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METHODOLOGY ARTICLE Open Access

Enumerating the gene sets in breast cancer, a
“direct” alternative to hierarchical clustering
Dwain Mefford*, Joel A Mefford

Abstract

Background: Two-way hierarchical clustering, with results visualized as heatmaps, has served as the method of
choice for exploring structure in large matrices of expression data since the advent of microarrays. While it has
delivered important insights, including a typology of breast cancer subtypes, it suffers from instability in the face of
gene or sample selection, and an inability to detect small sets that may be dominated by larger sets such as the
estrogen-related genes in breast cancer. The rank-based partitioning algorithm introduced in this paper addresses
several of these limitations. It delivers results comparable to two-way hierarchical clustering, and much more.
Applied systematically across a range of parameter settings, it enumerates all the partition-inducing gene sets in a
matrix of expression values.

Results: Applied to four large breast cancer datasets, this alternative exploratory method detects more than thirty
sets of co-regulated genes, many of which are conserved across experiments and across platforms. Many of these
sets are readily identified in biological terms, e.g., “estrogen”, “erbb2”, and 8p11-12, and several are clinically
significant as prognostic of either increased survival (“adipose”, “stromal”...) or diminished survival (”proliferation”,
“immune/interferon”, “histone”,...). Of special interest are the sets that effectively factor “immune response” and
“stromal signalling”.

Conclusion: The gene sets induced by the enumeration include many of the sets reported in the literature. In this
regard these inventories confirm and consolidate findings from microarray-based work on breast cancer over the
last decade. But, the enumerations also identify gene sets that have not been studied as of yet, some of which are
prognostic of survival. The sets induced are robust, biologically meaningful, and serve to reveal a finer structure in
existing breast cancer microarrays.

Background
Detecting genes-by-samples patterns in expression data
After removing genes that exhibit little variance, the
standard script for exploring microarray data applies
two-way hierarchical clustering (HC), followed by a
visual search for patterns displayed in a red-green heat-
map [1,2]. For breast cancer in particular, this procedure
has proven immensely productive. It can be credited
with the discovery[3] (or rediscovery) [4] of the basal
subtype, and, more broadly the identification of subtypes
of breast cancer that hold out the potential to inform
clinical practice [3,5-8]
Despite its utility, the standard script suffers from sev-

eral limitations, in particular the instability of the binary

tree of the clusters found [9]. Perturbation and re-sam-
pling techniques are available to gauge the robustness of
the clusters defined by subtrees [10,11]. But, small
changes in the selection of genes or choice of samples
can result in disconcertingly large changes in the overall
configuration of the tree, which calls into question any
typology defined on such tree-based partitions [12].
A different problem stems from the disproportionate

impact of large, tightly coordinated clusters on the over-
all arrangement of the tree[13]. Because the largest gene
sets, for example estrogen or immune response, will
dominate the branching of the tree, smaller sets may be
broken up and redistributed. The problem of large
dense sets of genes occluding smaller sets arises in the
simple or one-way application of HC; it is compounded
when two trees are visually crossed in the two-way HC
used in the standard script. The question then becomes
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one of what can be faithfully represented in the two-
dimensional arrangement. The brief answer, as spelled
out by Hartigan in the context of “direct” clustering, is
that clusters jointly defined by two trees can be
rendered as contiguous regions only if they are either
disjoint or nested [14,15].
An alternative to two-way hierarchical clustering,

biclustering, seeks to find submatrices in the array of
expression values that satisfy some defining criteria.
Essential to biclustering is the notion that, given a
matrix of expression values, the pattern of coordinated
expression for a group of genes may be confined to only
a subset of samples. That is, the pattern is “local”, and
may not be detectable using a “global” measure of the
similarity between pairs of genes, e.g., Pearson correla-
tion coefficient computed on vectors of expression
values [16-18]. Motivated by this concern with detecting
“local” structure, several algorithms for detecting biclus-
ters have been advanced. For surveys, see [19,20].
Because of the computational complexity inherent in
the biclustering problem, which is provably NP-hard
under several formal descriptions[16,18,21], these pro-
grams abandon exhaustive search and either resort to
heuristics or impose bounds on the size of the genes-by-
samples submatrices that can be recovered. The method
applied in this paper reframes the biclustering problem
such that an exhaustive enumeration of all of the sub-
matrices that meet a certain definition can be achieved.
Included in the resulting inventory are not only such
familiar sets as “estrogen” and “erbb2/17q12”, but addi-
tional sets highly prognostic of survival. Some of these
newly defined sets may serve alongside “estrogen” etc.,
as building blocks for future models and classifiers of
breast cancer.

Methods
Defining gene patterns by partitions on samples
HC is an agglomerative method that recursively joins
sets of genes or, separately, sets of samples [22]. The
starting point is the notion that similar genes are
assigned to the same set (subtree) using a measure of
similarity such as correlation[23]. A wholly different
approach can be predicated on the notion that two

genes belong to the same set provided that they induce
the same partition on the set of samples. As an example,
the erbb2/17q12 gene set in Figure 1 appears to satisfy
such a requirement. Here the samples have been
ordered by column sum. It is apparent that the largest
(reddest) values of each of these six genes align to a
considerable degree. That is, they indicate, or select for,
much the same subset of columns (samples). While the
notion of genes inducing partitions like this may be
intuitive, rendering the notion such that it can be imple-
mented in a search algorithm requires further specifying
what constitutes an admissible partition. Crucially
important is the partition’s size and the degree to which
the samples induced by any two genes must align for
the partition to be considered the “same”. These two
parameters (partition “size” and set difference or “toler-
ance”) control a matching rule that can serve to expli-
citly define what is meant by “gene set”.

Setting up the enumeration
The two parameters that define what counts as the
“same partition” suggest a partition-based strategy for
finding all sets of genes (all red submatrices) in a matrix
of expression values, namely, try all combinations of size
and tolerance. Because this collects all the genes-by-
samples patterns, it constitutes an enumeration.
Since the size and quality of the partitions to be dis-

covered are not known in advance (the procedure is
wholly unsupervised), to enumerate all of the partitions
in a dataset, and the genes that support them, requires
trying all combinations of size and tolerance. This sets
up a two dimensional grid search with partition size (s)
and tolerance (t) as dimensions. Given the number of
samples (n), and the number of draws, that is genes,
bounds can be set for the parameters (s) and (t) by com-
puting p-values with a counting rule (equivalent to the
tail of the hypergeometric distribution).
Though the rule for bounding t works well enough

with smaller datasets, we find that with data sets of the
size of the NKI295[24], these p-values are so impossibly
small that they provide little guidance in controlling t.
An alternative strategy relies on a heuristic suggested by
results of an initial spiral search in which s and t are

Figure 1 erbb2/17q12 gene set as detected in the Uppsala data set. Expression values are mapped to a red-green continuum. Columns are
ordered by column sum.
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stepped in large increments until gene sets are found, at
which point s and t, are incremented, separately, and in
small steps. This preliminary scan of the four datasets
finds:

1) For most partition sizes s, small (stringent) values
of t fail to detect any gene sets at all, while large
t settings yield a single set composed of most, if not
all of the genes. Between these two extremes, for
any given s, there is a relatively narrow range of
t that returns multiple distinct gene sets.
2) In size and composition, these sets vary smoothly
as s and t are stepped.
3) The number of unique components (gene sets) is
surprisingly small, for example, between thirty and
forty in the NKI295 data.

