1 𝜏⁄ . 

Given that χ" is directly proportional to the SAR, as shown in Equation 2.7, increasing the 

particle size results in lower SARs, as shown in Figure 4.5b. Moreover, the SAR values 

calculated from magnetic susceptibility were compared with calorimetry experiments to 
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determine whether the electrostatic interactions between APTESPSi and Fe3O4 hinder the 

Brownian relaxation.  

 For calorimetry experiments, the sample was placed in a magnetic coil with a magnetic 

field frequency of 471 kHz and amplitude of 9 or 18 mT, as previously reported 190. The 

temperature increase was recorded with a high-resolution infrared (IR) camera calibrated with a 

fluorescent temperature probe 190. Figure 4.6 shows the temperature heating profile for Fe3O4 

NPs (Figure 4.6a) and APTESPSi@ Fe3O4 (Figure 4.6b) at two different AMF amplitudes and a 

constant frequency of 471 kHz.  

 

Figure 4.6 Temperature heating profiles with applied AC magnetic fields at different field amplitudes for a) Fe3O4 

nanoparticles and b) APTESPSi@Fe3O4 nanoparticles. 

With a field amplitude of 18 mT the Fe3O4 NPs see a temperature change of nearly 35 °C within 

6 min while the APTESPSi@ Fe3O4 exhibit a temperature change of 25 °C within 6 min. When 

the field amplitude decreases to 9 mT the Fe3O4 NPs and APTESPSi@ Fe3O4 a 10 °C and 5°C 

temperature change within 6 minutes. In both particle systems exposed to an AMF with 18 mT 

field amplitude the temperature changes are relevant for hyperthermia and thermally responsive 

drug delivery. Moreover, while the temperature change is only 5 °C for APTESPSi@Fe3O4 with 

a field amplitude of 9 mT, the system would be within the proposed temperatures for controlled 
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release mediated by electrostatic interaction degradation if the measurements were started at 37 

°C. 

 For calorimetry experiments the SAR is calculated from the initial linear slope (t≈30 s) of 

the temperature profile for particles exposed to an AMF. Equation 2.8 previously shown in 

Chapter 2) describes that SAR is obtained as follows 

𝑆𝐴𝑅 =
𝐶𝑉𝑠

𝑚

𝑑𝑇

𝑑𝑡
  Eq. 2.8 

where 𝑚 is the total mass of Fe in the sample, as previously determined by ICP, 𝐶 is the specific 

heat capacity of the suspension water (Cwater = 4185 J L-1 K -1), 𝑉𝑠 is the sample volume, and 
𝑑𝑇

𝑑𝑡
 is 

the temperature profile slope. Each measurement was conducted in triplicates and an average 

was calculated for the SAR values. The SAR values calculated from Equation 2.8 at AMF 

amplitudes of 9 mT and 18 mT (with a field frequency of 471 kHz) are shown below in Table 

4.2. The table also contains normalized SAR values determined from magnetic susceptibility 

measurements with calculations that model hydrodynamic volumes of Fe3O4 NPs (VFe3O4) alone 

and APTESPSi@Fe3O4 nanocomposites (VAPTESPSiFe3O4).  

Table 4.2 SAR experimentally determined at varying magnetic field amplitudes and SAR values theoretically 

determined from magnetic susceptibility measurements with different particle sizes considered in calculating the 

Neel and Brownian relaxation constants. 

SAR/fH
2

 (Experimental) W g
-1

 Hz
-1

 Oe
-2

 SAR/fH
2

 (Theoretical) W g
-1

 Hz
-1

 Oe
-2

 

H= 90 Gauss 
3.00 x 10

-8

 
V

Fe3O4
 

3.59 x 10
-8

  

H= 180 Gauss 
3.69 x 10

-8

 
V

APTESPSi@Fe3O4
 

3.86 x 10
-11

 

 

For the SAR values determined by magnetic susceptibility the magnetic susceptibility as a 

function of frequency was fit using an allometric fit (Figure 4.5a), and the susceptibility at f= 471 

kHz was determined to match the frequency at which the calorimetry experiments were 



83 
 

conducted. The SAR values from the calorimetry experiment closely resemble the SAR 

determined by magnetic susceptibility which considered Fe3O4 NP volumes in calculating the 

effective relaxation constant. In comparison, the APTESPSi@Fe3O4 demonstrate normalized 

SAR values 3 orders of magnitude smaller than those determined by calorimetry experiments. 

Therefore, electrostatic interactions between the Fe3O4 and APTESPSi do not play hinder the 

Brownian relaxation and heat dissipation in APTESPSi@Fe3O4 nanocomposites. Instead, the 

behavior of these nanocomposites more closely resembles individual Fe3O4 NPs regarding 

changes in magnetization direction with field polarity changes. 

 The nanocomposite’s ability to localize with a direct current (DC) magnetic field was 

also tested, since it is advantageous to have a system that possesses both thermoresponsive and 

spatiotemporal control. The magnet was placed at one end of a Petri (cell culture) dish and the 

nanocomposite was introduced at the other end of the dish, similar to previous experiments 200. 

Figure 4.7 shows a sequence of photos after the nanocomposite is added to the dish, and within 

10 minutes we observe the nanocomposite reaching the other side of the petri dish. 

 

Figure 4.7 Optical images monitoring APTESPSi@Fe3O4 nanoparticles added into 20 mL of HBSS-HEPES and 

localized with a magnet at t= 0, 1, 5, 10, 15, 30, and 60 min. 

 

A video (not shown) more clearly shows that the nanocomposite reaches the magnet on the other 

side of the dish within one minute. Thus, the nanocomposite is spatially controlled by the 
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application of an external DC magnet and can subsequently generate heating with application of 

an AMF to trigger the thermoresponsive capabilities of the system. After confirming that the 

APTESPSi NP surface undergoes accelerated hydrolysis at elevated temperatures, we 

investigated whether this phenomenon translates to the thermoresponsive release of a model 

drug.  

4.4. Thermoresponsive Release of Model Drug from APTESPSi Nanocomposite 

 We investigated whether this thermoresponsive degradation translates into controlled 

release of the model drug Sorafenib (SFN, NEXAVAR®). SFN is a multi-kinase inhibitor that is 

indicated for treating unresectable hepatocellular carcinoma (HCC) and advanced renal cell 

carcinoma (RCC) 251,252. Its clinical application has been limited, despite research demonstrating 

simultaneous targeting capabilities 253–256. For example, the National Comprehensive Cancer 

Network (NCCN) guideline for treating kidney cancer patients lists SFN as “useful in some 

cases” for subsequent therapy in stage IV or relapsed cancer treatment 257. This limited clinical 

application is probably due to the severe adverse effects and high variation between patients, 

which is caused by SFN’s poor water solubility 258–260. Thus, there is a need to encapsulate SFN 

in a nanocarrier to improve its solubility and therefore therapeutic efficacy. 

 To evaluate the thermal responsiveness of the magnetically capped PSi NPs, dissolution 

studies were performed at room temperature, 37 °C, 45 °C, and 50 °C in sink conditions. The 

bulk heating-triggered SFN dissolution studies were conducted in HBSS-HEPES supplemented 

with 10% FBS at pH 7.4. The release medium was supplemented with fetal bovine serum (FBS) 

to aid in the dissolution of SFN, where FBS was previously shown to improve SFN dissolution 

and release from the PSi matrix 261. SFN was loaded into APTESPSi, and the Fe3O4 NP capping 

agents were subsequently adsorbed onto the porous surface in an aqueous solution to prevent any 
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SFN release. The loading degree is defined as the mass ratio of loaded SFN to the total drug-

loaded NPs (Equation 4.1 in experimental section) and was calculated to be 13.2%. Dissolution 

studies were also performed for SFN loaded APTESPSi NPs without any capping agent at the 

same temperatures to confirm that increased dissolution at elevated temperatures is not a result of 

increased SFN solubility, and to assess the magnetic cap’s efficiency in modulating SFN release.  

 Without a magnetic cap essentially all the SFN was released from the PSi matrix within 2 

min, regardless of the release medium temperature (Figure 4.8a).  

 

Figure 4.8 a) Sorafenib release profile from APTESPSi nanoparticles demonstrate a burst release at all solution 

temperatures when no capping agent is present b) A controlled release with temperature is exhibited in Sorafenib 

release profiles from APTESPSi@Fe3O4 nanoparticles due to Fe3O4 nanoparticles acting as a capping agent. 

Therefore, a pore capping agent is fundamental for avoiding premature drug release. When the 

magnetic capping agent was present, a controlled, thermoresponsive release was observed 

(Figure 4.8b). Within 15 min there was a 15x difference in SFN release between 37 °C and 45 

°C). After 1h the amount of SFN released at room temperature, 37 °C, 45 °C, and 50 °C was 0%, 

11.6%, 51.7%, and 52.3%. After 4h these values increased to 5.9%, 22%, 65.2% and 76.6%. 

This thermoresponsive SFN release is due to the APTESPSi surface transforming into TOPSi via 

hydrolysis, where we showed changes in ζ- potential earlier in this chapter of 18.5% at room 
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temperature, 60% at 37 °C and 392% at 45 °C. Subsequently, the magnetic caps protecting the 

cargo inside the pores from premature release are removed from the surface as electrostatic 

interactions with the PSi NP surface are degraded.  

 The ability to minimize the amount of SFN released at physiological temperature while 

promoting release at elevated (but physiologically relevant) temperatures will prove useful in 

targeted, on-demand drug delivery applications. It is important to note, however, that some 

release is observed at 37 °C, which agrees with our previous work that observed some hydrolysis 

on the APTESPSi surface at this temperature, although far less notable than for release at 45 °C. 

While some hydrolysis is observed at 37 °C, which could potentially lead to premature drug 

release, growing thermally hydrocarbonized layers before the amine surface modification could 

increase amine stability, as was previously shown 262. Moreover, given the slightly acidic 

conditions of tumor microenvironments (pH 5.5- 6.5)67, higher release rates could potentially be 

observed for the magnetic nanocomposite. For example, paclitaxel release was promoted from 

rod-like iron oxide nanoparticles at a pH of 4.5 in comparison to pH 7.4263. Future studies will 

investigate the magnetic nanocomposite release kinetics in an environment with elevated 

temperature and slightly acidic pH.  

 For an in vivo scenario, the nanocarrier would initially be exposed to a normal 

physiological temperature of ~37 °C and once it has reached a site of interest the carrier would 

experience a temperature increase high enough to accelerate the therapeutic release (~45 °C) but 

not high enough to induce significant apoptosis. This temperature profile was modeled in 

dissolution studies with APTESPSi@Fe3O4 NPs by initiating the study at 37 °C and increasing 

the release medium temperature to 45 °C after 30 min or 1h. The release medium was maintained 

at 37 °C at these times to account for the time it takes for NPs to accumulate in tumor tissue. 
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Previous studies observing the biodistribution of chemotherapeutics, such as Paclitaxel, using 

positron emission tomography (PET) imaging found tumor uptake within 35 min 264,265. 

However, other studies observed tumor uptake 6h post injection in  head and neck squamous 

carcinoma-tumor bearing mice 266, which poses the problematic variation in uptake between 

different therapeutics, nanomedicine formulations, injection techniques, and imaging modalities. 

To more precisely decide when a therapeutic release should be probed, future studies could 

conjugate fluorinated probes or use the MRI contrast capabilities of Fe3O4 NPs to image tumor 

uptake, as this will vary from patient to patient.  

 Figure 4.9 shows SFN release from APTESPSi@Fe3O4 NPs with varying temperature 

release probing times (after 30 min and 1h).  

 

Figure 4.9 Sorafenib release from APTESPSi@Fe3O4 nanoparticles with the varying temperature profiles to 

promote release with sequential heating. 

 

Once the temperature was raised to 45 °C an increased slope in the dissolution curve was 

observed after 30 min and 1h in comparison to the release medium which did not have a 

temperature increase. Moreover, the overall amount of SFN released increased by 12% at 24h 
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when heated to 45 °C after 30 min in comparison to   when heating is applied after 1h. When 

compared to SFN release maintained at 37°C for 24h, there is a 45% and 23% increase when the 

release medium temperature is increased to 45 °C after 30 min and 1h. Thus, we demonstrated a 

system that can release a therapeutic on-demand, once it has reached a disease site. By 

minimizing the therapeutic release at normal physiological temperatures while promoting release 

on-demand once the local temperature is increased, this system is promising for increasing 

therapeutic efficacy and mitigating systemic toxicity.  

4.5. Conclusion 

 Magnetic-capped PSi (APTESPSi@Fe3O4) NPs demonstrate temperature-mediated 

electrostatic degradation at physiologically relevant temperatures while overcoming the synthetic 

challenges typically associated with fabricating such drug delivery systems. The rate of 

hydrolysis on the APTESPSi NP surface was accelerated at temperatures slightly above 

physiological temperature. Further, these nanocarriers demonstrated heating with application of 

an AMF, with temperature changes that are relevant for promoting drug release as a result of 

electrostatic degradation. Magnetic susceptibility and calorimetry experiments yielded 

comparable SAR values when considering only Fe3O4 NPs into our calculations. Therefore, the 

electrostatic interactions do not hinder the heat dissipation with AMF application. Finally, 

dissolution studies of the model drug SFN under sink conditions from APTESPSi@Fe3O4 and 

APTESPSi without the magnetic cap revealed that the cap minimized the release at physiological 

temperature while promoting it at elevated temperatures (45 °C- 50 °C) that are within a 

physiologically relevant range. Within 15 min there was a 15x increase in the amount of SFN 

released when comparing dissolution studies conducted at 37 °C and 45 °C. Furthermore, the 

identical burst release kinetics for SFN dissolution studies from APTESPSi at various 
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temperatures confirmed that this increase in dissolution is not a result of increased solubility of 

the model drug at elevated temperatures. Inducing temperature changes in dissolution studies 

after stabilizing the release medium further corroborated the nanocomposite’s ability to promote 

drug release “on-demand” with application of an external stimuli. Thus, this promising proof-of-

concept on-command system may be of great interest for nanomedicine applications in 

oncological therapy. With establishing the APTESPSi@Fe3O4 NP thermoresponsive release 

kinetics, we continue with investigating the cytocompatibility of the nanocomposite and its 

components in four different cell lines in the subsequent Chapter. 
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 Ch. 5 APTESPSi and Nanocomposite Interaction with Biological Systems 

 Assessing the magnetic nancomposite’s interactions with biological systems is crucial for 

clinical translation considerations. In vitro studies are typically the first line of studies conducted 

to confirm a material’s biocompatibility and cellular uptake. Investigating the biocompatibility is 

pertinent to ensure that the therapeutic, rather than the particles, are inducing localized toxicity. 

The particles are incubated with a respective cell line and he number of live are determined with 

an assay that measures the cell metabolic activity. The cell–NP interactions are qualitatively 

analyzed by confocal fluorescence microscopy, while quantitative assessment is conducted by 

flow cytometry.   

 RAW 246.7 macrophages were of interest, because this cell line is often used to initially 

screen products for bioactivity. Cytocompatibility with MCF-7 and MDA-MB-231 was assessed 

since these breast cancer cell lines typically take the form of a solid tumor where a therapeutic is 

localized using a magnetic field. Blood cancers such as leukemia and lymphoma, on the other 

hand, do not usually form solid tumors and, therefore, the therapeutic cannot be localized to the 

disease site. HepG2 cytocompatibility was investigated because Sorafenib’s clinical indications 

include liver cancers such as hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC). 

Therefore, any improvements to the drug’s current efficacy could motivate its reformulation in 

the clinic. 

 This Chapter will initially assess the cytocompatibility of APTESPSi@Fe3O4 and its 

components after 24h incubation under physiological conditions with a macrophage, live cancer, 

and breast cancer cell lines (both triple negative and estrogen, progesterone receptor present). 

