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ABSTRACT OF THE DISSERTATION
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Professor Thomas G. Mason, Co-Chair

Professor Bruce S. Dunn, Co-Chair

Dense colloidal emulsions represent a captivating category of soft materials, boasting a vast

range of practical applications in industry and consumer goods. To design and tailor the

mechanical properties of concentrated emulsions for specific applications, a comprehensive

quantitative understanding of emulsion rheology is essential. In practice, colloidal emulsions

are not typically monodisperse with nearly hard repulsive interactions between droplets;

instead, they often exhibit depletion attractive interactions induced by excess ionic surfac-

tant molecules, other additives, or even polydispersity. In this dissertation, we outline the

advancements we have achieved in quantitatively describing the linear plateau elastic shear

modulus, G′
p, of depletion attractive emulsions and extremely bidisperse colloidal emulsions,

coupled with their optical transport and dynamic properties. Our investigation also encom-

passes the unjamming behavior and the exploration of potential molecular-probing platforms

for microrheology, employing a combination of experimental, analytical, and computational

approaches with a primary focus on oil-in-water (O/W) nanoemulsions.
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Our first focus is on the quantitative microrheology of attractive emulsions. We employ

diffusing wave spectroscopy (DWS) microrheology analysis for quantifying the rheological

properties, particularly G′
p, of depletion-induced attractive emulsions having various attrac-

tive potential at contact |Ud|; and at each given |Ud|, we investigate G′
p over a wide range of

droplet volume fraction, ϕ. We show that on top of correcting for collective light scattering

effects present in highly scattering concentrated colloidal systems through an empirically

determined average structure factor, it is necessary to apply an effective scattering probe

size factor associated with the resulting corrected mean square displacements (MSDs) in the

generalized Stoke-Einstein relation (GSER) of passive microrheology, and thereby lead to

accurate values of G′
p for attractive emulsions. By developing the sophisticated decorated

core-shell network (DCSN) model for strongly attractive emulsions and the extended DCSN

model for intermediately attractive emulsions, along with our discovery of moderately at-

tractive emulsions, we systematically and self-consistently understand the effective probe

size that depends on both ϕ and the depletion attractive strength.

To broaden our investigation of the rheology of attractive emulsions, we explore highly

bidisperse mixtures of microscale emulsions and nanoemulsions. In these polydisperse mix-

tures, nanodroplets form repulsively jammed glasses while simultaneously acting as deple-

tion agents, which can lead to the formation of attractive gels by microscale droplets. We

demonstrate that at lower microscale droplet volume fractions, ϕEM, far below its jamming

point, nanodroplets predominantly contribute to the bulk shear elasticity. In this condi-

tion, microscale droplets serve as elastic inclusions residing within the jammed matrix of

nanodroplets without weakening the system’s elasticity. At higher ϕEM, near yet below

jamming, the nanodroplet-induced depletion attractions cause larger droplets to form per-

colating gel networks, which contribute to the macroscopic shear rigidity.

Motivated by advances in DWS microrheology for a diverse range of colloidal emulsions,

we explore the potential of applying molecule-probing techniques to microrheology. Experi-

mentally, we demonstrate the unjamming behavior of customized 19F-laden nanoemulsions,

iii



stabilized by non-fluorinated ionic surfactants, using 19F pulsed-field gradient nuclear mag-

netic resonance (PFG-NMR) measurements. Our findings reveal dramatic changes in NMR

magnetization decays at high field-gradient strengths as ϕ is lowered through dilution. We

show that this dramatic change coincides with the loss of low-frequency shear elasticity of the

nanoemulsion, which occurs at the ϕ associated with Lindemann melting criterion. More-

over, we present a trajectory-based simulation study that illustrates passive microrheology

by analyzing the MSDs of a Brownian probe molecule confined within a droplet undergoing

harmonically bound Brownian motion. Our simulation approach highlights the significance

of small colloid size and high contrast between the viscosities of the dispersed and continuous

phases for extracting accurate MSDs of the droplets, thus yielding quantitative microrheo-

logical results.
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Chapter 1 - Introduction

Colloidal systems are ubiquitous in nature and hold substantial importance across diverse

fields such as materials science, biophysics, and soft matter physics1–4. These systems are

comprised of particles, droplets, or macromolecules dispersed within a continuous medium,

and their properties and behaviors are dictated by the interplay between the particles, the

medium, and external forces exerted upon them. Gaining a comprehensive understanding

and control over the properties of colloidal systems is crucial for the development of novel

materials and technologies in various sectors, including food science5, pharmaceuticals6,7,

energy8, and environmental9 applications. The properties of colloidal systems encompass a

broad spectrum, dependent on factors such as the size, shape, and material attributes of the

dispersed particles, as well as on the characteristics of the continuous medium. This disser-

tation primarily explores dense colloidal materials and particularly emphasizes on emulsions

and nanoemulsions.

Recent advancements in the study of dense colloidal emulsions have led to an improved

understanding of their rheological properties and interactions10. Nevertheless, there is room

for further exploration in comprehensively grasping the quantitative rheological properties

across various interaction regimes and size distributions, as well as the potential for alter-

native molecular detection techniques in passive microrheology. Passive microrheology11,12

is a technique used to measure the mechanical properties of complex fluids by tracking the

random motion of microscale colloids, such as particles and droplets, suspended within the

material, which is primarily driven by thermal fluctuations. It provides insight into the

viscoelastic properties of these materials, including elasticity and viscosity, based on the

statistical analysis of colloidal trajectories.

This dissertation contributes to these ongoing efforts by investigating the interplay be-
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tween droplet volume fractions ϕ, interactions, polydispersity, and overall emulsion proper-

ties. Through our research, we aim to reveal the underlying mechanisms that govern the

optical transport, dynamics, and rheology of emulsions in different regimes. Additionally,

we seek to accurately interpret diffusing wave spectroscopy (DWS) data for emulsions with

various interaction strengths and extreme bidispersity using opto-microrheological models.

Lastly, we explore the potential of employing molecular detection techniques for passive

microrheology, which may open up new avenues for understanding dense colloidal emulsions.

1.1 Rheology of monodisperse emulsions and nanoemulsions

Emulsions are mixtures of two immiscible fluids with one dispersed as deformable droplets

in the other. Many common emulsions consist of oil droplets in water (O/W)13. With the

addition of surfactants, they are used in various applications such as enhanced oil recovery,

paints, lubricants, coatings, food, cosmetics, and pharmaceuticals14–19. Rheological proper-

ties are essential to their practical applications, as they can exhibit properties ranging from

liquid viscosity to solid elasticity. As a type of complex fluid, emulsions possess colloidal

structures with length scales larger than atomic or simple molecular scales, yet smaller than

macroscopic scales20. Emulsions exhibit similarities with other complex fluids: in the dilute

limit, they resemble suspensions of nondeformable spheres as droplets maintain their spheri-

cal shape due to Laplace pressure; in the highly compressed limit, their interfacial structure

is comparable to gas foams, with thin liquid films separating the deformed droplets21.

Emulsions are typically prepared through an emulsification process, during which an

externally applied energetic flow works against the interfacial tension, σ, prompting larger

droplets to elongate and rupture into smaller ones through capillary instability22. Under

extreme high-flow conditions, this results in the formation of nanoemulsions, which have

an average droplet radius a < 100 nm23–25. The process also leads to increased interfacial

surface area to volume ratio and Laplace pressure ΠL = 2σ/a for undeformed droplets. As
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a result, emulsions and nanoemulsions become thermodynamically metastable dispersions,

susceptible to droplet coalescence. To achieve long-lasting emulsions and nanoemulsions with

consistent droplet size distribution, droplet coalescence is typically suppressed by incorpo-

rating strong stabilizers, such as amphiphilic surfactants26. Ostwald ripening is generally

mitigated by using oils with a sufficiently high molecular weight, which effectively reduces

their solubility in the continuous phase27.

To better comprehend the relationship between microscopic structure, forces between

droplets, and macroscopic properties, researchers use monodisperse or highly size-fractionated

emulsions with highly uniform droplet sizes11,21,24,28. These emulsions have a controllable

droplet radius and are highly stable, making them suitable for exploring the full range of rhe-

ological behavior. Depletion flocculation is a suitable approach for size-fractionating larger

colloidal droplets29, while for nanoemulsions with a radius smaller than 100 nm, ultracen-

trifugal droplet fractionation is generally more practical and efficient, as long as a mass

density disparity exists between the dispersed and continuous phase to facilitate droplet sed-

imentation or creaming30,31.

A diverse array of rheological properties of stable model concentrated emulsions have

been previously studied, spanning different regimes of excitations from linear viscoelasticity

to nonlinear viscoelasticity32,33. The latter includes yielding and shear ordering - disordering

in the moderate flow conditions, as well as droplet rupturing and coalescence in the extreme

flow conditions. In this dissertation, we primarily consider the linear shear viscoelastic re-

sponse of disordered concentrated emulsions subjected to a small strain, below the yield

strain, during oscillatory rheological tests.

For highly concentrated emulsions, the frequency-dependent complex linear modulus,

G∗(ω) = G′(ω) + iG′′(ω), can be used to quantify the linear shear elasticity, where G′(ω)

represents the storage shear modulus, G′′(ω) denotes the loss shear modulus, and ω is the

angular frequency. A mechanical rheometer is often used to measure G∗(ω) by conducting

linear oscillatory frequency sweeps at a small strain amplitude, γ0. During these frequency
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sweeps, the rheometer applies a small-amplitude sinusoidal strain, γ(t) = γ0sin(ωt), to the

emulsion and records the sample’s response to the perturbation in the form of a sinusoidal

stress, τ(t), which exhibits a phase lag, δ, relative to the input strain signal. The sinusoidal

stress is related to the applied strain through τ(t) = γ0[G
′(ω)sin(ωt) + G′′(ω)cos(ωt)], al-

lowing the extraction of non-negative G′(ω) and G′′(ω). In concentrated emulsions, G′(ω)

demonstrates a dominant plateau significantly exceeding G′′(ω) at intermediate ω, making

it possible to define a plateau elastic shear modulus, G′
p.

In a less concentrated regime, viscoelastic response of emulsions begins to exhibit ω-

dependence, complicating the definition of plateau shear elasticity from frequency-sweep

measurements. Typically, G′
p can be identified at an inflection point in |G∗(ω)|, if there is a

low-frequency viscous relaxation. Alternatively, the G′
p can be obtained by performing os-

cillatory strain sweeps at a given intermediate ω using a mechanical rheometer. Each strain

sweep yields the linear and nonlinear shear storage modulus, G′(γ), and its small-strain

plateau value, G′
p, corresponding to the linear viscoelastic regime, can be extracted where γ

is below the yield strain.

Experimental investigations of G′
p in monodisperse oil-in-water emulsions have provided

insights into the jamming of disordered soft colloidal spheres21,28,34. The concept of random

close packing (RCP) was introduced by J.D. Bernal and J. Mason35, with a droplet volume

fraction ϕRCP ≈ 0.64. Subsequently, the concept of maximal random jamming (MRJ) was

developed by S. Torquato et al.36, with a volume fraction ϕMRJ = 0.646. By contrast, O/W

nanoemulsions have a very low effective jamming ϕ for predominantly water compositions30.

Short-range repulsive interactions in O/W nanoemulsions result in pronounced downward

shifts in the effective ϕ associated with jamming, as Debye screening layers of neighbor-

ing nanodroplets strongly overlap. The entropic-electrostatic-interfacial (EEI) model37 was

developed to explain linear shear elasticity measurements in microscale and nanoscale emul-

sions. The model considers jamming at high ϕ, screened-charge repulsion from an ionic

surfactant, and an entropic term38. It accurately predicts G′
p(ϕ) for emulsions above and
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below jamming, and describes uniform size-fractionated O/W emulsions stabilized by an

ionic surfactant over a range of average droplet radii.

Expanding beyond the short-range repulsive interactions and the monodispersity in disor-

dered O/W emulsions, here we investigate the linear viscoelasticity of short-range attractive

emulsions. Furthermore, we explore the crossover between repulsive jamming of nanodroplets

and attractive gelation of microscale droplets in extremely bidisperse mixtures of microscale

emulsions and nanoemulsions.

1.2 Linear viscoelasticity of attractive emulsions

While considerable progress has been made in understanding the viscoelasticity of attractive

colloidal systems39–43, significant challenges remain, particularly in optical microrheological

measurements and interpretation. The intricacies of passive microrheology can lead to poten-

tial artifacts in data interpretation arising from inappropriate scattering techniques, such as

issues related to non-ergodicity and collective scattering effects in dense attractive emulsions.

The droplet size distribution is a critical factor, as smaller droplets can induce attraction

through depletion effects, profoundly influencing the emulsion’s viscoelastic behavior. More-

over, depletion attractions can lead to the formation of clusters or gels, complicating the

rheological profile of the emulsion. Although additives like polymers and micelles can be

incorporated to modify an emulsion’s structure, these changes may not straightforwardly

correlate with the viscoelastic properties due to complex interactions and phase behavior.

Thus, a more comprehensive understanding of these issues is needed to improve the pre-

dictability and control of the linear viscoelastic properties of attractive emulsions.

The depletion force, an entropic force originally predicted by Asakura and Oosawa44,

results from the system’s tendency to increase entropy per the second law of thermodynam-

ics. When larger and smaller colloidal particles coexist, larger particles approach each other,

overlapping exclusion volumes and increasing available space for smaller particles. In col-
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loidal emulsions, larger particles are referred to microscale emulsion droplets, while smaller

particles typically refer to surfactant micelles28,29,45,46 or polymers47–49. The droplet size

distribution of an emulsion is a significant factor to consider, as it has been demonstrated

in idealized binary emulsion systems50 that smaller droplets can lead to attractive forces

through depletion effects. When secondary attractions, such as those induced by depletion

effects, are significantly greater than kBT , where kB is Boltzmann’s constant and T is temper-

ature, the translational entropy gain of micelles outweighs the entropy loss from flocculation

of droplets, leading to spontaneous colloidal flocculation or even gel without coalescing. Such

gelation can significantly alter the emulsion’s rheological properties. It is important to note

that incorporating other additives, such as salts, into emulsions can also result in signifi-

cant interdroplet attractions by altering electrostatic interaction potentials51,52. However,

this dissertation primarily focuses on attractive emulsions with entropic depletion attractive

interactions between droplets.

In our series of studies on attractive monodisperse emulsions, we systematically vary the

magnitude of the depletion attractive potential |Ud| between droplets at contact, induced by

surfactant micelles, covering the regimes of moderate attraction (∼2.4 kBT ), intermediate at-

traction (∼5.6 kBT ), and strong attraction (∼14.5 kBT ). In our separate study on extremely

bidisperse emulsions in the absence of micelles, we show that a nanodroplet-induced |Ud|

between microscale droplets can become large enough compared to kBT to cause attractive

gelation.

1.3 Quantitative microrheology using diffusing wave spectroscopy

Microrheology is a powerful technique that enables researchers to probe the rheological prop-

erties of complex fluids and soft materials at the microscale. Particle tracking microrheology

has gained significant attention due to its ability to measure local rheological properties of

anisotropic and inhomogeneous viscoelastic systems, which are often inaccessible to conven-
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tional macroscopic rheology methods12,53,54. In particle tracking microrheology, the motion

of tracer particles embedded in the colloidal system is monitored, and their mean square

displacements (MSDs) are used to deduce the viscoelastic response of the material. More-

over, passive microrheology has been explored through optical diffusing wave spectroscopy

(DWS)11,55,56. DWS is a non-invasive technique that enables the investigation of complex

fluids and soft materials at the microscopic level by analyzing the fluctuations in the inten-

sity of scattered light in a high multiple-scattering regime. In passive microrheology with

DWS, the Brownian motion of tracer particles embedded in the colloidal system is exploited,

and the temporal correlation of scattered light intensity is measured. This information is

then used to extract the MSDs of the tracer particles, allowing researchers to determine the

local viscoelastic properties of the system. This technique is particularly advantageous for

probing systems with strong optical scattering and it offers a complementary approach to

particle tracking microrheology for studying the rheological properties of complex fluids.

In previous research, monodisperse emulsion passive microrheology with DWS has been

investigated using microscale emulsions featuring nearly hard droplet interactions57. In this

dissertation, we broaden our DWS quantitative microrheology study to the various com-

plex emulsion models mentioned above, attaining quantitative agreement between the DWS

microrheologically determined G′
p and the mechanically measured macroscopic G′

p for all

examined systems. This is achieved by coupling the optical transport, dynamics, and rheo-

logical properties of the system. We offer a sophisticated interpretation of the inhomogeneous

microstructures within the droplet network, and demonstrate the effective DWS scattering

probe size for performing quantitative passive microrheology each of these systems.

1.4 Towards molecular probe microrheology

To explore the potential of using other techniques, which can detect probe-molecule dynamics

at a smaller molecular scale for passive microrheology, we present the first studies of 19F-laden
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molecular diffusion within the droplets of nanoemulsions using pulsed-field gradient nuclear

magnetic resonance (PFG-NMR). From probe-molecule motion we can infer droplet motion

over a limited range of ϕ. Additionally, we have conducted a trajectory-based simulation

study of droplet-confined Brownian molecular diffusion, where droplets experience harmonic

Brownian bound motion in dense emulsions.

1.5 Overview

In the following chapters, we present a series of studies aimed at gaining a deeper quantita-

tive understanding of the rheology of dense colloidal emulsions by exploring their properties

and interactions using experimental, analytical, and simulation methods.

In Chapter 2, we investigate diffusing wave microrheology in strongly attractive dense

emulsions. We induce an attractive depletion interaction potential energy between two oil

droplets near contact with a magnitude of 14.5 kBT , much stronger than the thermal energy

kBT . We develop a comprehensive opto-microrheological model, the decorated core-shell

network (DCSN) model, which accounts for collective light scattering effects as well as the

effective optical scattering probe size.

From prior advances in DWS microrheology on emulsions with nearly hard interactions57,

it is known that in jammed, dense emulsions, collective light scattering effects must be con-

sidered. This is related to the average structure factor of the system and depends on the

droplet volume fraction. In the strongly attractive limit, droplets form lubricated bonds

with other droplets through slippery diffusion-limited cluster aggregation (S-DLCA)51,58,

leading to local optical inhomogeneity for different droplets with varying numbers of nearest

neighbors. In the DCSN model, we deduce a ϕ-independent effective probe-size factor of

2.0, meaning the effective scattering probe radius is twice the droplet radius, by fitting the

measured optical transport properties of the emulsion, specifically the ϕ-dependent inverse

optical transport mean free path, 1/ℓ∗(ϕ). The 1/ℓ∗(ϕ) in the strongly attractive limit is

8



noticeably asymmetric and exhibits two bending knees, which is remarkably different than

the symmetric, inverse parabolic 1/ℓ∗(ϕ) for the emulsions having nearly hard interactions.

When fitting 1/ℓ∗(ϕ), we also involve the measured dynamical properties of the emulsions

(i.e. the MSDs), associated with the scattering probe. By applying the effective probe size

and the low-frequency plateau MSD after correcting for collective scattering to the gen-

eralized Stokes-Einstein relation (GSER)11, we determine the linear plateau elastic shear

modulus, G′
p, at each ϕ using only the optical properties. We present quantitative microrhe-

ological agreement between the optically determined G′
p and mechanically measured G′

p over

the full range of ϕ explored. The analysis of the experimental data helps elucidate the mi-

crostructure of droplets subjected to strongly attractive interactions and its role in both the

optical and viscoelastic properties of these systems.

Initial work by Kim, Xu, Scheffold, & Mason examined moderately attractive emul-

sions (2.4 kBT )
59. We demonstrate that inducing a moderate depletion attraction creates

a secondary decay-to-plateau in the DWS intensity autocorrelation functions, which we hy-

pothesize to be a result of the heterogeneous dynamics of a sub-population of droplets that

still experience bound motion yet with significantly larger displacements than the average.

By analyzing the early- and intermediate-time MSDs associated with the primary rise-to-

plateau, we show that these MSDs, when interpreted using the GSER of passive microrhe-

ology, yield quantitative agreement with macroscopic mechanical measurements of G′
p. This

finding highlights the complexities involved in interpreting DWS MSDs in moderately at-

tractive dense colloidal systems, as such attractions can lead to additional dynamics (i.e.

the excess MSDs at long times) involving a sub-population of colloids exhibiting heteroge-

neous collective dynamics in more heterogeneous local structures caused by the moderate

attraction, as compared to nearly hard interaction and strongly attraction. Additionally, we

find that single emulsion droplets still effectively serve as scattering probes, namely, there

is a ϕ-independent effective scattering probe-size factor of 1.0 for this moderate depletion

attractive strength of 2.4 kBT .
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In Chapter 3, we delve into the complex optical transport, dynamics, and rheology of in-

termediately attractive emulsions, having a micelle-induced depletion attractive interaction

energy of approximately 5.6 kBT , situated between the strongly and moderately attractive

regimes. In addition to the asymmetrical shape of 1/ℓ∗(ϕ) as found in strongly attractive

emulsions, we uncover a striking notch in the measured 1/ℓ∗(ϕ) between the hard-sphere glass

transition, ϕg, and maximal random jamming, ϕMRJ. This notch feature indicates the exis-

tence of a greater population of compact dense clusters of droplets, as compared to tenuous

networks of droplets in strongly attractive emulsion gels. Moreover, the overall magnitude of

1/ℓ∗(ϕ) for ϕ below ϕMRJ is reduced in comparison to strongly attractive emulsions, imply-

ing a lower surface-to-volume ratio of attractive networks and constituent clusters. Further-

more, we observe the existence of excess MSDs at long times in the intermediately attractive

emulsions, suggesting additional complexity in the local heterogeneous structure of droplets

compared to the strongly attractive emulsions. Therefore, we develop an extended deco-

rated core-shell network (E-DCSN) model to couple the measured ϕ-dependent self-motion

plateau MSDs to the measured 1/ℓ∗(ϕ) by incorporating dense non-percolating clusters that

do not contribute to shear rigidity in the prior DCSN model designed for strongly attractive

colloidal systems. Using this E-DCSN model, we demonstrate a ϕ-dependent effective scat-

tering probe-size factor ranging from 1.0 in the low-ϕ limit to 2.0 in the high-ϕ limit. This

implies that the DWS scattering probes are effectively individual droplets at low ϕ, akin to

moderately attractive emulsions at lower depletion strength; whereas, the scattering probes

are effectively local dense clusters of droplets with an average radius twice the droplet radius

at high ϕ, similar to the strongly attractive emulsions at higher depletion strengths.

In Chapter 4, we explore the extreme bidispersity in a droplet size distribution of a con-

centrated colloidal emulsion, which can be a source of emergent effects in that emulsion’s

optical transport properties, droplet dynamics, and bulk linear rheological response to shear.

Our investigation of well-controlled binary mixtures of size-fractionated microscale emulsions

and nanoemulsions reveals that these effects can stem from an additionally complex scenario
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of droplet jamming, and alternatively from entropic depletion attractions between microscale

droplets, induced by nanoscale droplets functioning as a depletion agent. The binary emul-

sion mixtures exhibit notably distinct optical transport properties compared to a microscale

emulsion alone, as the small dimensions of nanodroplets result in less scattering of visible

light than those of microscale droplets. We deduce the effective scattering probe size by using

the measured 1/ℓ∗ of mixtures and reference microscale-only emulsions, as well as accounting

for the effective refractive index difference. We correct for collective scattering effects and

apply the GSER to determine the G′
p using only optical properties. This approach yields

quantitative microrheological agreement between optically and mechanically determined G′
p.

To understand the main factors influencing the shear rheological response of the binary

mixture, we define the volume fraction of the nanoemulsion within an effective continuous

phase, where all water volume is associated with nanodroplets. In this context, microscale

emulsion droplets serve as weaker elastic inclusions in a primarily elastic matrix resulting

from nanodroplet jamming. When the microscale droplet volume fraction in the final mixture

is far below the jamming point of the microscale emulsion, or ϕMRJ, nanodroplet jamming

dominantly governs the shear rigidity. However, at a higher microscale droplet volume frac-

tion below but near ϕMRJ, nanodroplet-induced depletion attractions between microscale

droplets begin to influence the shear rheological response. The results shed light on the

interplay between the size ratio of droplets and their interactions in determining the overall

properties of the emulsion system.

In Chapter 5, we undertake a preliminary exploration of employing nuclear magnetic

resonance (NMR) for quantitative microrheology, with a specific focus on detecting the un-

jamming transition of elastic concentrated nanoemulsions into viscous dilute nanoemulsions.

This process presents intriguing possibilities for pulsed-field gradient (PFG) NMR, espe-

cially when the nanoemulsion is engineered to exploit the nuclear specificity provided by

19F-NMR. We study size-fractionated oil-in-water nanoemulsions formulated with a perflu-

orinated co-polymer silicone oil, which is highly insoluble in the aqueous continuous phase,
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to preclude any contribution from the aqueous continuous phase containing non-fluorinated

ionic surfactants. Our findings reveal a significant change in the 19F stimulated-echo (StE)

PFG-NMR decays at high field-gradient strengths as the droplet volume fraction is reduced

through dilution. We demonstrate that this dramatic change, a systematic progression from

decay-to-plateau behavior in the jammed regime of nanodroplets to a simple decay in the

unjammed regime, corresponds with the loss of low-frequency shear elasticity of the na-

noemulsion by comparing it to bulk mechanical rheometry.

In Chapter 6, we focus on a simulation study to explore the feasibility of alternative tech-

niques for passive microrheology of dense colloidal systems using molecular probes similar

to 19F-laden oils. We develop a two-dimensional oil-in-water emulsion model with perfectly

confined molecular probe molecules and simulate the free diffusion of the probe molecule

within a droplet, as well as the droplet’s harmonically bound Brownian motion. Through

our analysis, we demonstrate the potential for extracting droplet self-motion MSDs, which

are essential for microrheology, and examines the thresholds for performing microrheology

based on various material properties and detection limits. By understanding the mechanics

and material parameters involved, we envision the potential application of methods such as

NMR and electron paramagnetic resonance (EPR) spectroscopy, which inherently detect the

molecular dynamics at a smaller scale.

In Chapter 7, we present a comprehensive comparison of optical transport properties

of short-range attractive emulsions, which can serve as a useful road map of the presence

of strong attractions relative to kBT . In addition to the moderately attractive (MA), in-

termediately attractive (IA), and strongly attractive (SA) emulsions that have been thor-

oughly studied by far, we perform measurements on attractive emulsions with very similar

droplet size distributions to the earlier ones at a moderately-to-intermediately attractive

(MA-IA) strength of approximately 3.3 kBT , as well as an intermediately-to-strongly attrac-

tive (IA-SA) strength of approximately 7.3 kBT , induced by surfactant micellar depletion.

We compare the 1/ℓ∗(ϕ) features of all these attractive emulsions, spanning a broad range of
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attractive strength with detailed intervals, with one other and compare these with 1/ℓ∗(ϕ)

of emulsions having nearly hard interactions. We display an isoskedastic point near ϕMRJ at

which the optical scattering intensity does not depend on the interaction strength for all the

emulsion systems explored.

In Chapter 8, we seek to develop another strategy of performing passive microrheology

using molecular probe techniques, such as 19F-NMR, with higher ratios of droplet MSD rel-

ative to total probe MSD, ξ =
〈
∆r 2

drop

〉
p
/
〈
∆r 2

pr,tot

〉
p
, than those shown in Chapter 6. We

demonstrate 2D trajectory-based simulations of a surface-bound molecular probe conduct-

ing harmonically bound Brownian motion on the droplet surface. This approach resembles

the use of irreversibly adsorbed fluorinated surfactant molecules at a high density on the

droplet interfaces in emulsions and nanoemulsions. The molecular probe motion on droplet

surface is highly localized, resulting in a high percentage of the total probe MSDs that arises

from the droplet MSDs. Ultimately, this approach provides a high ξ for extracting colloidal

dynamics from molecular dynamics and therefore, offers the potential of extending the pas-

sive microrheology of nanoemulsions using molecular probe techniques to the dense, elastic

regime.

In conclusion, this dissertation presents a multidisciplinary approach to characterizing

and understanding the optical and rheological properties of dense colloidal systems, par-

ticularly emulsions, taking into account various types and strengths of interactions between

droplets and considering the presence of extreme bidispersity in droplet size distribution. We

develop opto-microrheological models for quantitative DWS passive microrheology, provid-

ing insights into the local microstructures of dense emulsions under each of these conditions.

By combining experimental techniques, analytical methods, and simulation models, we have

investigated the potential application of molecular detection techniques to passive microrhe-

ology of emulsions and nanoemulsions.
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Chapter 2 - Diffusing wave microrheology of strongly

attractive sense emulsions

Reprinted/Adapted from “Diffusing wave microrheology of strongly attractive dense emul-

sions.” Phys. Rev. E 102(6), pages 062610 by Xu, Y., Scheffold, F., and Mason, T. G.

(2020), with permission from American Physical Society (APS).

2.1 Abstract

We advance the microrheological interpretation of optical diffusing wave spectroscopy (DWS)

measurements of strongly attractive emulsions at dense droplet volume fractions, ϕ. Beyond

accounting for collective scattering, we show that measuring the mean free path of optical

transport over a wide range of ϕ is necessary to quantify the effective size scale of the

DWS probes, which we infer to be local dense clusters of droplets through a decorated core-

shell network model. This approach yields microrheological elastic shear moduli that are in

quantitative agreement with mechanical rheometry.

2.2 Introduction

Gelation of uniform colloids in a continuous liquid phase through strongly attractive interac-

tions leads to interesting arrested systems that have different kinds of network morphologies

and physical properties60,61. These morphologies and properties can depend on the shapes

and deformability of the colloids, the specific nature of the intercolloidal attractions, and even

the history of preparation62,63. Theoretical and numerical studies of short-range attractive
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colloidal systems41,42,64–67 have focused mainly on structural characteristics and mechanics of

spherical particles interacting through central-force potentials at colloid volume fractions ϕ

that are below the hard-sphere jamming-point35,36,68,69. Dynamic light scattering measure-

ments on attractive gel-like systems of solid colloidal particles40,70–74, have revealed plateau

behavior in correlation functions reflecting the existence of low-frequency elasticity, yet an

accurate quantitative passive microrheological comparison with mechanical measurements

has remained elusive. Some non-equilibrium colloidal gel systems age and evolve67,75–77,

whereas others do not if the short-range attractions are sufficiently strong compared to ther-

mal energy, which sets an average scale for quiescent Brownian excitations. Even when aging

and evolution can effectively be neglected, prior attempts to connect optical and mechan-

ical properties of colloidal gels through passive microrheology, which involved the multiple

light-scattering technique of diffusing wave spectroscopy (DWS)55, did not yield accurate

quantitative agreement78. However, this does not necessarily imply that any problem exists

with the basic notions of passive microrheology; instead, it suggests that the assumptions

related to interpreting DWS signals in terms of the self-motion of scattering-probes need to

be re-examined for strongly attractive dense colloidal systems.

A recent advance has enabled the quantitative microrheological interpretation of DWS

measurements of colloidal droplets having nearly hard interactions in dense, jammed, elastic

emulsions by accounting for collective light scattering effects, related to the system’s average

structure factor, which depends on ϕ57. This study showed that apparent droplet mean

square displacements (MSDs), obtained by routine DWS analysis, must first be converted

into self-motion MSDs before applying the generalized Stokes-Einstein relation (GSER) of

thermal-entropic passive microrheology11. This conversion involves multiplying the apparent

MSD by factor proportional to the measured inverse mean free path of optical transport,

1/ℓ∗, at high ϕ relative to the slope of 1/ℓ∗(ϕ) of isolated droplets as ϕ → 0. By using

droplet self-motion MSDs, not apparent MSDs, in the GSER, the linear plateau elastic

shear modulus, G′
p, determined microrheologically was found to match macroscopic mechan-
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ical measurements over a wide range of ϕ.

While demonstrated for dense emulsions having nearly hard interdroplet interactions57,

this advance does not guarantee that treating DWS MSDs in the same manner would yield

quantitative microrheological predictions of G′
p for strongly attractive emulsion systems, be-

cause such attractive droplets typically form lubricated bonds with other droplets through

slippery diffusion-limited cluster aggregation (S-DLCA)51,58. Slippery aggregation leads to

local dense clusters (LDCs) of droplets that form heterogeneous elastic networks for ϕ well be-

low the hard jamming-point46. In S-DLCA, strongly attractive droplets are not isolated even

at low ϕ; instead LDCs and aggregates of LDCs are present. Such strongly attractive emul-

sion systems have been previously created using depletion attractions44 caused by nanoscale

surfactant micelles45,46,79; despite this attraction, droplets do not coalesce as a consequence

of screened-charge repulsion at shorter range, provided by ionic amphiphiles which coat the

droplets’ surfaces. So, ascertaining if passive microrheology can be performed quantitatively

using DWS on elastic emulsion systems having strong attractions at high ϕ is a remaining

challenge. If demonstrated, this would overcome a major existing conceptual hurdle and

potentially enable DWS microrheology to be performed on other strongly attractive dense

colloidal systems, including particulate systems.

Here, we show that quantitative passive microrheology of a dense emulsion system, which

has been made strongly attractive using micellar depletion, can be performed using DWS,

yet through an interpretation that is quite different than the one applied to the same emul-

sion having nearly hard interactions. While MSDs are still modified to account for collective

scattering, this modification still does not provide quantitative microrheological agreement

with mechanical measurements of G′
p. We resolve this problem by hypothesizing that the

scattering probes associated with DWS MSDs in strongly attractive colloidal emulsions are

not necessarily single droplets, but instead are LDCs of several droplets held together by

slippery attractions. By measuring ϕ-dependent plateau MSDs and fitting the measured

1/ℓ∗(ϕ) using an opto-mechanical colloidal gel model, which we call the decorated core-shell
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network (DCSN) model, we show that the average radius of the dominant scattering-probes

from ϕ ≈ 0.5 to ϕ ≈ 0.8 is about twice the radius of a droplet, corresponding to tetrahedral

LDCs. With these advances in interpreting DWS, we show that passive microrheology yields

accurate G′
p for this strongly attractive dense emulsion system, as we demonstrate through

comparison with macroscopic rheometry.

2.3 Experimental

2.3.1 Size-fractionated attractive emulsions

A uniform oil-in-water (O/W) microscale emulsion has been prepared using trimethylsiloxy

terminated poly-dimethylsiloxane oil (PDMS, Gelest Inc.; kinetic viscosity: νo = 350 cSt;

mass density: ρo = 0.97 g cm−3; average molecular weight: MWo = 13,650 g mol−1; refractive

index: no = 1.4031), sodium dodecyl sulfate (SDS, Fisher Scientific; electrophoresis grade

99% purity), and deionized water (Millipore Milli-Q Academic; resistivity: 18.2 MΩ cm). To

highlight differences between emulsion systems caused by strong interdroplet attractions, as

compared to nearly hard interactions, we use the same size-fractionated emulsion prepared

by Kim et al.57 (i.e. the same droplet size distribution); yet, we set [SDS] to be much higher,

80 mM, in the final master stock emulsion sample in order to generate strong interdroplet

depletion attractions, as opposed to the nearly hard interdroplet interactions at lower [SDS]

= 10 mM used by Kim et al.57. Primary characteristics of the droplet radial size distribution,

determined by dynamic and static light scattering, are: average radius ⟨a⟩ = 459 ± 15 nm

and polydispersity δa/ ⟨a⟩ ≃ 0.18, where δa is the standard deviation. These characteristics

are the same as those of Kim et al.57, who investigated nearly hard interactions between

droplets; fixing ⟨a⟩ and δa facilitates meaningful comparisons of physical properties that

change as a result of the strong depletion attraction. The refractive index of the 80 mM

aqueous SDS solution, the continuous phase, is nc = 1.3340 at temperature T = 20 ◦C80.

Strong lubricated depletion attractions between droplets, which give rise to a secondary
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potential minimum in their pair interaction potential, in the fractionated PDMS O/W emul-

sion are induced by setting [SDS] = 80 mM in the continuous phase, well above SDS’s critical

micelle concentration of C∗ ≈ 8.1 mM. To generate depletion attractions in this fractionated

emulsion, we centrifuge the emulsion using a swinging bucket rotor (Beckman L8-55 ultra-

centrifuge, SW-28 swinging bucket rotor, 10,000 rpm, 1.25 h) to form concentrated elastic

plugs at the tops of the thick-wall polycarbonate centrifuge tubes without inducing droplet

coalescence, separate and combine these concentrated plugs, and dilute the combined recov-

ered plugs to ϕ ≈ 0.1 using an aqueous solution at [SDS] = 80 mM. This process is repeated

two additional times to set the SDS concentration, yielding a large volume of concentrated

stock emulsion that is elastic at high ϕ. This master concentrated stock emulsion is mixed

thoroughly, at sufficiently low strain rates that preclude droplet rupturing, in order to ex-

clude any size-separation that potentially could be induced by centrifugation. To reduce the

potential evolution of ϕ by evaporation-condensation of water vapor onto the lid and walls

of the container as well as loss of water vapor when opening and re-sealing the container, we

store this master sample in a temperature-controlled chamber set at 20 ◦C. We also select a

container that has a volume only slightly larger than that of the master sample, which allows

only a very small volume of water vapor in the gas above the emulsion; this also reduces

water loss from the master sample over time. We measure the oil droplet volume fraction

of this master stock emulsion to be ϕm = 0.771 ± 0.008, determined through a previously

developed gravimetric evaporation method80.

Emulsion samples at lower ϕ are obtained by diluting this master stock emulsion with

an aqueous solution at [SDS] = 80 mM using an analytical balance (Denver Instruments

APX-200, 0.1 mg precision). Each diluted sample having ϕ < ϕm has been mixed in a 3

mL vial to ensure that it is well and homogeneously dispersed before loading into an opti-

cal cuvette or the mechanical rheometer. For ϕ ≥ 0.62, the diluted emulsion samples are

stirred with a small spatula for 3 minutes, and for ϕ < 0.62, emulsions are stirred with

a spatula, capped, and shaken. Each diluted sample after mixing is split into two por-
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tions: 1.5 mL for DWS and 0.5 mL for mechanical rheometry. This ensures that exactly

the same sample ϕ has been used for both DWS and mechanical rheometry. We find that

using exactly the same sample ϕ is necessary in order to make accurate comparisons between

light scattering and mechanical measurements. We estimate the magnitude of the attrac-

tive depletion interaction potential energy between two oil droplets near contact, Uattr, by

combining Asakura-Oosawa’s theory for larger and smaller hard spheres with Vrij’s linear

micellar model46: |Uattr| = 4πaa2mN0kBT (C − C∗) /νm, where the radius of the emulsion

droplets is a = ⟨a⟩, am is the effective radius of a micelle (am ∼ 2 nm for SDS), N0 is

Avogadro’s number, kB is Boltzmann’s constant, T is the temperature, C is the bulk con-

centration of SDS (in moles per volume), and νm represents the aggregation number of

amphiphilic molecules in a micelle (νm ≈ 70 for SDS). This formula implicitly assumes that

the shape and size of the micelles are independent of C. For the fractionated emulsion at

[SDS] = 80 mM, we calculate |Uattr| ≈ 14.5 kBT , much stronger than thermal energy kBT .

Beyond providing a micellar depletion attraction, adsorbed dodecyl sulfate anions (DS−)

on the droplet surfaces, as well as DS− and Na+ in the continuous phase, also give rise to

a strong short-range Debye-screened-charge repulsion between droplets, thereby precluding

their coalescence. Thus, the preservation of a layer of aqueous continuous phase between

droplets in this strongly attractive system makes the interdroplet attraction lubricated and

slippery; this is quite different than the nature of bonding between solid colloids that have

been destabilized in a manner that causes them to fuse together in a shear-rigid manner as

a consequence of extremely strong Van der Waals attractions.

2.3.2 Diffusing wave spectroscopy

DWS measurements are made using a Rheolab 3 light scattering instrument (LS Instru-

ments, Fribourg CH, equipped with backscattering option, light wavelength λ = 685 nm).

Each emulsion is loaded into a clean glass optical cuvette having a thickness (i.e. pathlength)

of L = 5 mm and a width of 10 mm. This pathlength is large enough to guarantee that
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the optical transport mean free path ℓ∗ is always significantly less than L over all ϕ corre-

sponding to mean square displacements (MSDs) that we report. A sufficiently large volume

of emulsion is loaded to ensure that the emulsion’s upper surface is at least 15 mm high

relative to the bottom surface of the cuvette; this ensures that the region of light scatter-

ing around the incident laser beam is symmetric and uniform. Centrifugation at low speed

for a short duration removes stray air bubbles in loaded cuvettes having ϕ ≥ 0.62 without

generating gradients in ϕ. The maximum centrifugal speed does not exceed 1500 rpm, and

the total duration, including acceleration and deceleration, does not exceed 60 s. For ϕ <

0.62, this brief centrifuging step is omitted, since it creates noticeable gradients in ϕ visible

in the cuvette. For 0.537 ≤ ϕ ≤ 0.595, we load the emulsion samples into the cuvettes

using a syringe with a stainless-steel needle tip having an inner diameter I.D. = 0.84 mm.

Initially, we fully insert the syringe-tip to the bottom of the glass cuvette, and the syringe

is slowly withdrawn while injecting the emulsion and ensuring that the tip remains below

the emulsion’s surface. For ϕ ≤ 0.520, the emulsion’s yield stress is sufficiently low that

we simply pour the emulsion into the optical cuvette along one wall to ensure that no air

bubbles are introduced. After loading, we use Parafilm to seal the capped optical cuvettes

and all the emulsion samples are stored in a temperature-controlled chamber and allowed

to equilibrate for 24 hours before making DWS measurements. For all measurements, the

sample temperature in the Rheolab 3 is maintained and controlled at T = 20± 0.1 ◦C. The

completion of loading an emulsion into the cuvette for DWS sets the start of its reported

waiting time. This effective invariance on waiting time in the elastic dense emulsion limit

facilitates microrheological comparisons; aging and gravity-induced droplet compaction81 do

not significantly influence our measurements.

While we report dynamic DWS MSD measurements only in this effectively time-invariant

range of ϕ, we measure and report 1/ℓ∗ down to even lower ϕ, using a technique that measures

scattering properties of clusters of strongly attractive droplets but is not unduly influenced

by gravitational compaction. After diluting a portion of the master stock emulsion and
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mixing to set ϕ ≤ 0.3 at [SDS] = 80 mM, we let the attractive emulsion sample rest 24

hours; then, a sample at ϕ ≤ 0.3 is loaded in cuvette, and the cuvette is gently inverted for

5 times and finally righted. We place the cuvette into the Rheolab 3 and then wait 1,200

s before measuring 1/ℓ∗. We estimate the characteristic doubling time, based on colloidal

diffusion of droplets in water, to be ≈1.4 s at the lowest ϕ = 0.05, corresponding to the

longest doubling time. So, a waiting duration of 1,200 s is over two orders of magnitude

larger than this longest doubling time. Thus, local dense clusters of droplets have ample

time to form through slippery diffusion limited cluster aggregation51,58 at all 0.05 ≤ ϕ ≤ 0.3

we report using this procedure, yet evidence of gravitational compaction is not seen. At

each ϕ, 1/ℓ∗ is measured and averaged from 11 trials at intervals of 380 s; the trial-to-trial

standard deviation is less than 1.5%. No visible phase separation or systematic trend in the

measured 1/ℓ∗ is observed as a function of trial number.

In order to facilitate a meaningful microrheological comparison between light scattering

and mechanical measurements, we first assess the regime of ϕ over which time-invariant light

scattering measurements can be made, such that aging and gravitational compaction of the

dense attractive emulsion are effectively negligible over at least one day. For a given waiting

time after loading, the optical mean free path ℓ∗attr of each dense attractive emulsion is mea-

sured and averaged from at least 8 trials, yielding 1/ℓ∗attr(ϕ). At each ϕ, we also obtain the

DWS transmission autocorrelation function, expressed as g2(t)−1, where t is the correlation

time, averaged from at least 8 trials; the multi-tau duration is 300 s, and the echo duration

is 60 s.

For each ϕ, having measured g2(t)−1 and ℓ∗attr, we extract the apparent mean squared dis-

placement ⟨∆r 2
a(t)⟩ by solving the classic transcendental equation of DWS57,82,83. To correct

for collective light scattering effects, each apparent MSD is converted into a probe self-motion

MSD ⟨∆r 2(t)⟩ by multiplying the apparent MSD with a dimensionless ratio given by the

actual measured scattering strength at that ϕ, reflected by 1/ℓ∗attr(ϕ), divided by a scattering

strength that ignores collective scattering and is given by the linear extrapolation of low-ϕ
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scattering: [1/ℓ∗attr(ϕ)]/[(1/ℓ
∗
LDC,attr)ϕ], where 1/ℓ∗LDC,attr is the slope of the measured 1/ℓ∗attr

versus ϕ in the dilute limit as ϕ → 0. This ratio lowers the overall magnitude of the MSDs

by different amounts that depend on ϕ.

2.3.3 Mechanical shear rheometry

We use a controlled-strain mechanical shear rheometer (RFS-II, Rheometric Scientific, 25

mm diameter stainless steel cone-and-plate geometry, equipped with a vapor trap) to measure

plateau elastic shear moduli, G′
p,mech, at low strains corresponding to the linear viscoelastic

regime. At each ϕ, a strain sweep, yielding the linear and non-linear shear storage modulus,

expressed as G′(γ), is performed at room temperature T = 20 ◦C and a frequency of ω = 1

rad/s. This frequency is within the range of time scales that correspond to the plateau

associated with DWS MSD measurements. Strains down to ≈ 2× 10−4 can be reached; this

limit is set by the resolution of the RFS-II’s motor. For the lowest ϕ, such small strains are

needed to identify the true linear regime.

