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THE STABILITY OF RIBONUCLEIC ACID IN SOLUTION:

MODEL CALCULATIONS
MARK D. LEVINE
ABSTRACT

Model calculations on oligoribonucleic acids were

performed in order to gain a quantitative undérstanding of

- factors which contribute to the stability of double strénded

RNA molecules in solution. The calculatiohs.wére based on
information obtained from melting curves of double stranded
oligomers. The work evaluated the enthalpies and entropies
of double stranded stacking interactions and of ioop forma-
ﬁion. Results of the analysis were used to develop é method-
ology for predicting the secondary structure of RNA molecules
consisting of as many as 120 nucleic acid bases;

Chapter I summariies the thermodynamic information pre-
viously obtained by workers who investigated.RNA double strand
formetion. The chapter also discusses the relevance of the
presenﬁ work to an understanding of the biologiCal'function of

RNA molecules.

Chapter II analyzeé the melting behavior of molecules of

" the form ﬁngh, where n = L4, 5, 6, and 7. The analysis leads to
nn -

the conclusion that it is necessary to include the frée,energy
of the interaction between the ends of the RNA and the solvent
in order to achieve satisfactory agreement bet#een theory and

experiment.



Chapter III provides an analysis of the following RNA

molecules:

ﬁ‘nggjtin (n=2a39)4)3 {}nggin (n=2.s3sh)’
n n n n

A CU AG. AG. AGC
n (n=2,3,4), T4 2, "L73, 4
Uﬁqf\ U:‘hc2 U,C3’ U6

n :

The basic conclusions of the chapter are: (1) end effects

must be included in order to achieve agreement between exper-

imental and theoretical melting curves; (2) the magnitude of

the end effect free energy is comparable for all of the RNA

molecules studied; (3) sequence dependence of double stranded

stacking interactions is marked if G-C base pairs are pfesent

.and needs to be included in the calculation if the melting

behavior of the double stranded RNA‘is to be satisfactorily-

characterized.

>Chapter IV investigates the stability of intramolecular
loop formation for molecules A(C Ug, Where m = h,5,6,g. It is

conclﬁded that loop formation for these molecules involves a

'

significant positive enthalpy change, probably associated with

loop strain.

Chapter V proposes'a methodology for predicting the secondary.
structure of an RNA molecule, based on a knowledge cof its sequence

and the thermodynamié analysis of the preceding chapters. The

ii

methodology is applied to a number of transfer and 55 RNA molecules.
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CHAPTER 1~

INTRODUCTION

It is ﬁell known that the addition of heaﬁ’tb a solution of
double stranded RNA molecules céuses the strands to separate from
one another. Because the single and double strandéd species
differentially absorb ultraviolet light,.it is possible to "observe"
the separation of the gomplementary strands. If a solution of
double stranded RNA molecules in solution in a cuvette is irradiated
with ultraviolet light, preferably at thé absorption maximum of |
' approximately 260 nm, and the temperature ié gfadually increased
until and after the strands separgté, the resulting information,

'gbsorptiop versus temperature, is»knowﬁ as a melting curve. Itv

is the task‘of this work to unravel the weéith_of iﬁformation
contained in the.melting curves of a variety of small RKA molecules‘
and'théréby petter understand the factors responsible for the
stability of RNA double stranded helices in solﬁrion.

In the course of our investigation, we will bé led from a
traditional treatmeﬁt of the melting phenomena tc a somewhat differ-
ent Qersion of the theory; we will éonsider small double stranded
RNA moiecules as well as strands which fold back on themselves to
form looped structures. We will be led to attempt a prediction»of
stabilities. of RNA molecules not yet studied or evgh synthesized
ahd té the determiqation of possible secondary structures of large

and complicated RNA molecules.



A. Thermodynamics of RNA

Before delving into the many details of RNA melting curves,
we note what is and is not known about RNA in solution which is
reiévant to understanding the melting and Stabiiity of the mole-
cﬁié; The following provides a summary of this information.

1. AH° and AS® of Base Pair Formation.

Since lone base pairs are not stable in water or salt
soiution, our knowledge of the enthalpy and'entropy of basevpairs
defives from double heliées combosed of several 6fimany base pairs.
In the formation of a dcuble helix, all base pairS‘éx¢épt the
first add to a preexisting helix. To.the extent that the double

helix is stabilized by interactions between adjacent base pairs

stacked on top of each other (and known as doublé stranded stacking -

interactiohs), the free energy of the first base pgir is different
from that of the other base pairs. Because of this, the entropy
and enthalpy corresponding to the addition of a base pair to a
double helix are the quantities of greatest interést to us.
Determination of AH®° and AS® for a variety of RNA mole-
cules of differing séqueﬁce can give some insight into the forces
which stabilize the double strand. At one time, many workers
believed'ﬁhat the stability of base pairs came from'the hydrogen
bonds. It was afgued that the increased stabiliﬁy of a G-C
base pair over an A-U base pair was due to the additional hydrogen
bond of the G-C pair. More recently it has been suggested that,
while the hydrogen bonding is responsible for the specificity of

base pairing, the stability of the structure comes primarily from -




the double stranded stacking interactions. Several arguments
supporting the latter hypothesis have been advanced: the energy
decrease associated with the hydrogen bond between'paired nucleic
acid bases is small, since unpaired bases may also form hydrogen
bonds with wafer (and thus the fOrmatioh of base pairs represents
~the exchange of one set of hydrogen bonds for énbther); quantum
mechanical calculations indicate that the intefaction of the =«
electron systems of neighboring base pairs is favOrable;g- the
stability 6f helical stacks of nucleic acid bases in single
stranded RNA and DNA molecules suggests that the same forces
stabilize the double helix.

These arguments notwithstanding, expefimental evidence
which supports one of the two alternative COncepts.is Spérse. The
degree of sequence dependence of the thermodynamic functions which
we évaluate will help to resolve the matter. If, for example, the

stability of a G-C base pair in thebsequence ggﬁgﬁ is éubstantially

different from that for such a pair in thevseQUence gﬁggﬁ, then it
is a logical conclusion that the stacking intefacpions are importéntv
'determinanté of the stability of the base pair. If, on the other
hand, the:enthalpy and entropy of a base pair are generally sequehce
invariant, ﬁhen this lends support to the notion that the hydrogeﬁ
bond formation is the major stabilizing factor in fhe RNA double
strand.

The thermodynamics of base pair formation in some nucleic

acid polymers has been studied directly through use of micro-

calorimetry. For the reaction polyA:polyU -+ polyA-+ polyU, Krakauer



and Sturtevant measure AH®° = -7.L4 kcal/mole of base pairs in 0.02 M
+ .
Na (melting temperature = 45°C) and AH® = -8.2 kcal/mole in 0.1 M

>

Na© (Tm = 58°C).” AS° for an A-U base pair is 23.2 entropy units
and 24.8 entropy units respectively. Neumenn and Ackermann obtain‘
values of AH® = ~9.3 * 0.5 kcal/mole andA S° = 25.2 + 1.5 entropy
units.for this reaction extrapolated to a high.melting temperature
(and high salt concentration) for which polyAbéxhibits no.single
vstranded stacking.6 The uniform change of AH® Vith increasing
salt may be due to one or both of the factors: (1) the stébiliza-
tion of the polyelectrolyte backbone of double strénded RNA by
counterions and (2) the increase of the temperaturé at which AH°
is measured. (At higher temperatures, the single strand is les§
stacked and AH®, which measures the enthalpy difference betﬁeen the
singlevandvdouble strand, would be expected to increasevdxh tempera-—
'ture.) The relative contribution of the twb factors to the measured
increase in AH® with increasing salt conceﬂtration is not known. To
the éxtéﬁt that the conformation of polyA:polyU is similar to that
of the 61igomers herein studied, the values of-these thermodynamic
parameters are transferable. It will be of interéét to note if
this is the case.

No calorimetric measurements have béen performed on RNA_
polymers containing G-C base pairs. Kallenbach has ﬁoted that the
mélting'temperature of RNA polymers increases regtiariy with
increasing G-C content.7 This observation will prove useful in our
.analysis., Klump and Ackermann have measured thé heat capacity as

a function of temperature for a series of DNA moleCules.8 Their
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results suggest that the magnitude of the enthélpy,per base pair
increases from 7.7 to 8.5 kcal in going from 31% G-C to 72% G-C
base pairs. The melting temperatures for RNA éré ﬁuch more
sensitive to the fraction of G-C base pairs thaﬁ for DNA, Suggest-
ing that G-C base pairs may have a greater effect on AH® for RNA
than for DNA. In short, while some direct thermodynamic measure-
ments have been made on RNA polymers, very littie is known about
the specific interactions which stabilize the double helix.

2. Initiation.

The formation of the first base pair in'é double helix,
which is.called the initiation process, is shoﬁﬁ schematically in
the first row of Figure 2-1. Initiation involves the collision of
complementary mucleic acid strands in such an Qrientation_that fhe
préximity of the strands is meintained long engugh‘to allow base
~pairs to form. The initial base pair formed cénnof participate
in a double stranded stacking interaction, since there is no base
pair adjacent to it. Therefore, the initiation‘step is assigned
an equilibrium constaﬂt, Kk, different from the other equilibrium
constants for base pair formation.

Little direct information about k is known. Studiés on
polynucleotide systems suffer from the limitation that initiation
is but one of many steps involved in the formatié#-of the double
strand.> As a result, estimates of ¥ for DNA (genérally betwéén

9,10

10™2 and 10-% liter/mole) are not very reliable. The few

estimates of k for oligoribonucleotide systems are within this
11-15 . , o
range.- Because the magnitude of k depends very much on the

model used in the analysis and on the choice of AH® for the addition

v



of a base pair to helix, it is not poséible to determine its
absolute magnitude very accurately.

Nevertheless, severa; important questions about x can be
asked. It is of interest to know if k varies with temperature; i.e.,
if there is an enthalpy associated with thé initiation process. The
answer to this question is relevant if one wishes to predict
accurately the behavior of RNA molecules at very high temperatures.
Does initiation occur prefefentially at an A-U or G-C base pair?
Although the answer to this question is of intérest_by itself, it
relates alsp to the stability of RNA molecules; If initiation at
a G-C base pair is, let us say, 2 kcél/mole more:stable than initia-
tion at an A-U pair, then this is a significant factor in the
stability of double helices with one or ﬁore G—C bdse,pairs.

3. Loops |

When.an RNA molecule forms intramolecular:base pairé,.a
hairpin loop is generated. Mismatching of base paité within a
double stfanded region results in interior loops. A‘bulge occurs
when one strand is looped out within a double helical region of the
nucleic acid. These three fypes of RNA loops are depicted in ‘
Figure 1-1.

A gquantitative understanding of the influence of hairpin
loops on RNA stability began with the work of Jaéobsen énd Stockmayer,
who estimated the free energy of RNA loops as a function of loop sizé
'using a éimple hydrodynamic model of the molecule. vTheir theory
- related the free energy of loop closure to the probability of the
two ends of an unformed loop coming into contactvwith each other.

They predicted a positive'free energy oflloop'CIOSure which increases
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" hairpin ~interior bulge
loop loop

Figure 1-1

with increasing loop size.

| Uhlenbeck et al., have studied A.C U. loop molecules with
L, 5, 6, and 8 C residues in the loop and 6 A-U base pairs in the
stem region.17 They calculate the free energy of loop formation.to
be between 6.3 and T.5 kcal/mole for these moleéuleé at 25°C. Their
analysis suggests that a positive enthalpy of gréétér than 20_kcal/
mole is associated with loop formation._ Gralla and Crothers have
studied AhGCmUh loop molecules with 3, 4, and 5 é residues in thé
loop and 4 A-U base pairs and one G-C base pair iﬁ_the stem regioﬁ.l8
 They Calcuiate a free energy of greatef than 8.hvk§al/mdle for
the loop with 3 C residues and between 4 and 6_kcql/mole for the
two remaining loops. They assume a zero gnthalpylfor loop formation.

" De Lisi and Crothers have done calculations on bulges

and interior ioops.lg Gralla and Crothers have melted A)GC U)

molecules (m = 1-4) under conditions in which interior loops are



formed.20 The analysis from both theory and experimenf indicates
that interior loops are more stable than hairpin loops by approxi-
mately 3 to 4 kcal/mole at 25°C. Bulge loops are thought aléo to
be more stable than hairpin loops. The estiméteé,én_stabilities
of interipgtand bulge loops is summﬁrized by Tinoco g&_g;,el
v;ihé'major_weakness of the»espimates of loop stébilities
lies in phe lack ofisequencé dependencé of'thé loop free ;nergies
~and the paucity of experimental data which haspbeen'analyzed,
especially for interior loops and bulge iobps.:’in this work, we
do not generaﬁe significant new information abopt}the stability
of lqops;'rather, we use the information already knéwn to learn

‘more about RNA secondary structure.

~ B. Applicability of the Helix-Coil Theory to Thermodynamic

Analysis of RNA Melting.

1. Helix-Coil Theory Applied to Oligpﬁucleotides

Helix-coil theory has provided an understanding of the
thermal transitions of polypeptides, proteins, RNA, and DNA.22’23
The theory has also seen limited application in the case of small

nucleic acids. Published studies include the melting of acid An,ll

A +U ,lh AU ,12 and A _CGU .2h In these studies, the authors
n n nn n n

have generally assumed that the helix—coi; theorylused for polymers

is appropriate for oligomers as well. Applequist.and Damle have
15

done exactly this. Porschkelh and Appleby and Kallenbach have
added a stacking term to the theory. Martin et g;.lz have used

an even simpler version of the theory, in which they approximate

- the multiple equilibria.(shown in Figure 2-1) by just one equilibrium.




In order to answer the questions posed in sections A-1
and A-2 of this chapter, we need a theory which is both internally
consistent and able to reproduce experimental findings. We will
be led to conclude that the helix-coil theory, in its present form,
is not‘entirely satisfaétory in its application tO‘oligomers.

It will prove fruitful to investigate several model calculations -
in order ﬁo arrive -at & model which is appropriate for oligonuéleo-
tide systems. We will conclude that end effects, which may be
neglected for polymers, have a significant influence on the melting

behavior of oligomers. We will assess these effects quantitafivély.

2. Prediction of Secondary Structure

An extremely interesting application of_ﬁhe thermodynamics
of RNA is the prediction of RNA secondary structuré.+ This is of
interest primarily because the function of RNA ih biological.systems
is likely to depend on the secondary structure of the molecule.
Although we limit our application to transfer RNA and 5S ribosomal
RNA, an understanding of sedondary structure of other RNA molecules
would undoubtably shed 1light on their biological function. We
illusfrate'with a few examples. |

a. 1RNA
The relation between structure and function of trans-
fer RNA is an example of the vgried way in which RNA molecules can

participate in highly specific interactions. The séquence of about

fPrimary structure is the sequence of nucleic acid bases in the
RNA strand. Secondary structure is the arrangement of base pairs
in the nucleic acid molecule. Tertiary structure is the three
dimensional spatial orientation of double stranded and loop regions
in the molecule. '
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80 bases in tRNA contain sufficient information fo allow the follow-
ing processes, all of which involve a high degreévof specificity:
(1) recognition of the codon in messenger RNA and.Binding to if; |
(2) interégtion with a specific activating enzyme so that the

correct one of twenty amino acids is loaded onto the 3' end of the .

molecule; (3) interaction with enzymes which selectively methylate -

or otherwise alter specific bases (presumably so‘that these
chemicaliy altered nucleic acid bases.can perform an as yet unknown
biological funétion); (4) for some tRNA's, ihtéraétion with the .
protein synthesis apparatus so as to suppress mutations. Addition-
ally, tRNA molecules are involved in & series of less specific
_interactions with the ribosome and & number of protein synthesis
factors. |

For tRNA, a reasonable modei of secondary structure has
found general acceptance. This is the cloverleaf model, consisting of !
four stem regions, three of which are terminated by a hairpin loop,
projected out from an interior loop. While_a knoﬁledge of the
secondary structure of tRNA is not sufficient tovilluminate all of
its functions, without this knowledge the problem bf biclogical
function is’almost completely intractable. .

b. Ribosomal RNA

The ribosome, on which protein is synthesized, is
approximately 50% RNA; each fibosomal subunit contains one large
RNA molecule (of 1500 to 3000 bases) and the large subunit contains
e small RNA molecule (5S RNA) of about 120 bases. Ribosomal 5S
RNA's for several organisms_h&ve been sequenced and it is known

that the molecules consist of one strand with both single and double
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stranded regions. Although the function of ribosomal RNA remains
a mystery, the suggestion has been made that unpeired bases in the
molecule might help bind transfer RNA and messenger RNA to the
ribosome during protein syrithesis.25 It would be of great value
to know the secondary structure of ribosomel RNA, in order to
test this and other hypotheses.

¢. Molecular Evolution of RNA

A number of viruses and becteriopheges contain RNA
rather than DNA as the genetic material. Much‘of the RNA functions
as a template for the coat protein and.other profeins. Because of
the redundant nature of the genetic code, the same protein can be
synthesized from RNA templates which differ in composition in.b
approximately every third position. If the soie function of the
RNA in these systems is to serve as a template.for protein synthesis,
it is difficult to upderstandvhew a unique RNA sequence would have
'evolve&, as mutations in many of the bases would not change.the
~ biological function of the molecule. Since a unique sequence fof
these RNA molecules does occur, the only explahetion is that the
nucleic acid bases in the third poeitions have»been selectedvto
serve a necessary function. This function must be determined,
whoily or in part, by the secondary structure of the RNA. -

In the concluding chapter we develop a methodology
for predicting secondary structure from the base. sequence of»an_RNA.
We apply this methodology to the secondary etructure of 55 and

transfer RNA.
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CHAPTER 2
MELTING OF DOUBLE STRANDED

OLIGONUCLEOTIDES WITH ONLY A-U BASE PAIRS

In this chapter we consider the details of the melting of a
series of small double stranded RNA molecules. The molecules of
interest are ribonucleic acid oligomers with only A-U base pairs

present in the double strand: the series Sngn, in which n varies

n'n
AhUAUh. In the next chapter we will
UhAUAh

use the results of this analysis to study the molecdles‘ﬁnan

A GCU _ A G AG A GC t-
> URcoal (n=2,4), Uhce, UhC3’ and UhCG'
“n" T n Lo YL¥3 L

have been synthesized and studied by O. Uhlenbeck, F. Martin, P.

from 4 to 7, and the molecule

(n=2,4)

These molecules

Borer, B. Dengler, and D. Koh under the direction of P. Doty and
I. finoco, Jr.l’2’3 In all cases, the melting curves were measured
in' 1M Na+ at pH 7. Although the use of high salt was dictated

by experimental considerations (in order to incréase the melting
temperature for the shorter oligomers above_O°C); the choicé of 1 M
salt was fortuitous for theoretical reasons as weli. A high salt
concentration.screens the negative charges on the phosphate backbone
from one another. Since such repulsive interactions are long range

(the energy of interaction is proportional to 1l/r), at lower salt

concentrations very complicated non-nearest neighbor effects render

THenceforth the double stranded oligomer is sﬁecified by the
sequence of bases in only one strand in the text. Thus AnUn means

-

the double stranded oligomer gnzn unless otherwise indicated. When
nn _ .
double stranded molecules which are not entirely complementary are

referred to, then both strands are usually specified.
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the understanding of the melting process very difficult.h

We first summarize the equations, based on:the helix=~coil
theory; which have previously been applied to oligqnucleic acids.
An analysis of the previous calculatiohs is pro&ided which indicates
that theory and experiment are not in satisfactofy agreement. |
Calculations on the molecules are presented and tﬁey further
emphasize the inadequacy of the traditional treatment. Severai
possible solutions of the problems are suggestedvand it is

_concluded that one particular model (which accounts for the

effects of the ends of the molecules) is most appropriate for

these oligomere (and, by inference, forrother smali RNA molecules
as well). The necessary changes in the equations are made and
detailed results are presented and discussed. In all cases, the
goai'is to so characterize the interactions in the simple double
stranded RNA molecules that sufficient information is gained from
the calculation to allow the prediction of the stability of more
complex RNA molecules.

A. Standard Statistical Thermodynamic Model with only A-U

Base Pairs

1. Intermediate States are Considered in the Calculation

of Melting Curves

Figure 2.1 is a schematic representation of the intermediate
states which are considered important in determining the thermo-
-dynamics.of the helix coil trensition in the standard statistical
thermodyﬁamic treatment. For simplicity, the moiecule A3U3 is shown;
the effect of G-C base pairs is treated in Chapter.3. The statisti-

cal weight of each of these intermediate states (i.e., the contribu-
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tion of each to the system partition function) as well as the
standard free energy is shown. This characterization of inter-
mediate states is similar to that originally derived for DNA and
protein polymeré.5 vIt was first successfully applied to oligomers
by Applequist and Damle, who also derived several useful equations
which apply to small double stranded nucleic acid mqlecules.

Two different and distinct equilibria control the melting
process, according to Fig. 2.1. These are commonly termed initia-
tion and chain elongation. Initiation, which is the formation of
the first base pair between two previously independent strands,
is specified by the equilibrium constant

-AHE/RT ASE/R
K=e e _ - (2.1)
Similerly, the equilibrium constant for the addition of an A-Uvbase
pair to a\partially formed helical region is given by the expres-
sion

_AHC o
= e AH®/RT eAS /R (2.2)

" In these equations, AH: and AH° refer to the enthalpy for the

formation of the first base pair (initiation) and the enthalpy for

~ the addition of an A-U pair to the helix respectively. ASE and

As® ére the entropies associated with the two brocesses. R is the

gas constant and T is the absolute temperature in'dégrees Kélvin.v
The distinction between initiation and elongation equilibria

is not merely a formal one. Initiation requires that two strands,

which are indepéndent of one another in solution, come together in
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| such a wéy that they remain bound long enough to permit the forma-
tion of additional base pairs. A large number of collisions may
be necessary before this occurs. As such, the entropy for the
initiation process is unfavorable (less than zero).: The enthalpies
for'pﬁe initiation and elongation equilibria are significantly
different as well. -Asvdiscussed in Chapter 1, the elongation of

a helix brought about 5y the formation ofva base pair iﬁvolves the
addition of a double stranded stacking interaction, which stabilizes
the double heiix. In the initiation step, no double stranded
stacking interaction is férmed. As a result, AHz is likely to be
considerably smaller than AH®. Since the iﬁitiation sfep is

- dominated by a negative entropy term, the free energy associated
with initiation is expected to be positive. This explains why RNA
double helices with fewer than four bése peirs have not been

T

detected in aqueous solution: the stabilization associated wiﬁh
the formation of base pairs is not sufficiently large to overcome
- the destabilization of initiation until the number of base pairs
ié four or greater. That k is less than unity is also consistent
ﬁith thé results of kinetic¢ measurements on oligonucleotides witﬁ
only A-U base pairs; analysis of the results ofvthesg experiments
indicate that a complex of at least three base paifs is neéded in
order for the double helix to be stable enoﬁgh to lead to the

fully formed duplex molecule.s

The statistical weights of all intermediate species in
~Fig. 2.1 at all temperatures can be specified if four thermodynamic

functions are known, according to equations 2.1 and 2.2. It is

important to note that a number of approximations ére implicit in
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the use of the statistical weights given in Fig. 2.1 to character-

ize the intermediate states leading to the formation of the double

helical‘oligomer. The most important of these are summarized:

2. The formation of base pairs is regarded as a two-
state process. Partially formed pairs do not
contribute to the partition function. Rotations
and vibrations are ignored.

ii. The enthalpies and entropies, AH® and AS®, related
to the formation of a base pair are additive. That
is to say that only nearest neighbor interactions
contribute to the stabilization of the double stranded
helix.

271. AH° and AS° are.independent of temperature throughout
the transition region. 'The effect of single strahd
stacking, which might give rise to some degree of
temperature dependence pf these thermodynamic functions,
is ignored once its optical contribution is subtracted.
(See later discussion.)

Zv. Internal loops are ignored.

AA AU uu C
mediate species such as are included in Fig. 2.1.
uu U AA ‘

A _
It has been demonstrated that such moieties influence the

For example, no inter-

melting of oligonucleotides negligibly, although they
must be considered in polymer calcﬁiaﬁions.l Staggered
configuratioﬁs, in which the complementary strands ére
out of register, are not included. While these species
mey be present throughouf the melting, their éontribuQ

tion to the overall process can be shown to be vanish=-
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ingly small. This is due to the fact that for the

block oligomers AnUn, staggered spécies can have at
most (2n-4)/2 double stranded stacking interactions
and are thus not very stable for small n.

v. Certain nearest neighbor interactions are not
included in the partition function: end effects are
completely ignored; the AU juncture in the middlé of
the molecule is gi&en the same stafistical weight as
the AA interaction.

Many.of these approximations are critically analyzed in this
chapter (section B2) when alternative models for the melting of
duplex oligonucleotides afe developed.

One further approximation is often made in order to simplify
the pfoblem: AHE is set to zero so that there is no temperature .
dependence of «. The physical reasoning behind this approximation
is that the energies of initiation depends on the formation of
hydrogen bonds between complementary bases. For every hydrogen
bond thus.formed, a hydrogen bond between the biological base and
water is broken. The net effect on the internal energy (and the
enthalpy) of the system should thus be small or negligible. A more
detailed discussion.of this assumption and its probable validity is
fbund in reference.9. BEven if the assumption is slightly in error,

it will introduce a very small error in the final calculation.+

TA rather large error in AHQ can be compensated for in the
calculation by a rather small increase or decrease in the magnitude
of AH®. For example, a change of 0.5 kecal/mole in AH® corresponds
to & change of 3.5 kcal/mole in AHE for AU, and 6.5 kcal/mole in
AHz for A7U7. It is for this reason that the calculation is so
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If information from polymers is used, then only two thermo-
dynamic functions need to be éolved for. AS® is_qbtained from the
fact that for a polymer (in this case an average of polyA:polyU_andl
polyAU :polyAU) tge Gibbs free energy is zero at‘the'midpoint of the

melting. Thus,:
CAG = AH - T: AS = 0 ' (2.3)

where T: is thg midpoint of the polymer melting curve. It is also

true, from thermodynamics, that

o m - _ e
AG = AG° - F==1n (e, /e2)) (2.32)

where cd; = the strand concentration of the double strand and'cSS
"= the strand concentration of the singlé strand in moles/liter.
Since for a high polymer the number of double stranded stacking
interactions, N-1, approachesiinfinity, the concentration term in
equation 2.3a makes a negligible contribution to £hé free energy.
For this réason, the standard free energy is equal to the free
energy near the midpoint of the transition for the polymer and AS
= AS°'€nd AH = AH®. This is a useful relationship. It means that
if the ehthalpyAand T: of the polymer are measured, then the

standard enthalpy and standard entropy may be calculated directly.

We can then write, for the polymer, that

AG = AH® - T AS° = 0
m

insensitive go the magnitude of AHi. "It is not possible, as Eigen
and Porschke® allege, to accurately assess AH® by, means of model
_calculations.on melting curves of a small numﬁér of oligomers.
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and,

AS® = AH°/T: (2.3b)

Now we can apply the polymer data to thé oligomers. - If
thé reasonable assumption is made that the thefmodynamics of base
pair formation within a double stranded polyribonucleic acid is
the same as for base pair formation within an oligoribonucleic acid
molecule, then we can rewrite equation 2.2, using‘the enéropy term

of equation 2.3b:

-AH°/R(1/T - 1/T) o |
s = e (2.4)
" This is the standard relationship for the equilibrium
constant-vhicﬁ corresponds to the addition of a base pair to a
helix. As stated, this equation rests on the assﬁmption of equi-
valence 5etween the energetics of base pairing in the oligomer
and polymer. Experimental measurements of circular dichroism of
thé oligomers under sfudy supports the idea that the geometry of
the base pairs is generally similar for the oligomers and polymers.
The magnitude of AH®, calculated from equation 2.4, is also

consistent with the measured enthalpy of polyA:polyU.lO

2. Experimental Absorption Profiles must be Corrected

for Single Strand Absorption in order to make

Comparisons between Theory and Experiment.

A typical absorption profile for an AnUn oligomer is shown
in Fig. 2.2a. At low temperatures, absorptiontchanges ift;le if at

all with temperature. Throughout the transition from coil to double
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helix, the absorptien increases rapidly. At higher temperatures a
limiting slope greater than zero is attained. This ;imiting slope
must be due to ehanges within the single strand, since the observed
slope is independent of concentration and, for molecules in which
the two strands are different entities so thet the absorption of
the strands can Be measured separately, the obsefved slope is the
sum of the contributions from the individual strands. The process
responsible‘for the high temperature absorption'ehange is termed
upstacking;.it is generally pictured as the Weakening of the inter-
"actions between bases adjacent to one another on the single strand
as the temperature is raised.

Since we are concerned with the helix eoil.transition,.we
ﬁish to exclude the optical contribution of singlelétrand unstacking
to the meiting curve. Martin et al.,2 have donelfhis by using the
relation |

[, (1) - A(T)]
[Am(T) - AlT

(2.5)

where the terms A(t),_Ahi(T), and-Alo ere molervebeofptions as
~defined in Fig. 2.2a. f = the fraction of the RﬂA'double strand

which is fofmed at a given temperature. (More precis ely, as explained
below, f is the average fraction ef base stacking interactions present
at a given temperature.) The meltlng temperature of the oligomer, |
_Tm, is defined as the temperature at whlch f equals 0.5 (i.e., the
midpoint of the melting curve). Note that we have defined the
experimental curve es an absorption profile; the expression melting‘

curve refers to a plot of 1-f vs. temperature.
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3. Relating Theory to Experiment

. In order to relate theory and experiment to one another,
it is neceéssary to use the methods of statistical thermodynamics.
This means‘thatva partition function must be derived. For the
molecules AU, or for any nucleic acid molecules with only A-U’

base pairs, the most general form of the partition function is

Q= 2 . e  (2.6)
. all . :
states

Here, "all states" refers to all intermediate states with i-1=1, 2,
«es0sy N=-1 double stranded stacking interactioné with no interibr.
loops (Figg 2.1); N = the number of base pairévin the fully formed
duplex oligémer. In this simple case (all A-U basé pairs), the

partition function may be written

N ' o
Q= z (N+1-1) ks®™ - (2.6a)

i=1 :
where the sum is over i, the number of base paifs in a given
speéies. .As is evident from Fig. 2.1, there are N+1l-i species with
i base pairs; this accounts for the first term in equation 2;6a.
Although equgtion 2.6a can be_summed analytically, the genefai form
of equations 2.6 and 2.6a are more useful for the majority of
molecules considered in this work, which have G-C base pairs.

In order to felate theory and experiment; it is necessary

to adopt a model for the molecular origin of the”increase of
absorption with the meltihg of the double helix (hyper-

chromicity). The important question is: what is.the correspond-

25
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. ence between the physical measure of the process, absorption, and
the process itself? Two different models have been prdposed: one
attributes the hyperchromicity to the disruptiqn;of baée pairs12
and the other to the breaking of double strandéd stacking inter-

13,1k As shown below, the two models predict different

actions.
relationships between 1-f, as measured experimehtally, and the

progress of the helix coil transition.