Cytocompatibility studies are conducted with incubation temperature increases typical of the 

nanocomposite’s electrostatic mediated degradation as reported in Chapter 4. The anticancer 



91 
 

activity of SFN-loaded APTESPSi and APTESPSi@Fe3O4 in liver cancer and triple negative 

breast cancer is subsequently discussed. The Chapter concludes by investigating the cellular 

association of the particles at physiological and elevated temperatures through confocal 

fluorescence microscopy and flow cytometry.  

5.1.Experimental 

Cell Culturing 

 RAW 246.7 macrophages, MDA-MB-231 cells, HepG2, and MCF-7 cells were cultured 

in separate 75 cm2 culture flasks (Corning Inc. Life Sciences). MDA-MB-231 cells were grown 

in Roswell Park Memorial Institute 1640 medium (RPMI, GE Life Sciences, USA). RAW246.7, 

HepG2 and MCF-7 cells were grown in HyClone Dulbecco's Modified Eagle Medium high 

glucose (DMEM, GE Life Sciences, USA) and HepG2 was supplemented with 1% sodium 

pyruvate. All mediums were supplemented with 10% heat inactivated fetal bovine serum (FBS), 

1% of penicillin streptomycin (PEST), 1% of L- glutamine, 1% of non-essential amino acids 

(NEAA). All cells were cultured at 37 °C in a 95% humidified, 5% CO2 atmosphere (BB 16 gas 

incubator, Heraeus Instruments GmbH). The growth medium was changed every other day and 

passaged to new flasks at >80% confluency. The cells were used for experiments at passage 

numbers between 20- 30.  

Cytocompatibility Studies 

Nanoparticle Cytotoxicity 

 APTESPSi, Fe3O4 and APTESPSi@Fe3O4 NP suspensions in medium at concentrations 

of 10, 25, 50, 100, and 200 µg/mL were incubated with RAW 246.7, MDA-MB-231, MCF-7, 

and HepG2 cells for 24h at 37 °C, for 6 hours at 37 °C, or 45 °C for 15 min followed by 37 °C 

for 5 h 45 min to assess the NPs’ cytocompatibility and establish a toxicity profile. First, cells 
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were seeded at a density of 2 × 104 cells per well (100 µL volume in each well) in a 96-well plate 

and incubated overnight at 37 °C to allow the cells to attach. NPs were washed twice in 

HBSS−HEPES, pH 7.4 to remove ethanol, and suspensions were prepared in their respective 

medium (i.e. RPMI, DMEM, DMEM supplemented with 1% sodium pyruvate). NP suspensions 

were briefly bath sonicated before use to ensure homogeneous solutions. The 100 µL of medium 

was removed from the 96-well plates and replaced with 100 µL of particles with their respective 

concentrations. All experiments were performed in at least triplicates.  

 After the respective incubation time, the cell viability was assessed with CellTiter-Glo® 

Luminescent Cell Viability Assay (Promega Corporation, USA) according to the manufacturer's 

protocol. In this assay the amount of adenosine triphosphate (ATP) generation, which is 

correlated to the number of viable cells present in a culture, is proportional to the luminescent 

signal. This luminescent signal is generated by a luciferase reaction shown, as shown in Figure 

5.1. Briefly, cell medium is removed from the wells and washed twice with 100 µL HBSS. Then, 

50 µL HBSS and 50 µL of CellTiter-Glo® Reagent was added to the wells.  

 

Figure 5.1 Overview of CellTiter-Glo® assay working principle. A luciferase reaction generates a “glow-type” 

luminescent signal that is proportional to the amount of ATP, and therefore the number of cells, present in a culture. 

Image reproduced from Promega Corporation 267. 
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The 96-well plate was shaken for 2 minutes on an orbital shaker to induce cell lysis and 

incubated at room temperature for 10 minutes to stabilize the luminescent signal before 

measuring the luminescence. ATP luminescence was measured with a Varioskan Flash 

Fluorometer (Thermo Fisher Scientific, USA, λ=490 nm).   

Sorafenib and APTESPSi@Fe3O4-loaded Sorafenib Cytotoxicity 

 SFN was loaded into APTESPSi and subsequently capped with Fe3O4 NPs as previously 

described in Chapter 4’s experimental section. The SFN concentration inside the final 

formulation was determined by multiplying the amount of APTESPSi@Fe3O4 particles (200 µg) 

by the loading degree (13.2%) and the SFN molar mas (464.8 g/mol). After loading SFN either 

into APTESPSi or APTESPSi@Fe3O4, the formulation was dispersed in the respective medium 

and diluted into 2.8, 7.1, 14.2, 28.4, and 56.7 µM solutions (equivalent to 10, 25, 50, 100, and 

200 µg/mL of NPs). After allowing the cells to attach overnight in 96-well plates, the medium 

was removed and SFN-loaded APTESPSi and APTESPSi@Fe3O4 NPs were incubated at either 

37 °C for 6 hours, or 45 °C for 15 min followed by 37 °C for 5 h 45 min. Cell viability was 

assessed by CellTiter-Glo® Luminescent Cell Viability Assay as discussed previously. 

AlexaFluor 488 Conjugation 

 APTESPSi NPs were labeled with AlexaFluor 488 (Life Technologies, USA) by 

activating the particles with EDC/NHS chemistry (1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide, N-hydroxysuccinimide) for 1 h and subsequently reacting 

them with AlexaFluor 488 for 2 h (400:1 AlexaFluor 488: APTESPSi). The reaction is shown 

below in Figure 5.2. First, 2 mg NHS, 4 µL EDC, and 10 mM 2-(N-morpholino)ethanesulfonic 

acid MES buffer were combined and brought to pH 5.5. The APTESPSi NPs (100 µg) were then 

added and activated by stirring at 300 rpm for 1 h. 2 µL of a 0.5 mg/mL AlexaFluor 488 solution 
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and 1.5 mL MES pH 6.5 was added to the solution and reacted for 2h to conjugate the activated 

APTESPSi and fluorescent marker.  

 

Figure 5.2 Reaction schematic for activating the APTESPSi surface with EDC/NHS chemistry and conjugating the 

fluorescent dye AlexaFluor 488 via amine linkage. 

The Fe3O4 NPs were electrostatically bound after AlexaFluor 488 conjugation, since having the 

Fe3O4 NPs present before conjugation would block the amine groups that are crucial for 

activating the APTESPSi surface. The Fe3O4 NPs were expected to electrostatically bind to the 

amine groups available on the fluorescent dye. Moreover, the conjugated particles that were 

subsequently mixed with Fe3O4 NPs (versus fluorescent labeled APTESPSi) had double the 

amount of AlexaFluor 488 during conjugation to account for dye removal during Fe3O4 addition, 

and the lower amount of amine groups present on the surface to electrostatically bind to. The 

fluorescence intensities of AlexaFluor 488 labeled APTESPSi and APTESPSi@ Fe3O4 were 

verified and found to be similar. As a result, the variation in cellular uptake determined by 

fluorescence intensity is due to increased uptake and not fluorescence intensity differences 

within the particles. 

In Vitro NP Internalization  

NP Uptake Imaging by Confocal Microscopy 

 For confocal fluorescence imaging, MDA-MB-231 cells were seeded in Lab-Tek 8-

chamber slides (Thermo Fisher Scientific, USA) at a cell density of 5×104 cells per well (200 

µL) and allowed to attach overnight. After removal of the cell culture medium, 200 µL of 200 

µg/mL Alexafluor 488-labeled APTESPSi and APTESPSi@Fe3O4 were added to the cells and 

incubated at 37 ºC for 6 h or 45 °C for 15 min followed by 37 °C for 5 h 45 min. After 
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incubation, the cells were washed once with fresh phosphate buffer solution (PBS). The plasma 

membrane were stained by adding 200 µL of CellMask deep red (5 µg/mL solution) and 

incubating for 10 min at 37 ºC. The excess staining solution was washed once with fresh 

phosphate buffer solution (PBS) and the cells were fixed using 4% Paraformaldehyde (PFA) for 

15 min at 37 °C. Then, the cell nuclei were stained with 200µL of DAPI (4′,6-diamidino-2-

phenylindole; 2.48µg/mL; Vector Laboratories) and incubated for 1-3min. The cells were finally 

washed twice with PBS and stored in the fridge until imaging by confocal fluorescence 

microscopy (Leica TCS SP5 II HCS-A, Germany). The LAS AF (2.6.0 build 7266) software was 

used to process the images. 

Uptake Quantification by Fluorescence-activated cell sorting (FACS) 

 For quantifying NP internalization in MDA-MB-231, cells were seeded in 6 well plates 

(Corning, USA) at a density of 5x105 cells per well (1.5 mL). After allowing the cells to attach 

overnight at 37 °C, the medium was removed and 1.5 mL of 200 µg/mL AlexaFluor 488-labeled 

APTESPSi and APTESPSi@ Fe3O4 was incubated at 37 ºC for 6 h or 45 °C for 15 min followed 

by 37 °C for 5 h 45 min. The cells were then washed three times with PBS- 

Ethylenediaminetetraacetic acid (EDTA) and collected with trypsinization (0.25% trypsin). 

Uptake measurements were performed using an LSRII flow cytometer (BD Biosciences, USA) 

with a laser excitation wavelength of 488 nm. To analyze NP internalization, the fluorescence of 

membrane-associated NPs was quenched by incubating the cells in 250 µL trypan blue (0.005% 

v/v) followed by centrifugation at 1200 rpm, 3 min and redispersing in 1 mL PBS-EDTA. 

Approximately 10,000 events were recorded per sample and the data was analyzed using the 

FlowJo X 10.0.7r2 software. 
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 Flow cytometry is advantageous to other cellular uptake techniques such as TEM and 

inductively coupled plasma mass spectrometry, since it can analyze thousands of cells within 

seconds. In flow cytometry particles or cells flow in a flow chamber and intersect a light beam, 

causing light to scatter in various directions. Moreover, if fluorescent molecules are present, the 

light will cause fluorescence emission.  Light that is scattered up to ~20 ° offset from the laser 

beam’s axis is called forward scattered light (FS), and light scattered at an approximately 90 ° is 

known as side scattered light (SS). FS light provides information on the cell or particle size, 

while SS intensity is related to granular content within a cell or particle.  The cellular uptake of a 

NP is determined by the increase in SS intensity without changes in FS intensity 268.  

Statistical Analysis 

 All measurements were done in at least triplicates and were used for determining the 

mean and standard deviation. Statistical analyses were performed using one-way ANOVA with 

Tukey-Kramer post hoc test. The levels of significance were set at probabilities of * p < 0.05, ** 

p < 0.01, *** p < 0.001. 

5.2.Particle Cytocompatibility at 24h 

 The cytocompatibility of the nanocomposite and its components was assessed with RAW 

246.7 macrophages, MCF-7, MDA-MB-231, and HepG2 cell lines after 24h at 37 °C. APTEPSi, 

Fe3O4 NPs, and APTESPSi@Fe3O4 nanocomposites were incubated with RAW 246.7, MCF-7, 

and HepG2 (supplemented with 1% sodium pyruvate) in DMEM, and MDA-MB-231 was 

incubated in RPMI medium. The concentration of the incubated nanocomposite and its 

components ranged from 10 µg/mL to 200 µg/mL. Cell viability was assessed after incubating 

particles for 24h using CellTiter-Glo® assay per the manufacturer’s protocols. Figure 5.3 and 5.4 
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shows the cell viability based on ATP content for RAW 246.7 (Figure 5.3a), MDA-MB-231 

(Figure 5.3b), HepG2 (Figure 5.3c), and MCF-7 cells (Figure 5.4). 

 

Figure 5.3 Cytotoxicity profiles for APTESPSi, Fe3O4, and APTESPSi@Fe3O4 NPs. Formulations were incubated 

with either RAW 246.7 macrophage (a) MDA-MB-231 (b) or HEPG-2 (c) cells for 24 h, and the percentage of 

viable cells was determined using a CellTiter-Glo® Luminescent Cell Viability Assay. Data is presented as mean ± 

S.D. (n ≥ 3), and the level of significance was set at probabilities of *p < 0.05, **p < 0.01, and ***p < 0.001  

compared to the control. 
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Figure 5.4 Cytotoxicity profiles for APTESPSi, Fe3O4, and APTESPSi@Fe3O4 NPs. Formulations were incubated 

with MCF-7cells for 24 h, and the percentage of viable cells was determined using a CellTiter-Glo® Luminescent 

Cell Viability Assay. Data is presented as mean ± S.D. (n ≥ 3). 
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 Overall, the nanocomposite and its components demonstrated high cytocompatibility with 

RAW 246.7 cells at all concentrations observed (up to 200 µg/mL) as shown in Figure 5.1a. 

Surface chemistry effects of PSi NPs on RAW 264.7 cells were previously investigated269. 

APTES-functionalized thermally carbonized PSi (APSTCPSi) NPs incubated with RAW 264.7 

for 24h revelead cytotoxicity at concentrations as low 25 µg/mL (~50% viability), which 

contradicts our results of high cytocompatibility. However, it is important to note that these 

previous experiments were conducted in HBSS, which is for immediate survival purposes in 

comparison to DMEM that is used for prolonged survival. The DMEM used in this experiment 

was supplemented with serum that contains growth factors and hormones that stimulate cell 

growth and functions. The medium is also supplemented with non-essential amino acids, and 

essential amino acids such as L-glutamine, which promotes cell proliferation. Therefore, using 

medium containing supplements that promote cell proliferation and growth is perhaps one of the 

reasons for the discrepancy in cytotoxicity profiles.  

 Other research efforts have investigated the cytocompatibility of amine-modified 

mesoporous silica in RAW 246.7 cells in medium for 24h. Amine-modified mesoporous silica 

NPs with different aspect ratios induced limited toxicity (~64-85% viability) at a concentration 

of 500 µg/mL125. These higher viabilities are probably due to the cytotoxicity tests being 

conducted in DMEM rather than HBSS. Overall, the nanocomposites and its components 

demonstrate high cytocompatibility under physiological conditions within the concentration 

range studied with RAW 246.7 macrophages.  

 Further screening with MDA-MB-231 (Figure 5.3b), HepG2 (Figure 5.3c) and MCF-7 

(Figure 5.4) cell lines showed high cytocompatibility of APTESPSi@Fe3O4 and its individual 

components in MDA-MB-231 and HepG2. Cytocompatibility results for HepG2 were 
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comparable to previous studies on similar magnetic PSi NPs 198. Meanwhile, significant toxicity 

was observed for the nanocomposite and its components in MCF-7 cells, as shown in Figure 5.4. 

The APTESPSi NP viability decreases nearly in half from 46 + 5% to 24 + 8% over a 

concentration range of 10 µg/mL to 200 µg/mL. Higher toxicity has been previously explained in 

APTESPSi NPs by increased cellular uptake due to the strong interactions between the positively 

charged amine-modified particles and negatively charged cell membranes 270,271. The positively 

charged particles can depolarize the membrane potential and increase the intracellular Ca2+ 

concentration 271. Other explanations for disrupting the cellular membrane include increased 

membrane permeability and NP interaction with the intracellular mitochondria that leads to 

decreased ATP production as a result of reduced mitochondrial membrane potential 269,272.  