2.4 Model

To explain the complex shape of 1/ℓ∗attr(ϕ) for the heterogeneous attractive emulsion system

in the limit of strong slippery attractions, we propose a model that takes into account

scattering contributions from droplets in different local regions of a gel-like network that

have different numbers of nearest neighbors, reflected through the local coordination number

N . We simplify the continuous distribution of N58 using only three principal scattering

components from different local regions of the network: surface decorating droplets (SDDs)

that have ⟨N⟩ ≈ 3 and are found at the boundary between the network and the void region;

shell droplets that have ⟨N⟩ ≈ 5 to 6, reflecting loose connections between small clusters

in the gel-like network that do not support shear stresses elastically; and core droplets that

have ⟨N⟩ ≈ 10 to 12, reflecting core regions of the network, inside the shell regions, that
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are more highly compact and can support shear stresses elastically. Each of these different

components of the network scatter light to different degrees because droplets with higher

N effectively scatter less than droplets with lower N , since crowding reduces the scattering

cross section for the droplet sizes considered. The dominant contribution to the scattering is

from SDDs at very low ϕ, from the shell at intermediate ϕ as SDDs are effectively converted

into shell droplets through osmotic compression, and from the core towards the highest ϕ as

the shell droplets are converted into core droplets. Ultimately at very high ϕ, the system’s

structure resembles a defected disordered solid composed mostly of core droplets. We call this

model the decorated core-shell network (DCSN) model, and it goes beyond earlier, simpler

gel-void models84 by categorizing droplets in the attractive network gel into these three

different categories according to their different effective scattering strengths, which reflect

different local ⟨N⟩. Also, the DCSN model couples optical and mechanical properties of the

system, since only core regions of the network with the highest N contribute significantly to

the macroscopic G′
p. Strong slippery bonding between droplets implies that no individual

droplets or LDCs detach from the network as a result of Brownian excitations.

At very low ϕ, we assume that the volume fraction of SDDs, ϕSDD, grows linearly with

ϕ, reflecting the formation of LDCs, while the volumes of core and shell droplets remain

negligible. However, for larger ϕ, as SDDs are converted into shell droplets, ϕSDD decreases

rapidly above a threshold ϕ. A simple function that captures these key features is a linear

rise multiplied by a Fermi function:

ϕSDD(ϕ) =
ϕ

1 + exp[(ϕ− ϕSDD,F)/∆ϕSDD]
, (2.1)

where ϕSDD,F restricts the growth of ϕSDD(ϕ) towards higher ϕ and ∆ϕSDD is related to how

rapidly ϕSDD(ϕ) decreases. Moreover, the GSER of thermal-entropic passive microrheol-

ogy implies that the macroscopic shear elastic modulus of the attractive system varies as:

G′
p,attr ∼ 1/ ⟨∆r 2⟩p. We hypothesize that the core regions are characterized by an average

droplet volume fraction, ϕnet,core, which lies above the hard jamming-point, so the repulsive

part of the interdroplet potential is dominant. The average elastic shear modulus within only
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these core regions can therefore be determined using an entropic, electrostatic, and interfa-

cial (EEI) model37: G′
p,EEI(ϕnet,core). For ϕ < ϕnet,core, we reason that the volume fraction of

core droplets in the attractive system, ϕcore, is proportional to G
′
p,attr:

ϕcore(ϕ) = ϕnet,core

G′
p,attr(ϕ)

G′
p,EEI(ϕnet,core)

. (2.2)

Because the size of DWS scattering-probes is not known a priori in the attractive system, we

introduce an effective probe-size factor, α, in the GSER, which in the plateau region yields:

G′
p,attr =

kBT

πα⟨a⟩ ⟨∆r 2⟩p
, (2.3)

where G′
p,attr and ⟨∆r 2⟩p depend on ϕ. Thus, ϕcore(ϕ) is inversely proportional to ⟨∆r 2⟩p (ϕ).

Volume conservation of droplets implies that the volume fraction of shell droplets is:

ϕshell(ϕ) = ϕ− [ϕSDD(ϕ) + ϕcore(ϕ)]. (2.4)

Since ϕshell is determined entirely by ϕSDD and ϕcore, no independent fit parameters are

associated with it.

Furthermore, at a given ϕ, we assume that the scattering contributions to 1/ℓ∗attr of SDD,

shell, and core regions are simply linearly proportional to the droplet volume fractions in

those regions:

1/ℓ∗attr = (1/ℓ∗SDD)(ϕSDD + rshellϕshell + rcoreϕcore), (2.5)

where rshell and rcore are fit parameters that indicate the relative scattering intensity from a

shell or core droplet, respectively, with respect to a SDD droplet, and 1/ℓ∗SDD is the linear

coefficient of 1/ℓ∗attr(ϕ) ∼ ϕSDD for SDDs in the low-ϕ limit. By varying the DCSN model’s

parameters, subject to the constraints that ϕshell vanishes with zero slope and zero curvature

as ϕ → 1 and χ2 of the nonlinear least squares fit to 1/ℓ∗attr(ϕ) is minimized, the optimal

parameters ϕSDD,F, ∆ϕSDD, 1/ℓ∗SDD, rshell, and rcore can be determined. In addition, the

values of α and ϕnet,core can be varied and the above process can be repeated in order to find

the optimized model parameters α̃ and ϕnet,core that minimize χ2 of the fit to the measured

1/ℓ∗attr(ϕ).
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2.5 Results

2.5.1 Diffusing wave spectroscopy

For dense ϕ ≥ 0.4, we observe that both 1/ℓ∗attr and ⟨∆r 2⟩p of the strongly attractive

emulsion system are effectively time-invariant over 24 hours [see Figures 2.1(a) and 2.1(b),

respectively]. Likewise, visual observations of the loaded cuvettes confirm the absence of

any macroscopic phase separation. Additional assessments of time-invariance include: < 2%

change in 1/ℓ∗ and < 14% change in plateau MSD ⟨∆r 2⟩p after 88 h at ϕ = 0.595; after 8 days

at ϕ = 0.501; and after 20 days at ϕ = 0.537; and < 1% change in 1/ℓ∗ and < 18% change

in ⟨∆r 2⟩p after 88 h at ϕ = 0.301. However, more highly diluted emulsions below this range

behave differently, and their plateau MSDs become time-varying as samples evolve. This

evolution is largely a consequence of gravity-induced compaction arising from the mismatch

Figure 2.1. Light scattering measurements of (a) inverse mean free path of
optical transport, 1/ℓ∗attr, and (b) DWS plateau probe MSDs ⟨∆r2⟩p, for the
strongly attractive dense emulsion at [SDS] = 80 mM as a function of droplet
volume fraction ϕ for different waiting times after sample loading into the optical
cuvette: 20 minutes (green solid squares); 24 hours (orange open circles); 88 hours (magenta
open circles); 8 days (blue open circles); 20 days (black open circle).
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between the mass densities of the oil phase (ρo = 0.97 g cm−3) and the continuous aqueous

phase (ρc = 1.00 g cm−3). In order to obtain reproducible DWS results for dense gel-like

emulsions that do not age or compact appreciably over at least 24 hours, which are more

amenable for microrheological comparisons with mechanical rheometry measurements, we

report DWS MSDs only for the time-invariant dense regime corresponding to ϕ ≳ 0.4.

To facilitate comparison with the nearly hard emulsion system, we fit the measurements

of 1/ℓ∗hard(ϕ) made by Kim et al.57 to a semi-empirical functional form that we introduce

here, which provides excellent agreement [see Figure 2.2(a)]:

1/ℓ∗hard(ϕ) = (1/ℓ∗ISA,hard)ϕ[1− (ϕ/ϕtrans)
2], (2.6)

where 1/ℓ∗ISA,hard = 0.0197 ± 0.0001 µm−1 reflects the slope at low ϕ, corresponding to the

independent scattering approximation (ISA), and ϕtrans = 0.853± 0.002 is the ϕ associated

with optical transparency, extrapolated beyond the measurement range (R2 = 0.998). This

fit is based on data of the nearly hard emulsion system up to a maximum volume fraction

of ϕ ≈ 0.73 and should not be interpreted as being a strictly accurate description for sig-

nificantly higher ϕ. A Mie-scattering calculation of an ideal isolated sphere, using nc and

no, yields a slope 1/ℓ∗ISA,Mie = 0.0208 µm−1 [Figure 2.2(a)]57 that is within about 10% of

1/ℓ∗ISA,hard.

In Figure 2.2(a), we plot 1/ℓ∗attr(ϕ) for the strongly attractive emulsion system and com-

pare it with 1/ℓ∗hard(ϕ) for the same droplet size distribution yet nearly hard interactions. We

find that 1/ℓ∗attr(ϕ) is noticeably asymmetric and remarkably different than the peaked and

much more symmetric 1/ℓ∗hard(ϕ). In particular, 1/ℓ∗attr(ϕ) exhibits a first knee at ϕ ≈ 0.3,

corresponding to a pronounced change in upward slope, and a second knee at ϕ ≈ 0.65,

corresponding to a drop towards higher ϕ. Also, at intermediate ϕ between the first and

second knee, 1/ℓ∗attr is lower than 1/ℓ∗hard, indicating that the attractions lead to a reduc-

tion in scattering there. The attractive and hard systems have about the same 1/ℓ∗ at ϕeq

just above 0.6. For larger ϕ up to the limit of our exploration near 0.77, the heterogeneous

strongly attractive system actually scatters more than homogeneous jammed hard system of

26



Figure 2.2. Inverse mean free path of optical transport, 1/ℓ∗attr, for fractionated
oil-in-water emulsions that have strong depletion attractions at fixed [SDS] =
80 mM. (a) Measured 1/ℓ∗attr as a function of droplet volume fraction ϕ (red circles). For
comparison: measured 1/ℓ∗hard for the same emulsion size distribution but for nearly hard
interactions between droplets at much lower [SDS] = 10 mM (gray squares from57) and cor-
responding fit using equation (2.6) (gray dashed line). Black dotted line: isolated scattering
approximation (ISA) of the hard system based on Mie scattering: 1/ℓ∗ISA,Mie. (b) Difference
in scattering caused by the attraction, ∆(1/ℓ∗) = 1/ℓ∗attr− 1/ℓ∗hard, normalized by 1/ℓ∗hard be-
yond the low-ϕ linear region. Fit using equation (2.7) (blue solid line; square of correlation
coefficient, R2 = 0.966.)

droplets. To quantify this, we subtract the fit to 1/ℓ∗hard(ϕ) from the measured 1/ℓ∗attr(ϕ) and

normalize this by 1/ℓ∗hard, yielding a dimensionless difference in scattering as a consequence

of strong interdroplet attractions [see Figure 2.2(b)]. We fit this to:

∆(1/ℓ∗)

1/ℓ∗hard
= Pϕ2(ϕ− ϕeq), (2.7)

yielding: P = 4.4 ± 0.3, reflecting the strength of the depletion attraction, and ϕeq =

0.611± 0.007.

To compensate apparent DWS MSDs for collective light scattering effects, resulting from

the close proximity of the probes, we determine accurate probe self-motion MSDs ⟨∆r 2(t)⟩

using the measured ℓ∗attr(ϕ) [see Figure 2.3(a) and chapter 2.3.2]. We fit the measured

1/ℓ∗attr(ϕ) for ϕ ≤ 0.22 to (1/ℓ∗LDC,attr)ϕ, yielding 1/ℓ∗LDC,attr = 0.0187 ± 0.0004 µm−1. This
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Figure 2.3. (a) Ensemble-averaged time-dependent self-motion mean square
displacements (MSDs), ⟨∆r2(t)⟩, measured using diffusing wave spectroscopy
(DWS), in strongly attractive emulsions at [SDS] = 80 mM for different ϕ (col-
ored circles, see legend at right). Correlator data: t < 0.2 s. Echo data: t > 0.2 s. MSDs
have been corrected for collective scattering using 1/ℓ∗attr(ϕ) (see text). Solid lines: fits cap-
ture the early-time rise, the crossover regime, and the long-time plateau behavior. Right
axis: corresponding shear creep compliance J(t) obtained via passive microrheology using
the DCSN model (see text). (b) Inverse plateau MSDs, 1/ ⟨∆r2⟩p, from the fits in
part (a) versus ϕ. Solid line: smooth analytical interpolation.

represents a measured effective ISA for the probes, which we hypothesize to be local dense

clusters of droplets in the strongly attractive emulsion system, and this value is very close

to the ISA of droplets in the nearly hard emulsion system having the same size and size

distribution obtained by Kim et al.57: 1/ℓ∗LDC,attr is within about 20% of both 1/ℓ∗ISA,hard and

1/ℓ∗ISA,Mie.

The self-motion probe MSDs ⟨∆r 2(t)⟩ exhibit an early-time near-linear rise up to t ≈ 10−5
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s, next a gradual bending, and then a long-time plateau behavior beyond t ≈ 10−1 s. We find

that a dense-emulsion MSD model, originally created for jammed emulsions with nearly hard

droplet interactions57, can also be used to fit probe MSDs of strongly attractive emulsions

[see Figure 2.3(a)]. In order to obtain more accurate plateau MSD values, any minor periodic

vibrational noise (evidenced by a small oscillation in the MSD in the plateau region at longer

times) and all data in the echo region are excluded from the fits. From the fits, we extract

the inverse self-motion plateau MSDs, ⟨∆r 2⟩p, the time scales, τ , associated with the gradual

bend and high-frequency square-root contribution to the complex shear modulus, and the

high frequency viscosities, η∞, consistent with the optimal effective size-shape parameter α̃

of the probes as local dense clusters of droplets in the strongly attractive system. From

these fits, we determine the inverse plateau probe MSDs, 1/ ⟨∆r 2⟩p (ϕ), as well as a smooth

analytical interpolation useful for DCSN model calculations, are shown in Figure 2.3(b). We

Figure 2.4. Characteristic time scale τ and high-frequency viscosity η∞ de-
termined by fitting DWS probe self-motion MSDs of strongly attractive dense
emulsions at [SDS] = 80 mM. (a) Red open circles: τ obtained by fitting ⟨∆r 2(t)⟩ in
Figure 2.3(a), as a function of ϕ for the attractive emulsion. Gray solid squares: τ(ϕ) for the
same droplet size distribution but nearly hard interactions at [SDS] = 10 mM (see Kim et
al.57). (b) η∞, normalized by the viscosity of water ηw, versus ϕ; η∞ depends most sensitively
on early-time MSD data. Solid line: semi-empirical fit using η∞(ϕ)/ηw = 1+ Sϕ/(ϕdiv − ϕ),
where S = 1.5± 0.2 is the initial linear slope at low ϕ and ϕdiv = 0.87± 0.02 corresponds to
the effective divergence in η∞ (R2 = 0.963).
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point out here that in colloidal systems with strong slippery attractions, these self-motion

DWS MSDs may not necessarily be associated with individual droplets, but instead could

be associated with larger effective scattering-probes51,78, such as LDCs. This is particularly

important when the average size of the colloids is near or smaller than the wavelength of

light, as is the case for droplets in this emulsion system. We also show the high-frequency

fit parameters τ(ϕ) and η∞(ϕ) for the strongly attractive emulsion system in Figures 2.4(a)

and 2.4(b), respectively. For ϕ > 0.62, τ(ϕ) for the attractive emulsion system at [SDS]

= 80 mM exhibits a decrease which is almost identical to that of the nearly-hard system

at 10 mM57. By contrast, for ϕ < 0.62, τ(ϕ) for the attractive emulsion system increases

much less rapidly towards lower ϕ than for the nearly-hard emulsion system. This major

difference in the behavior of τ(ϕ) towards low ϕ, below the jamming point of hard spheres,

is an additional prominent signal of strong attractions in the dense emulsion system. We

find that η∞(ϕ) normalized by the viscosity of water can be fit using a relatively simple

semi-empirical equation [see Figure 2.4(b) and its caption].

2.5.2 Optimized fits using the DCSN model

We use the following procedure to obtain optimal model parameters α̃ and ϕnet,core. In Figure

2.5, we show that varying α affects the point at which the best fit to calculated ϕshell(ϕ)

vanishes towards high ϕ. For values of α that are significantly less than 2, ϕshell becomes

negative and unphysical for ϕ below ϕnet,core in our measurement range; by contrast, if α

becomes significantly greater than 2, then ϕshell only reaches zero for unphysical ϕ beyond

unity. For each trial value of α that does not generate negative ϕshell, we fit the volume

fraction in the shell region to the semi-empirical formula:

ϕshell(ϕ) =
β1(ϕshell,z − ϕ)4

1 + exp[((ϕshell,z − ϕ)− ϕh)/∆ϕh]
. (2.8)

This procedure yields the point at which ϕshell vanishes as a function of trial α: ϕshell,z(α). To

determine optimal α̃, we fit ϕshell,z− 1 to β2(α− α̃), where the parameters for ϕnet,core = 0.78
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Figure 2.5. Complete conversion of shell to core droplets constrains the behavior
of ϕshell as ϕ → 1, yielding optimal parameter α̃ characterizing the effective
scattering cluster probe size relative to the droplet size. Volume conservation of
droplets yields ϕshell for different trial values of size parameter α [points: 1.8 (red); 2.0
(green); 2.4 (blue)]. Solid lines: semi-empirical fits of ϕshell versus ϕ for different α yield
ϕ values where ϕshell vanishes with zero slope and curvature: ϕshell,z [equation (2.8)]; χ2 is
minimized for α ≈ 2.0. Inset: linear fit of ϕshell,z−1 versus α identifies optimal α̃ = 2.04±0.01
at the zero-crossing (R2 = 0.987).

are: β1 = 104 ± 4, ϕh = 0.301 ± 0.003, ∆ϕh = 0.0536 ± 0.0008 (R2 = 0.999); and

β2 = 0.22 ± 0.01, α̃ = 2.04 ± 0.01 (R2 = 0.987). If ϕnet,core is varied in either direction

away from 0.78, then χ2 of the fit of 1/ℓ∗(ϕ) increases, indicating a non-optimal fit. The

optimal α̃ is not highly sensitive to different ϕnet,core; α̃ varies over a relatively narrow range

from ≈2.2 at ϕnet,core = 0.77 to ≈1.8 at ϕnet,core = 0.80. Thus, this optimized fitting procedure

yields values of model parameters α̃ ≈ 2.0 and ϕnet,core ≈ 0.78 that provide the minimized χ2-

fit to the measured 1/ℓ∗(ϕ) constrained by the measured trend in 1/ ⟨∆r 2⟩p (ϕ) that sets the

behavior of ϕcore(ϕ). We determine the optimal parameters ϕSDD,F = 0.339, ∆ϕSDD = 0.0904,

1/ℓ∗SDD = 0.0198 µm-1, rshell = 0.509, and rcore = 0.150 (R2 = 0.992). The separated contri-

butions to 1/ℓ∗(ϕ) from SDDs, shell, and core are shown in Figure 2.6(a). This optimized

fit also yields ϕSDD, ϕshell, and ϕcore [Figure 2.6(b)]. The knees in the measured 1/ℓ∗attr(ϕ)

correspond to peaks in ϕSDD and then ϕshell as ϕ increases. The outcome of α̃ ≈ 2.0 over

0.5 ≤ ϕ ≤ 0.77, where scattering from shell droplets dominates, is particularly important
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Figure 2.6. Fitting the measured 1/ℓ∗attr(ϕ) using a decorated core-shell network
(DCSN) model. (a) Scattering contributions from surface decorating droplets (SDDs),
1/ℓ∗SDD (orange dotted line); network shell droplets, 1/ℓ∗shell (green dashed line); and network
core droplets, 1/ℓ∗core (blue dashed-dotted line), result from least-squares fitting the measured
1/ℓ∗attr(ϕ) (red open circles) and optimizing DCSN parameters [fit to equation (2.5): solid
black line, subject to the constraints imposed by equations (2.1)-(2.4)]. (b) Optimized
fitting results yield component droplet volume fractions: ϕSDD, ϕshell, and ϕcore [line colors
and types as in part (a)]. Inset: simplified schematic illustrating the DCSN model having
core ⟨N⟩ ≈ 10.6 (blue spheres), shell ⟨N⟩ ≈ 6.5 (green spheres), and SDD ⟨N⟩ ≈ 3 (orange
spheres), corresponding to ϕ ≈ 0.65. Shell droplets have been removed from a 20◦ region to
display the core droplets.

from a microrheological perspective, since it implies that the scattering-probes corresponding

to DWS MSDs are larger than the droplets themselves and correspond to tetrahedral LDCs

of droplets on average. Moreover, ϕnet,core ≈ 0.78 effectively corresponds to the maximum

osmotic compression experienced by the attractive system at ϕm ≈ 0.77 of the master emul-

sion, which serves as the same starting point for preparing all attractive emulsions at lower

ϕ (see chapter 2.3.1).
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2.5.3 Mechanical shear rheometry

At a given ϕ, we fit the measured G′(γ) [see Figure 2.7(a)] to obtain the linear G′
p,mech, given

by the low-γ-plateau:

G′(γ) = G′
p,mech/

[(
γ/γ∗y

)κ
+ 1

]
, (2.9)

where γ∗y is a yield strain associated with the knee in G′(γ) and κ is a power law exponent

associated with the non-linear response of G′(γ) towards higher strains. At each ϕ, we also

determine a yield strain, γy, defined slightly differently by a classic method involving the

intersection of lines associated with linear low-strain behavior and power-law high strain

behavior of the shear stress amplitude τmech as a function of the shear strain amplitude γ

[Figure 2.7(b)]. Since yield strains in attractive systems at low ϕ can become very small,

for strongly attractive emulsions at lower ϕ, accurate measurements of G′
p,mech become dif-

ficult using mechanical rheometry as a consequence of practical limitations imposed by the

minimum strain that the motor can produce and the resolution of the torque-transducer.

Strongly attractive emulsions may still be weakly elastic at lower ϕ than we can measure

mechanically using this rheometer and geometry, given their very low yield strains and also

sample volume limitations. So, we only report mechanical G′
p,mech where the plateau in G′(γ)

at low γ, corresponding to the linear elastic regime, can be accurately determined by fitting

G′(γ) using equation (2.9).

We apply two common yet different analyses on strain sweep measurements in Figure 2.7

to determine the yield strains of the attractive emulsion system as a function of ϕ [see Figure

2.8(a)]: γ∗y by fitting G′(γ) in Figure 2.7(a) using equation (2.9), and γy from intersecting

lines through the measured stress-strain amplitude curves in the log-log plot in Figure 2.7(b).

While both analyses yield similar trends with respect to ϕ, we find that γ∗y is systematically

about 1.4× larger than γy on average. For the attractive system, the yield strain increases

dramatically about two orders of magnitude from ∼ 10−3 near ϕ ≈ 0.5 to about ∼ 10−1

for ϕ ≳ 0.7. The non-linear high-strain power-law fitting parameter κ, associated with the

decrease in G′(γ)-fit in Figure 2.7(a), increases from about 1 near ϕ ≈ 0.5 to about 1.7 near
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Figure 2.7. Mechanical shear oscillatory measurements of the storage modulus
G′ and the peak stress amplitude τmech as a function of the applied peak strain
amplitude γ for strongly attractive dense emulsions at [SDS] = 80 mM and
frequency ω = 1 rad/s. (a) Data for G′(γ) are fit using equation (2.9) yielding: the
plateau shear modulus G′

p,mech; position of the knee that defines yielding, γ∗y; and high-strain
power law parameter κ describing the decrease in the non-linear G′ well beyond yielding. (b)
Classical method of extracting yield strain γy from stress-strain amplitude measurements.
At each ϕ, γy is determined by the intersection of power-law lines on a log-log plot of τmech

versus γ. A line having slope one is extrapolated through the data at low γ until it intersects
with a line of lower slope passing through the data at higher γ.

ϕ ≈ 0.77 [see Figure 2.8(b)]. For comparison, κ ≈ 2 for a nearly-hard emulsion system at

[SDS] = 10 mM for ϕ well above the droplet jamming point. The reported yield strains here
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Figure 2.8. Dependence on droplet volume fraction ϕ of the yield strains γy and
γ∗
y and of the non-linear high-strain power-law exponent κ for strongly attractive

size-fractionated emulsions at [SDS] = 80 mM. (a) Red open squares: γ∗y(ϕ) obtained
from fits in Figure 2.7(a); blue solid circles: γy(ϕ) obtained from intersections of lines in
Figure 2.7(b). (b) κ(ϕ) obtained from fits in Figure 2.7(a).

correspond to the large scale drop in G′(γ) and onset of non-linear flow of the attractive

emulsion, not to more subtle increases in the loss modulus G′′(γ) which can occur at even

lower strains46.

2.5.4 Comparison of DWS microrheology with mechanical macrorheology

Using the optimal α̃, we display G′
p,attr(ϕ) from the modified GSER in Figure 2.9. For

comparison, mechanical rheometry measurements of exactly the same attractive emulsions

are shown for ϕ ≥ 0.5; accurate mechanical measurements of G′
p were precluded at lower

ϕ by very small yield strains and limitations of the rheometer’s torque transducer. The
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Figure 2.9. Comparison of mechanical measurements of plateau elastic shear
moduli G′

p,mech(ϕ) (blue solid squares) with DWS microrheological moduli,
G′

p,attr(ϕ) (red open circles), obtained using the DCSN model’s α̃ ≈ 2.0 and
plateau MSDs from Figure 2.3(b) for the strongly attractive emulsion. For refer-
ence: EEI model calculations of G′

p,EEI(ϕ) for a non-attractive emulsion at an ionic strength
of 80 mM (dotted line). Arrow: volume fraction where G′

p for non-attractive and attractive
systems coincide: ϕc = 0.668 (see text).

comparison between the mechanical G′
p,mech and microrheological G′

p,attr yields a quantitative

match, given uncertainties in both measurements, for the entire range of ϕ over which both

measurements could be performed reliably. We also infer the corresponding shear creep

compliance, J(t) [see Figure 2.3(a), right axis].

2.5.5 Effect of strong attractive interactions on plateau elastic shear moduli

To contrast the plateau mechanical behavior of disordered, heterogeneous, strongly-attractive

emulsion system with the corresponding disordered, homogeneous, nearly-hard emulsion

system having the same size distribution, we determine the difference in their plateau elastic

shear moduli as a function of ϕ. We calculate plateau elastic shear moduli for uniform

ionic emulsions having nearly hard interactions using the entropic, electrostatic, interfacial

(EEI) model, which has been shown to provide accurate values of G′
p over a wide range of

ϕ37. Parameters used in the EEI model are: interfacial tension σ = 9.8 mN/m, effective
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surface charge density |ψ0| = 270 mV, and dimensionless EEI parameters αEEI = 0.85 and

ξEEI = 0.15. The Debye screening length1 used in the EEI model is λD = 1.1 nm for [SDS]

= 80 mM. In Figure 2.9, we compare G′
p,attr(ϕ) with G′

p,EEI(ϕ) as captured through the

EEI model37 of non-attractive emulsion shear elasticity at monovalent ionic strength of 80

mM. For lower ϕ, G′
p,attr is dominant, a crossover occurs at ϕc = 0.668, and for higher ϕ,

G′
p,EEI is slightly larger. As a measure of the additional elasticity in the attractive emulsion

system that is primarily a consequence of the depletion attraction at [SDS] = 80 mM, as

compared to the elasticity of the same emulsion yet for a nearly hard interaction potential

that includes only the screened-charge short-range repulsion at [SDS] = 10 mM, provided

by the EEI model, we calculate ∆G′
p(ϕ) for ϕ < ϕc, as shown in Figure 2.10(a). This can be

described reasonably well by the semi-empirical function:

∆G′
p(ϕ)

G′
p,EEI(ϕc)

=
ϵ1(ϕc − ϕ)

1 + [(ϕc − ϕ)/ϵ2]4
, (2.10)

where ϵ1 = 14.6±0.9, and ϵ2 = 0.061±0.002 (R2 = 0.976). The shape and magnitude of this

trend provide a measure of how structural changes and spatial heterogeneity, a consequence

of locally dense droplet regions and void regions arising from strong micellar depletion in

the attractive emulsion, cause the attractive emulsion to remain rigid for ϕ well below that

associated with maximal random jamming of hard spheres, even after accounting for Debye

screened-charge repulsions. Any future fundamental theory that describes attractive emul-

sion systems could be compared with the magnitude and shape of this curve. For ϕ > ϕc

in the range we measure, the values of ∆G′
p are negative, implying that the strong attrac-

tion, which leads to void-defects, actually reduces the shear elasticity of the emulsion system

somewhat at least for ϕ immediately above ϕc. We anticipate that G′
p of emulsion systems

having strongly attractive and nearly hard interactions will ultimately converge towards the

same values at very high ϕ in the biliquid foam limit, since there the void-regions disappear

and interfacial deformation of the droplets will dominate the free energy of both systems

similarly.

Beyond comparing G′
p,attr(ϕ) with G

′
p,EEI(ϕ), we also compare G′

p(τ) for strongly attrac-
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Figure 2.10. (a) Difference between G′
p and calculated G′

p,EEI at [SDS] = 80 mM,
normalized by the crossover value, ∆G′

p/G
′
p,EEI(ϕc), versus ϕc − ϕ for ϕ < ϕc.

Here ϕc = 0.668 is the cross-over volume fraction where G′
p of the EEI model calculation

equals the DWS and mechanical measurements of G′
p (see Figure 2.9). Line: fit using a two-

parameter semi-empirical function [equation (2.10)] capturing excess normalized G′
p arising

from the strong depletion attraction after accounting for Debye screened-charge repulsions at
very short range. (b) Plateau elastic storage modulus G′

p from DWS of the strongly
attractive emulsion in Figure 2.9 versus τ in Figure 2.4(a). Dashed line: power law
G′

p(τ) ∼ τ−χ, where χ = 0.86, which describes the nearly-hard emulsion system accurately57.

tive and nearly hard interactions, measured using the same emulsion size distribution, in

Figure 2.10(b). For τ ≥ 10−3 s, corresponding to lower ϕ, the strongly attractive emulsion

system exhibits the same magnitude as the nearly hard system57. However, for τ < 10−3 s,

corresponding to higher ϕ, G′
p(τ) of the strongly attractive emulsion system exhibits a small

reduction in magnitude from the power law trend observed for the nearly hard emulsion sys-

tem. However, for τ ≤ 3 × 10−4, the strongly attractive emulsion system appears to retain

a similar scaling G′
p(τ) ∼ τ−χ, where χ = 0.8657, although a slightly lower magnitude.
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2.6 Discussion and conclusion

Our findings indicate that measuring an asymmetrically shaped 1/ℓ∗(ϕ) for disordered sys-

tems of uniform dielectric colloidal spheres is likely to be a useful indicator of the presence of

strong attractions relative to thermal energy. This initial qualitative identification is impor-

tant because it significantly influences how to perform passive microrheology quantitatively

using DWS. The DCSN model provides a simplified way of representing and coupling opti-

cal and mechanical properties of the dense heterogeneous system of droplets that interact

through strong slippery attractions. Only light scattering measurements, namely ℓ∗attr(ϕ) and

self-motion ⟨∆r 2⟩p (ϕ), are used in combination with the DCSN model to infer the optimal α̃

in a modified GSER which permits LDCs to serve as DWS scattering-probes. Our approach

also handles collective scattering of probes in the attractive system by converting DWS ap-

parent MSDs into self-motion scattering-probe MSDs, appropriate for microrheology, using

the measured slope of 1/ℓ∗attr(ϕ) in the limit of low ϕ. Inherent in the DCSN model is the

assumption of strong coupling (i.e. bonding) between the shell and the core; this is reason-

able for the strong attraction used in our study but it could break down as the strength of

the attraction is reduced. Considering other types of colloidal systems, if strong attractions

between solid colloids are not slippery or if the colloids are highly non-spherical in shape,

then the DCSN model may not directly apply. We anticipate that our approach, results, and

interpretations for dense attractive colloidal emulsions will motivate other exciting future

directions, both experimental and theoretical.

While the application of the DCSN model to light scattering data in this strong attraction

limit provides quantitative microrheological agreement with mechanical data for attractive

emulsions over a limited range of dense ϕ, the DCSN model may or may not work as suc-

cessfully at even higher ϕ than we have probed. At very high ϕ, one would expect 1/ℓ∗ for

both attractive and hard systems of droplets to approach zero, although in different ways;

thus, we emphasize that the semi-empirical fitting equation describing normalized ∆(1/ℓ∗)

of the droplets would not necessarily be expected to remain valid for ϕ > 0.8. At such very

39



high ϕ, droplets would begin to deform significantly as the applied osmotic pressure begins

to dominate the energy density associated with attractive interactions, and isolated void-

regions in the disordered solid would act as vacancy-like defects which could dominant the

scattering. The meaning of the scattering probes in DWS could change in this limit, such

that using a single optimal α̃ value might not provide very good microrheological agreement

at significantly higher ϕ than we have explored; instead it may become necessary to describe

α as a function of ϕ. Thus, understanding how to interpret DWS correlation functions in

the very high ϕ limit of strongly osmotically compressed attractive emulsions, where droplet

deformation is much more significant, represents a different and ongoing challenge.

In future experiments, it would be interesting to explore the change in 1/ℓ∗(ϕ) and DWS

MSDs associated with the crossover between the strong attractive limit and the weak at-

tractive limit, where the secondary well depth begins to approach kBT , which has not been

examined in this work. In such systems, temporal evolution over a wider range of ϕ can be

important; so, we anticipate that both DWS as well as mechanical rheology, starting from

comparable starting structural states after loading, would have to be performed rapidly at

the same waiting times in order to make meaningful microrheological comparisons. Beyond

this, real-space 3D confocal microscopy studies of larger fractionated monodisperse emul-

sions that have been density-matched, index-matched, and fluorescently-stained85, which

improved on a prior confocal structural approach86, if combined with a suitable depletion

agent and similarly prepared in the dense-ϕ limit, could potentially be used to identify and

map out the primary types of heterogeneous regions, particularly the core and shell regions,

that are inherent to the DCSN model. Moreover, If 3D confocal imaging methods, including

those involving shear87,88, could be made fast enough, average motion of both droplets and

tetrahedra of droplets could be considered and then microrheological comparisons involving

plateau MSDs of each could be made with mechanical measurements to more stringently

test the DCSN model. Likewise, it would be useful for simulations to be extended in order

to predict optical properties of materials of strongly attractive deformable colloids, including
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1/ℓ∗(ϕ) of droplets, over a comparably wide range of ϕ as we have measured. We know of

no such prediction at present, particularly in the limit when the droplet radius is compa-

rable to or less than then wavelength of visible light. More sophisticated simulations could

potentially also treat the full distribution in N in heterogeneous attractive systems without

having to resort to the simplified view of SDD, shell, and core droplets in the DCSN model.

Such simulations could show more explicitly where the approximations and assumptions in-

herent in the DCSN model would work reasonably and also when these would break down.

While the level of structural complexity in such strongly attractive dense systems of colloidal

droplets poses a particularly different challenge from the standpoint of fundamental theory,

advancing a theoretical meaning of what probes actually mean for DWS in such strongly

attractive systems would be a worthwhile goal.
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Chapter 3 - Complex optical transport, dynamics, and

rheology of intermediately attractive emulsions

Reprinted by permission from Springer Nature: Springer Scientific Reports “Complex optical

transport, dynamics, and rheology of intermediately attractive emulsions.” Sci. Rep. 13(1),

1791 by Xu, Y. and Mason, T. G. (2023).

3.1 Abstract

Introducing short-range attractions in Brownian systems of monodisperse colloidal spheres

can substantially impact their structures and consequently their optical transport and rhe-

ological properties. Here, for size-fractionated colloidal emulsions, we show that imposing

an intermediate strength of attraction, well above but not much larger than thermal energy

(≈ 5.6 kBT ), through micellar depletion leads to a striking notch in the measured inverse

mean free path of optical transport, 1/ℓ∗, as a function of droplet volume fraction, ϕ. This

notch, which appears between the hard-sphere glass transition, ϕg, and maximal random

jamming, ϕMRJ, implies the existence of a greater population of compact dense clusters

of droplets, as compared to tenuous networks of droplets in strongly attractive emulsion

gels. We extend a prior decorated core-shell network model for strongly attractive colloidal

systems to include dense non-percolating clusters that do not contribute to shear rigidity.

By constraining this extended model using the measured 1/ℓ∗(ϕ), we improve and expand

the microrheological interpretation of diffusing wave spectroscopy (DWS) experiments made

on attractive colloidal systems. Our measurements and modeling demonstrate richness and

complexity in optical transport and shear rheological properties of dense, disordered colloidal
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systems having short-range intermediate attractions between moderately attractive glasses

and strongly attractive gels.

3.2 Introduction

Imposing short-range attractive interactions between colloids in a continuous liquid phase

can dramatically alter a wide range of Brownian colloidal systems, both equilibrium and

non-equilibrium, leading to different structural morphologies, dynamics, and physical prop-

erties21,28,46,60,61,89–91. In particular, for higher colloidal volume fractions, ϕ, beyond the

dilute limit and for attractive interactions that are much stronger than thermal energy, kBT ,

where kB is Boltzmann’s constant and T is the temperature, networks of colloids can form,

yielding colloidal gels39,60,75,92,93. The shape, size distribution, and deformability of the col-

loids, the history of preparation and flow imposed on the system, and the type, range, and

strength of the intercolloidal attractions are all factors that can affect the structure, dynam-

ics, and properties of colloidal gels62,63. For instance, short-range strongly attractive systems

that are formed through slippery bonding51,58, arising from a deep secondary attractive well

in the interaction potential, can have different distributions of local coordination numbers

than solid-particulate systems that are formed through shear-rigid bonding51,58,63, arising

from an extremely deep primary attractive well89,94. Strongly attractive colloidal gels repre-

sent one specific type of colloidal system having locally disordered structure, yet for which

a characteristic length scale associated with an average mesh-size can emerge through the

process of diffusion-limited cluster aggregation (DLCA)90,95. By contrast, in the other limit

of very weak colloidal attractions, approaching nearly hard (NH) interactions, disordered

colloidal glasses can be formed through rapid osmotic compression to dense ϕ. Further os-

motic compression of a colloidal glass to even higher ϕ can lead to a jammed colloidal glass.

Although colloidal gels and colloidal glasses are both disordered and can exhibit low-

frequency plateau shear elasticity, they represent two different types of soft elastic systems
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that are distinguished primarily by the strength of colloidal attractions relative to kBT .

We refer to dense colloidal systems that have interactions ranging from weakly attractive

to hard and that lack a long-time relaxation as colloidal glasses, since classical concepts of

the ergodic-nonergodic transition for hard spheres apply in this limit of vanishing attractive

strength. For ϕ just above the glass transition volume fraction of hard monodisperse spheres,

ϕg ≈ 0.56 - 0.5896–98, such hard-sphere glasses exhibit a zero-frequency elastic plateau shear

storage modulus, G′
p, as a consequence of nonergodicity and very limited accessible trans-

lational microstates per colloid on average; yet, the magnitude of G′
p remains finite even as

ϕ is increased somewhat above ϕg. For example, classic mode-coupling theory (MCT)99,100

describes glassy dynamics in glass-forming liquids as well as in hard-interacting colloidal

systems101; MCT predicts a divergence in the relaxation time of density fluctuations as ϕ is

raised towards ϕg. However, for even larger ϕ, colloidal glasses of hard rigid spheres approach

the maximal random jamming (MRJ) point36, ϕMRJ ≈ 0.646 (an insightful refinement of the

earlier concept of random close packing35), where the zero-frequency G′
p effectively diverges

when the ideally rigid colloids jam and touch. By contrast, colloidal gels, which consist of

space-filling networks, can have substantial zero-frequency G′
p for ϕ well below ϕg. In both

cases, if the colloidal objects are soft, rather than highly rigid solid spheres, this softness

can modify the behavior, and G′
p does not diverge at ϕMRJ

37. In addition, the strengths of

short-range attractions and also stabilizing repulsions, which may be present at even shorter

range than the attractions, can influence both the onset and ϕ-dependence of G′
p
10,30. For

low enough ϕ and intermediate attractive strengths, two-phase coexistence between a gas-like

monomer phase and a liquid-like non-percolating cluster phase can occur42,60,102; yet, for ϕ

well below ϕg, owing to the absence of shear-rigid percolating networks, the shear rheology

of such gas-cluster systems is dominantly viscous, not elastic.

While prior simulations67,73,85,103, theories41,64, and experiments, such as dynamic light

scattering (DLS)40,71,72,74,104,105 and three-dimensional (3D) high-resolution confocal

microscopy85,86,106,107, have addressed various aspects of short-range attractive colloidal sys-
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tems, interesting questions still remain. In particular, the connections between colloidal

dynamics and structures to observable macroscopic properties, such as optical transport and

rheological properties, have not been systematically explored experimentally and explained

self-consistently for intermediate attractive strengths. This is particularly true regarding

passive microrheological interpretations of complex dense colloidal systems having short-

range slippery attractions. Recently, in a key advance, Kim et al.57 has shown how to

correct diffusing wave spectroscopy (DWS)55,56,108,109 measurements of mean square dis-

placements (MSDs) for collective scattering that occurs in dense, nearly hard interacting,

size-fractionated, colloidal emulsions at high ϕ using measurements of the inverse scattering

mean free path, 1/ℓ∗(ϕ). This advance has yielded quantitative agreement between G′
p(ϕ)

measured using mechanical rheometry and G′
p(ϕ) derived from DWS MSDs through the gen-

eralized Stokes-Einstein relation (GSER) of passive microrheology11. Using a modern form of

DWS that is suitable for non-ergodic samples82,110–114 and that provides reproducible plateau

MSDs and also performing collective scattering corrections, amounting to factors that can

be well over 2 for dense ϕ, are both extremely important in order to measure accurate DWS

MSDs in dense elastic colloidal systems, irrespective of interactions. Thus, performing and

interpreting the DWS experiments properly are both necessary for ensuring quantitatively

accurate passive microrheology using the GSER.

Going beyond nearly hard interactions, this improved DWS technique has also been

applied to size-fractionated colloidal emulsions that are subjected to short-range micellar

depletion attractions. Kim et al.59 have explored the moderately attractive (MA) regime,

where |Ud| ≈ 2 - 3 kBT ; by contrast, Xu et al.115 have investigated the strongly attractive

(SA) regime, where |Ud| ≫ kBT (i.e. specifically |Ud| ≈ 15 kBT ). For dense MA emulsions,

the existence of excess MSDs at long times, related to heterogeneous larger-scale motion of a

minor subset of droplets in the system, have been observed and identified; yet, quantitative

passive microrheological agreement can still be obtained for G′
p(ϕ) using plateau MSDs at

intermediate times, which accurately reflect the average motion of droplets in shear-stress
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bearing regions when interpreted using the GSER. At least over the limited range of dense ϕ

explored, the measured 1/ℓ∗(ϕ) of MA emulsions effectively equals that of emulsions having

NH interactions57. By contrast, for dense SA emulsions, excess MSDs are effectively sup-

pressed by the strong attractions, and the intermediate-time plateaus in MSDs extend to

long times. However, the asymmetric shape of the 1/ℓ∗(ϕ) for SA emulsions substantially

differs from the highly symmetric shape of the 1/ℓ∗(ϕ) associated with the same emulsion

having NH interactions. Moreover, the meaning of the scattering probe associated with DWS

MSDs requires a more sophisticated interpretation; rather than simply being a droplet, the

DWS scattering probe in the strongly attractive limit has been identified to be effectively

a local dense cluster (LDC) of droplets, which has an average size similar to a tetrahedral

cluster. Therefore, the effective radius of the relevant DWS scattering probe, appropriate

for use in the GSER, is increased by a ϕ-independent factor of ≈ 2. To arrive at this effec-

tive DWS probe-size and interpretation of an average DWS probe as approximately similar

to tetrahedral cluster in this strongly slippery-attractive colloidal system, Xu et al. have

introduced a decorated core-shell network (DCSN) model, which provides a self-consistent

means of deducing the relative fractions of surface decorating droplets, shell droplets, and

core-network droplets from the measured 1/ℓ∗(ϕ). However, a colloidal emulsion system in

the intermediately attractive (IA) regime, which lies between the moderately and strongly

attractive regimes, has not yet been systematically investigated using this improved DWS

technique. If performed, a new study on IA emulsions could potentially give rise to ad-

ditional quantitative insights beyond an earlier DWS study on attractive polymer-emulsion

systems48. In particular, this new DWS study could provide a ϕ-dependent quantitative com-

parison of passive microrheological measurements, made optically, with macroscopic rheology

measurements. Moreover, the results of this new DWS study could be compared directly to

previously published studies of NH, MA, and SA emulsions.

Here, we show that passive DWS microrheology can be performed quantitatively on a

dense IA emulsion system having a short-range, slippery interdroplet attraction (≈ 5.6 kBT )
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induced by micellar depletion, provided that the substantial complexities in the DWS correla-

tion functions are identified and interpreted without oversimplification. Our measurements

of optical transport properties, DWS correlation functions, and macroscopic mechanical

properties of dense IA emulsions cover a much larger range of ϕ than prior studies in which

the dense emulsion systems were formed through gravitational creaming of larger droplets

and in which different experimental techniques were used81,93. Our measurements reveal a

ϕ-dependent richness, both in optical transport properties and DWS MSDs, that has not

been previously observed for either MA or SA emulsion systems. Most strikingly, the overall

magnitude of 1/ℓ∗(ϕ) for ϕ ≤ 0.65 is reduced compared to SA emulsions, indicating a lower

surface-to-volume ratio of attractive networks and constituent clusters, and a notch-like de-

pression is also observed for ϕg ≤ ϕ ≤ ϕMRJ. In addition to applying the essential MSD

correction for collective light scattering in DWS57, we extract the true self-motion MSDs of

scattering probes in shear-supporting regions of the attractive emulsion at intermediate times

and disregard long-time excess MSDs that are known to arise from a small sub-population of

droplets having higher mobility59. Moreover, we hypothesize that the scattering probes asso-

ciated with DWS MSDs are neither solely single droplets throughout the entire range of ϕ as

in MA emulsions59, nor solely LDCs of tetrahedra of droplets throughout the entire range of

ϕ as in SA emulsions115. Instead, for IA emulsions, our measurements suggest that the effec-

tive average radius of the DWS probes is dominated by droplets below the cluster-jamming

point at lower dense ϕ, varies continuously through a transition region between droplets and

tetrahedral LDCs for ϕ in the notch, and then is dominated by LDCs at higher dense ϕ

above the cluster-jamming limit near ϕMRJ. To quantify this transition of DWS probes and

link it to our experimental measurements, we develop an extended decorated core-shell net-

work (E-DCSN) model that couples the measured ϕ-dependent self-motion plateau MSDs

to the measured 1/ℓ∗(ϕ), thereby enabling us to infer the effective average radius of the

dominant scattering probes for different ϕ. We then deduce the microrheological G′
p from

solely optical measurements via the GSER. With these advances in interpreting DWS, pas-
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sive microrheology delivers accurate G′
p for this highly complex, intermediately attractive

dense emulsion system, as evidenced by comparisons with macroscopic rheometry, noting

that the zero-frequency shear rigidity of the system effectively vanishes at ϕ corresponding

to the minimum in the notch of 1/ℓ∗(ϕ). In addition, we predict trends in the probability

distributions of local coordination number over a wide range of ϕ for IA emulsions through

a principal-component fit to 1/ℓ∗(ϕ) based on the E-DCSN model.