In light of these observations from the spiral searches,
rather than bounding t by a combinatorial counting
rule, we choose to set t such that specific gene sets
remain distinct. In the enumerations reported in this
paper, the set we wish to preserve consists of interferon
genes, a clinically significant set that the initial spiral
search encountered repeatedly. The resulting “stop rule”
says, in effect, that for each partition size, which ranges
from a small constant (6 or 10), to n minus that same
constant, increment t, starting at 0 (perfect match) until
the interferon set disappears as a distinct object as it
merges with other immune sets. The motivation for
devising this stop rule will be developed further in the
context of the gene sets that decompose “immune
response”.
As the algorithm steps through its search it typically

finds multiple versions of the same set, which may differ
only marginally in the number and composition of the
genes. This means that rather than a single list of genes,
a “gene set” in fact refers to a set of sets, like those
listed for the ERBB2 set in Table 1. Each column in that
table catalogues the genes found for the erbb2/17q12
gene set in the Uppsala data as detected at ten combina-
tions of the “size” and “tolerance” parameters. The list of
genes in each column is like a snapshot of the same
object in gene space, viewed at a slightly different
resolution.
It is important to note that the end product of the

enumeration is both the list of genes in each set and the
partition induced on the samples by that set. While the
number of genes in the sets can vary from six (the
lower bound) to as many as 600 (as in the case of the
proliferation gene set), regardless of the number of
genes in the set there can be only one partitioning pat-
tern per gene set. It is in this context that the issue of
genes with multiple probe sets can be addressed. As
would be expected, multiple probe sets spotted for the

same gene will, to the extent that they induce the same
partition on the samples, be assigned to the same gene
set by the algorithm. A case in point is the small stro-
mal gene set in Figure 2 which consists principally of
decorin (DCN) and fibulin 1 (FBLN1). Decorin is
spotted four times on the Affymetrix HG-U133a and
the algorithm finds that all four decorin probe sets
induce the same partition pattern on the 251 samples in
the Miller dataset [25]. That same pattern is also
induced by two copies of FBLN1, as well as by single
instances of GLT8D2, CTSK, PRRX1, and SPON1, and
several ESTs. All in all, in the Miller data, this partition-
ing pattern is found at five combinations of s and t set-
tings. For the purpose of making the survival analysis
manageable, we summarize (squash) these five versions
of this gene set into one composed of those probe sets
that appear in at least half of the original versions. The
result is the set pictured in the heatmap in the figure, to
which metastasis events have been attached. As
described more fully in the Results section, the c2 for a
partition at the median value of a vector of column
sums is 7.62 (p = 0.005). The c2 for first versus last
quartile is 15.62 (p = 0.00007). Since each of the genes
in a gene set realize the same partitioning pattern, the
end result, in terms of partitioning and survival analysis
would be virtually the same if the four decorin probe
sets were replaced by any one (or if the four were aver-
aged). This issue of multiple probe sets for the same
gene does become a problem for the detection of the
smallest gene sets in the case in which the partitioning
pattern is realized exclusively in probe sets all of which
spot the same gene. This occurs occasionally in the
Affymetrix data, and we consider these instances to be
artefacts of the chip design.

Detecting patterns that were heretofor undetectable
The virtues of HC and the standard script include the
fact that it is intuitive, simple to implement, and effec-
tive (at least in finding the largest and most prominent
genes-by-samples patterns). Moreover, the software that
implements this method of discovery is free and well
maintained [26,27], and the output is not only imma-
nently useful, but a thing of beauty. Replacing this stan-
dard script requires both a conceptual shift and
considerable computational apparatus. For these rea-
sons, such a switch can only be justified if the alterna-
tive not only reproduces the standard results, but
significantly extends those results. That is, it must find
additional patterns that are biologically meaningful and
clinically significant. To show that this is in fact the case
we enumerate the gene sets in four well-studied breast
cancer microarray data sets listed in Table 2. We refer
to these as: Uppsala, Stockholm, TRANSBIG, and NKI
data sets. Three of these use Affymetrix U133a chips, a
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platform that has attained the status of an industry stan-
dard, and has been used perhaps in more studies than
any other microarray platform. To identify gene sets
conserved across platforms, we add the fourth data set,
generated by the Nederlands Kanker Instituut (NKI),
which used a custom Agilent chip. The Uppsala and
Stockholm cohorts [25,28] are population studies (con-
secutively presented primary breast cancers). The
TRANSBIG dataset is a validation series for a gene-
based classifier [29] and, accordingly, consists of
younger (median age 47) node-negative patients [30].
The NKI data was collected in conjunction with a sec-
ond classifier [24], and consists of younger patients,
both node-positive and node-negative. For purpose of
survival analysis in this paper, the end point for the
Uppsala data is Breast Cancer Specific Survival (BCSS);
the end points in the other three data sets are Distant
Metastasis Free Survival (DMFS). The datasets were
selected, in the first instance, because of the quality of
the data, both expression and accompanying clinical
data. But they were also chosen to set up explicit com-
parisons between the gene sets detected by the

enumerations in this paper and gene clusters and signa-
tures induced on the same data by other methods and
programs.
Data sets were downloaded from the GEO website

[31], or, in the case of the NKI data, from the Stanford
website [32] that accompanies [33,34]. Missing values
were estimated using k Nearest Neighbours, (k = 10)
[35]. Because the algorithm takes the full expression
matrix as input, e.g., in the case of the Uppsala data, a
matrix of size 22,283 × 251, there is no prior filtering/
selection of genes.

Results
In each of four breast cancer datasets in Table 2, the
rank-based bi-clustering algorithm finds between thirty
and forty sets of genes. Many of these sets are conserved
across the four studies despite differences in platform:
Affymetrix U133a (Uppsala, Stockholm, TRANSBIG),
and custom Agilent (NKI). Several of the largest and
most prominent of the sets closely resemble gene clus-
ters reported many times in microarray studies of breast
cancer. These include “estrogen”, “proliferation”, ERBB2,

Table 1 Instances of the erbb2/17q12 gene set detected in the Uppsala data

Table 2 erbb2/17q12 gene set Uppsala data, source = Miller 2005.

21t4 23t4 25t5 26t5 27t5 29t6 31t6 32t5 33t6 34t6

ERRB2 ERRB2 ERRB2 ERRB2 ERRB2 ERRB2 ERRB2 ERRB2

ERRB2 ERRB2 ERRB2 ERRB2 ERRB2 ERRB2 ERRB2 ERRB2 ERRB2 ERRB2

GRB7 GRB7 GRB7 GRB7 GRB7 GRB7 GRB7 GRB7 GRB7 GRB7

PERLD1 PERLD1 PERLD1 PERLD1 PERLD1 PERLD1 PERLD1 PERLD1 PERLD1 PERLD1

PERLD1 PERLD1 PERLD1 PERLD1 PERLD1 PERLD1 PERLD1 PERLD1 PERLD1 PERLD1

STARD3 STARD3 STARD3 STARD3 STARD3 STARD3 STARD3 STARD3 STARD3 STARD3

CRKRS CRKRS CRKRS CRKRS CRKRS CRKRS CRKRS

PPARBF PPARBF PPARBF PPARBF PPARBF PPARBF PPARBF

PPARBF PPARBF PPARBF PPARBF

RPL19 RPL19 RPL19

CASC3

PSMD3

THRAP4

GSDML

GSDML

The partition size (s) and tolerance (t) are listed at the head of each column. The first instance of this gene set is detected at s = 21, t = 4. As s and t are
stepped, the number of erbb2/17q12 genes increases from size to a maximum of 15, at s = 29, t = 6. From that point the number of genes decreases.