Hypothetical Molecule at a Given £ for Two Models
1,0'1r—-—4IIEEEE!E

| - | JICC?: " F .67
0.6 1 ]Il:li | T -

i

l.0

T ‘ r 0.5
~ 0.4 1 DJQ
0.2 Double Stranded .Base Pairing
Stacking Model ' Model
Figure 2-3

Although both of these models represent‘é‘simplification
of the actual causes of hyperchromicity, calculations based on the
double stfanded étécking model are in better agreemeﬁt with experi-
menf than similar caléulations based on a base pairing model.ls
For this reason, f is defined as the average fraction of doublé
stranded stacking interactions present at a given temperature. This .
is equivalent to saying that

f = (fraction of strands which have at least one base

peir, ¢) x (fraction of base stacking interactions/
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species with at least one base pair)
Defined in this way, f has the same meaning as ih eéuation 2.5
(with the added assumption that the breaking of the double
stranded stacking intefactioh is responsible for.the increased

absorption). Mathematically, this may be written

. i-1
Y's z L%-ITI%])TSYQT_ . ‘ (2.7)

all states

]
I}

N

(N-i+1)(i-1)s> "t | |
¢K z L (N—l-)Q . (2-7&)
i=1

Equation 2.7 is thé general form with the sum over all states which .
are shown in Fig. 2.1. Equation 2.7a is specific to the AnUn mole—_:
cules. As 5efore, Q is the partition function, N is the maximum
number of‘base pairs in the fully formed duplex molecule, and the
sum is over all i base pairs‘present in»thé intermediate species.
¢ is the fractioﬁ of strands with at-least one base pair. It can

‘be shown‘that“r

6 = (2ac, xr1-(bae k1) /%) /200 x (2.8)
where, ¢y = total strand concentration in moles/liter
= 1 if the duplex molecule isvcomposed of
complementary but unlike strands
k=2 if it is compbsed of two identical strands,

as in the case of the AnUn duplexes

+‘I‘he derivation of equation 2. 8 is as follows. For the case
in which the two strands are identical, we can wr1te the chemical
equilibrium

A'+vA 2B o (2.9)

whefe, A = the 51ngle stranded oligomer
B all duplex molecules (i.e., all molecules with one
or more base pairs)
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Then, (B) = (species with one base pair) + (species with two
pairs) + ... + (species with N base pairs)

From the definition of the partition function, Q, and the fact that

the free energy of the single strand is defined as zero (from Fig.

2.1), it follows that

N
Q= Y (m-i)s'Th = (B)/(a)2. (2.9a)

Since ‘the two complementary strands are identical,

c, = 2(B) + (A) (2.9v)
¢, is thus constant throughout the reaction. - The quantity of
interest is ¢. From its definition,

¢ = (B)/[(B) + 1/2(a)].
= 2(B)/c, : | (2.9¢c)
.Putting 2.9s into 2.9b, we regeive 12 A
c, = 28) + [(B)/Q] (2.94)

Equation 2.9d can be made into a quadratic in (B), the solution of
which is ' :

| (B) = [(1 +Qe,) - (1 + 8ae,)1/2]/8a
Since ¢ = 2(B)/c,, it then follows that |

[bQe, + 1 - (8Qe, + 1)1/2]
= —F b (2.9e)

$ = : : tht ‘ ’ .

For the case in which the two strands are not identical, the equili-
brium is '

— ' ‘
Al + Ag._B (2.10)

In all the experiments referred to in this work, the two single strands
are present in the same concentrstion. Thus,

(A,) = (AE)'= (a)

The derivation of ¢ proceeds as above, except that
| c, = (B) + (a)
and | ¢ = (B)/[(B) + (A)]

= (B)/ct

Physically, the reason for the redefinitions in the case of nonidentical
strands is that a given strand can combine successfully with only one
half of the strands in solution to yield a fully bonded duplex molecule.
As defined above, ¢, remains constant throughout the reaction. Using
these definitions, "the result of equation 2.8 is obtained.
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‘The final equation for 1-f is then obtained by putting the

expressioh for ¢ into equation 2.7 or 2.Ta:

)1/2] N ' B g

. [2Qe,k + 1 = (bQe,k + 1)1/ ‘z N -i+1)(1-1)s
_ ‘ 2Qctk - (N =-1)Q

i=1

(2.11)
All.terms_in this equation are as previously defined.. Equatioa
2.11 thusvprovides the standard theoretical method of calculating
the melting curve for AnUh molecules which may then be compared
with experimental results plotted accordiﬁg tovequafion 2.5. The
additional assumptions made in order to apply this equation are
1. AH: is zero and thus k does not vary,with.temperature.
i11. The base pairing for the eligomef is similar to that
for the polymer so that AS® can be calculated from
polymer data. |

Thus, in order to solve equation 2.11, two new parameters

must be obtained: AH® and «.

4. The All-or None Model Gives Insight into the Problem.

An approximate treatment in which the’oaly states of the
multiple.equilibria considered are the fully formed'dupiex and the
"single stranded specles is often used. It has been suégested that
this approximation is valid for oligomers with pen or fewer base
pairs.2 Later results of this work call into.questiOn its applica-
bility even for very short oligomers. Nonetheless, the theory has
the advantage that it leads to very simple equatlons wh1ch are

useful in the analysis of the results of the statistical thermodynamic

theories.
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Defining the equilibrium constant

K= (B)/(A)2 = s+ (2.12)

for the reaction
K

A+ AT=B,

the fraction of double stranded stacking interactions is simply

f = =

2(B) 2(B) 5
[27B) + (A c . (2.13)

ct ahd f are as previously defined; (B) is the concentration of
fully formed duplexes rather than the concentration of all inter-
mediate states as before. Equation 2.13 is appropriate if the two

complementary single strands are identical. If the strands are
different (eg., A CU + A GU ), then
n n n n

___(» . |
f = BT+ ()] (2.13a)

where each of the two unlike strands have concentration (A).

Relating f and K (using the identical procedure which led

to equation 2.8), we obtain the result

(2Ke k + 1) = (bKe k + 1)1/2
2Kctk

(2.1h)

f =

Equations 2.8 and 2.14 are identical except for the substitution of
" K for @ in the latter. This is entirely'cofrect: Q répresents a

sum of the statistical weights of all intermediate double stranded
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species whereas K is for only the fully formed duplex. This is, of
course, the difference between the all-or-none theory and the
statistical thermodynamic theory.

The importance of equation 2.1l is that it leads to the
N-1_ _-AHO/RT

following useful relationships. Substituting ks K

[+] . . B
e AS®/R for K in this equation and differentiating with respect to

T yields
. -. | o .
(af/ar)_ = %A-H— (2.15)
. m

(df/dT)m is the slope of the melting curve at the midpoint of the

transition, Tm,'where f = 0.5.

Since, according to equation 2.1&; f is constant if Kct =

KsN-lct is constant, it can be shown that
: Rln(c'/c)
' =
/Ty = /Ty * TR)EE° (2.16)
and

_ o Rlnk
/T = 1/T + T5IVAR0 - - (2.17)

A comélete derivation of these equations is given in the appendix
to reference 6. At this point,vit suffices to note thaﬁ équations
2.15 through 2.17 follow directly from 2.1k. T:_is, as before, the
melting temperature of the infinite polymer with é sequénce similar
or identical to that of the oligomer consideréd. 'Té‘use equation
2.17, Tm must often be estimated since infinite‘polymers of appro-

priate sequences have generally not been synthesized.
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The utility of these equations is that they provide a first
approximation to AH®, AS°, and k. Martin and.Uhlenbeck used these
equations a5 the basis for their analysis of the thermodynamics
of th¢ AnUn oligomers.2 For this work, equations 2.15 and 2.17
illustfate an important principle which is not entirely dependent
on the use of an all-or-none model: namély that two independent
meésures of the enthalpy of the reaction are provided by the melt-
ing data.'.Equatién 2.15 relates AH® to the slope of the melting
curve; equation 2.16, to the concentration dependence of a series
of melting curves. Both of these properties are obtained at the
midpoint of the melting curve, both for reasons of mathematical
simplicity and because experimental accuracy is greater at the mid-
éoint of the curve.

.That these two properties are measures of AH°, regardless
of the model which is used to analyze the resuits, is physically
reasonable. The.greater the magnitude of the total enthalpy for-the
reaction,* the greater is the variation of the equilibrium cénstant

~(N-1)AH®
e (N l)-H /RT) with temperature and the steeper the melting curve.

(=
The physical basis for equation 2.16 is less obvious. The equation
étates that the greater the total enthalpy,T thé ;ess the melting
temperature changes with_concentration. This Cah bé.best understood
by noting the effect of changing the concentration of single strands on

the melting temperature of the molecule. At f=0.5, the term |<ctstl

The expression total enthalpy refers to the enthalpy for the
formation of all base pairs, (N-1)AH®°. To avoid the confusion which
often occurs in thermodynamic discussions, the expression "increase-
in enthalpy" or "the greater the magnitude of the enthalpy"
means that if AH® is negative it will become more negative, if
positive, then more positive. The expressions refer to an increase
in the absolute value of the enthalpy. '
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must be constant. (It is either one or two, depeﬁding on whether or
not the two complementary strands are identical, according to equa-
tion 2.14.) This means that, as c, is increaéed, s ﬁﬁst decrease in
order to maintain f constant. The effect is to shift the equilibrium

N—lme—(N—l)AH°/RT

to higher temperature, since s and AH® is less than

zero. If the total enthalpy, (N-1)AH® is small, then a large change in

temperature is needed to maintsin the constancy of KC, S (i.e.,

—(N—l)AH°/RTeAS°/R).

of k¢, e If the total enthalpy is large, then

t
a smali change in T will accomplish the same end, In the extreme
case of the‘polymer, where the total enthalpy change for the
reaction is enormous (approaches infinity), the melting cufve‘is
essentially independent of concentration. The stétisticai thermo~
dynamic modél does not require that KC£SN—1 be constant at £ = 0.5,
but the constraints (which may be understood by comparing equations
2.1k 'and 2.11) are similar. It is tﬁus eviaent that the concentra-
tion dependence of melting, as wéll'as the slope of the melting

curve, is a measure of the énthalpy of the reaction..

5. The Results of the Statistical Thermodynamic Model

are not Consistent: A New Model is Needed.

Equations 2.11 and 2.4 have been used_to'calculate the
melting curves for the series of molecules AnUﬁ, n = h-?, The
computer program, listed in Appendix I, was written.for and run on
a model 6600 Control Data Corporation computer. Both AH® and k
were vafied so as to achieve the best possible agreement with
experimént. The procedure was to choose AH° and thén vary k until
the,deviafién between ékperimental and predictéd ﬁelting_temperatures
for all four molecules at three different concen£rations was minimized.
AH® was increased by increments of 0.5 kcal/mole between 5 and 10

kcal/mole.
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Table 2.1 illustrates that any choice of AH® between -6.5
and -9.0 kcal/mole, with k chosen appropriately, yields agreement
with the melting temperatures to within approximately 1°C. Two
conclusions can be drawn: (i)lthe staﬁdard statistical thermodynamic
theory is in excellent agreement with the experimental'melting
temperatures fdr ﬁhe AnUn molecules, since the variatiqn of predicted
melting tempgratures is almost within experimental errof (wﬁich_is
+0.5°C). The experimental and predicted melting temperatures are
swmarized in Table 2.7. (4Z) It is not possible, by fitting-Tm

data alone, to choose AH® and k unambiguously.

Table 2.1
AcCurécy of Calculated Melting Temperatures

for A U (n = 4-T) at 3 Concentrations

o _
(kcaﬁ?mole) (l/;ole) Standard deviation of Tm
-6.5" -~ 2.8 x 1073 41,20
~7.0 7.8 x 107" ' +0.9°C
-7.5 2.2 x 107% +0.75°C
-8.0 6.0 x 1073 +0.70°C
8.5 1.7 x 1075 | £0.75°C
-9.0 4.8 x 1078 +0.9°C

In o;der to cérry the analysis further, we must use more.
information than the melting temperatures of thékAnUh'oligomers.
Wé have already’notedfthat there_are two independent megSures of the
enthalpy for the reaction: the slope of the melting curve at the

midpoint and the concentration dependence of the melting temperature.
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Both pieces of information are evailable from experiment. Since
the analytical expressions previously derived are appropriate only
for.the all-or-none model, a somewhat more complicated procedure
must be follqwed to obtain the value of the enthalpy from these.
two physical properties within the framework of the statistical
thermodynamic model. The procedure followed.is lisﬁed:
| a. For each of the values of AH® in Table 2.1 (with

k chosen so as to achieve best agreement with the melting temperature,
i.e., using the k's of colum 2, Table 2.1), thebretical melting
curves were calculated at three strand concentrations (1o‘h M, :I;O_‘5
M, and 10_6 M), using equations 2.11 and 2;h. A value of 1-f was
calculated for every degree Centigrade between -20°C and ¥80°C.

| b. The computer program extrapolated the ﬁemperature
at which f = 0.5 from the two temperatures nearest thevﬁidpeint ef
the melting curve. Once Tm was established in this way, a‘second
calculation of the portion of the melting curve abdut‘the_Tm was
performed. 1~f was calculated at five temperature increments of
0.1°C above T and five below Tm} In this way, (df/dT)m was deter-

mined very precisely.

c. Since melting curves were calculated for the
molecﬁles at three concentrations, the concentratien dependence of
Tm was calculated difectiy. To compare theory-and experimenﬁ, the
quantity”(l/Tm-l/Té)/ln(c/c') z A(l/Tm)/Aln(c) wae calculated. In
general, ¢ = 10—5 M and c' = lO"6 M were used for the comparisoh
between theory and experiment.

| d. The results were plotted as in Fig. 2.k: (df/dT)m

and A(l/Tm)/Aln(c) versus AH® (with ¢ implicitly varying with the
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choice of enthalpy). The vertical line in the figure represents

the experimental result for each of the molecules. We have omitted
(df/dT)m for A6U6 since the published value2 is not cpnsistent with
the slopes fof the other AnUn molecules and is not iﬁ agreement with
the few melting.curves of A6U6 which are available.

This calculation, the results of which are summarized in
Table 2.2, bfings out a serious inconsistency in the theory: two
significantly.different enthalpies for the séﬁe procésé (and for
the same base pairing and double stranded stacking interactions)
emerge from theicalculation: -8.0 * 0.2 kcal/mole from the éonceh—
tration dependence of T and -6.7 + 0.3 kcal/mole from the élope
of the‘melting curves.

It is probable tﬁat the enthalpy derived from the concentra-
tion dependence of Tm is the more nearly correct oge;:since it is in’
much better agreement with'calorimetric heasureménts on polyA:polyU
(Chapter 1, seciion Al). But if this vaiue of the enthalpy is
used, then ail predicted melting curves are considerably sharper
ﬁhan experimental ones. We may use as a measure of the breadth
of the transitién the quantity A2/3, defined aé the;téméerature
rénge over which two-thirdé of the melting occurs measured
symmetrically about the Tm. Using AH® = -8.0 kcal/mole, the
predicted breadtﬁs are only 60% of the experimental bfeadths

(Table 2.7).

We are thus presented with two inconsistencies: one between
theory and experiment and the other within the theory itself. This

predicament becomes even more serious when G-C base pairs are
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Table 2.2
Enthalpy of an A-U Base Pair Calculated from the

Standard Statisﬁicgl Thermodynamic Theory for AﬁUn

170 - : o .
Molecule AH” from concentration . AH® from pye slope of
dependence of Tm _ the melting curve
AhUh . =T7.8 kcal/molé base pairs -7.0 kcal/mole base pairs
AU -8.1 -6. |
5Us _ > v 6.7
A6U6 7 . —7-9 | ) -
U -8.1 -6.
A7 T s v5 | 5
Average '-8.0 t 0.2 kcal/mole -6.7 * 0.3 kcal/mole

present, as will be pointed out in the next chapter. It is to the
resolution of this dilemma that we now turn our attention.

B. Modifications of Existing Theories are Considéred.

1. Discussion of Paét Theoretical Work

Before embarking on a systematic study to account for the
inadequacy qf the present theoretical approaéh, it is relevant to
inquire if and how other workers have treated‘the problem. A limited
vaﬁount of theoretical work on oligonucleotide systemsvhas been done;
" The inconsistencies discussed above have been noted by some workers,2
' but a satisfacﬁory solution has not been proposed. |
| a. ‘Acid Oligo Ah

Applequist and Damle6 studied the eqﬁilibria between

single and double stranded oligoribo An at pH L, 0.15 M Na+. They

considered oligomers with eleven or fewer base pairs.viThe theoretical



s
&

o
-
L8
n%
L
o
@n

f

39

approach of section 1 of this chapter is generally similar to
Applequist and Damle's treatment of the pfoblem.',They also included
staggered configurations in the partition fﬁnﬁtion, since these |
species are important for theif system. The data were satisfactorily
fit with AH® = -8.0 kcal/mole and ¢ = 2.2 t 10‘3'liter/mole.+

The criticism can be made that the thermodynamic
constants derived from the calculations were not entirely constant
from one oligomer to the next. The enthalpy va?ied from -7.0 kcal/

mole for A8 to -8.8 kcal/mole for A, ., with a standard deviation

10
of +0.95 kcal/mole. Nonetheless, the fit of the melting was
generally fery good. Specifically, ﬁhe theorefical and experimental
melting curves are in good agreement with respect to the melting
temperatures, the slope of the melting curves at the midpoint,
and the breadths of the melting curves. 1In lighﬁ of our experience
with the AnUn system, this good agreement is at first glance rather
surprising. |

Two comments are relevant: first, it is entirely
possible that the same inconsistency noted above for AnUn applies
to acid oligo An as well, but that Applequist and Damle were not able
to observe it. Their data were limited to one concentration for

each oligomer. As such, they fit the calculations only to the shape

of the melting curves. Thus, if the concentration dependence gives

'For our work, we have defined the initiation parameter as «, which
is the statistical weight of the duplex with one base pair. Some
workers have defined the statistical weight of the -duplex with one
base pair as Bs, where B is the initiation parameter. Thus, our
should generally be compared with others' 8s. (s is generally
between 2 and 5 at the T of the oligomers studied.)
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a different AH®°, they had no way of knoﬁing this.  Second, their
system is sufficiently different from the AnUn system to dictate
caution in meking a comparison between the two. . The double strandea
An:An occhrs only at acid pH, in which the adenylicigcid residue is
protonated. As a result, a favorable interaction béfween the
negatively charged backbone and the adenylic acid residue occurs.
Consequéntl&, the doubie stranded form is lessvfavored at higher
salt conceritration; this is the opposite of the salt effect for
. standard Watson-Crick base pairs in neutral solution. It is there-
fore possible that the physical caﬁse of thé*inconsistency in the
theory is not operative‘for acid oiigo.An,

It would be of interest to study the concentration
dependence.of the acid olige An system in order to resolvé this |

question. '

b. A +U
n n

PSrschke and Eigens and PCSrschke16 have done extensive
studies on the An + Un system, where n ranged between 8 and 18.
Except for the fact that their study was limited to very low salt
concentrations (0.05 M) to reduce triple strand'formaﬁion, this
system should be very similar to AnUn. Their theoretical approach
differs froﬁ that outlined in section 1 in two essenfial ways: they
have attempted to account for the effect of eleétro%tatic'inter-
actions, very prominent at low salt, by adding the ferm ’
[(N.l)RT(Cl - C, log u)/N to the free energy, and they have included
the effect of single strand stacking with the‘expression RT 1n(1 +
-AG;/RT

e ), also added to the free energy. (u_is the ionic strength

of the solution, Cl and 02 are constants, and AG; is the single
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strand stacking free energy.) Agreement betweeﬁ experiment and
theory is remarkably good: the calculated melting curves reproduce
the experimental ones almost exactly throughout the transition. |
Also, they have considered the equilibrium.at a fange of different
concentrétions. It might appear that the stacking correction, és
they have applied i;, provides a solution to the'problem.

However, a serious obJjection must:be raised to their
approach. Agreement at the lower temperature range_of the melting
curve is obtained by explicitly fitting each predicted curve to
experiment in this region. Of the nine parameters used to fit the
melting curves, six were estimated from polymer measureﬁents. The
‘remaining three — % hyperchromicity, k, and AHz.(the_enthalpy of
initiation) — were chosen separately for each molecule at each
concentration so that coincidence between theory and experiment was

x

obtained.

Table 2.3 lists the‘choices of the parametefs‘AHE and
K in columns 3 and L. AHZ varies almost randomly between 1.5 and
17.0 kcal/mole. For example, for N = 8, a change of concentration
‘ from 1.2 x_10'3 Mto 0.9 x 1073 M results in a change of almost 8
kcal/moie.in the value of this parameter. Similarly, é small change
in concentration necessitates varying K'by a féctor of 2 to 10 in
order to fit the melting curves. There is no physical justification
for k or AHZ to vary so markedly and in such a nonregular manner from
one oligomer to the next in the series or from one concentration to
‘the next. |

We conclude that, while this approach is useful ih

fitting experimental data, the numbers assigned to the thermodynamic



Table 2.3

Parameters Used by P8rschke to Fit An + Un Melﬁing Curves16

. ‘ Concentration AHg K

Chain length (moles/1) (kcal/mole) (1/mole)
8 2.3 x 10-3 3.5 6.2 x 107"
1.2 x 10-3 13.8 65 x 1074
0.9 x 1673 6.0 5.9 x 10~%
9 1.3 x 10-3 9 11 x 107"
0.9 x 1073 2.4 3.5 x 10=%
10 .0 x 10-3 5.0 111 x 10~
.5 x 10~3 L.6 6.3 x 1074
11 0.8 x 1073 7.8 .10 x 1lo-%
0.4 x 10-3 17.1 47 x 107
1k 0.9 x 10-3 9.9 11 x 107"
A4ox 1073 12.0 13 x 107*
.2 x 10™3 1.5 3.6 x 10™%
18 0.9 x 1073 10.0 5.7 x 10™%
' .1 x 103 6.4 5.1 x 10~

b2
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parameters do not correspond well to fundamental‘physical processes.
- It is likely that the An + Un system is not easily amenable to
theoreticgl analysis in part because of the compiex electrostatic
interactions which are not very well accounted for by the simple

electrost&tic correction term which the authors have used.

c. AnUn: All-or-None Analysis
Martin et al., who first synthesized the AnUn molecules
and performed the melting experiments, analyzed their data in terms
of the all~or-none model (equations 2.15 through 2;17). In Table
2.4, we show the enthalpy of an A-U base pair calculated from the
all-or=-none model from the concentration dependence of Tm and

slope of the melting curve. Comparing Tables 2.2 and é.h, we note

Table 2.4

Enthalpy of an A-U Base Pair Calculated

from the All-or-None Model for AnUn2

Molecule AH® from concentration AH® from the slope
° dependence of Tm - of the melting curve
AU, 7.3 keal/mole 6.6 kcal/mole
A_U_ 8.0 .9 ..
5U5 5.9
A_U, 8.2 : ) 5.
Y7 5 v | 5.5
Average 7.8 + 0.4 kecal/mole 6.0 * 0.6 kcal/mole

that the discrepancy between the enthalpies calculated by the two
methods is even greater for the all-or-none modei than if intermediate

states are included in the calculation. This is not surprising,
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since the inclusion of intermediate states in a calculation should
-tend to broaden the calculated melting curves. This compérison
suggests that partially bonded states Should be inclu&ed in the
:éélculatién but that perhaps the statistical weights which have been

‘assigned are in error.

a. AnUh and Acid Oligo An: Statistical Mechanical

_Sfacking Model

Recently Appleby and Kallenbachl7 préposéd a model for
base pai? formation which involves a statistical mechanical treatment
of the single strand stacking process. The theory assumes that
each base on the single strand may be in one of two~f6rms, stacked
or unstacked, independent of the states of the other bases in the
strand. Aiso, in'the partially formed helices, thosevbases not
involved in base pairs are allowed to be either stackeé or unstacked

on the single strand. The resultant partition funétion for acid

oligo A is of the formf

—iei+ {4
N/2 N/2 s,(N 1-J 1) (1 + 9)2(1 J 2) Gii
: -AG:S/RT
where s and k are as previously defined, p = e ‘ =
—(AH‘S’s - TAsgs)/RT ' - _
e : ; AG:S, AHgs, Asgs are the standard free energy,

enthalpy and entropy‘for the formation of & stacked base from an

unstacked base. G,, is the degeneracy factor appropriate for the

1] v
)2(N—l_)

staggered species of An. The term (1 + p in the denominator

TSee reference 17 for the derivation of this equation. .
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refers to the single strand and implies that its statistical weight
may change with temperature as stacked bases are formed or broken.

2(i+j-2) ., .
(1+§-2) in the numerator counts the

Similarly, the factor (1 + p)
single sﬁranded bases in all paftially formed intermediate states.
A slightly modified paryition function was usgd fof'the AnUn mole-
cules, since Appleby and Kallenbach assumed thatvU#_does not stack
in the singie strand.

Thermodynamic parameters were deriveé‘by fitting
calculated meiting curves with the experiental reéults. The . para-

meters derived from the calculation for AnUn are:

AH® = =7.5 kcal/mole base pair+

'AHZS -3.6 kcal/mole stack

ASZs -10.3 entropy units/mole staékf
K =.7.6 x 1073 liters/mole |
The approach of Appleby and Kallenbach may be regarded
as the only one yet proposed which achieves a measure of success in-
.resolving the inconsistency in phe application of helix-coil théory
to oligonucleotides. We defer discussion of the résults of the
celculation ﬁntil later, so that we may compare thém with those of "

" this work.

2. Other Simple Models are Considered .

In order to advance the theory, we consider in depth the

4s

"AH® here is not exactly the same as the enthalpy which we have

~defined as the addition of a double stranded stacking interaction to
a duplex. The authors term it the "apparent enthalpy" of this
reaction;. because of the single stranded stacking interaction which
is included in the term, it is temperature dependent. The value
quoted is at 95°C. AS° can be calculated from this and it will vary
with temperature.
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approximations inhergnt in the earlier application 6f'the helix-
coil theory (Chapter 2, sections Al and A3). These approximations
may beiciéssified into those for which sufficient information is
not available to dispute them (Z, 27, and vi7), those which have
been proved valid (Zv), and the remaining ones which can be analyzed
by direct calculation (ZiZ, v, and vi). |
Approximations i and 7, which treat the formation of base
pairs as a two state process and ignore non—neareét neighbor inter-
aétions, both serve to savé the theory from becoming hopelessly
complex. -Their removal would involvé the addition of a large
number of parameters for which experimental information is completely
7 absent. Their basic justification is that they have been successful
in explaining the melting of polymers. |
Approximations viZ, which assumes that the entropy of base
pair formation for the oligomer is the séme as for the. polymer, is
.a useful simplification which does not profoundly influence the
‘.resglts of the calculation. The reason for this is that the entropy
term does not introduce a factor in the partition:fﬁnction which is
dependent on temperature. As such, a slight error in this approxima-

tion would in no way account for the discrepancy between theory and

experiment.

Approximation {v, which ignores internal loops, is easily
tested on the basis of a reasonable loop weighting function; for

short oligomers, it is fully justified.

The remaining approximations are of great interest and

considered in some detail.
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a. Variation of AH® and AS° with Temperature: A Test

of Approximation 717

If MH® is dependent on temperature'during the melting
process, the physical basis is most likely to cﬁange in conforma-~
tion of the single.strand with temperature. The calorimetric and
optical meqsurem;nts on polyA:polyU indicate that the double stranded
- moiety is little affected by temperature'after it has been fully
formed.18 » The simplest assumption about the single strand is
that its enﬁhalpy changes linearly with temperafure. This is shown
for a giveﬁ choice of the heat capacity in Fig. 2.5a. Note that the
enthalpy of the single strand is negative at low temperatures if one.
sets the zero enthalpy at higher temperatures. Tbisvis consistent
with the ﬁotion'that the stacking of the single,strahd prodgces a
stabilizing effect. |

We can then write, following Fig. 2.5,

ARC(T) = HY_(T) - HZ (T)

where,
HO (T) = 5o (T ) + c%5(1-7 ) = wO_
ds ds o P 0 ds
10 — o SS(m_
HSS(T) HSS(TO) + cp (T-T )
The heat capacity for the reaction,.ACp, equals
Cds _ Css

D p , -the heat capacity of the double strand minus that of the
single strand. Since the heat capacity of_the double strand, is

~‘taken to be zero, it follows that

pHO(T) = aHO(T ) + s, (1) (2.19)
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TO is an arbitrarily chosen temperature and the
subscripts ss and gg:refer to the single strand and double strand
respectively. Measurements of the heat capacity,'ACp, for polyA:
polyU have been made, but their accuracy is not good. Krakauer
and Sﬁurtevantlo report ACp = -8 + 6 cal/degree mole in 0.018 M
Na' at LLOC, -17 * 33 cal/deg. mole in 0.043 M Na' et 51°C, and
=25 + 26 éal/deg. mole in 0.1 M Na'@ at 58°C; In K+ at comparable
concentrations, ACp véfies between +84 and -66 cal/deg. mole.

The simple assumptions about the heat capgcity of the
single and double strands fully determine the behavior of the entropy
of these moieties with temperature. Since, for an isolated system

at constant pressure,

AS°® jAcp/T dr

-

therefore,

AS°(T) ACp inT + 2

We can solve for Z, the constant of integration, from the fact that
in the limit of the polymer melting temperature,'T;,'the enthalpy

and entropy are related:

. AH°(T;) .
ASO(T ) = ———— = AC 1nT + 2
m T°° P m .
m
Therefore,
AHO(T )
Z = - AC_ 1nT
T p
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Plugging the expression for Z into the original equation for aS°(T),

we receive

o aHe(T) |
88°(T) = AC_ 1n(T/T)) + — (2.20)

T
m

We have plotted in Fig. 2.5b the change in entropy with
temperature according to equation 2.20, to show the qu&litative
behavigr of AS°(T). Values for AH°(Tm) and'ACb were arbitrarily
chosen for illustrative purposes: AHd(Tm) = -8.8‘kcal/mole and ACP
= ~50 cal/deg. mole; the assumption was explicitiy'madé that the
change in entropy with temperature was due solei& to changes within
the single strand.

In order to test the usefulness of the assumption of
a linear heat capacity for rationalizing the expérimental results
with'theory for the melting curves, the followiné éalculation was
performed. “AH°(T) and AS®(T), from equations 2.19 and 2.20, were
used in place of AH® and AS° in equation 2.2 for s. fTo was-set to
25°C. (The reéults depend on the choice ofITO; we have set it near
T of the oligomers.) Values of AH°(TO) equal ﬁo -7, =-7.5, and -8
kcal/mole were tried. AC? was taken.to be =10, =20, -50, and =100
éal/deg; mole. (All except the laét_choice are well within the
experimental range.) Usiﬂg the methods of section A3, Kk was varied
to achieve fhe best fit for the melting temperatures. After the
appropriate values of kK were chosen, plots of the predicted slopes
of the melting curve, (df/dT)m, and the concentraﬁion dependence of
the T , A(l/Tm)/Aln(c), versus AH°(TO) were m#de;.in'a manner

analogous to that of Fig. 2.4. Selected results aré,shown in Table

50
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2.5. We also include the results of the calculation with ACp = 0.
This is, of course, identical to the earlier calculations in which
AH® and AS® did not vary with temperature.

Table 2.5 makes clear that the choice of a heat capa-
city within éxperimental limits does not affect the calculated
melting cﬁrvés greatly. Agreement between theory and experiment is
worsened if Avaless than zero is chosen: The discrepancy between
the two predicted enthalpies increases from 1.3 kcal/moie for
ACp =0 to i.6 kcal/mole for ACp = =50 cal/deg. molg. Furthermore,
agreement between calculéted and experimental melfing temperatures
becomes significantly worse as ACp becomes'increﬁsingly negatiye,

as measured by the standard deviation between predicted and actual

’melting temperatures: o, = iO.TbC for ACp = 0 and *2.3°C for

ACp = =50 cal/deg..mole.

.Although ACp greater than zero improyesiagreement
between theory énd experiment very slightly, no physical underétand-
ing of stacking is consistent with such a choice. Wé conclude there=-
fore that a'simple'variation of the thermodynamic functions with
temperature throughout the melting trénsition does not provide an
exblanation'of the inadequacy of the helix-coil theory when ;pplied
to oligonﬁcleotides. '

'b. Letting AHz # 0 Makes Little Difference: A Test

of Approximation vi

We have hitherto taken AHE equal zero on the assumption
that the first base pair, which is devoid of a double strand stack-
ing interaction, has a very small enthalpy associated with it.

Although this assumption is reasonable,9 we have performed calcula=-
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Results of Calculation Which Allows the

Enthalpy to Change with Temperature

' AH°(TO) from concentration dependence of T (in kcal/mole)

Molecule —
ACp =0 o = =30 o = -50 cal/deg. mole
AU, ~7.8 -8.35 -8;95
A5U5 ' -8.15 -8.35 -8.4L5
A6U6 -7.9 "7-7 "7-6'
A7U7 : _-8.15 -7.85 -7.5
Average -8.0 -8.05 -8.15
AH®(T ) from the slope of the melting curve at T (kcal/mole
o : m
Molecule
ACp =0 D = =30 p = =50 cal/deg. mo;e
AhUh -7.0 f7.2 v-7.5
AsUs -6.7 -§.5 -6.5
A6U6 - - —‘.'
ATU7 —6.5 -6.0 -5.6
Average  -6.7 -6.6 -6.5"
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tions with AHZ varying between +5 and -5 kcal/mole to show the effect

~

of such a variation.