 However, the high biocompatibility of APTESPSi NPs with MDA-MB-231 and HepG2 

cells questions whether the previous explanations for toxicity can be applied to all cell lines or 

whether a cell-type dependency on cell viability is simply observed. For example, MCF-7 and 

MDA-MB-231 cells present metabolic differences, where MDA-MB-231 cells possess higher 

glycolytic activity during normoxia, and exposure to hypoxic conditions resulted in only a 

modest increase in lactate production 273. Contrarily, MCF-7 cells exhibit lower levels of 

glycolytic activity under normoxia and increased levels of lactate production under hypoxic 

conditions 273,274. Fe-based NPs have previously demonstrated an increase in reactive oxygen 

species (ROS) production in MCF-7 cells after 24h incubation 275. Thus, it is possible that the 

presence of Fe3O4 NPs in our nanocomposite is establishing hypoxic conditions, which are 

leading to higher levels of cytotoxicity in MCF-7 versus MDA-MB-231 cells. Overall, high 

biocompatibility was demonstrated in MDA-MB-231 and HepG2 cells, but not in MCF-7 after 

24h incubation under normal physiological conditions.  
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5.3.Particle Cytocompatibility with Applied Heating 

 Because the therapeutic release from the nanocomposites is modulated by temperature 

increases, it was pivotal to also investigate particle cytocompatibility at temperatures above 

physiological condition (i.e. 37 °C) that are high enough to induce the electrostatic mediated 

degradation of APTESPSi@Fe3O4. Thus, we observed the compatibility of particles incubated 

with RAW 246.7 macrophages, HepG2, and MDA-MB-231 when exposed to an elevated 

temperature of 45 °C for 15 min, followed by 37 °C for 5 h 45 min. Cytocompatibility with 

heating was not investigated with MCF-7 cells, as 24h incubation times demonstrated significant 

toxicity. The particles and cells were exposed to this increase in temperature because temperature 

increases are anticipated with the application of an AMF, especially to promote the electrostatic 

mediated degradation that removes the Fe3O4 NP caps and induces cargo release. The RAW 

246.7 controls were first compared when heated at 37 °C for 6 h versus 45 °C for 15 min, 

followed by 37 °C for 5 h 45 min (also for a total of 6h). A cell viability of 87 + 5% was 

observed for control cells in the latter experiment. After confirming that the 15 min exposure to 

this elevated temperature did not significantly induce cytotoxic effects. Cell viability studies 

were conducted with particles. Toxicity was observed for Fe3O4 NP concentrations > 100 µg/mL 

(41.4 + 3.2%) and for the APTESPSi@Fe3O4 nanocomposite at 200 µg/mL (59.7 + 8.9%) . The 

nanocomposite toxicity at 200 µg/mL is between the cell viability values of the two individual 

components (18.4 + 11.5% for Fe3O4 and 100 + 27.3% for APTESPSi), indicating that having 

APTESPSi as part of the formulation contributes to higher cytocompatibility levels. Further 

studies on cytocompatibility with heating on MDA-MB-231 and HepG2 cell lines was motivated 

by the particles’ applications in solid tumor cancer, where diseases are localized to a region 

where magnetic targeting and localized magnetic heating is possible. 
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 The particles were incubated with HepG2 and MDA-MB-231 cells at elevated 

temperatures typical of promoting therapeutic release through electrostatic interaction 

degradation between APTESPSi and Fe3O4 NPs. The cells and particles were incubated for a 

total of 6h with the first 15 min at 45 °C and the remaining duration at 37 °C. We previously 

showed in Chapter 4 (Figure 4.9) a 15 time increase in SFN released at 45 °C in comparison to 

37 °C within the first 15 min. First, the cell viability we determined for a temperature increase 

for 15 min in comparison to cells exposed to 37 °C for the entire 6h. Viabilities of 81 + 1% and 

90 + 6% for MDA-MB-231 and HepG2 cells. After confirming that the temperature increases 

needed for a thermoresponsive release do not induce significant cytotoxicity on the control, the 

two cell lines were incubated with the APTESPSi@Fe3O4 nanocomposite and its components at 

45 °C for 15 min followed by 37 °C for 5h 45 min (Figure 5.5). 

 

Figure 5.5 Cytotoxicity profiles for APTESPSi, Fe3O4, and APTESPSi@Fe3O4 NPs with elevated temperature 

Formulations were incubated with either RAW 246.7 macrophages (a) MDA-MB-231 (b) or HEPG-2 (c) cells for 15 

min at 45 °C followed by 37 °C for 5 h, 45 min. The percentage of viable cells was determined using a CellTiter-

Glo® Luminescent Cell Viability Assay. Significant cell death is observed in higher concentrations of the final 

formulation and Fe3O4 NPs. Data is presented as mean ± S.D. (n ≥ 3), and the level of significance was set at 

probabilities of *p < 0.05, **p < 0.01, and ***p < 0.001 compared to the control. 
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The in vitro cytotoxicity measurements (Figure 5.5b-c) showed no statistically significant loss in 

cell viability for both cell types over the entire concentration range (10 µg/mL- 200 µg/mL). The 

data suggests that cancerous regions of the liver or triple negative breast tissue would not 

experience any localized toxicity from particle exposure. 

5.4.Anticancer Activity of Therapeutic-Loaded PSi NPs 

 After confirming the biocompatibility of the APTESPSi@Fe3O4 nanocomposite and its 

components with application of temperature in macrophage and two cancer cell lines, the 

particles were loaded with SFN and assessed for its anti-cancer activity. As mentioned in 

Chapter 4, SFN has poor water solubility and its encapsulation in nanocarriers has improved 

anti-tumor activity 261. Particles loaded with SFN were incubated with MDA-MB-231 (Figure 

5.6) and HepG2 (Figure 5.7) cells at 37 °C for 6h or 45 °C for 15 min, followed by 37 °C for 5h 

45 min. For MDA-MB-231 cells no toxicity was observed for the free drug with and without 

heating, probably due to SFN’s poor water solubility. Another potential reason for the low 

cytotoxicity is a delay in downregulating Mcl-1, a gene encoding an anti-apoptotic protein that is 

required for the induction of apoptosis and has been implicated in resistance to anticancer drugs 

in several settings 276. This Mcl-1 downregulation has resulted in < 25% cell death after one day 

of incubation with MDA-MB-231 cells, and therefore a 6h incubation time might have not been 

long enough to see the apoptotic effects of the free drug. 
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Figure 5.6 In vitro cell viability assays of APTESPSi and APTESPSi@Fe3O4 NPs loaded with Sorafenib, and 

Sorafenib as a free drug. Drug-loaded particles and free drug were incubated with MDA-MB-231 cells at 37 °C for 6 

h (a) or exposed to an elevated temperature of 45 °C for 15 min followed by 37 °C for 5 h, 45 min (b). The 

percentage of viable cells was determined using a CellTiter-Glo® Luminescent Cell Viability Assay. Data is 

presented as mean ± S.D. (n ≥ 3). One-way ANOVA, followed by the Tukey’s post-test were performed and the 

level of significance was set at probabilities of *p < 0.05, **p < 0.01, and ***p < 0.001 compared to the control.  

 

 

Figure 5.7 In vitro cell viability assays of APTESPSi and APTESPSi@Fe3O4 NPs loaded with Sorafenib, and 

Sorafenib as a free drug. Drug-loaded particles and free drug were incubated with HEPG-2 cells at 37 °C for 6 h (a) 

or exposed to an elevated temperature of 45 °C for 15 min followed by 37 °C for 5 h, 45 min (b). The percentage of 

viable cells was determined using a CellTiter-Glo® Luminescent Cell Viability Assay. Data is presented as mean ± 

S.D. (n ≥ 3). One-way ANOVA, followed by the Tukey’s post-test were performed and the level of significance was 

set at probabilities of *p < 0.05, **p < 0.01, and ***p < 0.001 compared to the control. 
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 Loading SFN into APTESPSi and APTESPSi@Fe3O4 induced an increase in the vitro 

anticancer effect, with APTESPSi and APTESPSi@Fe3O4 inducing cell viabilities of 20 + 3% 

and 61 + 1% at the highest SFN concentration (56.7 µM). The higher toxicity induced by SFN-

loaded APTESPSi in comparison to APTESPSi@Fe3O4 under both temperature profiles is 

perhaps due to the rapid release of SFN when no capping agent is present, as was shown in 

Chapter 4 (Figure 4.9a) where essentially all the drug is released within 5 min regardless of 

temperature. When the Fe3O4 capping agent is present, the amount of SFN released is controlled 

in a thermoresponsive manner, as shown in Chapter 4 (Figure 4.9b), and therefore less SFN 

released would induce less toxicity.  

 Moreover, higher levels of toxicity were observed with APTESPSi@Fe3O4 NPs that were 

initially heated at 45 °C for 15 min before going back to a typical incubation temperature of 37 

°C for the remaining incubation duration. In fact, these toxicity levels (37 + 1%) were 

comparable to that of APTESPSi (28 + 3%) at the highest SFN concentration. A 40% decrease in 

the viability was observed in MDA-MB-231 cells treated with APTESPSi@Fe3O4 at 37 °C for 

the entire incubation time (61 + 1%) in comparison to incubation at 45 °C for the first 15 min 

before returning to 37 °C (37 + 1%). As previously mentioned, the amount of SFN released from 

APTESPSi@Fe3O4 increases around 15 times when the NPs are exposed to a temperature 

increase from 37 °C to 45 °C within the first 15 min as the electrostatic degradation mechanism 

is accelerated. Given that the MDA-MB-231 cells were compared to controls that were heated 

under the same respective temperature profile, the increase in cytotoxicity is not due to 

temperature application, but instead due to the increased SFN release with temperature. Thus, 

with MDA-MB-231 cells we demonstrate a system that can tune the amount of drug released to 

the cells and therefore the toxicity induced based on a temperature-responsive nanocarrier. 
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 The same anti-cancer activity was assesed in HepG2 cells. At incubation conditions of 37 

°C for 6h the cytotoxicity behavior was similar to that of MDA-MB-231, where SFN does not 

induce any significant toxicity, perhaps due to its poor water solubility, and APTESPSi exhibits 

the highest toxicity (15 + 7% at 57 µM SFN), which is related to larger amounts of SFN being 

released. When the capping agent (Fe3O4) is electrostatically adsorbed onto the APTESPSi 

surface less drug is released and lower toxicity levels are induced (48 + 3% at 57 µM SFN) at 37 

°C. However, a synergistic effect is observed when free SFN is exposed to 45 °C for 15 min 

followed by 37 °C for the remaining incubation time. Additional interactions between drugs and 

hyperthermia have been described 277, known as ‘thermal chemosensitization’. For example, 

pharmacodynamic features related to the kinetic changes of the drug’s primary mode of action 

can contribute to drug–heat interactions. Moreover, most alkylating agents such as 

cyclophosphamide and platinum compounds possess linearly enhanced cytotoxicity effects when 

temperatures are increased above 40.5 °C 278. Therefore, it is possible that free SFN exhibits a 

cytotoxic enhancing effect when combined with heat in HepG2 cells. Combining SFN with heat 

can potentially provide synergic antiangiogenic and proapoptotic effects in addition to the on-

demand spatiotemporal control of the nanocarrier. 

 For HepG2 cells exposed to elevated temperatures there is no statistically significant 

difference between the free drug cytotoxicity (51 + 7%) and that of SFN loaded 

APTESPSi@Fe3O4 NPs (37 + 6%), which was unexpected given the cytotoxicity trend observed 

in MDA-MB-231 cells, yet plausible given the synergistic effect observed for the free drug with 

heating. Moreover, there is a smaller difference (23%) in toxicities between the 

APTESPSi@Fe3O4 nanocomposites incubated with the two temperature profiles (red lines in 

Figure 7) versus the difference observed in MDA-MB-231 cells (36%), which was unanticipated 
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assuming that higher amounts of SFN were released from the nanocomposite with heat that 

would induce more toxicity. Thus, we demonstrated the application of thermoresponsive 

APTESPSi@Fe3O4 nanocomposites as a promising tool for remotely controlling the anticancer 

activity in MDA-MB-231 and HepG2 cell lines. 

5.5.Cellular Association of PSi NPs with MDA-MB-231 Cells 

The cellular interaction of APTESPSiFe3O4 nanocomposites are anticipated to change as the 

surface charge varies with temperature mediated degradation of electrostatic interactions. 

Therefore, the cellular interactions of Alexafluor488-labeled APTESPSi and APTESPSi@Fe3O4 

were investigated in MDA-MB-231 cells with and without heat application over 6h. Confocal 

imaging and flow cytometry assessed whether the Fe3O4 capping agent effected particle uptake 

by cells in comparison to nanocarriers without the cap (as Fe3O4 is associated with a negative 

surface charge of -38.3 + 1.9 mV and APTESPSi exhibits a surface charge of +31.7 + 1.4 mV). 

Moreover, the influence of temperature changes on cellular interaction were investigated. In all 

tests a particle concentration of 200 µg/mL was used, which corresponded to a safe dose of NPs 

administered as determined by earlier cytotoxicity assessments (Figure 5.5b).  

 Confocal fluorescence microscopy provided a quantitative, direct observation of 

Alexafluor488-labeled APTESPSi and APTESPSi@Fe3O4 NP uptake in MDA-MB-231 cells.  

The cellular association was more prominent for APTESPSi compared to the APTESPSi@Fe3O4 

nanocomposites after incubating for 6h at 37 ° C (Figure 5.8). It is important to note that after 

Alexafluor488 labelling using EDC/NHS chemistry, the fluorescence intensities were verified to 

be the same. Therefore, reduced Alexafluor488 fluorescence for APTESPSi@Fe3O4 is due to the 

decrease in cellular association and not any differences in the amount of marker on the NP 

surface. This observation is related with the enhanced electrostatic interactions between the 
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positively charged APTESPSi NPs and the negatively charged cell membrane that results in a 

concentration- and time-dependent internalization of the APTESPSi. 

 

Figure 5.8 Confocal fluorescence microscopy images MDA-MB-231 cells incubated with 200 µg/mL APTESPsi 

and APTESPSi@Fe3O4 NPs conjugated with Alexa Fluor-488 at 37 °C for 6 h. The cell membranes and nuclei 

were stained with CellMask™ (red) and DAPI (blue). The scale bar in the lower right panel is the same for all 

images and corresponds to 100 μm. 

In addition, the enhanced drug concentration around the nucleus (stained by DAPI) by positively 

charged NPs has been previously attributed to endosomal escape abilities after cell 

internalization 279 and by a phenomenon known as the ‘proton-sponge’ effect 270,280, where the 

lysosomal membrane is ruptured due to osmotic swelling that results from an influx of chloride 

ions into the lysosome to maintain a neutral charge. Moreover, the presence of a Fe3O4 NP cap 

decreased the positive surface charge, which to some extent reduced the cell uptake.  
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 The qualitative differences in cellular association for the NPs incubated with a 

temperature increase (45 °C, 15 min followed by 37 ° C, 5h 45 min) are shown in Figure 5.9. 

From the confocal images (Figure 5.8-9) APTESPSi has higher cellular association in 

comparison to APTESPSi@Fe3O4 NPs.  

 

Figure 5.9 Confocal fluorescence microscopy images MDA-MB-231 cells incubated with 200 µg/mL APTESPsi 

and APTESPSi@Fe3O4 NPs conjugated with Alexa Fluor-488 at 45 °C for 15 min followed by  37 °C 5 h, 45 min. 

The cell membranes and nuclei were stained with CellMask™ (red) and DAPI (blue). The scale bar in the lower 

right panel is the same for all images and corresponds to 100 μm. 

However, when comparing APTESPSi with and without the additional 45 °C heating a similiar 

cellular interaction was observed. This finding was unexpected, since previous findings reported 

an increase in therapeutic uptake in MDA-MB-231 cells with heating at 47 °C 281. The increase 

in cellular association was attributed to enhanced cell perfusion that facilitated therapeutic agent 

diffusion into the cell membrane 282, an increase in membrane permeability that allowed more 
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therapeutic agents to enter through the cell membrane, and a morphological change in the cells 

that increased surface-area-to-volume ratio, thereby providing a higher possibility for the cells to 

adsorb more therapeutic. Confocal images are limited to observing the particle distribution 

throughout the cellular structure, such as whether the particles are within the nucleus or 

cytoplasm. However, this technique’s quantitative assessment is limited and flow cytometry was 

used to quantitatively investigate the in vitro cellular interaction. 