Figure 2 The survival results for the stromal(5)decorin gene set in the Uppsala cohort. Columns are ordered by column sum, and
recurrence events have been added.
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and “adipose” [1,2,9,36-38]. Other sets, a number of
which are relatively small (e.g., 6 to 12 genes), appear to
be novel. These include “histone”, “hemoglobin” “ampli-
con 8p11-12”. Overall, nearly a third of the gene sets
detected are clinically significant as measured by asso-
ciation with survival, and some are very significant with
a log-rank c2 values exceeding 20 (on one degree of
freedom).
For purpose of presentation, in the course of enumer-

ating the gene sets in each of the four data sets, we pro-
ceed in three steps. The gene sets detected in each of
the three Affymetrix data sets are first tabulated sepa-
rately. This is followed by a comparison of these sets to
identify gene sets conserved on the Affymetrix U133a
platform. This, then, is followed by an enumeration of
the gene sets in the NKI295 data set which uses a cus-
tom Agilent chip. These sets are then compared to the
Affymetrix sets for the purpose of identifying gene sets
conserved across the two platforms.
Regarding the clinical significance of the gene sets,

since a gene set, in general, is detected multiple times
(resulting in multiple gene lists), the survival analysis of
a gene set would yield multiple log-rank values. To sim-
plify the analysis we have replaced these multiple ver-
sions of each set with a “core” set comprised of those
genes that appear in at least half of the instances
detected. Five log-rank c2 values are reported for each
core gene set. The first reflects all the samples in a data
set partitioned at the median value of the column sums
of the genes in the set. The second partitions all samples
by lowest and highest quartiles. The third restricts the
samples to those which are ER positive, and partitions
at the median. The fourth also restricts the samples to
ER positive, partitioning by quartiles. The fifth restricts
the samples to ER negative, partitioned at the median.
Because of small class size, the ER negative samples are
not partitioned by first and last quartile.

Dataset 1: Uppsala cohort (Miller 2005)
Table 3 reports the survival analysis for the 35 gene sets
induced in the Uppsala data. The rows have been
arranged with gene sets associated with increased breast
cancer specific survival are at the top, and the sets prog-
nostic of diminished survival are at the bottom. A list of
the genes in the top ten sets and bottom seven sets are
provided in Additional File 1. A complete list of genes

for all 35 sets is available in Additional File 2. The most
striking result is the large, positive significance of the
four stromal sets, which are discussed in a later section.
Also predictive of increased survival are two immune
sets, and estrogen and adipose, as might be expected.
The proliferation set is strongly prognostic of recur-

rence in the Uppsala data, as it is in the other three
data sets, which accords with a number of microarray-
based studies of breast cancer [39,40]. Other sets
strongly prognostic of recurrence are the histones, the
metallothioneins/16q13, as well as GAPDH, CD24,
AFFX-M27830_5, and GNAS. The histone set includes
HIST1H2BF HIST1H2BE HIST1H2BH H2BFS
HIST1H2BK HIST1H2BD, while the metallothioneins
gene set consists of seven, or perhaps eight, isoforms
and two ESTs: MT1E, MT1F, MT1G, MT1 H, MT1M,
MT1X, MT2A, LOC645745. Up-regulation of MT2A,
the most abundant of these, is associated with more
aggressive breast cancer and poor prognosis [41], and it
is reported that the over-expression of metallothioneins
predicts resistance to doxorubicin [42].
GNAS is located on the long arm of chromosome 20

at 20q13.3, lying just outside the interval of the 20q13
amplicon investigated by Ginestier et al.[43], but falling
within one of the two 20q13 amplicons analyzed by Yao
et al [44]. It is reported that increased copy numbers for
20q13 amplicon genes occur in 12% of primary breast
tumors, and are associated with more aggressive disease
[45].
GAPDH is often used as a housekeeping gene [46].

For example it is one of the five genes used to normal-
ize recurrence score in OncogeneDX [47,48]. But,
GAPDH is reported to be up-regulated in some cancers,
e.g., by a factor of 3 to 6 in non small cell lung cancer
compared to normal lung tissue [49]. In a study of
GAPDH expression in breast cancer, Revillion et al.,[50]
conclude with the warning that it should not be used as
a control RNA. Valenti et al reach a similar conclusion
[51]. The fact that the GAPDH partitions the Uppsala
samples into good and poor prognostic groups is added
evidence that it is not only unsuitable for scaling expres-
sion values, but may in fact be a candidate oncogene.

Data set 2: Stockholm cohort (Pawitan 2005)
Similar to the results for the Uppsala data, for the
Stockholm cohort three stromal gene sets are strongly

Table 2 Data sets

dataset source n survival endpoint median/average follow-up reference

Uppsala GSE3494 251 BCSS 10.2 years Miller 2005

Stockholm GSE1456 159 DMFS 6.1 years Pawitan 2005

TRANSBIG GSE7390 198 DMFS 13.6 years Desmedt 2007

NKI Chang 295 DMFS 6.7 years VandeVijver 2002

Mefford and Mefford BMC Genomics 2010, 11:482
http://www.biomedcentral.com/1471-2164/11/482

Page 5 of 18



associated with increased survival as reported in Table 4.
Also, again, the adipose set proves significant. In addi-
tion, among the sets associated with increased survival
is a hemoglobin set consisting of: HBH1, HBB, HBA1,
HBB, HBA1, HBA2, HBA2, HBB, HBA2, HBG1 (where
the order of the genes reflect the row order of the probe
sets on the Affymetrix U133a). A complete list of the
genes in all 31 gene sets for the Stockholm cohort is
available in Additional File 3. Though ER and PR status
are reported in the aggregate in the original article[52],
ER status was not available for this data set.

Consequently the log-rank values tabulated in Table 4
represent all 159 samples partitioned at the median, and
by first and last quartiles. Among the sets significantly
associated with decreased survival, as in the Uppsala
data, proliferation is most prominent. Also, again, the
histone set, CD24, and GAPDH figure among the sets
associated with recurrence. In addition, among the gene
sets that have a negative impact on survival in this data
set include ACTG1, a ribosomal set, and a set we have
labelled ezrin, because it includes the gene VIL2. Ezrin
expression is associated with metastasis in a number of