Choosing AHZ = -5 kcal/mole, forvexample, we calculate
that for A5U5 the concentration dependence yields AH® =.-f;6 kcal/
mole A-U stacking interaction rather than -8.15 kcal/mole when AHZ =
0. That is to say, the total enthalpy for the entire reaction from
the concentration dependence of Tm remains roughly constant. Because
AH® is decreased, intermediate states contribute slightly more to
the partitibn functioﬁ, the theoreﬁical melting cufve is brpadened

somewhat, and agreement between theory and experiment is, in prin-

ciple, improved. In practice, the change in (df/d‘I‘)m is so small

.that, after the enthalpy of initiation is subtracted, agreement of

the enthalpies derived from (df/dT)m and the concentration dependence

of Tm‘is not observably improved.

3. A Model with Partially Frayed Ends is Proposed

‘The finel assumption of the theory yet to be tested is that the
equilibrium constant for the addition of a base pair to a heli# is
independent‘of the position of the pair formed._ The question of the
A-U juncture in the center of the AnUn moleculesAis.similar_to
discussion of AHZ above: the effect is small compared with the total
enthalpy and entropy of the molecule and cannofiﬁe detected by direct.
calculation. | :

End effects are a very different matter. Althbugh the ends
only account for two of seven to thirteen double stranded stacking
interactions in the A'nUn seriés, their effect on'the shape of the
melting curve éan be significant. At all tempefatufes in the calcula-

tion based on the standard helix-coil theory, the equilibrium is
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dominated by two forms: the fully formed duplex and the single
stranded species. If, in fact, intermediate species are more
important in the process than the theory suggests,’then the
caléulated melting curves would be broadened considerably‘ If
enaieffects are present and significant, they could increase
the contribution of intermediate species to the melting process,
thereby broadening the curve.

That an evaluation of end effects is a logical step for oligomers
is suggested hy cdnsidering the interactions in detail. Ali recent
formulations .of the theoryvhave incorporatea the ideé that the first
base pair (the initiation sﬁep) should be treatéd‘differently frém
the rest since it is devoid of a stacking interaction. In the same
"way, the formation of the end base éair is differeht from the rest
because its final environment is significantiy perturbed relative

to the other base pairs. Consider the equilibria

initial final
state s state
oy = Tl ’
end L\ II
P _lll[ll\ljl

The initial and final states of the base pair which is formed
is circled. In I, the equilibrium constants refer to the ratio:
(final state: base pair having on one side a base pair and on the
other side free or stacked bases)ﬂﬁnitial state: two bases with
one: base pair on one side and free or stacked bases on the other).

The initial and final states are the same for the formation of all



25

base pairs in the helix except the first and end ﬁairs. In II, Send
refers to: (final state: base pair having on oné side a base and on
the other side water)/(initial states: consisting of two bases with

one base pair on one side and water on the other). It is important to
note that even within the framework of the nearest neighbor approxima-
tion, the ends are expected to exhibit a different stability from that
of the rest‘of the molecule. Only if a base pair has the same affinity

for water as for an adjacent single stranded base will send equal s.

a. Methodology and results

It remains to test this model with experiment. We let
—AG°end/RT
s =k s, Where k = e is the equilibrium constant
end end end :
related to the differential stability of the two end base pairs.

(AG:nd is the increment in free energy due to the end effect.) If

kend.< 1, as it must in order that the weighting'df the intermediate
states be increased,.then the end double stranded stacking inter-
action is léss stable than all similar internal stacking interaétions.
This is the expected result, since the interaction of the end base
peir with water molecules shoﬁld be destabilizing.lg» The statistical
weights of the intermediate states shown in Fié. 2.l are no longer
appropriate for this model; . Fig. 2.6 illustratés the new ones.

| The method of calculation is straightforward,.although

somewhat laborious. Equations 2.5 and 2.6 are modified to accomo-

date the end effect:

O
]

: N : '
p i-1 - Sy P Ji-l
Z Kk 4 2 (N+1-i)kk .8 (2.60)
-_l . - I

all states i
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(1-1)xP gL
£7 e 2 F-1)Q (2.78)
all states i
S (M41-1) (1-1)kP s
= ¢k z (N-1)Q (2.7p)
i ,

p = the7nuhber of fully formed ends in the_givenrspecies (0, 1, or
' 2) and all other quantities are defined earlier. "All states" refers
to those states pictured in Fig. 2.6.

The calculation was carried out as follows. For each value

of AH® chosen, both « and ken were allowed to vary simultaneously

d
until the best possible fip between experimental.aﬁd calculated
melting temperatures and slopes of the melting éurves at Tm were
achieved. These two conditions are sufficient;to define unambiguous

values of k and ken . In general, approximately 10 trials were

d
adequate to determiné K and kend for a given calculation.
We obtained, for example, k_ . = 0.142 and k = 1.k2 x 1073

1/mole for AH® = -8 kcal/mole. In this manner we have fit the

slope of the melting curve by vearying the relative fraction of

+The computer program was written for the teletype machine at
the Lawrence Berkeley Laboratory so that the programmer and computer
could "interact." Upon receiving the results of a previous calcula-
tion, the programmer was able to punch innew trial vdlues. In this
way, both k and kend (or any other parameters) could be varied
simultaneously. The program is listed in Appendix I.

Agreement was deemed adequate when [Z(Tm-Tm(expt))]/M T and
[Z((df/dT)m-(df/dT)m(expt))]/M (df/dT)m were less than 0.5%. That

is, approximately equal numbers of the calculated quantities were
above and below the experimental values. M is the number of terms
in the respective sums. The former sum is over all A U molecules
at three cdncentrations and the latter is at only one concentration.
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intermediate forms with unformed ends. We then,ﬁsked the question:

given the value of ken S0 determinéd. what value of AH® fits the

d

concentration dependenéé of Tm? In order to answer this question,

we haVéEHeld k_ 4 constent, incremented AH® in_ﬁnits of 0.5 kcal/
mcle ana Qaried k until the melting temperaturéé were fit. When
the results are plotted as in Fig. 2.4b and the intersection with
experimental quantities read from the plot, the eﬁthalpy consistent

with ken = 0.14 which gives the cqrrect concentration dependence

a
of‘Tm is then determined. Since the latter enthalpy, from the
concentration dependence of Tm, is different from the enthalpy which
is consistent with df/dTlm, the procedure is repeatéd for values
of AH® between -6.5 and -9.0 kcal/mole (in increménts of 0.5 kcal/
mole). |
We summarize the steps in the calculation:
Step 1: Choose AH®. (Begin with AH® = =6.5

kcal/mole.) |
d until expgrimental Tm’s
and df/dT| 's are fit.

Step 2: Vary x and ken

.Step 3: Using the value of kend detérmined in steps
1l and 2, find values of thch fit‘each
AH® from -6.5 to -9.0 kcal/méle (in incre-
ments of 0.5 kcal/mole).

Step 4: Plot results of the calculations in step 3 .
as in Fig. é.hﬁz AH°vvs,_A(i/Tm)/A1n(c).

This determines AHC which best fits the

concentration dependence of Tm at this value

of kend'




Step 5: Repeat steps 1 to U, incrementing initial
choice of AH® by 0.5 kcal/mole.
The result at step 2 is a set of parameﬁéré‘in which AHd,'

Kk, and ken have been determined to fit the melting temperatures and

d

df/dTIm’s of the AnUn molecules. We may call this enfhalpy AH;.

The result at step 4 is a set of AH®°, k, and k chosen to fit the

d

melting temperatures and the concentration dependence of Tm' We
call this enthalpy AHg. Since K ond has the same value for steps 1

and 2 as for steps 3 and 4, AHi should equal AHS. Steps 1 through 4

are repeated with different initial choices of AH®° (which determines

a different ken ) until this condition is met. The fesults, a

a

. o o
series of AHl and AH2

are plotted in Fig. 2.7; The magnitude of kend for which

values for each of several kend values,

AHE equals AHS satisfies both the concentration dependence
of Tm and thevslopes of the melting curves at their‘

midpoint. The results, from Fig. 2.7, are:

Table 2.6
Thermodynamic Parameters for the

Frayed End Model of AnUn

AH® = -8.75 kcal/mole
kend = 0.058
K = 6.55 x 10~% liters/mole
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Since these three quantities will find,muéh application

in the remainder of this work, it is important to ask how accurately

they are known. Assuming the suitability of thévfrayed end model,
there are two main sources of error in AH®: (1) uncertainty in the
enthalpy associated with initiation and with the AnUn Juncture and
(2) the imprecision of experimental determinations of T and
ar/ar|_. We can estimate that the error due to (l)ris at most 6
kcal/mole for the entire molecule or approximately 0.5 kcal/mole
of double stranded stacking interaction. An enthalpy greater“than
this would show up as a systematic variation in AH® for the mole-
cules of varying N in the series.

The accuracy of Tm is iO.5°C.2 A syste@atic»error of as
much as 29C would have a small effect on the cal@ﬁlated enthalpy,
consider#bly less than +1 kcal/mole of moleéuleé.w'There is how-

ever an uncertainty in the experimental velues of df/dT| : the

61

accwracy of‘df/dTIm is difficult to assess for the AnUn series, since

the original melting curves are no longer available,; for the molecules

A GCU_ (n=2, 3, 4) and A CGU_ (n =2 and 4), melting curves at

five or more oligonucleotide concentrations are available. Although

df/d‘.[‘lm should deérease slightly with increasing 01igénuc1eotidev

concentration (see equations 2.11 and 2.12), no systematic variation

was observed. The uncertainty in df/dTIm for these molecules was
slightly less than 10%. This corresponds to an uncertainty of
0.55 keal/mole in AH®.

It is, of course, possible that these two sources of error

will cancel. We estimate that AH® is known to within #0.75 kcal/mole

from our analysis.



The largest source of uncertainty in both k and kend

derives directly from that of AH®°. If AH® = -8 kcal/mole, then

k= 1.hx107% and k_ 4 = 1.5 x 1071; if AH® = -9.5 keal/mole,

d
3 x 1072, Expressed in terms of free

k = 2.4 x 10°% and k
en

d

energy, this corresponds to #0.6 and *0.5 kcal/mole for k and

kend’ respectively.

b. Discussion of the Results of the Frayed End Model

As already noted, the most important contribution of the
frayed end model is that it removes the inconsistency between the
two theoretical evaluatiéns of the enthalpy. We now consider the
ability of the theory to duplicate Knowri experimental résults.

The calculated and corrected experimental melting curve
for ABUS are compared in Fig. 2.8, at_? strand cégéentration of
6.5 x 1076 M. For the lower 60% of the curve (below 1-f = 0.60),
the frayed end model simulates the experimental behavior signifi-
. cantly better than the standard statistical thérmodynamic model.
The slopé of the curve‘at Tm is, of course, much improved by phe
- frayed end model, since the calculation is fit to this quantity.
Aﬁove 1-f = 0.60, the new model provides only s;ight improvement .
© Both célcuiated curves are steeper than experiment in this region.
Later results for AnGUn, AnGCUn’ and AnCGUn (see Figs. 3.3, 3.4,

-and 3.5) indicate that this is not a general phenomenon for the

oligonucleotides; it may simply be due to the fact that the avail-

ability of so few melting curves for the AnUn molecules hag forced
the choice of atypical experimental curves.
In Table 2.7 we show that the predicted breadths of the

transitions for all of the AnUn molecules are much improved by
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the use of the frayed end model. This is due to the increased
importance of intermediate states with unformed end base pairs.
The predicted breadths are less great than experiment (15% versus
ho%lfor the standard model), but the improvement is marked. For
the oligomers with G-C base pairs, the predicted brgadths are

generally as large as the experimental quantitiés.

Table 2.7

Breadths of Melting Curves for AnUn Molecules

Molecule boy3? b2/3 - Bgy3
experimental standard theory frayed end model
AL, 23°C 1k4.5°C - 17.5°C
AU 21 | 2. 18.
5Us 12.5 | | 18.0
A6U6 . 22 | 11.5 _ 17.0
AU 17 10.0 - 15.3

7

aA2 3 = temperature range over which two-thlrds of the melting
occurs measured symmetrically about the T .

bFrom Martin and Uhlenbeck.2

In Table 2.8 we present the experimental and calculated
melting tehperatures for all the oligonucleotides-ét three different o
concentrations. The standard deviation of the Tm's is #1.7°C for E
the frayed end model and *0.7°C for the eariier calculation. The
basic problem is that AhUh is predicted tb melt three to four
degrees lower than observed. In order to fit all of the molecules

in the series as well as possible, the appropriate'value of x shifts
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Table 2.8

Experimental and Theoretical Melting

Temperatures for AnUn Molecules

Melting Temperatures

Molecule
c=10"%M c =105 M c =10"8 M
Experimental Results
Ah”h 12.2 5.4 -1.1
A5U5 23.6 18.0 12.6
A6U6 31.9 27.0 22.2
é?UT 39.8 35.5 31.3
Standard Statistical Thermodynamic Model
ASU5 2k.0 18.4 13.0
'A6U6 32.8 27.9 23.2
A7U7 39.2 34.8 | 30.6
Frayed End Model
A)-‘Uh 8.9 2-7 -3-2
A,)_U5 23.6 18.0 , . 12.6
AU L0.9 36.4 32.1

(N
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the other AnUn's to slightly higher melting teﬁpefatures. Although
the poofer agreement of melting temperatures is.soﬁewhat
disappointing, the problem may be more apparent .

thanfreal:' the offending molecule, AhUh’ has a measured melting
tembéracure of 12.2°C at ¢ = 10™* M and -1.1°C (extrapolated to

c = 107% M). At such low temperatures, much if not most of the

melting curve occurs below 0°C, where it cannot be measured. As

such, the experimental Tm‘s are not well established in this range.

In short, although the frayed end model does‘nof do as well
as the standard model with respect to reproducing melting tempera-
tures, the results are satisfactory.

An interesting gxperimgntal result was obtained for the
molecules AmUn’ where m is greater than n.2 Tﬁe Tm of thé oligo-
nucleotide increased by approximately 3 to S?C if an extra A
residue, which could not base pair, was added to the end. UNo
information was gained if extra U'é were added, since aggregation
" occurred. This result is consistent with the frayed endimodel.
Acéording to this model, the effect of adding anvéxtra base ﬁo the
helix is a change in the environment of the end df,fhe molecule

such that the end effect should not occur or should be lessened in

degree (since only half of the end is protected.from the solution).

The result of shielding'the end is a raise in Tm’ since thg end
effect is destabilizing.

To test tﬁis hypothesis, we have calculated the melting
curves of the AmUn molecﬁles, usingvthe thermodynamic parameters

d nad

‘of the -end effect is wiped out by the additional A residue at each

of Table 2.6 but replacing k__, with ki/2. This assumes that half

2
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end of the duplex molecule. The result of this calculation was an
increase in Tm of approximately 5 to 6°C. Thué, the distuﬁbance
of the interaction at the ends of the molecule‘broQides a piausible,
semi-quantitati&e explanaiion for the increase in the melting
temperature brought about by ,adding an extra residue to the ends‘of
the molecule. (It is also true that the additional A residue
provides extra base pairing possibilities among thé intermediate
states, allowing the formatiqn of extfa intermédiate states. How-
ever, itvis_easily shown thatvtheSe additional states change the
melﬁing temperature negligibly.)

The model is not completely satisfactory in explﬁiﬁing
the increase in Tm caused by dangling ends. As more exfra»A
iresidueé are added to the moiecu;e, the Tm continges to incréase.
No simple explanation'for this phenomenon is prévided by the end
effect. However, one may speculatevthat as the dangling end grows
in size, it will fénd to isolate the end of ité complementary -
strand from the aqueous environment. If this were so, then thé
theory would predict that the limiting value of ﬁhé_meltihg teﬁpera—
ture_increase would be obtained by replacing kend’bj k:nd = 1 in
the calqulation; yielding an increase in Tm of 10 to 12°C. There
is not sufficient experimental information to test this prediction;
in any case, the prediction should not be taken too seriously, '
since it is likely that morevcomplicated Phenomena than justvthg
end effect are involved, such as the contributioﬁ of sing1e gtrand
stacking in the dangling end which would persist”gﬁén after the
duplex is formed.

We conclude by comparing the results of the frayed end



model with those of the single stranded stacking model proposed by
Appleby and Kallenbach and discussed in section B.1ld of this

. chapter.17 We first note that the thermodynamic parameters
calculated by the two models are somewhatvdiffefenf:

Frayed End Model . Single Stranded Stacking Model

AH® = =8.75 kcal/mole AH® = -7.5 kcal/mole (at 95°C)

-6.0 kcal/mole (at 30°)

AH®

k = 6.55 x 10™% 1/mole «k = 7.6 x 1073 i/mole

The'enth@lpy from the frayed end model isvin substantially
better agreement with the measured enthalpy for tﬁé addition of an
A-U base pair in polyA:U. From calorimetric measurements, Neumann
and Ackerﬁxann18 determined that AH® = -=9.3 *+ 0.5 kcal/mole; extra-
polation of the results of Krakauer and Sturtevant to 1 M salt
gives an enthalpy of approximately -9 kcal/mole.10 No independent
determinétion of k has been made; however, x from the single
stranded étacking calculation is very high and méy hgt be consis-
tent ﬁith the‘observation of Jaékunas gﬁ_§;,,7 tﬁat four or more
base pairs are needed to form a stable double helix in solution.

lWe compare the two models in their fit of the meiting data
for AnUn. Taking the predicted melﬁing temperatures from the plot
of l/Tm versus 1/N-1 preséntéd by Appleby and Kallenbach, ﬁe
observe that the models exhibit nearly identical agreement with the
expérimentai melting temperatures. Both models ha?e the same
difficulty with AhUh’ predicting a Tm slightly lower than deduced

from experimental measurements. In both models, almost all Tm's

are within'a few degrees of experiment. Notwithstaﬁding this fact,

the single stranded stacking model does not fit the concentrétion
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dependence of the melting temperature especially well. This is due
to the fact that the enthalpy for the addition of an A-U base pair
to a duplex is low. In Table 2.9, the results of the single stranded

stacking and the frayed end models are compared.

Table 2.9
Concentration Dependence of

'I'm for Two Model Calculé.tions

81/ )/Alog @ A(1/T_)/blog c A(l/Tm)/Alog e
Molecule : Experiment Frayed End Model Single Strand
: ' " - - Stacking Model
A, 8.5 x 1075 8.0 x 107 . 10.8 x 1075
AsUg . 6.3x1075 . 6.k x107% - 7.9 x 1075
AU 5.4 x 1075 5.4 x 1075 6.4 x 1075
AU, bk x 1073 4.6 x 1073 5.8 x 107°

The final comparison between the two models is the pre-

dicted breadth of the melting curves. This is showm in Table 2.10.

Table 2.10
Breadths of Melting' _

Curves for Model Calculations.

. A i s o
b2/3 b2/3 2/3 tes3
Molecule Experiment Standard : Frayed End Single Strand
Helix-Coil . Stacking
ASUS 21°c 12.5°C 18.0°c 16.5°C
AU 17°C 10.0°C 15.3°C - 12.5°C

T




70

The frayed.end model is in somewﬁat better agreement with
.exéerimental breadths of melting curves than the single strand
Ny stacking model. Both models prediét broader curves that the stan-
dard helix=-coil theqry-and neither yield curves which are as
broad-as_gxperiment. For ASUS and\AYUT,‘thé single stranded stack-
ing model calculates curves having T7% of the obéerved breadths; -
the frayed end model predicté melting curves‘of 88% of the observed
breadths.

In summary, the frayed end model fits the experimental
data sdmewhat bettef thﬁn the single stranded stacking médel, and
wigh fewer parametgrs. Ap’addiﬁional advantége of‘thé frayed end
model is that it is simple enough that it can be extendéd-to
dupléxes with one or more G-C base pairs. This we do in the
' following chapter. Nonetheless, it is possible, as Applebyiand Kal-
lenbégh have suggésted that single strand stackihg is an important
part of the reaction of RNA single straﬁds to form'duplex oligo=
ribonucleotides. A complete theéry would coﬁsider both end effects
and singie strand stacking or temperature depéndence of AH® and
AS®. On the basis of the better agreement between théory and
experiment for the.ffayed end model, it aﬁpears fhat'the end

‘effect has the greater influence on the equilibrium.
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CHAPTER 3 e

MELTING OF DOUBLE STRANDED OLIGONUCLEOTIDES WITH G-C BASE PAIRS

’If we wish to predict stabilities and-mgltiné’curVes of RNA
molecgies, it is essential that we have knowiédge of the thermo-.
dynamics of G-C base pairs. Surprisingly little is known about
this subject. For polynucleotides, it has been long known that the
melting temperature ihcreases with increasing ﬁoig fraction of G-C
base'pairs.l This information leads only to a qualitative dssess—-.
‘ment of the stability of G-C base péirs. On the basis of polymer
data and simple assumptions, Tinoco, SE.El:’ have taken the free

energy of a G-C base pair to be approximately twice that of an

2

+ SR
A-U base peir at 25°C in 1 M Na . This‘aSSignment has been accepted

by other workers as wéll;3
Coutts has isolated a hairpin loop from t-RNA with a helical
region cémposgd of four G-C base pairs.h. Frém a van't Hoff plot
(which ;ssumes the all-or-none model of the multiple_equilibria);
he estimated an enthalpy of -11 or —lk.S kcal/mole in 0.11 M Na+,
depending.upon whether he éttributes the enthalpy to the four-G-C‘
base pairs or to the three double stranded stacking interactions.
Uh}enbeck; Martin and Doty's analysis of the melting of RﬁA oligomers
with one and two G-C base paifsvalso indicﬁtes that the enthalpy of
a G~C bgse pair is greater‘than that of an A-U base pair.S Graila
and Crothers have analyzed the data of Uhienbeck‘g&_gi., using an
.all—or;noﬁé approximation and have calculated that a G—C base_pgir

adjacent to a G-C base pair has a double stranded'staCking

enthalpy of -12.65 kcal/mole and a G-C base pair
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next to an A-U pair has a double stranded stacking enthalpy of -7.45
6
kcal/mole.

Theée few words summarize the extent-of'Our present knowledge
of the thermodynamics of G-~C base pairs in RNA. It is the task of
this chapter to refine this knowledge, using the methods: of the
previous chapter and the experimental date of seversl workers.

A. " Basic Theory for G-C Base Pairs

The intermediéte states shown in Figs. 2.1 and é,S are also
appropriate for molecules with one dr more G-C bésé pairs.: What
must be changed are the statistical weightingsvéf these states.
ih a manner exactly analogous to our 'treatment of A-U base pairs,
we letbl | -

: (o]
G - TASG)/RT

N _ .
‘s, = e . _ (3-;8)

G

where Sg is the equilibrium constant for the addition of a G-C base
pair to a growing helix and AHE and‘ASE are the'corresponding_enthalpy

and entropy. It is useful to rewrite this expression as

s, =k, e

(AH® - TAS°®)/RT | ” ‘ '

where s, AH® and AS® relate to the addition of an A-U base pair and

; S
are defined as in Chapter 2, and

"-[(AHg - AH®) - T(ASE - AS®)}/RT o
kG =.e _ . : (3.2)

is the factor in the partition function for the increased stability

. of a G-C base pair relative to an A-U pair. It should be noted
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that kG is independent of temperature only if the enthalpy for the
addiﬁion of a G-C base pair is equal to that for the addition of
an A;U ?air to that helix.
 At this point, great care must be takenvin the definition of
terms. When only A-U base pairs were present, we were able to avoid
the question of whether the base pair or the double stranded |
stacking interaction was the more important soﬁrce of stabilization
of the double stranded region. If the former is correct, then it
is entirely adequate to add a factor of st to the partition function
for each G-C pair in the hélix.
On the other hand, if the double stranded stacking interactions:
~are the more important in stabilizing the double stranded region,
then the factor in.the partition functién which accounts for the -
inéreased stability of the helix-due.to.a giveh G-C basé pair must
depend on the neighbdfing base pairs, as discussed in Chapter 1.
In order to take this ﬁossible sequence dependence of the free
energy into account, we . ' modify our formalism. We now write
kIJ in ﬁlace of kG’ where the indices I and J specify the double‘

stranded stacking interaction. For example, for the molecule

A_GCU o . R,
UgCGAg’ the partltlonvfungtlon would include factors}kAGs, kGCS’
and kCUs for the three double stranded stacking interactions involv=-

ing a G-C base pair. (Since the AG and CU interactions are the
‘same, the factors may also be written (kAGS)2 and kGCs.)' The term

kAGs refers not to an A-G base pair, which is not known to exist, but

rather to the Ag double stranded stacking interaction. By analogy with

_ U
the definition of kG’
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AG | (3.2a)
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kAG e

where AHZG'and ASXG are the enthalpy and entropy of the above

stacking interaction relative to the single strand. RKG is the

temperature_independent (entropic) part of Kk, In all cases, the

AG’
first subscript refers to the base nearer the free S'—OHvend of the
nucleic acid strand.f

Figure 3.1 illustrates the use of the kg

terms in specifying

the statistical weights of the intermediate species of A2GCU2,

in which the'end effect is ignored. Figure 3.2 shows the statisti-

cal weiéhté, in which the end effects are included.

.Because of the complementary nature of the douﬁle stranded
nucleic acid, there are ten rather than ‘sixteen different double
stranded interaction terms. The& are listed in the_folléwing

array:

Ckap Ry S Kpo F gy Kpg F Koy Kau
Kea * ¥us Kee 7 o keg
Kea = ¥uc Ko

Kua

Of these, we have implicitly set kyy =1 in’the calculation of the

1‘Using this notation, the term AH° of Chapter 2 is now

. fe] , - [o) fo) .
written AHAA and may be equlvalently-termed AH.UU' AHAA is

henceforth used.

T
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AnUn’s, from the definition of s. We have alsc assumed that kAU.
is unity, since we could not determine its value from the avail-
eble informatidn. (See Chapter 2, section B.3) We are thus left
with éight interagtion terms, seven of which involve a G-C base
pair. This means.that within this formalism we must detefmine §r
estimate eight enthalpies and eight entropies in order to fully
characterize the melting process of oligoribonucleié acid molecﬁles.
We have presented two different notationé, In our célculations,
we use the latter notation. The reason for this choice is not that.
we assﬁme stacking interactions to éause the stabilization,'but
rather because the notation fér stacking is inclusive of the base
pairing notation. In the limit in which ail stabilizatibn’is
independent of nearest‘neighbors (i.e;, is due oniy to base pairing),

all seven values of k.. with at least one G-C base pair are equal

1J
to k., of equation 3.2. Therefore, the result of the calculation

G

using the stacking notation will provide a pértialﬁanswer to the ques-

tioh of thé relative thermodynamic importance of stacking and base pairing.
The equilibrium constant for initiation of a G-C base pair. |

is ﬁot necessarily equal to‘that of an A-U pgir; We thus give -

K a subscript A or G, depending on whether or not- any G=C base

pairé are present in the species considered. Wé have assumed

that initiation occurs preferentially at G-C base~§§irs; if any

are preéent; this assunption was not initiaiiy ﬁade, but later

analysis indicates that «_, > k, within the_reliability of the

G A

calculation. As in Chapter 2, we have taken AHE to be zero.

e

To compare the results of the frayed end model with those of

the standard statistical,thermodynamic‘modél, we have performed
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calculafions ﬁsing both models. Equations 3.3 and 3.3a give
the partition function for the two models for any double stranded -
oligonucleotide with complementary‘base pairs. These equations
may be understood both_with referénce to Figs. 3;1 ;nd 3.2‘aﬁd
also to the discussion below.

For the frayed end.model, ¥

¥
2
a

Q= [ k. 1) g\ €L kgnd] (3.3)
all - IJ
states

1J

For the standard statistical thermodynamic model,

!
(2
_ ! S I,J |
Q= Z [(n kg ™) ™ e ] (3.30)

all L3
states

In the first sum, "all states' refers to all intermediate states
with 1, 2, 3, -« . . , N-1 doﬁble strahdgd stécking interactions
with no interior loops (Fig. 3.1). The two broduéﬁs_and two
sums over I and J are Superscripted with a prime to‘indicate>thét I
takes on the four valﬁes'A, C, G, and U, while J takes on the |
following ﬁalues to avoid overcounting interagtions; if I=A,-J=A,
C, G, U, if I=C, J=A, C, G; if I=G, J=A, C; if T=U, J=A.

* The term aIJ is equal to the total:number_df times a.gi;en
intgraction occurs in the sgpecies considefed. -Théjéubséript L on
K takes on valueéiof G and A, depending on whether or hoﬁ a G-C
base pair'is present in the spécies. p is the:humbgf of fully»

formed ends. The other terms, k_ ., k , and s have been defined
T - Id? Tend U
. A o . AAGGGCUU _ s
before. For exampie,; in the species UUCCCGAA p, aGC = 1 and
L
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Bap = aCU = aCC = 2. All other aIJ are zero and 2 aIJ =T is
' I,J

the number of double stranded stacking interactions present. 1In
this case, p = 1 and the subscript L is G, since there is at_leést
one G-C base pair. Each "state" or species generates its own set

of L, and p values, which serve to fully specify the state.

13 }
Although equation 3.3 may still appear somevhat imposing, it

generates very simple expressions. For example, for the melting

. Acu
©% uea?
Q= BAkend BG * BAkend
GU AL U AG
\
Y N U
U c A
Nea v’ ™\ uc’
*oKeKaeena v %¢®ac®¥ena
U A
Ac” Neu
uc CA
M v’
2.2
* Bokuc ac® Fena
AGU
UcA

The equation which we use to calculate the melting curve is -

(j:E:ﬁaIJ) 3

now, for the frayed end model,

a /
1J 1,0 -
[(gg'km )(2 ary)s X Xena! |
- I,J |
1-f = ¢ z , TH0a . (3.4).
- all K o :
states . '

and, for the statistical thermodynamic model,
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I & 1,J
g, Y Tags Bl
o 1,0
reg e (3-4a)
) all . '
states

¢ is as defined in equation 2.8 and all other terms and limits to.

the sums and products are the same as for equation 3.3,

B. Application of the Theory to the MoleculesthGUn, AnGCUn‘

A CGU
n n

1. Methodology
In principle, the AnGUn moiecules require that we‘e?aluate
ive 3y > 1 . v 3 . . o . o . v
five n§J the1m?dynam1L functions: KG, kAG’ kAC’ AHAG’ and AHAC _
From the data available, this is-an impossible task. Our approach

nas been to solve for just fwo quantities: the product of Ko kAG’

' © and AH®. (cal
and kAC {(denoted PAG:AC) and the sum of AHAG‘and AHAC {called
AHXC+AC)-+ With one minor problem, to be discussed shbrtly, this

was achieved as follows: we used the values of k.. ., and AH® ffom
‘ : ) end AA

o . i . . [e) E . .
the previous chapter and varied PAG;AC and AHAG+AC so as to fit

the melting temperatures at three»concéntrations'(E x 1074, 2 X_10“5,

and 2 X.IO'G.M) and A(l/Tm)/Aln(c) for all members of the series..
‘The procedure is identical to the solution for and AHXA molecules:
. . (‘ O . ) . V . ~'." .

an educated guess of AH AGHAC is made and PAG;AC is thgn varied
until the best fit for all the melting températures at the three

- . . . o . . o ' . : .
concentrations 1s_obtg1ned. ihen AHAG+AC is incremented by.O.S

-AHS . /RT

o . + t
I"Sl_rzce P =x k k. =k.k®k%e AG CA_ , it depends

~AGCA G AG CA GTAGCA™ "
on the absolute temperature. We report its value at 78°C, the
melting temperature of polyA:poiyU, unless otherwise noted. Because

o) . - : . . U
A o cp 18 calculated, PAG;CA can be determined at any temperature.



kcal/mole and the procedure repeated. This is continued and the
results plotted, as in Fig. 2.4, to determine which choice of

AH® is consistent with A(l/Tm)/A(ln(C). Program OLIGO4 was used

AG+AC
as it is written both for molecules with and without G-C base'pairs;
The one problem is that it is not possible, by this

method, to assign statistical weights to the species

A, U AU
AG eu, *
udc A and o s

U, ¢ “n U YA,

1 n 1

where j » 1. This is not a serious difficulty, since these speéies
do not at any temperature account for more than a few per cent of
the partition function. To minimize the error, however, we have
Y . . lo} . '.-
broken up'PAG;AC into its three term; apd AHAG+AC into twq in an

arbitrary but reasonable manner. For example, if a trial value of

O . s . ‘ O
AHAG+AC is -10 kcal/2 moles interaction, then we have taken AHAG
and AH® , to be -5 kcal/mole each. It is easily shown that any

AC
reasonable chbice that retains the magnitude of the terms AHZG+AC
and PAG;AC giv?s virﬁually identical results, ;ince, for example,

a 10% error in a quantity which contributes 1% fo the partition
function is a very small perturbation on the final result. In
later discussion, we will undertake a partition of the terms PAG;AC
and AHKG+ACv
2. Results for AnGUﬁ: The Enthalgy»fo} the AG and AC

in a more quantitative fashion. -

Double Stranded Interactions is Smaller than for the

AA Interaction.