3.3 Methods

3.3.1 Attractive emulsion preparation, handling, and characterization

We prepare a uniform, size-fractionated emulsion having a short-range intermediately

attractive depletion interaction (|Ud| ≈ 5.6 kBT ) using trimethylsiloxy terminated poly-

dimethylsiloxane oil (PDMS, Gelest Inc.; kinetic viscosity: νo = 350 cSt; mass density:

ρo = 0.97 g cm−3; average molecular weight: MWo = 13,650 g mol−1; refractive index:

no = 1.4031), sodium dodecyl sulfate (SDS, Fisher Scientific; electrophoresis grade 99% pu-

rity), and deionized water (Millipore Milli-Q Academic; resistivity: 18.2 MΩ cm). We follow

the protocol of emulsification, homogenization, and size-fractionation developed by Kim et

al.57, but here fix [SDS] = 35 mM and thereby obtain a 4× size-fractionated, concentrated

master emulsion. A small portion of this master emulsion is diluted in a 10 mM aqueous

SDS solution to ϕ ≈ 10−4 and then characterized using dynamic and static light scattering,

yielding an average radius ⟨a⟩ = 484± 12 nm and polydispersity δa/ ⟨a⟩ ≃ 0.15, where δa is

the standard deviation of the droplet radial size distribution. The emulsion in the present

study of intermediate attractions (IA) at [SDS] = 35 mM has been purposefully made to

be as close to the same as possible when compared to the emulsion used in recent prior

DWS studies of nearly hard (NH)57 at [SDS] = 10 mM, moderate attractions (MA)59 at

[SDS] = 20 mM, and strong attractions (SA)115 at [SDS] = 80 mM. These NH, MA and SA

emulsions have been made from PDMS having the same molecular weight as we used for the
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IA emulsions; moreover, the NH, MA and SA emulsions all have the same average radius

⟨a⟩ = 459 ± 15 nm and polydispersity δa/ ⟨a⟩ ≃ 0.18. So, the measured characteristics of

the size distributions are very close, confirming that the IA emulsion is nearly the same as

the emulsion used in prior NH, MA, and SA studies. Based on results of a prior optical

study80, the refractive index of the continuous phase of the IA emulsion at [SDS] = 35 mM

is calculated to be nc = 1.3320 at room temperature T = 20.0 ◦C.

Setting [SDS] = 35 mM in the continuous phase, well above SDS’s critical micelle con-

centration of C∗ ≈ 8.1 mM, induces lubricated depletion attractions between droplets in the

fractionated PDMS O/W emulsion, resulting in a secondary minimum in the pair interaction

potential. By combining Asakura-Oosawa’s theory for larger and smaller hard spheres with

Vrij’s linear micellar model46, the magnitude of this potential minimum is calculated to be

|Ud| ≈ 5.6 kBT . In addition to providing micellar depletion attractive interactions, adsorbed

dodecyl sulfate anion (DS−) on the droplet surfaces, as well as DS− and Na+ in the con-

tinuous phase, also lead to a strong short-range Debye-screened-charge repulsion between

droplets, which precludes their coalescence. The interdroplet attraction is lubricated and

slippery as a result of the retention of an aqueous continuous phase layer between droplets;

this is dissimilar to bonding between solid colloids that have been destabilized in a way that

allows them to fuse together in a shear-rigid fashion as a result of exceedingly strong Van

der Waals attractions. The Debye screening length at T = 20.0 ◦C is λD ≈ 1.64 nm at [SDS]

= 35 mM in the IA emulsion, as compared to λD ≈ 3.04 nm at [SDS] = 10 mM for the NH

emulsion and to λD ≈ 1.08 nm at [SDS] = 80 mM for the SA emulsion. These changes in

Debye screening length influence the shape and location of the rapid rise in the stabilizing

repulsion between droplets, at shorter range than that corresponding to the secondary min-

imum cause by depletion effects. So, changing [SDS] alters not just |Ud| but also λD, which

plays an important role in repulsive droplet jamming at higher applied osmotic pressures.

We concentrate the emulsion by centrifugation using a swinging bucket rotor (Beckman

L8-55 ultracentrifuge, SW-28 swinging bucket rotor, 10,000 rpm, 1.25 h) without inducing
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droplet coalescence. We then separate and combine the concentrated elastic plugs formed at

the top of centrifuge tubes; next, we dilute these combined recovered plugs to ϕ ≈ 0.1 using

35 mM SDS solution. We repeat this process twice more to set the SDS concentration and

acquire a large volume of concentrated stock emulsion that is elastic at high ϕ. To avoid any

size separation that could be caused by centrifugation, this concentrated master emulsion

is thoroughly mixed at sufficiently low strain rates to prevent droplet rupturing. To reduce

water loss from the master sample, we store this master sample in a temperature-controlled

chamber set at a temperature of 20.0 ◦C to minimize the possible evolution of ϕ due to

evaporation-condensation of water vapor into the cap and walls of the container, as well as

water vapor leakage when opening and re-sealing the container. The oil droplet volume frac-

tion of this concentrated master emulsion is measured to be ϕm = 0.793± 0.003, determined

using a gravimetric evaporation method80.

We make IA emulsions at lower ϕ by diluting this concentrated master emulsion with an

aqueous 35 mM SDS solution using an analytical balance (Denver Instruments APX-200, 0.1

mg precision). We stir each diluted sample having ϕ < ϕm using a small spatula, imposing

an estimated 50 s−1 average shear flow-rate, for 3 minutes in a 3 mL vial to ensure that

the resulting emulsion is homogeneously dispersed before loading into an optical cuvette

or the mechanical rheometer. After mixing, each diluted sample is split into two portions:

1.5 mL for optical transport and DWS measurements and 0.5 mL for mechanical rheome-

try. This guarantees that exactly the same sample with identical ϕ has been used for both

DWS and mechanical rheometry measurements, which is necessary in order to make accurate

microrheological comparisons.

3.3.2 Optical transport and diffusing wave spectroscopy measurements

Optical transport and DWS measurements are performed with a Rheolab 3 light scattering

instrument (LS Instruments, Fribourg CH), equipped with backscattering option. Laser light

(wavelength λ = 685 nm), transmitted from a rotating ground-glass diffuser, is subsequently
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collimated to illuminate the sample. At a given ϕ, each emulsion is loaded into a clean glass

optical cuvette with a width of 10 mm and a thickness (i.e. pathlength) of L = 5 mm. This

pathlength is large enough to ensure that the ℓ∗ is always at least a factor of 4 smaller than

L for all ϕ corresponding to the MSDs that we report. To avoid artifacts that could occur

because of an inadequate sample volume, we ensure that the upper surface of the loaded

emulsion is at least 15 mm high relative to the bottom surface of the cuvette.

The protocols that we have developed for loading emulsion samples into the cuvette and

for setting the waiting time, which starts at the completion of sample loading and ends

at the beginning of measurements, depend on how viscous or elastic each sample is and

therefore on ϕ. For dilute viscous samples having ϕ ≤ 0.3, we only measure and report

optical transport ℓ∗, not DWS MSDs, using the following protocol that has been designed

to not be excessively influenced by gravitational compaction leading to phase separation,

which is known for dilute attractive emulsions81. After dilution and mixing, we pour the

sample into the cuvette over one wall, cap and seal the cuvette with Parafilm, and allow

the sample to rest for 24 hours at 20.0 ◦C. Then, the cuvette is gently inverted for 5 times

and finally righted. After placing the cuvette into the Rheolab 3, we wait 1,200 s before

measuring ℓ∗. This waiting time of 1,200 s is significantly larger than the longest doubling

time ≈1.7 s for the lowest ϕ = 0.052, calculated on basis of colloidal diffusion of droplets

in water. Therefore, local dense clusters of droplets have adequate time to form through S-

DLCA51,58 for all presented 0.052 ≤ ϕ ≤ 0.30. At each ϕ, the reported 1/ℓ∗ is averaged from

11 trials and the trial-to-trial standard deviation is less than 4%. No noticeable creaming,

which would create a systematic trend in the measured ℓ∗, is observed as a function of trial

number.

We measure both ℓ∗ and DWS g2(t)−1 for all samples having ϕ ≥ 0.401 after loading the

sample in the following manner to avoid introducing air bubbles into the cuvette. For 0.401

≤ ϕ ≤ 0.541, the yield stress of the emulsion is still low enough that we can simply pour

the emulsion into the cuvette over one wall. For 0.571 ≤ ϕ ≤ 0.630, we use a syringe with

51



a stainless-steel needle (inner diameter I.D. = 0.84 mm) to load the samples. We begin by

completely inserting the syringe tip into the bottom of the cuvette, then slowly withdrawing

the syringe while injecting the emulsion and ensuring that the tip stays below the emulsion’s

surface. For ϕ ≥ 0.64, we transfer the emulsion with a small spatula into the cuvette as close

as possible to its bottom; then, we use low speed (< 1,500 rpm) centrifugation for a total

duration less than 60 s to eliminate stray air bubbles in loaded cuvettes without generating

gradients in ϕ. After loading, the capped optical cuvettes are sealed with Parafilm, and

all of the emulsion samples are stored in a temperature-controlled chamber for 24 hours to

equilibrate before measurements. The sample temperature in the Rheolab 3 is maintained

at T = 20.0 ± 0.1 ◦C for all measurements. For each ϕ ≥ 0.401, we measure ℓ∗ followed by

DWS g2(t)− 1 in transmission geometry for 11 trials; and then we measure DWS g2(t)− 1

in backscattering geometry for 11 trials. Each trial of g2(t)− 1 measurements contains 300

s of multi-tau duration and 60 s of echo duration. The reported 1/ℓ∗ and g2(t)− 1 at each ϕ

are obtained by averaging. The standard deviations of 1/ℓ∗ for all ϕ explored over ϕ ≥ 0.4

and also the standard deviations of the long-time g2 − 1 for all ϕ explored over ϕ ≥ 0.61 are

less than 2% of the corresponding average values.

At each ϕ, using the measured g2(t) − 1 and ℓ∗, we extract the apparent ⟨∆r 2
a(t)⟩ by

solving the classic transcendental equation of DWS57,82,83, and then each apparent MSD

is converted into the probe self-motion ⟨∆r 2(t)⟩ to correct for collective light scattering.

The apparent MSD is multiplied by a dimensionless ratio, less than unity, given by the

actual measured scattering strength at that ϕ, reflected by 1/ℓ∗(ϕ), divided by the Mie

scattering strength that ignores collective scattering at low-ϕ: [1/ℓ∗(ϕ)]/[(1/ℓ∗ISA,Mie)ϕ], where

1/ℓ∗ISA,Mie = 0.0207 µm−1 is the slope of the calculated 1/ℓ∗ versus ϕ in the dilute limit as

ϕ → 0, based on independent scattering approximation. As a result, the overall magnitude

of the apparent MSDs at different ϕ are reduced by various amounts to obtain the probe

self-motion MSDs, as this dimensionless ratio is ϕ-dependent.

To ensure that the number of droplets per scattering volume is time-invariant within
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during our DWS measurements of concentrated IA emulsions at higher ϕ, we have also

performed Rheolab 3 measurements after only a 10-minute waiting time, which serves as a

reference for the reported results at a much longer 24-h waiting time. For all ϕ ≥ 0.401,

changes in the DWS count rate are less than 3%, and changes in the measured 1/ℓ∗ are less

than 4%. Moreover, no distinct layer of cream, which would scatter light more strongly at

the top of the cuvette, has been observed visually after the 24-h waiting time. We report

dynamic DWS MSD measurements only in the effectively time-invariant range of ϕ ≥ 0.541,

over which aging and gravity-induced droplet compaction do not significantly influence our

measurements and over which the measured DWS g2(t)− 1 do not fully decay to baseline in

the long-time limit. For ϕ ≥ 0.64, a slight decrease in the decay rate of long-time g2(t)− 1

beyond t ≈ 2 × 10-1 s is observed in measurements after the 24-h waiting time, which is

an indication of very slow aging. This slow aging is not the subject of our study, and our

microrheological comparisons are based on plateau MSDs that are at intermediate correlation

times, not at long correlation times which show some evidence of slight aging through changes

in relaxation. Thus, the primary plateau MSDs, used in the GSER of passive microrheology,

occur at shorter times t ≲ 2×10-2 s and are time-invariant over at least 24 h for all ϕ ≥ 0.541

that we report. Microrheological comparisons are facilitated by this effective time-invariance

of the plateau feature in the MSD over 24-h long waiting time for the elastic dense emulsions.

Our purpose in the present study is to make microrheological comparisons of elastic plateau

moduli, not to study long-term aging.

3.3.3 Mechanical shear rheometry

We use a 25 mm diameter cone-and-plate geometry (stainless steel) in a controlled-strain

mechanical shear rheometer (RFS-II, Rheometric Scientific, equipped with a vapor trap)

to measure the plateau elastic shear moduli, G′
p,mech, at low strains corresponding to the

linear viscoelastic regime. After the same 24-h waiting time also used for DWS, we pre-shear

the sample at 50 s−1 shear rate for 30 s by stirring with a spatula and load the sample
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into the rheometer. Measurements are commenced two minutes after lowering the cone to

the appropriate pre-set gap with respect to the plate and adjusting the vapor trap. All

measurements are performed at T = 20 ◦C. At each ϕ, we perform a small-strain oscillatory

frequency sweep from ω = 20 rad/s down to 0.02 rad/s at a small shear strain amplitude

of γ = 0.005. The plateau storage modulus becomes noticeably frequency dependent for

ϕ ≤ 0.620 at this γ = 0.005. We next conduct a strain sweep at each ϕ and ω = 1

rad/s, yielding the linear and non-linear shear storage modulus, represented as G′(γ). This

frequency is within the range of time scales that correspond to the plateau associated with

DWS MSD measurements. We probe down to shear strains as low as ≈ 1 × 10−4, which

is limited by the resolution of the RFS-II’s motor. Under small strains, a dominant linear

storage modulus can be detected down to ϕ = 0.610. To obtain the small-strain G′
p,mech

of the IA emulsion at each ϕ, we fit the measured G′(γ) to a function that has a low-γ-

plateau115 (inset in Figure 3.6): G′(γ) = G′
p,mech/[(γ/γy)

κ + 1], where γy is the yield strain

associated with the log slope change in G′(γ), and κ is a power law exponent related to the

non-linear response of G′(γ) to larger strains. A two-step yielding strain-response, which

has been reported previously in strain sweeps on a similar O/W emulsion system but which

had a much stronger attractive strength (|Ud| ≈ 21 kBT )
46, is not apparent in the measured

strain sweeps of these IA emulsions.

3.3.4 Regularized fitting using the extended decorated core shell network model

In the prior DCSN model, developed for the SA emulsion, an effective probe-size factor

αSA = 2.0, corresponding to a local dense cluster that is approximately tetrahedral on

average, has been introduced based on structural concepts for attractive gels of emulsion

droplets. Consequently, for attractive colloidal systems, identifying the appropriate probe

for interpreting a DWS correlation function as a MSD is complex. The prior study of SA

emulsions showed that passive microrheology on these systems can be performed quantita-

tively via the GSER if the effective size of the DWS scattering probes is taken into account:
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G′
p,GSER ∝ 1/(⟨apr⟩ ⟨∆r 2⟩p) = 1/(α ⟨a⟩ ⟨∆r 2⟩p), where α is the dimensionless ratio between

the effective average radius of the DWS scattering probes, ⟨apr⟩, and the average hydro-

dynamic radius of an isolated droplet, ⟨a⟩. By contrast, the effective DWS probe-size is

comparable to ⟨a⟩ in the MA system: αMA = 1.059. The IA system, studied herein, has an

attractive potential depth that is in between the above-mentioned MA and SA regimes.

To set the magnitude of ϕcore,perc before introducing the fourth principal component of

non-percolating droplets for the IA emulsion, we hypothesize an average droplet volume

fraction ϕnet,core = 0.793 within the percolating core regions, which is the maximum ϕ that

we obtained experimentally with the emulsion having this droplet size distribution. We

determine G′
p within the regions that only have percolating core droplets using the EEI

model37: G′
p,EEI(ϕnet,core). The magnitude of ϕcore,perc(ϕ) is determined based on the effective

medium assumption: ϕcore,perc(ϕ) = ϕnet,core[G
′
p,GSER(ϕ)/G

′
p,EEI(ϕnet,core)], where G

′
p,GSER(ϕ)

is determined from the DWS plateau MSD measurements with the assumption of α = 2 in

the GSER: G′
p,GSER(ϕ) = kBT/[πα⟨a⟩ ⟨∆r 2(ϕ)⟩p].

Initially, we exclude non-percolating core droplets from consideration, and we minimize

χ2 of the nonlinear least-squares fit for 1/ℓ∗IA(ϕ) by varying the model’s parameters [equation

(3.1) with ϕcore,nonperc temporarily set to zero], in a manner similar to what has been previ-

ously done for the SA emulsion. This effectively ignores the notch initially but provides a

comparable overall shape for the ϕ-dependent functional forms of SDD, shell, and percolat-

ing core components. Then, we take into account of ϕcore,nonperc by transferring weights from

ϕshell at ϕ ≤ 0.64 and from ϕSDD within the lower end of notch region. This weight-transfer

reflects the reorganization of outer droplets between different clusters as a consequence of

the applied shear stress while diluting and mixing. We do so in a manner that preserves

the smoothness of all four principal components, even as there are some rapid variations

in the notch region itself as SDDs are converted to shell droplets, shell droplets into non-

percolating core droplets, and shell and non-percolating core droplets into percolating core

droplets. After iterations of minimizing χ2 of the 1/ℓ∗IA(ϕ) fit over the entire ϕ range, hav-
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ing all key features considered, we obtain a regularized curve fit of 1/ℓ∗IA(ϕ) with smooth

inter-conversions between all component droplet volume fractions.

3.3.5 Probability density functions of local coordination number

We assume that the distributions for all four principal components in the E-DSCN model

are Gaussian; we have also assumed that the same standard deviation of σN = 2.5 is suitable

for all of these distributions in order to provide total distributions that are smooth as a

function of N for all ϕ considered. Enforcing this smoothness, thus, effectively amounts to a

regularization assumption. The peaks of pSDD(N), pshell(N), pcore,nonperc(N), and pcore,perc(N)

are located at ⟨N⟩ = 3, 6, 9, and 12, respectively. We emphasize here that these plotted

distributions have been inferred, not directly measured. Yet, these distributions show how

increasing the osmotic pressure applied to an attractive emulsion can lead to very substantial

changes in the local coordination number that are consistent with the measured trends in

the optical transport properties of such emulsions over a wide range of ϕ.

Here, we note that pN(N ≤ 2) has been folded to larger N , consistent with slippery

diffusion-limited cluster aggregation in the dilute limit58. In our experimental system, N

= 2 is theoretically possible, but highly unlikely. Droplets trapped in a mobile bridging

configurations, for instance spanning between clusters, can have N = 2 in a very unusual

situation when clusters are re-established following the cessation of loading and shear dis-

ruption. SDDs can also have N = 2 in a transient sense if a very strong Brownian excitation

breaks one of the three bonds of the SDD and the droplet shifts into a new configuration

with only two bonds still present. By contrast, N ≥ 3 represents a relatively stable config-

uration that is only seldom destabilized by Brownian excitations in IA emulsions, resulting

in transient droplet motion on the surface of a cluster rather than complete unbinding and

liberation as an isolated droplet. Such transient bound droplet motion is one of the potential

sources that could lead to excess DWS MSDs that become particularly noticeable toward

lower ϕ.
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3.4 Results and analysis

3.4.1 Diffusing wave spectroscopy

The measured ϕ-dependent inverse mean free path of optical transport, 1/ℓ∗IA, for the inter-

mediately attractive emulsions (Figure 3.1, red diamonds) is asymmetric and has two knees,

similar to 1/ℓ∗SA for the strongly attractive emulsions (Figure 3.1, blue circles). Strikingly,

1/ℓ∗IA(ϕ) also exhibits a notch-like dip (Figure 3.1, bracket and arrow, 0.58 ≤ ϕ ≤ 0.64). By

contrast, 1/ℓ∗NH(ϕ), measured for a very similar emulsion having nearly hard interactions at

considerably lower [SDS] (Figure 3.1, gray squares), has a much simpler inverted parabolic

Figure 3.1. Measured inverse mean free path of optical transport, 1/ℓ∗, of frac-
tionated silicone oil-in-water (O/W) emulsions as a function of droplet volume
fraction, ϕ, for three different strengths of micellar depletion attraction (path-
length L = 5.0 mm, light wavelength λ = 685 nm). Intermediately attractive (this
study, [SDS] = 35 mM, |Ud| ≈ 6 kBT , average droplet radius ⟨a⟩ = 484 nm): 1/ℓ∗IA (red solid
diamonds). Nearly hard interactions (Kim et al.57, [SDS] = 10 mM, |Ud| < kBT , similar ⟨a⟩
= 459 nm): 1/ℓ∗NH (gray open squares); fit (gray dashed line) using equation (6) in Xu et
al.115. Strongly attractive (Xu et al.115, [SDS] = 80 mM, |Ud| ≈ 15 kBT , ⟨a⟩ = 459 nm):
1/ℓ∗SA (blue open circles); fit (blue solid line) from Xu et al.115 using equation (2.5) with
constraints imposed by equations (2.1)-(2.4).
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shape that peaks at ϕ ≈ 0.50. For the IA emulsion, in the low ϕ regime, 0 < ϕ ≲ 0.20,

the magnitude and slope of 1/ℓ∗IA(ϕ) are close to both 1/ℓ∗NH(ϕ) and 1/ℓ∗SA(ϕ). At larger

ϕ, a first knee in 1/ℓ∗IA(ϕ) is observed at ϕ ≈ 0.2, a slightly lower ϕ-value than the first

knee in 1/ℓ∗SA(ϕ). Above this first knee, 1/ℓ∗IA(ϕ) grows approximately linearly but with a

lower slope than in the dilute ϕ-regime; moreover, 1/ℓ∗IA has a smaller magnitude than both

1/ℓ∗NH and 1/ℓ∗SA, indicating that dense microscale emulsions with intermediate attractions

over 0.2 ≲ ϕ ≲ 0.64 scatter less than emulsions having nearly-hard interactions and also

strong attractions. At the upper end of this ϕ-range, a dip-like notch is observed, and this

notch region ends just before the second knee where the slope in 1/ℓ∗IA(ϕ) becomes negative

towards the highest ϕ shown. Within the notch, a local minimum is observed at ϕ ≈ 0.60.

In the high-ϕ regime above the second knee, the magnitude of 1/ℓ∗IA and 1/ℓ∗SA are about the

same, within experimental uncertainties in ϕ, and both are greater than 1/ℓ∗NH. This implies

that IA and SA emulsions scatter more in the strongly compressed high-ϕ limit than similar

emulsions having NH interactions.

The optical transport results for the IA emulsion used in this present study can be directly

compared with prior studies of nearly identical emulsions at other [SDS]57,59,115 because we

have prepared a fractionated IA emulsion using the same materials and methods. The aver-

age hydrodynamic radius of the IA emulsion, ⟨a⟩ = 484 nm, is within 5% of ⟨a⟩ = 459 nm

in the prior studies. Moreover, considering the Mie-scattering from an ideal isolated sphere,

1/ℓ∗ISA,Mie, given by independent scattering approximation (ISA) in the highly dilute limit,

the difference between the IA emulsion and the prior studies is less than 0.5%. Therefore, the

substantial differences in 1/ℓ∗(ϕ), found between the present and prior studies as shown in

Figure 3.1, arise from different droplet structures caused by the different attractive strengths

|Ud|, not from the very small difference in ⟨a⟩.

Each of the measured DWS intensity autocorrelation functions, g2(t)− 1, exhibits a pri-

mary decay at t ≈ 10-5 s, a primary plateau, and then a secondary decay at 10-1 s, considering

both transmission and backscattering geometries, for the IA emulsion over a wide range of
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dense ϕ (Figure 3.2). From prior DWS experiments by Kim et al.59 on dense MA emulsions

at somewhat lower [SDS] = 20 mM, it has been hypothesized that secondary decays in DWS

correlation functions can be attributed to a minor sub-population of droplets which are only

marginally bound; this secondary decay gives rise to excess DWS MSDs at long times. While

the details of the secondary decays are different for IA than MA emulsions, secondary decays

observed in the present IA study also indicate the existence of excess MSDs. As with the MA

emulsion, here for the IA emulsion, we seek to obtain primary plateau MSD values that can

be gleaned from the measured DWS g2(t) − 1 at intermediate times prior to the secondary

Figure 3.2. Measured time-dependent DWS intensity autocorrelation functions,
g2(t) − 1, of intermediately attractive O/W emulsions for dense droplet vol-
ume fractions ϕ (color-coded, see right), measured in (a) transmission and (b)
backscattering geometries, respectively (pathlength L = 5 mm, light wavelength
λ = 685 nm). DWS multi-tau correlation data extend from early times up to about 2×10−1

s; DWS echo data are shown at longer times. Arrows indicate the sign of concavity in the
linear-log plot (up = +, down = -): [part (a)] for ϕ = 0.620, g2(t)−1 is concave up at earlier
times, then concave down at longer times; [part (b)] by contrast, at lower ϕ = 0.541, no
concave up region is observed (both arrows are down). Dashed lines correspond to the calcu-
lated primary decay-to-plateau g2(t)− 1 using the fitting parameters obtained from the fits
in Figure 3.3(a). Minor damped oscillatory noise signals, resulting from minute mechanical
vibrations, are superimposed on the main g2(t)− 1 signals, and visible for all ϕ at 3× 10−7

s ≲ t ≲ 10−5 s and 5× 10−3 s ≲ t ≲ 2× 10−1 s.
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decays. We determine a plateau in the measured g2(t)−1 by locating the transition between

concave up and concave down features as shown in the linear-log format. This transition

occurs at t ≈ 2 × 10-2 s, as can be seen most easily at ϕ = 0.62 in transmission [Figure

3.2(a)]. The secondary decay in g2(t)− 1 at longer time t ≳ 2× 10-2 s can be attributed to

the excess MSDs, which are not indicative of the average probe motion for microrheological

purposes59. For ϕ ≤ 0.60, we cannot discern a transition from concave up to concave down;

so, we refrain from identifying a plateau DWS MSD.

To obtain the primary plateau MSDs, ⟨∆r 2⟩p, for later use in the GSER of passive mi-

crorheology, we have extracted the probe MSDs ⟨∆r 2(t)⟩ from measured g2(t) − 1; these

MSDs are corrected for collective scattering using 1/ℓ∗IA and the independent scattering ap-

proximation57. Each of the probe MSDs exhibits an early-time rise up to t ≈ 3 × 10-5 s, a

gradual bending to primary plateau, and then a secondary rise beyond t ≈ 2× 10-2 s [Figure

3.3(a)]. The primary plateau MSD values are obtained by utilizing the dense-emulsion MSD

model57 to fit the early-time rise-to-plateau of ⟨∆r 2(t)⟩ for ϕ ≥ 0.61, while compensating

slightly for the periodic vibrational noise (i.e. damped oscillatory signal superimposed on

what would otherwise be a smooth MSD) that is mostly pronounced at 10-2 s ≤ t ≤ 10-1

s. The early-time MSD fitting curves are displayed as solid lines in Figure 3.3(a), and the

corresponding calculated primary decay-to-plateau g2(t)− 1 are represented by dashed lines

in Figure 3.2.

We present the inverse primary-plateau probe MSDs , 1/⟨∆r 2⟩p, which are proportional

to the shear elastic plateau moduli in the GSER, as a function of ϕ for the NH57, IA, and

SA115 emulsion systems in Figure 3.3(b). All of these emulsion systems have very similar

droplet radii and polydispersities; only the interactions between droplets are different. After

correcting for collective scattering, 1/⟨∆r 2⟩p of all the NH, IA, and SA systems, within the

experimental uncertainties, are the same at higher ϕ ≳ 0.64 [Figure 3.3(b)]. Interestingly,

as ϕ decreasing from 0.64, the 1/⟨∆r 2⟩p versus ϕ of these systems behave very differently.

For the NH system, 1/⟨∆r 2(ϕ)⟩p,NH follows the prediction of the entropic, electrostatic, and
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Figure 3.3. Time-dependent DWS mean square displacements (MSDs), ⟨∆r2(t)⟩,
and inverse primary plateau MSDs, 1/ ⟨∆r2⟩p, as a function of ϕ. (a) Ensemble-

averaged ⟨∆r 2(t)⟩ for a series of different ϕ, extracted from g2(t) − 1 in Figure 3.2 and
corrected for collective scattering using 1/ℓ∗IA in Figure 3.1. Rises in the MSDs at long times
are attributed to excess MSDs59, which do not reflect average probe dynamics. DWSMSDs at
early-to-intermediate times are fit to an emulsion model, developed for nearly hard droplet
interactions by Kim et al.57. Fits (solid lines) provide plateau self-motion probe MSDs,
⟨∆r 2⟩p. (T) and (B) indicate transmission and backscattering geometries, respectively. (b)

1/⟨∆r 2(ϕ)⟩p for emulsion systems having different types of interactions between droplets.

Intermediate attractions (this study): 1/⟨∆r 2⟩p,IA (red diamonds), obtained from long-time
plateau values of the fits in part (a). Dotted line: prediction curve with a smooth transition
between an analytical interpolation of measured 1/⟨∆r 2⟩p,IA for ϕ ≥ 0.61, and the rescaled

calculation using the EEI model37 and GSER for ϕ < 0.61. Nearly hard interactions (Kim et
al.57): 1/⟨∆r 2⟩p,NH (gray squares, dashed line: fit using the EEI model and GSER). Strong

attractions (Xu et al.115): 1/⟨∆r 2⟩p,SA (blue circles, solid line: analytical interpolation).

interfacial (EEI) model37 with a knee on the log-linear plot located near ϕ ≈ 0.60. Strikingly,

1/⟨∆r 2(ϕ)⟩p,SA is substantially larger than inverse plateau MSDs of both the NH and IA

systems over 0.52 ≤ ϕ ≲ 0.64, indicating highly restricted droplet motion in the SA system’s

gel network of droplets even for ϕ well below ϕMRJ. By contrast, 1/⟨∆r 2(ϕ)⟩p,IA is some-

what smaller than 1/⟨∆r 2(ϕ)⟩p,NH when ϕ ≲ ϕMRJ, and it exhibits a rapid drop just below

ϕMRJ as ϕ decreasing to 0.61. For ϕ < 0.61, the signal from excess MSDs is so strong that

it interferes with our protocol to obtain primary plateau MSD values. Comparing to the

NH system, the higher [SDS] in the IA system not only induces an intermediate strength
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of depletion attraction, but also leads to a smaller screening length that shifts the effective

jamming point up in ϕ, resulting in a smaller 1/⟨∆r 2(ϕ)⟩p. The concave-up appearance of

1/⟨∆r 2(ϕ)⟩p,IA in log-linear format is similar to the shape of the upper end of the notch in

1/ℓ∗IA(ϕ) over the same ϕ-range.

3.4.2 Model

We hypothesize that an extended decorated core-shell network (E-DCSN) model, which

takes into account scattering contributions from droplets having different local coordination

numbers, N58, in different local regions, can describe the complicated shape of 1/ℓ∗IA(ϕ)

for the disordered IA emulsion. Its predecessor, the DCSN model, had been introduced to

describe and interpret the less complex shape of 1/ℓ∗SA(ϕ) of SA emulsions using only three

principal components115. The lower attractive strength of |Ud| ≈ 5.6 kBT in the IA emulsion,

as compared to ≈ 15 kBT in the SA emulsion, leads to a greater population of compact dense

clusters and less tenuous gel structures in the IA emulsion. Moreover, the notch-like feature

in 1/ℓ∗IA(ϕ) cannot be captured using only three principal components. While retaining the

three principal components of the DCSN model, the E-DCSN model introduces a fourth

principal component (i.e. non-percolating core clusters having high ⟨N⟩), which enables the

notch-like dip in 1/ℓ∗IA(ϕ) to be captured. By interpreting the principal components of the

E-DCSN model, we are able to obtain further insight into the dynamical optical fluctuations

and passive microrheological interpretation of the IA emulsion.

The four principal components in the E-DCSN model are: percolating core droplets,

non-percolating core droplets, shell droplets, and surface decorating droplets (SDDs). We

assume that only the percolating core droplets, which have high ⟨N⟩ ≈ 12, form a gel-like

network, which can support macroscopic shear stresses elastically. In addition, there are

non-percolating core droplets in the form of dense clusters, which have somewhat lower

⟨N⟩ ≈ 9 and do not participate in supporting macroscopic shear stresses elastically. Both

types of core regions are typically surrounded by shell droplets, which have significantly
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smaller ⟨N⟩ ≈ 6. In turn, the shell regions are decorated with SDDs, which have ⟨N⟩ ≈ 3.

The scattering of the IA emulsion can be tied to the E-DSCN model through the relative

scattering contributions of the four different principal components, each of which vary with

ϕ. Droplets having lower ⟨N⟩ effectively scatter more than droplets having higher ⟨N⟩

because less crowding leads to a larger scattering cross section. We parameterize the principal

components using component droplet volume fractions of the different species: ϕSDD for

SDDs, ϕshell for shell droplets, ϕcore,nonperc for non-percolating core droplets, and ϕcore,perc

for percolating core droplets. As ϕ is varied, each of these principal component droplet

volume fractions can change, reflecting structural changes in the IA emulsion from the dilute

regime to the concentrated regime. To ensure droplet volume conservation, the total droplet

volume fraction is the sum of the four ϕ-dependent component droplet volume fractions:

ϕ = ϕSDD(ϕ)+ϕshell(ϕ)+ϕcore,nonperc(ϕ)+ϕcore,perc(ϕ). At a given ϕ, we assume that scattering

contributions from each of the four principal components are linear in their respective volume

fractions in 1/ℓ∗IA(ϕ):

1/ℓ∗IA = 1/ℓ∗SDD + 1/ℓ∗shell + 1/ℓ∗core,nonperc + 1/ℓ∗core,perc

= (1/ℓ∗SDD,0)(ϕSDD + rshellϕshell + rcore,nonpercϕcore,nonperc + rcore,percϕcore,perc),
(3.1)

where 1/ℓ∗SDD,0 is the slope of linear growth in scattering at dilute ϕ where SDDs dominate;

rshell, rcore,nonperc and rcore,perc are the dimensionless relative scattering intensity from a shell

droplet, from a non-percolating core droplet, and from a percolating core droplet, respec-

tively, compared to a SDD.

Ignoring the notch-like dip, the overall shape of 1/ℓ∗IA(ϕ) is determined initially without

introducing the non-percolating core droplets in a manner similar to the DCSN model115.

We assume a linear rise in ϕSDD as ϕ increasing from 0 to ≈0.2, followed by an exponen-

tial decrease toward ϕ ≈ 0.6. The initial rise in ϕSDD(ϕ) originates from the formation of

small clusters through slippery diffusion-limited cluster aggregation51,58, whereas the later

decrease in ϕSDD(ϕ) is attributed to the conversion of SDDs primarily to shell droplets. These

features can be described using the formula: ϕSDD(ϕ) = ϕ/{1 + exp[(ϕ − ϕSDD,F)/∆ϕSDD]}.
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As for ϕcore(ϕ) in the DCSN model of SA emulsions, here for IA emulsions, we deduce

ϕcore,perc(ϕ) from an interpolation of the measured DWS inverse plateau MSDs, 1/⟨∆r 2(ϕ)⟩p
[see the red dotted line in Figure 3.3(b)]. Again, based on the effective medium assump-

tion inherent in the DCSN model, we assume that ϕcore,perc is proportional to 1/⟨∆r 2⟩p at

a given ϕ, and we set the effective probe radius to be 2⟨a⟩ in the compressed regime at

highest ϕ beyond the notch, where this is known to be the case when the DCSN model

is applied to SA emulsions. Volume conservation of droplets, here continuing to exclude

consideration of non-percolating core droplets, implies that ϕshell(ϕ) can be determined from

ϕshell(ϕ) = ϕ− [ϕSDD(ϕ) + ϕcore,perc(ϕ)].

Having determined reasonable initial starting points for three of the four principal com-

ponents, which broadly describe the overall shape of 1/ℓ∗IA(ϕ) without accounting for the

notch, we then turn to the more complex aspect of modeling the notch of the IA emul-

sion. In particular, the existence of the notch can be interpreted as a consequence of a

non-negligible population of non-percolating core droplets that lack adequate connectivity

between constituent clusters, not the highly dense, well-interconnected cores of percolating

gel-like networks of droplets. In effect, non-percolating core droplets reduce the scattering

from the emulsion without contributing to its shear elasticity. We hypothesize that jamming

of non-percolating dense clusters as ϕ is increased in the notch region leads to the creation

of elastic shear-stress supporting networks that are less tenuous for the IA emulsion than for

the SA emulsion. This cluster-jamming also is accompanied by a sharp reduction in SDDs

towards the lower end of the notch, as clusters become closely proximate and SDDs are con-

verted into shell and core droplets. Also, to account for the reduced magnitude of 1/ℓ∗IA(ϕ)

over the wide range ϕ ≤ 0.64 as compared to the SA system in addition to the notch, we

introduce the fourth component ϕcore,nonperc, which we assume quadratically increases from

very low ϕ, so as not to influence the low-ϕ slope in the scattering, and then exponentially

decreases beyond ϕ ≳ 0.6. Weights are transferred to non-percolating droplets from SDDs

and shell droplets, while preserving ϕ conservation of all four components. This procedure
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Figure 3.4. Principal component analysis of 1/ℓ∗IA(ϕ) using the extended deco-
rated core-shell network (E-DCSN) model (see text). (a) Measured 1/ℓ∗IA(ϕ) (red
diamonds) from Figure 3.1. Fit: equation (3.1) (black solid line). Inferred ϕ-dependent
scattering contributions from: surface decorating droplets (1/ℓ∗SDD, purple dotted line), shell
droplets (1/ℓ∗shell, orange dashed line), non-percolating core droplets (1/ℓ∗core,nonperc, green
dashed-dotted line), and percolating core droplets (1/ℓ∗core,perc, blue solid line). (b) Compo-
nent droplet volume fractions: ϕSDD, ϕshell, ϕcore,nonperc, and ϕcore,perc [line colors and types
as in part (a)].

results in a good match to the measured 1/ℓ∗IA(ϕ) and also provides plausible, smooth ϕ-

dependences of the four principal components, as shown in Figure 3.4(a), recognizing that

the solution to this problem is formally ill-posed given the available measurements. Although

more principal components could be considered, even to the point of having separate com-

ponents for each possible integer value of ⟨N⟩, the E-DCSN model with only four principal

components describes all the key features of 1/ℓ∗IA over all ϕ, including the notch, through

the smooth conversion between the component volume fractions of different species (Figure

3.4). Given prior constraints on the relative scattering of different components, known from

modeling SA emulsions, we set the optical transport parameters in equation (3.1) for this
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IA emulsion to be the same as was found for the SA emulsion: 1/ℓ∗SDD,0 = 19.8 mm−1 and

rshell = 0.509. Starting from rcore = 0.150 for the SA system, we determine rcore, nonperc =

0.187 and rcore, perc = 0.145 for the IA system by taking into account the relative surface-

to-volume ratio of the non-percolating and percolating core droplets and minimizing χ2 for

the least-squares fit of 1/ℓ∗IA(ϕ). The optimized parameters for ϕSDD(ϕ) are determined to

be ϕSDD,F = 0.265 and ∆ϕSDD = 0.105 from the least-squares fitting of 1/ℓ∗IA(ϕ) at dilute ϕ

where SDDs dominate. The detailed iterative procedure for obtaining smooth functions of

the four principal components, while minimizing χ2 for the least-squares fit of 1/ℓ∗IA(ϕ), is

explained in the Methods (see chapter 3.3).

As a different way of parameterizing the relative proportions of the four principal com-

ponents, we also calculate the component relative volume fractions: fSDD = ϕSDD/ϕ, fshell =

ϕshell/ϕ, fcore,nonperc = ϕcore,nonperc/ϕ, and fcore,perc = ϕcore,perc/ϕ [Figure 3.5(a)]. We hypoth-

esize that the component relative volume fractions of non-percolating and percolating core

Figure 3.5. Droplet volume-fraction dependence of: (a) component relative
volume-fractions, f , determined from Figure 3.4(a) using the E-DCSN model
[line types and colors: same as Figure 3.4(a)], and (b) dimensionless effective
DWS probe-size factor (see text), α, obtained from core components in part (a),
which ranges from 1 (single-droplet probe) to 2 (LDC probe).
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droplets can be used to determine the dimensionless ϕ-dependent effective DWS probe-size

factor via: α(ϕ) = ⟨apr(ϕ)⟩/⟨a⟩ = (fcore,nonperc + 2fcore,perc)/(fcore,nonperc + fcore,perc), where

⟨apr(ϕ)⟩ is the ϕ-dependent effective average radius of the DWS scattering probes. The

resulting α(ϕ), ranging from 2.0 in the high-ϕ limit to 1.0 in the low-ϕ limit, is shown in

Figure 3.5(b). This hypothesis implies that the DWS scattering probes are effectively indi-

vidual droplets at low ϕ, similar to the MA emulsions at lower depletion strength than the

IA emulsions, and it implies that the DWS scattering probes are effectively LDCs at high

ϕ well above jamming, similar to the SA emulsions at higher depletion strengths. In the

notch region, the relative proportions of these change rapidly, and α effectively represents

an average over populations of single droplets and LDCs.

3.4.3 Comparison of DWS microrheology with mechanical macrorheology

Based on the above hypothesis regarding the DWS probe-size factor, α, which is tied to the

E-DCSN analysis of the measured optical transport properties, we use the GSER to calculate

the low-frequency plateau elastic shear moduli, G′
p,GSER(ϕ), of the IA emulsion:

G′
p,GSER(ϕ) =

kBT

π⟨apr(ϕ)⟩ ⟨∆r 2(ϕ)⟩p
=

kBT

π[α(ϕ)]⟨a⟩ ⟨∆r 2(ϕ)⟩p
. (3.2)

We compare this result with mechanical rheometry measurements in Figure 3.6. We find

good quantitative agreement between the mechanical G′
p,mech and microrheological G′

p,GSER

over all ϕ probed. Use of ϕ-independent α of either 1 or 2 leads to small but systematic

deviations that are apparent at either high or low ϕ, respectively. Of all emulsions that we

have studied systematically thus far (i.e. NH, MA, IA, and SA), the IA emulsion is the most

challenging to interpret, both in regards to optical transport properties and also to passive

microrheology.
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Figure 3.6. Comparison of DWS-GSER microrheological plateau elastic shear
moduli, G′

p,GSER(ϕ) (red open circles), obtained using plateau MSDs from Figure
3.3(a) and the E-DCSN model’s α(ϕ) from Figure 3.5(b), with plateau elastic
shear moduli G′

p,mech(ϕ) measured by mechanical rheometry (blue solid squares,
from fits to strain-dependence in the inset). Inset: Mechanical shear oscillatory mea-
surements of the storage modulus G′ as a function of the applied peak strain amplitude
γ for intermediately attractive dense emulsions at [SDS] = 35 mM and frequency ω = 1
rad/s. Solid lines: fits using G′(γ) = G′

p,mech/ [(γ/γy)
κ + 1], yielding the plateau shear mod-

ulus G′
p,mech; yield strain γy indicates the position of the knee that defines yielding; and

high-strain power law parameter κ describes the decrease in the non-linear G′ well beyond
yielding.

3.4.4 Probability distribution of local coordination number

At each ϕ, we infer discrete probability distributions, pN(N), using the results of the principal

component analysis in the E-DCSN model. For each principal component (i.e. SDDs, shell

droplets, non-percolating core droplets, and percolating core droplets), we assume Gaussian

distributions as a function of N centered on ⟨N⟩ = 3, 6, 9, and 12, respectively, each with a

standard deviation σN = 2.5. The corresponding probability density functions are denoted

as pSDD(N), pshell(N), pcore,nonperc(N), and pcore,perc(N). Here, pN(N ≤ 2) has been folded
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toward larger N , corresponding to the known distribution of N for slippery diffusion-limited

cluster aggregation (S-DLCA)58. At each ϕ, pN(N) is the sum of these probability density

functions, each of which is weighted by its corresponding component volume fraction and

normalized by the total ϕ:

pN(N, ϕ) = [ϕSDD(ϕ)pSDD(N) + ϕshell(ϕ)pshell(N)

+ ϕcore,nonperc(ϕ)pcore,nonperc(N) + ϕcore,perc(ϕ)pcore,perc(N)]/ϕ.
(3.3)

The results of these calculations are shown in Figure 3.7. The chosen σN = 2.5 yields smooth

distributions at all ϕ shown; smaller σN leads to distributions that have local maxima and

are less smooth. Here, the definition of N corresponds most closely to an effective coor-

dination number (i.e. number of slippery attractive bonds corresponding to near-contact

Figure 3.7. Normalized probability distributions of local coordination numbers,
pN(N), for different volume fractions ϕ, inferred from the components of the E-
DCSN model in Figure 3.4(b) (see text for details). For this intermediately attractive
emulsion, pN(N) shifts from being low-N dominant at low ϕ, to mid-N dominant at ϕ ≈ 0.5,
and then to high-N dominant at high ϕ.
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between neighboring droplet interfaces), which is sometimes denoted z in other literature107.