Table 3 Gene sets and survival results for the Uppsala data

all samples ER positive ER negative

median quartiles median quartiles median

c2 p c2 p c2 p c2 p c2 p

stromal(0) 6.51 0.01 6.54 0.01 4.07 0.04 5.3 0.02 3.95 0.04

stromal(2) 13.94 0.0001 10.76 0.001 10.17 0.001 10.74 0.001 1.16 0.28

stromal(3) 6.43 0.01 8.05 0.004 7.59 0.005 7.72 0.005 4.32 0.03

stromal(5) 7.62 0.005 15.62 7E-05 6.66 0.009 12.4 0.0004 3.22 0.07

adipose 6.96 0.008 12.72 0.0003 5 0.02 8.96 0.002 0.99 0.31

immune(5) 4.48 0.034 5.06 0.02 2.84 0.09 2.95 0.08 2.64 0.1

immune(6) 9.63 0.001 7.19 0.007 5.78 0.01 4.29 0.03 3.41 0.06

immune(0) 1.85 0.17 0.07 0.79 0.9 0.34 0.02 0.89 4.26 0.03

TPSAB1 2.92 0.08 4.44 0.03 5.39 0.02 2.81 0.09 0.95 0.32

estrogen 4.36 0.03 0.65 0.42 2.36 0.12 1.15 0.28 0.5 0.48

AFFX-BioC-5 0 0.95 0.4 0.52 0.16 0.68 0.49 0.48 0.59 0.44

ACTG1 0.12 0.72 0 0.96 0.7 0.4 0.06 0.8 0.74 0.38

basal 0.94 0.33 1.13 0.28 0.98 0.32 2.32 0.12 0.37 0.54

ERBB2 2.83 0.09 3 0.08 2.27 0.13 2.4 0.12 0 0.97

GGT1 0 0.99 0 0.96 0.05 0.81 0.1 0.74 0 0.99

hemoglobin 0.03 0.86 0.06 0.81 0.32 0.56 0.55 0.45 0 0.94

immune(1) 1.54 0.21 0.05 0.82 1.07 0.3 0.38 0.53 3.32 0.06

immune(2) 0.06 0.8 0.44 0.5 0.18 0.67 0.24 0.62 0.46 0.49

immune(3) 1.71 0.19 1.98 0.15 1.61 0.2 1.26 0.26 1.15 0.28

immune(4) 2.21 0.13 0.68 0.4 1.76 0.18 1.27 0.25 0 0.99

immune(7) 0.5 0.47 0.1 0.74 0.93 0.33 0.01 0.93 0.79 0.37

LST1 3.25 0.07 0.82 0.36 1.69 0.19 0.25 0.61 1.04 0.3

NFIB 0.55 0.45 0.03 0.85 0.02 0.87 0.01 0.91 0.22 0.63

PPP1R12A 0.01 0.94 1.19 0.27 0 0.95 1.34 0.24 0.08 0.77

ribosomal(0) 0.35 0.55 1.7 0.19 0.36 0.55 0.53 0.46 0 0.96

ribosomal(1) 0.63 0.42 0.07 0.79 0.14 0.7 0.03 0.87 0.03 0.86

ribosomal(5) 0.19 0.66 0.51 0.47 0.22 0.64 0.12 0.73 0.97 0.32

UBE2D2 0 0.99 0.43 0.51 0 0.99 0.78 0.37 0.13 0.72

histone 4.65 0.03 0.78 0.37 3.44 0.06 1.22 0.27 3.11 0.07

GAPDH 3.07 0.07 4.73 0.02 2.35 0.12 2.09 0.14 3.7 0.05

CD24 0.45 0.5 5.25 0.02 0.82 0.36 4.47 0.03 0.51 0.47

AFFX-M27830_5 1.68 0.19 4.3 0.03 1.72 0.19 6.27 0.01 0.01 0.92

GNAS 3.34 0.06 6.15 0.01 2.07 0.15 3.04 0.08 1.36 0.24

16q13 2.58 0.1 5.33 0.02 2.49 0.11 8.07 0.0004 2.4 0.12

proliferation 10.36 0.001 14.59 0.0001 6.78 0.009 13.22 0.0002 0.71 0.39
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cancers [53-55]. In a murine cell line Elliot et al show
that ezrin is required for metastasis [56], and Li et al
demonstrated that ezrin silencing reverses cell migration
and invasion in a metastatic breast cancer cell line [57].
With regard to survival in breast cancer, Bruce et al
report that ezrin expression is associated with poor out-
come [58]. The ezrin gene set also contains ARF1,
which is reported to modulate migration and prolifera-
tion in breast cancer cell lines via the regulation of the
PI3K pathway [59].

Data set 3: TRANSBIG (Desmedt 2007)
While the TRANSBIG data employs the same Affyme-
trix platform as the Uppsala and Stockholm datasets, it

differs in terms of sample selection. The first two data
sets are population-based, while this data set, as a vali-
dation series, reflects the sampling criteria used in the
development of Wang et al.’s 76-gene classifier [29]. As
a consequence, patients were younger (less than 61
years of age, with a median age of 47), node-negative,
with smaller tumour grade (T1-T2, less than 5 cm).
Despite these differences, as is apparent in Table 5, the
gene sets detected are largely the same as those found
in the Uppsula and Stockholm cohorts. A complete list
of the genes in each of the 37 sets discovered in the
TRANSBIG data are available in Additional File 4. As in
the previous two data sets, stromal(2) is associated with
increased survival. Distinctive of this third data set are
the three ribosomal sets associated with survival, a rela-
tionship which for two of the sets (ribosomal(0) and
ribosomal(3)) is particularly strong for ER positive
samples.
With regard to gene sets prognostic of decreased sur-

vival, again, as with the Uppsala and Stockholm cohorts,
histone and proliferation figure prominently, as do the
metallothioneins. Also among the sets associated with
decreased survival are the basal set and NKTR.

Comparing gene sets across the three Affymetrix U133a
data sets
Factors that impact the ability of the algorithm to detect
sets that induce a common partition include the design
of the microarray platform. Some genes, for example
CD24 or LST1, are rendered by multiple probe sets. To
the extent that they take similar expression values for
the same samples, the algorithm will identify them as a
(small) gene set in their own right. That is, all gene sets
that satisfy the matching criteria are reported in the
enumeration, including several as small as six genes in
size. While some of these will prove to be artefacts of
chip design, others may prove to be significant, for
example the eight-gene 8p11-12 gene set detected in the
NKI data. A virtue of the method over HC is this capa-
city to find even the smallest sets that induce important
patterns on the samples.
Table 6 juxtaposes the sets found in each of the three

Affymetrix data sets (Uppsala, Stockholm, and TRANS-
BIG). As apparent from the table, there is a remarkable
concordance: to a considerable extent the same thirty,
or so, sets are extracted from independently assembled
matrices of expression values, each of which is com-
prised of as many as five million real numbers.

Data set 4: NKI 2002
Of the 35 gene sets discovered in the enumeration of
the NKI295, available in Additional File 5, eight are sig-
nificantly associated with increased survival. Of these,
the two largest (in terms of number of genes) are the

Table 4 Gene sets and survival results for the Stockholm
data

all 159 samples

median quartiles

c2 p c2 p

stromal(2) 20.01 0.000007 11.64 0.0006

stromal(3) 13.52 0.0002 11.58 0.0006

stromal(5) 13.79 0.0002 12.72 0.0003

adipose 4.66 0.03 4.13 0.04

hemoglobin 3.33 0.06 4.4 0.03

16q13 2.62 0 2.12 0.14

AFFX-BioC-5 0.03 0.86 0.26 0.6

AFFX-M27830_5 0.15 0.69 2.09 0.14

basal 3.42 0.06 1.14 0.28

estrogen 0.02 0.88 0.98 0.32

GGT1 1.61 0.2 0.76 0.38

stromal(0) 2.49 0.11 2.35 0.12

stromal(1) 0.98 0.32 0.08 0.78

immune(0) 0.13 0.72 0.1 0.75

immune(1) 0 0.96 0.35 0.55

immune(2) 1.1 0.29 1.11 0.29

immune(5) 1.25 0.26 0 0.96

LST1 0.43 0.51 0.02 0.88

OPHN1 0.04 0.84 0.02 0.89

PPP1R12A 2.16 0.14 3.11 0.07

ribosomal(0) 0.72 0.39 0.63 0.42

TPSAB1 0.22 0.64 0.49 0.48

UBE2D2 0 0.99 1.9 0.16

immune(4) 3.36 0.06 3.67 0.05

ezrin 3.35 0.06 3.7 0.05

ACTG1 3.85 0.04 1.65 0.19

ribosomal(1) 3.64 0.05 5.45 0.19

histone 6.76 0.009 5.98 0.01

CD24 2.7 0.1 8.9 0.002

GAPDH 10.96 0.0009 8.76 0.003

proliferation 19.88 0.000008 13.09 0.0002
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estrogen set, well-documented in microarray-based stu-
dies of breast cancer [60], and a second set that we have
labelled “FOXA1”. These sets are disjoint except for the
pivotal FOXA1 (HNF3A) gene which appears in both,
and which is represented by two probes on the custom
Agilent chip used in the NKI data. While the estrogen
and FOXA1 gene sets are both significantly associated
with increased survival, the two sets induce substantially

different partitions on the 295 tumor samples, possibly
suggesting different positive mechanisms at work.
The gene FOXA1 is known to correlate strongly with

estrogen receptor alpha [61-63], and the mechanism
that accounts for this association has been established,
namely, ER binding requires FOXA1 binding in close
proximity [64,65]. But, it has also been shown that
FOXA1 expression is largely independent of estrogen