We note that the melting temperature of an oligonucleo-
' .

tide is increased by the substitution of an A-U base pairjby a G=C

82
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pair, as shown in Table 3.1. The experimental data, the values of

A

the parémeter AH°G+AC’ which have been solved fcr, and the calculated
values of T , daf/aT o 8nd the concentratibn dependence of Tm are

presented in Table 3.2.+ The enthalpy AHXG+AC for the frayed end
model equals -11.50 kcal/2 moles of double stranded stacking
interaction. For the model which excludes end effects, we calculate

a similar result of AH® -9. 25 kcal/2 moles. In computing

AGHAC ~
this latter value, we have used the optlmum solution for AHZA from

the comparable model calculation, namely AHXA = «8 kcal/mole.

Table 3.1
Comparison of Experimental Melting Temperatures of

Oligonucleotide Duplexes with Equal Numbers of Base Pairs®

Moleculé -7 b Molecule T Moleéule T Molecule ) T
m m m m

AhUh 12.h AuGU3. 3 3 3 3

AU 23.5 AGUh 32.7  A,CGU), k2.5 AhGCUh h6.8

22.7 A_CGU _ 35.3  A_GCU ho.3

575 . p

From reference 5.
bAll T 's are at a strand concentration of 107" M except A GU ’

' Wthh are at tw1ce this concentratlon for purposes of comparison.
The comparison is made in this manner because the strand complementary
to A GU is not identical to it. (See footnote following equatlon 2.8.)

The'interesting conclusion is that although‘thevéubstitution

“of an A-U basé pair by a G-C pair in the middle of the helix 16wers‘.

the free energy of the double stranded form of the nucleic acid,

1.
See Table 3.12 for PAG SAC
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the enthalpic contribution is about 3 kcal/mole less for either
the frayed end or stranded model. The extra stability of the G-C
base pair surrounded by A-U pairs derives from a more favorable
entropy, which more than compensates for the less favorable enthalpy
:ierm. For purposes of predicting stabilitiés of varied nucleic
fécids, this is an important distinction, as it is tﬁe enthalpy which
determines the change of the equilibrium constant with temperature.
We will later discpss whether this entropy term is related to the
new stacking interactions or the more fa#ordble initiation step
when G-C base pairs are present.

It remains to comment on the accuracy éf the result and tb
compare the results df the models with and without frayed ends.
The melting temperatures (Téble 3.2) are not especially well fit byv'
the frayed end model. The standard deviation is +3.7°C, which is
greater than experimental error. For the ﬁodel without frayed éndsg
the deviation is +2.4°C. Part of the problem is that the shortest
oligomer, A3CU3, is predicted by both models.to melt much 1qwer
than:is observed experimentally. Although we can note, as earlier,
that the melting temperatures of this oligomer s&are not so reliably
known as the others, most of the melting curve is obtained at the
higher concentrations of the molecule.

The corrected experimental melting curve for ASGUh is
'compared with curves from two different model calculations in
.Fig. 3.3. This melting transition is much droader than the transi-
tion for the corresponding molecule in the Anﬁn series. The stan-
dard model calculation gives little indication,of this broadening,

predicting a very steep melting curve. The frayed end model, using
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Table 3.2

Melting Temperatures, Slopes of the Melting Curves, and

Condentrafion Dependence of Tm for AnCUn Molecules .

T -
Tl

: : . ar/da7| p A 1/ij/Alnc' 4
C=2x10"% M 2x10"°M 2x10"6 M “m

EXPERIMENTAL:

A3¢U3 16.8 7.6 n-1.0 3.8 x 10;2 11.3 x 1075
A,,0U, 22.7 14.7 7.0 3.65 9.

A\ CU), 26.4 ' 19.2 12.k 3.6 8.15
CACU, 32.7 26.1 119.8 b5 1.2

AgCUg 36.0 | 30.1 2k 5.0 6.3

STANDARD S.M. MODEL: AHXG+AC = -9.25 kcal/2 moles |
ACU, 12.3 35 1.1 k.l x 1072 11.2 x 1075
AU, 215 : 13.5 6.0 4.8 9.4

Acu,  28.h 212 14.3 5.2 8.15

-Ascun' 34.0 27.3 21.0 5.6 T2

AOUg - 3BE »32.3' 264 6.0 6.k

FRAYED END MODEL: AHD. 1o = -11.50 keal/2 moles

AQUS 9.8 1.5 -6.2 4.0 x 1072 10.5 x 1075
AU, 204 | 12.5 5.3 y.o | . 9.3

AU, 28.6 21.2 1kh.h ho - 8.2

AgCU,  35.2 28.3 2.8 k2 1.3

AgCUg Lo.4 ‘ 33.9 27.9 L.y :6,6
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the pafameters for the end effect derivgd from the AnUn molecules,
does considerably better in this respect.' BeldW‘l—f = 0.5

the frayed end model calculation predicts a melting transition
jsharper than observed. A quantitative comparisdn of the predicted

and observed mélting breadths is presented in Table 3.3.

Table 3.3
3 o
df/dem | By/4 in °C
Molecule
_ : Frayed Frayed
Experiment end Standard Experiment end Standard
model . model
model model
ASGU), .0Lk4s .0k2  .,056 26.5 20.7  1k.2

If we ignoré the effect of the ends by applying the stand—
ard statistical thermodynamic model, we have no greatéf sﬁccess for
the AnGUh series than for the AnUn moiecules. To éhow this in‘a
deScriptive Way, we have performed calculaﬁions which assign an
averége enﬁhalpy-to all the aoﬁble'strandéd stacking.terms within
vthe'AnGUn aouble helix, ﬁot distinguishiﬁé'between the AA; AG, énd‘
AC déuble stranded interactions. The result is that the slope of_
the melting curve, 4af/4T m® predicts an average enthalpy 6f_-5.95
kcal/mplé douﬁle stfand stack, whereas the concentration débend- }
ence of‘Tm yields a value of -T.15 gcal/mole. A similar caléulé—v

tion with the frayed end parameter, k40 set to .0585 gives

d
virtually identical values for the average enthalpy from both
physical measurements.

We have hitherto assumed that the magnitude of kg g Vas

identical for both AnUn and AﬁGUn. Physically, this is as it must

. »
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be, if the theory is to be consistent. We can, hbwever, solve for the
magnitude of k_ . which best fits the slopes of the melting curves
at the Tm. This was done by varying three parameters, PAG;AC’

AH® VC, and ken and fitting these parameters-to three sets of

AGH+A d
experimental data: the melting temperatures, the concentration
dependence of'Tm, and df/dTIm. The result, wher compared with the

earlier calculation in which we omitted df/dTlm and considered

kend to be fixed, is in excellent agreement with the earlier

. , o
solution. Thg parameters.?AG;AC_and AgAG+AC are changed by less

than 5% and L is .0645, corresponding to a change in the free

d
energy associated with the end effect from 1.65 kcal/mole to 1.70
kcal/mble at 25°C. This agreement is much better than experimental

uncertainties require.

3. Results for A GCU and A _CGU
—_—= o= "n"™"'n = "n"""n

The group of molecules AnGCUn confains one new double
stranded stacking interaction‘term, kGC' The other interaction
term is kAG = kCU; we already have some indication of its value
from the'AnGUn molecules. Similarly, for AhCGUh’ there is one
new interaction term,bkCG, in addition to k,, = k., which was
also inyolved in the AnGUn_molecules. We are thus abie to évaluate

’ 2 = (*] 2 .=
‘the terms Kgkyckas = Popgiac AHaaceae, “Gackes * Faacce 2R

HS = o = o -
AH2A0+CG7 q = 0585 ana aHp, 8.75.kcal/_

mole for the frayed end model and AHXA -8.0 kcal/mole'for the

We have agein set k
en

‘standard model. _
Results are shown in Figs. 3.4 through 3.6 and Tables 3.4
and 3.5. We have also plotted the population of the most common

intermediate species as a function of temperature for AhCGUh in
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Fig. 3.5. Most of the coﬁclusions from these figufes‘and_tables
are éenerally similar to those derived from the stgdy of the

A GU oiigomers. These are summarized as folloﬁs: (i) ‘the frayed
end model does not do exéeptionally well.in predicting meiting
temperatures for molecules of different chain lengths:. For the

A GCU oligomers, the melting temperatures are. fit within #2.8°C
(versﬁs il;OOC for the sﬁandard model). For thé AnCGUn molécules,
the standard deviation ié $2.9°C (versus il.3°C.for the standard
model). (2) The shape of the melting curves is greétly impfoved
by includingiend_effects. This permits a more accurate assessment

; . . . o = _-
of the double strand sFacklng enthalpies. (3) AHS ) oGO 31.3

. ‘t . o . - .I : . . 4 =
kcal/3 moles in eractlon and AH2AC+CG 27.3 kecal/3 moles inter

action, based on a value of kKoa™ 0.0585. If we_solve for

d

kend éxplicitly,.as we did for.AnGUn,‘the calculated enthalpies

) PR . o = - -
are changed only slightly: AH2AG+GC 29.3 kecal/3 moles and _

A“2A0+CP = -29.5 kcal/3 moles interaction. The calculated
fad s, P4 . )

nagnitude of k is 0.12 for A GCU_and 0.025 for A CGU ’
: er , n n n n

1d
corresponding to free energies of +1.3 and +2.2‘kcal/mole end

interaction.at 25°C. Both of these free energies are sufficiently

close to 1.6 kcal/mole, the energy of the end interaction calculated

for AnUn, that ﬁe conclude thaﬁ for these calculations the frayed

end model is self-consistent in this respect. (L4). Even without

89

relating the enthalpy to specific double stranded interactions, it is_ik

now clear that the enthalpies (and also entr@pies) cannot be assigned

to the formation of base pairs.-Comparing AnGUn and:AqUh oligomers, we
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note that the substitution of one G-C base pair for ah A-U pair
resulted in a decrease in the absolute value of the -enthalpy of
the molecule by 6 kcal. The addition of two G-C pairs léd to an
increase in the absolute value of the enthalpy for the molecule
of 1 keal (for A CGU_) and 5 keal (for A GCU_) compared to'AnUn
or an increase of T keal (for AﬁCGUn) and 11 kcai'(for AnGCUn)
compared toVAnGUnQ' It is evident that, no matter.hov the‘energies
are finally assigned, the thérmbd&namics depends.sfrongly on
nearest neighbor_interactions;_ It is also ciear that the GC and
CG double stranded interaction terms are particularly strbng ones,
the former beihg especially stabilizing. |

C. Application to Other RNA Oligomers

In the previous calculations we have used inforﬁation from a
wholé.séfies df'molécules, differing only in the number of A-U base
pairs. Because of the redundancy of the éxperiﬁentalrdata, an
errof or ina;curacy in ohe or mdre pieces of data was not a serious
matter. vFrom the molécules which follow, we have information about
..énly one (or at most two) members of the éeries. For this reason,
the results in this section are not as accurate as those of section
A and B and should be considered somewhat tentative. |

;. AhUAUh | |

Although AhUAUh has no G-C base pairs, the formalism
‘developed'in this éhapter is appropriate:to sblve for the UA double
stranded stacking interaction. .Since ye know~AHXA and KA.and we |
have previouély dssumed that the AA aﬁd AU double stranded stacking
interactions are equal, we can solve directly for AHGA and Ik, .

The experimental data7 are given in Table 3.6 and the results of the



Table 3.4
‘Melting Temperature, Slope of the~Melting Curves, and

Concentration Dependence for AnGCUn Molecules

u”ccA
n n
T
0 _
: : ar/ar|t . 8(1/T )/81a
C=10"%"M 1075 M 1076 M :
EXPERIMENTAL :

L AGCU, 28,5 19.7  11.3  (2.7£0.3) x1072  10.0 x 107
A4GCU, 42,3 33.8 25.8°  (4.0£0.5) x10™2 8.75
AGCU,  46.8 0.9 35.2  (L1:0.4)x1072 5.9
' STANDARD S.M. MODEL: AHEAG+GC = -27.2 kecal/3 moles
ALGCU, 28k 19.1  10.3 4.0 x 1072~ 10.5 x 1075
AGCU, . k0.8 33.2 26.0 48 1.8
A,6CU), 48.5 b2.1 - 36.0 5.5 6.25
FRAYED END MODEL: AHJ) . .. = -31.3 kcal/3 moles |
ALGCU,  25.2 16.3 8.1 2.85 x 1072 10.1 x 107°
A3GCU3 4.4 33.6  26.3 . 3.0 - 8.05

A,GCU,  51.0 bh.h 380 3.5 . 6.5
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Table 3.5
Meiting Temperature, Slope of the Melting'CurVes, and

. v A CGU
Concentration Dgpendence of Tm for UﬁGCAE.Molecules

Aucquu

T . o
m ) .
: _ df/aT|T A(1/T)/81n
C=10"% M 105 M 1078 M
EXPERIMENTAL :
A,CGU 22.2 11.0 0.7 (2.2::0Q3)><10f2 13.3 x 10”5
ACGU. 35.2 28.8 22.5 « - 7.0
A,COU, k2.5  36.6  31.0  (3.65%0.3) x10~2 6.0
STANDARD S.M. MODEL: AHSAc+CG = —2&.35 kca1/3-moles  |
CACGU,  20.5  10.9 2.0 . k4.0 x10"2 11.5 x 10~3
ACQU,  35.3 27.6  20.3 4.8 8.3
ACGU, . M43 37.8 316 5.5 6.5
END M T,: °V L
FRAYED END MODEL: AHS) ., o 27.25 keal/3 moles |
ALGU, 17.3 8.3 -0l 3.2 x 1072 11.0 x 1073
ACOU, 359 2T.9 20k 3.2 8.5
k7.0 k0.1 33.6 3.6 6.8
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calculation in Table 3.7.

Table 3.6

Experimental Data for AhUAUL\

Melting ¢ =10"%M e=10"M = ¢ =10"%M

Temperatures 16.7°C 21.3°C 27.7°C

Slope of the melting curve: df/d‘I'|m= (3.4 £0.2) x 1072

Conc. dependence of Tm:' A(l/Tm)/A(logc)=6.hh x 10=>

Table 3.7

Results of Calculation for A)_‘I..IAU)4

0.0585)

a. Frayed end calculation (kend =
Melting c=10"% ¢ = 10"M c = 107%M
~ Temperatures 16.7°C 22.1°C 27.7°C

Slope of the melting curve: df/dTlm = 5,3 x 1072

Conc. dependence of T A(l/Tm)/A(logc) = 6.4 x 1073

b. Standard Helix-~Coil Theory
Melting c=10"%M ¢ =10"5M ¢ = 107%M

Temperatures 16.7°C 22.1°C - 27.8°C

Slope of the melting curve: 'dJE‘/dT|m = 6.5 x 1072

Conc. dependence of T A(l/Tm)/A(logc) = 6.4 x 1075
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The parameters which give the above results are listed.
Frayed end model:
AHp, = 410.75 kcal/mole
Ky, = 3-2 (at 78°C)
Standard helix-coil theory:
AHT, = -9.00 kcal/mole
ky, = 2.80 (at 78°C)

The largest uncertainty in thgse parameters derives from
the assumption that the AA and AU double stranded stacking inter-
actionsiare equal. Both models predict'melting §uives ﬁhich are
too.steep, although the frayed end model broadens the curve some-
whét;

é. AhG and A G

23

The data for these two molecules are limited. A5G3 informa-

tion is based on Just one melting curve with a somewhat low hypd-
chromicity (14% ét 50°C). For AMGQ And its complement, the high
value of A(l/Tm)/ A(log c) is suspect; since this quantity is
cohsistently high for the shortest oligomer (with six or seven base
pairs) in the AnUn"AnGUn’ and AnGCUn series. This‘may be due to

the experimental unéertainty in the melting temperatures in the low
temperature range.f' If this is the case then A(l/Tm)/A(log c) should
probably be between 10 x 10~° and l;.x 1073, rather than 12 x 1075

as reported for AhGQJ

TA systematic error of 1°C will change A(l/Tm)/A(log ¢) by
about 15%; the scatter in the T. data is much greater than 1°C for
the oligomers with six base palrs but not for those with eight or

more base palrs.
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An additional problem with these molecules is that we now
have a terminal G-C base pair: it is no longer necessary or even

likely that ke retain its previous value, sinée the interaction

nd

has changed,

Cognizant of these limitations, we have the results shown

in Table 3.8 for A,G., with k = 0.0585,
) end

Table 3.8

a. Experimental Melting Data for A)G,
Melting temperatures: 8.1°C (c=107M) 17.9°C (c=10"%M)
‘Slope of the melting curve: df/dT|m = 2,9 x 1072

A(l/Tm)/A(log c) = 12.0 x 1073 -

b. Calculated Melting Data for AhGQ Using A(l/Tm)/A(log c) = 12x1075
1 : °. = - = A
Parameters assumed: AHAA | 8<75 kcal/mq;e kend O.QSBS

. . . o =
Parameter solved for: AHAG+CC

-14.0 kecal/2 moles
Melting temﬁefatures: 8.1°C" (c=10"5M) 17.9°C (c=lO'5M)
Slope of the melting curve: df/dTIm = 3.6 x 1072

c. Calculated Melting Data for A)G, ﬁsing A(l/Tm)/A(log ¢) = 11x107>

| Parameter solved for: -AHXG+CC = -18 kcél/2 moles

Melting temperatures: 8.2°C (c=10-5M) 17.1°C.(c=lO"“M)

_ Slope of the melting curve: df/dTIm_= 3.9 x 1072

d. Calculated Melting Data for A G, Using A(1/T )/A(log c) = 10x107°

Parameter solved for: AH -21.5 keal/2 moles

o -
AGH+CC
Melting temperatures: 8.2°C (c=107"M)  16.4°C (c=10"°M)

Slope of the melting curve: df/dT[m = 4,2 x 1072
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It is not possible to interpret the results in Table 3.8
with complete certainty. If A(l/Tm)/A(log ¢) = 12 x 107° (part b),:
then the absolute value of the enthalpy of the AG+CC interactions,
1h kcal/2bm01és interactioﬁ, is 3.5 kcal less than for 2 moles of
AA interactions, the predicted slopes of the melting curves are
somewhat tqo steep, and the entropy associated with the interactions
is much gféater than for all otherbdouble Str&ndgd staqking inter-
actions herstofore cbnsidered. If we take A(l/Tm)/A(log é) =
10 x 10-5 (part d), the absolute value of the enthalpy of the
.AQ+CC interacﬁidns, 21.5 keal/2 moles interaction, is 4 kcal
greater (i.e., more stable) than for 2 moles of AA_intefactisn,
the predicted slopes of the melting curvesbare\even morebsteep, and
the(entropy associated with the interactions is not greatly
different’ffdm that sf other double straﬁded stscking interacsionsf

We have alss.performed calcuiations‘allowing the value pf
kendAto vary at the G-C end sf the moleéule, in prder to fi@
rdf/dTlﬁ.. It is not possible to éhange the calqulated slope or
brsadth of the melting curve by this procedure; as kend is decreased,
the stsbility.df the GG interaction increases proportibnately and
»the G-C end of the moleéule insists on being formed'(rather thaﬁ
frayed). As a result, the difference between the fréyed end modél
and the standard msdel calculation is not great, since only one
end of'this molecule is frayed. o

In order to choose among the three sets df parameters

presented in Table 3.8, we have used all three_sets to predict thé‘

melting temperature of ASGB' The results are shown in Table 3.9.
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Table 3.9

Calculated Melting Temperature of'ASG3

(strand concentration = 1.4 x lO'SM)

Parameters from Table 3.8 Tm calculated
part b 51.7°C
‘part ¢ _ 45.8°C
N _ .
part d- L1.3°C

The experimental-Tm'for'A is 41°C, from the one available

593
melting curve at ¢ = 1.4 x 10'5._ On the basis of the prediction

5G3, the parameters of part 4 in

Table 3.8 are most appropriate and these will be used. Because

of the melting temperature of A

of the paucity of experimental information,'thié'analysis is
only tentative and is likely to be improved when more data are

available.

3. U20GA2_
.For this molecule, the new double stranded stacking inter-

action.is UC=GA. Because this molecule has only six base pairs

and melts at a low temperature, the value of A(l/Tm)/A(log ¢) is

probably not very accurate. The experimental data are given in

Table 3.10 and the results of the calculation in Table 3.11.

\
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Table 3.10

Experiment.al Data for UQCGA2

Melting temperatures: 11.3°C (c=10-%*M) = 1.6°C (c=10"5M)
Slope of the melting curves: df/dT|m = 2.0 x 1072

Conc. dependence of Tm: A(l/Tm)/A(lOg ¢) = 12.25 x 10”5

Table 3.11

Results of Calculation for U2CGA2

a. Frayed end calculation (ken = 0.0585)

a
Melting temperatures: 11.3°C (c=10"%M) l.6°C-(c=lO'5M)
Slope of the meiting curve : df/dT[.m = 3.25 x 10~2

o -A(l/Tm)/A(iqg ¢) = 12.1 x 10-5
b. Standard Helix-Coil Calculation , ?
Melting temperatures: 11.3°C (e=10""M)  1.7°C (§=10'5M)
Slope of'the’melting curve: df/dTlm = h;oh x 1072

6(1/T_)/b(log ¢) = 12.2 X 1073

’ . . re) - ) .
The resulting enthalpies are AH CG+2GA —_722.25 kcal/3

- N ) ) . o - =_
moles interaction for the frayed end model and AHCG+2GA 21.7

kecal/3 moles.  Although the frayed end model predicts meltihg
curves somewhat sharper than experiment, the optimum‘solutibnvfor-
the slope of the melting curye‘yields a free energy for the end
effect oné kcal/mole largér than the vaiue we have used (from the .

A U molecules).
nn
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.D._ Analysis of Resuits

We summarize in Table 3.12 the thermodynamic parametérs which -
have beenAsolyed for in this chapter. _They are nof especiall&
useful in the form in which they appear in this table. We would
like to know the'ihteraction'terms fof the individuasl double
stranded stacking interactions. This informationvcanhot be obtained
riggrously, as we have more uhknowns than equations. For thé |
present, we make a few simple approximations in ordér to derive the
thermodynamic parameters of interest to us. It is worth keeping in

‘mind ﬁhat'the paraméters in Table 3.12 are thoéé for which we have
solved'difectly.

To obtain the enthalpy terms for the individual déuble stfanded
stacking interactions, we assume that: the AG and AC interactions
are equal. | This approximation cannot be rigorously

‘ justified, other than by the fact that it yieids-results which

are neither'unreasonable nor internally inconsistent. (As morevdéta
are obtained, if will beapogsible to remove this appro#imation.)
This enébles us to solve for all the entha;py terms; the reéults _
are given in Tab;e 3.13.f It is of interest that the.enthalpy fgr
thé GC, CG, and GG intefactioﬁs are large, being about twiCe'gs
gréat as the enthalpy for the AA'interaction, It is also of note :
thet both the f_raye.d end and the standard helix .co"il_mo'déls 'giye
comparab;e enthalpieé for each of the double stranded stacking
interactions.

Obtaining k from the product terms in Table 3.13 is a more

IJ
difficult task. The reason for this is that each product term

includes an additional parameter, KG,_the megnitude of which is not
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Table 3.12

Composite Thermodynamic Parameters
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Enthalpies

Product terms (at.

78°C)

a. Frayed End Model <kena_= 0.0585)

Q
BHp cenc

(o]
Afopgrae

o]
AHopcec

BHpghee ¢

Aoeatce =

i

b. Standard Helix-Coil Model

o -
ARy Genc

o] -
AR pGege =

[o]
ARopcece

[e] —
Apgece T

ARoca+ce

=11.50 kcal

-31.25 kecal
-27.25 keal

-21.5 kecal

~22.25 kecal

-9.20 kcal
-27.80 kcal
-24.3 keal
—é2.1 kcal

-18.4 kecal

P

Pac;ac

Poagsac =

P

PAG;CC

PAG;AC

Fonciac =

P2AC;CG -

Pag;ce

Poeasce =

2AC;CG

2GA;CG

K.k, .k

G AG AC

Keagkac

ke¥ackceq

Ke¥ag ce

“a¥eakea

*e¥ackac

>
Ka¥ackee

KGk
k

“eFackce

2 .
“c*aa¥ce

Actce

0.16
5.3

2.3‘
1.86

2.76

-~ 0.017

0.k25

0.165

£ 0.092

0.021
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© Table 3.13
Enthalpies for Double Stranded-Stacking Interactions

(Approximation: AH® ., = AHS )

AG AC
a. Frayed End Model
o = o - - . o = -
AHAA AHAU 8.75 kcal/mole AHGC .19‘75 kcal/mole
o = - " . s . o = - ’
AHUA v 1Of(5 kecal/mole AHCG 15.75 kcal/@ole
0 = o = o = - :
AHAG 'AHAC 5.75 kecal/mole AHCC 15.75 kcal/mole
o} = - .
AHGA | 3.25_kcal/mqle
b. Standard Helix—Coii Model
o = o - _ ) o = - :
AHAA AHAU 8.00 kcal/mole | AHGC 18.6 kcal/mole
o = _ : ° = -
AHUA .9.00 kecal/mole AHCG . ;5.1 kcal/@ole
. 1) = O = . - ) o = _ ./‘ _} .
AHp. = AHZ. L.6 kcal/mole AHZ ;7.5 kcal,moie

AHgA = =3.30 keal/uole




known. The'simplest‘assumption we could make 1s that KG = KA.

Since we knowkA from our calculations on the AnUn moiecules, we

are able to solve for the k terms directly, again assuming the

1J

thermodynamic equivalence of the AG and GU interactions.

The problem with this approach is that it gives results not

fully in accord with experimental measuréments on RNA polymers, as

we now show. Ih Fig. 3.7, we reproduce a plot from Kéllenbach in

which'l/Tm is plotted against the fraction G-C base pairs for

B : +
double stranded RNA polymers in 0.15 M Na .l

7, »10°

o ; 0-5 0
Mole fraction G + C

Figure 3-7
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If we temporarily assume that A-U and G-C base pairs have equal

enthalpies'and that'only one equilibrium constant,'kG

~ to account for the stability of G-C base pairs,vas Kallenbach has -

assumed, then the straight line in Fig. 3.7 is described by the:

equation

s, 1s necessary
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1 Rv
= T {a0) * e inkg

i
Tm
 Here, Tm ié the melting temperature of an RNA polymer with mole
fraction v, of G-C base pairs, Tm(A-U) is the melting temperature
of én'RNA polymer with only AfU'base'pairs, and kG is defined in
equation 3.2. This équation cannot be rigorously correct, for_we
~have already 6ﬁserved that the_thermodynamics of RNA depends
strongly on nearesf neighbor interactions. Howevér, the vélue‘of

derived from Fig. 3.7 should represent a sort of average of the

kg
kIJ terms.
The kIJ terms derived from the assumption that Ka = KA do not

fit the slope of the line in Fig. 3.7. Plugging in an average
enthalpy for double stranded stacking interactions of =9.5 kcal/
mole (from Table 3.13); we determine from the sloﬁe of l/Tm versus .
vG that kG = 10.8. Assumlng Kg = KA, an appropriately averaged_kG
equals approximately twice this amount.+ Thus, if we assume Kg = Ky

TThis is done for a random RNA at v, = 0.5. The appropriate
average is that of log k,. One must take care in counting inter-
actions properly. For a random RNA polymer at v, = 0.5, the GA
interaction will occur twice as frequently as thé . GC interaction,
for exemple. The averaging equation is ' ‘

1/8 log (kgpkpckgiygoghyy) * 1/16 log (kgekegkyglay,) = 1og kg
In deriving this équation, we.have made the simplification that

‘all AH® = the average value of -9.5 kcal/mole. In applying the
equation, we assume the unknown term kCA is equal to_kAG and kAC"
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.the slope in Fig. 3.7 ié predicted by our calculatlons to ber
gréater than experiment by é factor of approximately one-third.
It follows that Kq and KA‘arevnot edual; if we givé cbnsidéra-
tion to the pblymervmelting temperaturés. We can obtéig kIJ and
“q from thg products in Tayle:3.12 is we normalize the kIJ'terms
so that their averaged value+'if 10.7, in agreemeﬁt with.Fig. 3.7.
When this is déne,vthe results in Table 3.1k obtéiﬁ for the frayed
end and stahdard helix coil.models; | |
The important conclusion from this chapter is thgt the
sequence of base pairs in an RNA méleéulé’makes a great dea; of
difference in the stability of the molecule in solution.  We
believe that the results in Tables 3.13 and 3.14 are the best
presently available in relgting the thermodynami¢ stability of
'RNA to its double'stranded stackiné interactions. In Tablé 3.15,
_ih which we have compiled this thermodynamic information in terms‘.
of the ffée éneréy (at 25°C), and the standard énthaipy and eﬁtropy
of the interactions, the large effect of sequence i;révident. To
make fhis more vivid, we have calculated the meltingftemperatures
of a sgeries of oligomers of identicai base C§mp§sition‘but differing
sequencé, using the data compiled in‘this chapter. 'Iﬁ is readily -
apparenﬁkthat ﬁhe sequehce of base pairs has a lafge effect on the
T, of an RNA molecule, uélshown in Table 3.1@. |

i
4

See note previous page.
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ccC

| Table 3.1k
kIJ Térms for Double Stranded Stacking Interactions (at 78°C)
. Frayed End Model (k_ . = 0.0585; k; = 1.95 3'10"3; kA = 6.55x10™4)
kpa = Ky = 1-0
kya = 3-2
Ko = Kpq 9.15
kg, = 10.0
Kgo = 32.5
kog = 1b.2
Koo = 10k.0
Standard Helix Coil Model (kG = 4.25 x 1075, k, = 6.0 x 1073)
Ky, = k= 10 |
Ky = 2.8
Kyo = kyo = 20
‘ kGA = 6.0
Ky = 25.3
kog = 9-8 N
k., =.109.0




Table

3.15

Standard Free Energy, Enthelpy and Entropy of

Double Stranded Stacking Interactions

Interaction AG°(25°C) AH® AS®
a. Freyed End Model
AAy AU -1.3 kecal/mole '—8.75 kcal/mole ~24.9 e. u.
A -2.3 -10.75 -28.3
AG; AC -1.9 =5.75 -13.0
GA -1.8 -3.25 -4.8
GC -5.0 -19.75 -19.3
CG -3.9 ~15.75 -39.6
cc -4.7 ~15.75 -36.8 .
Initiation
(at A-U) - +4. L 0 -14.7
Initiation ' o
(at G-C) - +3.7 -12.5
End effect +1.7 -5.7
b. Standard Helix Coil Model
AA; AU -1.2 keal/mole =8.00 kcal/mole -22.8 e.u.
UA -1.9 -9.00 . ' -23.8
AG; AC 2.} 4,60 7.8
GA -1.h -3.30 -6.2
ac SN ~18.60 -47.3
CG -3.4 -15.10 ©-39.0
cC -5.0 -17.50 ~-41.5
Initiation »
(at A-U) +5.8 o -19.4
Initiation o ’
o -20.0