 Cellular interactions were studied with flow cytometry for Alexafluor488-labeled 

APTESPSi and APTESPSi@Fe3O4 NPs incubated with MDA-MB-231cells at 37 °C for 6h 

(Figure 5.10a) and at 45 °C for 15 min followed by 37 ° C for 5h 45 min (Figure 5.10b). 

 

Figure 5.10 In vitro quantitative cellular interaction measured by flow cytometry of Alexa Fluor-488-labeled 

APTESPSi and APTESPSi@Fe3O4 NPs incubated with MDA-MB-231 cells at a) 37 °C for 6 h and at b) 45 °C for 

15 min followed by 37 °C for 5 h 45 min. c) The fold increase in mean fluorescence intensity after 6 h was 

calculated. MDA-MB-231 cells incubated without any NPs served as a control to show the extent of cellular uptake 

by APTESPSi and APTESPSi@Fe3O4 at 37 °C for 6 h and at 45 °C for 15 min followed by 37 °C for 5 h 45 min. 

The cellular association was quantified as the surface charge changed with the introduction of the 

Fe3O4 capping agent, and when temperature changes were introduced. The fluorescence was 

quenched to reduce fluorescence contributions from particles adsorbed on the external cell 

surface, thus analyzing the extent of internalized NPs with higher accuracy. In agreement with 
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confocal images for incubation at 37 °C, 6h (Figure 5.8) there was a 2-fold difference in the 

mean fluorescence intensity (MFI) for APTESPSi (4-fold increase) in comparison to 

APTESPSi@Fe3O4 NPs (2-fold increase). As previously mentioned, because of the APTESPSi’s 

highly positive surface charge, the NPs more readily interact with the negatively charged cell 

membrane. Meanwhile, APTESPSi@Fe3O4 possesses a relatively less positive surface charge 

that could, to some extent, reduce the unspecific cell interactions and cell uptake. Moreover, as 

heat is applied during incubation (45 °C, 15 min) the cellular interaction with APTESPSi and 

APTESPSi@Fe3O4 decreased in comparison to no heating. However, this cellular interaction 

decrease is more pronounced for APTESPSi (almost 1-fold decrease) than for 

APTESPSi@Fe3O4 (~1/4-fold decrease) when compared to MFI values for incubation without 

any heating. These results were in agreement with the confocal images and recent work that 

observed increased cellular association of cisplatin and paclitaxel 281. However, these small-

molecule drugs are on the order of 1 nm while PSi-based NPs used in this study are on the order 

of ~220-250 nm. Thus, it would be interesting to repeat this study with drug-loaded Psi-based 

NPs to determine whether increasing the incubation temperature results in increased cellular 

association of the therapeutic.  

5.6.Conclusion 

 In this Chapter the cytocompatibility and cellular association of magnetic-capped PSi 

(APTESPSi@Fe3O4) NPs and its components were investigated. High cytocompatibility was 

observed in RAW 246.7 macrophages that are typically used for initial bioactivity screening of 

particles, in HepG2 liver cancer cells where the model drug SFN has a clinical indication for 

liver-based cancers, and in MDA-MB-231 triple negative breast cancer cells, which are 

characterized as solid tumors that would be an ideal environment for localizing a therapeutic. 
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However, significant toxicity was induced in MCF-7 breast cancer cells, and therefore this 

nanocomposite formulation would not be suitable for such an application. The nanocomposite 

demonstrated high biocompatibility when incubated with RAW 246.7 macrophages, HepG2 and 

MDA-MB-231 cells that were heated to temperatures and times typical of promoting therapeutic 

release (45 °C, 15min) as observed in dissolution studies with SFN in Chapter 4. Some decrease 

in the cytocompatibility is observed for the nanocomposite at 200 µg/mL in HepG2 cells, 

although this decrease is not statistically significant. Moreover, heating MDA-MB-231 and 

HepG2 cells incubated with SFN-loaded APTESPSi and APTESPSi@Fe3O4 NPs showed a 

further decrease in cytocompatibility which was attributed to the increased dissolution of SFN 

from the nanocarrier with temperature.  

 Cellular association studies with MDA-MB-231 cells showed an overall higher uptake of 

APTESPSi NPs in comparison to APTESPSi@Fe3O4. This observation was explained by the 

positive surface charge of APTESPSi that binds to the negatively charged cell membrane via 

electrostatic interactions. Increasing the cell incubation temperature to 45 °C for 15 min followed 

by 37 °C for 5h 45 min caused a slight decrease in the particle uptake by MDA-MB-231 cells. 

Overall, the controlled release capabilities, biocompatibility and anticancer activity of 

APTESPSi@Fe3O4 nanocomposites were assesed. These nanocomposites demonstrated “on-

demand” drug release, high biocompatibility, and high anticancer activity when combined with a 

model drug.  
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Chapter 6.  Porous Silicon Nanoparticle Encapsulation of Thermoresponsive 

Polymers 

6.1 Introduction 

 While Chapters 4 and 5 demonstrated a promising thermoresponsive Fe3O4 capping 

system, some SFN release observed at 37 °C may result in premature therapeutic degradation or 

therapeutic efficacy. PSi NPs coated with a thermoresponsive polymer can potentially reduce 

this unintended therapeutic release, where the polymer network more homogeneously covers the 

porous surface 216,283–285 in comparison to Fe3O4 NPs bound by electrostatic interactions. For 

example, PSi conjugated with a poly(N-isopropylacrylamide), PNIPAM, copolymer observed 

18% release of doxorubicin after 24h at 37 °C 216 while our Fe3O4-capped formulation 

demonstrated a 50% release with SFN with the same experimental conditions.  

PNIPAM is the most extensively investigated thermally responsive polymer for stimuli-

responsive drug delivery carrier systems, because of its demonstrated biocompatibility 286–288 and 

phase transition near physiological temperature. The polymer undergoes a phase transition at a 

lower critical solution temperature (LCST) of 32 °C from a hydrophilic to hydrophobic state 289–

292. Above this temperature, the polymer chains which previously took up a larger volume due to 

hydrogen bonding with water, coil up and allow therapeutic release from the pores, as shown by 

the schematic in Figure 6.1292.  

The transition occurs below the physiological temperature of 37 °C, while a phase transition 

at a temperature a few degrees above physiological temperature is ideal. This phase transition 

temperature can be increased to slightly above 37 °C by copolymerization with other acrylic 

monomers such as acrylic acid (AA) 293. 
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Figure 6.1 Schematic of thermoresponsive polymer undergoing a transition from its coil structure under 

soluble/expanded conditions to a globule structure (insoluble/collapsed) in an aqueous environment. Image adapted 

from ref 11.  

Thermally responsive nanocarriers are fabricated either by chemical conjugation of the 

thermoresponsive polymer onto the nanocarrier surface or by physical encapsulation of the 

nanocarrier through solvent-switching precipitation methods. The chemical conjugation of 

PNIPAM and PNIPAM copolymers on PSi NP surfaces has been widely studied 215–217,283–

285,294,295. An α-bromoisobutyryl bromide (BIBB) was grafted onto a PSi NP surface to initiate 

the polymerization of a PNIPAM copolymer via a surface-initiated atom transfer radical 

polymerization (ATRP) approach216. The PNIPAM copolymer- grafted PSi NPs demonstrated a 

thermally modulated release, with less than 20% of doxorubicin released at 37 ° C and greater 

than 90% released at 45 ° C after 24 h.  Vinyl groups have also been introduced on mesoporous 

silica and PSi NP surfaces for further for further PNIPAM polymerization 217,283. However, these 

chemical conjugation steps are tedious and time consuming ( ~5-6 days). Moreover, numerous 

purification steps to eliminate side products further reduces the feasibility for scaling up this 
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method in clinical settings. An alternative to chemical conjugation is physically encapsulating 

the NP in a desired polymer. 

Physical encapsulation techniques such as emulsion solvent evaporation, nanoprecipitation, 

and emulsion solvent diffusion are promising alternatives to chemical conjugation, as they are 

rapid, simple, and easy to scale up 296–298. With nanoprecipitation, an amphipathic polymer is 

dissolved in a semi-polar water-miscible solvent. As an aqueous solution is introduced it 

displaces the semi-polar solvent and causes the polymer to precipitate into NPs 298–301. The 

nonsolvent based precipitation process is comprised of four stages: generating a supersaturation 

state, nucleation, growth, and coagulation 236. Supersaturation is achieved when the solution 

contains more dissolved solute than the equilibrium saturation value. When the nonsolvent 

(water) is introduced the system is put in a supersaturated state because the overall solvent 

potency to dissolve the solute decreases. The supersaturation ratio (Sr) is expressed as 

𝑆𝑟 =
𝐶𝑠

𝐶∞
 Eq. (6.1) 

Where 𝐶𝑠 is the interfacial particle solubility ratio and 𝐶∞. Typically, a higher supersaturation 

rate leads to smaller particle sizes. When the supersaturation reaches a critical level that is 

solvent/ non-solvent specific, the solution overcomes the activation energy barrier (ΔG) needed 

to assemble (i.e. homogeneous nucleation) 

∆𝐺 =
16𝜋𝜎3𝜈3

3𝐾2𝑇2(ln 𝑆𝑟)2
  Eq. (6.2) 

Where 𝜎 is the interfacial tension at the solution-precipitate interface, 𝜈 is the solute molar 

volume, K is the Boltzmann constant, and T is the temperature 236,302. After primary nuclei 

formation due to solution supersaturation, solute molecules associate to the nuclei until reaching 
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a critical size that is stable against dissolution. Nucleation continues until the solution 

supersaturation is depleted by the growth of earlier nuclei. The nucleation rate (Nr) is expressed 

as 

𝑁𝑟 = 𝑐 𝑒𝑥𝑝 [−
16𝜋𝜎3𝜈2

3𝐾3𝑇3(ln 𝑆𝑟)2] Eq. (6.3) 

Where c is a constant 302. As the solute concentration reduces below the critical supersaturation 

concentration the nuclei grow by condensation or coagulation. Condensation is dominated by 

diffusion-limited growth kinetics, where single molecules are added to the particle surface by 1) 

transporting solute from the bulk fluid through the solution boundary layer adjacent to the nuclei 

surface and 2) integrating the adsorbed solute molecules into the nuclei matrix via deposition 302. 

Particle growth by condensation ceases when the solute concentration reaches the equilibrium 

saturation concentration. Coagulation, or the adhesion of particles, occurs when attractive forces 

are stronger than repulsive ones. The number of collisions that lead to coagulation, or collision 

frequency, is determined by the ratio between attractive and repulsive particle interaction.  

Literature on NP synthesis by nanoprecipitation has demonstrated the importance of 

establishing a relationship between experimental parameters and controlling the nucleation and 

growth kinetics 299,301. When NP sizes smaller than a few hundred nanometers are desired, 

nucleation is favored over growth 301. High nucleation rates, Nr, result in higher nuclei densities 

and NP yield. An increase in supersaturation level leads to high Nr as predicted using Eq. (6.3). 

High local supersaturation and controlled nucleation rates can be achieved by rapid mixing, 

which will be discussed shortly. Moreover, growth is arrested when there is sufficient 

amphiphilic stabilizing material density on the particle surface to stop further aggregation 303. 
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When experimental conditions favor the growth regime over nucleation, few nuclei form and are 

likely to grow into micron-sized particles 236.   

 Nanoprecipitation has been primarily used to form biodegradable polymer NPs, including 

poly(lactic-co-glycolic acid) (PLGA) 304–306 and several amphiphilic block copolymers, for drug 

delivery of hydrophobic molecules 300,307–310. A key requirement for NP self-assembly is having 

an amphiphilic polymer where the hydrophobic block adsorbs onto a particle surface through 

hydrophobic interactions while the hydrophilic block provides stability in the aqueous colloidal 

suspension. Table 6.1 shows several examples of amphiphilic block copolymers used to form 

NPs via nanoprecipitation and flash nanoprecipitation, which will be discussed later in this 

section. While most of these examples used nanoprecipitation to encapsulate hydrophobic 

molecules within a water-soluble vehicle for drug delivery applications 311–313, this method has 

also encapsulated MRI contrast agents and fluorescent molecules 314.  

 

Table 6. 1 Summary of polymeric NPs formed by nanoprecipitation and their application. 

Co-polymer Precipitation Method Application/ Encapsulant Reference 

PS-b-P4VP Aerosel nanospheres Solvent- morphology Raula et al. (2013) 

PS-b-PEG Flash nanoprecipitation pH response Prud’homme et al. (2015) 

 
Fluorescent marker Prud’homme et al. (2013), Clapp et al. 

(2014) 

 
Hydrophobic drug Prud’homme et al. (2015) 

PS-b-PVP Flash nanoprecipitation Metal nanocatalyst Priestley et al. (2014) 

PS-b-PEO Flash nanoprecipitation Hydrophobic drug Prud’homme et al. (2009) 

PLGA-b-PEG Nanoprecipitation Hydrophobic drug Lamprecht et al. (2013) 
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Controlled release Préat et al. (2009), Feng et al. (2010), 

Puglisi et al. (2013) 

Flash nanoprecipitation Hydrophobic drug Zhu et al. (2013), Zhu et al. (2014) 

PLA-b-PEG Nanoprecipitation Transmucosal transport Alonso et al. (2004) 

Flash nanoprecipitation MRI Contrast agent Prud’homme et al. (2015) 

 
Stability, bioavailability Moghe et al. (2012) 

 
Photosensitizer Ju et al. (2011) 

 
Hydrophobic drug Prud’homme et al. (2012), Chow et al. 

(2015) 

PCL-b-PEG Nanoprecipitation Hydrophobic drug Zhuo et al. (2005) 

 
Antimicrobial 

photoactivity 

Nafee et al. (2013) 

 
Controlled release Chau et al. (2013), Préat et al. (2009) 

 
Sensitive drug Barreto et al. (2013), de Melo Cazal 

(2015) 

PVP-b-PVOH Flash nanoprecipitation Hydrophobic drug Prud’homme et al. (2008) 

PS: polystyrene; P4VP: Poly(4-vinylpyridine); PEG: polyethylene glycol; PVP: Polyvinylpyrrolidone; PEO: 

Polyethylene oxide; PLGA: Poly Lactic-co-Glycolic Acid; PLA: Polylactic acid; PCL: Polycaprolactone; PVOH: 

Polyvinyl alcohol. 

 

Table 6.2 Summary of PNIPAM block copolymer NPs. 

Co-polymer Precipitation Method Application/ Encapsulant Reference 
PIL-PNIPAM Temperature precipitation Thermal, ionic strength 

responsive 
Yuan et al. (2011) 

PIL-PNIPAM-PIL Aerosel nanospheres Controlled release Tenhu et al. (2015) 

PS-b-P4VP 

pNIPAM surface 

conjugated 

Solution processed films Thermoresponsive 

molecular filters 
Abetz et al. (2013) 

PS-b-PNIPAM Photoemulsion 

polymerization 
Thermoresponsive Ballauff et al. (2006) 
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PS-b-PNIPAM-b-

PS 
Aerosel nanospheres Controlled release Tenhu et al. (2010), 

Raula et al. (2012), 

Raula et al. (2015) 
Solution processed films Thermoresponsive 

molecular filters 
Tenhu et al. (2007) 

Temperature precipitation Thermoresponsive 

micelles 
Papadakis et al. (2010), 

Papadakis et al. (2012) 
PS: polystyrene; P4VP: Poly(4-vinylpyridine); PNIPAm: Poly(N-isopropylacrylamide); PIL: Polymeric ionic 

liquids. 