Table 5 Gene sets and survival results for the TRANSBIG data

all 198 samples ER positive ER negative

median quartiles median quartiles median

c2 p c2 p c2 p c2 p c2 p

ribosomal(0) 4.04 0.04 8.21 0.004 9.07 0.002 10.38 0.001 0.06 0.8

ribosomal(3) 3.38 0.06 5.51 0.01 8.93 0.002 12.91 0.0003 0.46 0.49

ribosomal(4) 1.94 0.16 4.08 0.04 3.18 0.07 3.67 0.05 0.02 0.88

stromal(2) 3.57 0.05 1.54 0.21 2.45 0.11 0.44 0.5 0.22 0.63

AFFX-BioC-5 1.64 0.2 0.47 0.49 3.56 0.05 0.1 0.75 2.75 0.09

adipose 1.67 0.19 1.1 0.29 3.31 0.06 1.17 0.27 0 0.96

ACTG1 2.53 0.11 0.43 0.51 0.31 0.57 0 0.98 0.49 0.48

CD24 0.17 0.67 2.84 0.09 0.45 0.5 0.81 0.36 0.13 0.72

CD44 0.31 0.57 0.05 0.81 0.41 0.52 0.05 0.86 0.01 0.92

CFLAR 1.66 0.19 0 0.99 0.82 0.36 2.84 0.09 1.04 0.3

ERBB2 0.75 0.38 0.01 0.93 0.94 0.33 2.75 0.09 0.77 0.38

estrogen 0.24 0.62 0.57 0.44 0.28 0.59 2.11 0.14 0.54 0.46

FOXA1 1.1 0.29 0.27 0.6 0.29 0.58 0.19 0.66 0.58 0.44

GAPDH 0.35 0.55 2.03 0.15 2.05 0.15 0.18 0.67 0.01 0.9

GGT1 0.87 0.35 0 0.99 0.03 0.86 0.04 0.84 1.52 0.21

hemoglobin 0.24 0.62 0.53 0.46 0.31 0.57 0.11 0.73 0.74 0.38

immune(0) 0.05 0.81 0.57 0.44 0.22 0.64 0 0.96 1.35 0.24

immune(1) 1.01 0.31 0.56 0.45 0.87 0.34 0.94 0.33 2.2 0.13

immune(2) 0.31 0.57 0.17 0.68 0.49 0.48 0.1 0.74 0.01 0.94

immune(4) 0.04 0.83 0.01 0.92 0.05 0.81 0 0.98 2.11 0.14

immune(5) 1.26 0.26 0.04 0.84 0.68 0.4 1.27 0.26 0.23 0.63

immune(6) 0.08 0.77 0.1 0.75 0.19 0.66 0.67 0.41 0.97 0.32

immune(10) 1.81 0.17 0.47 0.49 1.71 0.19 1.97 0.16 0.97 0.32

myo 0.22 0.63 0.39 0.53 0.11 0.73 0 0.94 3.01 0.08

NFIB 0.56 0.45 0.12 0.73 0.41 0.52 2.12 0.14 0 0.98

PPP1R12A 1.47 0.22 0.26 0.61 0.51 0.47 1.26 0.26 0.63 0.42

SMARCA4 0.08 0.77 0.43 0.51 1.04 0.3 2.79 0.09 1.99 0.15

stromal(0) 0.29 0.59 2.37 0.12 0.41 0.52 1.6 0.2 0.01 0.92

stromal(1) 2.51 0.11 1.46 0.22 2.21 0.13 0.08 0.77 2.36 0.12

stromal(5) 0.58 0.44 0.25 0.61 0.03 0.85 0.8 0.37 1.69 0.19

TCF4 0.87 0.35 0.13 0.71 0.94 0.33 0.55 0.45 0.92 0.33

TPSAB1 0.21 0.64 0.03 0.86 0.23 0.63 0.29 0.59 0.03 0.86

UBE2D2 0.05 0.81 0 0.95 1.07 0.3 2.82 0.09 0.42 0.51

basal 0.13 0.71 2.48 0.11 4.52 0.03 2.32 0.12 0.35 0.55

histone 1.54 0.21 4.04 0.04 0.26 0.61 2.21 0.13 0.33 0.56

NKTR 1.29 0.25 0.03 0.85 4.41 0.03 1.55 0.21 1.54 0.21

16q13 0.86 0.35 0.23 0.63 0.4 0.52 0.27 0.6 5.28 0.02

proliferation 5.27 0.02 3.69 0.05 9.36 0.002 5.8 0.01 3.89 0.04
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receptor status. A substantial proportion of ER-negative
tumors express FOXA1 [66], while, in one study, more
than 40% of ER-positive tumors were down-regulated
for FOXA1 [67]. Additional support for the notion that
FOXA1 is independent of ER, is the fact that most of
the known FOXA1-response genes are not ERa-response
genes [67,68]. So, paradoxically, it would appear that
FOXA1 is both correlated and uncorrelated with ER.
The estrogen and FOXA1 sets detected in the enumera-
tion, support both propositions. It should be noted that
at least two other genes in the FOXA1 set, TLOC1 and
SDCCAG1, are reported to act as tumor suppressors in
their own right [69,70].
Two stromal sets, described in the next section, are

shown in Table 7 to be associated with increased
survival.
The genes in the 8p11-12 gene set essentially tile a

region of 8p11-12 amplicon between 37 M and 38.5 M.
The set largely agrees with the amplicon as refined by
Haverty et al. [71]. Seven of the eight genes map to one
of the four 8p11-12 sub-amplicons that Gelsi-Boyer et al
identified using array-CGH and Reyal et al.’s method for
correlating genes within 20-gene windows [72,73]. Stu-
dies have found that the expression of each of these
genes is significantly correlated with copy number
[74,75].
It is interesting to observe that immune sets are asso-

ciated with survival both positively (immune(0)T-cell
and immune(1)IgG) and negatively (immune(2)MHC-I
and immune(3)interferon). As with the three Affymetrix
data sets, the histone and proliferation gene sets are
strongly prognostic of poor outcome in the NKI data.
Two histone sets, H2B_histone and H3_histone are
detected in this data set, but it is only the H2B, which
corresponds to the histone set in the Affymetrix data,
that is significant.

Gene sets conserved across the Agilent and Affymetrix
platforms
Figure 3 attempts to present an overview of all the sets
induced across all four data sets. The inner box contains
the sets found in two or more of the data sets; the outer
box lists sets unique to individual data sets. Sets signifi-
cantly associated with increased survival are marked in
green; sets associated with decreased survival are
marked in red. It is apparent that the proliferation and
histone sets are robust indicators of poor prognosis,
while several of the stromal and ribosomal sets are asso-
ciated with better outcomes, possibly conferring some
form of protection against recurrence. The immune sets
are a mixed bag, pointing in both directions.

Table 6 Gene sets detected in the three Affymetrix
U133a data sets

Uppsala TRANSBIG Stockholm

adipose adipose adipose

basal basal basal

estrogen estrogen estrogen

proliferation proliferation proliferation

erbb2 erbb2

immune(0) immune(0) immune(0)

immune(1) immune(1) immune(1)

immune(2) immune(2) immune(2)

immune(3)

immune(4) immune(4) immune(4)

immune(5) immune(5) immune(5)

immune(6) immune(6)

immune(7)

immune(10)

stromal(0) stromal(0) stromal(0)

stromal(1) stromal(1)

stromal(2) stromal(2) stromal(2)

stromal(3) stromal(3)

stromal(5) stromal(5) stromal(5)

ribosomal(0) ribosomal(0) ribosomal(0)

ribosomal(1) ribosomal(1)

ribosomal(3)

ribosomal(4)

ribosomal(5)

metallothioneins metallothioneins metallothioneins

ACTG1 ACTG1 ACTG1

AFFX-BioC-5_at AFFX-BioC-5_at AFFX-BioC-5_at

CD24 CD24 CD24

CD44

GAPDH GAPDH GAPDH

GGT1 GGT1 GGT1

hemoglobin hemoglobin hemoglobin

histone histone histone

PPP1R12A PPP1R12A PPP1R12A

TPSAB1 TPSAB1 TPSAB1

UBE2D2 UBE2D2 UBE2D2

NFIB NFIB

AFFX-M27830_5 AFFX-M27830_5

LST1 LST1

GNAS

NKTR

FOXA1

myo

CFLAR

SMARCA4

TCF4

ezrin

OPHN1
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Discussion
While the tables in the Results Section report the gene
sets found and their clinical significance, here the pur-
pose is to compare gene sets, in particular those
related to immune response and stromal signalling, to
gene clusters and signatures identified across a num-
ber of microarray studies. For many of the sets
detected the correspondence is immediate. This is the
case in particular for “estrogen”, “erbb2”, “basal”, and
“proliferation” , all of which have become virtual

fixtures in genomic studies of breast cancer [2,39,76].
Other sets, including several small sets found only in
the Affymetrix data, may be trivial in the sense that
they consist of housekeeping genes, or reflect the
design decision to spot single genes multiple times. In
these cases, the resulting patterns, as detected by the
algorithm, are real, but may be of only technical inter-
est in so far as they concern issues of normalization
and quality control. Of the remaining sets detected by
the enumerations, several are easily described and