We emphasize that interdroplet bonding and near-contact configurations inherent in this def-

inition of N are those that are most influential in determining optical transport properties

(i.e. scattering) as well as in determining mechanical shear rigidity. Also, the substantial

values in these distributions for N > 12 towards high ϕ are facilitated by droplet defor-

mation, arising from at least one of short-range attraction and osmotic compression; yet,

regions of near-contact are stabilized against coalescence by the screened electrostatic repul-

sion. The presented pN(N, ϕ) are consistent with our particular experimental protocol for

emulsion-preparation and observed optical transport properties; yet, these distributions are

not necessarily universal for any method of preparing an attractive emulsion.

3.5 Discussion

Attractive colloidal systems are complex and rich, yet are also among the most challenging

to explore experimentally. The precise structure of an attractive colloidal system can depend

sensitively on the method of its preparation, and aging can sometimes occur and lead to slow

structural evolution. Differences in preparation of short-range attractive colloidal systems

can lead to non-unique structures and physical properties, even for monodisperse colloids

at the same ϕ and same |Ud|. Here, by developing and systematically applying a protocol

for preparing dense attractive emulsion systems that have slippery short-range attractions,

we have been able to reveal important new features in the optical transport properties and

DWS MSDs that accompany intermediate attractions. Our results for IA emulsions differ

substantially from either MA or SA emulsions; yet, some known aspects of MA and SA

emulsions are useful in understanding IA emulsions: excess DWS MSDs at long time (MA

emulsions), and a DWS probe-size factor of α ≈ 2 at high ϕ above ϕMRJ (SA emulsions).

However, the ϕ-dependent optical scattering of the IA emulsion has a very interesting and

striking notch near the random jamming point that has not be reported for either MA or
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IA emulsions. This notch, as interpreted using the E-DSCN model, suggests that a cluster-

jamming scenario likely occurs as ϕ is raised, rather than either a droplet-jamming scenario

for NH emulsions or a gel-network forming scenario for SA emulsions. In addition, this notch

provides an important clue that signals different proportions of local dense structures and

different interconnectivity of those local dense structures for IA emulsions, as compared to

both MA and SA emulsions. The overall lower scattering of the IA emulsion at ϕ below jam-

ming indicates that loosely bound attractive clusters, which have a lower surface-to-volume

ratio, exist in the IA emulsion, as compared to the more tenuous, gel-like network structures

of the SA emulsion. Moreover, the measured low-frequency plateau shear rigidity of the IA

emulsion does not extend for ϕ below the minimum in the notch, whereas at substantially

stronger attractive strengths, such low-frequency shear rigidity of the SA emulsion does ex-

tend well below jamming. This is further confirmed microrheologically from the measured

DWS MSDs of the IA emulsion, after accounting for the existence of long-time excess MSDs.

Using emulsions, rather than solid particulates, has facilitated all of these advances in un-

derstanding, since emulsions can be concentrated and manipulated at very high ϕ without

the problems with irreversible aggregation that can be present in solid particulate systems.

Our results for the IA emulsion imply a complex and non-monotonic behavior of the

ϕ-dependent optical transport properties of concentrated emulsions as a function of |Ud|.

Very low strengths of depletion attractions relative to thermal energy in MA emulsions do

not yield substantial changes in scattering compared to emulsions with nearly hard inter-

actions. However, the limit of very high depletion strengths relative to thermal energy in

SA emulsions does not yield the greatest possible reduction in scattering at intermediate

0.45 ≤ ϕ ≤ 0.55. Instead, among MA, IA, and SA emulsions, we find that the greatest

reduction in scattering is actually present in this range of ϕ for IA emulsions. So, the full

behavior of this non-monotonic trend deserves further consideration, including a more de-

tailed set of measurements at other |Ud|.

For IA emulsions, a ϕ-dependent DWS probe-size factor α, which varies from 1 in the
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notch region to 2 above the notch region, yields the best comparison with mechanical mea-

surements. This probe-size factor reflects the relative proportions of scatterers that lead

to the DWS signals which are interpreted as probe MSDs; the relative populations of scat-

terers in the cluster-jamming scenario of IA emulsions vary rapidly in the cluster-jamming

regime corresponding to the notch in the optical transport. This DWS probe-size factor

has been inferred from the measured optical transport and dynamic correlation functions

by connecting these measurements to shear-rigidity percolation, which is linked to droplet

coordination number through the principal component analysis and physical interpretation

of the E-DCSN model. A full theoretical treatment of the DWS probe-size factor as a func-

tion of ϕ and |Ud| is needed in order to establish its fundamental origin as well as to further

examine the hypothesis that it can be determined through a ratio related to the fraction of

non-percolating and percolating core droplets.

Overall, our results point to a cluster-jamming scenario for the IA emulsion. At lower

ϕ, clusters of droplets in the IA emulsion are compact and not strongly bonded together;

the weak association of these clusters precludes the existence of a low-frequency plateau

shear rigidity for the IA emulsion. However, as ϕ is raised, these clusters are forced to

jam together, yielding plateau shear-rigidity, yet with a lower surface-to-volume ratio of the

network structures as compared to the more tenuous networks of SA emulsions. Thus, it

would be interesting to perform measurements over a broader range of |Ud| to see how the

cluster-jamming scenario of the IA emulsion transitions into the gel-network scenario of the

SA emulsion. Likewise, it would be useful to explore lower |Ud| to determine where the

notch-like feature in 1/ℓ∗(ϕ) emerges.

As a consequence of our experimental protocol, dense IA emulsions have been formed

by diluting the concentrated master emulsion sample and shear-agitating at constant |Ud|

to form a system that is uniform in ϕ. The agitation does not rupture droplets but instead

only alters the droplets’ positional structure. This process of dilution and shear agitation at

constant micellar concentration initially causes unjamming of attractive clusters that were
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originally jammed by osmotic compression through ultracentrifugation in the concentrated

master emulsion. Subsequently, during the waiting time that we have designed into this pro-

tocol, attractive bonding between clusters can occur and gel-network formation is possible.

For the SA system, to which the same experimental protocol has been applied, shear-rigid

gel-like elastic networks form after disruption at ϕ well below ϕMRJ in the presence of strong

|Ud| ≈ 15 kBT . However, for the IA emulsion having |Ud| ≈ 6 kBT , the weak association of

clusters after disruption does not yield shear-rigidity percolation at the intermediate strength

of attraction for ϕ extending well below ϕMRJ, as is evident in the measured G′
p(ϕ) when

compared to the SA emulsion. This interpretation is consistent with both macroscopic shear

rheometry measurements as well as our passive microrheological DWS measurements.

Our results, analysis, and interpretation for IA emulsions point to many exciting future

directions, both in simulations and experiments. For instance, simulations could be devel-

oped to treat slippery attractive colloidal systems formed by diluting osmotically compressed

attractive emulsions, imposing shear disruption at constant |Ud|, allowing subsequent cluster

association and gel-network formation, and then exploring optical and mechanical responses

with and without shear deformation. Such simulations would more closely align with our

experimental protocols and observations than just quenching-in a secondary attraction in

a homogeneous dispersion. In addition, the influence of minor populations of more mobile

droplets on DWS signals could be identified and studied as a function of |Ud| and ϕ. Exper-

imentally, one could potentially extend a reported confocal microscopy study that utilizes

both refractive index-matched and density-matched, size-fractionated emulsions85 by induc-

ing a short-range attraction and varying ϕ at different fixed values of |Ud|. In addition,

further exploration of optical transport properties for values of |Ud| in between IA and MA

and also in between IA and SA will reveal the range over which the notch feature in 1/ℓ∗(ϕ)

can be observed.

In summary, our study provides a comprehensive set of experimental measurements of

optical transport, rheological, and dynamic correlation functions for an intermediately attrac-
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tive, dense system of fractionated, uniform emulsion droplets. Our experimental protocols

have been refined to give reproducible results that enable direct quantitative microrheologi-

cal comparisons of plateau elastic shear moduli that are not dominated by aging effects. We

have found that discounting excess MSDs as well as utilizing a ϕ-dependent DWS probe-size

factor are both needed to obtain the best possible match of the passive microrheological

interpretation of all measurements, when compared to macroscopic shear rheological mea-

surements. To explain the additional complexity in the measured optical scattering, it has

been necessary to include a fourth principal component in the E-DCSN model. Taken to-

gether, both the data and the modeling point to highly complex IA system in which loosely

connected dense clusters, not isolated droplets, jam as ϕ is raised. We anticipate that future

work will reveal additional finer details in the transition between MA, IA, and SA regimes

as |Ud| is varied and will provide insight into the fundamental origin of the DWS probe-size

factor in short-range attractive colloidal systems.
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Chapter 4 - Jamming and depletion in extremely

bidisperse mixtures of microscale emulsions and

nanoemulsions

This chapter has been written by Y. Xu and T. G. Mason, is currently copyrighted by Y. Xu

and T. G. Mason in 2023, and has been accepted by Science Advances for publication (In

Press). Since the contents of the chapter have not yet been published, written permission

must be obtained by both authors to reproduce or transmit the contents of the herein Chapter

4, in whole or in part, prior to its publication in a scientific journal. Readers are encouraged

to perform a search on the above authors and/or title using an internet search engine (e.g.

Google Scholar or Web of Science) to determine if publication has occurred. If publication

of the contents of this chapter has occurred in a scientific journal, then readers are directed

to that journal’s policies regarding permissions for potential use.

4.1 Abstract

While much attention has been given to jamming of granular and colloidal particles having

monomodal size distributions, jamming of systems having more complex size distributions

remains an interesting direction. Here, we create concentrated, disordered binary mixtures of

size-fractionated nanoscale and microscale oil-in-water emulsions, which are stabilized by the

same common ionic surfactant, and we measure the optical transport properties, microscale

droplet dynamics, and mechanical shear rheological properties of these mixtures over a wide

range of relative and total droplet volume fractions. Simple effective medium theories do

not explain all of our observations. Instead, we show that our measurements are consistent
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with more complex collective behavior in extremely bidisperse systems, involving an effective

continuous phase that governs nanodroplet jamming, as well as depletion attractions between

microscale droplets induced by nanoscale droplets.

4.2 Introduction

An interesting and challenging frontier in the science of colloidal systems is examining how

the size-polydispersity of constituents affects the macroscopic physical properties of these

systems10. Even for uniform, monodisperse colloidal systems of spheres, considerable com-

plexity exists in making this connection. Despite this complexity, substantial progress has

been made in revealing how physical properties, such as shear elasticity and scattering, are

connected to the underlying colloidal sizes, positional structures, and interactions as a func-

tion of the volume fraction ϕ of the colloids10,116–119. Recently, further insights have been

made through passive microrheology studies of monodisperse microscale emulsions having

nearly hard interactions57 and also short-range attractions59,115,120. Even so, when broadly

considered, different forms of size-polydispersity could introduce new levels of complexity

in connecting these colloidal sizes, positional structures, and interactions to the system’s

macroscopic physical properties. One of the most compelling polydisperse size-distributions

that deserves attention is the bidisperse size-distribution121–123, also known as a bimodal

size-distribution124,125, which can be made by mixing two different monodisperse systems of

the same type of colloid, yet each having a different average size. In particular, examining

the limit of extreme bidispersity, where the peaks in the colloidal size-distribution are sepa-

rated by more than an order of magnitude, would provide a first view into emergent effects

that are not explained by existing concepts and theories and that may also be found in very

broadly polydisperse size-distributions.

Bidisperse colloidal systems, such as mixtures of larger and smaller rigid polymeric

spheres126–128 or mixtures of larger and smaller deformable emulsion droplets50, have been
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used as idealized models for studying depletion attractions, an entropic interaction pre-

dicted theoretically by Asakura and Oosawa44. Depletion attractions can lead to phase

separation50,79,91 and even gelation51,115 of the larger colloids, if the strength of the deple-

tion potential energy at contact, |Ud|, is much larger than kBT , where kB is Boltzmann’s

constant and T is the temperature. Prior studies of depletion attractions have typically

been limited to volume fractions of the smaller colloids, which are sometimes referred to

as depletion agents or depletants, that are below the jamming point of the smaller col-

loids. The rheological response of colloidal emulsions having monomodal size distributions

in the presence of smaller surfactant micelles, which can act as depletion agents, has been

investigated using macroscopic rheometry46,129,130, as well as both macroscopic rheometry

and diffusing wave microrheology59,115,120. These studies have revealed depletion-induced

attractive gelation of emulsions that can lead to elastic responses for ϕ below the repulsive

jamming point of the larger colloids, provided that the strength of the depletion attraction

is much larger than kBT . Recent simulations, focused on steady shear viscosity, have been

made on idealized bidisperse mixtures of spheres131, but only at a relatively low size ratios

of colloids, not in the limit of extreme bidispersity. These simulations do not address an

essential rheological property related both to repulsive jamming and also to attractive gela-

tion: the small-strain linear shear elasticity. Moreover, prior experiments and simulations

have not addressed how optical transport properties (i.e. scattering), colloidal dynamics,

and macroscopic shear elasticity vary with ϕ into the jamming limit for high concentrations

of larger and smaller colloids of the same type. Thus, exploring key physical properties of

stable colloidal emulsions in the limit of extreme bidispersity and at high droplet volume

fractions of larger and smaller colloids, where both jamming and depletion can be present,

represents an interesting direction.

Systematic experimental investigations of the plateau shear elastic modulus, G′
p, of uni-

form, size-fractionated, microscale, oil-in-water (O/W) emulsions21,28 over a wide range of

droplet volume fractions ϕ34 provided the key primary example of jamming of disordered
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soft colloidal spheres, prior to the introduction of and widespread use of jamming terminol-

ogy. The abrupt onset of shear elasticity in these emulsions toward higher ϕ was initially

connected broadly to the notion of disordered droplets coming into contact with each other

and then deforming during a process of crowding. At that time, the best available quan-

titative measure of ϕ associated with monodisperse rigid spheres that had been crowded

into a disordered structure and that could no longer be further compressed was known as

random close packing (RCP), a concept introduced by J.D. Bernal and J. Mason35. The

measured volume fraction of spheres associated with RCP was known to be ϕRCP ≈ 0.64.

Initial foundational simulations by Lacasse et al.132 on highly crowded, disordered systems of

monodisperse deformable droplets revealed that the loss of shear elasticity of these systems

occurs at ϕ ≈ 0.64, consistent with the experiments after ϕ had been corrected for screened-

charge electrostatic repulsions133. These experiments and simulations played a direct role

in the subsequent introduction of jamming terminology68. Following these advances, the

more precisely defined statistical concept of maximal random jamming (MRJ) of monodis-

perse hard spheres was developed through simulations and theory by S. Torquato et al.36,

who showed that jamming does not always occur at exactly the same volume fraction for

different initial conditions of random sphere locations prior to compression, but instead in

a distribution of volume fractions that is highly peaked around ϕMRJ = 0.646. Given the

strong concordance in the experiments and simulations, the observation and interpretation

of the rapid rise in G′
p(ϕ) around a critical jamming volume fraction near 0.64 for disordered

uniform emulsion systems has served as an archetype for the jamming elasticity of other

disordered soft-matter systems composed of uniform colloids.

Going beyond microscale emulsions, high-throughput methods were subsequently de-

veloped for fabricating uniform O/W nanoemulsions, stabilized by an ionic surfactant, by

combining high-pressure microfluidic homogenization with ultracentrifugal size-fractionation

and concentration of nanoscale droplets23,24. Provided that the average droplet radius is

far below the smallest wavelengths associated with the visible spectrum, highly controlled
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size-fractionated nanoemulsions appear translucent134,135, exhibiting a dramatic reduction

in optical scattering as compared to microscale emulsions, which instead typically have a

white appearance as a consequence of strong multiple scattering by droplets that have radii

closer to the range of visible wavelengths. In addition, surprisingly, it was shown that O/W

nanoemulsions could have a very low effective jamming ϕ for compositions that were pre-

dominantly water, not oil30. Because the same electrostatic Debye screening length is a

substantially larger fraction of the average droplet radius for nanoemulsions as compared to

microscale emulsions, the effect of screened electrostatic repulsions on G′
p(ϕ) of nanoemul-

sions is dramatic compared to microscale emulsions at the same surfactant concentration.

Thus, short-range repulsive interactions in O/W nanoemulsions are known to create pro-

nounced downward shifts in the effective ϕ associated with jamming, which occurs when

Debye layers of neighboring nanodroplets begin to overlap strongly.

To explain a wide range of measurements of the linear shear elasticity of both microscale

and nanoscale emulsions, an entropic-electrostatic-interfacial (EEI) model was developed37.

Beyond including the essential concept of jamming of disordered uniform droplets at high ϕ,

leading to droplet deformation through crowding, the interpretation of these classic measure-

ments of the linear shear elasticity of concentrated emulsions also took into account other

contributions to the free energy at high densities. These contributions include the influence

of a short-range screened-charge repulsion provided by an ionic surfactant, which stabilizes

the droplets against coalescence, and an entropic term38. This EEI model provides accu-

rate predictions of G′
p(ϕ) for microscale emulsions and nanoemulsions both above and below

jamming. While size- and charge- polydispersities of the droplets do not explicitly enter into

the EEI model, it reasonably describes the measured G′
p(ϕ) of uniform size-fractionated col-

loidal O/W emulsions stabilized by an ionic surfactant over a wide range of average droplet

radius. Since the EEI model has been specifically designed to describe repulsive jamming

in disordered charge-stabilized emulsions without depletion attractions, it does not predict

G′
p(ϕ) for attractively gelled emulsion systems.
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Here, we create and study experimentally a well-controlled model bidisperse colloidal

system of size-fractionated microscale and nanoscale O/W emulsions that share the same

ionic surfactant, sodium dodecyl sulfate (SDS) at high component droplet volume fractions

ϕNEM and ϕEM, which are defined as the bare oil volume of the nanoscale and microscale

droplets, respectively, relative to the total volume of the mixture: ϕNEM = Vo,NEM/Vtot and

ϕEM = Vo,EM/Vtot. The total volume of the binary mixture is Vtot = Vo,NEM + Vo,EM + Vw,

and the volume of the aqueous continuous phase is Vw. The water in a given final mix-

ture originates from: the continuous phase of the master emulsion, the continuous phase

of the master nanoemulsion, and the SDS aqueous solution used to make the mixture (see

chapter 4.3). Conservation of volume implies that the water volume fraction in the mixture

is: ϕw = Vw/Vtot = 1 − (ϕEM + ϕNEM). The SDS concentration is adjusted to yield strong

stability against droplet coalescence through screened-charge repulsions between droplets,

yet is kept low enough so that the SDS micelles effectively do not play a role in depletion.

In particular, we explore the interesting relative-size regime where the nanodroplets have

an average radius, ⟨aNEM⟩, that is more than a decade smaller than the average radius of

the microscale droplets, ⟨aEM⟩. In addition to probing how this extreme bimodal form of

polydispersity (i.e. extreme bidispersity) in the droplet size distribution influences colloidal

jamming for screened-charge repulsive systems, we also explore how self-induced entropic

depletion attractions between microscale droplets, induced by sufficiently large volume frac-

tions of nanoscale droplets, can play a role in the physical properties of broadly polydisperse

emulsions.

Our experimental approach involves systematically making a combination of optical scat-

tering and mechanical shear rheology measurements on two different sets of binary emulsion

mixtures and comparing these measurements with similar reference measurements made on

the individual component nanoscale and microscale emulsions. This combination of measure-

ments provides several experimental results that can be used to test theories and simulations

more stringently than limited measurements restricted to only one property. We measure
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the inverse mean free path of optical transport and also microscale droplet mean square

displacements (MSDs) using diffusing wave spectroscopy (DWS)55,56,108,109. Our mechani-

cal measurements focus on the linear plateau shear elastic modulus G′
p. By analyzing these

measurements, we show that a simple effective medium theory of G′
p based on the EEI model

breaks down, and that a more sophisticated interpretation of jamming, involving an effec-

tive continuous phase of the nanoemulsion component, is necessary to explain the mechanical

properties of extremely bidisperse colloidal emulsions. Moreover, our experimental results

provide clear evidence that depletion attractions between microscale droplets, which arise

as a consequence of the osmotic pressure exerted by the nanoscale droplets, can strongly

influence these physical properties. Thus, we demonstrate that two different phenomena

are responsible for these observed deviations from effective medium theory in this extremely

bidisperse colloidal emulsion system: (1) an effective continuous phase associated with nan-

odroplet jamming and (2) self-induced depletion attractions between microscale droplets,

caused when a substantial nanodroplet component exists in the overall size distribution.

4.3 Materials and Methods

4.3.1 Emulsion and nanoemulsion preparation and characterization

We prepare microscale emulsions (EM) using trimethylsiloxy terminated polydimethylsilox-

ane oil (PDMS, Gelest Inc; viscosity at 25◦C: νo,EM = 350 cSt; refractive index: no,EM =

1.4031; density: ρo,EM = 0.970 g mL−1), sodium dodecyl sulfate (SDS, Fisher Scientific; elec-

trophoresis grade 99% purity), and deionized water (Millipore Milli-Q Academic; resistivity:

18.2 MΩ cm). Following the protocol of emulsification, microfluidic homogenization using

a high flow rate microfluidic homogenizer (Microfluidics, M-110P; 75 µm Y-chamber) at a

liquid pressure of about 70 MPa, and size-fractionation in Kim et al.57, we obtain a 4×

size-fractionated, concentrated master emulsion, stabilized at [SDS] = 10 mM. We dilute a

small portion of this well-mixed, uniform master emulsion in a 10 mM aqueous SDS solu-
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tion to ϕ ≈ 10−4 and then characterize the radial size distribution of the diluted emulsion

using dynamic and static light scattering. We characterize the droplet volume fraction of

this master EM sample using a gravimetric evaporation method80, ϕm,EM = 0.778 ± 0.007.

Emulsions having lower droplet volume fraction ϕEM < ϕm,EM are prepared from diluting the

master EM sample with 10 mM SDS solution.

In addition, we make nanoemulsions (NEMs) having much smaller, nanoscale droplets

using lower viscosity PDMS oil (Gelest Inc; viscosity at 25◦C: νo,NEM = 10 cSt; refractive

index: no,NEM = 1.3990; density: ρo,NEM = 0.935 g mL−1), SDS, and deionized water through

high-flow rate emulsification. We prepare a crude premix emulsion having ϕ ≈ 0.2 in 50 mM

aqueous SDS solution using a mixer (Fisher Scientific, PowerGen 125, speed 6) and allow any

residual foam to disappear. We process the premix emulsion using the microfluidic homoge-

nizer at a higher liquid pressure of about 210 MPa for 8 times before collecting and diluting

the resulting nanoemulsion in 10 mM aqueous SDS solution to ϕ ≈ 0.1 after the final pass.

We concentrate the diluted nanoemulsions to a higher ϕ via centrifugation (Beckman L8-55

ultracentrifuge, SW-28 swinging bucket, 18k rpm, 30 hours), yielding a set of concentrated,

elastic, jammed nanoemulsion plugs at the tops of thick-wall polycarbonate centrifuge tubes.

The effective gravitational forces acting on droplets, caused by this ultracentrifugation, are

sufficiently small that nanodroplet coalescence is not observed. We then remove the SDS

solution below these elastic concentrated nanoemulsion plugs, combine these plugs together,

and dilute these combined plugs to ϕ ≈ 0.1 using 10 mM SDS solution. We repeat this

process of centrifugation and dilution twice more to set the bulk SDS concentration in the

continuous phase of the resulting NEM to 10 mM.

To decrease the droplet size polydispersity of this NEM, we perform a four-step size-

fractionation as follows. After a first centrifugation for size-fractionation (18k rpm, 30 hours),

we remove the concentrated elastic nanoemulsion plugs from the tops of the centrifuge tubes,

cut them into two pieces using a spatula, and retain the bottom-half of all plugs, correspond-

ing the to smaller droplets. We combine and dilute these bottom plug-pieces using 10 mM
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SDS solution to set ϕ ≈ 0.1. We then perform a second centrifugation using the same con-

ditions, cut the plugs, retain and combine the bottom-third of the plugs, and again dilute

using 10 mM SDS solution to set ϕ ≈ 0.1. We repeat this process of centrifugation, cut-

ting the plugs, combining and diluting plugs twice more and for each time, we retain and

combine the bottom-half of the elastic nanoemulsion plugs. After the 4× centrifugation

for size-fractionation, we obtain the concentrated master nanoemulsion that is a soft elastic

solid at high ϕ. We mix this master nanoemulsion thoroughly using a spatula to exclude any

size- and ϕ-gradient that could be induced by centrifugation. Using dynamic light scattering

(Photocor, 90◦ scattering angle, λ = 632.8 nm), we measure the average droplet radius and

polydispersity of this fractionated NEM. The droplet volume fraction of this master NEM

sample is ϕm,NEM = 0.403± 0.003, determined by gravimetric evaporation80. Nanoemulsions

having lower droplet volume fraction ϕNEM < ϕm,NEM are prepared by diluting the master

NEM sample with 10 mM SDS solution.

Binary mixtures of nanoemulsion and microscale emulsion having various ϕNEM and ϕEM

are made by diluting portions of the master NEM and EM samples with 10 mM SDS solution

using an analytical balance (Denver Instruments APX-200, 0.1 mg precision). For a sample

having desired final ϕNEM and ϕEM and a total mass ≈2 g, we calculate the masses of the

needed master NEM, master EM and 10 mM SDS solution prior to the weighing and mixing

procedure, ensuring that the total volume of aqueous continuous phase of the mixture is

the aqueous continuous phase of the initial master NEM, of the initial master EM, and the

10 mM SDS solution added. We add these three components into a 3 mL vial and then

determine the resulting ϕNEM and ϕEM of each sample from these measured masses using

measured densities of the SDS solution and of the corresponding PDMS oil80.

Each sample, either having lower ϕ than the master sample or that is an EM-NEM binary

mixture having different relative volume fractions, has been stirred with a small spatula, im-

posing an estimated 50 s−1 average shear flow-rate, for approximately 10 minutes to ensure

complete mixing before measurements made using DWS and mechanical rheometry. The
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overall appearance of the O/W emulsions and nanoemulsions is determined by their optical

properties, which depend on how light waves interact with them through transmission, ab-

sorption, reflection, and scattering. The dimensions of NEM droplets are so small relative

to the wavelength of visible light that NEM samples are clear and translucent with slightest

bluish tint (Figure 4.3A, left). By contrast, the EM samples, which are composed of larger

droplets, closer to the wavelength of visible light, scatter light strongly and are thus milky-

white and opaque in appearance (Figure 4.3A, right). Before mixing via shear agitating, the

EM-NEM mixture at a given ϕNEM and ϕEM initially appears cloudy and non-uniform after

adding the 10 mM SDS solution, the master NEM, and the master EM into a glass vial. For

each sample, the stirring process is continued for an additional 3 minutes after the sample

appears homogeneous to ensure compositional uniformity (Figure 4.3A). For each well-mixed

sample, we split it into two portions: approximately 0.5 mL for mechanical rheometry and

1.5 mL for DWS measurements. This procedure ensures that these two portions of a given

binary EM-NEM mixture, used in these two different measurements, have exactly the same

composition. For all subsequent measurements, both optical and mechanical, we wait 24 h

after this initial stirring and splitting to ensure sample equilibration.

4.3.2 Mechanical shear rheometry

For each binary EM-NEM sample, having a given ϕEM and ϕNEM, we measure the plateau

elastic shear moduli, G′
p,mech, at small strains corresponding to the linear viscoelastic regime.

To ensure that the samples are homogeneous after equilibration, to preclude undesirable

gravitational effects, we stir the sample at ≈ 50 s−1 shear rate for 30 s by agitating with a

spatula. We load each sample into a controlled-strain mechanical shear rheometer (Rheo-

metrics RFS-II, 25-mm diameter stainless steel cone-and-plate geometry, equipped with a

vapor trap). After lowering the cone to the appropriate pre-set gap with respect to the

plate, we allow the sample to relax for 120 s. We then perform a small-strain frequency

sweep from an angular frequency ω = 20 rad s−1 down to 0.02 rad s−1 at a small shear strain
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amplitude of γ = 0.005. We next perform a strain sweep from γ = 2 × 10−4 up to 2 at ω

= 1 rad s−1 on exactly the same sample, yielding the linear and non-linear shear storage

modulus, G′(γ). We fit the measured G′(γ) to a function, which has a low-γ-plateau115:

G′(γ) = G′
p,mech/[(γ/γy)

κ + 1], to obtain the dominant linear storage modulus, G′
p,mech, at

small strains. Here γy is the yield strain associated with the log slope change in G′(γ) and

κ is a power law exponent associated with the non-linear response of G′(γ) to larger strains.

The yield strain of mixtures ranges from the smallest γy = 0.004 for (ϕEM, ϕNEM) = (0.5,

0.075) to the largest γy = 0.05 for (ϕEM, ϕNEM) = (0.04, 0.36). κ ranges from 1.4 to 1.6 for

fixed ϕtot = 0.4 and from 1.0 to 1.4 for fixed ϕEM = 0.5. R2 ranges from 0.957 to 0.995 over

all fits for the binary mixtures. All measurements are made at T = 20 ◦C.

4.3.3 Optical transport and diffusing wave spectroscopy measurements

We perform DWS measurements using DWS Rheolab 3 (LS Instruments; equipped with

backscattering option, wavelength λ = 685 nm) to obtain the optical transport mean free

path ℓ∗ and the intensity correlation functions for each of different compositional ϕEM and

ϕNEM. Each sample has been loaded into a glass optical cuvette (pathlength L = 5 mm)

following a loading protocol115 to eliminate air bubbles while avoiding gradient in ϕ. After

a 24-h waiting time that is also used for mechanical rheometry measurements, each loaded

cuvette is then placed in the Rheolab 3 and allowed to equilibrate at T = 20 ± 0.1 ◦C.

Time-averaged backscattering and transmission intensities are used to determine ℓ∗, and

fluctuating intensities in either the transmission and the backscattering detectors are used

to determine g2(t)− 1 for all ϕEM explored. For each sample at different ϕEM, a total of 11

trials, each containing 300 s of multi-tau duration and 60 s of echo duration, have been con-

ducted and averaged. DWS echo signal has been measured beyond 2× 10−1 s for EM-NEM

mixtures having ϕNEM ≥ 0.148 (i.e. ϕEM ≤ 0.252) at fixed ϕtot = 0.4 and for EM-NEM

mixtures having ϕNEM ≥ 0.075 at fixed ϕEM = 0.5.

We correct the inverse optical transport mean free path, 1/ℓ∗, by accounting for the
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contributions from NEM and EM oil droplets to the effective refractive index of the contin-

uous phase. Given that the DWS scattering probes are essentially the microscale emulsion

droplets, we calculate the effective refractive index difference between the bulk oil used to

create the emulsions and the continuous phase: ∆neff = no,EM − ncont, where we take into

account the influence of aqueous surfactant solution, nanodroplets, and surrounding micro-

droplets to the continuous phase refractive index, ncont, of a given microscale droplet, and

infer ncont using the effective medium theory: ncont = nwϕw + no,NEMϕNEM + no,EMϕEM, in

which nw = 1.3320.

For the system having fixed total droplet fraction, the inverse ℓ∗ normalized by effective

refractive index, (1/ℓ∗)/∆neff , as a function of ϕEM has been fit to a semi-empirical function

having a smooth linear-to-quadratic crossover as more nanodroplets are introduced in the

EM-NEM mixtures:

1/ℓ∗

∆neff

=

(
1/ℓ∗

∆neff

)
0

+

(
1/ℓ∗

∆neff

)
ref

{
ϕEM

1 + exp
[−(ϕEM−ϕF)

∆ϕEM

] + Aϕ2
EM

1 + exp
[
ϕEM−ϕF

∆ϕEM

]} (4.1)

where the slope of the linear regime, [(1/ℓ∗)/∆neff ]ref = 292 ± 8 mm−1, is comparable to the

slope of the linearly ϕEM-dependent (1/ℓ∗ref)/∆neff,ref (black reference line in Figure 4.3D),

which is 307 ± 2 mm−1; the fit parameter ϕF = 0.31 ± 0.03 captures the transition ϕ between

linear and quadratic dependence; the prefactor A = 2.6 ± 0.6 of the quadratic term and the

denominator within both the exponential term ∆ϕEM = 0.03 ± 0.02 create the smooth tran-

sition between the linear and quadratic regime of ϕEM-dependent [(1/ℓ
∗)/∆neff]. The offset

parameter [(1/ℓ∗)/∆neff ]0 = 3.5 ± 2.9 mm−1 extracts the normalized inverse optical trans-

port mean free path for a concentrated nanoscale-only emulsion, which corresponds to 1/ℓ∗0

= 0.16 mm−1 for ϕNEM = 0.4 when ϕEM is zero (R2 = 0.995).

For the series of binary EM-NEM mixtures having fixed ϕEM, we fit the measured

(1/ℓ∗)/∆neff as a function of ϕNEM to the semi-empirical functional form (R2 = 0.910, see

Figure 4.6C):

1/ℓ∗

∆neff

=

(
1/ℓ∗

∆neff

)
ref

{
1− B

1 + exp[−(|Ud| − |Ud,F|)/∆Ud]

}
. (4.2)

86



Here, [(1/ℓ∗)/∆neff ]ref = 146.55 mm−1 is the normalized inverse optical transport mean free

path of only the microscale emulsion at ϕEM = 0.5. The depletion strength at which the

changes in the optical properties are no longer described by effective medium theory is iden-

tified as: |Ud,F|/(kBT ) = 8.3 ± 1.5. The dimensionless strength of the depletion-induced

departures from simple effective medium theory is given by: B = 0.38 ± 0.05. The range

of depletion potential, around |Ud,F|, over which the transition in the normalized inverse

scattering length occurs is: ∆Ud/(kBT ) = 3.3 ± 1.4. For each ϕNEM ̸= 0, the dimensionless

|Ud|/(kBT ) is calculated using the osmotic pressure Π(ϕNEM) according to the EEI model37.

The osmotic pressure Π arises from the screened-charge repulsions and is linearly propor-

tional to the deformation volume fraction, which is minimized to satisfy the near-equilibrium

condition of free energy minimization37. Then, |Ud|/(kBT ) as a function of ϕNEM ≤ 0.15 is

fit to an exponential form: |Ud|/(kBT ) = ϵ exp(ϕNEM/ϕ
∗
NEM), yielding ϵ = 1.26 ± 0.06 and

ϕ∗
NEM = 0.0391 ± 0.0006 (R2 = 0.9995).

Using the measured g2(t) − 1 and ℓ∗, we extract the apparent mean square displace-

ments, ⟨∆r 2
a(t)⟩, by solving the classic transcendental equation of DWS57,82,83. These ap-

parent MSDs need to be corrected for collective scattering effects of the DWS probes using

a structural factor ⟨S(q)⟩ = ℓ∗ISA/ℓ
∗, where ℓ∗ISA is the optical transport mean free path of

the scattering probe in the absence of collective scattering, also known as the independent

scattering approximation (ISA)57. For the extremely bidisperse emulsion mixtures, the scat-

tering probes, even in the ISA, cannot be hypothesized as single microscale droplets as in

prior studies57,59,115,120, because the nanoscale droplets, either individually or collectively,

may also contribute to optical scattering events. Therefore, we take the following steps to

determine the effective DWS-probe radius and the medium refractive index, both of which

are required for determining the ℓ∗ISA using the Mie scattering calculation.

We deduce the fraction of inverse optical transport mean free path that is given rise by the

microscale component in the mixture via f = [(1/ℓ∗)/∆neff]/[(1/ℓ
∗
ref)/∆neff,ref], which is the

ratio between the normalized scattering of the mixtures [i.e. (1/ℓ∗)/∆neff] and the normalized

87



scattering of the microscale-only emulsions [i.e. (1/ℓ∗ref)/∆neff,ref] at each given ϕNEM, having

the effective refractive index difference taken into account (see Figure 4.4A and 4.7A). We

then calculate the effective DWS-probe radius, aeff = (fϕEM ⟨aEM⟩+ϕNEM ⟨aNEM⟩)/(fϕEM+

ϕNEM), using this fraction f in combination with the volume-weighted average of the mea-

sured mean droplet radius of the EM and NEM (see Figure 4.4B and 4.7B). The medium

refractive index used in the Mie scattering calculation is determined using the effective

medium theory, (nwϕw + no,NEMϕNEM)/(ϕw + ϕNEM), which involves the nanodroplets and

the SDS solution in the continuous phase. In the ISA, the microscale droplet component

is not included in the medium refractive index due to the absence of collective scattering,

which is distinct from the previous definition of ncont that leads to ∆neff. From Mie scatter-

ing calculation, we obtain 1/ℓ∗ISA at each ϕEM and ϕNEM (see Figure 4.4C and 4.7C).

We correct the apparent MSDs, using the measured ℓ∗ and the ISA in the dilute ϕEM limit,

to obtain the time-dependent DWS-probe’s MSDs at each ϕ: ⟨∆r 2(t)⟩ = (ℓ∗ISA/ℓ
∗) ⟨∆r 2

a(t)⟩.

We determine the primary plateau MSDs, ⟨∆r 2⟩p, by using the dense-emulsion MSD model57

to fit the early-time rise-to-plateau of ⟨∆r 2(t)⟩ for the mixtures having ϕNEM ≥ 0.148 and

ϕtot = 0.4, and for mixtures having ϕNEM ≥ 0.075 and ϕEM = 0.5. The resulting ⟨∆r 2⟩p are

used to deduce the linear plateau shear elastic moduli, G′
p,GSER, using the GSER of passive

microrheology:

G′
p,GSER =

kBT

πaeff ⟨∆r 2⟩p
. (4.3)

For all ϕ explored, we show the time-dependent aeff ⟨∆r 2(t)⟩ in Figure 4.4E and 4.7E. For

higher ϕNEM where the primary plateau MSDs can be extracted, the primary plateau values,

aeff ⟨∆r 2⟩p, are inversely proportional to G′
p,GSER.

4.4 Results

We present the results of two sets of experimental studies made on mixtures of size-fractionated

microscale and nanoscale emulsions. Each of these studies has been designed to reveal
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the potential impact that a substantial portion of nanoscale droplets in the droplet size
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Figure 4.1. Schematic diagram of extremely bidisperse oil-in-water emulsions
obtained by mixing microscale and nanoscale emulsions. The ionic surfactant
concentration C and Debye screening length λD are fixed. (A) Fixed total droplet
volume fraction ϕtot = ϕEM + ϕNEM = 0.4 in the concentrated regime but well below the
jamming limit of hard spheres. From left to right: repulsively jammed screened-charge na-
noemulsion having average radius ⟨aNEM⟩ = 28 nm (small red spheres); Elastic bidisperse
mixture at a low volume fraction of microscale droplets having radius ⟨aEM⟩ = 605 nm (large
white spheres), where microscale droplets are subject to strong depletion attractive inter-
action induced by nanodroplets while nanodroplets are jammed in the effective continuous
phase; Viscoelastic bidisperse mixture at higher ϕEM yet far below jamming of microscale
droplets and at lower ϕNEM, where clusters of microscale droplets can form due to weak
depletion attraction; Viscous emulsion having ϕEM far below jamming in absence of nan-
odroplets. (B) Bidisperse mixtures at fixed oil volume fraction of EM droplets. From left
to right: Viscous emulsion having ϕEM near but below jamming in absence of nanodroplets;
Microscale droplets aggregation under depletion attraction induced by nanodroplets; Gelled
microscale emulsion in presence of close-packed nanodroplets. (C) Close-up of an interstitial
region between a tetrahedron of microscale droplets, containing approximately 140 jammed
nanodroplets. (D) Composition of the two sets of bidisperse EM-NEM mixtures having fixed
ϕtot = 0.4 (red circles) and fixed ϕEM = 0.5 (blue circles), respectively, in terms of nanoscale
oil volume fraction ϕNEM, and microscale oil volume fraction ϕEM.
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distribution of the mixture could have on the physical properties of a colloidal emulsion,

yet via different mechanisms. In the first study, we vary the relative component oil volume

fractions of the EM and NEM droplets in a given mixture, ϕEM and ϕNEM, respectively, while

fixing the total oil-droplet volume fraction at ϕtot = ϕEM + ϕNEM = 0.4 (see Figure 4.1A

and red circles in Figure 4.1D). In the limit when this mixed emulsion is only a microscale

emulsion at ϕEM = 0.4, no evidence of droplet jamming is predicted; however, in the limit

when this mixed emulsion is only a nanoemulsion at ϕNEM = 0.4, a strong jamming shear

elasticity is predicted by the EEI model. In the second study, we fix the microscale oil droplet

volume fraction at ϕEM = 0.5, near but below the jamming point of the microscale emulsion,

and we vary the volume fraction of the nanoscale droplets up to ϕNEM = 0.14 (see Figure

4.1B and blue circles in Figure 4.1D). This second study has been designed to explore the

role that attractive depletion forces between microscale droplets, induced by the presence

of the nanoscale droplets, could potentially have on the optical and mechanical properties

of the mixed emulsion system. As a consequence of the extreme difference in droplet sizes,

approximately 140 nanoscale droplets, when jammed, fit in an interstitial region between a

close-packed tetrahedron of microscale droplets (Figure 4.1C).

4.4.1 Size distributions of fractionated nanoscale and microscale emulsions

To characterize the droplet size distributions of the nanoscale and microscale emulsions, we

have performed separate dynamic light scattering of highly diluted dispersions of each. The

average hydrodynamic droplet radius of the depletion-fractionated EM is ⟨aEM⟩ = 605± 32

nm, and its polydispersity is δaEM/ ⟨aEM⟩ ≃ 0.23, where δaEM is the standard deviation

of the droplet radial size distribution. The average droplet radius of the ultracentrifu-

gally fractionated NEM is measured to be ⟨aNEM⟩ = 28 ± 5 nm, and its polydispersity

is δaNEM/ ⟨aNEM⟩ ≃ 0.18.

We model the size distribution of the binary mixture by assuming that shifted log-normal

functions can be used to represent the radial droplet size-distributions of the component NEM
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and EM, respectively. The normalized log-normal functions136 for these are:

gNEM(a) =
exp(−{ln[(a− am,NEM)/bNEM]}2/(2c2NEM))√

2πcNEM(a− am,NEM)
for a > am,NEM (4.4)

gEM(a) =
exp(−{ln[(a− am,EM)/bEM]}2/(2c2EM))√

2πcEM(a− am,EM)
for a > am,EM, (4.5)

and zero for smaller a than the expressed limits. Here, am,NEM and am,EM represent the

droplet radii at and below which gNEM(a) and gEM(a), respectively, are zero. The half-

width of each log-normal function is calculated from the measured polydispersity using the

corresponding standard deviation from DLS measurements: WNEM = 2δaNEM and WEM =

2δaEM. Since the measured information from DLS does not include skewness, s, for both the

NEM and EM, we assume a skewness s = 1.3, which is the average of a range measured for

a uniform nanoemulsion using passivated gel-electrophoresis137. This effectively means that

the distance in a from the upper limit of the half-width is 1.3 times the distance in a from

the peak to the lower limit of the half-width in each of the g(a) curves136. The parameters

cNEM and cEM are related only to this skewness: cNEM = cEM = ln(s)/
√
2ln2. The b-

parameters are determined by the half-width and skewness of each distribution for NEM and

EM, respectively: bNEM = WNEM[s/(s
2 − 1)]exp(c2NEM) and bEM = WEM[s/(s

2 − 1)]exp(c2EM).

Using ap,NEM = ⟨aNEM⟩ and ap,EM = ⟨aEM⟩, which represent the peak locations of gNEM(a)

and gEM(a), respectively, we calculate am,NEM = ap,NEM − WNEMs/(s
2 − 1) and am,EM =

ap,EM−WEMs/(s
2−1). There exist alternative equivalent expressions for log-normal functions

that are parameterized differently136. Here, we have chosen a log-normal form that explicitly

depends upon the lower cut-off radius am, the radius associated with the peak ap, and the

half-width W ; certain other equivalent log-normal forms are not parameterized using am

explicitly.

The overall ϕ-weighted droplet radial size distribution of the EM-NEM mixture, shown

in Figure 4.2, is calculated through:

pϕ(a) = pϕ,NEM(a) + pϕ,EM(a) = ϕNEMgNEM(a) + ϕEMgEM(a) (4.6)
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Figure 4.2. Shifted log-normal models of ϕ-weighted droplet radial size distribu-
tions, pϕ(a), of binary EM-NEM mixtures based on dynamic light scattering data
[see text, equations (4.4)-(4.6)]: (A) fixed total droplet volume fraction ϕtot = ϕNEM + ϕEM

= 0.4; (B) fixed volume fraction of microscale droplets ϕEM = 0.5 for different added ϕNEM.

The integral of pϕ(a) with respect to a between a1 and a2 corresponds to the volume fraction

of oil droplets having radii between a1 and a2 (i.e. the integral of pϕ(a) over the range of a

corresponding just to the NEM region yields ϕNEM and the integral of pϕ(a) over the range

of a corresponding just to the EM region yields ϕEM). The integral of pϕ(a) over the entire

range of a, covering both NEM and EM regions, yields ϕtot.