Moreover, tuning the morphology of polymeric NPs formed by nanoprecipitation resulted in 

controlled release profiles favorable for drug delivery. This work focuses on physical 

encapsulation with thermoresponsive polymers, such as PNIPAM. Extensive research has 

developed amphiphilic polymeric NPs based on polystyrene (PS) or polymer ionic liquids (PIL) 

and PNIPAM (PIL-PNIPAM, PS-PNIPAM), as shown in Table 6.2. NPs were formed either by 

temperature changes that induce hydrophobic characteristic and micellar collapse or by an 

aerosol technique where the polymer solution is atomized into small droplets in a gas-phase and 

the solvent is subsequently evaporated in an oven 315–317. While these techniques have fabricated 

themoresponsive polymeric NPs with varying morphologies, the synthesis of these NPs via 

nanoprecipitation is limited 318,319.  Moreover, using flash nanoprecipitation to encapsulate 

hydrophobic PSi NPs with PNIPAM has the potential to rapidly form thermoresponsive PSi NPs 

with narrow size distribution at mass-scale production levels.  

 As previously mentioned, smaller NPs with narrow size distribution are formed using 

rapid mixing during nanoprecipitation that results in high local supersaturation and controlled 

nucleation rates. With flash nanoprecipitation, rapid mixing, on the order of milliseconds, 

produces solvent exchange between the good solvent and anti-solvent on time scales faster than 

the solute aggregation time 301,302. The flash nanoprecipitation process is tuned through three 

time scales: (1) time to attain homogeneous mixing (τmix), (2) time for nucleation and growth of 
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hydrophobic block (τng), and (3) time of block copolymer self-assembly (τsa) 
320. The NP size is 

controlled by having characteristic times on the order of τmix and τng. These characteristic time 

scales on the order of milliseconds is achieved by using multi-inlet vortex mixers (MIVM) with 

mixing channels on the micron scale 310,321. With these mixers, supersaturation levels are 

modified by varying the solvent and water stream flow rate, which results in varying solvent/ 

water ratios. Microfluidics is a widely used technique for the nanoprecipitation of polymeric NPs 

in microscale fluidic channels (tens to hundreds of micrometers) with continuous flows 49. The 

small channel dimensions and large surface-to-volume ratio drastically reduce the mixing path of 

solvent and non-solvents to few tens of micrometers 322. The short mixing path facilitates the 

microscale mixing process that results in nanoscale particles and narrow size distribution, as 

previously discussed. The fast and efficient mixing allows physicochemical features of the NPs 

to be controlled by tuning the flow rate ratios between the non-solvent and solvent or by 

changing the mixing patterns. The fluid patterns are predicted by two dimensionless parameters: 

Reynolds number (Re) and Péclet number (Pe). Reynolds number is calculated below in  

𝑅𝑒 =
𝜌𝜈𝐿

µ
   Eq. (6.4) 

where ρ is the fluid density, ν is the fluid velocity, L is a characteristic linear dimension, and μ is 

the fluid viscosity. A high Re (> 2300) possesses a turbulent flow pattern that is characterized by 

a chaotic pattern with no distinct streamlines238. At low Re values (<1800) the flow pattern is 

laminar with distinct streamlines which are parallel to the fluid direction238. The transition 

between turbulent and laminar flow occurs at a Re of 1800–2000. In droplet microfluidics for 

drug encapsulation laminar flow is typically favored, because the fluids and the molecules within 

the steady streamlines can be precisely manipulated to generate controllable and monodisperse 

droplets 238.  
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The Péclet number characterizes the diffusion or convection of molecules in the fluids 

238,323 and is calculated using Eqn. 6.5 

𝑃𝑒 =
𝑙𝑢

𝐷
  Eq. (6.5) 

where, u is the local fluid velocity, l is the characteristic length, and D is the mass diffusion 

coefficient. The small volumes typical of microfluidics and laminar flow pattern result in slow 

molecular transfer through diffusion rather than convection. 

Microfluidic devices used to form single emulsions are categorized into three different 

geometries: flow focusing, co-flow, and T-junction 237,323. In flow focusing microfluidic devices, 

two immiscible fluids flow through at opposite sides of the system and meet at the inner capillary 

orifice, where the droplets are formed. With co-flow geometry the dispersed and continuous 

phases flow in parallel streams. For the T-junction configuration, two channels meet at a right 

angle, with one channel carrying the continuous phase and the orthogonal channel carrying the 

dispersed phase. Co-flow geometry has been extensively used to produce NPs via microfluidic 

nanoprecipitation 57,96,324–326. Microfluidic synthesis of polymeric NPs is advantageous because it 

improves control over size, size distribution, and morphologies 327–329. For example, PLGA NPs 

loaded with efavirenz (EFV) for treating HIV neuropathology were synthesized by microfluidics 

and bulk mixing 330. NPs formed with microfluidics exhibited smaller sizes (73 nm versus 

133 nm) and higher drug loading (10.8% versus 3.2%). Poly(lactic-co- glycolic acid)-

polyethylene glycol (PLGA-PEG) NPs encapsulating the chemotherapeutic docetaxel (Dtxl) was 

also formed by microfluidics nanoprecipitation and demonstrated smaller NP sizes, narrower size 

distribution, and higher Dtxl encapsulation efficiency 331.  Similarly, chitosan NPs loaded with 
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dexamethasone (Dex) for enhanced osteogenic differentiation of stem cells were fabricated using 

nanoprecipitation in microfluidic devices 332.  

Moreover, microfluidic nanoprecipitation has been used for the polymeric encapsulation 

of PSi NPs for applications such as diabetes, theranostics, nanovaccines and nanocarriers with 

dual hydrophilic and hydrophobic payloads 328,333. Undecylenic acid-modified thermally 

hydrocarbonized PSi (UnPSi) NPs were encapsulated with the pH-sensitive hypromellose acetate 

succinate via microfluidics nanoprecipitation to investigate intestinal cells interaction and 

demonstrate the pH responsive release of the model antidiabetic drug glucagon-like peptide-1 

(GLP-1) 334. pH responsive delivery was also demonstrated with the anticancer drugs paclitaxel 

and sorafenib by encapsulating drug-loaded PSi NPs in acid- degradable acetalated dextran 

(AcDeX) matrix or polyethylene glycol- block-poly(L-histidine) PEG-b-PHIS through 

microfluidics nanoprecipitation 326. In the first pH responsive case, an outer solution in the 

microfluidic device with an acidic pH (pH 3.7), forced the precipitation of hypromellose acetate 

succinate. For the anticancer drug-loaded PSi NPs, polymer precipitation was induced by its 

insolubility with the outer fluid. The glass-capillary microfluidics nanoprecipitation technique 

discussed in these last examples was also used to encapsulate PSi NPs and zinc‐doped copper 

oxide (Zn–CuO) NPs with AcDex to formulate a nano- cancer vaccine 335 and cancerous tumor 

targeting NPs 336. While extensive research has been dedicated to the forming pH responsive PSi 

NPs via nanoprecipitation in flow-focused microfluidic chips, this method has not been applied 

to the production of thermoresponsive PSi NPs.  

This Chapter investigates whether nanoprecipitation provides a facile, improved route 

towards synthesizing thermoresponsive PSi NPs. We first confirmed whether PNIPAM NPs can 

precipitate and encapsulate PSi NPs in bulk and microfluidics via a co-nonsolvency method. We 
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then investigated whether the amphiphilic block copolymer PS-b-PNIPAM can encapsulate PSi 

NPs via bulk mixing nanoprecipitation. Preliminary results are then shown for thermoresponsive 

polymer encapsulated PSi NPs formed in flow-focused microfluidic chips. The chapter 

concludes with future studies that could further develop this facile approach to preparing 

thermoreponsive PSi NPs on a mass-commercialization level.  

6.2 Experimental 

PNIPAM Homopolymer Synthesis 

A PNIPAM homopolymer was synthesized via free radical polymerization287 to 

determine its ability to encapsulate PSi NPs.  A 1.47 M solution of NIPAM monomer was 

formed by dissolving 0.33 mg of monomer in 8 mL of 1,4-dioxane. The solution was degassed 

with N2 for 30 minutes and then heated to 70 ºC. Once the solution reached this temperature, 380 

μL of 2,2′-Azobis(isobutyronitrile) AIBN (2.56 mM) was injected into the flask and the reaction 

occurred overnight under rapid stirring. The polymer was then precipitated out in diethyl ether 

and centrifuged at 6000 rpm for 5 min. The supernatant was decanted and the polymer was again 

washed with diethyl ether to precipitate. This procedure was repeated three times to remove any 

unreacted monomer or initiator. After removing leftover solvent with a rotary evaporator and 

drying under vacuum for 2 hours, 1.685 g of PNIPAM was collected as a white powder. Proton 

nuclear magnetic resonance (1H-NMR) spectra was collected using a Bruker Ascend 400 MHz—

Avance III HD NMR spectrometer (Bruker Corporation, Billerica, MA, USA) and confirmed the 

formation of PNIPAM. The 1H-NMR measurement was conducted in deuterated water (D2O).  

PS-PNIPAM Block Copolymer Synthesis 
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PS-b-PNIPAM amphiphilic di-block copolymer was synthesized, as previously reported 

317,337, via reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAM 

using a PS precursor as a macro-RAFT agent. First, the PS block was synthesized by dissolving 

styrene, S,S′-Bis(R,R′-dimethyl-R′′-acetic acid) Trithio- carbonate (BDAT), and AIBN in 1,4-

dioxane. The solution was degassed by three freeze-pump-thaw cycles (<1 mbar) and the vessel 

was sealed under vacuum and placed in a thermostatically controlled oil bath (70 °C) to allow 

polymerization during a well-defined predetermined time. After the PS polymerization, the 

polymer was precipitated in cold methanol and purified by repeated precipitations. The final 

product was dried in vacuum to yield yellow powders. The number average molecular weights 

(Mn), weight average molecular weights (Mw) and polydispersity index (Mw/Mn, PDI) of the PS-

block were analyzed with size exclusion chromatography (SEC) against PS standards. Table 6.3 

shows the respective molecular weights for two PS chains that were synthesized.  

Table 6.3 PS polymer blocks and their respective lengths based on molecular weight. 

Polymer Mn
a (g mol-1) Mw (g mol-1) Mw/Mn

a 

19PS1 4,400 5,100 1.19 

19PS2 8,800 10,500 1.20 

a Determined by SEC using calibration with PS standards, PS: polystyrene 

To form the final block copolymer desired, PS yellow powder was then dissolved in 1,4-

dioxane before adding NIPAM and AIBN. The mixture was stirred for 30 min at room 

temperature to dissolve all the components and then degassed by three successive freeze-pump-

thaw cycles. The mixture was placed in an oil bath at 70 °C to start the polymerization reaction. 

The reaction was halted by cooling the solution to ambient temperature. The product was 

precipitated twice from tetrahydrofuran (THF) into diethyl ether and cold water for purification 
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purposes. The product was freed from the homopolymer PNIPAM by centrifugation at 29 °C (45 

min, 5000 rpm). The block copolymer structure and purity was assessed by 1H NMR 

spectroscopy (200 MHz Varian Gemini 2000 spectrometer) using deuterated chloroform (CDCl3) 

as a solvent. The Mn of the diblocks were calculated using NMR data, namely the ratio between 

the signals 6.4-8.8 ppm (Ar-H and NH) and 3.7-4.3 ppm (N-CH). Other aliphatic protons were 

not used because they give ambiguous values (too high integral values).  The PDI was 

determined by SEC using calibration with PS standards. The structural data shown in Table 6.4.  

Table 6.4 PS-b-PNIPAM block copolymers with varying block lengths. 

Polymer Mn
a (g mol-

1) 

Mw/Mn
b  Mn

b (g mol-1) PS-block Mn
c (g mol-1) PNIPAM-

block 

PS1PNIPA2 11,000 1.24 4,400 6,600 

PS2PNIPA2 37,100 1.26 8,800 28,300 

PS2PNIPA1 45,200 1.36 8,800 36,400 

a Mn of the A-B block copolymer determined with 1H NMR spectroscopy. b Determined by SEC using calibration 

with PS standards. c Determined with 1H NMR spectroscopy. PS: polystyrene; PNIPAM: poly(N-

isopropylacrylamide) 

PNIPAM Nanoprecipitation by Co-Nonsolvency Method 

While PNIPAM is soluble in pure water and pure ethanol, it has been previously shown 

to precipitate in water and ethanol mixtures over a certain mixture range 338, also known as co-

nonsolvency. Precipitation was directly observed by comparing 1:1 mixtures of good solvent (10 

mg/mL PNIPAM in ethanol) and bad solvent (Milli-Q water with 0.1 wt% or 1 wt% Pluronic® 

F-127) in bulk mixing. These mixtures were also compared with the good and bad solvents 

individually to confirm that precipitation is in fact due to the mixture. Pluronic® F-127 is a 

triblock copolymer consisting of a central hydrophobic block of polypropylene glycol and two 

outer hydrophilic blocks of polyethylene glycol (PEG). F-127 has previously been used as a 
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steric stabilizer in synthesizing PNIPAM microgels with increased biocompatibility for 

Doxorubicin release 286.  

PS-PNIPAM Nanoprecipitation 

PS-b-PNIPAM was dissolved in THF (good solvent) at varying concentrations. Around 

500 µL of the block copolymer solution was introduced into 500 µL of Milli-Q water 

(antisolvent) under magnetic stirring at 300 pm either instantaneously or at 2 mL/hr, with the 

flow rate controlled by a syringe pump (PHD 2000, Harvard Apparatus, USA). The solution was 

stirred overnight to allow THF to evaporate before collecting the sample for washing and 

characterization. 

Glass-Capillary Microfluidic Hydrodynamic Flow Focusing Device Fabrication 

Microfluidic devices were fabricated on glass slides to which borosilicate glass 

capillaries with inner and outer diameters of 1100 and 1500 µm (World Precision Instruments, 

Inc.) were fixed with transparent epoxy resin (Epoxy, Devcon). Another borosilicate glass 

capillary with smaller diameters (inner and outer diameters of 560 and 1000 µm) was tapered 

using a micropipette puller (P-97, Sutter Instrument Co., USA) to a diameter of 10 µm. The 

diameter was then enlarged to 100 µm manually using fine sandpaper and confirmed with an 

optical microscope (EVOS XL, Life Technologies, Carlsbad, CA). The tapered capillary was 

inserted into the bigger capillary already glued to the glass slide and coaxially aligned with it. 

Figure 6.2 shows a schematic describing the coaxial geometry fabricated here. Then, the tapered 

capillary was fixed with epoxy. Injection needles were glued to the opening of the tapered glass 

capillary and to the entrance of the big glass capillary, such that the inner flow is introduced 

through the tapered capillary (good solvent) and the outer flow is introduced through the larger 
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capillary (antisolvent). Injection syringes (BD Luer-Lok syringe, 10 mL, and Terumo, 60cc 

Eccentric Luer Tip Syringe without Needle) and a syringe pump were used to introduce the 

flows to the channels at a constant flow rate. A MF-Millipore Membrane Filter, 1.2 µm pore size 

(Merck KGaA, Darmstadt, Germany) was used for the Terumo syringe to avoid micron-sized 

aggregates from flowing through the outer capillaries.  