Table 7 Gene sets and survival results for the NKI data

35 gene sets all 295 samples ER positive ER negative

median quartiles median quartiles median

c2 p c2 p c2 p c2 p c2 p

estrogen 11.33 0.0007 9.29 0.002 7.91 0.004 5 0.02 2.9 0.08

FOXA1 4.4 0.03 3.62 0.05 7.82 0.005 1.72 0.18 0.09 0.76

stromal(5) 2.73 0.09 2.13 0.14 4.03 0.04 3.21 0.07 0.02 0.88

stromal(4) 3.8 0.05 8.63 0.003 7.34 0.006 6.13 0.01 0.01 0.9

MAGEB1 5.77 0.01 0.82 0.36 1.83 0.17 0.19 0.66 0.41 0.52

8p11_12 2.56 0.1 4.2 0.04 5.05 0.02 6.39 0.01 0.4 0.52

immune(0) 0.01 0.92 0.11 0.74 2.8 0.09 1.25 0.26 8.21 0.004

immune(1) 0.81 0.36 0.07 0.78 0.03 0.86 0.82 0.36 4.5 0.03

AANAT 0.8 0.77 0.03 0.85 0.03 0.58 0.72 0.39 2.32 0.12

ACACB 0.03 0.85 0.85 0.35 1.31 0.25 0.67 0.41 1.38 0.24

adipose 0.13 0.71 0.69 0.4 0.66 0.41 0.21 0.64 0.01 0.92

basal 0.16 0.68 0.4 0.52 0.01 0.93 0.11 0.73 0.4 0.52

BCL2L1 0.59 0.44 0.4 0.52 3.97 0.04 1.22 0.26 0.01 0.92

EMX2 0.75 0.38 1 0.31 0.25 0.61 0.04 0.84 0.48 0.48

ERBB2 0.34 0.55 0.55 0.45 0.76 0.38 0.25 0.61 0.08 0.77

H3_histone 0.27 0.6 0.17 0.68 0.27 0.6 0.11 0.74 0.02 0.89

immune(5) 0.8 0.37 0.06 0.8 3.01 0.08 2.23 0.13 0.98 0.32

immune(9) 0.34 0.55 0 0.99 0.85 0.35 0 0.94 0 0.97

JAG2 0.12 0.72 0.14 0.71 0.17 0.68 0.22 0.63 0.01 0.9

KRT1 1.7 0.19 0.81 0.36 2.58 0.1 3.21 0.07 0.71 0.4

MMP17 0.02 0.89 1.42 0.23 0 0.95 0.11 0.74 0.65 0.42

NRGN 0.06 0.8 0.87 0.35 0.09 0.76 0.43 0.51 0.35 0.55

RAB18 0.34 0.55 1.77 0.18 0.57 0.44 0.15 0.69 0.06 0.8

RAPGEF2 1.25 0.26 1.23 0.26 1.46 0.22 0.19 0.66 2.48 0.11

RBM5 0.03 0.85 0.65 0.42 0.24 0.62 0.85 0.35 0.31 0.57

ribosomal(0) 0.01 0.93 0.37 0.54 0.09 0.77 0.14 0.71 0.12 0.73

ribosomal(2) 0.8 0.36 1.48 0.22 0.52 0.47 1.19 0.27 0.21 0.64

SEMG1 2.67 0.1 2.25 0.13 2.3 0.12 2.06 0.15 2.99 0.08

stromal(0) 0.31 0.57 0.62 0.42 2.41 0.12 2.33 0.12 0.28 0.59

PTPRO 0.02 0.89 2.84 0.09 0.22 0.63 4.53 0.03 0 0.97

ATP12A 4.45 0.03 3.04 0.08 1.78 0.18 1.49 0.22 5.35 0.02

immune(2) 4.61 0.03 2.68 0.1 7.76 0.005 6.42 0.01 0.4 0.52

immune(3) 5.71 0.01 3.97 0.04 8.72 0.003 9.78 0.001 1.01 0.31

H2B_histone 6.79 0.009 3.64 0.05 9.96 0.001 6.11 0.01 0.3 0.58

proliferation 24.79 6E-07 29.09 6E-08 22.98 1E-06 25.73 3E-07 4.15 0.04
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Figure 3 Gene sets detected across Affymetrix and Agilent platforms. Red indicates significant association with decreased survival; green
indicates significant association with increased survival.
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readily interpreted in biological terms. Examples
include:

• hemoglobin: HBA1, HBB, HBA2, HBG1...
• histone: HIST1H2BF, HIST1H2BE, HIST1H2BFS,
H2BFS, HIST1H2BK, ...
• metallotheioneins: MT1G, MT1 H, MT1X, MT2A,
MT1F, MT1E, MT1M

Of special interest are the ten sets labelled “immune”,
and the six or more identified as “stromal”.

A natural factoring of Immune Response
Eight immune sets are detected in the Uppsala data, five
in the Stockholm, seven in TRANSBIG, and six in NKI.
All told, across the four data sets, ten unique immune
sets are induced. Of these, two are questionable: one
consisting essentially of five copies of CASP1, and the
other, a small set in the NKI containing TNFRSF17,
which is most likely a subset of the gene set labelled
“immune(1)IgG”. Setting these aside, the broad category
of “immune-related genes” appears to factor naturally
into eight distinct subcategories. To marshal evidence
for, and against, this division, and to aid in their biologi-
cal interpretation, these eight sets can be matched
against clusters and lists of immune genes identified by
others using standard methods, generally hierarchical
clustering. The correspondence is one-one between the
immune gene sets and eight of Loi’s et al’s “pclusts” [77]
and seven of Rody et al.’s immune-related metagenes
[78]. Examining this correspondence in greater detail,
seven of the eight “immune” sets correspond almost
exactly to the gene clusters used by Rody et al. to com-
pute immune “metagenes” in their study of lymphocytic
infiltrates in breast cancer [78]. In that study of twelve
Affymetrix breast cancer data sets, hierarchical cluster-
ing repeatedly yielded a cluster of approximately 600
immune-related genes. Applying hierarchical clustering
a second time to this cluster revealed seven distinct sub-
clusters. The concordance between the genes in these
seven clusters and seven of the immune sets as detected
in the enumeration of the Uppsala data is available in
Additional File 6. The one minor discrepancy between
the enumerated sets and these seven clusters involves
the five LST1 probe sets in the monocyte cluster (last
column). In the enumerations of the Uppsala and Stock-
holm cohorts, LST1 forms its own small gene set.
The survival analysis on the two largest datasets,