(at G-C

+6..0
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Table 3.16

Calculated Tm's of RNA Molecules of Identical Base

Composition and Different Sequences of Bage Pairs

a. Two G-C base paifs and four A-U base pairs

_A2(1CU2
AGAUCU
GAUC

22
GCA2U2

T = 16.3°C
m
-10.1°
-12.8°
12.6

b. Two G-C base'pairs and six A-U base pairs

A_GCU_ .
3 3
‘ AzGAUCU2
GA_U_C

373
GCA3U3

- (o]
18.9°
11.3
28.0

c. Three G-C base pairs and four A-U base pairs

A2(:CGU2

" AGACUGU

GAZCUQG

T = 40.8°C

m
©12.2°
5.6°

d. Four G-C base pairs and four A-U base pairs

. A3(IC(JU3
2

GA3CU3G

A GACUG02

T = 51.0°C
m
38.2°
25.3°

e. Four G-C base pairs and four A-U base pairs

;CG
A2CC CU2

AGCAUGCU

. AGACGUCU -

'GACAUGUC

T = 61.6°C
m
54.9°
v Lo,2°
. 27.5° .

aThe‘complementary strands are not listed. Strand concentra-

tion is 107> M (unless the complementary strand is not identical

in which case ¢ =2

.1 M in NaCl and 10”™% M in EDTA.

x 10> M). The solution is at pH = 7 and is

110
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CHAPTER 4

THE MELTING OF A,C U, LOOPS
v 6m6

. The remaining information needed to further our understanding
of RNA stability pertains to the influenée‘of lobps on the energe—
tics of RNA secondafy structure. It is important tq remember that
intramoleculaf base pair formation cannot occur without the |
formation of looped regions within the ribonucleic acia. Génerally,
three different types_of‘loops have been distinguished: haifpin
loops, interior.loéps, and bulées. These three t&pes of loopé'are
shown schematically in Fig. 4.1. In this chapter we subject thg
hairpin loops which were synthésized and studied by Uhlenbeck;
Borer, Dengler, and Tinocol_to an analysis éimilar to that of the
preceding chapters. For interior loops and bulges,

we have no nevw data to analyze.

hairpin interior bulge
loop ‘loop

' Figure 4-1
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A. Theory

The.ﬁhéory needed to calculate and predict'the melting behévior
of RNA hairpin loops is simpler thanifhat applied to the duplex
oligoﬁers, begause the melting of the loops is nét‘concentration
dependent, since the reéction is intramolecular. Because wé are
concerned with ldops of thé-form A6CmU6,.the double stranded or stem

region; UUUUUU ? is homogeneous with respect to base pairs. This

means that Such staggered forms as

(c,_,,u : <Ac,,, ACm ACmU,
A0 A—{0 A0 g uj
A ' Ay Ay  abu
A U . A U A V) A u
A—u Aty AU A~ p-u
Al—u A—u . U A— '
A= v v
a b c d

Figure 4-2

'are.permitted. These staggered forms are_includéd ih'fhe list of
" intermediate states and in the'paftitiqn fﬁhctiqn: For loops with-
inhdmogeneous sLem regioﬁs, staggering of-thisvnatu;ezié pdf. |
likély, as it?wouid lead to_noncomplemeﬁtary b@sé paif‘formation.
We write the partition function for héifpin 1oop§ Qitth A-U

base pairs in the stem region'as
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(m-m )/2
m +2N N~
(0]
n=-1 p
= +
1 2 2 Y, S kend' (L.1)
mrm n=1 ’

The term unity is for the single strand contribution, in which
no base pairs are present. The inner sum is over intermediate a R
species with a given loop size (of m unbonded baées) and a variable
number of base pairs in the stem (from n=1 to n=N-(m-mo)/2). The
minimum number of unbonded bases iﬁ the loop is specified by m,.
The largest term in the inner sum, n=N-(m—mo)/2, is to be roundédf
down to the nearest integer value. The/equilibriﬁm constant for

the end effect, k , 1s raised to the power p, where p=l if an end)

end v
with two dangling strands is present (as in Fig. 4.2d) and p=0 if an
end with one dangling strand is present (as in Fig. L.2a, b,.and c).
Yo called the loop weighting function, is thevequilibrihm
constant for a loop of m unbonded bases held together by one base -

pair.  This is the thermodynamic parameter that we are interested in

evaluating from the melting data. Until experimental information

+We have made the implicit assumption that both of the terminal
bases, A and U, contribute equally to the end effect. It is also ,
‘possible to assume that -only the A residue-is involved in the end - . . -
interaction. The rationale for this is that physical studies have '
shown that U does not stack well—if at all—in the single strand. This
assumption would assign p a value of 1 if an end with dangling A's
is present and set p=0 if U's are dangling. Since it is not possible
to choose between these alternatives on the basis of present knowledge,
we use the first assumption on grounds of simplicity. Conclusions ’
‘are entirely unchanged if either assumptioh is made.
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on nucleic acid loops became a&ailable recéntlyf Yo coﬁld be
estimafed'ohly from theory. The earliest theoreticu; treatment of
the loop wéighting function which is pertihent td RNA hai;pin

loops assﬁmed thgt the loop is composed of m+l rigid, freely moving
. links whose end-to-end disﬁribuﬁion function is Gaussiah.2'-Thié
led to the prediction that Y, is prbportionalvto a/m+1)3/2.
Kailenbach, from an analysis of RNA-and bNA‘mélting dafa, has

written this equation as

s w2 (1.2)

where T has a value of 560 to 1,000.3

This approach has the limitations thaf it fails to consider
,(l) the effecf of exciuded Volume,+ (2) the lack of proportionality
between the mean square end-to-ena distance‘[rz] and the numbér of
links, m+l for short chains.h It is this proportionality which led
to the simple form of equation (4.2). {(3) The.dégree to which the
chaein is nbn;Gauésian because of intramolecularvinteractions or
inﬁefactions with the solvent; and (4) possible enﬁhalpic contribu-
tions due to the ihitiation step (the formationAof the first base
pair to close the loob) ér due to the deformétion of the singie
strand to form a hairpin loop. Because all of theSe-factops,'none o
of which cah be quantitativély assessed on fhe basis of thgpry,

enter into the calculation of a loop weighting function for nucleic:

TThe molecule can occupy only those regions of the solution ‘;'

which are unoccupied. Computer calculations indicate that the
exponent on the term (m+l) can be changed to as much as -1.75 or
-2 if the effect is included. ' - ‘
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acids, it is of special interest to have experimental data with
- which the theory may be compared.

In order to explicitly include the fourth point above, we

write
'—AH;/RT
= O : :
Y, =Y, € . (h-3)
AS°/R
where Y; = e is the entropic part of the loop weighting

funection and_AH; is the enthalpy associated with the initiation of
the hairpin loop. The total enthalpy of the reaction AC Ug 5
AAAAAA

wouuun 18

= o o
AHtot 5 AHAA + AHm .

AHEOt is less than zero, since the reaction is exothermié. However,
AH; ﬁaylbé'greater than, less than, or equai to zero. if AH;'is
greater than zero, tﬁen the formation of the lodped region must over-
come repulsive interactions, associated with strain in the loop of
some nature. These repulsive forcés are more likely to be imporﬂént
f'or small loops than for large ones. A consequence of Aﬂg greater 
than zero, as the éaiculatiOn for the A6CmU6 loops indicatés,.is that'
at higher témperatures the loop region of these moleéules_is stdbiJ—"
ized relative to the loop at loﬁer températures, thérebj broadening
the melting curve.

Equation L.4, which enables us to calculate 1-f versus
temperature.for loop molecules with only A-U base pairs ip the stem
region, assumes that tﬁe absorption increase caused-by the formation
of. the dbub]e-helix is5 due primarily to the double»stranded stacking

" interaction. The justification for this assumption is the same as’
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for duplex oligonucleotides. All calculations reported in this

(m-m_)/2 ' . '
m +2N N- ' ' .
. o} » .
1ff 2 z | (n—l)yms_n'lkgnd/(n_-l)' o (k. W)
m=m_ " n=l ' .

chapter are based on equation k4.k.

B. The Experimental Resuits of Uhlenbeck et al., are

Summarized..

In Fig.. h.3,_we have reprodﬁced the.published.experimental
melting'curves for A6C6b6".As was the case for duplex oiigo_
nucleotides, the high temperature region exhibits a constant slope
characteristic of single stranded_ﬁnStacking. The low temperature
. region of the'melting_curve may also possess a nohéero slope, since
the C residues ih the loop are free to change their geemetry even
after.fhe stem regien is formed; Alo(T)(l) in this figure
represents the assumption that the lewvtemperature 5aseline is
constant with temperature; Alé(T)(2), based on data from olige c,
treats.the baSeiine as if it represented.the unetacking of single
stranded C residues. Because Alo(T)(l)‘and Alo(T)(E) lead to very
similar'eorreetea melting curves. (1-f Qereus T),_ﬁhlenbeck, et al.,
»heve chesen to usevthe first assumption for the sakevof eimpliciﬁy.
(See Fig. 4.4.) Because the melting cuﬁvee cannct be extended
significantly below 0°C in 1 M salt sbiution, it.is'not_poseible
on the basis of e#isting information to know the”behevior_ofrthe
low_temﬁerature baseline. The synthesis and study of haifpin ieop_
oligonucleotides of greater stability (molecules with long stem
‘regions or with several G~C base pairs),ﬁill help resolve this

difficulty.
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We show, in Fig. 4.5, the published experimental absorption
versus temperature profiles of A6CmU6 (m=4,5,6,8). Each of these
curves represents an averagelof about five different concentrations
éf-hairpin loop oligomers in solution.. The relevant parametérs

s

from these experimental data are summarized in Table L.1.

Table k.1

Melting Parameters for RNA Loops

[o] . . .

Loop T, (°C) ag/aT|
-2
. -2

) A6CSU6 13.4 3 1.96 x 10
-2

| ACcUg 21.0 - 2.37 x 10
o -

A608U6 13.4 2.16_ x 10

The slope of the melting curve at T, is less gréat than one
‘would expect for comparable duplex molecules. From the obse£ved
df/dT|m's for AﬁUn duplexes reported in Chapter 2, we might expect
| df/dTlm to be about 4 x 1072 were no loop present. We infer from

ot

would be if no interior loop were present.

this that AHE is not as great as for these RNA molecules as it v - -

C. Method of Calculation

We ha#e listed and annotated program LOOP2 in Appgndix IT.
This Fortran program has been used to peffofm the calculations on
the A6CmU6 hairpin loob molecules which are disgussed in this
‘chépter. Because the melting of a given loop generélly depends on

.the value of_Ym for other loops, program LOOP2 calculates Y; and
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AH;vfor all four loops &t ohe time. For example, the thermal.-
behavior of A6C5U6 depends most on the quantities YJ and A2, but
also on Yg, AHg, Y%,...., st, AH&’_5 in rapidly decreﬁsing order.
As"ihrthe earlier calculations on duplex oligonucleotides, the
program was written so that the input was fed into the computer
from a teletype machine‘and the output was returned to the teletype
.so that new estihates of the parameters cbuld be made. The
procedure followed for the four A6Cmp6 molecules is suﬁmarized;

| 1. Program LOOP2, which is based on equétion h.l, was used
throughout.

-2. The préviously established set of thermodynamic quantities
AH®, , ASZA’ and kend

tions with kend = 0.0585 and kend = 1 were made.

3. Initial guesses for Y§, yg, Yg» Y§s and AHP, AHg, AHZ, and

were always used for the stem region. Calcula-

AH§ were made.  Y° was set equal to (Yg +'Y§)/2 for lack of better

T
information._'AH;, cees AHgo were set equal to AHg for the same
reason. We used the_reiation in equation 4.2 to estimate the magni-

tudes of y; thfough ygo; namel&, Yy = (I/1I+1) Yi;l'
h.  The predicted melting temperatures and 910pes_9f the melting
cufves were combaréd with the expefimental values of Table‘h.l and
new guesses of yﬁ, ...; AHg were madé on this basis. - |
5. Steps (3) and (4) were repeatéd untii>ekperiment aﬁd theory -
- were in éood aéreement: the melting tempefatures were fit to |
within 0.1°C and df/dT|  to within 0.5%. |
It is imporfant to note that we have‘not considered any base composi-

- tion or sequence dependence of the loop stabilities. The fbrmationifor

example,'wbuld treat a loop of 6 C residues closed by an A-U base pair
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as thermodynamically equivalent to a loop of one A, four C's, and
one U cldéed by aﬂ A-U base pair. This is_a reasonable:assﬁmptiqn
and in most cases should not lead to serious quantitative errors,

since usually the minimum loop (with all C's) déminates the parti-
tion fﬁnction. Howéver, in‘the frayed end model, staggered species
(with at least one‘A or U in the loop) make .a larée.contribution
to the partition function. Because the uncertainty associated with
the assumptidn of sequence independenée of the loop weighting
function is ﬁore importaﬂt in the frayed end model,_estimatidn‘of
Y, is less accurate for this model. For the molecule A6CmU6’ the
minimun loop does not contribute as muéh to the partitioﬁ function
as the loop of six residues, as calculated by any of the mbdéls
used. As a result, fhe,parameters Yﬁ and AHz ¢anno£ be determined )
very accurately by our methods, unless the therquynaﬁics does not
dépend on.the bas¢ compositibn and sequence of the ioop.

D. Results
The:lOOP weightiﬁg functions and loop enthalpiés which we have

calculeted are reﬁorted_in Table‘h.2: As noted earlier, the
éalcﬁiations were repeated with new trial values of the parameters
until agreeﬁent between theory and experiment was attaiﬁed for each

of the molecules. The reservations noted above for yﬁ and AHﬁ

should be kept in mind.



Table 4.2

Thermodynamic Parameters for RNA Loops

- o o
Ym(‘l‘ 20°C) ;4

Loop Standard Frayed End Standard Frayed End
end end :

AL, Ug 0.13 %1073 0.31x1075 2L.3 24.0
AgCsUg 0.45 x10™° 0.93x10™° 24,0 22.5
AL, 1.10 X105 3.50 x10™5 20.8 17.4
ACqUg 0.5k x 1075 1.55 x107% 23.9 »  22.3

Several observations and conclﬁsions can be made from these
results:

1. AH; for'm’= 4, 5,6, ahd 8 is significantly greater fhan
zero fdr both model calculations. _

2. 'AH; for.m =4, 5, 6, and 8 are all of approximately the
same magnitude.

loop enthalpy is related to strain in loop formation.

One would‘
expect the smaller loops to be considerably more strained than
~larger ones. The near equality of the four enthalpy terms mighﬁ
be interpreﬁed'to mean that a certain constant part of the loop
is subjeét to repulsive interactions and that these interactions
do not vary greatly with the size of the lodp. It is possible
that this loop strain is associated with the ends‘of‘thevloop

nearest the stem region'or that it has tb do with the initiating

124

This is somewhat surprising inasmuch as & positive
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base pair. Both of these explanations are éonéisteqt with AH;
independent of loop size.
| 3. The entropy of loop formation, which‘can“be calculated
directly frbm!y;,'is éréater than zero, indicﬁting that thé‘
formation bf the léop is entropically favored. This is very
surprising; one would exbect Just the opposite,,siace the residues
in the lobﬁ are more constrained than the same residues in the
single strand. The explanafion may have something to do with
'nucleic‘acid-solvent interactions. it is possible that the forma-
tion of a haifpin loop is accompanied by a net decrease in the
bindiﬁg of water molecules or of ions to the RNA.
4. The loop weighting function goes through a,maximum'with
| éix orvéeven bases in the loop. This suggests that it is not
entirely fortuitous that tRNA loops often contain this number of
bases.
These results make clear that the simple theoretical treatment
which treqts‘the loop as being composed of freely moving links ié
inadequaté. It is apparent that the loop fqrming process is

considerably more complicated than the theory assumes.

‘.We also note that the.reguits of the frayed end aﬁd standard
statistical thermodynaﬁic models are qualitatively similar and
differ only,slightly quantitatively. This is in part due to the:
fact that the loop moleéules have Just.one eﬁd, rathgr ﬁhan»tWO'for
the duplex molecules. For this reason, it does not matter greatl&_
which éet of pgrameters is used in comparing the free.energies of

different secondary structures, as we do in the next chapter.
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For further discussion of these hairpin loops, the reader is

referred to reference 1.
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CHAPTER 5

There is currently much workvdevoted to.detérmining the primary
structure (i.e., the base sequence) of riboﬁuéleic acids. This
sequenée information is ﬁrimarily valuable in providing inéight into
possible biological funcﬁions of the molecule. 1In order to effec-
tively ﬁse the sequence informaﬁion, it is necessary to know the_
secondary structure (i.e., the most stable arrangemenilofvbase pairs,
loops and bﬁlges) of the molecule. A variety of methods are avail-
ablé, mostly from physical chemistry, to learn abbut certain aspects
of RNA secondary structure in solution. Measurement of infrargd
and ultraviolét absorption profiles can yield informatidn about the
number of base pairs formed;l oligonuclebtide binding studiesvcan
locate regions of the RNA which are:probably not base pa.ired;2
fluorescence measurements can approximate distances between certain
regions of the RNA;3 nuclear ﬁagnetic resonance’cén indicate whether
or not a modified.nucleic'acid‘bése ié base bairedwhi Aithough all.
of these techniques hold considerable promise in helping td estab-

-1lish secopdary structures of RNA moleculeé in solution; the informa-
tion which they provide has hitherto been too scanty to determine
which of a large number of secondary structures is most sfable for

a given RNA molecule.

At the present time, no systematic method of predicting
‘secondary structures from the sequence of the RNA molecule has been
developed. The standard procedure is to find a structure which

appears to maximize base pairs and to assume that this is the
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correct secondary structure. The literature of secondary structure
of tRNA, in which a lafge number of different structures were
proposed until ihe cloverleaf structure was generally agreéd ﬁpon,
suggests the"hazardous nature of this ehdeavor. The secondary
structure of tRNA was wofked out in large measure because of the
larée numbe; of different holecules (with different sequences ) aLl
of which performed similar biclogical fﬁnctions and all of which
could bg'fit into the same general secondar& structure.

The purpose of the work discussed in this chapter is to
develop a.systematic method for predicting the secondary structure
of an RNA molecule, once the sequence is known. Although:the
method whiéh we present is hot yét fully develofed, ve bélieve it
'isza significant improvement‘over the guesswork which is generally
employed to predict secondary structure of RﬁA. As the thermodynamic
parameters which govern secoﬁdary structure formation are better
known, és thé assumptions we have made in the model calculations
are mofé completely tested, and as results are coméared with informa—
tion derived from physical experiments on RNA molecples, werbelieﬁe
thaﬁ-it will be possible to almost automatically ?redict many
secondary strﬁctures of fibonucleic acid moleéules. This work
represents‘one step in this direction.

It may seem that for a éequence of abou£ 80 baSesv(the size of
tRNA) only'a few.possible seéondary structure% are likely. This is,
however, generally not the case.and the number of cqmbinations which
must be considered cén be extremely large. To illustrate thié fact,
consider a molecule with just twenty nucleic acid basés, five each

of A, U, G, and C. An upper limit to the number of different
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secondary strﬁctures can be obtained if we ignore_all steric
constraints imposed by the'sequence of the molecule and allow any
base to pair with its complement regardless Qf the other base

~pairs which are present. (For this simple illustration, we
ignbje‘G—U base pairs and we stipulate that a‘ﬁase may.participate
in only one base pair.) For this case, the problem is a combina-
torial one which may be represented by five white and‘five black
boxes, and five white and black balls, ali of which are distinguish-
able. The problem then is to determine the number bf ways thét the
balls can be placed in the boxes, subject tovthe consﬁraint thét
balls may only be placéd into boxes of thgir color. The number of
diftferent combinations is equal to the humbér of w&yé of placing
one ball in the boxes (2x52 = 50) plus the number of ways of
placing two balls in the boxes (2x(5x4)2 + (5x5)2 = 1425) plus the
number. of ways of'placing three balls in the békes (2x(5x4x3)2 +
2X(SXh)ZXS2) = 27,200), etc. The total number of different
combinations for.this molecule with Just twenty bases‘is greater
than 10% For a molecule withi25 of each of the four bases; there
are greater than 1063_difféfent ways of forming‘SO base pairs.

Of course, ﬁhis illustration greatly Qverestimates phe

numbér of possible secondary st%ﬁctures; since it ignores ail.steric
constraints imposed by the sequence of the molecule.fof réaiinucleic
~acids. Nonetheless, this.should serve to illustrate the fact;that
for a nucleic acid the size of tRNA or larger, an enorﬁ;ds numbef

of different base pairing arrangements leading to a stable secondary

structure may be possible.
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A. The Model -
The calculations reported were'performed by program DBL which
" is listed in Appendix III. The steps involved in the calculation

serve to illustrate the method which we have used to predict

secondary structures.

1. Thermodynamic Parameters for Base Pairs, Loops, and

Bulges are Specified.

. We use the thermodynamic parameters that vere obtainedv’
from the anélyéis of melting curves in the previéus~chapt¢fs; This
specifies double stréndéd stacking interactions and 1oop_free |
energies as well as they are presently known. The bulge free
energies are tgken fiom Tinoco 93_2;,5 Gralla And Crothers estimate
the freevenergy.of a simple interior loop to be +2.to +3 kcgl/mole
at room temperaturé.6 For the molecules which wgyafe interested
in, most interior loops have several stem regions extending frdm
them which must be_closéd’in ofder to form the loop. (Fbr exahple,
tRNA has four suéh regions.) The probabilityvofbloop éloéure
should be significantly decreased because of the multiple stem‘
regions. for this'work, we make the approximation that the inferiqr
loop free eﬁeréy'is 6 kcal/molé for an interior 1oop-bf any size.
This mekes the interior 100p_slightly m@re stable thgn‘ﬁost haifﬁin':
loops. Improvemgnt of our knowledge of ﬁhe stabi;ity ofviﬁteriorv-
loops is necessary in order to increase the accuraq& pf these
secondary étrucfure calculations. So long as structﬁres with the
same number of interior loops are compafed, as is usuélly the case,v
this lack of informetion is probably not'ﬁ sérioqs problém.

The stability parameters which have been used in thev



calculation are summarized below; they are all reported at 25°C,

as the calculation is performed at this temperature.

Double Strand Stacking Free Energies+

o = o:—

AGp, = AGAU- 1.3 keal/mole
O_—

AGUA 2.3 kcal/mole
o - O = _o ¢

AGAG AGAC 2.0 kcal/mole
o - o . _ :

AGZ, = AGY, 1.6 kcal/mole

o =
AGGC"_ 5.0 kcal/mole

AGSG = -3.9 kecal/mole

AGSC = -4,9 kcal/mole

[e] .
initiation (A-U)

o
8G; itiation (G=C)

Hairpin Loop Free Energies

Loop Size
{number of links)

L

5. +7.1

6 +6.5

7 +5.8

8 +5.9
9 +6.2
10 +6.3
11 +6.4h
12 +6.4
13 +6.5

Interior Loop Free Energy:

.+6.0

+h .l kecal/mole

+3.3 kcal/mole

¥ AG® (25°C)

+8.1 kecal/mole

1-The double stranded stacking free energies are slightly ,
based on an earlier normali-

different from Table 3.15, as they are
zation for kyy. The use of these free
insignificantly since they differ from
0.1 kcal or less. We do not count the
these calculations, as it is small and
structures. ' o

T

energies changes the results
the later free energies by
end effect free energy in -
equal for most secondary

Number of liﬁks = number of unbonded bases + 1.

132
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Bulge Loop Free Energies5
Loop Size - o o
" (number of links) 8G (25.0)
2 +3.0 keal/mole
3-4 +4.0
5-8 +5.0
- 9-21 . +6.0 :
m>21 +4 + 2 log(m)

The uncertainties introduced into the calculatibn by thé
thermodynamicvparameters afe as follows: _doublé stranded stacking
interactiéns ére the best known, and most are probébly_acdurate
to‘¥10%. The’ﬁain improvement ovér previous work is the. sequence
dependence of these free energies. As explained in the previous
chapter, the free energies of hairpin loops are less well known,
becausevof the uncertainty in our knowiedge of the enthalpy of
loop formation. Howe#er, since most of the loops melt rather closé
to 25°C, ﬁhé temperature used in the calculations réported, the
uncertainty in the tempefature deﬁendence of the. free energy is not
cruéial to the caléulations; The two important sources of error 
are the Iéck'of information about possible sequence dependence of
~ loop freé energies and the freé energy of ihterior loops.

One limitation in the methodology is that in the calcula-
tion of ffee energies of a secoﬁdary structure, prbgfam DBL cannot R
calculdte the free energies exactly by summing over fhe doub]é
stranded stacking and loop free énergies,'fdr-reasoné which'will be
" apparent {rom latef.diécussion. This nepessitates.ébrrection of the
free'enerélés (or stability numbers, defined=aslth¢1negé£ivé of the

free energies) in the final analysis.
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‘2. A Matrix, Called the Base Pairing Matrix, is Formed

from the Known Sequence of the Molecule
The base pairing matrix is specified by its elements aij’
where the éubscripts i and j refer to the positions of the i th
and 3v£h bases in the sequence of the moleéule. (The counting
beginsvatAthe 5' end of the molecule and progresses in the 5' to
3! difection.) The base paifing matrix terms aij,specify wvhether
bases i and j can form a base pair with each other according to-
the following rules, in which é number other than.zero means that
a pair can be forméd:

a., = 1 for a G-U base pair

13
aij = 2»for an A-U pair

844 =) for & G-C pair

aij = 0 if no base pair‘is_possible

855 = 0 if Ii—J] is less than or equal to 3

The last coﬁstraint stipulates that a hairpin loop must
contain at least two bases to be stable. Since aij equals a

the matrix is specified only for J less than 6r equal to i.

Ji?

The following molecule with the bases numbered by position
serves to illustrate~the‘base‘pairing matrixu (See Appendix III

for the base pairing matrix of a tRNA molecule.)

AUGCCUUACG
112345678910
For this molecule, a) 0= 0 (since A and G do not base pair).
. ’
8y 7 = 2 (an A-U base pair)_
) 8 10 = 1 (a G~U ba;e palr)
23,9 = L4 (a G-C base pair) |
8y 5 = 0 (hairpin loop is too small to permlt
? .

formation of G-C base palr)
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3. Base Pairing Regions (Also Called Base Pairing Vectors

or Simply Vectors) are Determined by Scanning the

Base Pairing Matrix

*

"This pért of program DBL selectsfall sequencés of 3ase
_pairs which can form abstable‘double helical region in the RNA
mb;ecule; A double spranded region is composed of elemgnts ai,j’
ai+l,j—1’ ai+2,3—2’ o e ey in,which‘all elements are different
from zero. ' This way'of specifying a double stranded region derives
from the fact that base pairing is anti—parqllel and that a given
double.stranded'region must progfess sequentially frqm one base to
the next. This means that.all possible base‘pairing regions can.'
be lbcated by noting all séquencés of nonzero elements along the
v+h5° diagonéls of the bésegpairing matri*.

For each sequence so noted, the freé energy is calculated.
This calculation includes an estimation of the free.énérgy_bf the
loop aschiated with the double stranded region. The loop free
energy uééd in the calcﬁlation is likely to be éome&hatAin error,
since the loop night be one from which, in the finai structure, one
or moré additional base pairing regions may'be_formed. for exampie,
the base pairing denoted (22,29;65,58) refers to the folléwing

base pairs and loop in an RNA:

2209 \
6558 _

The final secondary structure for this part of the molecule might

look like:

22—29  32-36
6558 5248
N
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It is thus apparent that at this stage ef the celcﬁlaeion web
can only aﬁproximate the size of‘the ioop associated with the _
double stranded base pairing region.+ Because.larger loops are
more likely_to permit additional base pairs'then small enes, e
have assumed a ma#imum_lbop size of twenty bases. (This assump-
tion is made only for convenience; if'eny loops have more than ‘ .
twenty bases in the final pfedicted secondary structure, the
appropriate correction can be made.)

All base peiring regions with a calculated free energy
 less than zero (or some arbitrary cutoff, if so desired) are
retained and arfanged in order of decreasing stebilify; The
calcuwlated free‘epergy is the sum of the double stranded stacking
free eneféies; the initiation free energy, and the loop free
energy. Thus, this part of program DBL finds all potentielly
‘stabie base pairing regions; i

One inadequacy in fhe’echeme should be noted. The runs
of nonzero integers on the Qiagonals of the base pairing matrix C
represents perfect doﬁbie helical regions. If'the helix is
-interrupted by'dne or more 1oeped out bases, then the prqgram..
treats the interrupted"helix as two separate baee’peiring regiens.
Stable regions with looped out bases might be ignored by this
search routine, if the two halves of ﬁhe douﬁle stranded region
are individually unstable but together (even with theAiﬁcreaee

- in free energy associated with,thellooped out bases) form a stable

e -

'This is the source of the earlier statement that corrections
must be made at the end of the calculation because program DBL
‘cannot calculate free energles exactly.



U: U vd 300351 0

137

region. Additional work to overcome this deficiency might well be

a fruitful avenue of research.

4. A Vector Exclusion Matrix Specifies the Base Pairing

Regiohs which can be Present Simultansously in a

Stable Structure

This part of the calculation is best éxplained with an
illuétratioﬁ. Consider a molecﬁle in which are found the follow-
ing staﬁle regions (listed in decreasing order of stability):+
Vli: (28,34;49,43)
ve: (§,10;32,26)
v3: (50,55;69,6k)

Vi: (50,55;72,67)
VS: (32,36557,53)
V6: (36,39;L6,43)
VT: (55,59366,62)

For these seven vectors, the vector exclusion matrix, ey is as

follows:

~l.To’explain the notation, V1 refers to the region

283l . -
ho43



Vi V2 Vi vk V5 V6 | V7

vi o 1 o o 1 1 o0
ve o2 0 o o (o) o o
v3 0 0o o 1 1 o (0)
‘v&s o o 1 o 1 o (o)
vs 1 (0) 1 1 o  (0) 1
V6 1 0 o0 o (0) o o

vi 0 0 (o) (0) 1 o o0

.If eij = 0, thén the two vectors i and J can exist together
in a stable secondary strucfure; If eij = 1, then the two:vectors.
overlap_such that two or more bases are simultaneously iﬁvolﬁed in
two base pairs—an impossibi;ity,'so far as is kﬁown for nﬁcleic:
acid bgses.v For example, e 5 = 1, sinée basé;’53, 54, and 55
would each partiéipate in two base pairs’ét the same time if Vi
and V5 were preSent simultaneously. An exception to this rule is
made for those Qectors which overlép»in only one position, shown in
the gbove ﬁétfix ﬁith éi3 ='(O): In th§se7cases, only one 5ase.
would have to be a parf of two different base péifs. :This means
phat breakingvone base pair (an-end‘base pair in the sequence) would
allow the sifucture tp exist. For exémple, é3,7_= (O);‘sincegnly
one base, number 55, is involved in two base ?girs. This means that
either of the following two structures would be perﬁittéa5 |

v3: (50,55;69,6h) with VT': (56,59;66,63)
V3's (50,54569,65) with VT:  (55,59:66,62)
(The vector with the ' has been shortened in order to avoid the

overlap.) Since both of these two arrangements have a free energy

only one doublé,stranded‘stacking interaction less stable than if



{)Qg&;q‘s{}g'ﬂjfg

139

the one overlap did not exit, it would be imprudent to ignore
their possiblevexistence. For this reason, we have setveij in
‘the vector exclusion matrix equal to zero if no base or one bése
is involved simultaneously in two base pairs. (In the latter
case, the freé energy of the final secondary structure must be
corrected for the base pair which cannot form.)

5. Using the Vector Exclusion Matrix, the Most Stable

Sets of Base Pairing Regions (Vectors) are Determined,

Thereby Specifying the Preferred Secondary.Structure(s).

The problem to be solved is fully specified by the

' vector'exclusion matrix and the stability nuﬁﬁérs of the vectprs.

We must find the set of vectors which are mutually compatible (i.e.,
for which e 5 =0 for.all §ectors.in the set) and whose fréebgnergy
is a minimum. Since‘there are éenefally fifty to one huhdred or
‘more vectors representing stable base pairing régions té consider
.for RNA molecules of the size we are interestea in (80-150 bases),
the number of possible combinations is large; for most RNA molecules
of interest, it ﬁouid require as much as an hour or more of

comgutér time, if all possible combinatidns were analyzed. It is

" thus necess;ry to make»ong or more simplifying assumptions. We

have assuméd'that at least one of the most stable seven vectors
occurs in.the final secohdary structure. Although this approximaf
"‘_tion cannot be riéorously Justified, it is fﬁlly consiétent»wiﬁh
what is knOWn.ébout the stability of RNA secondéry,structufe. A
secdndary structure with a large number of small double helical
regions would have a éofrespondingly'large number‘of destabiliziﬁg

loops, since each double helical region has a loop associated with
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For this reason, the secondary structure formation strongly

favors a few very stable regions over a larger number of less

stable ones.