4.4.2 Binary EM-NEM mixtures at fixed total oil volume fraction

4.4.2.1 Optical transport: inverse scattering mean free path

The concentrated size-fractionated microscale emulsion, which has droplets comparable in

size to the wavelength range of visible light, exhibits strong multiple scattering and appears

milky white (see Figure 4.3A, right). To provide a quantitative reference, we have measured

the inverse scattering mean free path 1/ℓ∗ref of only the microscale emulsion as a function of

ϕEM in SDS solution at 10 mM (see Figure 4.3B, black squares), in which the interaction
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Figure 4.3. Visual appearance, inverse mean free path of optical transport, 1/ℓ∗,
and effective refractive index difference, ∆neff for bidisperse EM-NEM mixtures
at fixed total droplet volume fraction ϕtot = ϕNEM + ϕEM = 0.4. (A) Photographic
images of the extremely bidisperse emulsions. Increasing ϕEM and decreasing ϕNEM from
left to right: translucent concentrated NEM with slight bluish tint; translucent mixture that
appears hazy; well-mixed mixture that appears closer to an opaque emulsion; microscale-only
opaque, milky-white emulsion. (B) Measured 1/ℓ∗ as a function of ϕEM for the bidisperse
EM-NEMmixture (red circles). For comparison: measured 1/ℓ∗ref(ϕEM) of only the microscale
emulsion by itself (at fixed ϕNEM = 0, black squares). (C) Calculated ∆neff as a function of
ϕEM (red line). For comparison: calculated ∆neff,ref for the emulsion alone (ϕNEM = 0, black
line). (D) Inverse optical scattering length from microscale droplets in the binary emulsion
system normalized by the refractive index difference with the effective continuous phase
containing nanodroplets, (1/ℓ∗)/∆neff, as a function of ϕEM (red circles). Fit using equation
(4.1) shows a smooth crossover from quadratic to linear behavior as ϕEM is raised (red line,
square of correlation coefficient, R2 = 0.995). For comparison: measured ϕEM-dependent
(1/ℓ∗ref)/∆neff,ref of only the microscale emulsion with ϕNEM = 0 (black squares) and a linear
fit (black line).
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between the droplets is known to be nearly hard57. The inverted parabolic shape of 1/ℓ∗(ϕEM)

for ϕNEM = 0 is similar to what has been previously observed for other microscale emulsions

at the same SDS concentration57. By contrast, the concentrated size-fractionated nanoemul-

sion, which has droplets much smaller in size than the wavelength range of visible light, does

not scatter light as strongly and appears translucent (see Figure 4.3A, left). The relative

differences in optical transport arise from droplet size, since the PDMS silicone oils in the

microscale emulsion and nanoemulsion have nearly the same refractive index within 0.3% of

one another. So, in the mixed system, both microdroplets and nanodroplets contribute in

different proportions to optical transport.

Measurements made on the binary EM-NEM mixture at fixed ϕtot = 0.4 reveal that 1/ℓ∗

decreases linearly as ϕEM is reduced from 0.4 and gradually turns into a parabolic decrease

towards lower ϕEM and higher ϕNEM (see Figure 4.3B, red circles). To analyze this result, we

develop and apply an optical effective medium theory for the effective refractive index differ-

ence, ∆neff(ϕEM), between a microscale droplet and a medium outside it (see Figure 4.3C).

This homogeneous effective medium has an effective refractive index, neff, that is defined

to be a volume-weighted average of the refractive indexes of the SDS solution, nanoscale

droplets, and other microscale droplets outside this given microscale droplet of interest (see

chapter 4.3). In the reference microscale emulsion-only system, an increasing density of

EM droplets results in a decreasing ∆neff,ref(ϕEM) (Figure 4.3C, black line). In the mixture,

∆neff(ϕEM) is approximately constant because PDMS oils of the EM and NEM have nearly

the same refractive indexes and because ϕtot is fixed (Figure 4.3C, red line).

Assuming that the scattering (i.e. 1/ℓ∗) depends linearly on ∆neff, we normalize the

measurements in Figure 4.3B by the corresponding calculated values in Figure 4.3C; these

results are shown in Figure 4.3D. For the microscale-only emulsion, this normalization leads

to a linear dependence, and the slope of this line, [(1/ℓ∗)/∆neff ]ref = 307 ± 2 mm−1, corre-

sponds to the effective 1/ℓ∗ of an isolated droplet in the SDS solution (Figure 4.3D, black

squares and linear fit). By contrast, for the EM-NEM mixture, this normalization does not
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substantially change the shape of the measured scattering; yet, it is still useful for comparison

with the normalized emulsion-only system. We fit the normalized scattering of the mixture

to a semi-empirical functional form that is essentially quadratic at low ϕEM and transitions

smoothly to linear at high ϕEM [see equation (4.1) in chapter 4.3, Figure 4.3D, red line]. The

fit parameter corresponding to the line at high ϕEM matches the slope of the black reference

line: [(1/ℓ∗)/∆neff ]ref = 292 ± 8 mm−1. The transition ϕ between linear and quadratic de-

pendence is captured by the fit parameter ϕF = 0.31 ± 0.03, which coincides with the onset

of depletion attractions substantially stronger than kBT between microscale droplets in the

EM-NEM mixture. To estimate the depth of the depletion potential |Ud| between microscale

droplets at contact, induced by nanodroplets, we employ Asakura-Oosawa theory44. We

calculate the non-linear osmotic pressure Π of the nanoemulsion as a function of ϕNEM using

the EEI model37. The values of |Ud|/(kBT ) around the transition regime are shown in Figure

4.3D. The transition ϕEM at 0.31 corresponds to a strong depletion attractive strength of

|Ud| ≈ 9.5 kBT , near which a reduction in 1/ℓ∗ caused by depletion attraction as compared

to nearly hard interaction has been observed in prior studies115.

4.4.2.2 Effective scattering probe dynamics by DWS

Both the microscale and nanoscale droplets in a given binary EM-NEM mixture give rise to

the optical scattering by different amounts, leading to an effective DWS-probe radius that

could not be naively interpreted as the radius of a single microscale or nanoscale droplet.

From the ratio between the normalized scattering of the mixture (Figure 4.3D, red circles

and curve) and that of the microscale-only emulsion (Figure 4.3D, black squares and line),

we deduce the fraction of the inverse optical transport mean free path that is attributed

to the microscale component in the mixture via f = [(1/ℓ∗)/∆neff]/[(1/ℓ
∗
ref)/∆neff,ref]. This

optical transport fraction, f , for the EM-NEM mixtures having a fixed ϕtot = 0.4 is equal

to 1.0 when ϕEM = 0.4 and ϕNEM = 0, and gradually decreases as ϕEM is reduced towards

0 (Figure 4.4A). For ϕNEM ≤ 0.1 (i.e. ϕEM ≥ 0.3), the dominant origin of optical scattering
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Figure 4.4. Inverse optical transport fraction, f , attributed to the EM com-
ponent multiplied by ϕEM; Effective DWS-probe radius, aeff ; and 1/ℓ∗ISA in the
absence of collective scattering, as functions of ϕEM. Time-dependent DWS
intensity autocorrelation functions, g2(t) − 1, and mean square displacements
(MSDs) multiplied by probe radius, aeff ⟨∆r2(t)⟩, for EM-NEM mixtures at
fixed ϕtot = 0.4. (A) Fraction f is the ratio between (1/ℓ∗)/∆neff for EM-NEM mix-
ture (red in Figure 4.3D) and (1/ℓ∗ref)/∆neff,ref for EM-only reference (black in Figure 4.3D).
fϕEM is the weight for the EM component in calculating aeff. (B) DWS-probe radius de-
duced from measured ⟨aEM⟩ and ⟨aNEM⟩, weighted by fϕEM and ϕNEM, respectively. (C)
Calculated 1/ℓ∗ISA using aeff and medium refractive index containing NEM droplets. Red line
guides the eye. (D) Measured g2(t) − 1 for various ϕEM and ϕNEM (color-coded, see left).
DWS multi-tau correlation data span early times up to ≈ 2× 10−1 s, with echo data shown
for ϕEM ≤ 0.252; DWS multi-tau correlation functions decay fully, precluding echo data for
ϕEM ≥ 0.255. Lower-frequency damped oscillatory noises from DWS apparatus vibrations
are superimposed on g2(t) − 1, and visible starting near t ≈ 10−2 s for ϕEM ≤ 0.252. (E)
Ensemble-averaged ⟨∆r 2(t)⟩, extracted from g2(t)−1 in part (D) and corrected for collective
scattering using 1/ℓ∗ in Figure 4.3B and 1/ℓ∗ISA in part (C), multiplied by aeff (color-coded,
see right). Fits (solid lines) at early-to-intermediate times up to ≈ 2× 10−4 s, which reflect
average probe dynamics, provide the primary plateau MSDs, ⟨∆r 2⟩p57. Rises in MSDs at

longer times are attributed to excess MSDs59,120 and excluded from these fits.
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is the microscale droplets, given that f ≥ 0.9 in this regime. As ϕNEM increases beyond

0.1, there is an almost linear reduction in the proportion of optical transport attributable

to EM droplets, indicating that an increasing number of NEM droplets are involved in the

scattering events.

As the optical scattering transitions from EM-dominated to NEM-dominated, the in-

terpretation of DWS g2(t) − 1 is quite complex. Given the absence of any directly ap-

plicable theory, here, we hypothesize that an effective probe radius can be used to inter-

pret the resulting MSDs obtained for binary mixtures. In considering DWS dynamics, we

propose that the extracted DWS MSD can be ascribed to an effective probe-radius, de-

noted by aeff, which we define to be the volume-weighted average of the measured mean

droplet radii of the EM and NEM, after taking into account their relative contribution

to optical scattering, as determined by the fraction f . Specifically, we calculate aeff =

(fϕEM ⟨aEM⟩+ϕNEM ⟨aNEM⟩)/(fϕEM+ϕNEM). When ϕNEM is zero, DWS-probes represent sin-

gle EM droplets in microscale-only emulsions, and aeff is equivalent to the mean EM droplet

radius, ⟨aEM⟩. As ϕNEM increases and ϕEM decreases, aeff decreases and approaches the mean

NEM droplet radius, ⟨aNEM⟩ (see Figure 4.4B). To account for the collective scattering of

the effective DWS-probes, we use this effective probe size and a medium refractive index

that is determined using the effective medium theory, (nwϕw + no,NEMϕNEM)/(ϕw + ϕNEM),

in the Mie scattering calculation to obtain the ϕ-dependent 1/ℓ∗ISA in the limit of indepen-

dent scattering approximation (ISA) (see Figure 4.4C). It should be noted that the medium

refractive index used in the ISA calculation takes into account only the refractive index of

nanoscale droplets and the SDS solution that surrounds a single microscale droplet. This is

in contrast to the calculation of ∆neff related to Figure 4.3C-D, where the refractive index

of other microscale droplets is also included in the definition of the refractive index of the

continuous phase, ncont (see chapter 4.3).

Each of the measured DWS intensity autocorrelation functions, g2(t)− 1, exhibits a pri-

mary decay at t ≈ 10−5 s for the EM-NEM mixture (see chapter 4.3, Figure 4.4D). For
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ϕEM ≥ 0.255, each g2(t) − 1 fully decays to baseline in the multi-tau correlation range. By

contrast, for ϕEM ≤ 0.252 (i.e. ϕNEM ≥ 0.148), g2(t)− 1 exhibits a primary decay-to-plateau

followed by a secondary decay at long times in the echo range. The probe MSDs ⟨∆r 2(t)⟩ are

extracted from DWS correlation functions and have been corrected for collective scattering

using the ϕ-dependent structure factor, ⟨S(q)⟩ = ℓ∗ISA/ℓ
∗ (see chapter 4.3). The product of

aeff and ⟨∆r 2(t)⟩ for all ϕ values studied within the restricted ϕtot is shown in Figure 4.4E. To

enhance clarity, we exclude the long-time aeff ⟨∆r 2(t)⟩ data, associated with the mechanical

vibration-induced damped oscillatory noise, from displaying for the two samples having the

lowest ϕEM ≤ 0.133, as they do not affect the magnitude of the extracted primary plateau

MSDs. Each probe MSD exhibits an early-time rise up to t ≈ 2× 10−5 s, a primary plateau

indicating confinement, and then a secondary rise beyond t ≈ 5×10−4 s. This secondary rise

at long times resembles a feature known as an excess MSD that has been previously seen in

emulsions subjected to micellar depletion attractions59,120. Using a model that captures the

primary rise-to-plateau features in MSDs for dense microscale emulsions57, we fit ⟨∆r 2(t)⟩

for the mixtures having ϕEM ≤ 0.252 (see solid lines in Figure 4.4E), yielding primary plateau

MSDs, ⟨∆r 2⟩p.

4.4.2.3 Plateau shear elastic modulus

For the binary EM-NEM mixtures at fixed ϕtot = 0.4, the measured G′
p,mech(ϕNEM) increases

rapidly around ϕNEM ≈ 0.15, far below ϕMRJ (see red squares in Figure 4.5A). For compar-

ison, we have performed control measurements of only the nanoemulsion, not the mixture,

for 0.2 ≤ ϕNEM ≤ 0.4 (see black diamonds in Figure 4.5A); the rapid increase in G′
p,mech of

the nanoemulsion by itself occurs at higher ϕNEM ≈ 0.20. Because these onset values are

close but not the same, these measurements indicate that nanoemulsion jamming is likely to

be playing a major role in the onset of elasticity in G′
p,mech of the binary mixture.

To determine if nanoemulsion jamming is dominating the shear rheological response of

the binary mixture, we make and test the following hypothesis. For this restricted range of
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lower ϕNEM and ϕEM, we hypothesize that the water in the mixture can be considered to be

associated primarily with the nanodroplets and that the microscale emulsion droplets, which

remain well below the emulsion jamming point, do not participate substantially in the shear

rheological response of the mixture. Based on this, we define a volume fraction of nanoemul-

sion in what amounts to an effective continuous phase, ϕNEM,ecp, in which the entire water vol-

ume is associated with the nanodroplets: ϕNEM,ecp = Vo,NEM/(Vo,NEM+Vw) = ϕNEM/(1−ϕEM).

This definition essentially treats the microscale emulsion droplets as elastic inclusions, which
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Figure 4.5. Measured plateau elastic shear moduli, G′
p, as a function of droplet

volume fraction of nanoemulsions, ϕNEM, and droplet volume fraction of na-
noemulsions in the effective continuous phase, ϕNEM,ecp, for the binary EM-
NEM mixture at fixed ϕtot = 0.4. (A) Comparison of plateau elastic shear moduli,
G′

p,mech(ϕNEM), obtained using mechanical rheometry, for the binary mixtures (red squares);
DWS-GSER microrheological plateau elastic shear moduli, G′

p,GSER(ϕNEM) (blue circles), ob-
tained using primary plateau MSDs that have accounted for collective scattering from Figure
4.4E; and bare nanoemulsions (ϕEM = 0, black diamonds). (B) Comparison of plateau elas-
tic shear moduli G′

p,mech(ϕNEM,ecp) measured by mechanical rheometry (red squares) with
measured G′

p,mech(ϕNEM,ecp) for bare nanoemulsions (ϕEM = 0, black diamonds), and fit us-
ing the EEI model37 (black line). (C) Comparison of G′

p,GSER(ϕNEM,ecp) (blue circles) with
G′

p,mech(ϕNEM,ecp) (red squares). Open symbols represent that G′ of these emulsions exhibit
strong frequency dependence; the small-strain plateau G′

p,mech are extracted from fits of G′(γ)
at a frequency of 1 rad s−1, where γ represents the applied peak strain amplitude in the strain
sweep measurements.
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do not weaken the entire system substantially, within a dominant elastic matrix that results

from nanodroplet jamming. Here, ϕNEM and ϕEM refer to volume fractions of the respective

components in the binary mixture after mixing, not to initial volume fractions of the separate

microscale and nanoscale emulsions prior to mixing.

This hypothesis of the effective continuous phase associated with the nanoemulsion causes

the binary mixture’s G′
p,mech(ϕNEM,ecp) to overlap the pure NEM’s G′

p,mech(ϕNEM) and also

the EEI model fit within a factor of 2 (see Figure 4.5B). Thus, we infer from this overlap that

the jamming of the nanoemulsion component in the binary mixture, excluding consideration

of the microscale component, largely explains the macroscopic measurement of small-strain

shear elasticity of the mixture over this restricted range of ϕEM and ϕNEM. In this set of mix-

tures at ϕtot = 0.4, the oil volume fraction of EM droplets remains well below the jamming

ϕ of the microscale emulsion.

In addition, we calculated the plateau elastic shear moduli, G′
p,GSER from the primary

plateau MSDs, ⟨∆r 2⟩p, after accounting for the collective scattering of the effective DWS

probes, using the generalized Stokes-Einstein relation (GSER) of passive microrheology11

[see chapter 4.3, equation (4.3)]. This optically deduced G′
p,GSER exhibits good agreement

with the mechanically measured G′
p,mech, in consideration of the orthogonal distance between

them that takes into account the observational errors on both ϕ and G′
p (see Figure 4.5A

and 4.5C). While we find evidence of substantial depletion attractions between microscale

droplets in the measured optical transport ℓ∗ and in DWS excess MSDs, the bulk linear shear

elastic response of the mixture for ϕtot = 0.4 can be explained by nanoemulsion jamming

using the concept of the effective continuous phase.

Prior studies of microscale-only emulsions subjected to micellar depletion attraction have

shown that in the modified GSER, there is a ϕEM-independent effective probe size factor α =

2.0 for strongly attractive emulsions115, and a ϕEM-dependent α ranging from 1.0 to 2.0 for

intermediately depletion attractive emulsions120, to account for the effective size of scatter-

ing probes. These probes can be local dense clusters of the microscale droplets rather than
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single microscale droplets in presence of micellar depletion agents. However, these studies

do not incorporate the nanodroplet jamming scenario; the nanodroplets are also the deple-

tion agents for the microscale droplets. Due to the limited structural information available,

we refrain from applying the α-factor correction which accounts for the effective probe size

induced by depletion, and which would be necessary to determine whether the microscale

droplets are randomly distributed in the elastic matrix of the nanoemulsion or form aggre-

gated gel structures. If we were to apply this correction, which assumes the effective probes

are twice as large as the currently used probe size due to depletion, we would obtain better

agreement between the calculated G′
p,GSER and the mechanically measured G′

p,mech at the

onset of elasticity near ϕNEM,ecp ≈ 0.2 using the same data.

4.4.3 Binary EM-NEM mixtures at fixed oil volume fraction of EM droplets

4.4.3.1 Optical transport: inverse scattering mean free path

The measured ϕNEM-dependent 1/ℓ∗ of the binary EM-NEM mixture at fixed ϕEM = 0.5

decreases as ϕNEM is raised from 0 to 0.14 (Figure 4.6A). The calculated effective refractive

index difference ∆neff(ϕNEM) decreases linearly as ϕNEM is increased since a greater percent-

age of the medium outside any given microscale droplet is oil, leading to a smaller refractive

index difference (Figure 4.6B, red line). After normalizing 1/ℓ∗ by ∆neff, we fit the ϕNEM-

dependent (1/ℓ∗)/∆neff to a semi-empirical Fermi-like function [equation (4.2), see chapter

4.3], which captures the reduction to a plateau in the strongly attractive limit at high ϕNEM

(Figure 4.6C). This additional decrease is associated with attractive depletion potentials

beyond about 4 kBT (see chapter 4.3).

4.4.3.2 Effective scattering probe dynamics by DWS

As the fraction of nanodroplets in the binary EM-NEM mixture increases while holding ϕEM

constant at 0.5, the fraction of the inverse optical transport mean free path attributed to
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Figure 4.6. Inverse mean free path of optical transport, 1/ℓ∗, and effective
refractive index difference, ∆neff for the binary EM-NEM mixture at fixed oil
volume fraction of EM droplets ϕEM = 0.5. (A) Measured 1/ℓ∗ as a function of
nanoscale emulsion droplet volume fraction ϕNEM (red circles). (B) Calculated ∆neff as a
function of ϕNEM (red line). For comparison: calculated ∆neff,ref for the emulsions alone
(ϕNEM = 0, black line). (C) Scattering strength normalized by the corresponding effective
refractive index difference, (1/ℓ∗)/∆neff, as ϕNEM is varied while keeping ϕEM = 0.5. Fit using
equation (4.2) shows a Fermi-like decay as |Ud| increases, while |Ud| increases exponentially
as ϕNEM is raised (red line, R2 = 0.910). For comparison: (1/ℓ∗ref)/∆neff,ref at ϕEM = 0.5 and
ϕNEM = 0 (black line).

the microscale component decreases from 1.0 to around 0.6 when ϕNEM is increased from 0

to 0.14; therefore, fϕEM decreases from 0.5 to ≈ 0.3, as shown in Figure 4.7A. The effective

DWS-probe radius, aeff, of the mixture decreases from 605 nm when ϕNEM is zero to 424

nm when ϕNEM is 0.14 (see Figure 4.7B). The ϕ-dependent 1/ℓ∗ISA, calculated using aeff from

Figure 4.7B and a refractive index of medium containing NEM and SDS solution (see chapter
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Figure 4.7. Inverse optical transport fraction, f , attributed to the EM com-
ponent multiplied by ϕEM; Effective DWS-probe radius, aeff ; and 1/ℓ∗ISA, as
functions of ϕNEM. Time-dependent DWS intensity autocorrelation functions,
g2(t) − 1, and mean square displacements (MSDs) multiplied by probe radius,
aeff ⟨∆r2(t)⟩, of the binary EM-NEM mixture at fixed ϕEM = 0.5. (A) Fraction f
is given by the ratio between (1/ℓ∗)/∆neff for EM-NEM mixture (red in Figure 4.6C) and
(1/ℓ∗ref)/∆neff,ref for EM-only reference (black in Figure 4.6C). fϕEM is the weight applied
on the EM component in calculating aeff. (B) DWS-probe radius deduced from measured
⟨aEM⟩ and ⟨aNEM⟩, weighted by fϕEM and ϕNEM, respectively. (C) Calculated 1/ℓ∗ISA us-
ing aeff and medium refractive index containing NEM droplets. Red line guides the eye.
(D) Measured g2(t) − 1 for various ϕNEM (color-coded, see left). DWS multi-tau correla-
tion data extend from early times up to ≈ 2 × 10−1 s and DWS echo data are shown at
longer times for ϕNEM ≥ 0.075; DWS multi-tau correlation functions fully decay to baseline
with no echo signal measured for ϕNEM ≤ 0.059. Damped oscillatory noise signals, resulting
from mechanical vibrations, are superimposed on the main g2(t)− 1 signals, and visible for
all ϕNEM ≥ 0.100. (E) Ensemble-averaged ⟨∆r 2(t)⟩, which are extracted from g2(t) − 1 in
part (D) and corrected for collective scattering using 1/ℓ∗ in Figure 4.6A and 1/ℓ∗ISA in part
(C), multiplied by aeff (color-coded, see right). Fits (solid lines) of DWS MSDs at early-
to-intermediate, which reflect average probe dynamics, provide the primary plateau MSDs,
⟨∆r 2⟩p (see ref.57). Rises in MSDs at longer times are attributed to excess MSDs59,120, and
so are excluded from these fits.
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4.3), decreases in a nearly linear manner with increasing ϕNEM (see Figure 4.7C).

At fixed ϕEM = 0.5, the measured g2(t)− 1 for EM-NEM mixtures having ϕNEM < 0.06

fully decay to baseline. By contrast, at the highest ϕNEM ≥ 0.100, g2(t) − 1 exhibits a

primary decay-to-plateau followed by a secondary decay-to-plateau (see Figure 4.7D). In

between these ranges, we find a primary decay-to-plateau and then a secondary decay that

is incomplete and non-exponential over the measurement window. We extract the probe

MSDs ⟨∆r 2(t)⟩ from measured g2(t)− 1 for ϕNEM ≥ 0.075; these MSDs have been corrected

by the structure factor ⟨S(q)⟩ (see chapter 4.3) to account for collective scattering using

1/ℓ∗(ϕNEM) in Figure 4.6A and the 1/ℓ∗ISA(ϕNEM) in Figure 4.7C. For each of the ϕNEM

explored, the product of aeff and time-dependent ⟨∆r 2(t)⟩ is shown in Figure 4.7E. Each

of the probe MSDs exhibits an early-time rise up to t ≈ 2 × 10−5 s, a gradual bending to

the primary plateau, and then a secondary rise. The onset lag time of the secondary rise

slightly decreases as ϕNEM increases, from t ≈ 5× 10−3 s when ϕNEM is 0.05 to t ≈ 5× 10−4

s when ϕNEM is 0.14. For each ϕNEM ≥ 0.075, the primary rise-to-plateau ⟨∆r 2(t)⟩ has been

fit to the dense-emulsion MSD model (see solid lines in Figure 4.7E), yielding the primary

plateau MSD, which is inversely proportional to the plateau shear elastic modulus as per the

GSER of passive microrheology. For the mixture sample having the highest ϕNEM = 0.14,

the long-time aeff ⟨∆r 2(t)⟩ data, superimposed by the mechanical vibration-induced damped

oscillatory noise, do not influence the magnitude of the extracted primary plateau MSDs and

are excluded from displaying for clarity. At lower ϕNEM < 0.6, there is no distinct change in

the curvature of aeff ⟨∆r 2(t)⟩ in the log-log scales that can be used to extract the primary

plateau MSDs with high confidence.

4.4.3.3 Plateau shear elastic modulus

The emulsion system having ϕEM = 0.5 is dominantly viscous and has no measurable

G′
p,mech for ϕNEM = 0. As ϕNEM is raised in the binary EM-NEM mixture, the measured

G′
p,mech(ϕNEM) increases most rapidly around ϕNEM ≈ 0.08, which is well below the jamming
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Figure 4.8. Measured plateau elastic shear moduli, G′
p, as a function of droplet

volume fraction of nanoemulsions, ϕNEM, and droplet volume fraction of na-
noemulsions in the effective continuous phase, ϕNEM,ecp for the binary EM-
NEM mixture at fixed ϕEM = 0.5. (A) Comparison of DWS-GSER microrheological
G′

p,GSER(ϕNEM) (blue circles), obtained using primary plateau MSDs that have accounted for
collective scattering from Figure 4.7E, with G′

p,mech(ϕNEM) measured by mechanical rheom-
etry (red squares). Red dashed line: interpolation curve guides the eye. (B) Measured
G′

p,GSER(ϕNEM,ecp) (blue circles) and G′
p,mech(ϕNEM,ecp) of the binary mixtures (red squares);

red dashed line: interpolation curve guides the eye. For comparison: G′
p,mech of bare na-

noemulsions (ϕEM = 0, black diamonds); black solid line: fit of G′
p,mech(ϕNEM,ecp) using the

EEI model37 for nanoemulsions. Open symbols represent small-strain plateau G′
p,mech ex-

tracted from fits of G′(γ) at 1 rad s−1 for emulsions having frequency-dependent G′.
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point of nanodroplets; yet, ϕtot is still far lower than ϕMRJ (Figure 4.8A, red squares). For

ϕNEM ≥ 0.075, the microrheological G′
p,GSER(ϕNEM), calculated from the primary plateau

MSDs in Figure 4.7E that have been corrected for collective scattering, using the GSER [see

chapter 4.3, equation (4.3)], are shown as blue circles in Figure 4.8A. The passive microrhe-

ological G′
p,GSER, obtained from optical transport and DWS dynamics measurements, and

the bulk mechanical G′
p,mech, obtained from shear rheometry, present an adequate agreement

within the experimental and fitting error range, considering the orthogonal distance (i.e.

total least squares) between G′
p,GSER(ϕNEM) and G

′
p,mech(ϕNEM). If taking into account the

depletion attraction that enlarges the effective DWS-probes by a factor of ≈ 2115,120, the

differences between G′
p,GSER and G′

p,mech at ϕNEM = 0.075 and 0.08 would be further reduced

and the level of the agreement would be improved.

To take into account the jamming effects of nanodroplets in the EM-NEM mixture, we

compare the measured G′
p,mech of these mixtures with the G′

p,mech of the reference NEM-only

system as a function of ϕNEM,ecp using the concept of the nanoemulsion’s effective continuous

phase (see Figure 4.8B). The rapid rise in G′
p,mech appears around ϕNEM,ecp = 0.16, which is

lower than the jamming point of NEM near 0.2. At this ϕNEM,ecp value, nanodroplets induce

a strong attractive depletion potential ≈10 kBT between the microscale droplets. Therefore,

in addition to jamming of NEM, the depletion attractions between microscale droplets begin

to play an important role in supporting bulk shear elasticity, and the use of ϕNEM,ecp is not

sufficient to cause a collapse of the measurements of the mixtures at large fixed ϕEM onto

the NEM-only measurements. As ϕNEM,ecp decreases, G′
p.mech of the mixture remains greater

than the reference NEM-only G′
p,mech. Just below ϕNEM,ecp = 0.2 corresponding to jamming

of the NEM, G′
p,mech falls by two orders of magnitude, indicating the formation of percolating

structures of EM droplets over macroscopic length scales. However, while much lower G′
p,mech

is still substantial over the range where repulsive NEM-jamming is absent. For ϕNEM,ecp <

0.2, the nanodroplets are not repulsively jammed; so, the mechanical shear rigidity can be

attributed to percolating gels of microdroplets subjected to strong depletion attractions.
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4.5 Discussion

We have shown that extreme bidispersity in a droplet size distribution of a concentrated

colloidal emulsion can be a source of striking emergent effects in that emulsion’s optical

transport properties, droplet dynamics, and bulk linear mechanical response to shear. These

effects can arise from additional complexity in the jamming scenario, when taking into ac-

count screened-charge electrostatic repulsions between droplet interfaces, and alternatively

from entropic depletion attractions between microscale droplets, caused by nanoscale droplets

that act as a depletion agent. Thus, for colloidal emulsions having extreme bidispersity or

other forms of extreme polydispersity, which typically extends over one order of magnitude

or more in droplet radius, such emergent effects can exist and thereby preclude näıve inter-

pretations that would be based only upon simple relative volume-fraction-weighted effective

medium theories.

Our measurements of optical transport properties in extremely bidisperse colloidal emul-

sions, summarized in Figure 4.9, provide a sensitive indicator of the existence of depletion

attractions at sufficiently high ϕNEM; these attractions are strong enough to cause microscale

droplets to have a larger average coordination number. Such depletion attractions reduce

the scattering strength and therefore lower 1/ℓ∗ below values that would otherwise be ex-

pected using simple effective medium theory for the effective refractive index outside a given

microscale droplet. So, there is a range of higher ϕNEM that can cause strong enough deple-

tion attractions between microscale droplets, relative to kBT , yet below the nanoemulsion

jamming limit, allowing microdroplets to form aggregates or gels by exploring different con-

figurations and approaching each other. Our measurements of optical transport properties

provide key local-structural evidence for the existence of strong depletion attractions be-

tween microscale droplets in our studies, both at fixed ϕtot = 0.4 and at fixed ϕEM = 0.5, for

large ϕNEM. Thus, we have demonstrated that self-induced depletion attractions can exist

in an extremely bidisperse colloidal O/W emulsion, stabilized by an ionic surfactant; yet,

the nanoemulsion droplets, not surfactant micelles, act as the depletion agent that can cause
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Figure 4.9. Inverse mean free path of optical transport, 1/ℓ∗(ϕEM, ϕNEM), for
binary mixtures of fractionated oil-in-water emulsions and nanoemulsions having
total droplet volume fraction ϕtot = 0.4 (red pins) and fixed ϕEM = 0.5 (blue
pins). Open circles are projections of the two sets of 1/ℓ∗(ϕEM, ϕNEM) to planes at ϕNEM

= 0 and ϕEM = 0.8, respectively. For comparison: measured 1/ℓ∗(ϕEM) for bare microscale
emulsions (black squares) and fit to an inverse parabola (black line): 1/ℓ∗ = (1/ℓ∗ISA)ϕEM(1−
ϕEM/ϕEM,trans), where 1/ℓ∗ISA = (22.9± 0.1) mm−1, ϕEM,trans = 0.918± 0.003 (R2 = 0.994).

aggregation and gelation of the microscale droplets. Therefore, the observed decrease in

scattering and turbidity of this extremely bidisperse emulsion, as indicated by the reduction

in 1/ℓ∗ beyond what simple effective medium theory would describe, can be linked to an

increase in the average local coordination number of microscale droplets in close proximity

in such depletion-induced aggregates or gels.

Our measurements likewise show that DWS, when properly interpreted at high vol-

ume fractions of probe droplets, can provide MSDs of microscale droplets in this extreme

bidisperse emulsion that are useful for quantitative passive microrheological interpretation

through the GSER. Our study shows that an effective probe radius aeff can be used to inter-
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pret DWS MSDs in the GSER; this aeff is a volume-weighted average of radii for microscale

droplets and nanoscale droplets after accounting for their relative scattering contributions

through the factor f , which is defined from the measured 1/ℓ∗. In addition, this is true both

when the jamming of the nanoemulsion is the dominant source of the shear elasticity and

also when attractive gels of microscale droplets are formed through strong slippery depletion

attractions. Considering a wider range of possible bidisperse colloidal droplet size distribu-

tions than those we have studied, we anticipate that performing quantitative microrheology

will be much more challenging in the limit where scattering cannot be associated only with

size-fractionated microscale emulsion droplets having a well-defined ⟨aEM⟩. Thus, it is likely

that the interpretation of DWS for broadly polydisperse colloidal emulsions in terms of a

single meaningful probe MSD and the passive microrheological interpretation, will be consid-

erably more challenging than for this extremely bidisperse colloidal emulsion that we have

investigated. Our observation of excess MSDs at long times, rather than simple plateau

behavior, when |Ud| is substantially larger than kBT , also supports the interpretation that

depletion attractions are playing a role in the microscale droplet dynamics; such excess MSDs

have also been observed for microscale emulsions subjected to micellar depletion attractions

caused by excess surfactant far above the critical micelle concentration. Thus, the presence

of self-induced depletion attractions in this extremely bidisperse emulsion can be detected

using the long-time behavior of measured DWS correlation functions and MSDs, not just

through the optical transport properties.

The bulk linear shear elasticity of this extremely bidisperse colloidal emulsion, while sys-

tematic as a function of ϕNEM and ϕEM, cannot be described by simple effective medium

theory, as shown in Figure 4.10. Instead, in cases where ϕEM is well below the jamming

limit for the microscale droplets, this elasticity can be explained by the jamming of the

nanoemulsion droplets in an effective continuous phase that apportions all of the water vol-

ume in the system only to the nanodroplets. In this limit of lower ϕEM, corresponding to

the study at fixed ϕtot = 0.4, the microscale emulsion droplets act only as inclusions that
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Figure 4.10. Measured plateau elastic shear moduli, G′
p(ϕEM, ϕNEM,ecp), using

mechanical rheometry for binary EM-NEM mixtures at fixed total droplet vol-
ume fraction ϕtot = 0.4 (red cubes from Figure 4.3B) and fixed ϕEM = 0.5 (blue
cubes from Figure 4.6B). For comparison: measured G′

p(ϕNEM,ecp) for bare nanoemul-
sions (black diamonds) and G′

p(ϕEM) for bare emulsion (tan diamonds). Rainbow-colored
surface: plateau elastic shear moduli calculated from the G′

p,EEI predicted via the Entropic,
electrostatic, and interfacial (EEI) model37 using simple effective medium theory (EMT):
G′

p,EMT,EEI(ϕEM, ϕNEM,ecp) = [G′
p,EEI,EM(ϕEM)ϕEM + G′

p,EEI,NEM(ϕNEM,ecp)ϕNEM,ecp]/(ϕEM +
ϕNEM,ecp). Open red squares are projections of G′

p,EMT,EEI for fixed ϕtot = 0.4 to the plane
at ϕEM = 0.

do not substantially impact the value of G′
p,mech; so, G

′
p,mech(ϕNEM,ecp) of the extreme bidis-

perse emulsion matches the jamming curve G′
p,mech(ϕNEM) of the nanoemulsion-only control

study. By contrast for ϕEM near but below jamming, corresponding to the study at fixed

ϕEM = 0.5, for progressively higher ϕNEM, we find that the measured increase in G′
p(ϕNEM)

cannot be explained merely using the effective continuous phase of nanoemulsion jamming.

Instead, depletion-induced attractive gel formation of the microscale droplets, which have

ϕEM near but below the microscale jamming point, is the source of the rise in G′
p as the

concentration of nanoemulsion depletion agent causes |Ud| to become large compared to
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kBT . This interpretation of both optical transport and linear mechanical shear response

for extremely bidisperse emulsions in our study at fixed ϕEM = 0.5 is also consistent with

prior experiments on micelle-induced depletion attractions between microscale droplets that

causes slippery cluster aggregation and gelation115, where ϕEM is near but below the hard-

sphere jamming point.

In addition to self-induced depletion effects, we have also shown that elastic jamming

of the depletion agent can occur as ϕNEM,ecp is raised above the nanoemulsion’s jamming

point, thereby precluding rearrangement of the microscale droplets and inhibiting long-time

cluster-cluster aggregation and gel formation. So, we have shown that the jamming of a

depletion agent into an elastic solid can occur in certain scenarios of colloidal aggregation

and gelation when the concentration of the depletion agent becomes very large. This jam-

ming of the depletion agent effectively limits the applied osmotic pressure that can be used

in depletion-driven assembly scenarios, since motion of the larger structures into different

relative configurations is precluded by the elasticity of the jammed depletion agent. Here,

the use of nanoemulsions over other depletion agents, such as surfactant micelles, polymer

micelles, and polymers, is advantageous because each nanodroplet has a well-defined in-

compressible volume; whereas, the shapes, sizes, and effective aggregation number of many

micellar and polymer structures are known to change in the high concentration limit. Like-

wise, for certain relative compositions of nanoscale and microscale droplets, we infer that

long-time aging effect could occur for some regions of ϕNEM and ϕEM; here, our two main

studies have utilized a protocol that has been designed to provide systematic optical, dy-

namic, and mechanical responses after loading transients have died out but before long-term

aging could play an important role. This protocol has been successfully applied previously

to microscale emulsions in the presence of a micellar depletion agent.

Our study of bidisperse colloidal emulsions extends into high ϕEM and ϕNEM; this regime is

basically inaccessible to bidisperse systems of charge-stabilized solid colloidal spheres because

solid colloidal spheres typically undergo irreversible solid-solid aggregation when strongly
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concentrated toward the jamming limit. Such irreversible aggregation is undesirable, since

it precludes controlling the volume fractions through subsequent mixing and dilution. By

contrast, the deformability of the droplets in emulsions provides reversibility in mixing and

dilution by avoiding this solid-solid aggregation, and droplet deformability thereby enables

us to make, control, and study stable binary mixtures of emulsions and nanoemulsions that

remain soft solids over a much broader range of ϕEM and ϕNEM. Thus, considering dispersed

colloidal systems broadly, emulsions prove to be a more flexible colloidal system for probing

jamming and depletion effects over a greater range than colloidal systems composed of solid

spheres.

In summary, our comprehensive set of measurements on extreme bidisperse colloidal emul-

sion provides a key benchmark for future theories of broadly polydisperse colloidal systems;

such theories can be compared to this comprehensive set, which relates to local structure and

dynamics of the microscale droplets, through 1/ℓ∗ and DWS MSDs, as well as the bulk linear

shear elastic response through G′
p. We have shown that self-induced depletion attractions can

lead to changes in both optical transport through and shear elasticity of colloidal emulsions

having extreme bidispersity, and we anticipate that these emergent effects could also be seen

in certain broadly polydisperse colloidal emulsions, too. Moreover, because charge-stabilized

O/W nanoemulsions have a lower jamming point than charge-stabilized O/W microscale

emulsions, when considered at the same ionic surfactant concentration and Debye screening

length, typically the jamming of the nanoemulsion dominates the rheological response of the

extremely bidisperse emulsion when ϕEM is well below the microscale emulsion’s jamming

point. If non-ionic surfactants might be used instead, different findings and interpretations

could result.

Our findings for extremely bidisperse colloidal O/W emulsions stabilized by a simple ionic

surfactant contrast with prior findings of extremely bidisperse colloidal polymer solutions.

When a small percentage of a high molecular-weight non-electrolyte polymer is added to

a viscous polymer solution, composed of low molecular-weight (MW) polymer of the same
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type in a good solvent, the added high MW polymer can lead to a dominant low-frequency

shear-elastic response. This elastic response is a consequence of the much larger radius of

gyration and, consequently, much lower overlap concentration of the high MW polymer.

By contrast, in our extremely bidisperse ionic O/W emulsions, a small volume fraction of

much larger microscale droplets added to a nanoemulsion does not lead to the same conse-

quence; instead, such larger droplets merely serve as large-scale defect structures within the

nanoemulsion without substantially influencing the jamming of the nanodroplets. Moreover,

the formation of strong, shear-rigid gels of microscale droplets by slippery aggregation is

not observed at ϕEM well below the jamming limit of the microscale droplets. Thus, the

nanoemulsion component of the size distribution in extremely bidisperse colloidal emulsions

will typically dominate the emulsion’s mechanical response through nanodroplet jamming

mediated by the screened-charge interfacial repulsion. In addition, nanodroplet-induced de-

pletion attractions between microscale droplets can lead to gelation and elasticity for ϕEM

near but below the jamming point of the microscale emulsion. Because droplets have fully

two-dimensional surfaces, whereas simple polymers in a good or theta solvent are quasi-one-

dimensional coil-like objects, depletion attractions far in excess of kBT can be created over a

greater range of bidisperse compositions in emulsion systems, again leading to large increases

in G′
p. Such increases are not captured in a simple effective medium theory, which does not

include entropic depletion that can be present in extremely bidisperse colloidal systems.

We anticipate that our studies will motivate additional work, both experimental and the-

oretical, that will further explore and clarify the role that colloidal size-polydispersity can

have in influencing macroscopic physical properties of complex colloidal systems. Although

we have discussed our results primarily using jamming and depletion concepts, which are cen-

trally important, the glass transition could also have an impact in the rheology and long-time

DWS correlation functions at a more detailed level. For example, the colloidal hard-sphere

glass transition, which marks the ergodic-nonergodic transition for ideally monodisperse

spheres, is known to occur at a glass transition volume fraction ϕg ≈ 0.56 to 0.5896–98,
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somewhat below the jamming point ϕMRJ = 0.646. So, uniform colloidal emulsions, which

effectively have hard interdroplet interactions, could exhibit a weak zero-frequency entropic

shear elasticity for ϕ < ϕMRJ before the onset of droplet jamming135. Additional theoretical

work is needed to clarify how the glass transition and long-time relaxations are modified in

broadly polydisperse colloidal systems, including systems having extreme bidispersity. More-

over, determining if there are meaningful interpretations of DWS in terms of MSDs, perhaps

based on the notion of an average probe-sphere radius, for highly concentrated polydisperse

colloidal systems, including emulsions, remains to be explored. Theoretical calculations of

1/ℓ∗ and aeff, made over a wide range of size-ratios and droplet volume fractions of colloidal

binary emulsion systems, are needed to compare directly with our measurements. Likewise,

it remains to be seen if DWS-based forms of passive microrheology can be used to deter-

mine mechanical shear elasticities of broadly polydisperse emulsions that match with bulk

shear rheometry measurements made on the same emulsions. In addition, more sophisticated

theoretical models, which go beyond the EEI model, are needed for predicting macroscopic

optical transport and rheological properties of polydisperse colloidal emulsions having com-

plex size-distributions. Our studies here indicate that such models would need to include

the notion of an effective continuous phase volume fraction for the nanoscale components of

the size distribution that can also serve as depletion agents for the microscale components of

the size distribution. To develop a general model, including a depletion attraction, derived

solely from the droplet size distribution, as a term in the interdroplet interaction poten-

tial would be necessary. In addition, accounting for the different heterogeneous structure

of attractively gelled emulsions, compared to repulsively jammed emulsions, would also be

necessary. A term describing a depletion attraction has been explicitly included in a recent

model of the total pair-interaction potential energy between droplets138; while noteworthy

and in the right direction, this model does not account for entropic and interfacial contri-

butions at high ϕ near and beyond the jamming point. It might be possible to include a

depletion attraction in the EEI model; yet, even such a modification would not necessarily
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capture structural differences between repulsively jammed and attractively gelled emulsions.

Given these many exciting challenges, there is a rich future ahead for advances in the science

of broadly polydisperse colloidal systems.
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Chapter 5 - Signatures of nanoemulsion jamming and

unjamming in stimulated-echo NMR

Reproduced with permission from Xu, Y., Nelson, M. L., Seymour, J. D., and Mason, T.

G., “Signatures of nanoemulsion jamming and unjamming in stimulated-echo NMR.” Phys.

Rev. E 107(2), pages 024605 (2023).

5.1 Abstract

The unjamming of elastic concentrated nanoemulsions into viscous dilute nanoemulsions,

through dilution with the continuous phase, offers interesting opportunities for a pulsed-

field gradient (PFG) NMR, particularly if the nanoemulsion is designed to take advantage

of the nuclear specificity offered by NMR. Here, we make and study size-fractionated oil-in-

water nanoemulsions using a perfluorinated co-polymer silicone oil that is highly insoluble

in the aqueous continuous phase. By studying these nanoemulsions using 19F stimulated-

echo (StE) PFG-NMR, we avoid any contribution from the aqueous continuous phase, which

contains a non-fluorinated ionic surfactant. We find a dramatic change in the 19F PFG-

NMR decays at high field-gradient strengths as the droplet volume fraction, ϕ, is lowered

through dilution. At high ϕ, observed decays as a function of field-gradient strength exhibit

decay-to-plateau behavior, indicating jamming of nanodroplets, which contain 19F probe

molecules, in an elastic material reminiscent of a nanoporous solid. In contrast, at lower ϕ,

only a simple decay is observed, indicating that the nanodroplets have unjammed and can

diffuse over much larger distances. Through a comparison with bulk mechanical rheometry,

we show that this dramatic change coincides with the loss of low-frequency shear elasticity
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of the nanoemulsion.

5.2 Introduction

Nuclear magnetic resonance (NMR) is a powerful and sensitive experimental technique that

can reveal structure and dynamics within both simple homogeneous and complex heteroge-

neous forms of condensed matter. Pulsed-field gradient (PFG) NMR provides access to the

dynamics of molecules which contain specific nuclei of interest139. In one particular applica-

tion of PFG-NMR, investigations of the dynamics of liquid molecules in nanoporous solids

have revealed the very substantial impact of molecular confinement within nanopores140.

Because the nanopores are sufficiently small, the high degree of spatial confinement of the

liquid molecules, as these experience quiescent Brownian excitations, can be readily detected

at high field-gradient strengths. Instead of exhibiting a simple exponential decay, as in a

bulk liquid, the PFG-NMR signal does not fully decay when a liquid is so highly confined

within nanopores. The substantial impact of nanoporous confinement on molecular diffusion

has been observed using 1H PFG-NMR and reported for poly-dimethylsiloxane silicone oil in

open-pore polymeric host matrices141, water in single-walled carbon nanotubes142, hexade-

cane in core-shell latex particles143, hexane in nanoporous zeolite crystallites144, and eicosane

in electrochemically etched silicon nanochannels145. In particular, the simple exponential de-

cay associated with molecular diffusion in the bulk liquid can transition to a decay-to-plateau

behavior146 for the same liquid that is highly confined within a nanoporous solid140.