 

 

 

Figure 6.2 Schematic for pNIPAM nanoparticle formation by nanoprecipitation in bulk a) and pNIPAM 

encapsulation of PSi nanoparticles using microfluidics nanoprecipitation b). For both cases, the surfactant F-127 

serves as a stabilizing agent in the water-ethanol solution mixture. *EtOH: Ethanol   

 

Characterization  

SEC of the PS-block was analyzed against PS standard to determine Mn, Mw and PDI. 

Measurements were performed with a Waters liquid chromatography system equipped with a 

Waters 2410 differential refractometer and a Waters 2487 UV as detectors. Three Styragel 
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columns (HR2, HR4, HR6) were used in series. HPLC-grade THF was used as an eluent with a 

flow rate of 0.8 mL/min at 35 °C. The NP size was measured in Milli-Q water using a Zetasizer 

Nano ZS (Malvern Instruments Ltd.). NP morphology and chemical analysis was confirmed by 

TEM (Jeol JEM-140, Jeol Ltd., Japan) and energy dispersive X-ray (EDX) spectroscopy. TEM 

samples were prepared by dropcasting 7 µL of a 100 µg/mL solution onto carbon-coated copper 

grids (300 mesh; Electron Microscopy Sciences, USA). Samples settled down for 5 min on the 

grid prior to removing excess liquid with filter paper.   

Differential scanning calorimetry (DSC) thermograms were recorded using a calorimeter 

with an Indium reference for the temperature and heat flow rate (DSC 823e, Mettler Toledo, 

USA). A 40 µL volume of a 10 mg/mL solution of PNIPAM in Milli-Q water was pipetted into 

an aluminum pan and covered with an aluminum cover. Then the sample was heated from 25 to 

50°C at 10°C/min linear heating rate with constant flow of nitrogen to create an inert 

environment. The data was evaluated by the STARe software. 

6.3 Results 

PNIPAM Synthesis and NP Formation 

 Initially, PNIPAM NPs were synthesized via nanoprecipitation. Figure 6.2 shows a 

schematic for the encapsulation of PSi nanoparticle with PNIPAM through nanoprecipitation 

with the co-nonsolvency method by bulk mixing (a) and microfluidics (b). Where PNIPAM 

precipitates in water and ethanol mixtures over a certain mixture range, the polymer chains were 

dispersed in ethanol and introduced to an aqueous solution containing 0.1 wt% Pluronic® F-127. 

The surfactant was expected to stabilize the PNIPAM NP structure. Specifically, upon 

precipitation the hydrophobic block of F-127 should interact with the PNIPAM and the 
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hydrophilic chains remain soluble in the aqueous solution through intermolecular forces such as 

hydrogen bonding.     

A PNIPAM homopolymer was synthesized via free radical polymerization and purified 

by precipitating the polymer out in diethyl ether several times followed by centrifugation. The 

successful synthesis of the polymer was confirmed by NMR (Figure. 6.3a), DSC (Figure. 6.3b), 

and direct observation of the solution turbidity above the LCST (Figure. 6.3c). The broad peaks 

at chemical shifts δ= 1.5 ppm and 2 ppm correspond to the polymer backbone while at δ= 3.85 

ppm there is a broad peak associated with the hydrogen adjacent to nitrogen. DSC (Figure 6.3b) 

confirmed a phase transition at 33 °C that is similar to what has been widely reported as the 

PNIPAM LCST (32 °C) 291, where the polymer chains begin to coil due to its increasing 

hydrophobicity.  

 

Figure 6.3 Characterization of pNIPAm formed by free radical polymerization with a) 1H NMR and b) DSC. NMR 

clearly shows the chemical shifts associated with pNIPAM and DSC confirms the lower critical solution temperature 

of ~33 °C. c) Heating the polymer in water above the LCST shows a decrease in the polymer solubility. 
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The change in hydrophilicity is further corroborated by direct observation of the solution at 

temperatures below and above the LCST where changes in turbidity are evident. At room 

temperature the polymer is soluble in an aqueous solution and at 40 °C the solution appears 

turbid, which indicates the polymer’s reduced solubility. 

 After synthesizing PNIPAM and demonstrating its thermoresponsive properties, the co-

nonsolvency of PNIPAM with water, ethanol mixtures was confirmed (Figure 6.4b). PNIPAM 

was dissolved in ethanol and mixed with Milli-Q water, or an aqueous solution containing F-127 

(0.1 or 1wt%) in a 1:1 ratio. Immediately upon mixing the two solutions, a white precipitate 

formed (Figure 6.4b) in comparison to pure ethanol mixed with a F-127 aqueous solution that did 

not form any precipitate.  

 

Figure 6.4 a) Z-average and PDI values for pNIPAM nanoparticles formed by microfluidics nanoprecipitation with 

aqueous F-127 as the outer solvent and varying outer: inner flow ratios. b) Stability of precipitation observed 

directly after mixing and 3 days after. Z-average and PDI of nanoparticles formed with an outer: inner flow ratio of 

55:1 mL/h was assessed. 

Thus, various mixtures confirm that F-127 is not required for the PNIPAM precipitation and that 

it is PNIPAM, rather than F-127, that precipitates out of these water-ethanol mixtures. After 

three days the PNIPAM mixture without F-127 surfactant had some phase separation while the 
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mixtures with surfactant remained homogeneous. PNIPAM precipitation by the co-nonsolvency 

method was applied to forming NPs via microfluidics in a similar manner shown in Figure 6.2 

but without any PSi. The Z-average and PDI was assessed by DLS for NPs formed with varying 

outer: inner flow ratios (Figure 6.4a). As the flow ratio of the outer aqueous solution (0.1 wt% F-

127) to the ethanol-containing polymer (2 mg/mL) increased from 40:1 to 55:1, the Z-average 

decreased by almost 100 nm. This observation agrees with previous reports that the particle size 

decreased with increasing Re 238. Where Re is directly proportional to the fluid velocity, as the 

flow ratio increases the velocity and the Reynold’s number increases. Therefore, the higher the 

Re, the faster the mixing rate between fluids, and consequently, the smaller the average particle 

size339. The NPs showed a slight increase in Z-average after 3 days, probably due to some 

aggregation but, overall, they possessed high stability (Figure 6.4b). The NP production 

reproducibility was investigated in different microfluidic chips with the same experimental 

parameters. The Z-average and PDIs were nearly identical. Therefore, the PNIPAM NP 

production is highly reproducible (Figure 6.5).  

 

Figure 6.5 Reproducibility of Z-average and PDI values for pNIPAM nanoparticles with varying inner: outer flow 

ratios formed with a microfluidics chip fabricated on a different day. 
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 TEM images assessed the morphology of PNIPAM NPs formed by microfluidics 

nanoprecipitation with a 55:1 flow rate (Figure 6.6). From n= 46 measurements using ImageJ the 

NPs had an average size of 107.8 + 18.8 nm (Figure 6.6c). There is a discrepancy in average 

particle size between TEM and DLS (245.3 nm) measurements because DLS measures the 

hydrodynamic size, where swollen polymer chains in aqueous solution contribute to this size. 

We know that the NPs observed under TEM are not F-127 assembled into NPs because this 

copolymer tends to form micelles on the order of ~4-13 nm340. The single NP (Figure 6.6d) 

shows a ~10 nm outer layer, which is associated with the F-127 surfactant stabilizing the 

PNIPAM NP surface, as was proposed in Figure 6.2. 

 

Figure 6.6 TEM images of pNIPAM nanoparticles stabilized by F-127 formed by microfluidics nanopreciptation 

with a 55:1 flow rate at lower a) and higher b) magnifications. c) Size distribution of the nanoparticles measured 

directly by TEM using ImageJ with n=46 measurements. d) Zoomed in TEM image of a pNIPAM nanoparticle 

showing an outer layer that is probably the F-127 stabilizer. 
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PSi Encapsulation by PNIPAM  

After confirming the formation of PNIPAM NPs by microfluidics nanoprecipitation via the 

co-nonsolvency method, the precipitation was optimized, initially by bulk mixing, to encapsulate 

PSi NPs. TOPSi NPs were combined with PNIPAM in ethanol at various concentrations. The 

‘good solvent’ solution was then added to a 0.1 wt% F-127 aqueous solution at an 8:2 ratio of 

bad solvent: good solvent. Figure 6.7a shows the Z-average and PDI measured by DLS for 

precipitated solutions with varying TOPSi and PNIPAM concentrations. Overall, the Z-average 

ranges between ~160- 200 nm. Given a diameter of 236 nm for TOPSi NPs alone, the Z-average 

of 160 nm for a PNIPAM: TOPSi ratio of 0.5: 0.5 mg/mL is perhaps a combined average of 

PNIPAM and TOPSi NPs, suggesting that encapsulation did not occur.  

 

Figure 6.7 a) Z-average and PDIs for particles formed by precipitation via bulk mixing in a bad: good solvent ratio 

of 8: 2 with varying pNIPAM: PSi nanoparticle ratios in mg/mL. b) TEM images of bulk precipitation of 8:2 0.1 

wt% F127(aq): 5 mg/mL pNIPAM, 0.5 mg/mL pSi. 

The TOPSi NPs act as a seed for PNIPAM precipitation and encapsulation, and therefore we 

anticipate a Z-average slightly larger than the TOPSi NP size (236 nm, PDI 0.2). The solution 

with the largest Z-average and smallest PDI (5: 0.5 mg/mL PNIPAM: TOPSi) was further 

analyzed with TEM (Figure 6.7b), as DLS faces limitations of reporting an average of all NP 

population sizes and not discerning between PSi, PNIPAM, or encapsulated particles. The TEM 
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image shows micron-sized polymer clusters with TOPSi NPs embedded within the cluster. While 

encapsulation is occurring on a micron-level, well-defined encapsulated NPs are required for 

intravenous drug delivery applications. Moreover, dried free polymer is evident throughout the 

Formvar support film, indicating that either not all of the PNIPAM precipitates or as the solution 

evaporates on the Cu grid ethanol is evaporating faster which changes the overall solvent 

composition and may increase the solubility of PNIPAM during the drying process.  

 As previously mentioned, NP encapsulation with microfluidics tend to yield smaller NPs 

with lower PDI. Thus, we moved from bulk mixing to microfluidics to reduce the cluster size 

observed in bulk mixing (Figure 6.7b) and decrease the overall mixing time to promote TOPSi 

NP encapsulation. The inner flow ‘good solvent’ consisted of PNIPAM and TOPSi NPs with 

varying concentrations, while the outer flow contained 0.1 wt% F-127. Polymer precipitation 

onto the TOPSi surface was anticipated as the inner and outer solvents meet at the tapered end of 

the inner capillary. The Z-average and PDI of precipitated NPs with varying PNIPAM and 

TOPSi concentrations is shown in Figure 6.8, where the concentrations in Figure 6.8a and 6.8b 

vary from 10:1 to 1:1 mg/mL PNIPAM: TOPSi.  
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Figure 6.8 Z-average and PDI for pNIPAM encapsulation of PSi nanoparticles. The inner flow solution consisted of 

a a) 10:1 and b) 1:1 ratio of pNIPAM: PSi with a PSi concentration of 1 mg/mL. The outer flow solvent consisted of 

0.1 wt% F-127 in Milli-Q water to stabilize the pNIPAM nanoparticle formation as it precipitates out of water-

ethanol mixtures. 

Higher outer flow rates observed in Figure 6.8a resulted in smaller Z-averages, which agrees 

with increasing Re. For example, as the inner: out flow ratio increases from 30:2 to 40:2 the Z-

average decreased from 336 nm to 289 nm. Overall, it is difficult to determine a clear NP size 

trend as the PNIPAM concentration is decreased from 10 mg/mL to 1 mg/mL. When comparing 

NPs with the same outer: inner flow ratio (30:1) the Z-average decreased from 422 nm to 348 

nm. This size decrease with decreasing polymer concentration has been previously observed with 

other polymer systems formed by nanoprecipitation. NPs with homopolymer cores (PS, 

polystyrene and PLA, polylactic acid) were stabilized with amphiphilic diblock copolymers (PS-

b-PEG or PLA-b-PEG) by nanoprecipitation in microfluidic channels 299.  Smoluchowski 

diffusion-limited growth kinetics were used to describe the relationship between the 

homopolymer core and stabilizing block copolymer concentration, and the final NP radius. 

Moreover, this concept was also used to understand the encapsulation of inorganic colloids into 

polymeric NPs. Eqn. 6.6 is the average aggregate radius, R, as a function of time, t, for 

aggregates much larger than the starting material 
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𝑅 = (
𝑡𝑘𝑏𝑇𝑐𝑐𝑜𝑟𝑒

𝜋𝜇𝜌
)

1/3

  Eq. (6.6) 

where T is the absolute temperature, kb is the Boltzmann constant, ccore is the mass 

concentration of the core material (homopolymer in this case), µ is the solvent viscosity, and ρ is 

the core material density299. Moreover, the time required for the formulation to reach the final 

radius, tf, is also related to the concentration of the block copolymer (BCP) as shown in Eqn. 6.7. 

𝑡𝑓 = 𝐾
𝑐𝑐𝑜𝑟𝑒

2/3

𝑐𝐵𝐶𝑃
∝  

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑜𝑟𝑒

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐵𝐶𝑃
  Eq. (6.7) 

where K is a single scaling constant value that is dependent on the material system being 

used. Combining Eqns. 6.6 and 6.7 yields 

𝑅 = (
𝑡𝑘𝑏𝑇𝑐𝑐𝑜𝑟𝑒

5/3

𝜋𝜇𝜌𝑐𝐵𝐶𝑃
)

1/3

 Eq. (6.8) 

The relationship between the block copolymer concentration and overall particle size in Eqn. 6.8 

suggests that higher concentrations lead to smaller particle sizes. This relationship is due to the 

fact that particle growth is arrested by BCP coating the surface, so increasing the BCP 

concentration halts particle growth more quickly. However, this relationship is limited to systems 

where both the core and stabilizer are precipitated and undergoing assembly during mixing299, 

while in this work, the PSi NP core does not undergo any assembly. Thus, if considering only the 

precipitating component (i.e. PNIPAM) and assuming that the core concentration is related to the 

precipitating polymer concentration, then the NP size will grow with increasing polymer 

concentration. TEM images (Figure 6.9) of PNIPAM and PSi with varying concentrations were 

taken to corroborate the relationship between PNIPAM concentration and particle size.  
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Figure 6.9 TEM images of pNIPAM nanoprecipitation by co-nonsolvency with microfluidics with a a,d) 10:1, b,e) 

5:1, c,f) 5:0.5 pNIPAM: PSi ratio (with a PSi concentration of 1 mg/mL) and 40:2 outer: inner flow rate. The outer 

flow solvent consisted of 0.1 wt% F-127 in Milli-Q water to stabilize the pNIPAM nanoparticle formation as it 

precipitates out of water-ethanol mixtures. 

The highest PNIPAM concentration (10 mg/mL, Figure 6.9a, d) had the largest particles, roughly 

ranging between 200 nm and 500 nm in diameter. These particles are ideal for encapsulating 

TOPSi NPs, but higher magnification images (Figure 6.9d) revealed TOPSi NPs outside the 

PNIPAM structures. Decreasing the PNIPAM concentration to 5 mg/mL (Figure 6.9b, e) showed 

an overall decrease in size and particle density on the surface. There is a combination of free 

polymer that has been dissolved during sample preparation drying for TEM, F-127 micelles, and 

several 200- 500 nm sized particles that could potentially have TOPSi inside granted there was 

no free TOPSi near these particles. Decreasing the TOPSi concentration from 1 mg/mL to 0.5 

mg/mL (Figure 6.9c, f) revealed polymer nanostructures and F-127 micelles, but the TOPSi NPs 

were not encapsulated within the polymer. Given the promising TEM images shown in Figure 

6.8b, this sample was analyzed by EDX (Figure 6.10) to confirm whether TOPSi was residing 

within the nanostructure.  
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Figure 6.10 EDX spectrum and corresponding SEM image of nanoprecipitated pNIPAM to determine whether PSi 

is encapsulated inside. A 5:1 mg/mL pNIPAM: PSi ratio with 0.1 wt% F127 surfactant in the outer fluid and outer: 

inner fluid ratio of 40:2 was used. 