The solution is composed'of the following steps:

Step 1: V1, the mpst stable base paired region, is
assumed to be in the preferred secondary structure. (A11
following steps afe repeated with V2 through VT replacing Vl.)

Step 2: A new, reduced vector exclusion matfix is
formed, in which all vectors not compatible with V1 are
exgluded. Only the most stable fifteen vectors consistént
with V1 are retained,.in order to iimit computation time.
(In general, about half of the most stable vectorsﬂare not
compatible with the vector éssumed to be in the solution.
This mééns that the new exclusion ﬁatrix generally extends
out to V30 or so.)

Step~34i~All possible combinations Qf thése fifteen
vectorsiéfévconéiaeréd, using the réduced exclusion matrix'
to determine which vectors are compatible with'each.ofher.
All sets of vectors having a ;tgbility numbef {(negative of

the free energy) greater than a specified cutoff are retained -

and reported as output by program DBL. (This cutoff energy

will vary from molecule to molecule. " It is calculated inter-
nally within the program as 90% of»the free energ& of the
most stable secohdary structure determined using the above
éteps, but assuming that at least oné of the most stable five

vectors is in the final solution and using a reduced exclusion

matrix of 5 x 5 elements.)
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Step 4: Steps 1 through 3 are repeated for veé%ors
V2 to VT,
for a detailed.explanation of the workings of prbgfam DBL;v
which inciudes examples of the output and a discussion of the
internal logic of the program, the reader is referred to Appendix
ITTI. Here we illustrate steps 1 through 3 with a simple example.
Consider the following vectors with their stability numbers and .

associated exclusion matrix:

VECTOR STABILITY NUMBER
Vi 11

Ve 9

V3 8

vl | T

V5 5.5

V6 5.5

VT 5

v8 L

Exclusion matrix:

Vi Ve V3, vh vs V6 VT

V1 0 0 1 1 0 0 0

'v2 o o o0 1 1 o 1

v3 1 0 0 o 1 1 0

yu 1 1 0 0 1 o 1

VS 0o 1 i 1 0 0 0

vé o -0 1 0 O 0 O

VT 0 1 0 1 0 0 0
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Assuming first that V1 is in the solution set (step 1),

the reduéed exclusion matrix for V1 (step 2) is:
vo Vs v6 VT

ve 0 1 0 1

Vs 1 0 o0 0

V6 0 0 0 0

VT 1 0 0 0

All_combinétions of vectors are considered to determine
which vectors‘sets are allowed (step 3). The procedure followed
in program DBL‘combines the vectbrs in;the following order: VT,
V6; V6,V7;.VS§ VS,V?? V5,V6; VS,V6,V7;{V2; v2,VT; V2,V6; V2,V6,VT;
. V2,V5; V2,V5,V6; V2;V5,V7; ve,v5,V6,VT. For each of these vector -
sets, reference is made to the exclusion matrix to deﬁermine if
they are allowed (i.e., to determine if the'vectors.are mutuallj
compatible). If so then the stébilityvnumber is calculéted. If 
it is greater than the cutoff value, it is retained and later.
outputted -along with the vectors which make up‘the vector set.

For the calculation on a real molecule, this procedure
is performed on a 15 x 15 riduced exclusion matrix. The number of
different combinations is 12 Zi or slightly less ﬁhan 36,000.
of this lgrge number of co;:Snations,‘moét are forbiddeg. The
éalculation is done on a_computgr relatively qﬁickly, éince'ﬁhe
determination of whether or not a combination is allowéd can be
done in a small numbér of Steps. |

For the problem considered, the results are:



QU R “’:Sﬂ:jé EB
VECTOR SET STABILITY NUMBER (Including V1)
VT 16
vé 16.5
V6,VT ]

V5 , 16.5'
V5,VT 21.5
vs,v6 2
V5,V6,VT 27

va 20
v2,vé 25.5

The most stable vector set is V1, V5, v6, VT. The set

V1, V2, V6 is 1.5 kcal/mole less stable; When the procedure is.
repeated_aSsgming eaéh Bf the six vectors other than V1 to be
present in turn in the final solution, no other sets of vectors
emerge &s possiblé_contenders for the secondary séructufe; The
final choice between ﬁhe two best sets requires that the sfﬁbility
numbers be recalculated, with corrections made for (1) any
changes in loop size by the final vectér set, and (2) any base
fairs which.must be broken because an overlsap of oné bése has
~ been alléwed in the vectof exclusion matrix.

B. " Results |

One additiondl assumption has béen made for all RNA molecules
which have been calculated using prograﬁ»DBL. In order té»limitf
the number of soiution sets, we have forbidden nucleic aéid bases
in loops to base pair with bases in other régions of thg'RNA.

molecule. This eliminates structures of the type:“
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. Thi$-is a reasonable assumption to make, since in most instances
the steric constraints on.the molecule would not allow such types
of base pairs to form. It is a necessary assumption in that it
eliminates a very large number of secondary structures in which
the strands of the RNA are twisted around one another so that

the structure cannot be drawn in two dimensions. It is difficult

to imagine a mechanism whereby many of these secondary structures

~would form. It is important to realize that, while this assumption

is necessary to limit the number of solution sets and is consistent

with what is known about RNA secondary structure, it cannot be '

fully Justified. Program DBL is written fo do each calculation

both with and without this assumption. It is instructive to note

the myriad of "unusual" vector sets which result when the assump-

tion is not invoked.

1. trNAT

Thé main reason-for-apﬁlying_fhe model to the prediction
"of tRNA secondary structufe is to determine how well it works and
to mske note of its'iimitatiop. . There is_geperal'aéreement that

tRNA takes on a secondéry structure which looks like a cloverleaf

since this is the most stable conformation into ﬁhich»all tRNA

molecules can be fit. Because of the similarity of function of all

+For the sequence of tRNA molecules, the reader is referred
to R. Holmquist, T. H. Jukes, and S. Pangburn J. Mol. Biol., T8
91-116 (1973). -

1kh
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tRNA molecules during protein synthesis, it is undoubtably.necessary
that all have‘similar secondary structures. Because tRNA molecules
perform biological functions in addition to directing the
incorporation'of amino acids during protein synthesis, it(might be
interesting to speculate on other possible stable secondary
structures which tRNA might form. Some tRNA molecules are knownl.
to exist in stable deactivatéd forms which p?obably differ‘from

the native form because of_diffefence in secondary'sﬁructﬁre.

a. Valine tRNA from brewer's yeast
The sequence of véline tRNA from brewer's yeast is
shown below. D = dihydrouridine, P = pseudouridine, and Y is an
unknown base. There is no evidence that D and Y participate in
base pairs; they are not permitted_to form base éairs in the
calculation. | |
Sequence: N
GGUUUCGUGGUCPAGDCGGDDAUGGCAPCUGCPUYACACGCAGAACDCCCC
i[o 20 0 ko VSQ
AGUPCGAUCCUGGGGCGAAAUCACCA
60 T0
Only i7 base pairing regions more stable than 0.5 kcal/mole were
foﬁnd for val tRNA. (The free energy ofkﬁhe base ﬁéiring region
is the sum of the'free energies of the double strand stacking,
initiation, and loop formation free'eneréiesyat 25°C.) Altogether
L1 basevpairing fegions with_avnegati#e‘ffee energy were féund,
but 20 of these had a free energy of -0.1 kcal/mqle 6r less; these
latter regioné are unimportant as factors in stabilizihg the |

)

molecule through secondary strudture’.
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Two secondary structures more stable than the cutoff

free energy were found:

/\ FREE ENERGY
61 53
1 , 11w
V2 66 48
~73-67 44 — 40 '
1-7 28 —32
\./ V3
2 Ty |
66 48 o
v ( 3 -23.5
77—-174 - 44 —40~N :

8-11 28 —32

~—vs

In structure I, the prime on V2 indicaﬁes that this

-

regioh has been shortened by one base pair because of an overlap
with another vector. Base number 66 was the one involved in two
base pairs in the reéplts. The corrected structure.pairs base 66
with base 48, forming a G-C base pair. If base 66 were paired
with base 8 (the other choicé),.a G-U base'paif woﬁld bé’formed;
adding less to the stability of the molecule. Bécause stfuctures
I and II differ by less than 10% in free energy, it would not
normally be prudent to predict‘with assurance which of the two
secondary stfugtures woﬁld be favored;‘ In this case, hoﬁevér,
because of the great similarity between the two — they differ only
in one double‘sfranded région — it isvsafe_to conclude that
structure I is the favored one.-

When the predicted secondary structure is compared
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with the cloverleaf structure for val tRNA, we note‘that the
dihydrouridine loop is absent. Thisvresults from the fact that
the base pairing region associated with the dihydrouridine 160p

consists of the following sequence:

12 10
(jC UG
GGC
24 26

| The free energy of this region is -1 -1 -1.1 +6 =
N +2.9 kca.l/mole.Jr ‘As noted in Table 5.1, we have taken the free
energy for a G-U base pair in any double stranded interaction to
be ?l kcal/mole. Unfortunafely,vthe sequencé'dependence of G-U
to base pairs is not known. If the free energy contribution of
G-U to each of the two double stranded stacking interaétions is
-2.5 kecal/mole or greaterv(i.e., more negaﬁive) in the sequence
| above, then the dihydrouiidine loop would be étable; .

b. f-=Met tRNA from E. coli.

The sequence of f-met tRNA from E. coli is:
CGCGGGGUGGAGCAGCCUGGDAGCUCGUCGGGCUCAUAACCCGAAGGUCG
10 20 » 40 50
UCGGUPCAAAUCCGGCCCCCGCAACCA | |
60 - 70
A large number of possible base pairing regions were
'v'foundvfor this molecule: 87T with a negative free energy, 46 more

' stable than -1 kcal/mole, and 22 more stable than -3 kcal/mole.

1‘The.-l.l kcal/mole is the amount by which initiation at a
G~-C is favored. ' ‘ I '



The most. stable secondary structures
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are:
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FREE ENERGY

-39.3

-38.9

-38.5

48 = 45 ~~44 - 40

15-18
va3

28 - 32

The next best secondary structure is 3 keal/mole

less stable than structure ITII. The accuracy with which the

- free energies are known do not make ‘it possible to choose

 umong the three predicted secondary structures, since they

differ in free energy by so little.

The cloverleaf model is

. structure II, One of the stabilizing factors which favors

structure I over structure II is the bulge of two bases .

following V1, with-a positive free energy of +4 kcal/mole.
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instead.of a loép which would have a free energy of about +6 kcal/
mole. As we have noted, the possible sequence dependence of bulge
free energieé is not known; the fact:that this bulge consists of a
C and G base ﬁay affect the free energy, although in what manner
is not known. Another uhcertainty associated with £he free energy
of this bulge ié that it is terminated by a G-U base pair (positions
8,64) which,maj not be sufficiently stable in this environment to
.close a bulge. | |
| - In summary, it is not possible to unambiguously
» predict the sécondary structure of f-met tRNA because of uncertainty
‘{: in‘the ffee energies, although we cah ﬁith good assurance limit the
- choice to one of the three structures above. It is possiblé that.
‘f-met tRNA,_under some conditions, might form one of these other
secondary structures.
_¢. Phenylalanine tRNA from yeast is:
GCGGAUUUAGCUCAGDDGGGAGAGCGCCAGACUGAAYAPCUGGAG&UCCU
| 10 20 30 ‘o 50
GUGUPCGAUCCACAGAAUUCGCACCA
| 60 70
~ Only 36 base pairing regioné with_a‘negative free
energy were found. Seventeen of these were more stable than -1
| kéal/mole; The procedure produced Just one segondary structure,
. the cloverleaf model, which ﬁas corrected for one overlap in V1.
; Becéuse of the paucity of base pairing regions; this problem is
fjsufficiently simple that it could easily be solved without the

use of a computer.



150

FREE ENERGY
T % '
61 53 yq

it % PN vz -20.8

N~ 72— 66 43—39>
1=—17 27 — 31

\10 15/

| 1 V8
13 22

d. Phenylalanine tRNA from E. coli.

The sequence of phe tRNA'fromrg, coli is:
GCCCGGAUAGCUCAGDCGGDAGAGCAGGGGAPUGAAAAPCCCCGUGXCCU
10 2 30 4o 50
UGGﬁPCGAUUCCGAGUCCGGGCACCA |
60 70 |
The identity of the base at position LT is unknown.
We allow it to pair with any base for thg purposes oflthis calcuia—
tion. (This is accomplished by entering an X for the bése, when
the sequence of the molecule is read by program DBL.)

" Like f-met tRNA, phe tRNA from E. coli has a large
number of stable base pairing regions. Some of these'are artifi-
cial, because we have allowed the base at positionth to pair
with all other bases. T2 base pairing regions were found, wifh
46 more stable than -1 kcal/mble, 36 more stable.than'—2‘kcal/mole,
and 27 more stable than -3 kcal/mole. The most stable structures

are:
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FREE ENERGY
Vi v32
~79- - 6) 7— -37 .
I “72-65 63-61 47-45 43 3) 412
1-8 7-19  24-26 — 27 —33
V17 v2
N\
o 1
11 | ‘6| 5|3 Vie
ot % v2 |
~ - ’ - - 37
72- 66 47-45 43 3) _40.6
1-7_ 24 —26 — 27 =33
V32
, N\
1 5
111 6' .3 Vi
' , % 49) - : . -40.0
N 72-66 3-37>' RN
1-7 27 - 33 |
/7 V2
10 25
vee |}
13 22

: The next most stéble structures are similar to the -
abéve‘structﬁres, but with one double stranded regién—broken{
Thereafter; the best structures are at leasf L kcal/mole leés
stable than structure III. In this calculation, structure III ié
- the clo#erieaf model. Structures I‘and II are possible only if

’the unknown base pairs as if it were a cytosine residue. If this
Lv’is not the case, then the cloverleaf is the favoréd secondary

~structure, since base UT is not base paired in the cloverleaf

structure.

151
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e. Alanine tRNA from baker's yeaét

The sequence of this molecule is:
GGGCGUGUGGCGCGUAGDCGGDAGCGCGCUCCCUUYGCYPGGGAGAGUCU
10 20 30 Lo 50
CCGGUPCGAUUCCGGACUCGUCCACCA |
€60 T0
The distribution of base peiring regions is:
20 mbre stable than -2 kcal/moie
33 more stable than -1 kcal/mole
62 more stable than 0 keal/mole

The calculetion found the following secondary structures:

1 - 15 24 | ' FREE ENERGY

(9 30 i ' ‘

U C _
~3 31 ' ' ~34.1
1 33 vie vz

40 =43 '5o—s4>

© 7471  e6—62
..’

11 - 62 54
i1 vz

Ve /-66 50 vs

v -33.9
N 7369 45-41> S

1~-5 ° " 29-33

IIx : ' 62 54

ve N : 32,7
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I. | | Vl )
! . T w32.1
v22 :
1 333 N\ V2

N40~42 = 43-44 50-54> .

77 ~17 72 =71 66 —62
V24 \_/

Two different cloverleaf structure (II and III) are
indicated. The calculated free energies of the two most stable
structures are within 0.2 kca;/mﬁle of one anothéf, sé that it is
impossiblé td'éhoose between them. If only doubie stranded stack-'
ing interactions are considered, structure I is less stable than
structure II, but the bulge in sfructure I between bases 3 and 9
is presumed more stable than the corresponding,loép in structure
II. Structure IV has one additional base pairing region and one
more base pair than structures_l and II. It is less.stable
because'it.possesses an extra bulge.

f. Tyrosine tRNA from baker's yeast.

The sequence of this molecule is:
CUCUCGGUAGCCAA&DDGGDDDAAGGCGCAAGACUGPAAAPCﬁUGAGADC
10 20 30 o 50
GGGCGUPCGACUCGCCCCCGGGAGACCA |
60 T0
>0nly 15 base pairing regions more stablé than -1 kca;/
mole are possible out of the ﬁovregions which were found.  Only
one secondary structure is caléulated to be mére'stable than the

cutoff free energy and it is the cloverleaf structure.
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‘ r‘\ ' ] » FREE ENERGY
83 55
I 'y
vz, 67 51
1~7 29 —33 ’
N 10 27 _
' N

v7
.12 25

g. Serine tRNA from brewer's yeast.

The sequence of this molecule is:
GGCAACUUGGCCGAGDGGDDAAGGCGAAAGAPUYGAAAPCUUUUGGGCUU
10 20 30 40 50
UGCCCGCGCAGGUPCGAGUCCUGCAGUUGUCGCCA
6 70 8
Sixtyftwo base pairing‘reéionSQWere found with a
negative free ehergy; 38 of these were more stable than -1 kcal/ .
mole; 28, more stable than -2 kcal/mole; él, ﬁdre stable ﬁhan
-3 kcal/mole. The results for this molecule .indicate s problem.
which, although it is not likely to occur often, is sufficiently
" serious to merit fﬁrther consideration. As noted earlier, the
exclusion matrix pérmits 0 or 1 overlap between base pairing
regioné. When two or ﬁore.overlaps oécur‘betwéen‘any twd 
regions, théy_are considered incompatible. For ser tRNA,Itwo
"over15ps do éccur in the cloverleaf structure, since one of the
" base pairing regions can‘be extended by two base pairs, thereby
increasing its stability but overlapping a neighboring region.

_Only two_struétures were found by program DBL for the molecule:
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/\
I 3 10 . a8 52
ve V1 .

, V3  FREE ENERGY
1 12 —23-27 — 44 56 :

. -33.9
-80 ——74 8)
_ 84-80 l 5l v2
70 82
/
N\
11 33 37
- : | 1 V18 . ,
(25 4|5 . v : _28.4
12 46 '
o V7
9 49
C I N\
5 50 62 70
V6 | | ; | | V2
1 54 .56-—57—58 74
/83-_-8'2. '
V17

The cloverleaf structure, which is almost as stable as

structure I, is shown below. It was not found by the calculation.

0 62 52 ) . FREE ENERGY
| | v2 48 .
74 58 5644 “v3
~81-75 7 \ . -31.1
1-7 43 - 38> -
V14 37 - 32
4
18
10 25 v
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Consideration of the seduence of the molecule shows that'the base
pairing region designated V18' can be extended by qu base pairs:
base Ll caﬂ'pair with base 26, forming a G-U base pair and_bésev

45 can.pair with base 25, forming & G-C base pair. As s résulﬁ,
V18 and V3 are mutually exclusive, and the cloverleaf strucﬁure waé
‘not found. -Program DBL does find the cloverleaf structure (with V18
absent), but its free energy, -28 kcal/mole, is élightly below the
cutoff energy and it is not reported. .The relatively high cutoff
energy results from the particularly stable form, structure I,

which is found when the calculatioﬁ is performed on the reduced

exclusion matrix of 5 x 5 elements. .

Two related pfoblems are presented by these results:
(1) the_failure‘to find the cloverleaf structure for ser tRNA is
disturbing, although the reason for this.failure is evident. One
solution is to allow two overlaps in the vector ' exclusion ﬁatrix.
The difficulty with this approach is that the analysis of results
is made considerably more complex. An alternative approach, which
we have used in analyzing the results of the 55 RNA calcuiations,
is to note.carefully all regions Qf a given structure which are not
double stranded. One then uses the base pairing matrix to determine
if aﬁy additional double,strénded regions canvbe formed which have been
omitted because of multiple overlaps. (Two versions of the base.
pairing matrix are outputted, as shown in appendix III. The:second
version, which shows ali the vectors and their positions in the
matrix, is the proper one for this analysis.) The advantage of this

procedure is not only that it considers thevviability of doubly
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overlapping regions but also that it notes ﬁdditiqnal double stranded
regions which fall outside the range of the reduced exclusion matrix.
For example, a vector which contributesA—2 kecal/mole might be too
far down'the list of vectors to be considered in the solu.tionf Using
the base pairing matrix to determine if any’such vectors ekist in
regions of the molecule which are not double stranded effectively
extends the raﬁge of the reduced exclusion matrix. In the few
'inst#nces for which this procedure has yielded additional base
pairing regions in a secondary structure, we call attention to_thé
fact. (2)“The second diétﬁrbing finding related to ser tRNA is
that a secondary structure almost 3 kcal/mole more sfable than the
éloverleaf Structure has been found. This is the only iﬁstance in
which a calculation has sugéested that a Structure'other.than,the
cloverleaf may be as much as 10% more stable than the cloverleaf
at room temperature; It is highly unlikely that structure I is the
biologically active fdrm of a fRNA, since its spatial orientation is
so different from other tRNA molecules. It should, however, be noted
that the bases ﬁaking up the anti-codon in structure I (bases 34-36)
are not involved in base bairs_and so could, in theory, bind with a
codon. They aré‘found'in an interior loop in'structure/I, rather
than in a hairpin loop, as is the case with othef tRNA secondary
" structures. |

- 'The similarities and différences between stfuqture I
and the cloverleaf secondary structure are of interest. Structure
I contains nine fewer base pairs than the cloverleaf structure.
It also has one fewer loop. Both secondary strugtureS'contain regiqns

V2 and V3. Region V8 in structure I has the same base pairs as
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region V13 in the cloverleaf structure, and makes almost the same
contribution to the free energy of the molecule. This leaves the
folldwing double stranded regions of the two structures responsi-

‘ble for the apparent greater stability of structure I:

V1

I: Free energy = ~4.9-5.0-4.0-1.6
23 27 nerey .
GGCGA -1.1+6.0 = -10.6
~ CCGCU~ '
84 80
Cloverleaf: : Free energy = ~1-1-1.6-1.3
\2C I -2-1.9-1.1+6 = =3.9
81 75
CUGUUGA”™
GGCAACU
1 7
43 38 Free energy = -1.3-1.3-1.9-1.6
UUUCPA:) - ‘
AAAGAP -1.3-1.1+46.5 = -2.0
27 32
vis'

Vl,.with Just five base pairs; should be significantly
more stable than the sum of V14 and V18'. This is primarily due to
the fact that neither V14 nor V18' have any GG, GC, or CG interactions.
Unless terﬁiary structure can significantly alter the free énergy
_ oﬁr present knowledge indicates that structure I should be the .
favored.conformation. _ _ - : -';- ; .

2. Results for 55 RNA T e ‘
The results diséussed abové suggest that the methodology | |
for predicting secondary structufe is generally reliable when applied B
tb ﬁRNA molecules, ﬁhich have between TS5 and 85.nucleic acid béses.
It apparéntly failéd in one instance, and a proceduré to safeguard
against this failure was suggested. It is evident that future work

on the methoddlogy in concert with additional information regarding
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ldop free energies is needed before we have full confidence in the

method. Nonetheless, the method appears generally reliable at fhiS»

stage in its.development; We now apply it to the‘prbblem of 5S RNA,

which has an as
~acid bases than
a.

58

yet unknown biological function and 50% more nucleic

tRNA.

5S RNA from E. coli

RNA from E. coli has 120 bases. Its sequence is:

UGCCUGGCGGCCUUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCA

10 20 - 30 4o 50

GAAGUGAAACGCCGUAGCGCC GAUGGUAGUGUGGGGUCUCCCCAUGCGAG

60 70 8 90 100
AGUAGGGAACUGCCAGGCAU
10 120

Although 5S RNA has only about LO more bases than tRNA,

the difficulty-of predicting the secondary structure is greatly

increased. This is made evident by the fact that'pfogram DBL has

found 185 base pairing regions with a negative free'energy. It was

poséible to find the most stable secondary structures for a few tRNA

molecules by inspecﬁion of the sequence of the molecule without

resorting to a computer calculation; for 5S RNA, the need to perform

& computer calculetion is much greater. 68 of the base pairing

. regions are more stable than -2 keal/mole, 52 are more stable than

-3 kcal/molé, and 39 are more stable than -4 kecal/mole. The use of

' the reduced exclusion matrix with 15 x 15 elements allows the

‘calculation to consider solutions out to approximately the fiftieth

| baese pairing region. This means that the solﬁtion takes account of

~vectors more stable than -3 kcal/mole. To consider the remaining
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vectors, we inspect the base pairing matrix in those regions of the

structure in which a string of bases is not base paired, as discussed

previously. . The resulting secondary structures are:

11

111

Iv

FREE ENERGY

v3z V20 o~ V2 V48, |
119-110 107-103 98—95 88-79 77-173 55 .8
1=-10 -~ 11=—15 17-19 33 -42 61-65 ’
V1 ~ ! ~
' 20 31
| |
V58 23 28
v
7N
105 92 ‘
I | V17 : . -53.2
Vi _~108 89 V48 _ .
119-110 ' 88—79 77—173
1-10 33—42 61—65
\2‘0 31/ v
ves .y
23 28
\—/
. P o~ ~ V4T V53
119 ~110 107 —103 98—95 88—81 76-73 69—67 52.5
1-10 — 11-15 17-19 23-=30 37—40 60 —62 )
vl - V32 V20 V4
vVl Pt V1ié /\ v2 V43
119—110 108-—105 88-79 77-173 50.9
1-10 "25=28 33-42 61 —-65 e ‘
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v ' 1?5 9,2 V17 j ' - -47.1
V1. 108 8.9 N V4T V53
119-110 88-81 76—73 69 =67
1-10 23—30 37-40 60-62
SN va
90 86 ' '
Vi o -
' I V3 . -46.8
97 79
' N N
119—110 70-67 43—40
1-10 : 16 =19 - 20 —23.
V1 v8 vis'

Obser#étions concerning the above reéults: (l)'oniy

- ﬁ limited number of secondary structures are predicted. This is a

necessary condition fof the methodology ;o-be.useful. We have lisfed

all secondary structures within 10 kcal/mole of structure I. (2) Wé

have Scannéd the base pairing matrix for vectors not iﬁcludea in the

s reduced exclusién matrices to determine if any qf the structures could
" be stabilized by added another vector to the strﬁcturg. The result .

has beeh the addition of V58 to structures i'andrII. This further

sfaﬁilized the secondary structures by 3 kcal/mole. All the

v predicted secondary structures have been analyzed in thié manner.

. (3) Because the free energies of structures I, II, and III differ

by so little, it is difficult to choose among them: Strucﬁure II

looks much like a cloverleaf model; structure III is & fully extended

model with only one hairpin loop. It will be useful to keep these
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three skeletal forms in mind as we analyze other 5S RNA molecules.

b. 5S RNA from Pseudomonas fluorescens

8

The sequence of this molecule is:

UGUUCUUUGACGAGUAGUAGCAUUGGAACACCUGAUCCCAUCCCGAACUC
10 20 30 T ho 50

AGAGGUGAAACGAUGCAUCGCCGAUGGUAGUGUGGGGUUUCCCCAUGUCA

60 0 80 90 ~ 100
- AGAUCUCGACCAUAGAGCAU
10 120

Program DBL found T2 base pairing régibns with a nega-
‘tive free energy; 28 were ﬁore stable than -2 kcal/mole, 20 were
more stable than -3 kcal/mole, and 10 were more stable than -4 kcal/ -
mole. Because of the limited number of base'pairihg regions, the
program was able to consider almost all of them with a negative

free energy. The most stable secondary structures are:

FREE ENERGY

. V24 VT~V , |
1 “119—114 — 113-—109 98—91> . 31.9
1—6 74 —178 80 — 87 -
20 60
i | \ V5
<zs 61>
7
2,9 5, V4
33 53

N



0

I

I11

v

v 43003 23

V23 -y
S119-114  108-105

V1

V24
1-6 11—14 80 —87
S 21 76 |
ve 1 |
(26 71)'
, 29 57
va | i
33 53
Vie iz W1
120-117 113-109° .98—91>
63 —66 74—178 80 —87
\ TR
29 57
b1 V4
Ve o~ VI _—~ V1
120—-117 113-109 98-91>
_ 63 —66 74—178 80 —87
N / .
4 55
I ] V15 -
23 46
. | v26
26 43

—/
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=29.2

-27 .4

-27.1
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There are several other secondary structures repérted
which are within 10% of thebsfability of structure I. All of these
structures are similar to one of the four most stable forms; théy
have the same skeletal arrahgement with the substitution of a less
stable b;se pairing region for a more stable one; We have for this
reason bmitted listing them.

| Compéring structures I and IT with the results for
55 RNA from E. coli, we note that the branching of the base pairing
regions is significantly different for the two molecules. The main
feature that the secondary structures have in common is that the
two ends of the molecule are base paired to one another. Structures
IIT and'IV for P. fluorescens 55 RNA are different from the previous
secohdary structures, in that the ends of the molecule are not bound
to each other.

c.‘ 5S RNA from K. B. Cells

9
The sequence of this molecule is:
' GUCUACGGCCAUACCACCCUGAACGCGCCCGAUCUCGUCUGAUCUCGGAA
10 20 30 b 50

GCUAAGCAGGGUCGGGCCUGGUUAGUACUUGGAUGGGAGACCGCCUGGGA

60 70 8 90 100
AUACCGGGUGCUGUAGGCUUU
10 120

A total of'157 base pairing regidns were found; 63 were
bmore stable than -2 kcal/mole, 48 were more stable than -3 kcal/mole,
and 32 were more Stable than -4 kecal/mole. The favored secondary

structures are:
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FREE ENERGY
1 . 104 98 ,
' 8 10 -41.4
109 93 :
Ve N 7\ Vi
~118—110 87—85 67— 59
1—9 , 17-19 27—35
~——
va — V27
i © 16a e
| 11 vio' 0.4
| 109 93 Vi
118 —110 . 72 —69 67—59)
1—9 13—16 27—35
~~
111 94 87
% 87 -40.1
(-97 84)
104 827
1 ) v7
113 73y
v -
114 70 4
vs 1 | —~"
120 64 62 —57 48 —45
. 16—21 29 —32
» .
v o _ 89 173 '
11 V32 ~39.9
va vol 93 .eg\v
- “118-110 — 109~ 106 67—59%

' 7-35./

1-9 16'-19\.j



: _ N |
- 3 '
- V13 ~ Vi
~119-116 72— 69 67—59°
- 7-10 13—16 27—35
/ . \__/ V39
104 98 .
VI ) | | V10 -38.1
110 92 B
vis -~ ~ —_~ v
N119-116 , 87-85 67—59
_7-10 17—-19 27-35
e _
V27
o A~
VII 94 87 -38.1
v | { V50
'(9_7 84>
82

104

|

—113 ‘73 . 68 — 65 ‘62—57

— _7-10 16-21
SN
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FREE ENERGY

| VI V6 ~~ V3 /T\V24

48 — 45"
29 =32

Here wevhave chosen -38 kcal/mole as the cutoff for
the free energy. If the cutoff had.beenzéhosen at -37 kcal/mole,
E about an equal number of additional structures would have beeg ' |
in;luded. Most of these structures are very similgr to one of the
.’seven structures shown, with a less stable_base pairiné region
'replacing a more stable éne. Because of the large number of |

secondary structures of almost equal energy, it is very difficult
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in this case to unambiguously predict a secondary structure'for the
molecule. Thg solutions do appear to group themselves into three
different skeletal arrangements: structures I, II,‘V,,and VI show
great similarity, with Just éne branching hairpin loop following
the base péiring region which unites the two ends of the molecule.:
Structufe IV is not‘greatly different ffom these structures,-with
its branching hairpiﬁ loop further from the ends of the molecuie.
Structurés IIT and VII are similar to each other in their skeléial
- _ arrangements, with the ends of the RNAvnot bonded together.

d. 5S RNA from yeast.