Investigating the molecular dynamics of polymers subjected to shear or flow has opened

up an application of PFG-NMR equipped with rheometer components, known as Rheo-

NMR147,148. Probe molecules can either be attractively bound to or repulsively confined

by other neighboring molecules; examples include a solid phase of bulk polymers147,149 and

a glassy state of concentrated polymer solutions150. Different techniques, such as NMR

spectroscopy, relaxometry, diffusivity and velocity imaging, have been applied to study the
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microscopic response to shear- and flow-induced anisotropy in bulk materials149–152. While

these prior Rheo-NMR experiments have combined certain aspects of rheology and NMR,

so far these approaches have not been based on the notions of passive microrheology11, even

as such a possibility has been suggested previously12.

Nanoemulsions are dispersions of liquid droplets having sub-100 nm radii in an immis-

cible continuous solution phase that are stabilized against subsequent coalescence by a sur-

factant23,24,153. Customized nanoemulsions are continuously being developed and applied

in many different areas, including pharmaceuticals and industrial products154. Although

the nanoemulsion is composed entirely of liquids, if the volume fraction of droplets, ϕ, is

raised beyond the jamming point, a well-stabilized nanoemulsion becomes a soft elastic solid

as a consequence of a combination of interfacial tension and interfacial repulsion between

the jammed nanodroplets in close proximity10. These jammed nanodroplets are confined by

neighboring nanodroplets, and the positional structure of the solid nanoemulsion resembles

that of a disordered glass in the absence of strong interdroplet attractions24. Concentrated

nanoemulsions can mimic disordered closed-pore nanoporous solids when ϕ is above the

jamming point. Interestingly, this nanoporous solid can effectively be melted through dilu-

tion with sufficient continuous-phase solution, thereby lowering ϕ below the jamming point.

Thus, nanoemulsions could provide a route for studying what happens to molecular dynamics

when an elastic closed-pore nanoporous material is melted as the pores (i.e. nanodroplets)

effectively transition from being confined to unconfined as ϕ is reduced. If the nanoemulsion

could be customized appropriately, in principle, PFG-NMR could then be used to probe

the dynamics of only the dispersed-phase oil molecules within the nanodroplets, and thus

could potentially provide a sensitive means of exploring droplet unjamming as the closed-

pore nanoporous solid melts, since the molecular dynamics are inherently coupled to the

nanodroplets’ dynamics.

While 1H PFG-NMR has many different important uses, its potential application for

studying confined molecular diffusion in simple oil-in-water nanoemulsions would likely be
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difficult to interpret because hydrogen is extensively present both in the water of the con-

tinuous phase as well as in the most common hydrocarbon and silicone oils in the dispersed

droplet phase155. Consequently, it would be desirable to consider 19F PFG-NMR as an al-

ternative, since this can create comparably strong signals as 1H PFG-NMR. Silicone oils

having perfluorinated side groups offer a potential route for developing a stable oil-in-water

nanoemulsion, in which 19F-laden silicone oil molecules are present only within the interior of

the constituent nanodroplets. While prior experiments demonstrated that stable perfluori-

nated silicone oil-in-water nanoemulsions could be produced, these experiments relied upon a

perfluorinated surfactant soluble only in the aqueous continuous phase156. Such use of a per-

fluorinated surfactant in combination with a perfluorinated oil would be less desirable, since

19F PFG-NMR would yield a convolution of signals from surfactant molecules experiencing

unconfined diffusion in the continuous phase, adsorbed surfactant molecules diffusing on the

interfaces of nanodroplets, and also oil molecules experiencing confined diffusion within the

nanodroplets.

Consequently, in order to study only the dynamics of the oil molecules within nan-

odroplets, it would be desirable to formulate a special customized perfluorinated oil-in-water

nanoemulsion that is extremely stable even when concentrated to high ϕ above jamming,

yet does not rely upon perfluorinated surfactant for stability. In addition, it would be de-

sirable for this nanoemulsion to have a narrow droplet size distribution, and also for the

perfluorinated silicone oil to be very highly insoluble in the aqueous continuous phase so

that interdiffusion of oil molecules between different nanodroplets, which can lead to Ost-

wald ripening, is avoided. For such a highly customized nanoemulsion, in principle, the total

average molecular motion of 19F-laden oil molecules would depend in part on the degree

of nanodroplet motion and hence ϕ relative to the nanodroplet jamming point. Detecting

nanodroplet unjamming by reducing ϕ in such a customized perfluorinated nanoemulsion

would be an important first step towards finding a way to use PFG-NMR for quantitative

passive microrheology based on inferred motion of colloidal structures (i.e. nanodroplets),
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as has been previously suggested more broadly.

This overall approach is different than prior investigations involving PFG-NMR on other

emulsion systems. Several of these investigations have focused on extracting distributions of

droplet (i.e. cavity) sizes by fitting the signal attenuation, typically assuming a log-normal

distribution157–160. Moreover, for emulsions in which the dispersed phase has a reasonably

high solubility in the continuous phase, complex transport of molecules can be observed

as these molecules hop intermittently from one droplet to another through the continuous

phase161,162, akin to transport of liquid molecules in solid open-pore porous media having

larger cavities and narrow constrictions163. While some PFG-NMR studies of emulsions

have been made previously, examining how droplet jamming and unjamming in highly con-

centrated monodisperse nanoemulsions affects PFG-NMR attenuation still remains largely

unexplored.

Here, we have created a customized, size-fractionated, highly stable 19F-oil-in-water na-

noemulsion system, having screened-charge repulsive droplet interactions, that provides a

useful model system, and we show using 19F StE PFG-NMR that droplet jamming can lead

to a strong sub-diffusive signal in the effective molecular-probe MSDs. We obtain high-

quality functional fits of the effective MSDs, showing a smooth rise-to-plateau transition

at each higher ϕ above the droplet jamming point. Through comparison with macroscopic

rheological measurements, we associate the changes in these effective MSDs with the rheo-

logical transition between viscous unjammed nanoemulsions at lower ϕ and elastic jammed

nanoemulsions at higher ϕ. Furthermore, by interpreting the mechanical measurements

using the theoretical framework of passive microrheology, we extract plateau MSDs of nan-

odroplets in elastic nanoemulsions at high ϕ. By combining both NMR measurements with

the passive microrheological interpretation of these mechanical measurements, we show that

the nanoemulsion’s unjamming transition is consistent with a Lindemann melting criterion

of 0.3 known for a wide range of materials164.
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5.3 Experimental

5.3.1 Emulsion preparation and characterization

We have designed and prepared an oil-in-water fluorinated nanoemulsion (O/W FNEM) com-

posed of 48%:52% poly-(3,3,3-trifluoropropyl-methylsiloxane):poly-(dimethylsiloxane) block

copolymer (FMS oil, Gelest Inc.; mass density: ρo = 1.16 g mL-1; average molecular weight:

MWo = 1800 g mol-1; kinematic viscosity: νo = 124 cSt), sodium dodecyl sulfate (SDS,

Fisher Scientific; electrophoresis grade 99% purity), and deionized water (Millipore Milli-Q

Academic; resistivity: 18.2 MΩ cm). After conducting a series of emulsification and stability

screening tests using a variety of 19F-containing oils, we have selected block-copolymer FMS

because it: is highly perfluorinated to provide strong NMR signal-to-noise, has a low enough

viscosity to facilitate fabrication of an nanoemulsion using only high flow-rate emulsification

processing without evaporative ripening23,24,165, has a high enough molecular weight to pre-

clude Ostwald ripening, and remains stable against coalescence when using only a standard

non-perfluorinated ionic surfactant, SDS. Because FMS is highly insoluble in the continuous

aqueous phase, as revealed by the absence of Ostwald ripening, the 19F-laden oil molecules

do not migrate appreciably through the continuous phase from one droplet to another. Also,

our use of a non-fluorinated SDS surfactant, which is atypical in most formulations of stable

fluorinated O/W emulsions, ensures that all NMR signals arise from the fluorinated oil inside

nanoemulsion droplets without any contribution from the surfactant.

We initially prepare 500 mL of a crude microscale premix emulsion at a droplet volume

fraction ϕ = 0.15 of FMS oil in 50 mM aqueous SDS solution using a mixer (Fisher Scientific,

PowerGen 1000 S1, speed 3). After allowing any residual foam to disappear, we process this

premix emulsion using a high flow rate microfluidic homogenizer (Microfluidics Inc., model

M-110P; 75 µm Y-chamber) at a liquid pressure of approximately 200 MPa. We recover and

re-process the resulting nanoemulsion through this homogenizer 7 additional times before

collecting and diluting the resulting nanoemulsion in 10 mM aqueous SDS solution. We
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centrifuge this diluted nanoemulsion to obtain a much higher droplet volume fraction (Beck-

man L8-55 ultracentrifuge, SW-28 swinging bucket, 18,000 rpm, 4 hours), yielding a set of

concentrated, elastic, jammed nanoemulsion plugs at the bottoms of thick-wall polycarbon-

ate centrifuge tubes. The effective gravitational forces acting on droplets, caused by this

ultracentrifugation, are still small enough that nanodroplet coalescence is not observed. We

next remove the SDS solution above these elastic concentrated nanoemulsion plugs, combine

these plugs together, and then dilute these combined plugs to ϕ ≈ 0.1 using an aqueous

solution at [SDS] = 10 mM. This process of centrifugation and dilution is repeated twice

more to set the SDS concentration in the continuous phase of the resulting FNEM to 10

mM.

To decrease the droplet size polydispersity of this FNEM, we perform a four-step size-

fractionation at fixed [SDS] = 10 mM as follows. After a first centrifugation for size-

fractionation (conditions also 18,000 rpm, 4 hours), we remove the concentrated elastic

nanoemulsion plugs from the bottoms of the centrifuge tubes, cut them into two pieces us-

ing a spatula, and retain the bottom three-quarters of all plugs, corresponding to larger

droplets. We combine and dilute these bottom plug-pieces using 10 mM SDS solution to set

ϕ ≈ 0.1. We then perform a second centrifugation using the same conditions, cut the plugs,

retain and combine the top three-quarters of the plugs, and again dilute using 10 mM SDS

solution to set ϕ ≈ 0.1. We then perform a third centrifugation using the same conditions

and procedure, as above, and the top-half of the plugs are combined and diluted to ϕ ≈ 0.1

in 10 mM SDS solution. Finally, we perform a fourth centrifugation using the same con-

ditions and procedure, retain and combine the bottom three-quarters of the plugs, yielding

≈ 20 g of concentrated, fractionated master nanoemulsion, which is a soft elastic solid, at

high ϕ. We next mix this master nanoemulsion thoroughly using a spatula to exclude any

size-separation that potentially could be induced by centrifugation. The oil droplet volume

fraction of the master nanoemulsion sample is measured to be ϕm = 0.751 ± 0.008 using a

gravimetric evaporation method80. Using dynamic light scattering (Photocor, 90◦ scattering

122



angle, λ = 632.8 nm), the average droplet radius of this fractionated FNEM is measured

to be ⟨a⟩ = 63 ± 2 nm, and its radial size polydispersity is δa/ ⟨a⟩ = 0.16, where δa is

the standard deviation of the emulsion’s radial size distribution. FNEM samples at lower

ϕ are obtained by diluting a portion of the master nanoemulsion with an aqueous 10 mM

SDS solution using an analytical balance (Denver Instruments APX-200, 0.1 mg precision).

Based on prior experiments on similarly fabricated, stabilized, and fractionated O/W na-

noemulsions, the droplet structure in the fractionated O/W FNEMs is disordered at all ϕ we

explore. Moreover, the pair interaction between two FNEM nanodroplets can be described

by a screened electrostatic repulsion having a Debye screening length λD ≈ 3 nm.

Each FNEM sample is loaded into a clean glass NMR tube, having an inner diameter

of 8 mm, to a height of at least 25 mm from the bottom of the tube, as follows. For 0.248

≤ ϕ ≤ 0.420, we load these viscous FNEM samples by pouring against the walls of tubes very

slowly in order to avoid creating any air bubbles. For soft elastic FNEM samples at higher

0.480 ≤ ϕ ≤ 0.751, we load each into a NMR tube with a spatula and perform a low-speed

centrifugation for a short duration to remove air bubbles without generating gradients in ϕ.

The maximum centrifugal speed does not exceed 1500 rpm. The total duration, including

acceleration and deceleration, varies from 60 s to 1200 s; this duration is increased to 1200

s as ϕ is raised toward 0.751. After loading, we cap the NMR tubes with plastic caps and

apply Parafilm to seal them, thereby precluding evaporation, which could otherwise lead to

undesirable changes in ϕ and ultimately droplet coalescence.

5.3.2 Stimulated-echo 19F-NMR

The samples in 8mm glass NMR tubes are stored upright at room temperature until mea-

surements. We perform all diffusion measurements using a Bruker 250 MHz super conduct-

ing magnet with a Micro5 probe base and 8 mm rf coil (Bruker Biospin, Karlsruhe) for

19F nuclei excitation and detection, integrated with a Diff30 gradient coil providing 17.81

T/m pulsed magnetic field gradients at 60 A in the z-direction of the applied magnetic
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field. We hold the temperature stable at 20◦C through the Bruker BTU system with N2

gas flow and active feedback control. For the diffusion measurements, we utilize a stan-

dard pulsed-field gradient stimulated echo (PFG-StE) pulse sequence160. In these exper-

iments, we implement a constant gradient duration δ and diffusion displacement time ∆

between gradient pulses and increasing gradient strength g to step through the displace-

ment reciprocal wave length q = (2π)−1γδg space, where γ is the gyromagnetic ratio of

the 19F nuclei. This standard implementation of the PFG-StE sequence allows the mean

square displacement (MSD) to be calculated from the normalized echo voltage signal as

E(q) = S(q)/S(q = 0) = exp[−4π2q2D(∆ − δ/3)] = exp(−2π2q2⟨z2⟩), where ⟨z2⟩ =

2D(∆− δ/3) is the 1-dimensional (1D) MSD and D is the molecular diffusion coefficient160.

This equation is also often written in terms of the effective diffusion using the nomenclature

E(b) = S(b)/S(b = 0) = exp(−bDeff), where an effective gradient and displacement time

parameter b = 4π2q2(∆ − δ/3) = (γδg)2(∆ − δ/3) is used to reflect the displacement time

dependence inherent in Deff
160.

Additionally, we vary the gradient duration δ and displacement time ∆ to optimize the

measurements for probing the MSD of the nanoemulsion droplets. The molecular diffusion

coefficient of the FMS oil is measured to be 4.19×10−12 m2/s. The value of ∆ = 700 ms

(≫ ⟨a⟩2 /D0 = 9.47 × 10−3 ms) provides the long time asymptotic MSD of the droplets by

allowing the fluorinated polymer to fully sample the interior of the nanoemulsion droplets

and the droplets to diffuse within the emulsion structure161,166. To provide additional data

on the emulsion structure in terms of a porous media, we examine a range of δ values from

2 ms to 5 ms, for which δ ≫ ⟨a⟩2 /D0, to observe the signal dependence on the varying

gradient durations161,163,166. For all experiments reported here, we use a gradient duration

δ = 2 ms, which for the particle motion scale results in lD =
√
2DSEδ = 1.67 × 10−7 m,

equivalent to 1.85⟨a⟩ which generates a small additional signal attenuation in the dilute sys-

tem, accounted for by the δ/3 in the definition of b, which results in no relaxation weighting

of the diffusion data based on the measurement of a single T2 relaxation time of 291 ms
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observed using a Carr-Purcell Meiboom-Gill167 experiment. We report measurements over a

wide range of ϕ from 0.751 down to 0.1. Having a single relaxation time larger than the δ

indicates the signal does not decay significantly during the gradient duration, corresponding

to no relaxation weighting of the diffusion data. We increment gradients from 0.89 T/m up

to 17.81 T/m with 32 linearly spaced steps. For each gradient step, we perform ensemble

averaging of a 16-step phase cycle eight times.

5.3.3 Mechanical shear rheometry

We first ensure proper calibration of our strain-controlled shear rheometer (Rheometrics

RFS-II), both in magnitude of the complex shear modulus and crossover frequency, using

a polymeric viscoelastic reference standard. Following calibration, for samples having 0.359

≤ ϕ ≤ 0.751, we load each FNEM into a 25-mm diameter stainless steel cone-and-plate

geometry enclosed by a vapor trap. At a shear strain γ = 0.01, we perform a frequency

sweep from frequency ω = 10 rad/s down to 0.02 rad/s. We then perform a strain sweep at

ω = 1 rad/s from γ = 0.002 to 2 to verify that the strain of 0.01 selected for the frequency

sweep is below the yield strain, ensuring that reported G′
p values for 0.373 ≤ ϕ ≤ 0.751

correspond to the linear stress-strain response-regime. For ϕ = 0.365, the low-strain storage

shear modulus G′(γ) is effectively identical to the loss shear modulus G′′(γ) at γ ≤ 0.02. For

more highly diluted samples having ϕ ≤ 0.360, G′′(γ) dominates G′(γ) even at small shear

strains. We determine the dynamic viscosity of the FMS bulk oil, using steady shear rate

sweep measurements, to be ηo = 143 mPa s. The measured shear stress τ varies linearly

with the shear strain rate γ̇ from 1000 s−1 to 0.2 s−1. Using the mass density of the FMS

oil, we then convert to the kinematic viscosity: νo = 124 cSt.
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5.4 Results

5.4.1 NMR magnetization decay and MSD analysis

Using a fitting procedure, we normalize the StE PFG-NMR magnetization attenuation,

E(b) = S(b)/S(b = 0), determined by varying g at fixed ∆ = 700 ms, so that it decays

exponentially from unity in the low-b (i.e. low-q2) limit. This ensures that dimensionless

−ln[E(b)], which is proportional to the ensemble- and time-average MSD of the probes, rises

linearly with b in a double logarithmic scale at low b for all ϕ [open circles in Figure 5.1(a)].

For all ϕ, we have also subtracted the small baseline noise signal of E(b) before normalizing;

this baseline is determined by the measured noise plateau in E(b) beyond the decay at high b

only at low ϕ where the samples are purely viscous and simple diffusion of 19F-laden FMS oil

molecules is observed. This baseline noise subtraction makes no more than a 5% adjustment

in the values of E(b) over all ϕ measured.

We fit the measured dimensionless MSDs to a simple diffusion model for lower ϕ and to

a bound diffusion model (called the single exponential model in Magin et al.146) for higher

ϕ:

−ln[E(b)] =


bD0 ϕ ≤ ϕc

(D0/D1)[1− exp(−bD1)] ϕ > ϕc

, (5.1)

where D0 is the low-b diffusion coefficient, ϕc is a critical nanodroplet volume fraction as-

sociated with droplet jamming and the onset of sub-diffusive behavior in the decay at high

b, and D0/D1 indicates the relative amount of decay, corresponding to the plateau of the

MSD in the high-b limit [solid lines in Figure 5.1(a)]. This high-b plateau is also reminiscent

of harmonically bound Brownian behavior56. From our measurements, recognizing that the

limited upper range of b of our measurement window could have some impact on the exact

value, we find ϕc ≈ 0.32 is an empirical volume fraction threshold below which the atten-

uation signal can be described as a simple exponential decay corresponding to a diffusive

random walk. Using the determined fit parameters, we also plot the normalized E(b) data
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Figure 5.1. (a) Effective mean square displacements (MSDs) of the 19F-laden oil
molecules of the O/W nanoemulsions having average droplet radius a = 63 nm
for different droplet volume fraction ϕ (color-encoded, see left), represented by
negative natural logarithm of the corrected StE PFG-NMR diffusion signal at-
tenuation, −ln[E(b)], measured at diffusion time between refocused pulses ∆ =
700 ms and gradient pulse duration δ = 2 ms. Solid lines are functional fits to equa-
tion (5.1). For ϕ ≥ 0.331, the departure from low-b diffusive −ln[E(b)] behavior (dashed
lines show the extension toward high-b) occurs at b ≈ 5 × 1012 m−2s. The largest b at the
maximum experimentally explored gradient strength is bmax = 5.6×1013 m−2s. (b)Effective
correlation functions of the FNEM, represented by baseline-subtracted and nor-
malized attenuation, E(b). The lines represent calculations using equation (5.2) and
parameters from the corresponding functional fits in part (a). The order of ϕ goes from top
to bottom in the caption of part (a) and from left to right in part (b).

with lines that correspond to the exponential of equation (5.1):

E(b) =


exp(−bD0) ϕ ≤ ϕc

exp{−(D0/D1)[1− exp(−bD1)]} ϕ > ϕc

, (5.2)

as shown in Figure 5.1(b). The trend toward non-zero positive values of a plateau in E(b)

at high b is clearly seen; this is associated with sub-diffusive measured log-slopes of -ln[E(b)]

at high b.

Nanodroplet unjamming behavior, as ϕ is reduced and the FNEM transitions rheologi-

cally from elastic solid to a viscous liquid, is clearly seen through the large changes in the
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observed NMR E(b). To understand and describe this, we assume that the total MSD of

19F-probe-molecules arises from a combination of confined internal molecular diffusion of the

FMS oil within nanodroplets and also the diffusion of nanodroplets in the aqueous continuous

phase– yet modified by interactions with neighboring nanodroplets which can lead to nan-

odroplet confinement through jamming at high ϕ. The viscosity of the bulk fluorinated oil is

143 mPa s, determined by mechanical shear rheometry. The NMR measurements determine

the translational diffusion coefficient of the bulk oil to be 4.19×10−12 m2 s−1, yielding a vis-

cosity of 128 mPa s according to Stokes-Einstein relation, using the macromolecular radius

of gyration of 0.4 nm. The difference between these two measurements is within 11%. The

diffusion time between two adjacent refocused pulses and the duration of gradient pulses are

fixed at ∆ = 700 ms and δ = 2 ms, respectively, in all reported NMR measurements. For a

higher ϕ above the unjamming, the NMR magnetization decays at a lower rate and exhibits

less amount of attenuation at high b, reflecting the confinement from droplet jamming [Fig-

ure 5.1(b)]. The decay signal in the high ϕ regime can be fit to the bound diffusion model,

showing a concave-up bending towards a plateau as b increases [equation (5.2) for ϕ > ϕc].

In the high ϕ regime, the droplet motion is geometrically restricted in the cage formed by

adjacent droplets so that droplet diffusion contributes less in the combined apparent probe

diffusion. When the emulsion is diluted to lower ϕ, viscous response is obtained and the

magnetization attenuation can be fit to a single exponential model [Figure 5.1(b) and equa-

tion (5.2) for low ϕ ≤ ϕc]. In the low ϕ regime, the mobility of a droplet in the emulsion,

having a high-frequency viscosity close to water’s 1 mPa s, is much higher with respect to

the mobility of a confined 19F probe molecule in the droplet whose viscosity is more than

a hundred-folds higher. Therefore, the droplet diffusion predominates the confined probe

molecular diffusion and effectively results in the apparent diffusive behavior of the probe

that can be detected by NMR.

The transition in NMR magnetization decay features above and below the droplet un-

jamming can be more readily seen in the -lnE(b) functions, where -lnE is proportional to
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the mean square displacements of the probe [equation (5.2) and Figure 5.1(a)]. Linear cor-

relation between -lnE and b over the entire explored b range is observed for an unjammed

emulsion having low ϕ ≤ 0.320. By contrast, dense emulsions having high ϕ ≥ 0.325 presents

a linear rise at low b, followed by a bending knee as b is varied from low to high. Independent

to ϕ, the divergence from the linearity occurs at b ≈ 5× 1012 m−2s.

The influence of droplet confinement on NMR magnetization decay is revealed distinctly

in the -lnE(b) log-slope plot as a function of ϕ [Figure 5.2(a)]. At a given ϕ, the log-slope

(i.e. the MSD scaling exponent, represented by the slope of the log-log plot of the effective

MSD168) is calculated from the first derivative of the fitting function equation (5.1) and eval-

uated at the maximum measured bmax. A gradual increase in the bmax-log-slope is observed

from high ϕ down to ϕ ≈ 0.34, followed by an abrupt increase until ϕ approaches 0.32; and by

definition, the log-slope is strictly equal to unity for ϕ ≤ 0.32. The ratio of D0/D1, obtained

from the fits using equation (5.1) for ϕ > ϕc, is associated with the amount of magnetization

decay observed at high b. As ϕ is decreased, D0/D1 increases slowly in the high-ϕ regime,

bends up more rapidly near ϕ ≈ 0.4, and diverges at ϕ ≈ 0.33 [Figure 5.2(b)]. The diffusion

coefficient D0, representing the low-b diffusibility, is fit to a four-parameter function having

a cubic decrease multiplied by a Fermi-like function [see the caption to Figure 5.2(c)]. In

the high-ϕ regime where droplets are jammed, the droplet is highly confined by the cage

of its nearest neighboring droplets, and the internal double-bound molecular probe exhibits

low diffusibility, reflected by the low magnitude of D0 ≈ 2 × 10−14 m2s−1 for ϕ ≥ 0.38.

As ϕ is reduced, a rapid exponential rise of D0 is observed, attributed to a weaker cage

effect, reflecting the droplet unjamming in the range 0.38 ≥ ϕ ≥ 0.30. As further diluted

to lower ϕ, the measured D0 gradually increases towards the diffusion coefficient of an iso-

lated droplet in water near 3.4 ×10−12 m2s−1, calculated by Stokes-Einstein relation, which

declares that the droplet diffusion confinement disappears. The uncertainty of the fitting

parameter D0,d ≈ 5.5 × 10−12 m2s−1 is comparable to its value due to the limit amount of

data in the very dilute ϕ regime. The critical volume fraction ϕc for droplet unjamming,
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Figure 5.2. High-b log-slope and fitting parameters of the effective MSDs,
−ln[E(b)], as functions of ϕ. (a) Log-slope of −ln[E(b)] approaching the maximum
measured b, α(bmax) = dln[-ln(E)]/dln(b) evaluated at bmax, calculated from the −ln[E(b)]
fits [solid lines in Figure 5.1(a)] and fit to: 1 for ϕ ≤ ϕc; and 1− (ϕ− ϕc)

n for ϕ > ϕc, where
ϕc = 0.325± 0.011, and n = 0.28± 0.04 (square of the correlation coefficient: R2 = 0.835).
(b) The ratio D0/D1, representing the amount of attenuation at high-b, obtained from fits
using equation (5.1) for each given ϕ ≥ 0.325 and fit to D0/D1(ϕ) = [ϕm/(ϕ− ϕc)]

ν , where
ϕc = 0.328 ± 0.007, ϕm = 0.09 ± 0.05, and ν = 0.67 ± 0.30 (R2 = 0.751). (c) The low-b
diffusion coefficient D0 for all measured ϕ obtained from equation (5.1) and fit to D0(ϕ) =
{D0,d/[1+(ϕ/ϕv)

3]}/{1+exp[(ϕ−ϕc)/ϕm]}+D0,conf , where ϕc = 0.32±0.02, ϕv = 0.14±0.10,
ϕm = 0.0098± 0.0068, D0,d ≈ 5.5× 10−12 m2/s, and D0,conf = (1.9± 0.9)× 10−14 m2/s (R2

= 0.778).
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associated with the occurrence of the sub-diffusive molecular motion, have been obtained

from the fits of the bmax-log-slope of effective MSDs, the D0/D1 ratio and the low-b diffusion

coefficient D0, respectively, as functions of ϕ. The ϕc values inferred from all three of these

approaches are highly consistent within the error range, having a standard deviation less

than 2% of the average value (see caption of Figure 5.2 for fitting functions, parameters, and

regression coefficients).

5.4.2 Mechanical shear rheometry

Mechanical shear oscillatory measurements are performed in both strain sweep and frequency

sweep modes. The measured strain sweep data, G′(γ), at a fixed frequency ω = 1 rad/s, are

fit to G′(γ) = G′
p/ [(γ/γy)

κ + 1], yielding: the plateau shear modulus G′
p, the yield strain

γy, and the high-strain power-law parameter κ that describes the decrease in the non-linear

G′ beyond yielding [Figure 5.3(a)]. For all ϕ in the range from 0.751 to 0.359, the elastic

shear modulus G′
p at γ = 0.01 is in the low-strain plateau region. In the frequency sweeps,

conducted at a peak shear strain γ = 0.01, the measured G′ is frequency-independent over

the range of ω from 10 to 0.02 rad/s for dense emulsion having ϕ ≥ 0.380 [Figure 5.3(b)].

At such high ϕ, the measured plateau values of storage shear modulus G′
p are almost equal

to the magnitude of the complex shear modulus G∗(ω) at ω = 1 rad/s over the frequency

range explored. However, for ϕ ≤ 0.373, the frequency-dependence of G′ at γ = 0.01 renders

inaccuracy of determining G′
p from mechanical measurements using the G′(γ) fits as in

Figure 5.3(a). For ϕ ≥ 0.380, the plateau shear elastic moduli G′
p are fit to the entropic,

electrostatic, interfacial (EEI) model37 using the following parameters: droplet radius a = 63

nm, critical volume fraction for random close packing ϕrcp = 0.646, Debye-screening length

λD = 4 nm, surface tension σ = 0.0098 N/m and surface potential |ψ0| = 52 mV [Figure

5.3(c)]. The loss of macroscopic elastic shear rigidity occurs very rapidly as ϕ is reduced in

the range from 0.38 to 0.34.
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Figure 5.3. Mechanical shear oscillatory measurements of elastic shear moduli.
(a) Measured G′(γ) at frequency ω = 1 rad/s with fitting curves (see text) for ϕ from 0.751
to 0.359 (top to bottom, color-code on left). (b) Measured G′(ω) at a fixed peak shear strain
of γ = 0.01 for different ϕ and complex shear modulus |G∗|(ω) (open squares at ω = 1 rad/s).
(c) Plateau elastic shear modulus G′

p, obtained from strain sweeps in part (a), as a function
of ϕ with the EEI model37 prediction (solid line). Low-frequency relaxation of the system
is evident at the frequency (i.e. 1 rad/s) associated with the strain sweeps at lower ϕ ≤
0.365 (grayed markers). Red arrow highlights the lowest ϕ where G′

p can be measured using
mechanical rheometry.
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5.4.3 Droplet MSDs from NMR and rheometry

The plateau MSDs associated with caged nanodroplet motion in the high-ϕ regime can be

inferred from the mechanical rheometry measurements using the generalized Stokes-Einstein

relation (GSER) of passive microrheology. We first deduce the 3-dimensional (3D) droplet

plateau MSDs, ⟨∆r 2
d⟩p, from the measured G′

p at each ϕ by applying the GSER11: ⟨∆r 2
d⟩p =

kBT/(πaG
′
p), where kB is Boltzmann’s constant, T is the temperature, and a is the average

droplet radius. We then convert these 3D droplet plateau MSDs to 1D droplet plateau

MSDs, ⟨∆z2d⟩p, by dividing by 3 since the disordered nanoemulsion is spatially isotropic.

By contrast, in the lower ϕ regime, near and below unjamming, we determine 1D total

molecular MSDs assuming ⟨∆z2⟩ ≈ 2D0∆ using the low-b diffusion coefficients from Figure

5.2(c) for fixed ∆ = 700 ms. We hypothesize that these NMR-detected total molecular MSDs

⟨∆z2⟩ are associated with a superposition of the Brownian center-of-mass (COM) motion

of the nanodroplets ⟨∆z2d⟩, which varies with ϕ, and the confined molecular motion within

the nanodroplets ⟨∆z2c ⟩, which is independent of ϕ. Assuming that the distributions for

nanodroplet displacements and confined molecular motion in stationary nanodroplets are

both Gaussian, we extract the 1D droplet MSDs ⟨∆z2d⟩ for ϕ < 0.37 through subtraction:

⟨∆z2d⟩ = ⟨∆z2⟩ - ⟨∆z2c ⟩. To obtain a smooth match of the NMR-inferred droplet MSDs to

the microrheologically-inferred droplet MSDs, yielding smooth overlap at unjamming, we

deduce a value of ⟨∆z2c ⟩ = 3.9 × 10−14 m2. This matching process yields a systematic 1D

droplet MSD as a function of ϕ over the entire range of all measurements. This ⟨∆z2c ⟩

corresponds to a confined molecular diffusion coefficient of D0,conf = 2.8 × 10−14 m2 s−1,

which is slightly greater than but in reasonable accord (within one standard deviation)

with the value, D0,conf = (1.9 ± 0.9) × 10−14 m2 s−1, obtained from the fit of D0(ϕ) at

high ϕ in Figure 5.2(c). If this alternative fit-parameter value were to be used instead, the

agreement would still be quite reasonable overall, but the matching would not be quite as

smooth near the droplet unjamming point. The droplet root mean square displacement,

⟨∆z2d⟩
1/2

, normalized by the effective interdroplet center-to-center spacing (i.e., which is
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Figure 5.4. Droplet root mean square displacement,
〈
∆z2

d

〉1/2
, normalized by

the droplet diameter 2a, as a function of ϕ. Solid black circles: plateau ⟨∆z2d⟩
1/2
/(2a)

deduced from the measuredG′
p from Figure 5.3(c) using the GSER; 3D MSDs from the GSER

have been converted to 1D MSDs. Solid gray circles: the used small-strain G′
p in the GSER

are extracted from fits of G′(γ) for viscoelastic samples having small yield strain. Open

blue circles: droplet ⟨∆z2d⟩
1/2
/(2a) calculated for ∆ = 700 ms using NMR low-b diffusion

coefficients D0 for ϕ < 0.37 from Figure 5.2(c), where the total molecular probe 1D MSDs
are: ⟨∆z2⟩ = 2D0∆. To match droplet MSDs inferred from both sets of measurements at
the unjamming point, we deduce that the confined molecular MSD ⟨∆z2c ⟩ is 3.9× 10−14 m2

and subtract this value from ⟨∆z2⟩, yielding the droplet MSDs ⟨∆z2d⟩. Horizontal red arrow

indicates a Lindemann melting criterion of ⟨∆z2d⟩
1/2
/(2a) = 0.3, corresponding to a droplet

unjamming (melting) point of ϕc ≈ 0.36.

approximately given by the droplet diameter 2a), is reminiscent of the Lindemann ratio that

has been used to quantify disorder-induced amorphization and to predict the melting point

of crystalline materials164,169 (see Figure 5.4). In this presented disordered nanoemulsion

system, we find that the droplet unjamming point, determined via a Lindemann melting

criterion of ⟨∆z2d⟩
1/2
/(2a) = 0.3, coincides with the value of ϕc ≈ 0.36 associated with the

loss of zero-frequency plateau shear elasticity, determined using mechanical rheometry [see

arrows in Figures 5.3(c) and 5.4]. Using alternative values for the Lindemann criterion,

which are in the range 0.15 to 0.30 for most materials, does not substantially change this

unjamming point.
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5.5 Discussion and conclusion

These 19F StE PFG-NMR measurements of concentrated nanoemulsions show that the at-

tenuation, resulting from the total motion of 19F-laden molecular probes diffusing within

nanodroplets, changes dramatically when the nanodroplets unjam as ϕ is reduced and the

low-frequency shear rigidity of the nanoemulsion vanishes. Thus, the total molecular mo-

tion reflects a superposition of center-of-mass motion of the nanodroplets as well as confined

molecular diffusion of the 19F-labeled silicone oil within the nanodroplets. At high ϕ, droplets

are strongly jammed, and the nanoemulsion is a soft yet rigid solid; in this strongly jammed

limit, the NMR attenuation decays resemble decays of liquids in other kinds of nanoporous

solids. This indicates that the strongly jammed nanoemulsion can be considered as a closed-

pore nanoporous solid having sufficiently large rigidity that only the highly confined molecu-

lar motion contributes substantially to the observed decay-to-plateau behavior. By contrast,

the superposition of the nanodroplet motion in combination with the confined molecular

motion becomes evident through rapid changes in the NMR attenuation near and below the

nanodroplet jamming point, where the nanoemulsion loses shear-rigidity as ϕ is reduced.

Moreover, the evidence of decay-to-plateau behavior at high-b disappears, and the decays

become simple-exponential instead. In the dilute-ϕ limit, for the particular nanoemulsion

that we have created and investigated, the NMR attenuation at low b is dominated by nan-

odroplet diffusion in the aqueous continuous phase, not by confined molecular motion of the

oil within the nanodroplets. These new measurements and insights have been made possible

through the fabrication of a custom-formulated size-fractionated O/W nanoemulsion that is

composed of a perfluorinated co-polymer silicone oil and a non-fluorinated surfactant.

By combining both NMR measurements with a passive microrheological interpretation

of macroscopic mechanical rheometry measurements, we have obtained a master curve of

droplet root-MSDs, normalized by the average diameter of the nanodroplets, as a function

of ϕ both above and below the unjamming droplet volume fraction. This master curve en-

ables us to show how droplet unjamming can be related to the classic idea of melting in
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terms of Lindemann’s ratio. Using a Lindemann criterion of 0.3, known from other types

of materials, we have shown that the ϕ associated with Lindemann melting coincides with

ϕc associated with nanodroplet unjamming and the loss of low-frequency mechanical shear

rigidity. The average diameter-normalized droplet MSDs as a function of ϕ for an emulsion

system stabilized by screened electrostatic repulsion, in which the droplets are twice as large

in radius as the droplets in our NMR study, have been reported in135, showing the same

ϕ-dependent trend as in Figure 5.4 but with a higher droplet unjamming volume fraction

due to the difference in droplet size. While we use the term “unjamming,” we recognize that

the screened-charge-stabilized system of nanodroplets may also be considered as a glassy

colloidal system, below the electrostatic droplet-jamming point, that effectively undergoes

a non-ergodic to ergodic transition as ϕ is reduced; so, taken more broadly, the dramatic

change we show also relates to the melting of disordered glassy systems, not just unjamming.

The model perfluorinated O/W nanoemulsion that we have designed, created, and stud-

ied using 19F StE PFG-NMR is highly size-fractionated, has a disordered droplet structure,

has short-range screened-charge repulsive interactions between the droplets, and effectively

precludes interdroplet diffusion of perfluorinated oil molecules through the aqueous contin-

uous phase. Therefore, the NMR attenuation in our measurements is not influenced by

diffusion of probe molecules between nanodroplets. This enables us to interpret our NMR

measurements more readily, as compared to prior studies in which oil molecules diffuse be-

tween droplets163,170,171. In addition, the high degree of size-fractionation of the nanodroplets

enables us to fit the low-ϕ decays well using only a single exponential form.

Our investigations have revealed several key signatures in the PFG-NMR attenuation

that are associated with unjamming and melting of a model soft colloidal solid; yet, many

exciting directions still remain. For example, a higher magnetic field gradient could be used

to explore the high-b regime to even larger b, potentially providing a direct measurement

of the effective plateau of the NMR attenuation in the highly concentrated ϕ-regime. For

instance, if more accurate and precise measurements can be made at higher b, it may be pos-
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sible to deduce G′
p directly from the high-b plateau MSDs that can potentially be obtained.

Fabricating and studying nanoemulsions that have a smaller average droplet radius would

potentially be worthwhile, since this could further increase the sensitivity to nanodroplet

motion in the jammed ϕ-regime relative to confined molecular motion. Thus, it would be

interesting to perform similar studies on nanoemulsions having a range of different nan-

odroplet sizes. Moreover, varying the viscosity of the oil within the nanodroplets, through

the molar mass of the oil, could also potentially enhance the NMR attenuation arising from

nanodroplet motion relative to the confined molecular diffusion. Furthermore, our experi-

ments broadly indicate that theories and simulations of the total motion of probe molecules

within dense colloidal droplet probes would be interesting to explore through the glass and

jamming transitions.
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Chapter 6 - Double-bound Brownian motion of

molecular probes in concentrated emulsions and

nanoemulsions

This chapter has been written by Y. Xu and T. G. Mason, is currently copyrighted by Y. Xu

and T. G. Mason in 2023, and has been submitted to Physical Review E for consideration.

Since the contents of the chapter have not yet been published, written permission must be

obtained by both authors to reproduce or transmit the contents of the herein Chapter 6,

in whole or in part, prior to its publication in a scientific journal. Readers are encouraged

to perform a search on the above authors and/or title using an internet search engine (e.g.

Google Scholar or Web of Science) to determine if publication has occurred. If publication

of the contents of this chapter has occurred in a scientific journal, then readers are directed

to that journal’s policies regarding permissions for potential use.

6.1 Abstract

We present a two-dimensional trajectory-based simulation study of the bound diffusion of

molecular probes within droplets that also undergo bound diffusion in dense, elastic emul-

sions and nanoemulsions, yielding an interesting, physically realizable form of double-bound

Brownian motion. Probe trajectories are obtained by coupling the stochastic Brownian dy-

namics of probe-molecules diffusing within colloidal droplets to harmonically bound Brown-

ian motion of those droplets in the soft elastic material. We show that the ensemble-averaged

center-of-mass mean square displacement (MSD) of droplets can be extracted by subtracting

a reference MSD obtained from probe-molecules diffusing in stationary droplets from the to-
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tal probe-molecule MSD. From this colloidal droplet MSD, we then deduce the elastic plateau

shear storage modulus, G′
p, at each droplet volume fraction, ϕ, considered. Our simulations

demonstrate that smaller droplet radii and higher internal phase viscosities can increase the

sensitivity and broaden the range of detection for the probe MSD-subtraction approach,

potentially making pulse-field gradient nuclear magnetic resonance techniques feasible for

passive microrheology of specifically formulated dense nanoemulsions.

6.2 Introduction

Passive microrheology of soft materials has been applied using a wide variety of tech-

niques, predominantly optical, ranging from scattering, primarily through diffusing wave

spectroscopy (DWS)11,172,173, to real-space particle tracking methods12,53,54. These tech-

niques directly measure motion of colloidal probes, from which rheological properties are

extracted. Extending passive microrheology to other experimental techniques that have

been optimized around molecular probes, rather than colloidal probes, represents an inter-

esting frontier. While directly using molecular probe motion could be possible in principle

for certain materials, problematic issues could also arise if the generalized Stokes-Einstein

relation (GSER)11 would be applied when the probe size is substantially smaller than the

scale of structures that provide the elastic component of the viscoelastic response; such an

attempted application would violate the fundamental assumptions inherent in the GSER.

Consequently, there is a non-trivial challenge in using molecular probes for performing passive

microrheology, and therefore also opportunities for novel approaches to solve this challenge.

Recent nuclear magnetic resonance (NMR) experiments have revealed droplet unjamming

in 19F-laden oil-in-water (O/W) nanoemulsions through stimulated-echo pulse-field-gradient

NMR (StE PFG-NMR)174. While revealing the droplet unjamming using molecular probes

is a promising development, obtaining confined mean square displacements (MSDs) of nan-

odroplets in highly concentrated nanoemulsions, for the purposes of extracting the plateau
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elastic shear storage modulus, G′
p, through the droplet GSER, was beyond the limits of

that particular NMR experiment applied to that particular nanoemulsion. In order to bet-

ter optimize the nanoemulsions for future PFG-NMR experiments, it would be useful to

model the molecular motion of oil probe-molecules within nanoemulsion droplets into the

jammed droplet limit. For nanoemulsions having different droplet radii, a, and droplet vol-

ume fractions, ϕ, such modeling could help determine the proportion of the MSDs of oil

probe-molecules resulting from droplet motion compared to the total MSDs of the oil probe-

molecules, which includes both droplet motion combined with confined diffusion of the oil

probe-molecules within droplets. While such an exploration would be potentially useful for

future NMR experiments, this idea also opens up an interesting general question related to

double-bound Brownian motion, in which probe motion is influenced by two different types

of confinement. Thus, developing a general framework for simulating double-bound Brow-

nian motion would be beneficial not only for answering specific questions about optimizing

nanoemulsion compositions and physical properties for future NMR experiments, but also

for understanding the behavior of probe-molecule motion resulting from different types of

confinement at different length scales that are coupled.

In the harmonically bound Brownian particle (HBBP) model, the motion of a particle

is governed by the interplay between its Brownian motion and the confining harmonic po-

tential56,175. The Brownian component stems from the random, diffusive motion caused by

the thermal agitation of the surrounding medium, while the harmonic potential symbolizes

the restoring forces that act on the particle, binding it to a specific region. Importantly, the

HBBP model introduces a characteristic relaxation time, which arises due to the potential,

providing a temporal scale for the system. This relaxation time reflects the time taken by the

particle to return to equilibrium after a disturbance, and it directly links the particle’s MSD

and velocity autocorrelation to the effective spring constant of the potential and temperature

of the system. The HBBP model thus offers a powerful tool for understanding systems where

thermal fluctuations and spatial constraints significantly influence particle dynamics. In our
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study, we effectively utilize the HBBP to model the Brownian motion of oil droplets in the

emulsion system.

Investigating molecular diffusion within porous media, such as in NMR studies, provides

important insights into the complex motions of probe molecules. For example, 19F StE

PFG-NMR has been used to study the diffusion of probe molecules, specifically 19F-tagged

molecules, within confined spaces like nanodroplets in concentrated nanoemulsions174. This

study reveals that the diffusion behavior is influenced by both the nanodroplets’ center-

of-mass motion and the confined molecular diffusion within the nanodroplets themselves,

offering an intriguing superposition of effects. When droplets are strongly jammed, the na-

noemulsion behaves as a rigid yet soft solid, with the NMR attenuation decays resembling

those of liquids in other nanoporous solids. By contrast, in the dilute regime below the

jamming point, both the nanodroplet motion and the confined molecular motion contribute

to swift changes in the NMR attenuation as the nanoemulsion loses its shear rigidity. In

a broader context, the concept of probe-molecule confinement becomes crucial. This is the

phenomenon where the diffusion of probe molecules is constrained within a physical bound-

ary, akin to what is observed within these nanodroplets. Reflective boundary conditions and

trial rejection are among the ways this confinement can be modeled. In our study, we employ

reflective boundary conditions, an approach that models situations where the molecules are

reflected back upon reaching a boundary. On the other hand, trial rejection, which we do

not use here, discards impractical paths during the simulation, effectively replicating the

physical restrictions inherent in real-world diffusion.