Uppsala and NKI, confirm Rody et al.’s principal finding
[78], namely T-cell genes are prognostic of increased
survival time for estrogen-negative patients, with c2 =
4.26, p = 0.03 for the Miller data, and c2 = 8.21, p =
0.004 for the Van de Vijver data. But on these same
datasets, contrary to Rody et al. who find no association

between B-cell/immunoglobulin genes and survival,
immune(1)IgG is a significant predictor of increased
survival in the NKI data, c2 = 4.5, p = 0.03, and margin-
ally so in the Uppsala data, c2 = 3.32, p = 0.06. The
genes in immune(1)IgG closely match the B-cell gene
cluster that Schmidt et al. find to be prognostic of
increased survival among highly proliferating tumor
samples[79]. Contrary to our results, and to that of
Rody et al., for tumor samples stratified by proliferation,
Schmidt et al. fail to find any association between survi-
val and the expression of their T-cell gene cluster. Rody
et al. attribute this discrepancy to possible differences in
cohorts and/or treatments, but the difference in results
may also be due to the composition of the respective T-
cell gene clusters or sets. Schmidt et al.’s T-cell cluster
contains our immune(1)T-cell genes as a proper subset,
but it also contains genes that belong to immune(4)
STAT1 and immune(7)complement, neither of which
we find to be significantly associated with survival.
Hence, the significance of the T-cell genes as a predictor
of survival may be attenuated by genes from other sets.
Immediately relevant to the question of T-cell genes

versus IgG genes as predicators of survival, Calabro
et al., assembled eighteen genes from the literature to
measure the presence of lymphocytic infiltrate [80].
They found that this list is somewhat associated with
diminished survival time for estrogen-positive samples,
but is strongly prognostic of increased survival for estro-
gen-negative samples. The genes in this list range from
CCL5, CD37, CDE3...to IGHG3 and IGJ, which effec-
tively merges our immune(0)T-cell and Immune(1)IgG
sets. Therefore, the separate positive associations with
survival between immune(0)T-cell and immune(1)IgG
for estrogen-negative samples in the Uppsala and NKI
datasets appear to confirm Calibro et al.’s results.
The positive effect of the genes in immune(0)T-cell on

survival may in part explain the performance of Finak et
al.’s stromal-derived classifier [81]. In that study, hier-
archical clustering applied to individually matched
tumor and normal stroma yielded three clusters of sam-
ples that are starkly distinguished by outcome. From the
genes that best discriminate between pairs of these clus-
ters, Finak et al. construct a 23-gene classifier. Ten of
these 23 are associated with the good outcome cluster
of samples. Of these ten, eight belong to the immune(0)
T-cell set: GZMA, CD8A, CD52, CD247, CD48, PLEK,
RUNX3, and GIMAP5. This suggests that the stromal-
derived classifier, in assigning samples to the good,
poor, and mixed groups, may be powered substantially
by the association between T-cell genes and increased
survival. If this is the case, then the stromal-derived
classifier provides yet more evidence for the association
between T-cell genes and survival for estrogen-negative
breast cancer observed in the Uppsala and NKI data.
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The capacity of Teschendorff et al.’s seven gene
immune response module to identify good outcome
samples from among estrogen-negative tumors may
constitute yet more support for this association. Those
seven genes span at least four of our immune sets with
immuned(0)T-cell represented by LY9, immune(1)IgG
by IGLC2 and TNFRSF17, immune(2)MHC-I by HLA-F,
and immune(7)complement by C1QA. It is interesting
to note that in the attempt to validate this seven-gene
module on independent data, only four of the seven
genes prove significant, and of these, three belong to
either immune(0)T-cell (LY9), or to immune(1)IgG
(IGLC2 and TNFRSF17). If these are the genes that are
driving the performance of the Teschendorff et al.
immune response module, then the effectiveness of that
signature for predicting increased survival among estro-
gen-negative samples is consistent with the immune(0)
T-cell and immune(1)IgG survival results for estrogen-
negative samples in the Uppsala and NKI data. Overall,
the strong association between the T-cell gene set and
survival, and the milder association between the immu-
nogloblulin/B-cell gene set and survival, as identified in
the enumerations, appears to converge with the impor-
tant results of each of these several studies despite large
differences in approach and research design.
Immune(3)/interferon
The immune(3)/interferon set closely resembles the
cluster of “interferon response” genes identified by
Buess et al. [82]. In that experiment fibroblasts were co-
cultured with several breast cancer cell lines to investi-
gate cell-cell signalling between stroma and malignant
epithelial cells. In comparing the gene expression of co-
cultures to matched monocultures, the starkest differ-
ence involved interferon-related genes which were pre-
ferentially expressed in co-cultures of fibroblasts with
estrogen negative cell lines. Of the twelve genes in the
immune(3) gene set, as realized for example in the NKI
data, five belong to this “interferon response”: OAS1,
OAS2, MX1, MX2, and IFIT1. The remaining seven
include: IFIT4, ISG15, OS4, MTAP4A, USP18, G1P3,
and GS3686. Buess et al show that these interferon
genes are significantly associated with shorter survival
time in the NKI data. The enumeration of the NKI295
confirms this finding.

The stromal gene sets factor stromal signaling
Efforts to delineate the interaction between stromal cells
and epithelial tumor are challenged by the complexity of
the microenvironment, which has been defined as all
components of the mammary gland other than luminal
and/or tumor epithelial cells [83]. The effective division
of the stroma-related genes into six gene sets by the
enumerations may be relevant to this problem. Unlike
the immune sets which appear to be distinct, monolithic

entitites, the stromal sets resemble a constellation with a
core entity, which we designate “stromal(0)”, accompa-
nied by several satellite sets, “stromal(1), stromal(2),
stromal(3) and stromal(5). Each of these is detected as a
self-contained and independent set under at least one
combination of partition “size” and “tolerance” para-
meters, but, as the algorithm increases the partition size,
and relaxes the stringency of what qualifies as a match,
these sets tend to quickly merge into an omnibus stro-
mal set. Despite this, the importance of distinguishing
the smaller sets becomes apparent in the survival analy-
sis: five of the six stromal gene sets are associated with
increased survival, several exceptionally so with log-rank
c2 values in excess of 20.
Stromal(0) = core DTF stromal signature
The stromal(0) set, induced in each of the four enu-
merations, is composed of many, if not all of the col-
lagen and ECM remodelling enzymes featured in West
et al’s desmoids-type fibromatosis stromal signature
(DTF) [84-86]. Prominent genes include: SPARC,
CSPG2, FBLN2, FBN1, and type-I, type-III, and type-VI
collagen genes. That signature was devised as a proof of
concept for a larger, on-going program that exploits the
mono-cellular property of soft tissue tumors to induc-
tively define subtypes (or states) of fibroblastic stroma
cells [84,85,87]. The original DTF signature, comprised
of genes differentially expressed between two types of
soft tissue tumors, was refined for the purpose of identi-
fying a distinctive stromal response in breast cancer. In
five datasets, including three of the four used in this
paper, the DTF stromal response identifies a subset of
breast cancer patients who experience increased survival.
The two versions of the DTF signature contain 182 and
66 genes, respectively. In an analysis of the functional
relations among the proteins that correspond to these
genes, this list is reduced further to a protein-protein
network of 20 genes [86]. The close relationship
between the DTF signature and the stromal(0) gene set
as realized in each of the four data sets can be conveyed
with respect to these twenty essential genes (Additional
File 7).
Stromal(1)/COL11A1
Among the six stromal sets, stromal(1)/COL11A1 is the
only one that is negatively related to survival, though
this is apparent only when inspecting the entire family
of sets detected. In the enumerations, this gene set, con-
sisting exclusively of COL11A1 and FN1 probe sets, is
almost always subsumed in a larger stromal set com-
posed essentially of stromal(0)/DTF genes. Nevertheless
it appears to be a distinct entity under some of the para-
meter combinations that control the stringency of the
match. It is interesting to observe that the survival value
of the stromal(0) set, as measured by log-rank, and
which is generally positive, abruptly goes to zero as
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COLL11A1 merges with that set. This scenario is played
out in all four datasets. The implication is that impor-
tant relationships between stromal expression and out-
come can be lost unless the stromal genes are
decomposed into their constituent sets.
Stromal(2)/LAMA2
The stromal(2) gene set is detected in the three Affyme-
trix data sets and is characterized by LAMA2 and
COL14A1. The genes in this gene set tend to merge
with the genes in stromal(3)/DARC as the size of the
partition is increased and the stringency of the match is
relaxed. Stromal(2)/LAMA2 is significantly associated
with increased survival: c2 13.94 (p = 0.0001) for the
Uppsala251, c2 20.01, p = 0.000007 for Stockholm159,
and c2 3.57, p = 0.05 for TRANSBIG198.
Stromal(3)/DARC
The stromal(3)/DARC gene set is detected in the
Uppsala and Stockholm cohorts and is positively asso-
ciated with survival in both: c2 6.43 (p = 0.01) for the
Uppsala251, c2 13.52 (p = 0.0002) for the Stockholm159.
Genes in this set include: DARC, TNXB, CCL14, LDB2,
LHFP, and C7. Duffy antigen receptor for chemokines
(DARC) is believed to suppress tumor metastasis
through two mechanisms: by sequestering angiogenic
chemokines [88,89] and by inducing KAI1/CD82 tetra-
spandin in tumor cells, thereby causing senescence
[90-92].
The merozoite of P. vivax malaria enters red blood