. 10
The sequence of this RNA is:

GGUUGCGGCCAUACCAUCUAGAAAGCACCGUUCUCCGUCCGAUAACCUGU
10 20 E W 50

AGUUAAGCUGGUAAGAGCCUGACCGAGUAGUGUAGUGGGUGACCAUACGC

60 7 - 80 %0 100
GAAACCUAGGUGCUGCAAUCU |
110 120

95 base pairing regions were found. U7 are more stable
than -2 kcal/mole; 27, more stable than -3 kcal/mole; 15, more stable

than -4 kcal/mole. The results of the calculation are:



Vi VS (V54— VT V32
I M120-112-111—-106 98—97 90-85 -75—72>

1-9 16 —21 36—38 45-—50 59—62
— . —/ N

' o ’
V1 V5 ~ V55 ~~ Vi3 ~~ V32
11 \120-112-111-106 99 — 97 91— 86 75—72)

1-9 16-21 29-31 36-41 59 —62

, Vi Vil vie _ va23
111 N120-112~111-107 95—92 90—86>

1-9 45—49 62—59 67—71
S—t A4 A

_ ~
v 86 71
. - I ] va3
(90 67>
92 62 '
| | Vie'
Vi » L 94 60
\120—-112 - 111—106 59—57>
1—-9 16—'21‘ 24 —26

Vi V5" (V20 _— V81 _— V32

\) N120-112 -111—-106 91—88 85-—81 75 -,72) '

1-9 16 —21  26-29 47-51 5962

VI . 88 174
: ' ] | Va5
<90 72)
92 62 ,
_ 11 Ve
' - _ 94 60
V1 V5 e
. . \
N120-112-111—- 106 59—57>
1-9 16 - 21 24-26~

\_/ \__/ V39
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-25.5

-24.6

-24.4

-23.9

- -23.6

-22.9
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We list all struqtures within 10% of the free energy of
structure I. There is one additional structure, equal in energy |
with and almost identical to structure I, with baées 29 to 31
pairing with 99 to 97 in place of bases 36 to 38. The only differ-

. ence between fhié and structure I is in the size of the interiorv
loops. Structures I, IT, ITI, and V have the same skeletal arrange-
ment , being extendedvRNAvstructures with only slight differences
between thém iﬁ base pairing regions. 'Structures IV and VI are similar
to each other in their skeletal arrangement, differing in one doubié ‘
stranded fegion. On the basis of the results of this calculation, it
would appear that.an extended structure. like structure I is the favored -
secondary struéture. It is of interest to nOté that- this 5S RNA has
fewer base pairs and is less stable théﬁ @he others we have cphsidered..

e. 5S RNA from humsn cells.

" The sequence of this RNA is:ll
GUCUACGGCCAUACCACCCUGAACGCGCCCGAUCUCGUCUGAUCUCGGAA
-10 20 30 4o 50

GCUAAGCAGGGUCGGGCCUGGUUAGUACUUGGAUGGGAGACCGCCUGGGA

60 70 80 90 100
AUACCGGGUGCUGUAGGCUUU
1o 120

157 base pairing regions were found: 63 more Stablev
than -2 kcal/mole, 48 more stable than -3 kcal/mole,»énd 32 more
stable than -4 kcal/mole. We report all strhctures within*lO%.of

the free ehergy of the most stable étructure.
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FREE ENERGY
| L . 89 73
1 .
: It V32 -40.9
93 69
V4 ve' [ ~
N118—110 — 109—106 57—59_)
1-9.  16~19 27 — 35 '
\—/
V1
11 o 102 98 SR
vio' i | _ -40.9
/109 93 v
NM118—110 o 87— 85 67-—59)
: 1-9 - 17—-19 27-35
va v27
111 102 - 98 : |
vio' | | : -40.8
: 109 93
o ", . \_ _ f\ V1
118 -110 72—-69 67— 59)
1-9 13-16 27-35-/
va  v3g \'/

The next most stable structure is more than 4 kecal/mole
less stable then any of the above threé secondary,structures, all of

which have approximately the same'free'energy.
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C. Discussion

1. A Common Model for 5S RNA?

As for tRNA molecules, it is reasonable to expect 5S

RNA from diffé£ent organisms to have similar secondqry structures.
It is thus of interest to note similarities and differences among
the predicted secondary structures of 55 RNA. Two of the 55 RNA's
héve a fully extended secondary structure with no.bfgnching double
atrénded regions as one or more 6f the solution structures. The
structures in which ﬁhe.twd ends of the molecule are not united
(for KB, iII and VII; for PF, III ahdva) can be represented as

a variant of the fully extended stfucture (rather than‘in the
shape of an L, as shown). Only one 55 RNA has a clo?erleaf type
structure in solution sef, with four stem régiqns extending from
an inﬁérior loop. The moét common étrubtural fdfﬁ, ﬁhich isvrepf'
resented in the solution sets for all the 5S RNA's,.ié an extended
structure with one stem region branching off from an. interior
: 1oo§. These structures differ from one another in tbé posiékon
of the branching region. For E. Coli. 55 RNA, the bfaﬁching

j region has one hairpin loop and occurs after the seéond double

: stranded region from the end. For PF,-sfructure i branches
.; after thevfifst double stranded region and has oneyhéirpin gnd

 two interior loops; structure II branches after the.second double
:stranded‘region. Similarly,'for KB, yeasﬁ, and human 5S RNA,
uf.different forms of this genéral type of secondary stfucture appear
" in the solution set.
The bgsié coiculsion is that no one pattern of seconda?y

structures emerges from our analysis, although éome structural sim-

ilarities db,appear among the 55 RNA's we have studied.
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2. Comparison with other Results

A number of models for 55 RNA from KB and E. Coli. have
been proposed. 9, 12-15 0f those models which propose a secondary
_structure for”tne entire molecule, the most stable are the nodels
of Cantor'® and Lewis and Doty’ for E. Coli. 55 RNA. In both of .
these models, bases in loops are permitted to base peir and the
strands afe twisﬁed iniand out of one another in‘a very complicated
fashion. For our model calculations, we have excluded such struc-
tures from consideration. The Lewis and Doty model has the
strongest experimental support, as the authors performed oligo-
nucleotide binding stndies to determine which regions of the
molecule were single stranded. It is difficult fo eveluate the
free energy of this structure because of uncertainty in our
vunderstanding of the loop freevenergies in a twisfed three dimen-
eional arrangement; we estimate it to be about ~53 kecal/mole, |
somewhat less stable than the calculated free energy of structure
I. The binding data of Lewis and Doty are inéoneistent with struc-
ture I, as they indicate that bases 9 - 13, 25 - 32, 58 - 65, and
- possibly 95 - 98 are in single stranded regions of the molecule. |
Of the secondary structures fof E;_legL 55 RNA, only structure VI
is consistent with these data. |

On the basis of experiments in.wnieh 58 RNA from E;_gg;i;
was digested with several ribonucleases and the sequence of the
fragments determined Jordan concluded that regions of the
molecule composed of bases 40 to 45, 21, and 61 are single stranded,
regions 22 to 4L and MS to 61 are self-paired, and region 1-10
is paired with region 110 - 1207 5 of the six solution structures

reported for gﬁ_Coli.»SS RNA,.only structure VI is consistent with

these resnlts.
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This comparison with experimental work suggests a
direction for future work in extending and improving these model
calculations. The calculations could be combined with the results
of oligonucleotide binding, digestion, and‘other physical studies
ﬁhich yield pieces of information about the secondary structure
of the molecule. The calculation could be performed by deleting
those regions from the sequence which are known not to base pair.

Further refinements in the calculation await more and

better information about loop stabilities.
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APPENDIX I

 PROGRAM OLIGO

Program OLIGO is used in Chapters 2 and 3 to celculate melting

curves for double stranded RNA oligomers for different values of

L4

o .
Miss kyg

outputted onto & teletype machine so that new trial values of the

» and k. The program is written so that results may be

parameters can be inputted as soon as results are reported. More
complete output information may be obtained by spécifying a
complete computer printout. The program sums over all intermediate
states shown in Fig. 2.1. Since the logic of program OLIGO is
straightforward,'wé explain only the inputting procedure and the

use of the progranm.

A. Input Data Which is Read into the Program from Cards .

Card Symbol (s) Format Explanation
Number :
1 NUMMCL, ITERMX, 2I5,F10.5 NUMMCL = the number of
- DELTA ‘ molecules; ITERMX = the

nunber of temperatures
for which melting curve
is calculated; DELTA =
temperature increment .

2 - NCONC, (CT(I), I5, TF10.7 NCONC = number of concen-—
I=1,NCONC) . trations for which input
.date is given (usually
3); CT(I) = strand concen-
tration in moles/liter

3 rr(1,1), I=1, 8F10.6 TT(K,I) = melting temp-
: NUMMCL ' erature of I th molecule
at K th concentration
I SLP(I), I=1 8F10.4 SLP(I) = slope of melt-
‘ - NUMMCL - ing curve at Tm of I th

RNA



Card

Number

10

11

- 12.

Symbol(s)

DTMDC(I), I=1
NUMMCL

HIN, HGG, ‘HGC,
HCG, HGA, HAG

HGU, HUG, HAA,

"HAU, HUA

EKGGO, EKGCO,
EDCGO, EKGAO,
EKAGO

EKGUO, EKUGO

EKAAO, EKAUO,
EKUAO

SAME, . STAGG,

LOOP, MXIN

Format_

8F10.5

8F10.6

8F10.6

8F10.6

8F10.6

 2A5, 215

A5, L4OAL

Explanation

DTMDC(I) =[A(1/Tm)/
Alog clx 10% for I th
RNA. . :

HIN = AHS,; all other UIJ
(where IAénd J are G,

'C, A, and U) = AHS -~

AH® . All enthalDy
terms in cal/mole -

= o_'o'
HIJ AHIJ AHAA

EKIJO = k.. (78°C), as
defined in the text in
equation 3.2a

‘As above, card 8

If SAME = SHbSAME, then
the two complementary
strands in the RNA are
identical; the variables
STAGG, LOOP, and MXIN
are not used in the
calculation and may be
set to anything

N = the humber of bases
in the molecule; WD(I)

‘= the identity of the

I th base; the progranm
assumes that second strand
is complementary to the
first. ' S

Cards 10 and 11 .are
repeated for each

- molecule in the series



B. Input Data Which is Read into Program from Teletype

Datum Symbol(s) Explanation
Number
1 * CLASS CLASS = 1 is the standard option; for

A U , vhere df/dT| ‘is not known for
A2U6, CLASS = 2; for AnCGUn, where

df/dT| _is not known for A, CGU CLASS
25 373

2 OUTPUT OUTPUT = parameter which controls out-
put to teletype; standard option is
OUTPUT = 3, which supplies T , 4f/dT| ,
and A(l/Tm)/A(log ¢) as well"as agreefent
of these quantities with experiment for
each molecule (D1, D2, D3, D4, D5, D6, as
defined; OUTPUT=2 and OUTPUT=1 give less

information.
.\3 HIN_ HIN = AHXA
i * DEL DEL ; kend
5 . BETA(1) " BETA(1) = k, or k., whichever is

H
appropriate for tﬁe series of molecules
being calculated

6.... EKIJO, The remaining cards are varied, depend-
HIJ ing on which unknown parameters are to
: be solved for. These cards overwrite
the initial estimated of k_. (78°C) and
AHEJ which were read in on cards 6-9.

C. OQutput to Teletype

Shown below is a typical output (to the teletype) of program
OLIGO. It gives the calculated meltiné tempefatures, slopes of the
helting curve at Tm’ and concentration dependence of the Tm's for
each molecule in the series. Also outputted, and of great
importance for carrying out thé calculation, are the gquantities
D1, ..., D6. Thesé quantities_indicate the degreé to which tﬁe

- calculation is in agreement with experiment.
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D1

(Tm(expt.) - T(calcd.))?

D2 = (T_(expt.) - T;m(calcd.))

D3 = (afr/ar) (expt.) x 103 - df/dTIm(calcd.) x103)2

Db = (ar/ar) (expt.) =103 - df/dTlm(cal_cd.) x103)

D5 = (a(1/T,)/A(1log c)(expt.) x10* - A(1/T )/A(log c)
(calcd.A) x 104)?

D6 = (A(1/T_)/A(1og c)(expt.)x 10% - A(1/T_)/A(10g c)

(calcd.)XIO“)2

e as- o '
D2, D4, and D6 indicate whether krgys K 40 &nd AHIJ ghould

be increased or decreased for the next trial. D1, D3, and D5
indicate the dégree to which calculation and experiment are in

agreement .
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Listing of Program OLIGO

PROGRAM OLIGO{INPUT,QUTPUT, tAPESslNPUt.IAPEtTV-lZ.IAPEzo-tAPEVVV.
ITAPES)

COMMON/A/BETA(S5),WDL1{18),DELT(8S)
COMMON/B/Q1865)4+,Q2(65),QINTOT(65),Q2NTOTI(65), Fl(bS).F2|65l
CUMMUN/C/TM¢NDELLTL15),NDELS50C15) yNDELB3(L15) ,TMLSTIS0), LM
COMMON/D/0L{150) 4,02(150),03(150),TT(4,10)4IC,NOLECL,NCOUNT,SLP(10)
1,041(50),05(500,06(50),DTMDC(10)

COMMON/E/SS 1900 yEKGGLI0 ), EXGCII0),EKCG(90) 4 EKGALIO0I yEKAGI 90) 4EXGUL
190) 4EKUGI{90),EKAALI90 0, EKAUIYQ) 4 EKUAISO)
COMMON/F/ITM, TVLST NHERE,ICLASS,0UTPT
COMMON/HT/HHL65) EPY(65) ,UUL65)

DIMENSION BETAO(3)

DIMENSION NREM(S)

DIMENSION BASE(18)

DIMENSION QN(4+65)

DIMENSION CY(10)

DIMENSION B(3,65)

DIMENSION W(5,20)

CALL TTYSET

NHERE=0

HGA=0.,

- HGG=0.

EKGGO=1.

- TVLST=0,

TMGC=426.16

TMAU=351,.16

TMAUV=1,/351.16

TOV=TMAUV

TBETA=25.4273.16

TBV=1./TBETA

RINV=1./1.986

READ(5,40) HINsHGGyHGC 4HCG o HGA JHAG

READ(5,40) HGU,HUG, HAA,HAU,HUA v

READ(5,40) EKGGO,EKGCQEXCGO,EKGAD; EKAGO

READ{S,40) EKGUQO,EXUGO ,EXAAD,EKAUQ, EKUAD

FORMAT(B8F10.61)

WRITE(6,42) HIN,HGG HGC 4HCG +HGA,HAG ' :
FORMAT (» HIN=%*,F8.2,% HGG=#%,FB8,.,2,% " HGC=%oFB.2¢%* HLG=®,

LF8.2¢* HGA",FB.ZQ‘ “AG="F8.2'
HRITE(G'QB) HGU y HUG y HAA s HAU y HUA ] _ ’
FORMAT (%  HGU=*,FB8.2+% HUG=>%,F8.2,% HAAx%,FB,2¢8 HAU=®,

LFB8.2,* HUA=#®,FB84.2,77)

WRITE(6,4%4) EKGGO, EKGCO;EKCGO.EKGAO.EKAGO . :
FORMAT (&. = EKGGO=%,F8,3,% EKGCO=%4,FB8,3s% = EKCGO=®*,FB.3,% E
1KGAO=%,FB8,3,8 ExAGost.Fe.ao : » :
WRITE(6,65) EKGUO,EKUGO,EKAAD,EKAUDLEKUAO )

FORMAT (» EXGUO=%,F8,3,* EKUGO=¥.F8.3.¢ EK‘AO"'F8.3.‘ E
1KAUO=*,FB.3,* EKUAO=%,F8.3,7//) :
READ(5,61) NUMMCL, lTERHX.OELTA.FGU
FORMAT(215,2F10.5)

READ(S5+68) NCONC,{CT{I),I=]1,NCONC)
FORMAT(1I5,7F10.7)

DO 66 K=1,NCONC



67
66

46

7

15

READ(5,67) (TT(K,1),1=1,NUMMCL)
FORMAT(8F10.6)

CONT INUE

READ(S5,46) (SLPUT),I=1,NUMNCL)
FORMAT(8F10.6)

READ(5,47).  (DTMDC{E)y I=1,NUMMCL )
FORMAT(8F10.5)

TINITO=TINIT

DELTAO=DELTA

1TMX0= {TERMX

CALL TREAD(5HCLASS,CLASS,0)
ICLASS=CLASS

CALL TREAD(6HHMODEL o HMODEL 40)
MODELH=HMODEL

DO 59 JJITTY=1,250.

00 15 1=1,25 :
DLII)=D2(11=D3(1)=D4(1)=DS(1)=D6(1)=0.
CONTINUE

- CALL TREADI6GHOUTPUT,FOUT,0}

1005

1006

1007

63

69

90

95

QUTPT=FOUT

CALL TREAD(3HHINSHIN,O)

CV80 .

CALL TREAD(2HCV.CV,0)

CALL TREAD{3IHOEL ¢DEL, O

CALL TREADUTHBETA(1)¢BETA(1),0)

BETA(3)=BETA(2)=BETA(L)

CALL TREAD(SHEKUAO.EKUAD,0)

CALL TREAD(3HHUA,HUA,O)

CONTINUE - ] _
WRITE(6,1006) DEL,BFACTL,BFACT2,BETAOLL),BETAO{2)4HIN,MODELH,CV

FORMAT{///,* THE PARANMETERS FOR THIS CALCULATION ARE LISTED®,/,
1¢ DEL *,F10.6¢/¢* BFACT1%,Fl0.6,% "BFACT2%4F10.65/¢¢
2BETAQ(1)*,Fl4.8,% BETAO(2)%,F14.89/,% ENTHALPY=%,F10+s3,/,

3% . 0 = NO H(T) 1 = HI(TI=CV (T-TO) 2= 2 STATE MODEL = MODELH=e¢
4,12,/,% ODH/DT=%,F10.5)

WRITEC6,1007)  [ICLASS,EKGAO,EKGGO,HGAHGG

FORMAT(* CLASS OF OLIGOMERS=%,[3,% EKGAO=#, Flz 6. EKGGO=®*,
1F12.64% HGAZ%,F10.3, %, HGG=#,F10.3)

D0 60 MOLECL=1,NUMNCL '

DO 62 1C=1,NCONC

NCOUNT=0

CONC=CT{IC}

WRITE(6,63) CONC

FORMAT (1H1,% THE TOTAL STRAND -CONCENTRATION IS*,E16.64/7/)
HB=0.

NCOUNT=NCOUNT #1

DO 65 [TM=1,2

LM=[H+[D+]B+IBH~3

KM=1C+1TM-1

ITERMX=[TMXO0

DELTA=DELTAO
CTINIT=TT{IC,MOLECL)-ITERMX*DELTA/2,

IF(ITM.EQ.L) GO TO 69 .

TINIT=TM=-0.6

DELTA=0.1

1TERMX=11

IF(KM.NEL.L) GO TO 100

IF(JJTTY.GT.1) GO TO 99 _

READ(5,90) SAME.STAGG,LOOP, MXIN

FORMAT (245,215}

WRITE(6,95) srAsG.snne.couc.toov.nxlu ‘
FORMAT (*¢ STAGG=%,A5,% SAME=¢,A5,% CONC=%,E10.3,% LOOP=¢,[4,
1 MXIN=%,15) '

IDENT=1 .

IF(SAME.EQ.5H SAME) [IDENT=2

NDEBUG=0



NSTAG=0
IF(STAGG.EQ.SHSTAGG) NSTAG=1
L READ(5,110) (N,(wWDL(1)oI=]),N})
110 FORMAT(15,40A1)
NREMIMOLECL ) =N
00 98 I=1,N
98 WIMOLECL,1)=wDLl( 1
GO T0 100
99 N=NREMIMOLECL)
00 97 I=1,N
97 WOLE1)=W{MOLECL,I)
100 WRITE(6,Lk15) (HDI(I’:I‘I-N’
115 FORMAT(#
1 %,20A1)
T=TINIT
D0 116 [I=1yN
116 BASE(1)=wWDLI(I)
DO 120 I1TER=1,ITERMX
H=HIN
T=T+DELTA
TINV=1./7(T¢273.16)
DELT(ITER)=T
RYT=RINV* (T INV-TMAUV)
BIl,ITER)=BETALLI*EXP(HBSRINV*{TBV-TINV))
BI2,ITER)=BETA(2)*EXP(HB*RINV*(TBV-TINV))
BU3, ITERI=BETA(3)1*EXP(HB*RINV*{TBV-TINV)}
SSUITERI=EXP{-HIN®*RTT)
UUCITER)=SS(ITER) :
EKGG( ITER)=EKGGO$EXP(-HGG*RTT)
EKGC(ITER)=EKGCOSEXP(~HGC*RTT)
EKCGIITER )=EXCGO*EXP(-HCG*RTT)
EKGA(ITER)=EKGAO*EXP(~HGA*RTT)
EKAG(ITERI=EKAGOSEXP(—HAG*RTT}
EXGUUITER I=EKGUO*EXP(~HGU*RTTI
EKUGIITERI=EKUGO*EXP(-HUG*RTT)
EKAALITER)=EKAAQ*EXP(-HAA*RTT)
EKAULITER)=EKAUO*E XP{-HAUSRTT)
EKUACITERI=EKUADSEXP (—HUASRTT)
NIT=NNIT=NNNIT=0
IF(MODELH.NE.1) GO 7O 123
THIS IS LINEAR VARIATION OF H WITH T
HHUETERI=HINSCVE(T=-TO)
EPYTM={HIN*CV*{ TMAU-TO-2T73.16} ) $TMAUY
EPYLITER)=CVSALOGI(T#273.16)*TMAUV) + EPYTH
. SSUITERI=EXP{-HH{ITER)}*RINV*TINV¢EPY{ ITER) SRINV})
123 Ql(ITER)= QlNTOT(ITER)*QZ(ITER’=QZNTO'(lIER"Oo
DO 121 INT=1l,4
QANCINT,ITER)=0.
121 CONTINUE
120 CONTINUE
D0 130 JJ=1sN
NTOT=4J~-1
DO 140 KK=JJ,N
ND=NGG‘NGC=NCG=NG&’NAG’NGU‘NUG‘NAA'NAU*NU“'LGU'O
D0 150 Li=1,JJ
MM=KK-LL®1
L=MM
LASTG=LG
LASTCsLC
LASTA=LA
LASTU=LU
LA=LU=LG=LC=0
IF(MM.EQ.1.0R.MM.EQ.N) ND=NO#1
227 IFUBASE(LI.EQ.1HA) LA=]
IF(BASE{L).EQ.LHU) Lu=]
[F{BASE(LI.EQ.LHG) LG=1



150

221

160
200
140

130
132

185

190
252

IF(BASE({L).EQ.LHC) LCs])
"IF(LL.EQ.1) GO TO 150
NGG=NGG¢LASTG‘LGOLASTCOLC
NGC=NGC+LASTC®LG
NCG=NCG+LASTG#LC
NGAzNGAOLASIA*LGOLASTCOLU
NAG=NAG+LASTG*LA+LASTUSLC
NGU=NGU+LASTUSLGSLASTC*LA
NUG*NUG+LASTG®LUCLASTA®LC
NAA=NAA+LASTASLASLASTUSLY
NAU=NAU+LASTUSLA
NUA=NUA+LASTA®LU

CONTINUE

INT=N-JJ+1

NG=2«NGG+NGC +tNCGeNGA+NAG*NGU+NUG
I16C=1

[FING.EQ.2) 1IGC=2
IFING.GE.3) 1IGC=3
NTT=NG-NGG¢#NAA+NUA +NAU

WRITE{6,2211 NGG.NGCoNCG:NGAﬁNAG’NGU,NUG.NAA.NAUqNUA'NDvXGC.LGU
FORMAT (* NGG=%*,124% NGC=#,12,% NCG=#®,12,% NGA=#*,[2,¢ NAG=%*,

112,%  NGU=®,12,% NUG=#%,12,% NAA=$,]2,% NAU=#%,12,% NUA=%,[2,*
IND=%,02,% [GC=%,12,% LGU";IZ'ﬁIO

IFINTT.NE.NTOT) CALL STOP

DO 160 ITER=1,4 ITERMX

[F(LOOP.GT.0) GO TO 200

8T=8(1GC,ITER}

QF 2= (EKGG(!TERD“NGGD*(EKGC(leR)“NGCl‘(EKCG(lTER)*'NCG)‘(EKGA(lT
LERISENGAI ®{EKAG( LTER ) *SNAG ) S{EKGU{ ITER) **NGUI *{EKUGI ITER ) **NUG) ¢(E

2KAACITER ) **NAA )V S(EXKAUL ITER I *«NAUI*(EKUALITERI®SNUA)
QF=QF2*{SS{ITER)*eNTOT ) #(DEL *&ND)*BT
QLUITER)=QLUITER)#QF
QINIOT(ITER)leNTOT(ITERDONTOY‘QF
IF{INT.GT.4) GO TO 160

QNCINT , ITER}=QNC INT, ITER) +QF
CONTINUE

GO TO 140

CONTINUE

LEFT OPEN FOR LOOPS

CONTINUE

CONTINUE

vI=NTOT

VNINV=1./VT

IFINTOT.EQ.0) VNINV=0,

DO 180 ITER=]1, ITERMX

IF{LOOP.NE.O) GO TO 250
BT=B{IGC,ITER)

OQ*(SS(lTER)**NTOTl'(EKGA(lTERI‘#NGAD‘lEKGG(lTER)*‘NGG¥*BT‘(DEL“N

100 -

GAHHA=QQ‘CONC*!DENT

AITAZ(2.%GAMMA ¢ 1, ~-SQRT{ 4. *GANMA+1.))/(2.%GANMA)
F2UITER)=1.-AITA

END OF ALL OR. NONE

QLINV=L./QLUITER) :

GAMMA=Q1( ITER)*CONC*IDENT
AlTAﬂ(Z.‘GAMNA*l.—SORT(4.*GAHHA01,)II(Z.‘GAHHAl
F1UITER)=1.~AITASQLINTOTLITER }*QLINVEVNINY

AITAM=1.-AITA

DO 185 J=l,é&

QN(J, ITER)=QN(J L ITER)SAITA/QLULITER)

CONT INUE .

IFIKM.GT.1) GO TOD 252

WRITE(6,190) SS(ITER).DELT(!TER).FI(ITERD.FZ(ITERD.AIYAH.
lEKGA(lYERI.EKGG(lTERvaN(lolTERvaN(ZoITER)oQN(B'lTERDoQN(Q:lTERl
FORMAT (FL0.4+F10e3,3F11.T7,2F8.%94F11.7}

IF (FLUITERILGT4(0.120.,AND.FLEITER).LT.(0.23)) GO TO 280



260 I1F (FLUITER)I.GV.(0.3T) AND.FI{ITER).LY.{0.63)) GO TO 290
270 IF (FLUITERDLGT o(0.7T7) LAND.FICITER) LT, (0.89)) GO TO 300
GO YO 180
280 NIT=NIT+]
NDEL1TI(NIT I=ITER
GO TO 260
290 NNNIT=NNNIT+1
NDELSOINNNITI=ITER
GO TO 270
300 NNIT=NNIT+¢1
NDELB3(NNIT)I=ITER
GO TO 180
250 CONTINUE
c THE SECOND PLACE FOR THE LOOP CARDS WHEN READY
180 CONTINUE
CALL EXTRAP(NIT (NNIT,NNNIT}
IF(LTM.EQ.2) CALL DFDT
65 COUNTINUE
T4 = CONTINUE
72  CONTINUE
71 CONVINUE
70  CONTINUE
62  CONTINUE
60 CONTINUE
DO 330 1=1,NCOUNT
X=01(1)
D103 )1=SQRT (X}
X=D03(1) -
D3(1)=5QRTI(X)}
X=DS5(1) '
DS{ I 1=SQRTIX)
WRITE(64345) (DLLI)¢D2(1),D3(1),04L1))
345 FORMAT(/,4X,* VARIANCE OF TM=%,2F12.49% VARIANCE OF SLOPE=#,2F12
l.0)
CALL TWRITE{2HD1,01(1),0}
CALL TWRITE(2HD2,02111,0)
CALL TWRITE(2HD3,03(1),0)
CALL TWRITE(2HD4,D4(1),0)
CALL TWRITE(2Z2HDS5,05(11,0}
CALL TWRITE(2HD6,D6( 11,0}
BETA{1)=1000.*BETAlL}
BETA(2)=1000.*BETAL2)
. CALL TWRITE(SHBETAL¢BETA(1),0}
CONST=BETALLI*{EKGA*$2)
CALL TWRITE(SHCONST,CONST,0)
- C CALL TWRLTE(SHBETA2,BETAL2),0)
330 CONTINUE
59  CONTINUE
CALL EXIT
END
SUBROUTINE EXTRAP (NIT,NNIT,NNNIT)
COMMON/A/BETA(S),WD1(18),DELT(85)
COMMON/B/QL1{65),02(65),QINTOTE65),02NTOTL{65),FLI65),F2165)
COMMON/C/TM NDELL1T(15),NDELS0(15),NDELB3(15),TMLST(40),LN

COMHON/D/DR(ISO).DZ(150l.03(150).1114-10!-lCoHOLECLoNCOUN'.SLPIIOO,

1,D4(50),05(501),D6(50),0TMDC(10)

COMMON/F /1 TM, TVLST pNHERE.lCLlSS outTeT
SIXINV=1l./6,

FIVESX=54./6,

LERO=0. . :
HALF=l,/2. R
D1SM=DILG=1,

IF (NITL.EQ.0) GO TO 30

DO 20 I=]4NIT

IN=NDELL1T( 1)

D1=SEIXINV=FL(IN)



10

20

30

%0

50

60

10

80

90
100
110

120

130

IF (D1.GE.ZERO) GO TO 10
HERE FLLITER) IS GREATER THAN l/6
01=-D1
IF (D1.GT.DILG) GO VO 20
D1LG=D1
ITLTL=IN
GO TO 20 :
IF (D1.GT.DISM} GO TO 20
D15SM=D1
IT17S=IN
CONT INUE
N1SM=D1SM
N1LG=DILG
IF (N1SM.EQ.1.0R, NlLG-EQ.l) NIT=0
DLSM=D1LG=1. ’
IF (NNIT.EQ.O) GO TO 60
DO 50 [=1,NNIT
IN=NDELB3(1)
D1=F LVESX-FL(IN)
1F (D1.GE.ZERO) 60 TO 40
Dl1=-D1
HERE F1(ITER) IS GREATER THAT 5/6
IF (D1.GT.DILG) GO TO0.50
D1LG=D1
1T83L=IN
G0 TG S50
If (D1.GT.DISM) GO TO 50
D1SM=D1
1783S=1IN
CONTINUE
N1SM=DLISM
NLLG=DILG
IF {N1SM.EQ.1.OR.NILG.EQ.1) NNIT=0
D1SM=D1LG=1.
IF (NNNIT.EQ.O0) GO TO 90
00 80 [=1,NNNIT
IN=NDELSO( )
D1=HALF-F1(IN)
IF {D1.GE.ZERO} GO TO 70
D1l=-D1 :
IF {D1.GT.01LG) GO TO 80
DILG=D1]
ITSOL=IN
GO 10 80
IF (D1.GT.DISM) GO TO 80
D1SM=D1
1T50S=IN
CONT INUE
NLISM=D1SM
NILG=D1LG
IF (N1SM.EQ.1.0R, NILG EQ.ll NNNIT=0
EXTRAPOLATION PROCEDURE {JUST USING TWO POINTS)
IF (NIT.EQ.0) GO TO 100
SLOPE=(FLC(ITL7L)=-FL{ITLTS))/{DELT(ITLITL)-DELT(IVLITSD)
TLT=ISIXINV-FL{IYLTS)*SLOPE«DELTLITLTS))/SLOPE
{F (NNIT.EQ.O0) GO TO 110
SLOPE=(FLUITB3LI-FLLITB83S)I/C(DELTL{ITBALI-DELT(ITBISH)
T83=(FIVESX-FLUIT83S)+SLOPE*DELTI(ITB3S))/SLOPE
IF (NNNIT.EQ.0) GO TO 120

SLOPE=(FLLIY50L)- FllllSOS))/(DELT(lfSOL’—DELT(lTSOSI"

TM=(HALF-FLEITSOS ) ¢SLOPE*DELT(IT505) }/SLOPE
DEL23=0. ’

If (NIT.EQ.0.OR.NNIT.EQ.O0) GO TO 130

DEL23=T83-T17 '

IF INNNIT.EQ.0) TM=0Q.