Here, we investigate the double-bound Brownian motion of diffusing molecular probes

confined within droplets in jammed, soft-elastic emulsions and nanoemulsions. We simu-

late the free diffusion of a probe-molecule within a droplet and the Brownian motion of the

droplet, which is harmonically bound within the cage formed by its neighboring droplets. We

illustrate that a subtraction analysis of the MSDs for the detectable probe molecular motion

can be used to deduce the droplet self-motion MSDs, which are essential for microrheology.

141



We explore a wide range of material parameters, including droplet size, relative viscosity

between the dispersed phase and the continuous phase, the plateau shear elastic modulus,

and volume fraction, and determine the threshold for doing microrheology based on these

different material properties and the detection limit of the equipment.

6.3 Model and simulation

6.3.1 Two-dimensional trajectories

We simulate the two-dimensional (2D) trajectories of a probe in a harmonically bound Brow-

nian diffusing droplet, thereby elucidating the process of inferring the self-motion of droplets

within a soft viscoelastic material. This is accomplished by detecting the total combined

probe motion and employing the confined probe motion in a stationary droplet as the ref-

erence signal, which can be ascertained in the high droplet volume fraction limit. To better

illustrate this process, we present the partial trajectory of a probe in a central droplet at a

short elapsed time when the trajectory has not yet entirely filled the droplet area (Figure

6.1).

At ϕ near or lower than the entropic near-glass regime, which is ergodic [Figure 6.1(a)],

the central droplet is weakly confined by the transient cage of nearest neighbors, providing

more free space for the droplet motion compared to higher ϕ. This weak and transient

geometrical restriction results in larger droplet center-of-mass (COM) displacements for a

given time lag τ . As ϕ is raised to the electrostatic jamming point [Figure 6.1(b)], at which

the screened electrostatic repulsive forces dominate as the droplets are jammed and Debye

screening layers of the droplets begin to significantly overlap, the droplet motion is highly

restricted by the cage effect so that the root-MSD of the droplet is typically small relative

to its radius. The model emulsion enters the interfacially jammed region as ϕ is further in-

creased [Figure 6.1(c)], in which droplets are weakly deformed and the jamming is dominated

by interfacial tension. Droplets undergo strongly bound HBBP motion when interfacially
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Figure 6.1. Schematic diagram depicting the elements of the probe-trajectory
model for double-bound Brownian motion: the partial trajectory of a probe con-
fined within a slowly diffusing harmonically bound Brownian colloidal droplet.
Oil droplets (blue) are dispersed in the continuous phase (white) in presence of ionic surfac-
tant molecules that lead to a Debye-screening length λD (grey coronas). A Brownian probe
trajectory (black filled circle and purple line), confined in a central droplet (red outline)
surrounded by its nearest neighbors (cobalt outline) and second nearest neighbors (dashed
outline), in emulsions having droplet volume fractions ϕ: (a) below, (b) near, and (c) above
the electrostatic jamming point. (d) Illustration of simulating the harmonically bound Brow-
nian motion of the droplet, having a radius of a and a spring force constant, k = 6πaG′

p, for
the harmonic potential, where G′

p is the plateau elastic shear modulus. Dynamic viscosities
of the oil and the continuous phase are ηo and ηc, respectively. The droplet experiences a
restoring spring force towards an effective anchor, and Brownian excitations cause droplet
motion.

jammed. In our model, we ignore any small deformation of droplets from perfect circles that

would accompany a very high degree of interfacial jamming. For the purpose of inferring

the droplet self-motion by analyzing the total and droplet-confined probe motion, a higher

ratio of droplet MSD relative to total probe MSD is obtained from a larger droplet mean dis-

placement in relation to the droplet size, which is the Gaussian distribution width of large-τ

displacements of the confined probe motion. Therefore, our approach is mainly associated

with colloidal suspension systems having relatively small colloids (i.e. small a) and high

colloid volume fraction (i.e. high ϕ). A simplified illustration depicts the partial trajectory

of a confined probe in a droplet of interest, having a radius of a and internal oil viscosity

ηo [Figure 6.1(d)]. The droplet of interest is anchored to the origin by a spring with force

constant k, which is determined by the soft elasticity of the jammed emulsion system. While

this diagram demonstrates in 1D that the droplet having harmonic energy of |U | = 1
2
kr2 at a
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radial position r from the origin moves along one axis as the spring vibrates, our simulation

has been performed in 2D by solving the Langevin equation.

In the simulation, we first produce a strictly confined probe trajectory that has uni-

formly distributed radial positions within the droplet region. The confined probe is in a

deep square potential well whose boundary is exactly at the droplet radius. To model the

confined thermally excited probes in a perfectly stationary droplet, we generate a set of

Gaussian-distributed random numbers, containing N elements, where N is the number of

steps in the trajectory, as the initial step lengths ∆r for a given time step ∆t, using Mathe-

matica. The scalar ∆r has a mean of 2
√
Dp∆t, where Dp = kBT/(6πηoap) is the associated

diffusion coefficient of the probe, kB is Boltzmann’s constant, T is the temperature, ηo is the

dynamic viscosity of the oil within the droplet, and ap represents the radius of the probe,

while the standard deviation (SD) of the ∆r distribution is 2
√

(2/π)Dp∆t. A separate set of

uniformly distributed random numbers, ranging from 0 to 2π, is generated to represent the

angle associated with the vector displacement for each step. The elapsed time and position

of the jth step are tj = Σj
i=1∆ti and r j = Σj

i=1∆r i, where i and j are integer indices, ∆r i

is the ith step vector. If the oil probe-molecule encounters the boundary at the droplet

radius (i.e. rj > a, where rj = |r j| is the radial distance of jth position from the origin),

then the jth step is split into two segments, and the probe-molecule is reflected from the

droplet’s curved boundary back inside the droplet. The r j is updated and this operation

is repeated for all N steps of the trajectory, yielding a time series of vector positions of

the probe-molecule, which is the probe-molecule trajectory in the droplet’s reference frame,

rpr,conf,i, where i ranges from 1 to N .

We then create a trajectory for a harmonically bound Brownian droplet, whose radial

positions are Gaussian-distributed in a central force field. The droplet motion can be de-

scribed by the HBBP model. Ignoring inertial effects, the Langevin equation for the forces

along the x−direction acting on the droplet is given by

0 = Fr(t)− kx− 6πaηc
dx

dt
, (6.1)
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where Fr(t) is the Brownian random force having a white-noise frequency spectrum176:

⟨Fr(t)⟩ = 0 and ⟨Fr(t)F
′
r(t)⟩ = 12πaηckBTδ(t − t′); the elastic restoring force constant

k = 6πaG′
p is related to the plateau elastic modulus G′

p of the viscoelastic material, assum-

ing stick boundary conditions; a is the droplet radius and ηc is the dynamic viscosity of the

continuous phase. Note that the viscous Stokes drag, as formulated in equation 6.1, acts

on a three-dimensional spherical droplet with stick boundary conditions. However, we only

simulate trajectories in 2D, which is typical of what is often observed in optical microscopy

measurements as in176. We make the assumption that ηc is a frequency-independent Newto-

nian viscosity, which however does not reflect the viscosity of the emulsion. To investigate

realistic material parameters for viscoelastic emulsion model having nearly hard interactions

between droplets, we calculate the plateau elastic shear moduli G′
p,EEI using the entropic,
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Figure 6.2. Simulation parameters used in the double-bound Brownian model.
Plateau elastic shear moduli G′

p as a function of droplet volume fraction ϕ for monodispersed
nanoscale and microscale 350 cSt trimethyl terminated polydimethylsiloxane (PDMS) oil-
in-water emulsions stabilized by 10 mM sodium dodecyl sulfate (SDS); lines and points are
predictions, based on mechanical rheological measurements, using the entropic, electrostatic,
interfacial (EEI) model37, for different droplet radii a. The oil density is 0.97 g cm−3 and oil
viscosity ηo = 339.5 mPa s. G′

p defines the elastic force constant k in the HBBP model for
the droplet motion.
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electrostatic, interfacial (EEI) model37 for various droplet radii (Figure 6.2).

Solving the Langevin equation [equation (6.1)], we obtain the Green’s function,

G(xi, xi−1; ∆t), that provides the probability of finding a droplet at position xi after a time

interval ∆t for the initial condition at xi−1
176–178:

G(xi, xi−1; ∆t) = [2πB(∆t)]1/2exp{− [xi − A(∆t)]2

2B(∆t)
}, (6.2)

A(∆t) = xi−1exp(−∆t/τB), (6.3)

B(∆t) =
kBT

k
[1− exp(−2∆t/τB)], (6.4)

where τB = 6πaηc/k = ηc/G
′
p represents the crossover time between dominantly viscous and

elastic responses. The Green’s function [equation (6.2)] is a Gaussian-distributed positional

function, having mean A(∆t) [equation (6.3)] and variance B(∆t) [equation (6.4)].

To simulate the droplet trajectories in 2D, we generate two sets of N -element Gaussian-

distributed random numbers, Rx and Ry, corresponding to the x− and y−direction, respec-

tively. The mean of each set is zero and the SD is unity. The motion of the center-of-mass

(COM) of the droplet is simulated in the reference frame of the harmonic well according

to the HBBP model. Defined by the Green’s function [equation (6.2)], the positional time

series of the droplet COM are constructed by modifying each element of Rx and Ry at a

given ∆t: xdrop,i = Rx,i

√
Bi + Ax,i, ydrop,i = Ry,i

√
Bi + Ay,i, and the corresponding vector

rdrop,i = (xdrop,i, ydrop,i), where integer i ranges from 1 to N .

Combining the trajectory of confined probe motion in a stationary droplet and the COM

trajectory of the harmonically bound Brownian droplet, we obtain the apparent total tra-

jectory of the probe motion: rpr,tot,i = rpr,conf,i + rdrop,i, for each time step ti through t1 to

tN . The resulting total probe trajectory presents a smeared boundary near and just above

the droplet radius.
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6.3.2 Mean square displacements

For a given time interval ∆t, we calculate the time-averaged mean square displacement

(MSD) from each trajectory by ⟨∆r 2(τj)⟩ = [1/(N − j + 1)]ΣN−j
i=0 |r i+j − r i|2, where the

lag time τj = j∆t and the integer index j ranges from 1 to N . Since the shorter-time

trajectory coordinates are involved in a more averaging process than longer-time coordinates

for calculating MSDs, to reduce the computational duration and increase the data density

for good statistics, we perform trajectory calculations using a set of different time intervals:

∆t = 10−8 s, 10−7 s, 10−6 s, 10−5 s, 10−4 s, and 10−3 s; and total N = 5× 104 steps for each

∆t when droplet radius a ≥ 60 nm. The first two decades of the calculated ⟨∆r 2(τ)⟩ for

each ∆t are retained for any subsequent calculations. These values are averaged (5 to 4.99)

×104 times, from the first to the 100th discrete τ .

The maximum ∆tmax = 10−4 s is used for a ≈ 40 nm, and 10−5 s for a ≤ 20 nm, to avoid

the issue of over-weighting the confined probe trajectory in the center than at the boundary

of the droplet, which is originated from the reflection procedure when using a very large

∆t in a small droplet. By setting a relatively short ∆tmax while increasing the number of

total steps to N = 105 for small droplets a ≤ 40 nm, we confirm that the confined probe

trajectories fill the entire droplet, including the area near the boundary where reflection

events occur.

We defineM bins in τ that are logarithmically spaced, whereM is the number of desired

data points in the τ -dependent MSD plot. All the ⟨∆r 2(τj)⟩ values that belong to the

mth bin, satisfying τs,m < τj < τe,m, where τs,m and τe,m are the starting and ending times

of the mth bin, are averaged, yielding ⟨∆r 2(τm)⟩ in the final MSD plot, where τm is the

bin’s geometric mean time, τm = (τs,mτe,m)
1/2. Applying the MSD calculation, stitching,

and re-binning process to the positional time series of confined probe diffusion, rpr,conf(t),

harmonically bound Brownian droplet motion, rdrop(t), and total combined probe motion,

rpr,tot(t), respectively, we obtain the corresponding MSDs as functions of the lag time τ .
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6.3.3 Extracting droplet MSDs from total molecular probe MSDs

According to the HBBP model, the step sizes of the bound droplet motion in the lab frame,

∆rdrop(τj) = |rdrop,i+j − rdrop,i|, where τj = j∆t, i and j can take any integer from 0 to N ,

is Gaussian-distributed. We certify that the step sizes of the confined probe motion in the

droplet frame, ∆xpr,conf(τj) and ∆ypr,conf(τj), calculated from the corresponding trajectory,

can also be fit to zero-mean Gaussian distributions with regression coefficient R2 ≥ 0.9985

for all τ from 10−8 s to ∆tmax for the given droplet radius. Thus, for a given τ , both ∆rdrop

for the droplet COM’s trajectory and ∆rpr,conf = (∆x2pr,conf + ∆y2pr,conf)
1/2 for the confined

molecular probe’s trajectory are proven to be Gaussian-distributed. Therefore, the vector

superposition of these trajectories will also have a Gaussian displacement distribution with

a total molecular probe MSD that is the sum of the MSDs of these two components (i.e.

droplet and confined molecular probe):
〈
∆r 2

pr,tot(τ)
〉
=

〈
∆r 2

drop(τ)
〉
+
〈
∆r 2

pr,conf(τ)
〉
.

To extract the droplet self-motion MSD from the probe motion MSDs, we take the

confined probe motion MSD as the reference signal and subtract it from the total probe

motion MSD:
〈
∆r 2

drop(τ)
〉
=

〈
∆r 2

pr,tot(τ)
〉
−

〈
∆r 2

pr,conf(τ)
〉
. The extracted droplet self-

motion MSDs from the subtraction analysis are compared to the known droplet self-motion

MSDs, which are directly calculated from the droplet trajectory, to show the capability

of inferring droplet self-motion by solely detecting the droplet-confined probe motion in a

viscoelastic, soft material.

We produce trajectories using different material parameters, including the ratio between

viscosities of the dispersed oil phase and the continuous phase ηo/ηc, droplet radius a, and

plateau elastic modulus G′
p, to examine how these parameters influence the performance of

the MSD subtraction analysis for extracting the droplet self-motion from the probe motion.

Realistic microrheological parameters are determined using the EEI model that is originally

designed for emulsions having nearly hard interactions between droplets, and used in the

simulations to testify whether the extracted droplet plateau MSDs can be related to the

shear elastic moduli through the GSER.
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6.4 Results

6.4.1 Probe and droplet positional statistics

We calculate the radial positional distribution by binning r in the polar coordinates (r =√
x2 + y2) for each set of trajectories into equal-area annuli. For the confined probe diffusion

in a perfectly stationary droplet, the probability density function (PDF), ppr,conf(r), shows

a uniform distribution at 0 < r < a, followed by an instant cutoff to zero at the droplet

radius r = a [Figure 6.3(a)]. The pdrop(r) for the trajectory of the HBBP droplet motion

is Gaussian-distributed [Figure 6.3(b)], and for the total combined probe trajectory, the

radial positional distribution resembles that for the confined probe trajectory at small r but

gradually decays to zero as r approaching a, manifesting a smeared boundary compared to

the confined case [Figure 6.3(c)]. The ppr,tot(r) for total probe motion is fit to a Fermi-like

function ppr,tot(r) ∝ r/{1 + exp[(r − a)/σ]}, where σ is related to how rapidly ppr,tot(r)

decreases, with R2 ≥ 0.996.

To more intuitively present the positional distribution probabilities, we normalize and

make dimensionless the heights of each bar in the statistic histogram, denoted by p(r)/r. The

uniform ppr,conf(r)/(2r/a
2) at r ≤ a depicts the approximately equal probability of finding

the center of the probe molecule in each annulus, having boundaries at r and r + dr, with

the same area [Figure 6.3(d)]. The pdrop(r)/r is normalized by σ2, where σ is the standard

deviation obtained from the fit to pdrop(r) in Figure 6.3(b). The resulting pdrop(r)/(r/σ
2)

is proportional to (1/σ)exp[−r2/(2σ2)], showing that the center of the droplet is highly

confined around the origin in a Gaussian manner with a zero mean and small σ relative

to a [Figure 6.3(e)]. The probability of locating the droplet vanishes at about 3 nm with

respect to its starting position; whereas the probe molecule can freely diffuse within the

entire circle having a radius of 60 nm. For the total combined probe motion, the profile of

ppr,tot(r)/[2r/(a
2+2σ2)] reflects a uniform distribution up to ≈57 nm and a narrow Gaussian-

like distribution near the edge of the droplet, vanishing at about 63 nm [Figure 6.3(f)]. This
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Figure 6.3. Normalized radial positional probability density functions (PDFs),
p(r), obtained from the component and total probe-molecule trajectories. (a)
PDF ppr,conf(r) (red circles) of the confined probe-molecule positions in a perfectly stationary
droplet rises linearly out to the edge of the disk at a = 60 nm (red line: linear fit, R2 = 0.993).
(b) PDF of the HBBP droplet trajectory (blue circles) follows a Gaussian distribution:
pdrop(r) = (1/σ2)exp[−r2/(2σ2)]r, where σ = 0.823 ± 0.001 nm (blue line: fit, R2 = 0.998).
(c) PDF of the total combined probe trajectory in the lab frame, ppr,tot(r), (black circles)
shows a smeared boundary near r approaching a (zoomed in the right frame having a narrow
range of r near a). Fit of ppr,tot(r): black line (see text for linear-Fermi functional form,
R2 ≥ 0.996). (d) - (f) 2D PDFs in (a)-(c), converted through division by r, each having
unity value at r = 0: ppr,conf(r)/(2r/a

2), pdrop(r)/(r/σ
2), and ppr,tot(r)/[2r/(a

2+2σ2)], reflect
the probability density of locating either the center of the molecular probe or the center of
the droplet in the corresponding trajectory at a radius between r and r + dr, binned by
equal annular area. The smeared boundary of ppr,tot(r)/[2r/(a

2+2σ2)] near r = a (black), in
contrast with the step change of ppr,conf(r)/(2r/a

2) (red), is highlighted in the right section of
part (f). The presented results are for an emulsion having volume fraction ϕ = 0.45, droplet
radius a = 60 nm, and probe size ap = 1.5 nm. Other simulation parameters: dynamic oil
viscosity ηo = 339.5 mPa s (kinematic viscosity νo = 350 cSt, density ρo = 0.97 g cm−3),
viscosity of continuous phase ηc = 1 mPa s; and the plateau elastic modulus G′

p = 5247.5
Pa is predicted using the EEI model37.

smeared boundary in close proximity to r = a is distinctive from the step change as seen in

the circumstance of a confined probe in a stationary droplet.
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6.4.2 Droplet self-motion MSD extraction

The extracted droplet self-motion MSDs, determined by subtracting the pure confined probe

MSDs from the corresponding total combined probe MSDs, present a great agreement with

the calculated droplet self-motion MSDs from the droplet trajectory, which can be readily

seen through the match of the blue data points and the calculation curve in Figure 6.4(a).

The good performance of the presented instance is promised by a large ratio between the

droplet mean displacement and the droplet radius; and consequentially, a large ratio of〈
∆r 2

drop(τ)
〉
/
〈
∆r 2

pr,tot(τ)
〉
for the entire span of τ .

After exploring a wide range of different combinations of material parameters, we find that

the ratio
〈
∆r 2

drop

〉
/
〈
∆r 2

pr,tot

〉
needs to be greater than 0.2% for the probe MSD-subtraction

analysis to be effectively sensitive for droplet MSD extraction, while the minimum detectable

long-τ plateau droplet MSD,
〈
∆r 2

drop

〉
p,min

, reaches 8 × 10−20 m2, and the MSDs need to

be resolvable for at least τ shorter than 10−4 s. Commensurately, from the perspective

of experiments, if one wants to successfully extract the self-motion MSD of a droplet, the

equipment used to measure the probe motion is required to be accurate for a displacement

of at least a few angstroms within sub-milliseconds. Exceeding these threshold values, the

extracted
〈
∆r 2

drop

〉
is capable of capturing the feature at short τ ≤ 10−4 s but is prone to

scattering around the expected magnitude and then fail as τ extends to a larger value. In

addition to an explicit numerical calculation, the ratio
〈
∆r 2

drop

〉
/
〈
∆r 2

pr,tot

〉
can be visually

and qualitatively evaluated by comparing the effective radius of the droplet trajectory (blue)

and the total probe trajectory (black) in Figure 6.4(b). Alternatively, it can be evaluated

by the thickness of the black corona relative to the effective radius of the confined probe

trajectory (red) that equals the droplet radius a. In principle, a good resolution of the〈
∆r 2

drop

〉
extraction is guaranteed by a thick corona around a small droplet, seen in such

overlay of probe trajectories. Albeit that the long-τ plateau MSDs of the probe motion,

before and after applying the superposition of droplet motion, are nearly identical when

plotted on a logarithmic scale [red and black in Figure 6.4(a)], the systematic difference that
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Figure 6.4. Mean square displacement analysis for inferring droplet self-motion
from the total droplet-confined probe motion. (a) The harmonically bound Brownian
droplet motion MSD (blue circles),

〈
∆r 2

drop(τ)
〉
, is extracted by subtracting the confined

probe MSD (red circles),
〈
∆r 2

pr,conf(τ)
〉
, from the apparent total probe MSD (black squares),〈

∆r 2
pr,tot(τ)

〉
. The later two probe MSDs are determined from the corresponding probe

trajectories. The extracted
〈
∆r 2

drop(τ)
〉
is compared to the known droplet self-motion MSD

(light blue line), determined directly from the droplet COM trajectory. (Caption continued
on next page.)
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Figure 6.4. (Caption continued.) (b) Overlay of trajectories: the droplet trajectory (blue)
is overlaid on the probe-molecule trajectory in the droplet frame (light red) and that is
overlaid on the total probe-molecule trajectory (black), all sharing a common origin. The
total probe-molecule trajectory is largely obscured except for the boundary region, corre-
sponding to the zoom-in of part (c). Any area beneath the occlusion by other trajectories
in the red and black region is fully filled by itself. An inconspicuous fuzzy edge is observed
in the red region in comparison to a perfect circle. (c) A zoom-in view of probe MSDs from
τ ≈ 5×10−4 s to 10−1 s using the linear scale in the vertical axis, showing the systematic dif-
ference between

〈
∆r 2

pr,conf(τ)
〉
and

〈
∆r 2

pr,tot(τ)
〉
when

〈
∆r 2

drop(τ)
〉
is in the plateau regime.

(d) Extracting the two HBBP components,
〈
∆r 2

pr,conf(τ)
〉
and

〈
∆r 2

drop(τ)
〉
(gray lines), by

fitting
〈
∆r 2

pr,tot(τ)
〉
to a double-bound Brownian model [equation (6.5), black line]. Material

parameters used in the presented results are a = 40 nm, ap = 1.5 nm, ηo = 339.5 mPa s, ηc =
1 mPa s, and G′

p = 634.35 Pa that corresponds to ϕ = 0.3 according to the EEI model37.

corresponds to the plateau droplet MSD has been readily observed on a linear scale [Figure

6.4(c)].

Given the well-defined dual rise-to-plateau feature of the apparent total probe MSDs, the

two-component self-motion MSDs have been extracted by fitting
〈
∆r 2

pr,tot(τ)
〉
to a double-

bound Brownian model having two HBBP components, associated with
〈
∆r 2

drop(τ)
〉
and〈

∆r 2
pr,conf(τ)

〉
, respectively:

〈
∆r 2

pr,tot(τ)
〉
=

〈
∆r 2

pr,conf

〉
p
[1− exp(−τ/τpr)] +

〈
∆r 2

drop

〉
p
[1− exp(−τ/τdrop)], (6.5)

where
〈
∆r 2

pr,conf

〉
p
and

〈
∆r 2

drop

〉
p
are the corresponding low-frequency plateau MSDs; τpr

and τdrop are the characteristic time scales associated with the two bending knees [see Figure

6.4(d)]. We have shown that the confined probe step sizes for a variety of τ are Gaussian-

distributed (see chapter 6.3.3), which verifies the feasibility of fitting the confined probe

motion MSD with an HBBP function. The decoupling is allowed because, in our model,

the self-motion modes of the probe and the droplet are independent of each other. The

yielding fitting parameters represent the characteristic time scales and the low-frequency

plateau MSDs for both component motions. Naturally, the rise-to-plateau with the shorter

characteristic time scale and lower plateau MSD magnitude is associated with the droplet

motion, and the other is associated with the confined probe motion.
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6.4.3 Viscosity and droplet size

A higher ratio of droplet MSD relative to total probe MSD, ξ =
〈
∆r 2

drop

〉
p
/
〈
∆r 2

pr,tot

〉
p
,

for a given droplet radius and plateau shear elasticity can be achieved by enhancing the

contrast of viscosity between the oil phase and the continuous phase. For each decade in the

range of ηo/ηc from 100 to 106, we show representative behaviors of the total combined and

the purely confined probe motion MSDs, using other fixed parameters of a = 60 nm, G′
p =

100 Pa and ηc = 1 mPa s, in Figure 6.5. The dual rise-to-plateau feature of
〈
∆r 2

pr,tot(τ)
〉

cannot be readily seen when ηo/ηc ≤ 102, whereas it becomes increasingly pronounced for

an emulsion having higher-viscosity in the dispersed phase. Varying ηo/ηc while keeping ηc

constant, the characteristic time scale τdrop and the plateau droplet motion MSD
〈
∆r 2

drop

〉
p

remain unchanged, which defines the location and magnitude of the droplet motion MSD’s
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Figure 6.5. Time-averaged mean square displacements of the double-bound

total probe motions,
〈
∆r2

pr,tot(τ )
〉
, in a harmonically bound droplet having a =

60 nm, at different viscosity ratio of the oil (dispersed phase) and the continuous phase,
ηo/ηc. The solid lines are for reference the confined molecular probe MSDs for perfectly
stationary droplets. The plateau elastic modulus of the emulsion is G′

p = 100 Pa, and ηc is
fixed at 1 mPa s.
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bending knee, respectively, corresponding to the first rise-to-plateau of
〈
∆r 2

pr,tot(τ)
〉
. The

well-defined dual rise-to-plateau of
〈
∆r 2

pr,tot(τ)
〉
for ηo/ηc ≥ 103 offers the opportunity to

extract the droplet COM MSDs from fitting
〈
∆r 2

pr,tot(τ)
〉
to the double-bound Brownian

model, defined in equation 6.5. The total probe motion MSDs for ηo/ηc ≥ 103 effectively

overlap with one another at short time lag τ < τdrop. However, a higher viscosity in the

oil phase decelerates the self-motion of the internal probe in the droplet, yielding smaller

reference signal
〈
∆r 2

pr,conf(τ)
〉
for τ < τpr, where τpr defines the bending knee of the con-

fined probe MSD in a stationary droplet. Therefore, prior to entering the second plateau of〈
∆r 2

pr,tot(τ)
〉
, the difference between the signal and the reference increases with an increased

ηo/ηc.

Moreover, by contrast to the previously defined Newtonian ηc of the continuous phase,

the dynamic viscosity of the emulsion is ϕ- and frequency-dependent, which reflects the hy-

drodynamic effective viscosity acting on the droplets. Thus, we extract the high-frequency

viscosities, ηe,∞(ϕ), of the viscoelastic emulsion having ⟨a⟩ = 459 nm for ϕ ≥ 0.5 from the

DWS measurements in57. We recognize that at higher ϕ, the emulsion’s viscosity ηe,∞ is

needed for simulating the droplet COM motion, not the Newtonian viscosity of the contin-

uous phase, for emulsions that are near and above the jamming limit.

In a different scenario of fixing the viscosity contrast and shear elasticity, the smaller

the droplet size is the higher accuracy of extracted droplet self-motion MSD at long τ (see

Figure 6.6). By fixing the other parameters at ηo = 100 mPa s, ηc = 1 mPa s, and G′
p =

100 Pa, the droplet COM MSD is the dominant portion of the total double-bound molec-

ular probe MSD, spanning the entire range of τ explored, for a ≤ 40 nm [Figure 6.6(a)],

leading to an excellent agreement between the extracted droplet self-motion MSD and its

theoretical value for a ≤ 40 nm [Figure 6.6(b)]. As the droplet radius is increased to 40 nm

≤ a ≤ 80 nm, the dual rise-to-plateau feature of
〈
∆r 2

pr,tot(τ)
〉
has been observed [Figure

6.6(a)], indicating the feasibility of extracting the droplet MSDs by fitting
〈
∆r 2

pr,tot(τ)
〉
to

the double-bound Brownian model (equation 6.5). For larger droplet radii a > 80 nm, the
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Figure 6.6. Time-averaged mean square displacements of the total double-

bound probe motion,
〈
∆r2

pr,tot(τ )
〉
, and the harmonically bound droplet motion,〈

∆r2
drop(τ )

〉
, at different droplet radii. (a)

〈
∆r 2

pr,tot(τ)
〉
determined from trajectories

of the double-bound molecular probe motions for a wide range of a [open circles; color-coded,
see legend in part (b)]. Solid lines represent

〈
∆r 2

pr,conf(τ)
〉
of confined molecular probe MSDs

in stationary droplets for reference. (b)
〈
∆r 2

drop(τ)
〉
(open circles) extracted from the probe

MSDs:
〈
∆r 2

drop(τ)
〉
=

〈
∆r 2

pr,tot(τ)
〉
−

〈
∆r 2

pr,conf(τ)
〉
. Solid lines represent the droplet self-

motion MSD calculated directly from the COM trajectory of the droplet. The viscosity of
the oil is ηo = 100 mPa s and that of the continuous phase is ηc = 1 mPa s. The plateau
elastic modulus of the emulsion is G′

p = 100 Pa.
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percentage of
〈
∆r 2

pr,tot(τ)
〉
that arises from the droplet HBBP motion is strongly reduced,

yielding the very subtle difference between
〈
∆r 2

pr,tot(τ)
〉
and

〈
∆r 2

pr,conf(τ)
〉
. Thus, slight

fluctuation around the theoretical magnitude of
〈
∆r 2

drop

〉
has been observed for a = 80 nm

at τ ≥ 5× 10−4 s, and the fluctuation becomes more obvious for larger droplet radii a = 160

nm and 320 nm [Figure 6.6(b)]. As stated in chapter 6.4.2, a higher
〈
∆r 2

drop

〉
/
〈
∆r 2

pr,tot

〉
and equivalently, a lower

〈
∆r 2

pr,conf

〉
/
〈
∆r 2

drop

〉
is desired to achieve higher accuracy of the

extracted
〈
∆r 2

drop

〉
. Because the droplet radius a is the Gaussian distribution semi-width

of the step sizes ∆rpr,conf in the long-τ limit, using a smaller droplet size when other mate-

rial parameters are invariable will potentially enhance the accuracy of the extracted droplet

self-motion MSDs.

6.4.4 Double-bound Brownian MSDs of emulsions: varying droplet size and

volume fraction

For the purpose of broadening the ϕ range of an emulsion whose droplet self-motion MSDs are

extractable from probe motion detection, using small droplets is advantageous. For example,

droplet self-motion MSDs of a nanoemulsion system having a = 10 nm can be extracted over

a wide range of ϕ from 0.728 down to 0.100 [Figure 6.7(a-b)]; while for an emulsion system

having a = 320 nm, it can only be extracted for ϕ ≥ 0.500 [Figure 6.7(c-d)]. This is because

rather than ϕ, it is G′
p, connected to the force constant by k = 6πaG′

p, that is the parameter

directly involved in the Langevin equation [equation (6.1)]. However, according to the EEI

model, G′
p at a given ϕ radically decreases as droplet size increases, and the difference in G′

p

for a set of two droplet radii is even enlarged as ϕ decreases. For instance, the G′
p for a =

320 nm at the highest ϕ = 0.728 is of the same magnitude of the G′
p for a = 5 nm at ϕ =

0.05 (see Figure 6.2).

For a viscoelastic emulsion having a fixed droplet radius, the more dilute the emulsion is,

the higher resolution of droplet MSD extraction one can obtain over a wide range of τ . The

dual rise-to-plateau feature of
〈
∆r 2

pr,tot(τ)
〉
is observed at low ϕ ≤ 0.3 for a = 10 nm when
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Figure 6.7. Mean square displacements of the total double-bound probe motion,〈
∆r2

pr,tot

〉
, and the droplet motion,

〈
∆r2

drop

〉
, as functions of the lag time τ at

different droplet volume fractions ϕ, for viscoelastic emulsion models having
droplet radii of 10 nm [parts (a) and (b)] and 320 nm [parts (c) and (d)]. In parts
(a) and (c), the black solid lines represent the confined probe motion MSDs in a stationary
droplet,

〈
∆r 2

pr,conf(τ)
〉
, while the color-coded open circles represent the total droplet-confined

probe MSDs as the droplet is in the harmonic potential well,
〈
∆r 2

pr,tot(τ)
〉
, associated with

different ϕ. The inset of part (c) displays the probe MSDs at long τ ≥ 0.1 s for a droplet
having a = 320 nm, showing

〈
∆r 2

pr,tot(τ)
〉
is hardly resolved from

〈
∆r 2

pr,conf(τ)
〉
in this long-

τ region when ratio 1/(aG′
p) of the emulsion model is sufficiently small. In parts (b) and

(d), the open circles are droplet motion MSDs, extracted by subtracting
〈
∆r 2

pr,conf(τ)
〉
from〈

∆r 2
pr,tot(τ)

〉
, and are compared with the known droplet self-motion MSDs (color-coded

lines) calculated from the droplet COM trajectories. In part (d),
〈
∆r 2

drop(τ)
〉
at higher

ϕ ≥ 0.584 is truncated at 10−3 s due to noisy data resulting from closely aligned values of〈
∆r 2

pr,tot(τ)
〉
and

〈
∆r 2

pr,conf(τ)
〉
at longer τ for a = 320 nm. Material parameters have been

determined as in Figure 6.2: G′
p calculated using the EEI model37; high-frequency viscosities

ηe,∞(ϕ) inferred from57, and ηo = 339.5 mPa s.

the minimum τ is set at 10−8 s [Figure 6.7(a)]. For the given a = 10 nm, the position of the

first bending knee, associated with τdrop, decreases in the highly elastic regime as ϕ is lowered
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down to ϕ = 0.5. This can be attributed to the decrease in the high-frequency viscosity of

the emulsion, ηe,∞, for reduced ϕ57. At ϕ = 0.5, τdrop is near but below 10−8 s so
〈
∆r 2

drop(τ)
〉

is in the plateau region for entire τ ≥ 10−8 s. As the nanoemulsion is further diluted down to

ϕ = 0.1, τdrop increases to as high as 10−6 s. However, the dual rise-to-plateau feature cannot

be readily seen for a = 320 nm over all the ϕ explored and the signal can hardly be resolved

from the reference even in linear scale at τ > 0.1 s [Figure 6.7(c) and inset]. Fluctuation of

the extracted
〈
∆r 2

drop(τ)
〉
around the theoretical value, yet within the range of permissible

error, is observed when ϕ ≥ 0.4 for a = 10 nm [Figure 6.7(b)]. By contrast, in the case of

a = 320 nm, longer τ > 10−5 s results for ϕ ≥ 0.584 are excluded from accurate inference

[Figure 6.7(d)].

We then study the influence of radial droplet size on the MSD subtraction analysis of the

superposition of probe MSDs for viscoelastic emulsions at fixed ϕ. We choose the value ϕ =

0.3 since it is sufficiently high to include a relatively wide range of a from 80 nm down to

10 nm, and also low enough to have a good sensitivity for the smaller droplets. We present

the probe motion MSDs for the subtraction analysis and the resulting droplet self-motion

MSDs in Figure 6.8. For all the explored a, the dual rise-to-plateau feature of
〈
∆r 2

pr,tot(τ)
〉

is observed. The characteristic time scales, τdrop and τpr, and the magnitude of the plateau

MSDs,
〈
∆r 2

drop

〉
p
and

〈
∆r 2

pr,conf

〉
p
, exhibit a systematic increase as a is raised [Figure 6.8(a)].

For each of the presented droplet sizes, we show a good agreement between the extracted

and theoretical
〈
∆r 2

drop(τ)
〉
[Figure 6.8(b)].

The long-τ plateau droplet MSD
〈
∆r 2

drop

〉
p
of a given colloidal soft material catches

the most attention in performing passive microrheology using GSER. Accurately extracting〈
∆r 2

drop

〉
p
from the droplet-confined probe MSD-subtraction analysis requires a high dimen-

sionless ratio of ξ =
〈
∆r 2

drop

〉
p
/
〈
∆r 2

pr,tot

〉
p
. In Figure 6.9, we show this ξ ratio calculated

at long τ , where both the droplet MSD and probe MSD are in the plateau region, for a

broad range of radial droplet sizes using parameters from the EEI model, covering the range

of ϕ in which the model emulsion having a given droplet radius is shear elastic. Consider-
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Figure 6.8. Mean square displacements of (a) the droplet-confined probe motion
and (b) the harmonically bound droplet motion for emulsions having different
droplet radii at a fixed volume fraction ϕ = 0.30 using microrheological param-
eters as in Figure 6.2: G′

p determined by the EEI model37 and ηc = 1 mPa s. (a)
The total combined probe MSDs are shown in open circles and the purely confined probe
MSDs as reference signals are presented in solid lines. (b) The extracted droplet MSDs (open
circles), obtained from the probe MSDs, show good agreement with the known droplet MSDs
(solid lines) from the droplet trajectory.

ing a sensitivity of 10−3 that is commonly seen in experimental apparatuses, for example,

NMR, using a droplet radius a ≤ 10 nm allows measurements above the threshold of ξ to be

significantly above the jamming ϕ of the nanoemulsion, reaching ϕ ≈ 0.7. Meanwhile, the

measurable range enters the jammed regime up to ϕ ≈ 0.45 for a droplet radius of 20 nm.
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Figure 6.9. Dimensionless ratio of long-τ plateau droplet mean square displace-

ment and total probe mean square displacement, ξ =
〈
∆r2

drop

〉
p
/
〈
∆r2

pr,tot

〉
p
, for

emulsions having different droplet radii. Material parameters have been determined as
in Figure 6.2: G′

p calculated using the EEI model37; and high-frequency viscosities ηe,∞(ϕ)
inferred from57. Fitting curves guide the eye.

However, for emulsions having droplet radius a ≥ 40 nm, only the unjamming behavior and

the diffusion coefficient at low droplet density can be resolved through the MSD subtraction

analysis from NMR experiments174. Therefore, using nanoscale colloids down to a ≤ 10 nm

is beneficial to perform passive microrheology on elastically jammed probe molecule-laden

colloidal systems via probe MSD detection.

6.5 Discussion and conclusion

In this trajectory-based simulation study, we demonstrate how to perform passive microrhe-

ology by analyzing the MSDs of a Brownian probe molecule confined within a droplet that

undergoes harmonically bound Brownian motion. The motion of probe molecules within

droplets has been modeled as simple diffusion confined within a disk representing the HBBP
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droplet. By subtracting the MSDs of the confined motion of probe molecule from the MSDs

of the total molecular probe motion, we obtain the self-motion MSDs of the droplet’s COM,

which can be used to calculate the elastic plateau shear storage modulus at each packing

fraction using the GSER.

To obtain higher values of ξ in future experiments, which would therefore be easier to

analyze for passive microrheology, it would helpful to have a high viscosity in the dispersed

phase and to have smaller nanoscale droplet sizes, particularly those less than 10 nm in

radius; this indicates that restricting confined molecular probe motion is desirable if one

primarily seeks to obtain droplet motion. This could enable future NMR experiments to de-

termine droplet MSDs for ϕ well into the elastically jammed regime of the droplets, thereby

facilitating passive microrheological interpretations.

Our simulation is akin to using a local molecular probe, which allows for particle-tracking

methods of microrheology179–181. These techniques are not limited to ensemble averages and

can potentially be used to characterize heterogeneous systems. With a clear grasp of the me-

chanics and relevant material parameters, we anticipate the potential use of techniques, such

as NMR140,141,146 and electron paramagnetic resonance (EPR) spectroscopy182,183, which in-

herently capture the fine details of molecular dynamics, to extract colloidal dynamics, and

thereby perform passive microrheology.
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Chapter 7 - Fingerprinting short-range attractions in

dense emulsions using optical scattering

7.1 Motivation

In Chapters 2 and 3, we have elucidated the richness and complexity of the optical transport

properties of dense, attractive colloidal emulsions, namely strongly attractive (SA) and inter-

mediately attractive (IA), respectively, having certain specific short-range depletion attrac-

tions between droplets relative to kBT . By contrast with the inverted parabola-like 1/ℓ∗(ϕ)

for emulsions having nearly hard interactions, we have observed the asymmetric 1/ℓ∗(ϕ) with

two knees for SA emulsions (14.5 kBT , [SDS] = 80 mM) and also for IA emulsions (5.6 kBT ,

[SDS] = 35 mM). In addition, for the IA emulsions, there is a dip-like notch feature in 1/ℓ∗(ϕ)

between the hard-sphere glass transition, ϕg, and maximal random jamming, ϕMRJ. We have

developed the DCSN model and E-DCSN model for the SA and IA emulsions, respectively,

as ways of performing regularized fitting of 1/ℓ∗(ϕ) using the minimum principal scattering-

mechanical components for each system. These models have enabled us to infer the effective

DWS probe radii, leading to quantitative passive microrheological interpretation of both sets

of DWS measurements. From the DCSN model for the SA emulsions, we have determined

that the MSDs cannot be assigned to individual droplets, instead they are associated with

small clusters having effective size about twice the droplet over a wide range of ϕ. From the

E-DCSN model, we have inferred that for the IA emulsions, the effective DWS probes are

individual droplets at lower ϕ and are small clusters at higher ϕ; the ϕ-dependent effective

DWS probe radius exhibits a smooth yet rapid transition between the droplet and cluster

limits within the notch regime. Further theoretical work is necessary to refine these ideas
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and come up with predictions of DWS correlation functions based on first-principles, rather

than a principal component model.

Knowing the optical transport properties over the full range of ϕ is essential for per-

forming DWS passive microrheology of dense attractive emulsions. Without this 1/ℓ∗(ϕ)

information, it would not be possible to either do the fitting in the (E-)DCSN model and

determine the effective probe radius or to account for the collective scattering effects prop-

erly. Since the signatures of 1/ℓ∗(ϕ) for the SA and IA emulsions are distinctive, there is

an opportunity for mapping the optical transport captured in 1/ℓ∗(ϕ) at other attractive

strengths than those corresponding to NH, MA, IA, and SA already presented herein. By

measuring additional 1/ℓ∗(ϕ) in between MA and IA as well as between IA and SA, we can

further experimentally determine a complete set of fingerprints of 1/ℓ∗(ϕ) that can be linked

to individual interaction strength.

Here, we present measurements of 1/ℓ∗(ϕ) at |Ud| ≈ 3.3 kBT between MA and IA (labelled

MA-IA) and also measurements of 1/ℓ∗(ϕ) at |Ud| ≈ 7.3 kBT between IA and SA (labelled

IA-SA). Thus, we show a comprehensive 1/ℓ∗(ϕ) plot for dense emulsions having depletion

attractions over a wide range of attractive strengths from NH to SA. The non-monotonic

behavior of the scattering with respect to strength of short-range attraction is very inter-

esting, and presently there are no theoretical predictions of this set of measurements based

on first-principles, even as we have fit some using regularized principal component analyses

based on the DCSN and E-DCSN models.

7.2 Materials and methods

7.2.1 Size-fractionated attractive emulsions

We prepare a uniform silicone oil-in-water (O/W) microscale emulsion (polydimethyl siloxane

oil, Gelest Inc.; viscosity: νo = 350 cSt), SDS (Fisher Scientific; electrophoresis grade 99%

purity), and deionized water (Millipore Milli-Q Academic; resistivity: 18.2 MΩ cm), following
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the protocol of emulsification, homogenization, and size-fractionation in the similar manner

as in chapters 2.3.1 and 3.3.1, but here fix [SDS] = 25 mM and thereby obtain a 4× size-

fractionated, concentrated master emulsion. We store this master emulsion sample in a

temperature-controlled chamber at 20◦C to avoid water vapor evaporation-condensation that

could alter ϕ. The droplet volume fraction of this master emulsion is ϕm = 0.782 ± 0.004,

characterized via a gravimetric evaporation method. A very small portion of the master

emulsion is also diluted in 10 mM SDS solution down to ϕ ∼ 10−4 and then characterized

using dynamic and static light, yielding primary characteristics of the droplet radial size

distribution: average hydrodynamic radius ⟨a⟩ = 456± 15 nm and polydispersity δa/ ⟨a⟩ ≃

0.18, where δa is the standard deviation of this distribution.

We prepare samples of emulsions at different ϕ values, which are less than ϕm, by diluting

the master emulsion sample with a 25 mM SDS solution using a Denver Instruments APX-

200 analytical balance with 0.1 mg precision. The resulting ϕ of each sample can then be

calculated from these measured masses using the known densities of the SDS solution and

PDMS. Each emulsion with ϕ < ϕm is approximately 1.5 mL in total volume and is stirred

for 3 minutes, imposing an estimated 50 s−1 average shear flow-rate, to ensure complete

mixing before measurements using Rheolab 3.