An EDX spectrum corresponding to a point on one of these structures did not reveal any Si. The 

Kα Si peak did not appear for several point spectra, indicating that TOPSi NP encapsulation by 

PNIPAM was not successful. While it appears that the polymer is successfully precipitating out 

of the solution using the co-nonsolvency principle, we hypothesized that TOPSi encapsulation 

was not successful, because the polymer would precipitate onto a hydrophobic surface that acts 

as a seed. If the core material is hydrophilic and remains soluble after introducing the antisolvent 

then the polymer would not preferentially precipitate on the core surface 300–302. In Chapter 3 the 

fabrication of hydrophobic PSi surfaces via a thermal carbonization treatment (THCPSi) was 

discussed. In the following section THCPSi was used for PNIPAM encapsulation via 

microfluidics nanoprecipitation. 

THCPSi Encapsulation by PNIPAM 

The varying THCPSi NP and PNIPAM concentrations determined whether the presence 

of a hydrophobic core promotes encapsulation and polymer precipitation onto PSi. The PNIPAM 
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concentration was decreased from 5 mg/mL to 0.5 mg/mL and the THCPSi concentration was 

decreased from 1 mg/mL to 0.5 mg/mL. Figure 6.11 shows the Z-average and PDI for a system 

with an inner flow solution of 5: 0.5 PNIPAM: THCPSi at varying outer: inner flow rates. 
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Figure 6.11 Z-average and PDI of THCPSi and pNIPAM nanoparticles precipitated by the co-nonsolvency with 

microfluidics with a 5:0.5 PNIPAM: THCPSi ratio (with a PSi concentration of mg/mL) and 40:2 outer: inner flow 

rate. The outer flow solvent consisted of 0.1 wt% F-127 in Milli-Q water to stabilize the pNIPAM nanoparticle 

formation as it precipitates out of water-ethanol mixtures. 

 As observed in previous outer: inner flow rate optimizations, the Z-average decreased from 316 

nm to 275 nm as the ratio increased from 40:1 to 50:1. Overall, the Z-averages are comparable to 

those observed for encapsulation optimizations done with TOPSi (Fig. 6.8). Given a Z-average 

of 200 nm for the bare THCPSi NPs, the >200 nm Z-averages for all flow ratios is an indicator of 

encapsulation. The effect of PNIPAM on THCPSi concentration changes on the overall 

morphology and encapsulation was observed by TEM (Figure 6.12). All concentration variations 

in Figure 6.12 had a 40:2 outer: inner flow ratio.  
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Figure 6.12 TEM images of pNIPAM nanoprecipitation by co-nonsolvency with microfluidics with a 5:1 a), 5:0.5 

b), and 0.5:0.5 c) pNIPAM: THCPSi ratio (with a PSi concentration of mg/mL) and 40:2 outer: inner flow rate. The 

outer flow solvent consisted of 0.1 wt% F-127 in Milli-Q water to stabilize the pNIPAM nanoparticle formation as it 

precipitates out of water-ethanol mixtures. 

At a concentration ratio of 5: 1 mg/mL PNIPAM: THCPSi (Fig. 6.12a) larger particles (~1 µm) 

were observed and based on the contrast difference in the particle center it appears that THCPSi 

NPs are encapsulated. Moreover, based on the size of this contrast difference (~550 nm) it could 

be that there is an aggregate of THCPSi NPs at the center. As the THCPSi concentration 

decreases from 1 mg/mL to 0.5 mg/mL (Fig. 6.12b) encapsulation is apparent based on the 

contrast difference within the particles. However, the overall particle size decreases (with sizes 

between ~250- 500 nm) probably since there are less THCPSi NPs to aggregate. The round NPs 

in Fig. 6.12b represent dimensions typical of F-127 micelles (~10 nm). As the PNIPAM 

concentration decreases from 5 mg/mL to 0.5 mg/mL (Fig. 6.12c) no encapsulation is observed, 

probably because as the PNIPAM concentration decreases 10-fold there is less polymer to 

precipitate on the THCPSi surface. Using Eqn. 6.8 the diffusion-limited growth kinetics from 

other systems can be applied to predict how the final radius varies with precipitating polymer 

concentration. Given the precipitated particle radius is proportional to c2/9 (assuming that cBCP= 

ccore), a 10-fold concentration decrease results in a 60% decrease in the radius. 

Thermodynamically, there PNIPAM concentration is high enough to produce a supersaturated 
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solution that results in precipitation, as F-127 stabilized PNIPAM nanostructures on the order of 

100 nm are observed. Thus, at lower concentrations there is the preferential formation of 

PNIPAM NPs rather than precipitation on THCPSi NP surfaces. Overall, we observe that the 

presence of a hydrophobic NP surface is a crucial ‘seed’ that allows for encapsulation to occur. 

While encapsulation is more evident with the THCPSi NPs in comparison to TOPSi NPs, these 

encapsulated structures are not stable in aqueous solution once the ethanol is removed. When the 

nanostructures are dispersed in an aqueous-based solution the PNIPAM will dissolve into the 

solution (since ethanol is not present anymore to precipitate the polymer), leaving the PSi NPs 

exposed. Therefore, these nanostructures are not suitable for drug delivery applications where the 

encapsulant will dissolve upon exposure to aqueous-based biological fluids. One way to 

circumvent this dissolution is by encapsulating the THCPSi with a di-block copolymer chain 

with amphiphilic properties. Amphiphilic di-block copolymer chains have been extensively 

studied for the fabrication of polymeric NPs by nanoprecipitation300,301,303,320. However, using 

this principle to encapsulate PSi NPs with a thermoresponsive polymer has yet to be 

demonstrated.  

THCPSi encapsulation was optimized with PS-PNIPAM di-block copolymers of varying 

molecular weights. A PS hydrophobic block was utilized, because of the extensive work reported 

on PS-based block co-polymers for polymer NP formation by nanoprecipitation299,303,320. 

Moreover, previous research on PS-PNIPAM di- and tri-block copolymers demonstrated films 

and polymeric NPs formed by an aerosol flow reactor 337,341–343. In this reactor, the block 

copolymer self-assembly is induced by initial solvent evaporation and subsequent thermal 

annealing. Prud’homme’s nanoprecipitation were combined with the aerosol reactor’s solvent 

evaporation step to increase the antisolvent (water) concentration and promote the copolymer 
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self-assembly. We proposed a system where THCPSi and PS-b-PNIPAM were dissolved in the 

solvent tetrahydrofuran (THF), which is miscible with hydrophobic molecules. As water is added 

to the solution, the hydrophobic THCPSi and PS component of the block copolymer 

simultaneously precipitate while the hydrophilic PNIPAM remains stable in the aqueous portion. 

The relatively low boiling point of THF (65 °C) allows the solvent to readily evaporate when left 

overnight. As the solvent evaporates, the hydrophobic components further precipitate and the PS 

block self-assembles onto the THCPSi surface. Figure 6.13 shows a schematic of the THCPSi 

encapsulation with PS-b-PNIPAM by bulk mixing (Fig. 6.13a) and microfluidics (Fig 6.13b).  

 

Figure 6.13 Schematics showing the formation of PSi-encapsulated PS-pNIPAM nanoparticles via nanoprecipitation 

in the bulk a) and using microfluidics b). After the antisolvent (water) induces nanoprecipitation, THF is evaporated 

from the solution to further decrease the solubility and maintain the stability of these nanoparticles. 

 

Three block copolymers were synthesized with varying PS and PNIPAM block lengths, as 

shown in Table 6.4. 19PS1PNIPA2 has the short PS and PNIPAM blocks (based on molecular 

weight), 19PS2PNIPA2 has a longer PS and intermediate PNIPAM block, and 19PS2PNIPA1 
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has a long PS and long PNIPAM blocks. Table 6.5 summarizes the block copolymers 

synthesized and the relative block lengths. 

Table 6.5 Summary of block copolymers and their relative block lengths. 

Polymer Mn PS-block Mn PNIPAM-block 

19PS1PNIPA2 Short Short 

19PS2PNIPA2 Long Intermediate 

19PS2PNIPA1 Long Long 

Optimizations were initially carried out in bulk mixing of varying block copolymer, THCPSi NP 

ratios, as shown in Figure 6.14.  

 

Figure 6.14 Z-average and PDI of THCPSi and PS-pNIPA nanoparticles mixed at different ratios and precipitated 

with bulk mixing. The PS-pNIPAM vary in molecular weights and the following samples are used: a) PS1PNIPA2, 

b) PS2PNIPA1, and c) PS2PNIPA2. 

The 19PS1PNIPA2 (Figure 6.14a) and 19PS2PNIPA2 (Figure 6.14b) concentration was varied 

from 1 mg/mL to 10 mg/mL. The 19PS2PNIPA1 (Figure 6.14c) was varied from 1 mg/mL to 2.5 

mg/mL. Overall, the PS2PNIPA2, THCPSi mixtures have the highest Z-averages, while 

19PS1PNIPA2 mixtures have the lowest Z-averages. Prud’homme’s model for nanoprecipitation 

of PS-b-PEG and PLA-b-PEG (Eq. 6.6-8) proposed that NP growth rate is independent of the 

molecular weight of the hydrophobic core. Moreover, PS-b-PNIPAM-b-PS tri-block copolymer 
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NPs observed that as the molecular weight and wt% PNIPAM increased, the mean NP diameter 

did as well. Given that Prud’homme’s model holds for other PS block copolymer systems, we 

attribute the increase in Z-average to the increase in the PNIPAM molecular weight. 

Consequently, 19PS2PNIPA1should have the largest Z-averages, yet intermediate Z-averages 

are observed. A similar phenomenon was observed and attributed to variations in morphology 

(spherical versus gyroid-like), which can affect the extent of particle swelling317,343. Figure 6.15 

shows TEM images of 2.5 mg/mL PS1PNIPA2 (Figure 6.15a) and PS2PNIPA1 (Figure 6.15b) 

precipitated with 0.5 mg/mL THCPSi via bulk mixing with the ‘good’ solvent addition to the 

antisolvent at a flow rate of 2 mL/h. 

 

Figure 6.15 TEM images of nanoparticles formed by bulk mixing nanoprecipitation with a PS-pNIPAM: THCPSi 

ratio of 2.5: 0.5 (mg/mL) where the good solvent is introduced into the antisolvent at a rate of 2 mL/hr. The polymer 

chain molecular weight varies for precipitation with a) PS1PNIPA2 and b) PS2PNIPA1. 

For encapsulation with PS1PNIPA2, less NPs were formed and more PNIPAM dissolved on the 

grid film. In contrast, the PS2PNIPA1 mixture, which has a diblock length twice the size, 

contained more well-defined spherical NPs and less dissolved polymer. These observations are 

in agreement with the di-block structure, which has a shorter hydrophobic block that results in a 

more hydrophilic block copolymer and, therefore, a nanostructure that is less stable in aqueous 

solution. The darker contrast inside the nanostructures in Figure 6.15 indicates THCPSi 

encapsulation. Moreover, Figure 6.15b demonstrates NPs that are both empty and encapsulated 
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with THCPSi based on the contrast differences, where darker contrast represents encapsulated 

NPs while lighter contrast particles do not contain any encapsulated material.  

 The Z-averages were then determined for particles that were left stirring overnight for 

THF to evaporate. The Z-average for a mixture containing PS1PNIPA2 at various concentrations 

was analyzed after THF evaporation. Overall, with THF evaporation the Z-average decreased 

(Figure 6.16a) in comparison to the size before THF evaporation (Figure 6.14b).  

 

Figure 6.16 Z-average and PDI of THCPSi and PS-pNIPA nanoparticles a) mixed at different ratios or with 

polymers of varying molecular weights and b) precipitated with bulk mixing. The samples were left stirring 

overnight to evaporate any THF in the solution. 

A decrease in particle size is anticipated, whereas the THF evaporates the PS block becomes less 

soluble and further precipitates out of the solution. Consequently, the copolymer undergoes 

further self-assembly and the particle swelling is expected to decrease. When comparing the 

block copolymers with varying PS- and PNIPAM- block lengths at a polymer: THCPSi 

concentration ratio of 2.5: 0.5 mg/mL (Figure 6.16b), the polymer with a ‘long’ PS block and 

‘intermediate’ PNIPAM block (PS2PNIPA2) demonstrated the largest Z-average. PS2PNIPA1 

(‘long’ PS- and PNIPAM blocks) had intermediate Z-averages and PS1PNIPA2 (‘short’ PS- and 

PNIPAM- blocks) had the smallest Z-averages. These size trends are similar to those observed 
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before THF evaporation. Overall, PS2PNIPA2 did not observe any significant size change before 

and after THF evaporation. While the PS-block is expected to self-assemble with THF 

evaporation, the longer PNIPAM chain (in comparison to PS2PNIPA1) becomes more soluble 

once the THF is evaporated and results in chains with increased swelling. TEM images of the 

particles formed by bulk mixing and THF evaporated are shown in Figure 6.17.  

 

Figure 6.17 TEM images of THCPSi and PS-PNIPAM nanoparticles mixed at different ratios or with polymers of 

varying molecular weights and precipitated with bulk mixing. a) PS1PNIPA2: THCPSi 2.5: 0.5 mg/mL b) 

PS2PNIPA1: THCPSi 2.5: 0.5 mg/mL c) PS2PNIPA2: THCPSi 2.5: 0.5 mg/mL d) PS2PNIPA2: THCPSi 2.5: 1 

mg/mL. The samples were left stirring overnight to evaporate any THF in the solution. 

For particles formed with a ‘short’ PS- and PNIPAM-block (PS1PNIPA2) the NPs form a porous 

structure after THF evaporation, when compared to particles before THF evaporation (Figure 

6.15a). For a ‘long’ PS- and ‘intermediate’ PNIPAM-block (PS2PNIPA2, Figure 6.17b) no 
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polymeric nanostructures or encapsulation was observed. Figures 6.17c and 6.17d show THF-

evaporated nanostructures formed from ‘long’ PS- and ‘intermediate’ PNIPAM- block lengths 

(PS2PNIPA2) with varying THCPSi concentration (0.5, 1 mg/mL). With a THCPSi 

concentration of 0.5 mg/mL (Fig. 6.17c), self-assembled nanostructures were formed with THF 

evaporation. However, it is difficult to cconfirm whether THCPSi was encapsulated, and further 

chemical analysis by EDX is required. As the THCPSi concentration increases to 1 mg/mL, the 

overall NP size decreases by around half, and the morphology does not appear as rigid, or well-

defined. Rather, the THCPSi NPs appear as partially encapsulated, and the amount of dissolved 

polymer is more evident. After confirming the formation PS-b-PNIPAM NPs and the ability to 

encapsulate THCPSi NPs with the polymer via bulk mixing, this nanoprecipitation technique 

was investigated with microfluidics.  

 Nanoprecipitation principles were applied to a microfluidics system for fabricating 

THCPSi NPs encapsulated by a PS-b-PNIPAM block copolymer. Figure 6.12b shows a 

schematic for the formation of polymer encapsulated NPs using a microfluidic chip. The inner 

capillary consists of THCPSi and the block copolymer dissolved in the ‘good solvent’, THF. The 

outer capillary contains the ‘antisolvent’, Milli-Q water. As the inner and outer solutions meet at 

the inner capillary tapered end, precipitation of the PS-block is expected on the THCPSi surface. 