cells via DARC, consequently individuals who lack
DARC are resistant to that strain of malaria[93]. The
association between the lack of expression of DARC in
a large percentage of black men and increased rates of
aggressive prostate cancer, compared to whites, has
been established [94]. A similar relationship appears to
hold between black women and the increased incidence
of more aggressive breast cancer. It is estimated that
70% of blacks of West African descent lack the expres-
sion of DARC, which is a population that suffers high
rates of both prostate and breast cancer [91,95]. A sec-
ond gene in the stromal(3) gene set, tenascin B (TNXB),
is down-regulated during the tumor progression of neu-
rofibromatosis [96].
Stromal(4)/ADAMTS5
Among the smallest of the stromal sets, Stromal(4) is
comprised of ADAMTS5, ZNF288 (ZBTB20), and four
Agilent probes that lack gene names. It is significantly
associated with increased survival in the NKI295 data:
c2 3.8, p = 0.05, when partitioned at the median, c2

8.63, p = 0.003, when partitioned by first and last
quartiles.
Stromal(5)/decorin
Stromal(5) consists almost exclusively of DCN and
FBLN1 probe sets. Like the other small stromal sets, with
the exception of stromal(4)/ADAMTS5, this set tends to

merge with stromal(0), but conceptually and empirically
it should be treated as a distinct entity. While stromal(0)
is virtually defined by the DTF signature[85] neither
DCN nor FBLN1 are found among the 493 genes in the
original list of genes that discriminate between DTF and
SFT [84]. In contrast, DCN and FBLN1 are both promi-
nent on the list of myoepihelial genes identified by Alli-
nen et al. in a SAGE-based sequential purification of cell
types [97]. Therefore, stromal(5) might better be labelled
“myoepithelial”. In keeping with reports of the positive
effect of myoepithelial cells in co-cluture experiments
[98], stromal(5)/decorin is highly significant in all four of
the datasets, though in the NKI295 it is apparent that it
merges with genes from stromal(0). This may be partially
explained by the fact that DCN is spotted only once on
the Agilent chip, while it is represented by four probe
sets on the Affymetrix U133a. As an experiment, if we
used the single Agilent decorin probe as a surrogate for
stromal(5). Defined in this way the stromal(5)/decorin
gene set proves exceptionally significant as a prognostica-
tor of increased survival in the NKI295 (c2 15.7, p =
7.51e-05). Across the four datasets the substantive find-
ing is that stromal(5), principally decorin, appears to be
strongly associated with increased survival for patients at
risk of early onset metastasis.
In sum, of the six stromal gene sets, five are signifi-

cantly associated with increased survival in one or more
of the data sets. This appears to be further evidence of
the normalizing effect of stroma. Coculture/coinjection
experiments have convincingly shown that aberrant
stromal cells are required to promote tumor formation
in epithelial cells, and the reverse has also been shown,
namely that tumorigenic epithelial cells can revert to
normal in the presence of normal stroma [98-100]).
Decomposing stromal signalling into its constituent
gene sets (and the mechanisms they reflect) may contri-
bute to an understanding of the complex of cell types
and signals that comprise the mircroenvironment which
is an active participant in the initiation and progression
of cancer [3,101,102].

Conclusions
A research program of hierarchical clustering and data
visualization has proven immensely productive for more
than a decade [103,104]. But continued reliance on this
research script dependent on hierarchical clustering may
inhibit the further exploration of large genomic data
sets. Here we offer an alternative program for the unsu-
pervised exploration of microarray data, one that deli-
vers all that the standard script delivers plus
considerably more.
The paper is merely a proof of the concept that an

enumeration of all the genes-by-samples sets in breast
cancer is computationally feasible and substantively

Mefford and Mefford BMC Genomics 2010, 11:482
http://www.biomedcentral.com/1471-2164/11/482

Page 14 of 18



useful. By enumerating the gene sets in three data sets
that use the industry standard Affymetrix U133a, we
identify gene sets that are conserved across experiments
on a single platform. By enumerating the gene sets in a
forth dataset, the NKI data spotted on a custom Agilent
chip, we identify gene sets that are conserved across
platforms. In terms of substantive results, nearly 40% of
the sets detected prove to be significantly associated
with survival. These include subsets of immune response
and stromal signalling genes involved in the complex
interactions between the epithelial tumor and its
microenvironment.
From the first microarray-based studies of cancer, a

fundamental challenge has been that of data reduction.
The task is to filter and factor these large matrices such
that statistical modelling is possible. Over the course of
a decade, expression-based analysis has progressed from
single-factor designs, e.g., regressing groups (subtypes)
on survival [9], to two-factor designs, as exemplified by
studies that first stratify on estrogen status (or HER2
status, or proliferation), then proceed to identify sets or
modules of immune genes that correlate with survival
[79,80,105,106]. Using the gene sets induced by the enu-
merations, at this point the stage may be set for explor-
ing the effects and interactions of multiple sets of genes
as determinants of the progress and outcome of disease.
These sets, or more specifically the partitions they
induce, can be conveniently incorporated into (survival)
decision trees. In this way, the best results to date
regarding, for example, estrogen status and immune
response, can be further qualified and extended via-a-vis
important additional factors, such as stromal-status.
The rank-based matching algorithm (and the grid

search scheme that generates the enumeration), can be
applied to any matrix of expression values. As such, it
should be useful for the exploration of a broad range of
biological and medical data. Limitations of the algorithm
are addressed in Additional File 8. Describing the
method as a “direct” approach is a direct reference to
Hartigan’s original work with two-way clustering [14].
Input is a matrix of real numbers; output is a set of sub-
matrices that can be read off the original data matrix
(with rows and columns appropriately permuted).
Because it works with the entire data set, it dispenses
with the standard data reduction steps, e.g., restricting
analysis to “differential” genes. Multiple testing is effec-
tively controlled by classical counting rules. The subma-
trices (gene sets) discovered can be immediately
interpreted using the original variables, namely, in the
present context of breast cancer, in terms of genes and
tissue samples. Because the clusters are “two-way”, they
reveal an association between possible biological
mechanisms embodied in the gene sets and subsets or
subclasses of breast cancer.

Additional material

Additional file 1: Gene sets significant for survival in the Uppsala
data set.

Additional file 2: 35 gene sets detected in the Uppsala (Miller 2005)
data set.

Additional file 3: 31 gene sets detected in the Stockholm (Pawitan
2005) data set.

Additional file 4: 38 gene sets detected in the TRANSBIG (Desmedt
2007) data set.

Additional file 5: 35 gene sets detected in the NKI (van de Vijver
2002) data set.

Additional file 6: Seven immune gene sets mapped to seven
immune metagenes (Rody 2009).

Additional file 7: Stromal(0) genes mapped to DTF genes (West
2005; Beck 2008).

Additional file 8: Limitations of the enumerations as implemented.
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