After the entire set of DWS measurements of emulsions at 25 mM SDS concentration

have been completed, we collect and combine the emulsions at different ϕ, re-disperse the

droplets in 45 mM SDS solutions to ϕ ≈ 0.1, and then concentrate the emulsions to a higher

ϕ through ultracentrifugation (Beckman L8-55 ultracentrifuge, SW-28 swinging bucket rotor,

10,000 rpm, 1.25 hours). This re-dispersion and concentration cycle has been repeated three

more times at fixed [SDS] = 45 mM to set the bulk SDS concentration. Followed by the

final concentration step, the droplet volume fraction of the resulting new master emulsion is

ϕm = 0.789 ± 0.005. We use the same protocol as described above for dilution and storage

of the emulsions, yet with 45 mM SDS solutions, for the studies of IA-SA emulsions.
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7.2.2 Optical transport measurements

We perform optical transport measurements using Rheolab 3 light scattering instrument

(equipped with backscattering option, wavelength λ = 685 nm; LS Instruments, Fribourg

CH) for MA-IA emulsions and IA-SA emulsions, respectively, at different ϕ. Each emulsion is

loaded into a glass optical cuvette having a pathlength of L = 5 mm; a ϕ-dependent loading

protocol is used to eliminate air bubbles while avoiding gradients in ϕ (refer to chapter

3.3.2). Each loaded cuvette is then placed in the Rheolab 3 and allowed to equilibrate at a

set temperature T = 20 ± 0.1 ◦C. The waiting time is 24 hours for ϕ ≥ 0.4 and 1,200 s for

ϕ < 0.4. Time-averaged backscattering and transmission intensities are used to determine

ℓ∗. For each emulsion sample at a given [SDS] and ϕ, a total of 11 trials have been performed

and averaged.

7.3 Results and conclusions

We present the comprehensive 1/ℓ∗(ϕ) features over the full range of ϕ for emulsions hav-

ing nearly hard interactions (NH, [SDS] = 10 mM), moderate to intermediate attractions

(MA-IA, [SDS] = 25 mM), intermediate attractions (IA, [SDS] = 35 mM), intermediate to

strong attractions (IA-SA, [SDS] = 45 mM), and strong attractions (SA, [SDS] = 80 mM),

measured using the Rheolab 3 (see Figure 7.1). The results of optical transport obtained for

the MA-IA and IA-SA emulsions can be directly compared with previous studies on similar

emulsions with varying SDS concentrations, as we have prepared the fractionated MA-IA

and IA-SA emulsions utilizing the same materials and protocols. The average hydrodynamic

radius of the MA-IA and IA-SA emulsions, denoted by ⟨a⟩, equals 456 nm, which is within

1% of ⟨a⟩ = 459 nm reported for the NH57 and SA emulsions115, and it is within 6% of ⟨a⟩ =

484 nm for the IA emulsions120. Furthermore, when taking into account Mie-scattering from

a hypothetical isolated sphere, symbolized as 1/ℓ∗ISA,Mie and derived from the independent

scattering approximation (ISA) in the extremely dilute limit, the variation between these
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MA-IA and IA-SA emulsions and previous studies is below 0.5%. Consequently, the signif-

icant differences noted in 1/ℓ∗(ϕ), as depicted in Figure 7.1, between these present studies,

stem from differing droplet structures due to different attractive strengths, denoted as |Ud|,

rather than the minuscule disparity in ⟨a⟩.
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Figure 7.1. Measured inverse mean free path of optical transport, 1/ℓ∗, of frac-
tionated silicone oil-in-water (O/W) emulsions as a function of droplet volume
fraction, ϕ, for a repulsive nearly hard interaction and also for four different
strengths of micellar depletion attraction, and their difference between 1/ℓ∗NH

(pathlength L = 5.0 mm, light wavelength λ = 685 nm). (a) Nearly hard in-
teractions (Kim et al.57, [SDS] = 10 mM, |Ud| < kBT , average droplet radius ⟨a⟩ = 459
nm): 1/ℓ∗NH (gray squares); fit (gray long dashed line) using equation (6) in Xu et al.115.
Moderately-to-intermediately attractive ([SDS] = 25 mM, |Ud| ≈ 3 kBT , ⟨a⟩ = 456 nm):
1/ℓ∗MA-IA (green crosses); fit (green short dashed line) to a zeroaxial cubic polynomial equa-
tion. Intermediately attractive ([SDS] = 35 mM, |Ud| ≈ 6 kBT , similar ⟨a⟩ = 484 nm): 1/ℓ∗IA
(red diamonds). Intermediately-to-strongly attractive ([SDS] = 45 mM, |Ud| ≈ 7 kBT , ⟨a⟩ =
456 nm): 1/ℓ∗IA-SA (violet lined diamonds); fit (violet dash-dotted line) to the DCSN model.
Strongly attractive (Xu et al.115, [SDS] = 80 mM, |Ud| ≈ 15 kBT , ⟨a⟩ = 459 nm): 1/ℓ∗SA
(blue circles); fit (blue solid line) from Xu et al.115 using equation (2.5) with constraints
imposed by equations (2.1)-(2.4). Legends are organized to highlight the non-monotonic
behavior of the scattering as |Ud| is increased, most readily seen in the intermediate ϕ range
between 0.4 and 0.5. (b) Difference in 1/ℓ∗ for each attractive emulsion from 1/ℓ∗NH, fit to a
function proportional to a semi-empirical form: ϕ3(ϕ−ϕiso)(ϕu−ϕ), where the fit parameter
ϕu ≈ 1 represents optical transparency of the dense emulsion at λ = 685 nm for ϕ near unity
where 1/ℓ∗ vanishes; ϕiso indicates the crossover with the NH curve. Similarity of values
of crossovers at a particular ϕ indicates an isoskedastic point. Data in the dilute regime of
ϕ < 0.2 for MA-IA, IA, IA-SA, and SA emulsions, as well as 1/ℓ∗IA − 1/ℓ∗NH within the notch
regime for the IA emulsions, have been excluded from fitting (symbols in light shade).
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A prior study has shown very little difference in 1/ℓ∗(ϕ) for the same emulsion (i.e.

droplet size distribution) having moderate attractions at [SDS] = 20 mM when compared to

nearly hard interactions at [SDS] = 10 mM; yet only a narrow range of ϕ between 0.57 and

0.65 has been reported59. By slightly increasing [SDS] to 25 mM, we observe that 1/ℓ∗(ϕ) of

MA-IA emulsions is still not appreciably distinct from the NH values over this 0.57 ≤ ϕ ≤

0.65 and the overall 1/ℓ∗MA−IA(ϕ) exhibits an inverted parabola-like shape [see the green

crosses and short dashed line in Figure 7.1(a)], which is similar to the NH scenario and is

radically different from the asymmetric shape with two knees and a notch in the IA scenario.

In the intermediate ϕ range between 0.3 and 0.56, the light scattering intensity is reduced

in MA-IA emulsions as compared to NH emulsions, depicted by 1/ℓ∗MA−IA < 1/ℓ∗NH in this

regime, implying the formation of clusters caused by depletion attractions between droplets.

For higher ϕ beyond 0.65, the scattering intensity for MA-IA emulsions is significantly en-

hanced, yielding the highest 1/ℓ∗MA−IA values among the various interactive strengths in the

dense regime, due to the heterogeneity in the droplet structures caused by depletion attrac-

tions.

To investigate the transition between the SA emulsions at [SDS] = 80 mM and the IA

emulsions at [SDS] = 35 mM, which have been thoroughly studied in Chapters 2 and 3, we

have measured and presented 1/ℓ∗(ϕ) for the IA-SA emulsions at [SDS] = 45 mM [see the

violet lined diamonds in Figure 7.1(a)]. With a very high data density, particularly in the

ϕ regime that corresponds to the notch feature of 1/ℓ∗IA(ϕ), we have shown that the overall

1/ℓ∗IA−SA(ϕ) curve falls in between 1/ℓ∗IA and 1/ℓ∗SA. The measured 1/ℓ∗IA−SA(ϕ) is in the

absence of the notch feature and has been fit using the DCSN model [violet dash-dotted line

in Figure 7.1(a)]. In the dense limit beyond ϕ = 0.65, the 1/ℓ∗ values for the IA, IA-SA, and

SA emulsions at a given ϕ are effectively of the same magnitude, implying the similar dense,

heterogeneous droplet structures beyond jamming, formed through cluster aggregation.

The master 1/ℓ∗(ϕ) diagram [Figure 7.1(a)] indicates that inducing intermediate attrac-

tions at 35 mM SDS yields the strongest reduction in the magnitude of 1/ℓ∗IA(ϕ) for ϕ ≤
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0.65 among all the different attractive strengths measured. In addition, the notch feature

just below hard-sphere repulsive jamming ϕMRJ and above glass transition ϕg has been only

observed in the IA emulsions. In the range of 0.2 ≤ ϕ ≤ 0.5, it is evident that increasing

the SDS concentration (i.e. enhancing the attractive strength) up to 35 mM SDS results

in a progressive decrease in 1/ℓ∗. This reduction is correlated with the formation of denser

struts or constituent droplet clusters in the gel network, characterized by a smaller surface-to-

volume ratio and reduced scattering contribution per droplet. However, the addition of more

SDS creates stronger attractions that partially mitigate local inhomogeneity, yielding more

tenuous gel networks with a marginally higher (but still notably small) surface-to-volume

ratio compared to individual droplets. Consequently, this leads to an increasing value of

1/ℓ∗ as the emulsion transitions from IA to SA states. Interestingly, we have observed an

“isoskedastic” point at ϕ ≈ 0.64, where the optical scattering intensity (i.e. 1/ℓ∗) remains

constant at a specific value, irrespective of the interaction strength, within the confines of

our investigative framework [refer to the arrow in Figure 7.1(a)].

While complex, these optical transport measurements indicate that it is possible to effec-

tively determine the strength of short-range attractions relative to kBT in a dense uniform

emulsion having unknown strength through fingerprinting: comparing the magnitude and

shape of measurements of 1/ℓ∗(ϕ) of that unknown emulsion with the set we have deter-

mined. We have measured a non-monotonic progression in 1/ℓ∗ near ϕ = 0.5, where oil and

water each takes up half volume of the emulsion, as the attractive strength is raised [high-

lighted by legends to Figure 7.1(a)]. At a given ϕ between 0.4 and 0.5, where 1/ℓ∗ values are

distinctive from one other for all the explored emulsion systems having various attractive

strengths, the measured 1/ℓ∗ for NH with an [SDS] of 10 mM is at the highest level. Then

it proceeds downwards to MA-IA and SA, corresponding to [SDS] values of 25 mM and 80

mM, respectively. Finally, it transitions to IA-SA at an [SDS] of 45 mM, and concludes with

IA at an [SDS] of 35 mM at the bottom-most level. The reduction in scattering at ϕ ≈

0.5, caused by attractions, is the greatest for the IA emulsions, in which long-lived dense
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clusters are present to a substantial degree. In the higher ϕ regime beyond the isoskedastic

point, compared to nearly hard interactions, all of the attractive systems exhibit a substan-

tial increase in scattering. However, it is difficult to distinguish among different attractive

strengths using only 1/ℓ∗ in this jammed, elastic regime near ϕ ≈ 0.7. Therefore, if the goal

is to utilize 1/ℓ∗(ϕ) as a tool to differentiate the strength of attractions in a given emulsion

system, the most insightful data can be obtained by performing measurements when ϕ lies

between ≈0.4 and ≈0.5. These ϕ values are below the isoskedastic point far enough that

variations in 1/ℓ∗ with |Ud|/(kBT ) are maximized. This range of ϕ also sidesteps the com-

plexity associated with the notch feature present in IA emulsions and ensures aging effects

are minimal, too.

To more distinctly highlight how short-range attractions influence 1/ℓ∗ as a consequence

of depletion attractions, compared to the baseline case of NH interactions, we subtract

1/ℓ∗NH(ϕ) from the measured 1/ℓ∗(ϕ) for all the dense emulsions, taking the NH emulsions

as the reference. Then, we fit the ϕ-dependent difference 1/ℓ∗ − 1/ℓ∗NH to the equation

∆(1/ℓ∗)0ϕ
3(ϕ − ϕiso)(ϕu − ϕ) [see Figure 7.1(b)]. Here, the similarity of fit parameters ϕiso

reflects the isoskedastic point, at which 1/ℓ∗ values for NH, MA-IA, IA, IA-SA, and SA emul-

Table 7.1. Parameters used in fitting ϕ-dependent 1/ℓ∗ − 1/ℓ∗NH for
moderately-to-intermediately attractive (MA-IA), intermediately attractive
(IA), intermediately-to-strongly attractive (IA-SA), and strongly attractive (SA)
emulsions compared to nearly hard (NH) emulsions.

Interaction MA-IA IA IA-SA SA

[SDS] (mM) 25 35 45 80

|Ud| (kBT ) 3.3 5.6 7.3 14.5

∆(1/ℓ∗)0 (mm−1) 92 ± 8 229 ± 7 103 ± 14 116 ± 22

ϕiso 0.588 ± 0.008 0.636 ± 0.002 0.637 ± 0.004 0.615 ± 0.008

ϕu 1.002 ± 0.006 0.894 ± 0.006 1.03 ± 0.04 0.92 ± 0.04

R2 0.906 0.998 0.980 0.948
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sions coincide; ϕu indicates optical transparency at a ϕ near unity; the parameter ∆(1/ℓ∗)0

represents the amplitude of the polynomial formula. Fit parameters for all these attractive

emulsions are presented in Table 7.1.

In future studies, employing more meticulous experimentation with narrower SDS con-

centration intervals, along with comparisons to mechanical rheometry, theoretical analysis,

and simulations, as well as the development of comprehensive opto-microrheological models,

can further facilitate the quantitative mapping of optical transport, dynamics, and rheolog-

ical properties for short-range attractive emulsions (and perhaps also some other attractive

systems) to the strengths of their attractive potential energy relative to thermal energy.
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Chapter 8 - Surface-bound molecular probe diffusion

for microrheology

8.1 Motivation

Given the results in Chapter 6, it is clear that a higher degree of confinement of molecular

probe motion within droplets would be beneficial, if one wishes to extract a droplet MSD

from a total molecular probe MSD accurately. This could enable a broad extension of pas-

sive microrheology using molecular probes, since droplet dynamics, which are coupled to

total molecular probe motion, could then be extracted. Since this approach uses confined

molecular probe motion to extract droplet motion, we have defined a dimensionless ratio of

droplet MSD relative to total probe MSD, ξ =
〈
∆r 2

drop

〉
p
/
〈
∆r 2

pr,tot

〉
p
.

In the scenario of droplet-confined probe diffusion, as discussed in Chapter 6, we have

shown that ξ decreases by orders of magnitude as ϕ is raised over a broad range, and it

drops rapidly in the jamming regime below the detection limit of ∼ 10−3 for average droplet

radii greater than 40 nm. Although it is still possible to use remarkably small droplet radii,

preferably under 10 nm, for passive microrheology of nanoemulsions using 19F-NMR, this in-

volves difficulties in nanoemulsion preparation and limits the application of molecular probe

microrheology to the broader range of materials. Thus, we consider simulations based on

a different type of molecular probe, namely a probe bound as a surfactant that has been

irreversibly adsorbed onto droplet surfaces184. In particular 19F-labeled surfactant molecules

would still take advantages of the isotopic specificity of NMR, and in dense nanoemulsions,

adsorbed surfactant can still be a large enough percentage of the total composition to make

19F PFG-NMR experiments feasible.
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Here, we present the trajectory-based simulations of an irreversibly adsorbed probe sur-

factant molecule at high densities on the surface of a HBBP droplet. At a high surfactant

surface densities, we assume that the motion of an irreversibly adsorbed probe molecule

undergoes HBBP confinements caused by the neighboring molecules, providing a higher per-

centage of droplet center-of-mass MSD in the total molecular probe MSD over a wide range

of times, particularly long times. Unrestricted diffusion of irreversibly adsorbed surfactant

at low surface densities on the droplet interfaces provides an intermediate result; if the tails

of these surfactants are in a very viscous oil, thereby restricting surface diffusion rates, then

even this unrestricted surface diffusion scenario could be similar to the HBBP surface confine-

ment. Given that the level of confinement applied to the probe molecules on droplet surfaces

(which we assume to be comparable to the intermolecular distance of adsorbed surfactant

molecules) is much higher than that applied to the labeled oil molecules inside the droplets

(comparable to the droplet diameter), this approach using surface-bound probes leads to

distinctly higher ξ as compared to the scenario of Chapter 6 which considered diffusion of

oil probe-molecules confined within droplets.

8.2 Methods

A 2D trajectory of a surface-bound molecular probe is generated by mapping a one-dimensional

HBBP motion onto a two-dimensional ring, which represents the droplet surface in 2D. In

brief, we solve the Langevin equation, having the same functional form as equation (6.1), for

the forces along the x-direction acting on the molecular probe. The resulting Green’s func-

tion, G(xpr,j, xpr,j−1; ∆t) [equation (8.1)] provides the probability of finding a probe molecule

at position xpr,j after a time interval ∆t for the initial condition at xpr,j−1
176–178:

G(xpr,j, xpr,j−1; ∆t) = [2πBpr(∆t)]
1/2exp{− [xpr,j − Apr(∆t)]

2

2Bpr(∆t)
}, (8.1)

where j is the integer index ranging from 1 to N , the total number of steps in simulating the

trajectory of a molecular probe. The mean Apr(∆t) and variance Bpr(∆t) of the Gaussian-
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distributed Green’s positional function are shown in equations (8.2) and (8.3), respectively.

Apr(∆t) = xpr,j−1exp(−∆t/τB,pr), (8.2)

Bpr(∆t) =
kBT

kpr
[1− exp(−2∆t/τB,pr)], (8.3)

where τB,pr = 6πapηo/kpr represents the time that the probe molecule takes to reach equi-

librium in the harmonic potential well; ap is the radius of the probe molecule and ηo is the

dynamic viscosity of the oil phase. The force constant kpr associated with the molecular

HBBP motion is determined by the resulting long-time surface-confined molecular MSDs,

whose magnitude is obtained by using a surfactant density Cs = 2.3 molecules/nm2 measured

in185, in association with a Lindemann melting criterion of 0.3.

To simulate the molecular probe trajectories, we generate a set of N -element Gaussian-

distributed random numbers, Rx,pr, corresponding to the x−direction, having the mean of

zero and the SD of unity. We first calculate the 1D trajectory of the probe molecule in the

reference frame of the harmonic well according to the HBBP model. Defined by the Green’s

function [equation (8.1)], the positional time series of the probe molecule are constructed

by modifying each element of Rx,pr at a given ∆t: xpr,j = Rx,pr,j

√
Bpr,j + Apr,x,j, where

integer j ranges from 1 to N . Here, we set the starting position of the probe molecule is at

a Cartesian coordinate (0, a) relative to the droplet COM at (0, 0) for ease of explanation.

We map the 1D HBBP trajectory onto a 2D ring by calculating the polar angle at each step

θj = xpr,j/a + π/2 and updating the jth position in the complex plane: zpr,j = aexp(iθj),

where i is the imaginary unit, corresponding to the point (Re(zpr,j), Im(zpr,j)) in the Carte-

sian plane.

Given that the surface bound probe motion is highly spatially restricted, individual tra-

jectories can be anisotropic; whereas the NMR tends to provide 1D MSDs along the direction

relative to field gradient z. Since we anticipate applications involving NMR, we have cal-

culated the 1D MSDs along the z-direction of the simulated molecular probe trajectories,

located at different positions on the droplet’s perimeter, not only at (0, a) as demonstrated

above. The average of 1D MSDs probed at various molecular positions yield the same result,
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confirming that if the surfactant molecules are uniformly or nearly uniformly distributed on

the droplet surface, the anisotropy of individual molecular trajectories does not impact the

overall ensemble-averaged 1D MSDs.

The simulation methods for generating droplet trajectories and total molecular trajecto-

ries, as well as the MSD subtraction analysis for extracting droplet MSDs, are identical to

the methods described in Chapter 6 (see chapter 6.3 for details).

8.3 Results and conclusions

We have obtained highly quantitative agreement between the droplet MSDs, extracted

through the MSD subtraction analysis:
〈
∆r 2

drop(τ)
〉
=

〈
∆r 2

pr,tot(τ)
〉
−

〈
∆r 2

pr,conf(τ)
〉
, and

the known droplet MSDs calculated directly from trajectories of the droplet COM, over the

entire lag time range 10−10 s ≤ τ ≤ 100 s for all the droplet radii that we have explored

from 5 nm to 320 nm (Figure 8.1). In the context of investigating the influence of droplet

radii, we fix all the other parameters at ηo = 100 mPa s, ηc = 1 mPa s, and G′
p = 100 Pa,

same as the values used to yield the results in Figure 6.6 for parallel comparison. For all

droplet radii ranging from 5 nm to 320 nm, the droplet’s center-of-mass MSD is the predom-

inant component in the total surface-bound molecular probe MSD across the entire τ range

[Figure 8.1(a)]. This is because the droplet COM MSD exceeds the purely confined probe

MSD (that is, the reference signal) by more than three orders of magnitude. The value of〈
∆r 2

pr,conf(τ)
〉
is so minute when compared to

〈
∆r 2

drop(τ)
〉
that the initial rise-to-plateau of〈

∆r 2
pr,tot(τ)

〉
, which has a smaller τpr than τdrop, is nearly imperceptible. Only a barely no-

ticeable trace of the
〈
∆r 2

pr,conf(τ)
〉
within the

〈
∆r 2

pr,tot(τ)
〉
can be spotted at early lag times

τ < 10−7 s when a ≥ 160 nm. In contrast with the droplet-confined oil-molecule diffusion

approach shown in Figure 6.6(b), where obvious fluctuations of the extracted droplet MSDs

around their theoretical magnitudes have been observed for larger droplet radii a ≥ 80 nm

at τ ≥ 5 × 10−4 s, this surface-confined approach offers excellent agreement in the absence
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Figure 8.1. Time-averaged mean square displacements of the total surface-

bound probe motion,
〈
∆r2

pr,tot(τ )
〉
, and the harmonically bound droplet motion,〈

∆r2
drop(τ )

〉
, at different droplet radii. (a)

〈
∆r 2

pr,tot(τ)
〉
determined from trajectories

of the surface-bound molecular probe motions for a wide range of a [open circles; color-coded,
see legend in part (b)]. Solid lines represent

〈
∆r 2

pr,conf(τ)
〉
of confined molecular probe MSDs

in stationary droplets for reference. (b)
〈
∆r 2

drop(τ)
〉
(open circles) extracted from the probe

MSDs:
〈
∆r 2

drop(τ)
〉
=

〈
∆r 2

pr,tot(τ)
〉
−

〈
∆r 2

pr,conf(τ)
〉
. Solid lines represent the droplet self-

motion MSD calculated directly from the COM trajectory of the droplet. The viscosity of
the oil is ηo = 100 mPa s and that of the continuous phase is ηc = 1 mPa s. The plateau
elastic modulus of the emulsion is G′

p = 100 Pa.
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of fluctuations throughout the full range of both τ and a [Figure 8.1(b)].

Similarly, we investigate how the use of this surface-bound molecular probe method might

be influenced by realistic material parameters for viscoelastic emulsions, particularly when

the interactions between droplets are nearly hard. We calculate the plateau elastic shear

moduli G′
p,EEI as functions of droplet volume fraction ϕ using the EEI model37 for vari-

ous droplet radii (see Figure 6.2), and extract the high-frequency viscosities for different ϕ
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Figure 8.2. Mean square displacements of the total surface-bound probe motion,〈
∆r2

pr,tot

〉
, and the droplet motion,

〈
∆r2

drop

〉
, as functions of the lag time τ at

different droplet volume fractions ϕ, for viscoelastic emulsion models having
droplet radii of 10 nm [parts (a) and (b)] and 320 nm [parts (c) and (d)]. In parts
(a) and (c), the black solid lines represent the confined probe motion MSDs on the surface
of a stationary droplet,

〈
∆r 2

pr,conf(τ)
〉
, while the color-coded open circles represent the total

surface-confined probe MSDs as the droplet is in the harmonic potential well,
〈
∆r 2

pr,tot(τ)
〉
,

associated with different ϕ. In parts (b) and (d), the open circles are droplet motion MSDs,
extracted by subtracting

〈
∆r 2

pr,conf(τ)
〉
from

〈
∆r 2

pr,tot(τ)
〉
, and are compared with the known

droplet self-motion MSDs (color-coded lines) calculated from the droplet COM trajectories.
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from57. For both a = 10 nm and 320 nm, the long-time plateaus of total molecular probe

MSDs are well-defined, and their magnitudes are far above the surface-confined probe MSDs

(i.e. the baseline) at all ϕ values [Figure 8.2(a) and (c)]. This results in the agreement

between the extracted droplet COM MSDs and their theoretical values [Figure 8.2(b) and

(d)]. In the droplet-confined oil-molecule diffusion scenario, the dual rise-to-plateau feature

of
〈
∆r 2

pr,tot(τ)
〉
could only be readily seen for very small droplet radii near and below a = 10

nm [Figure 6.7(a)]. However, at a larger droplet radius at a = 320 nm, the secondary rise-

to-plateaus that arise from the confined molecular motion could not be observed appreciably

[Figure 6.7(c)]. By contrast, here, for the surface-confined scenario, the dual rise-to-plateau

feature is more noticeable at a = 320 nm [Figure 8.2(c)] since the dominant portion of the

total molecular MSDs arises from the droplet center-of-mass motion. Moreover, the charac-

teristic time scales for droplet MSDs, τdrop, are longer than the characteristic time scales for

probe MSDs, τpr, leading to the well-defined secondary plateau of
〈
∆r 2

pr,tot(τ)
〉
, from which

the droplet MSDs can be readily extracted.

The radial droplet size does not appreciably influence the performance the MSD subtrac-

tion analysis of the superposition of probe MSDs for viscoelastic emulsions at fixed ϕ. We

choose the value ϕ = 0.4 to include a relatively wide range of a from 80 nm down to 5 nm.

We present the probe motion MSDs for the subtraction analysis and the resulting droplet

self-motion MSDs in Figure 8.3. Because the surface-confined probe MSDs are determined

by the given surface density of surfactants and the Lindemann criterion, no difference in〈
∆r 2

pr,conf

〉
(τ) has been predicted or observed among different a. A minuscule secondary

rise-to-plateau has been observed only for a = 5 nm, associated with the characteristic time

scale τpr near 10−7 s. For droplet COM MSDs, the characteristic time scales, τdrop, and

the magnitude of the plateau MSDs,
〈
∆r 2

drop

〉
p
, exhibit a systematic increase as a is raised

[Figure 8.3(b)]. For each of the presented droplet sizes, we show an excellent agreement

between the extracted and theoretical
〈
∆r 2

drop(τ)
〉
[Figure 8.3(b)].

To provide a more intuitive comparison between the two distinct strategies of using
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Figure 8.3. Mean square displacements of (a) the surface-confined probe motion
and (b) the harmonically bound droplet motion for emulsions having different
droplet radii at a fixed volume fraction ϕ = 0.40 using microrheological param-
eters as in Figure 6.2: G′

p determined by the EEI model37 and ηc = 1 mPa s.
(a) The purely confined probe MSDs as reference signals are presented in solid lines and
the total combined probe MSDs are shown in open circles. (b) The extracted droplet MSDs
(open circles), obtained from the probe MSDs, show good agreement with the known droplet
MSDs (solid lines) from the droplet trajectory.

droplet surface-confined probe molecules and of using droplet-confined free diffusive probe

molecules, we present the MSD analyses for the two systems, respectively, using a com-

mon set of material parameters, including a = 20 nm and ϕ = 0.4 (Figure 8.4). In the

case of HBBP confined molecular motion bound to the droplet surface, the droplet COM
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Figure 8.4. Comparison of mean square displacement analyses for inferring
droplet self-motion from the total probe motion between using surface-bound
molecular probe diffusion on the droplet surface and using free probe diffusion
within a droplet. (a) The harmonically bound Brownian droplet motion MSD (blue cir-
cles),

〈
∆r 2

drop(τ)
〉
, is extracted by subtracting the surface-confined probe MSD (red circles),〈

∆r 2
pr,conf(τ)

〉
, from the apparent total probe MSD (black squares),

〈
∆r 2

pr,tot(τ)
〉
. The later

two probe MSDs are determined from the corresponding probe trajectories. The extracted〈
∆r 2

drop(τ)
〉
is compared to the known droplet self-motion MSD (light blue line), determined

directly from the droplet COM trajectory. Molecular surface density Cs = 2.3 molecules/nm2

as measured in185, and Lindemann constant is 0.3. (b) A zoom-in of the long-time regime
from part (a), displayed in linear scale for the vertical axis, showing the systematic differ-
ence between

〈
∆r 2

pr,tot(τ)
〉
and

〈
∆r 2

drop(τ)
〉
. (c) The MSD analysis in the same manner as

in part (a) yet for a molecular probe diffusion strictly confined within a droplet, which is
undergoing harmonically bound Brownian motion. (d) The dimensionless ratio of droplet
MSD relative to total probe MSD,

〈
∆r 2

drop(τ)
〉
/
〈
∆r 2

pr,tot(τ)
〉
, for the droplet surface-bound

probe diffusion and free probe diffusion within a droplet, respectively. Insets show partial
trajectories of the droplet-confined (left) and surface-confined (right) molecules, respectively.
Other material parameters used in the presented results are a = 20 nm, ap = 1.5 nm, ηo =
339.5 mPa s, ηc = 1 mPa s, and G′

p = 63 kPa, which corresponds to ϕ = 0.4 according to
the EEI model37.
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MSDs predominate the total molecular probe MSDs and the dual rise-to-plateau feature in〈
∆r 2

pr,tot

〉
(τ) is not noticeable due to the fact that the confined molecular MSDs are smaller

than the droplet MSDs by more than an order of magnitude [Figure 8.4(a-b)]. In comparison,

in terms of the free molecular probe diffusion confined within a droplet, the total molecular

probe MSDs are predominated by the droplet COM MSDs at short times, while these are

predominated by the confined molecular MSDs at long times [Figure 8.4(c)]. There is a

crossover of these two component MSDs at τ ≈ 3 × 10−7 s, leading to the intriguing dual

rise-to-plateau feature in
〈
∆r 2

pr,tot

〉
(τ). The dimensionless ratio

〈
∆r 2

drop(τ)
〉
/
〈
∆r 2

pr,tot(τ)
〉

at long times (i.e. ξ) is as high as 0.94 for the case of surface-confined probe; whereas the

long-time ξ decays to 0.002 for the case of droplet-confined oil-molecule diffusion, which can
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Figure 8.5. Dimensionless ratio of long-τ plateau droplet mean square dis-
placement and total droplet surface-confined probe mean square displacement,

ξ =
〈
∆r2

drop

〉
p
/
〈
∆r2

pr,tot

〉
p
, for emulsions having different droplet radii. Mi-

crorheological parameters have been determined as in Figure 6.2: G′
p calculated using the

EEI model37 and ηc inferred from57. Molecular surface density Cs = 2.3 molecules/nm2 as
measured in185, and Lindemann melting criterion of 0.3, known for a wide range of materi-
als164. Fitting curves guide the eye.
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be hardly captured using linear scale for vertical axis [Figure 8.4(d)].

We demonstrate here that confining the probe molecules on the surfaces of droplets

leads to greater ξ, much closer to unity (see Figure 8.5 in comparison to Figure 6.9). This

surface-confined molecular detection approach remarkably enhances ξ by up to five orders of

magnitude at higher ϕ > 0.7, as compared with the droplet-confined bulk molecular diffusion

detection approach developed in Chapter 6. However, it requires accurate detection of the

molecular motion at a significantly smaller length scale, which likely would require the de-

velopment of more sensitive molecular detection techniques and the enhancement of higher

field gradients in NMR. Advanced optical molecular probe-tracking methods could also po-

tentially measure probe motion of irreversibly adsorbed surfactant on droplets in order to

extract droplet COM motion. Herein, we have also assumed that droplet surface waves,

which can be induced by Brownian excitations, are small compared to the bound surfactant

molecule motion. If the surface tension at oil-water interfaces is sufficiently reduced, such

surface waves could become an important contribution to the overall molecular probe MSDs,

further complicating the extraction of droplet COM MSDs.
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Chapter 9 - Conclusions and future directions

In this dissertation, we have covered a broad range of topics related to the rheological and

optical properties of dense colloidal emulsions. We have made significant progress in under-

standing the impact of entropic depletion attractions between droplets over a wide range of

strengths, and the influence of extremely bimodal droplet size distribution on these prop-

erties. We have advanced the quantitative description and diffusing wave microrheological

measurements of these dense colloidal emulsions crossing the regimes of repulsive glasses and

attractive gels. By extending the DWS analysis to depletion-induced attractive emulsions,

we have quantitatively identified DWS characteristics that are associated with such attrac-

tive emulsions, including signatures in ϕ-dependent inverse optical transport mean free path

1/ℓ∗(ϕ), additional ϕ-dependent features in the decays of the correlation functions g2(t)− 1,

and in the extracted mean square displacements ⟨∆r 2(t)⟩. Our improved DWS analysis

yields an effective DWS scattering probe size derived from these optical measurements, re-

sulting in quantitative agreement between the optical microrheological measurements and

the mechanical shear rheological measurements. Additionally, we have made the primary

exploration towards passive microrheology by using molecular probes through the applica-

tion of an NMR experimental approach and trajectory-based simulations, showcasing its

promising potential for future advances.

In Chapter 2, we have extensively studied the rheology and optical properties of dense

colloidal emulsions, focusing on the strong attractive (SA) limit at 14.5 kBT induced by SDS

micelles at a high SDS concentration of 80 mM. Our findings indicate that measuring an

asymmetrically shaped 1/ℓ∗(ϕ) for disordered systems of uniform dielectric colloidal spheres

can serve as a useful indicator of the presence of strong attractions relative to thermal

energy. This qualitative identification significantly influences how to perform passive mi-
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crorheology quantitatively using DWS. We have developed the decorated core-shell network

(DCSN) model, providing a simplified way of representing and coupling optical and mechan-

ical properties of the dense heterogeneous system of droplets that interact through strong

slippery attractions. Using the DCSN model, we have established a method for extracting

the effective scattering probe size associated with the time-dependent MSDs. Strikingly, we

demonstrate that the radius of effective DWS scattering probes is approximately twice the

radius of individual droplets, independent of ϕ.

In Chapter 3, we have explored intermediate attractive (IA) emulsions with attractive

interaction potential of 5.6 kBT induced by 35 mM SDS, comparing their optical transport

properties, rheological behavior, and dynamic correlation functions to those of nearly hard

(NH), moderately attractive (MA) and strongly attractive (SA) emulsions. We have devel-

oped a protocol for preparing dense IA emulsions and revealed a non-monotonic behavior

in the ϕ-dependent optical transport properties, which significantly differs from both MA

and SA emulsions and has a characteristic notch feature just below the repulsive jamming

ϕ. A ϕ-dependent DWS probe-size factor is used to provide the best comparison with me-

chanical measurements, while the extended decorated core-shell network (E-DCSN) model

is expanded to include a fourth principal component to explain the additional complexity in

the measured optical scattering. The results suggest a cluster-jamming scenario for IA emul-

sions, with loosely connected dense clusters jamming when ϕ is increased. This study lays

the groundwork for further exploration of the transitions between MA, IA, and SA regimes

and the fundamental origin of the DWS probe-size factor in short-range attractive colloidal

systems.

In Chapter 4, we have investigated the impact of extreme bidispersity in droplet size dis-

tribution on the optical transport properties, droplet dynamics, and bulk linear mechanical

response to shear in concentrated colloidal emulsions. We have demonstrated that addi-

tional complexity arises from screened-charge electrostatic repulsions between droplet inter-

faces and entropic depletion attractions between microscale droplets, induced by nanoscale
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droplets acting as depletion agents. We have observed these emergent effects in extremely

bidisperse colloidal emulsions; such effects preclude interpretations based on simple effective

medium theories. Optical transport properties in extremely bidisperse colloidal emulsions

can serve as sensitive indicators of depletion attractions. Moreover, DWS of bidisperse

colloidal emulsions, when properly interpreted, can provide useful information for quantita-

tive passive microrheological interpretation through the generalized Stokes-Einstein relation.

This study has revealed the importance of considering droplet size polydispersity in under-

standing the macroscopic properties of complex colloidal systems.

In Chapter 5, we have explored the unjamming of a model soft colloidal solid using

19F StE PFG-NMR measurements on concentrated nanoemulsions. We find that the total

molecular motion, consisting of center-of-mass motion of nanodroplets and confined molec-

ular diffusion of 19F-labeled silicone oil within the nanodroplets, exhibits dramatic changes

as the nanodroplets unjam upon reducing ϕ. Our custom-formulated size-fractionated O/W

nanoemulsion allow for a more straightforward interpretation of NMR measurements, as

interdroplet diffusion of perfluorinated oil molecules is effectively precluded. By combining

NMR measurements with a passive microrheological interpretation of macroscopic mechani-

cal rheometry measurements, we derive a master curve of droplet root-MSDs, normalized by

the average diameter of the nanodroplets, as a function of ϕ. This enabled us to relate droplet

unjamming to Lindemann’s ratio, showing that the ϕ associated with Lindemann melting

coincides with ϕc associated with nanodroplet unjamming and the loss of low-frequency me-

chanical shear rigidity.

There remain many exciting directions for future research, including the use of higher

magnetic field gradients to explore larger b values, the investigation of nanoemulsions with

different droplet sizes and oil viscosities, and the development of theories and simulations for

the total motion of probe molecules within dense colloidal droplet systems during glass and

jamming transitions. Higher magnetic field gradients could provide a direct measurement

of the effective plateau of the NMR attenuation in the highly concentrated ϕ-regime and
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may allow for the deduction of G′
p directly from the high-b plateau MSDs. Investigating

nanoemulsions with varying droplet sizes and oil viscosities may further increase sensitiv-

ity to nanodroplet motion in the jammed ϕ-regime and provide insights into the relative

contributions of confined molecular diffusion and nanodroplet motion. Overall, our work in

Chapter 5 has contributed to a deeper understanding of the unjamming and melting of soft

colloidal solids and has paved the way for future studies in this area.

In Chapter 6, we have presented a trajectory-based simulation study that demonstrates

passive microrheology by analyzing the MSDs of a Brownian probe molecule confined within

a droplet undergoing harmonically bound Brownian motion. The motion of probe molecules

within droplets has been modeled as simple diffusion confined within a disk representing the

HBBP droplet. By subtracting the MSDs of the confined motion of probe molecule from the

MSDs of the total molecular probe motion, we obtain the self-motion MSDs of the droplet’s

center of mass, which allow us to calculate the elastic plateau shear storage modulus at each

packing fraction using the GSER for droplets. Thus, we propose that, for a limited range

of soft materials and for certain experimental techniques, colloidal droplet motion can be

extracted from total molecular probe motion, and, herein, we have used only the extracted

droplet MSDs in determining G′
p through the framework of passive microrheology. Our sim-

ulation of dispersed phase-confined molecular diffusion emphasizes the importance of high

contrast between the viscosity of the dispersed and continuous phases for accurate results, as

it increases the relative proportion of contributing droplet MSD in the total probe MSD. Us-

ing smaller nanoscopic droplet sizes could extend the range of PFG-NMR experiments from

extremely dilute to the elastically jammed regime of droplets, potentially enabling direct

NMR measurements of G′
p above the jamming limit. The simulation approach we present

could potentially be used in a wide range of experiments, including single-molecular probe

super-resolution optical tracking experiments, to enable passive methods of microrheology

in heterogeneous soft colloidal systems.

In Chapter 7, we have shown the map of optical transport fingerprints of dense emul-
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sions having short-range attractions. We have presented the inverted parabola-like 1/ℓ∗(ϕ)

behavior for moderately to intermediately attractive (MA-IA) emulsions at 3.3 kBT micellar

depletion attractive strength, as well as the asymmetric 1/ℓ∗(ϕ), which can be described

using the DCSN model, for intermediately to strongly attractive (IA-SA) emulsions at 7.3

kBT . Intriguingly, we have observed an isoskedastic point, corresponding to the crossover

of 1/ℓ∗(ϕ) for all the explored attractive emulsions and the emulsions having nearly hard

interactions.

In Chapter 8, through 2D trajectory-based simulations, we have elucidated that a surface

bound molecular probe technique has the potential to significantly enhance the dimensionless

ratio, ξ =
〈
∆r 2

drop

〉
p
/
〈
∆r 2

pr,tot

〉
p
, of extracting colloidal dynamics from probed molecular

dynamics. Accordingly, we have depicted an experimental design for future 19F-NMR, which

is to use fluorinated surfactant molecules that have been irreversibly adsorbed at high density

onto nanodroplet interfaces in O/W nanoemulsions, while using non-fluorinated oil inside

the nanodroplets. This approach offers a higher level of confined molecular diffusion com-

pared to the approach using labeled molecular probes that diffuse inside droplets, as studied

in Chapter 5 (experimentally) and 6 (numerically). Surface confinement of probe molecules

leads to an effectively higher relative contribution of droplet MSDs to the total molecular

probe MSDs by orders of magnitude at high ϕ. Therefore, the surface-bound molecular probe

strategy could potentially extend passive microrheology of nanoemulsions using 19F-NMR

to the strongly elastic regime. While this approach could be sufficient with existing NMR

techniques, having higher field gradients in 19F-NMR and also more sensitive coils would

also be helpful.

Numerous possible directions for future research can be pursued to expand upon the

knowledge gained in this dissertation. One potential avenue involves the microrheological

DWS investigation of uniform O/W emulsions with different droplet radii, distinct from the

approximate 500 nm radius analyzed in this study, which corresponds to the wavelength of

visible light. This will allow the broadening of the conclusions drawn from this research.
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However, there are challenges in DWS when the scattering becomes greatly reduced as the

droplet sizes go far below the laser’s wavelength. Thus, this could be challenging to do well

at a highly quantitative level.

Moreover, the study of how varying degrees of polydispersity and droplet size ratios could

affect the light scattering and rheological characteristics of dense emulsions is a captivating

topic. Our research has indicated that, when there is an extremely large droplet size ratio

(e.g. exceeding 20), the smaller droplets have the tendency to jam and can also induce

depletion attractions among the larger droplets within binary mixtures of emulsions and

nanoemulsions. In the scenario of a considerably reduced droplet size ratio, taking into ac-

count the Debye-screening length, when only a single droplet can fit within the interstices

of other larger jammed droplets, it may be plausible to push towards a higher total volume

fraction, beyond 0.64, without the occurrence of jamming, even among the smaller droplets.

We are intrigued to understand how the effective continuous phase defined for the extremely

bidisperse emulsions might function in the case of bidisperse emulsions with a significantly

reduced droplet size ratio of around 5. Furthermore, it is probable that such minimal droplet

size difference might not result in self-induced depletion attractions. Consequently, explor-

ing jamming and depletion in emulsion systems with different droplet size distributions will

require further experimental investigations.

It is also prospective to explore the passive microrheological interpretation of DWS to

various kinds of emulsions, such as water-in-oil (W/O) emulsions186,187. This exploration

could enhance our understanding of the behavior and stability of dense colloidal emulsions

and provide insights into the design of emulsions with tailored properties for specific ap-

plications. While engaging, interpreting the scattering from DWS of multicompartment

emulsions156,188 or multiple emulsions189 would be extraordinarily challenging when com-

pared to single emulsions. Therefore, the path to passive microrheological interpretations

may not be straightforward in these cases.

Future investigation could emphasize the potential of employing the methodologies de-
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vised in this dissertation to a broader range of dense colloidal materials. These methods

involve developing opto-mechanical models that concurrently satisfy a combination of mea-

surements - equilibrium, steady-state optical transport, dynamic scattering, and rheological

properties - for well-prepared uniform emulsions. These methods could be beneficial for

quantitative microrheological characterization of materials like homopolymers or microgels,

composed of soft, deformable, spherical particles that bear resemblance to droplets in emul-

sions. To explore the use of DWS microrheology to these systems, the gradual change in

refractive index at colloidal interfaces, as opposed to the step change at droplet interfaces in

emulsions, as well as the different pair-interaction potential profiles between colloids, might

impose a higher degree of complexity in the interpretation. This complexity is a compelling

area for further exploration.

Another area of future research could be the development of more sophisticated opto-

mechanical models and simulations that capture the complexity of dense colloidal systems

more accurately. This may include the use of three-dimensional models, the incorpora-

tion of different interaction potentials, and the consideration of additional factors such as

collisions between colloids, thermal and vibrational fluctuations, and inhomogeneity in mi-

croscale structures. In addition to translational Brownian dynamics, one can also consider

rotational Brownian dynamics for highly viscous droplets and even solid particles in the

three-dimensional models. By refining these models, a deeper understanding of the under-

lying mechanisms governing the properties of dense colloidal emulsions can be achieved. In

addition, the exploration of novel molecular detection techniques for passive microrheology

holds promise for advancing the field. Developing and validating new methods that comple-

ment current techniques, such as diffusing wave spectroscopy, may allow for a more nuanced

understanding of the rheological properties of emulsions and other colloidal systems.

In conclusion, this dissertation has made significant advances in the understanding of

dense colloidal emulsions; yet there remains ample opportunity for future research to fur-

ther explore and expand upon the findings presented here. As the field continues to evolve,
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the knowledge gained from these investigations will contribute to the development of novel

materials and technologies, ultimately benefiting a wide range of industries and applications.
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101. Szamel, G. and Löwen, H. “Mode-coupling theory of the glass transition in colloidal
systems.” Phys. Rev. A, 44(12):8215–8219, 1991.

102. Binder, K., Virnau, P., and Statt, A. “Perspective: The Asakura Oosawa model:
A colloid prototype for bulk and interfacial phase behavior.” J. Chem. Phys.,
141(14):140901, 2014.

103. Zaccarelli, E., Foffi, G., Dawson, K. A., Buldyrev, S. V., Sciortino, F., and Tartaglia, P.
“Static and dynamical correlation functions behaviour in attractive colloidal systems
from theory and simulation.” J. Phys. Condens. Matter, 15(1):S367–S374, 2002.

104. Poon, W. C. K., Selfe, J. S., Robertson, M. B., Ilett, S. M., Pirie, A. D., and Pusey,
P. N. “An experimental study of a model colloid-polymer mixture.” J. Phys., II,
3(7):1075–1086, 1993.

105. Eckert, T. and Bartsch, E. “Re-entrant glass transition in a colloid-polymer mixture
with depletion attractions.” Phys. Rev. Lett., 89(12):125701, 2002.

106. Dinsmore, A. D., Weeks, E. R., Prasad, V., Levitt, A. C., and Weitz, D. A. “Three-
dimensional confocal microscopy of colloids.” Applied Optics, 40(24):4152–4159, 2001.

107. Jorjadze, I., Pontani, L.-L., Newhall, K. A., and Brujić, J. “Attractive emulsion
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