Microfluidics is advantageous because the rapid mixing during nanoprecipitation results in 

controlled nucleation rates and, ultimately, a narrower size distribution. The three polymers 

previously used for optimizations with bulk mixing (PS1PNIPA2, PS2PNIPA1, PS2PNIPA2) 

were used for microfluidics optimization. The block copolymer and THCPSi concentrations in 

the inner capillary were varied, and the Z-average is shown for PS1PNIPA2 (Figure 6.18a), 

PS2PNIPA1 (Figure 6.18b), and PS2PNIPA2 (Figure 6.18c).  
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Figure 6.18 Z-average and PDI of THCPSi and PS-pNIPA nanoparticles mixed at different ratios and precipitated 

using microfluidics. The PS-pNIPAM vary in molecular weights and the following samples are used: a) 

PS1PNIPA2, b) PS2PNIPA1, and c) PS2PNIPA2. 

Overall, the Z-averages for all solutions formed with microfluidics are higher than those formed 

with bulk mixing, which is surprising granted that microfluidics is expected to yield smaller 

particle sizes. However, the overall larger Z-averages could potentially indicate more efficient 

THCPSi encapsulation, but TEM images are needed to corroborate encapsulation. Overall, the 

‘long’ PS- and ‘intermediate’ PNIPAM-block (PS2PNIPA2) demonstrated the highest Z-

averages. The ‘long’ PS- and PNIPAM-block (PS2PNIPA1) demonstrated intermediate Z-

averages and the ‘short’ PS- and PNIPAM- blocks exhibited the lowest Z-averages. This size 

trend for the different PS and PNIPAM block lengths is the same as that observed for bulk 

mixing. Therefore, there is a consistent trend in the overall NP size for the block copolymers 

with varying PS and PNIPAM block lengths in bulk mixing and microfluidics. TEM images of 

the samples formed by microfluidics need to confirm whether the higher Z-averages correspond 

to a higher THCPSi NP encapsulation efficiency. Moreover, TEM images will be crucial for 

observing any morphology changes as the PS and PNIPAM block lengths vary.  
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6.4 Conclusion 

Physical encapsulation is a promising alternative to chemically conjugating stimuli-

responsive polymers onto PSi NP surfaces for controlled drug delivery applications. Specifically, 

nanoprecipitation is a quick, reproducible solvent-switching method that can form stimuli-

responsive encapsulated PSi on the order of seconds versus several days that are typical of 

chemical conjugation. The key requirements for NP formation by nanoprecipitation is that the 

polymer is initially dissolved in a compatible or ‘good’ solvent and upon introduction of an 

incompatible or ‘bad’ solvent the NP precipitates out of the solution. Moreover, in the presence 

of PSi NPs with similar solvent compatibilities as the precipitating polymer, the polymer will 

precipitate onto the PSi NP surface. F-127 stabilized PNIPAM NPs were formed with an average 

size of 107.8 + 18.8 nm. The themoresponsive NPs were precipitated using the co-nonsolvency 

in a microfluidics system. Encapsulation of TOPSi NPs with PNIPAM using the same 

nanoprecipitation principles was unsuccessful because TOPSi is highly soluble in water (the 

‘bad’ solvent in this case) and therefore the PNIPAM self-assembly was preferred over 

precipitating onto the dissolved TOPSi NP surface. PSi NPs with a hydrophobic surface 

(THCPSi) were then used for encapsulation optimizations to promote the PNIPAM precipitation 

onto the NP surface. Varying the surface hydrophilicity did result in the encapsulation of 

THCPSi NPs with PNIPAM. However, these particles are only stable in water-ethanol mixtures 

where the PNIPAM remains insoluble. Therefore, when this system is redispersed in an aqueous 

solution, the PNIPAM solubility increases and the encapsulant layer dissolves.  Given the need 

for formulations with aqueous solution stability, the amphiphilic block copolymer PS-b-

PNIPAM was applied to promote encapsulation and aqueous stability by precipitating the PS-

block onto the THCPSi NP surface. While this simple and facile encapsulation technique was 
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demonstrated in bulk mixing, further characterization is required to determine whether a 

microfluidics fabrication approach yields improvements in PSi encapsulation efficiency and size 

distribution. Moreover, drug release studies at various temperatures and cell viability studies will 

need to be compared to PSi NPs chemically conjugated with PNIPAM. Overall, 

nanoprecipitation has the potential to overcome fabrication challenges typically associated with 

streamlined manufacturing towards the clinical translation of nanocomposites.  
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Chapter 7. Future Work and Conclusion 

Overall, this dissertation developed a magnetic PSi nanocarrier system comprised of cost-

effective, highly scalable materials to overcome fabrication and cost challenges in scale-up and 

manufacturing of nanomedicines. A thermoresponsive release was established by the 

electrostatic removal of Fe3O4 caps as the PSi surface is hydrolyzed. This thermoresponsive 

behavior was used to improve the delivery of the poorly water-soluble drug SFN. The 

biocompatibility and cellular interactions of the magnetic PSi nanocarrier system was confirmed 

with various cancer cell and macrophage lines. Moreover, the controlled, thermoresponsive 

release translated to an increase in anticancer activity in two cancer cell lines. Thus, by applying 

temperature to the magnetic nanocomposite the anticancer activity can be readily tuned. 

First, this work broadly reviewed the current state of nanomedicine in research and the 

clinic. The theories of PSi fabrication by electrochemical etching and the relationship between 

experimental parameters and PSi morphology were surveyed. The synthesis and application of 

magnetic NPs in targeted drug delivery applications was discussed. This review provided a 

theoretical and experimental foundation for designing a magnetic thermoresponsive nanocarrier. 

In Chapter 3, the formation of a magnetic PSi nanocomposite with high efficiency and scalability 

is reported. PSi layers were fabrication via electrochemical etching, with a 3-step current density 

gradient formation. The layer size, and therefore amount of PSi produced, was readily tuned by 

the Si wafer exposed area. By increasing the exposed etching surface area, the amount of PSi 

fabricated was readily scaled by more than 30x (from ~13 mg to ~400 mg per run). PSi NPs were 

formed via a top-down approach, where PSi layers were either sonicated or ball milled. 

Moreover, the PSi layers were surface functionalized to demonstrate carriers with varying 

surface charge and hydrophilicities. Iron oxide NPs were synthesized by the co-precipitation 
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method, and varying NP sizes were most evident with varying Fe (III) concentration. Iron oxide 

NPs were infiltrated into the three-step gradient PSi layer with the guidance of a permanent 

magnet, but this infiltration approach yielded low efficiencies of magnetic PSi NP formation. 

Instead, the iron oxide NPs were physically mixed with APTESPSi NPs and bound to the surface 

via electrostatic interactions. This magnetic-capped PSi (APTESPSi@Fe3O4) NP system was 

fabricated with high efficiency while overcoming typical synthetic challenges associated with 

scaling up such drug delivery systems. We confirmed the electrostatic interactions between the 

APTEPSi and iron oxide NPs, and therefore developed a robust pore-block system for controlled 

drug delivery applications.  

  After successfully demonstrating the formation of magnetic-capped PSi 

(APTESPSi@Fe3O4) nanoparticles in Chapter 3, the temperature-mediated electrostatic 

degradation at physiologically relevant temperatures and magnetic heating capabilities was 

investigated in Chapter 4. The PSi NP hydrolysis rate was accelerated at temperatures slightly 

above physiological temperature (i.e. 45 °C). While some hydrolysis observed at 37 °C could 

potentially lead to premature drug release, future investigations could grow thermally 

hydrocarbonized layers before APTES modification to increase surface chemistry stability. We 

demonstrated that the APTESPSi@Fe3O4 nanocomposite does not induce any interparticle or 

secondary effects in during heat dissipation with AMF application. This observation was 

confirmed by comparing the SAR values determined directly via calorimetry experiments and 

with calculations using magnetic susceptibility, where both a nanocomposite or Fe3O4 NP system 

were considered in the calculations. Moreover, nanocomposite localization to a Petri dish end 

with a magnet was demonstrated. However, future experiments will need to better model 
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magnetic localization with the nanocomposite solution flowing through capillaries resembling 

vein dimensions (i.e. ~10 mm) at a typical blood flow rate (10 cm/s)164.  

Subsequently, the release profiles of SFN from APTESPSi@Fe3O4 at varying 

temperatures between room temperature and 50 °C revealed a temperature-dependent release 

behavior, with increasing drug release at increasing temperatures. Within 1h there was an almost 

5 times increase in the amount of SFN released when comparing dissolution studies conducted at 

37 °C and 45 °C. Furthermore, the identical burst release kinetics for SFN dissolution studies 

from APTESPSi at various temperatures confirmed that this increase in dissolution is not a result 

of increased solubility of the model drug at elevated temperatures. Therefore, the amount of drug 

released under normal physiological conditions is minimized and is accelerated upon increasing 

the system temperature. Inducing temperature changes in dissolution studies after stabilizing the 

release medium for 30 min and 1h further corroborated the nanocomposite’s ability to promote 

drug release “on-demand” with application of an external stimuli. While we previously 

demonstrated the heating capabilities of these nanocomposites with application of an AMF to 

temperatures relevant to the dissolution studies, it will be pivotal to conduct future release 

studies under AMF application rather than an external heating source to determine whether the 

same release kinetics are observed, as it is anticipated that the heat will be more localized to the 

nanocomposite rather than homogeneously spread throughout the solution183. Furthermore, for 

dissolution studies which were monitored at 37 °C before introducing temperature changes it 

would be interesting to compare observe the release kinetics when the release medium is exposed 

to heat pulses (i.e. cycling between 45 ° C and 37 °C) to determine if the amount of SFN released 

is increased in comparison to no pulse at elevated temperature.  
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 After confirming the thermoresponsive release properties of the APTESPSi@Fe3O4 

nanocomposite in Chapter 4, the biocompatibility and cellular interaction of the nanocomposite 

were studied in Chapter 5. The APTESPSi@Fe3O4 nanocomposite demonstrated high 

biocompatibility in HepG2 liver cancer cells, MDA-MB-231 triple negative breast cancer cells, 

and RAW 246.7 macrophage cells. However, the nancomposite was not biocompatible with 

MCF-7 breast cancer cells, indicating that biocompatibility is cell-line dependent. The 

nanocomposite also demonstrated high biocompatibility when incubated with HepG2, MDA-

MB-231, and RAW 246.7 cells that were heated to temperatures, times typical of promoting 

therapeutic release (45 °C, 15min) as observed in dissolution studies with SFN. For HepG2 cells, 

a decrease in the cytocompatibility was observed for the nanocomposite at 200 µg/mL, yet this 

decrease was not statistically significant. Further investigation will need to observe the 

cytocompatibility profile under application of an AMF, and how the cytocompatibility varies 

with AMF pulses. The in vitro cytocompatibility was further studied with SFN-loaded 

nanocomposites, and an increase in the anticancer activity was observed for nanocarrier 

encapsulated SFN in comparison to the free drug. Moreover, heating the cells incubated with 

SFN-loaded particles showed a further decrease in cytocompatibility which was attributed to the 

increased dissolution of SFN from the nanocarrier with increasing temperature.  

 Cellular association studies with MDA-MB-231 cells showed an overall higher uptake of 

APTESPSi nanoparticles in comparison to APTESPSi@Fe3O4. This observation was explained 

by the positive surface charge of APTESPSi that binds to the negatively charged cell membrane 

via electrostatic interactions. Increasing the cell incubation temperature to 45 °C for 15 min 

followed by 37 °C for 5h 45 min caused a slight decrease in the particle uptake by MDA-MB-

231 cells, with APTESPSi@Fe3O4 demonstrating a larger decrease in the mean fluorescence 
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intensity. However, it is possible that that the accelerated hydrolysis at 45 °C is removing the 

Alexa Fluor 488 from the PSi surface so the fluorescent tag could simply not be tracked 

anymore. Future experiments could tag the loaded (or free) drug with a fluorescent molecule 

rather than the PSi particle, as there is greater interest in observing the therapeutic uptake. 

Tagging the therapeutic with a fluorescent marker would also increase understanding of the 

anticancer activity, especially in HepG2 cells where a synergistic effect was observed for the free 

drug with heating. Moreover, it would be worthwhile to further investigate the cellular 

morphology before and after heating to determine any changes in the cellular membrane 

permeability and whether this agrees with our observation of reduced cellular association with 

temperature application. Overall, we assessed the controlled release capabilities, biocompatibility 

and anticancer activity of APTESPSi@Fe3O4 nanocomposites. These nanocomposites 

demonstrated “on-demand” drug release, high biocompatibility, and high anticancer activity 

when combined with a model drug. Thus, this nanocomposite demonstrates a promising targeted 

delivery system comprised of a formulation that overcomes the synthetic challenges typically 

associated with fabricating such drug delivery systems. This promising proof-of-concept on-

command system may be of great interest for improving the biopharmaceutical properties of 

current and emerging therapeutics. 

 After confirming the biocompatibility and thermoresponsive behavior of the 

APTESPSi@Fe3O4 nanocomposites in Chapters 4 and 5, a new thermoresponsive system was 

proposed and optimized in Chapter 6. PNIPAM is a thermally responsive polymer commonly 

used in stimuli-responsive drug delivery carrier systems, because of its phase transition near 

physiological temperature289–291. A physical encapsulation method was proposed as an 

alternative to chemically conjugating PNIPAM onto PSi NPs216,217,283. Physical encapsulation, 
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specifically nanoprecipitation, is a promising alternative because it can form stimuli-responsive 

encapsulated PSi on the order of seconds versus several days that are typical of chemical 

conjugation302,344. F-127 stabilized PNIPAM NPs with an average size of 107.8 + 18.8 nm were 

initially precipitated using the co-nonsolvency338 in a microfluidics system. The same co-

nonsolvency principle was used to encapsulate TOPSi NPs with PNIPAM, but encapsulation was 

unsuccessful because TOPSi is highly soluble in water and therefore PNIPAM self-assembly 

occurred rather than precipitation onto the dissolved TOPSi NP surface. The PSi NP surface 

hydrophilicity was modified to a with a hydrophobic surface (THCPSi) to promote the PNIPAM 

precipitation onto the NP surface. A hydrophobic surface did result in the encapsulation of 

THCPSi NPs with PNIPAM, but these particles are only stable in water-ethanol mixtures where 

the PNIPAM remains insoluble which is undesirable for drug delivery applications where 

stability in aqueous solution is required. Given the requirement for nanocarriers with aqueous 

solution stability, the amphiphilic block copolymer PS-b-PNIPAM was used in nanoprecipitation 

studies to promote encapsulation and aqueous stability by precipitating the PS-block onto the 

THCPSi NP surface. This simple and facile encapsulation technique was demonstrated in bulk 

mixing, and preliminary optimizations were conducted in a microfluidics system. Further 

characterization by TEM is required to determine whether a microfluidics fabrication approach 

yields improvements in PSi encapsulation efficiency and size distribution. Moreover, changes in 

the LCST temperature need to be determined, particularly with the presence of the PS-block. 

Moreover, drug release studies at various temperatures and cell viability studies will need to be 

compared to PSi NPs chemically conjugated with PNIPAM. Overall, nanoprecipitation has the 

potential to overcome fabrication challenges typically associated with the clinical translation of 

nanocomposites. By developing a facile, streamlined manufacturing method for targeted drug 
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delivery apparatuses, its impact on patients’ lives in the clinic can become a reality. This work 

has laid the groundwork for a promising nanocarrier completely comprised of cost-effective, 

highly scalable components with future applications in externally triggered drug delivery. Such a 

system bestows the clinician with the power to lessen the burden that millions of cancer patients 

face as they receive treatment; for it is the patient quality of life and treatment outcomes that 

drives these innovations. 
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