IFINNNIT .EQ.0) CALL THRIYE(IOHNO TR CALC/NNNET. L)
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7
100

10

66
200

Tvsl./(TM+273.16)

IFLITM.EQ.1) GO TO 146

IF{OUTPT.EQ.3) CALL rua11€tzutn.rn.0l

NHERE=NHERE ¢1

DTV=TV-TVLST

DTV=DTIV*{10.%%4)

TVLST=TV

IFINHERE.EQ.1) GO TO 146
DslNcoumt)nostNCOUNrno(oruDC(MULECL»—OIVittz

D6UNCOUNT }=D6{NCOUNT ) +{ DTMDC ( MOLECL )-DTV)

IF{OUTPT.GEL2) CALL TWRITE(3IHDTV,0TV,0)

IF(NHERE.EQ.3) NHERE=0

WRITE(6,6900 TM,DEL23,TV N

FORMAT{5X FLO.6,TX,FLl0e6,6X,E12.6)

RETURN '

END ,

SUBROUTINE DFDT

COMMON/A/BETA(S) WDL(18),DELT(8BS)
CDMMON/B/O[(OBI.02(65).QlNIOT(bSivOZNfOT(bS)oFl(65l-FZl65)
COMMON/C/TM¢NDELLT(L5) yNDELSOL15) ¢NDELBI(15),TMLST(40),LMN"
COMMON/D/DLIL50),D2(150)¢D3(150),TT(4,10), ICoMOLECL,NCOUNT,SLP(10}
19D04150),05{50),06(50),0TMDC{10)
COMMON/F/ITM TVLST ¢NHERE,ICLASS,OUTPT

DIMENSION SLOPE(25)

SLPTM=0,
DO 10 [=1,5
J=11-1

SLOPE(II:(FI([)-O S)/(DELT(1)-TH)
SLOPE(JI={FLLJI-0.5)/(DELT(JI-TM}
SLPTM=SLPTM+SLOPE( 1) +SLOPE(J)

CONT INUE

SLPTM=SLPTM/10.

Q=TT(IC,MOLECL)-TM

DSQ=Qes2 ,

WRITE(6,20) SLPTM,DSQ -

FURMAT(* SLOPE(TM)=%,F12.8,% DSQ=%,F10.3)
WRITE(6,300 (SLOPE(INsI=1s11) :
FORMAT(/,* SLOPE=*,11F10.6) , :
D1(NCOUNT )=D1 { NCOUNT }+D$SQ ' ' ~
D2{NCOUNT)=D2{ NCOUNT ) +Q :

G0 TO (100,200,3001), ICLASS

IFLIC.NE.2). RETURN

GO TO 400

IFUIC.GT.1) RETURN

IF(MOLECL.EQ.3) GO TO 440

GO TO 400 ,

IF(IC.NE.2}) RETURN

IF(MOLECL.EQ.2) GO TO 440

D3(NCOUNT =03 (NCOUNT )+ { { SLP {MOLECL }~SLPTM) $1000. ) 42
D4{NCOUNT )=04 (NCOUNT ) # { SLP {MOLECLI-SLPTM)I*1000.
[F(OUTPT.GT.1) CALL TWRITE(SHSLOPE,SLPTM,0)
RETURN _ :

"END .
SUBROUTINE TTYSET ' :

DIMENSION IFET(8)

READ(20,100) I

FORMAT (80X,11)

IF(I.NE.1) GO TO 66

DO 10 J=1,10

_CALL CMOFF

CONT INUE

GO TO 77 : .
WRITE(20,200)

FORMAT{ * | AM READY. PROCEED.,O ONE OF ONES*)
CALL FET(6LTAPE20,IFET,8)

IFET(2) = IFET(2).0R. ooooooxoooooooooooooa



100

200

11

12

13

'
Cn
1

IFET(8) = IFET(8).0R.400000000000000000008

CALL FET(OLTAPE20,IFET,-8)
RETURN

END .
SUBROUTINE TREAD{M,VARsN)
EQUIVALENCE (TEMP,IVAR)
WRITE(20,100% M

"FURMAT(1LH 4AlOD,% = &)

READ{20,2000) VAR
FORMAT(F15.5)

IFIN.EQ.O0) RETURN
IF(VARY)Y 11,12,13

IVAR = [FIX{VAR=0,.5)

VAR = TEMP

RETURN

IVAR = 0

VAR = TEMP

RETURN

IVAR = [FIX{VAR ¢ 0.5)
VAR = TEMP

RETURN

END

SUBROUTINE TWRITE(M,VAR,N)
IFIN.NE.O) GO TO 1}
WRITE(20,100) M,VAR
FURMAT(1H AT ,¢=%,F10.5)
GO 7O 2

WRITE(20,200) M,VAR
FURMAT (LH 4AlO0.,* = & J10)
END FILE 20

RETURN

END
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APPENDIX II

PROGRAM LOOP2

Program LOOP2 is used in Chaﬁter 4 to calculafe the melting
curves fdr AnCmUn hairpin loop molecules for differgnt values of
Yn and AH;. The program is written so that results may be out-

" putted onﬁo a teletype machine so that new trial valﬁes éf the
parameters can be inputted from the teletype:. More compiete out -~
put information (the melting curves and a populatién analysis of.
intermediate statés) may be obtained from a complete computei
printout. The input parameters to the program include the AA
double stranded stacking interactions and looé weightiné functions
and loop enthalpies for ldops with 4 fo 8 bases.‘ The program

- considers both staggered and unstaggered configurations of the
stem region.

A. Input Data Which is Read into the Program from Cards

Card Symbol(s) Format Explanation
Number :
1 - NUMMCL, ITMXO 215, - NUMMCL = the number of
DELTAO F10.5 molecules in the series-

to be calculated; ITMXO
= the number of tempera-
tures for which melting
curve is calculated;
DELTAO = temperature

increment
2 T(I), I =1, 8F10.6 TT(I) = melting tempera-
NUMMCL ture of I th molecule
3 HIN, DEL, TBETA 8F10.6 HIN = AHXA; DEL = k_ .5

TBETA = temperature in-
°C for which the loop
welghting function is
‘reported (30°C)



B.  Input Data Which is

LOOP, MXINO,

WNAME (MOLECL)

N, wp1(I), I
=1, N

11-2

215, A6 LOOP = dummy variable .
no longer used; MXINO
= number of links in
smallest loop (i.e.,
m+l); WNAME = label
specifying the name of
the molecule.

I5, koAl N = the number of bases

: in the molecule; WD1(I)
= the identity of the : _
I th base in the stem; .
only one of the two
complementary strands is
specified

Cards 4 and 5 are repeated
for each molecule to be
calculated ‘

Datum
Number

1

Symbol(s)

ALLNO

. OUTPUT

PLOT

STAG

HIN
DEL

SKIP

Read into Program from Teletype

Explanation

ALLNO = 1 specifies that the calculation
the all-or-none approximation: only the
fully bonded and unbonded states are
considered : '

QUTPUT = 1 gives cbmplefe output informa-
tion on computer printout for each trial run .

PLOT = 1 causes melting curve to be
plotted by CALCOMP; in this case, the -
experimental melting curve must be
inputted into the program through cards;
this is done in subroutine PLOT

STAG = SHSTAGG causes the calculation to
1nclude staggered. configurations 1n the
partition function

- o]
HIN = AHS,
DEL = k__

If SKIP = J, the calculation will retain
all values of loop weighting functions
and loop enthalpies from previous '
calculation except for the loop w1th I
links
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8 SIGMAO(I)
9 HSIG(I)
10 . . .
11 HSIGLG
C. Output

11-3

SIGMAO(T) = value of loop weighﬁing
function at TBETA °C for loop with I
links (i.e., I-1 bases)

HSIG(I) = enthalpy for loop of I links

SIGMAO(I) and HSIG(I) are repeated for
each molecule calculated

HSIGLG = loop enthalpy for all loops
of more bases than the loop with
stem region fully formed

The output to teletype lists the calculated melting temperatures

and slopes of the melting curves at Tm. The computer printout gives

melting curve and population analysis for each of the molecules

calculated. The CALCOMP plot gives plots of both melting curves and

population analysis for each of the molecules.

D. Listing of Program LOOP2




PROGRAM LOUP{ INPUT,OUTPUT,TAPES=INPUT, TAPETTY=12,TAPE20=TAPETTY,
1 TAPEG, TAPEY98,PLOT, TAPE99=PLOT)
COMMON/A/BETALS), le(IB).SS(90).EQKI90).DELT(90)
COMMON/B/QLI90),Q21(90)4QINTOT{90),Q2NTOT(90)4FLLE90),F2(90)
COMMONZC/TM,NDELLT(15) yNDELS0U15)eNDELB3IULS)«TMLST(40),LM
COMMON/D/SIGMAO{20),HSIGI20),SIGMA[20+90),HSIGOL20)
CUMMON/PLTT/NUMMCL I TMX0,DELTAQ ¢MOLECL ¢ DEL yHENe TINIT o NSTAG,MXINO
1+ NALLNO
DIMENS 10N BETAO(3) ,WNAME(10)
DIMENSION TT(10)
COMMON/NN/QNI(12,50),QP(12,90)
DIMENSTION NREMIS5) ¢W(Ss10),MMXX(10) "
CALL TTYSET
TMAU=351.16
TMAUV=14/351.16
RINV=1.7/1.986
READ({5,40) NUMMCL, ITMXD,DELTAQ
40 FORMAT (215,F10.51}
READ(S.42) (TTULI) lal.NUNMCL)
42 FORMAT (8F10.6)
READ(5,51) HIN,DEL,TBETA
51 FORMAT(BF10.6}
TBETA=TBETA+273.16
T8V=1./TBETA
DO 59 JJTTY=1,150"
CALL TREAD(SHALLNO,ALLNG,0)
CALL TREAD{6HOUTPUT ,FOUTP,0)
CALL TREAD(4HPLOT,FPLOTY,0)
CALL TREAD{4HSTAG,STAG,0)
CALL TREAD(3HHINS;HIN,O)
CALL TREAD{3HDEL,DEL,0)
NALLNO=ALLNO
NPLOT=FPLOT
NOUTP=FOUTP
NSTAG=STAG
DELSQ=SQRTIDEL)
STAGG=5H . :
IFINSTAG.EQ.1) STAGG=S5HSTAGG
: WRITE{6+55) HIN,DEL,STAGG S
55 FORMAT ( * ENTHALPY FOR AU FURMAt!ONzt.Flz 4y% DELTA=%,F10.6
1s10XyAS)
WRITEL6,52) NPLOI.NOUIP.NSTAG.NALLNO . . .
52 FORMAT(* NPLOT=#%,12,& NOUTPUT=%,12,% NSTAG=¢,12,& NALLNO=%,12)
- CALL SIGSET )
WRITE(6,48) (I,SIGMAO(1),HSIGIT),1I=5,9)
48 FORMAT{2X,5(124F13.10,F6.0))
DO 60 MOLECL=1,NUMMCL
DO 65 1TM=1,2
ITERMX=ITMXO

TINIT=-20.
TINIT=TVY(MOLECL)-ITERMX/2
DELTA=DELTAOQ
IFLITM.EQ.1) GO TO 69
TINIT=TH-1.1
DELTA=0.1
ITERMX=21 '

69 IF(ITM.NE.1) GO TO 100
IF{JJTTY.GT.1) GO TO 99




00 vd3 00338

II-5

READIS5,90) LOOP,MXINO,WNAME(MOLECL)
90 FORMAT{215,A6)
READ{5,110) N.(HDl(l,vI=l N}
110 FORMAT(15,40A1)
: MMXX(MOLECL ) =MXINO
NREMI{MOLECL) =N
D0. 98 I=1,N
98 H{MOLECL,11=WD1(1)
GO TO 100
99 N=NREM{MOLECL) 1
MXINO=MMXX{ MOLECL) .
DO 97 I=1,N
97 WD1(I)=WIMOLECL,I)}
100 WRITE(6,115) WNAME{MOLECL)
115 FORMAT [2X,A6)
T=TINIT
DO 120 " ITER=1,ITERMX
H=HIN
T=T+DELTA
TINV=L./(T#273.16)
DELT(ITER)=T
SS{ITER)=EXP{H*RINV* [ TMAUV-TINVI ¥
NIT=NNIT=NNNIT=0
QI(ITER)=QINTOT(lTER)=QZ(ITER.'QZN7DT(lTER’-O.
DO 121 INT=1,12
QN{INTL,ITER)=0.
QP{INTLITER) =0,
121 CONTINUE
DO 122 ILP=5,20
: SIGMA(ILP, lTER)’SIGHAO(ILPI'EXP(HSIG(ILP"RINV‘(TBV'YINV.,
122 CONTINUE
120 CONTINUE
M=N .
DO 1 IP=1,4N
IF({STAGG.NE.5HSTAGG) M=]IP
DO 2 JP=IP,M
I=1P~1
J=JP-1 -
MX=MXENO*I+J
NMAX=N~J
ND=0
W=l, ’ X
IF(I.NE.J) W¥W=2,
DO 3 K=]1,NMAX .
KM=K-1 :
IFIK.EQ.NMAX) NO=1 -
IF(1.EQ.J. AND.K.EQ.NMAX) ND=2
NLP=1¢J+] .
00 160 lTER‘l'lTERHX
BT=SIGMA(MX, ITER)
QF=(SS{YTER)**KM ) *BT sW*{ DELSQ**ND}
QLUITERI=QLUITER)+QF
QINTOT(ITER)=QINTOT(ITER)+KM*QF
“LK=N-K+1
QN(LK, ITER)=QN{ LK, ITER) +QF
QP(NLP,ITER)I=QPINLP, ITER)OQF
160 LCONTINUE
3 CONTINUE
2 CONTINUE
1 CONTINUE
140 CONTINUE
130 CONTINUE
126 CONTINUE -
125 CONTINUE
NTOT=N-]1
.132 VTaNTOT.



250

185
195

190
252
260
270

280
290

300

180

65
60

59

I1-6 ' o

VNINV=1./VT

IF(NTOT.EQ.0) VNINV=0, : :
DO 180 ITER=1,ITERMX _ K
QQ={SS{ITER)*&NTOT )¢SIGMA(MXINO ITER ) *DEL o

F2UITER)=1./11.+QQ) ' _ : . . ' v
QLINV=1./(QLIITER)+1.) ) :
F1(ITER)=1.—-QINTOT{ITER)®VNINVSQLINV
IFINALLNO.EQ.1) Fl(ITERI=F2(ITER)
DO 185 J=1,N .
QN{J,ITER)= QN(J'IIER)/QI(ITER) ' , .

QP (J, ITERY=QP{J, ITERIZQLIITER) : ‘ ‘ . o
CONTINUE . o
IF(NOUTP .NE.1) GO TO 252

WRITE(6,190) SSUITER)DELT(ITER)FL{ITER),F2({IVER), ‘

1QNL 1, ITERIyQONI2ITER) yQNU3, ITER) sQN{4, ITER) s QNIS ITERD QP (1, ITERD, ;
2QP(2,ITER) ¢QPI3,ITER)+QPl4, ITER) 4QP(5,ITER)
FORMAT{2X,14F9.5)

IF (FIUITER).GY.{0.11).AND.FL({ITER),.LT, (0.23)) GO TO 280
IF (FI1UITERI.GTo10.42)«ANDLFI1IITER)LY.(0,58)) GO TO 290
IF (F1{ITER).GT.{0.77) . AND.FL{ITER).LT.(0.89}) GO TO 300
60 TO 180 ,

NIT=NIT+1 .

NDELLITINEIT)=1ITVER ' T
GO0 TO 260 . , _ : ' i
NNNIT=NNNIT+1 . '
NDEL50(NNNIT)=ITER

GO 10 270

NNIT=NNIT+1 . , _ .
NDELB83(NNITI=ITER : o
CONT INUE : : :
CALL EXTRAPINIT, NNIT.NNNIT)

PT=1TM&NPLOT

IF{PT.EQ.1}) CALL PLOT

IFLITM.EQ.2) CALL DFDT

CONT INUE

CONTINUE

CALL TWRITE{3HHIN,HIN,0}

CALL TWRITE(3HDEL+DEL,0)

CALL TWRITE(SHNSTAG,NSTAG,1)

CONTINUE

CALL EXIT

END

SUBROUTINE SIGSET
CDMMON/O/SIGMAO(ZO!.HSIG(ZO).SIGMA(ZO.90) HSIGOL20) i C
CALL TREAD{4HSKIP,SKIP,0) : S L
NSKIP=SKIP , oo
DO 5 1=5,9

IF(1.EQ.8) GO TO S : _ , .
IFINSKIP.LT.1) GO TO 1 _ .
IFI{NSKIP.,NE.I) GO TO'S . g

CALL TWRITEI2H I41,1) : - o
CALL TREAD(&HSIGMAO,SIGMAO(I),0) o : : -
CALL TREAD(7HHSIG(I),HSIGLT),0)

HSIG(I)=1000.%HSIG(I)

CONTINUE : . _ -
SIGMAD(8)={SIGMAO(T) +SIGMAO(9))/2. ' B
HSIG(B)=(HSIGI7)+HSIGI3)) /2, :
CALL TREAD(6HHSIGLGyHSIGLG,0)
HSIGLG=1000.*HSIGLG

00 6 1=10,20

HSIG(1)=HSIGLG

X=1-

F=l{X-1.)/X



10

20

30

40

50

€0

‘70

F=SQRT(F**3)

IM=1-1

SIGMAO(I)=F*SIGMAO(IM)

CONTINUE

RETURN

END

SUBROUTINE EXTRAP (NIT,NNIT,NNNIT)

COMMON/A/BETA(S)4WD1(18),55(90),EQK{90},DELT{90)
COMMON/B/Q1(90),Q2(90),QINTOT{90),Q2NTOT(90)},F1(90},F2(90)
COMMON/CITH.NDEL[?(15)-NDEL50(ISD.NDEL§3IISD,THLST(#O);LM

SIXINV=1./6.
FIVESX=5./6.

'ZERO=0.

HALF=1./2.

D1SM=D1LG=1.

If (NIT.EQ.0) GO TO 30

DO 20 I=14NIT

IN=NDELLTLIY

D1=SIXINV-F1(IN)

If {D1.GE.ZERO) GO VO 10
HERE FLUITER) IS GREATER THAN 1/6
Dl=-Dl1

IF (D1.GY.D1LG) GO TO 20
DILG=D1

ITITL=IN

GO 70 20

IF (D1.GT.D1SM) GO TO 20
D1SM=D1 :

IT17S=IN

CONYINUE

N1SM=D1SM

N1LG=DILG

D1SM=D1LG=1. . ’
IF [NNIT.EQ.O0) GO TO 60

D0 S0 I=1,NNIT

IN=NDELB3({I}

D1=FIVESX-F1{IN)

IF (Dl1.GE.ZERD) GO TO 40
D1=-D1}

HERE FL{ITER) IS GREATER THAT 5/6
IF (D1.GT.DLILG) GO TO 50
D1LG=D1

1T83L=1IN

GO '0 50

IF (D1.G¥.D1SM) GO TO 50
D1SM=D] ’

IT83S=IN

CONT INUE

N1SM=D1SM

NILG=DILG

IF (NISM.EQ.1.O0R.N1LG.EQ.1) NNIT=0
D1SM=D1LG=1.

IF (NNNIT.EQ.O0) GO TO 90

DO 80 I=1,NNNIT

IN=NDELSOLI) . -
D1=HALF~F1{IN) .
IF {D1.GE.ZERO) GO TO 70
01=-01 :

If (D1.GT.D1LG) GO TD 80
D1LG=D1

IT50L=IN

GO 1O 80 ) ,

IF (D1.GT.DL1SM} GO YO 80
D1SM=D1

ITS50S=IN
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80

90
100
110
120

. 130

690

10

20
17
100

66
200

100
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CONT INUE

N1SM=D1SM

N1LG=D1LG

IF (N1SM.EQ.1.OR.N1LG.EQ.1) NNNLT=0

EXTRAPOLATION PROCEDURE (JUST USING TWO POINTS)

IF (NIT.EQ.0) GO TO 100 v '
SLOPE=(FLLITLTLI-F1(ITLTS))/(DELT(ITITL)~DELTLITLTS))
T17=(SIXINV-F1{IT17S)+SLOPESDELT(ITLTS) ) /SLOPE

IF INNIT.EQ.0) GO TO 110

SLOPE=(F1(1783L)~ FlllT83S))IlDELT(lT83L)—DELT(lTO3SID
T83=(FIVESX-F1(IT83S)+SLOPE*DELT(IV835))/SLOPE

IF (NNNIT.EQ.0) GO TO 120
SLOPE={F1LITS0Ld~F1(IT50S)}/(DELT{IT50L)-DELT(ITS50S))
TM=(HALF~F1{IT505)+SLOPE*DELT(IT50S})/SLOPE

DEL23=0.

IF (NIT.EQ.0.OR.NNIT.EQ.0) GO TO 130

DEL23=T83-T17

IF (NNNIT.EQ.0) TM=0.

WRITE (6,690) TM,DEL23

FORMAT [(#* PREDICTED MELYING TEMPERATURE*"FIO 6.8 DELTAL2/3

13=%,F10.6)

RETURN

END

SUBROUTINE OFODT

COMMON/A/BETA(S5) «MD1{18),55(90),EQK(90),DELT{90)
COMMON/8/QL(901,Q2(90),QINTOT(90), Q2NTOT{90),F1190),F2(90}
COMMON/C/TM,NDELLT(15)¢NDELSOL15)y NDELBI(15), TMLST{40) LM
DIMENSION SLOPE(25)

SLPTM=0.

DO 10 I=},10

J=22-1

SLOPE(I)=(FL{1)-0.5)/(DELT(I)-THF
SLOPELII=(FLIJ)-0.5)/{DELT(J)-TM)
SLPTM=SLPTM+SLOPELI)+SLOPE(JD

CONTINUE

SLPTM=SLPTM/20.

WRITE(6,20) SLPTM

FORMAT (* THE SLOPE AT THE HIDPOXNT OF THE MELTING CURVE lS'oFlZ.B.
CALL TWRITE(2HTM,TM,0)

CALL TWRITE(SHSLOPE,SLPTM,0)

RETURN :

END

SUBROUTINE TTYSETY R R
OIMENSION IFET(8) o
READ(20,100) I

FORMAT (80X,11)

IF{I.NE.1) GO TO 66

0010 J=1,10

CALL CMOFF

CONTINUE

GO Y0 77

WRITE(20,200)

FORMAT( * I AM READY. PROCEED,O ONE OF ONES*)
CALL FET(OLTAPE20,IFET,8)

IFET(2) = IFET{2)<0R.000000100000000000008
IFET{8) = IFET{8).0R.400000000000000000008
CALL FET(6LTAPE20,1FET,-8)

RETURN

END

SUBROUTINE TREAD(MyVARyN)

EQUIVALENCE (TEMP,IVAR)

WRITE{20,100) M

FORMAT(1H (AlQ,* = *)



200
11
12

13

100

200

100

READ(20,200) VAR
FORMAT(F15.5)
IFIN.EQ.O) RETURN
IF{VAR) 11,12413
IVAR = IFIX({VAR-0.5)
VAR = TEMP

RETURN

IVAR = O

VAR = TEMP

RETURN .

IVAR = IFIX(VAR + 0.5)
VAR = TEMP

RE TURN '

END

SUBROUTINE TWRITE(M,VAR,N)
IF{N.NE.O) GO TO 1
MRITE(20,100) M,VAR
FORMAT(1H ;A7 :¢2¢,F11.5)
GO T0 2

WRITE(20,200) M, VAR
FORMAT(1H ¢AG.& = %,16)
END FILE 20

RETURN

END

SUBROUTINE PLOY

\

"COMMON/A/BETA[S5),WDLI181,SS{90),EQK(90),DELT(90}
COMMON/B/QL{50),Q2(901,QINTOT(90),Q2NTOT(90),F1(90),F2190)
COMMON/D/SIGMAO{203),HSIG(20),SIGMA{20,90) ,HSIGO(20)
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COMMON/PLTT/ NUMMCL  ITMXOyDELTAO s MOLECL 4DEL HIN.TXNIT.NSTAG.HXINO

1, NALLNO
COMMON/NN/QN{12,90)+QP(12,90)

COMMON/CCPOOL/XMIN,XMAX yYNIN,YMAXy CCXMIN, CCXHAX.CCYHIN.CCYHAX

DIMENSION FPDPO(90)'FPOPII90).FPOPZI90)'FPOP3(90)9FPOP§(9O)'FP0P5(

190}
DIMENSION ABEXPL60)

DIMENSION ABS(bO.S)-TEXP(bO)'HNAHE(10$pDIFlbOD

IF(IHERE.EQ.120) GO TO 5
IHERE=120

WX3=5HOEL =

WX4=6HA-U EN

WX5=6HTHALPY

WXl=2H =

WX6=6HND STA

WXT=6HGGERED

WX8=6H

WX9=6HINTERM -
WX10=6HEDIATE

WX11=6HS

WX12=6HSTAGGE

WX13=6HRED SP

WX14=6HECIES

“WX15=6HARE IN

WX16=6HCLUDED

WX17=6H

WX18=6HLOOP E -
WX19=6HNTHALP

HWX20=3HY =

WX21=6HS IGMA

WX22=6H(20 DE

WX23=4HG) =

WX24=6HALL OR

WX25:6H NONE

HX26=6HMODEL ~
HBP=HIN/{10.%%3)
READ(S,100) [IDATA, TFIRST.TDEL
FORMAT(15,2F10.51%



120
115
105

21

%0
45
50

47

48

55

60

DO 105 IX=1l,NUMMCL

READ({S,110) WNAMELIX)
FORMAT (12X,A6)

00 ‘115 1Y=1,1DATA v
READI5,120) TEXPIIY),ABS(IY,IX)
FORMAT (2F10.5)

CONTINUE

CONTINUE

CCXMIN=130.

CCXMAX=930,

CCYMIN=200.

CCYMAX=800,

CX1=CCXMIN®TS,

CX2=CX1+375,
CY1=CCYMAX+120.

CY2=CY1+65.
HNTT={CCXMAX-CCXMIN)/2.-55,

B=(675.-CCYMIN)/ (CCYMAX-CCYMIN)+,.005

" C=0650.~CCYMIN)/(CCYMAX-CCYNIN) +.004

D=(625.-CCYMIN)/{CCYMAX-CCYMIN) +.004

Bl1=(675.-CCYMIN)/(CCYMAX-CCYMIN)
B2=(660.~-CCYMIN)/(CCYMAX-CCYMIN}
B3=(645.-CCYMIN)/(CCYMAX-CCYMIN)
B4=(630.~CCYMIN)/(CCYMAX-CCYMIN}
B5=(615.-CCYMIN)/ (CCYMAX-CCYMIN)
B6=(600.-CCYMIN)/ (CCYMAX-CCYMIN)
XMAX=80,. :

XMIN=-20,

YMIN=0.

YMAX=1,

INT=XMAX-XMIN

INT2=INT/5

A=XMIN+3,5000

L 2K 2K B B J

Al=(640.~CCXMINI*( XMAX—XMIN) /7 {CCXMAX-CCXMIN} =1 .5¢XMIN

DO 21 1=1,1DATA
ABEXP{1)=ABS(I,MOLECL)

«004
+ 004
«004

-« 004

.004
.004

CALL CCGRID (1,INT,2,6HNOLBLSs151004}

CALL CCiBL (INTZ2,10)

CALL CCLTR (HNTT,80.,0,3,11HTEMPERATURE}

CALL CCLTR (30.+42544193,TH1-THETA)
REWIND 98 '

WRITE(98,40) WNAME{MDLECL)

FORMAT{AG)

CALL CCLTRICX1,4CY140,5)

REWIND 98 '

WRITE(98,45) (WX3,DEL)
FORMAT(AS,F6.4)

WRITE{98,50) (WX4,WX5,WX1yHBP})
FORMAT (2A64A2+4Fb6.1)

HLOOP=HS IGIMXINO}/(10.%%3)
WRITE(98+47) WX184WX19,WX20,HLOOP
FORMAT (2A6,A3,F5,.1%

-

FORMAT(2A64A4,E10.3)
IF(NACLNO.EQ.1) GO TO 62
IFINSTAG.EQ.1) GO TO 60
WRITE(98,55) WX6,WXT,WX8B
WRITE(98,+55) WX9,WX10,WX11
FORMAT(3A6) '
GO TO 65 . ’
WRITEL(98+55) HWX12,WX13s¥WX1l4
HRITE(9B8+55) WX1S5,WXL6,WX1T
GO TO 65

. WRITE(98,48) MWX21,WX22,WX23,SIGMAO(MXINO)
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62
65

WRITE(98,55) WX24,WX25,WX26

CALL CCLTRICX2,CY240,+2)

CALL CCLTR (200.+700.40,1,6HLEGEND)

CALL CCLTR (1754.+675.9041421H= EXPERIHENTAL POINTS)
CALL CCPLOT (AyBy1,6HNOJOIN,Ty1)

CALL CCLTR (175.4650.90¢1:19H= CALCULATED POINTS)
CALL CCPLOT (AyCy1,6HNOJOINs1y1)

CALL CCPLOT{DELT,F1l,ITMX0y4HJOINs1s1)

CALL CCPLOT(TEXP,ABEXP,IDATA»4HJOIN,T,1}

CALL COCNEXT :

"JO=TFIRST-TINIT - .

201

200

DO 200 I=1,IDATA
J=JO+#(1-1)*(TDEL/DELTAD)

WRITEL64+201) DELT(JILTEXP(I)
FORMAT[(F10.5% = *,F10.5)
DIF(I)=F1(J)-ABEXP(I)

CONTINUE

YMIN=-0.25

YMAX=#+0,25

CALL CCGRID{1,INT,2,6HNOLBLSe2¢5+4)
CALL CCLBL{INTZ2,10}

CALL CCLTR(30.9300691s3¢19H1-THETA (CALC-EXPT))
CALL CCLTR(HNTT.BO.10,3111HTEHPERAVURE.
REWIND 98

WRITE(98,40) HNANE(MOLECL,

CALL CCLYRI(CX14CY140¢5)

REWIND 98

"WRITE(98B,45) (WX3,0EL}

160

WRITE(98,50) (WX&,WXS5,WX]1,HBP)
WRITE(98,47) WX18,WX19,WX20,HLOOP
WRITE(98,48) WX21,WX22,WX23,SIGMAD({MXINO)
IF(NALLNO.EQ.1) GO TO 162

IF(NSTAG.EQ.1) GO TO 160

WRITE(98¢55) WX64WXT,WX8

WRITE(98,55) MWXI,WX10,¥WX1]1

G0 TO 165

WRITE(98,55) WX12,WX13,WX14

"HRITE{98+55) NWX1S+WX164WX1T

162
165

2122

260

GO YO 165 -

WRITE(98+55) WX24,WX25,WX26

CALL CCLTR(CX24CY2,0+2)

CALL CCPLDT(TEXPQDIF1IDATA'4HJOIN'6'1’
CALL CCNEXT

CONTINUE

IF{NALLNO.EQ. 1) RETURN

YMIN=0.

YMAX=1.

CALL CCGRID(1,INT,2,6HNOLBLS,1,10+4)
CALL CCLBLUINYZ,10)

CALL CCLTR(HNTT,80.40+3+L1HTEMPERATURE)
CALL CCLTR(30.4300,+1+3,18HSPECIES POPULATION)
REWIND 98 :

WRITE(98,40) WNAME{MOLECL)

CALL CCLTRICX14CY14045)

REWIND 98 )

WRITE(98,45) [WX3DEL) "
WRITEL98,50) (WX4,WX5,WX1,HBP)
WRITE(98+47) WX18,WX19,WX20,HLOOP
WRITE(98,48) WX21,WX22,WX23, SlGHAO(HXlNO.
IF(NALLNO.EQ.1) GO TO 262 :

-

- IF(NSTAG.EQ.1) - 60 70 260
WRITE(98,55) WX6,WXT,HX8
WRITE(98,55) - WX9,WX10,WX11
GO TO 265

WRITE(98,55) WX124WX13,HX1&
WRITEL9B¢55) HWXL5,WX16%X17

II-11
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GO TO 265

WRITE(98,+55) WX24+WX25,WX26
CALL CCLTR(CX2,CY2,042)

DO 300 I=1,1TMX0

G=l.-Fl{I}

FPOPOLIN=F1(I)
FPOPL{I)=C*QP(]1,1}
FPOP2{I1=G&QP(2,1)

“FPOP3(1)=G*QP(3,1)

FPOP4(1)=G*QP(4,1)
FPOPS(1)=G*QP{S,+1)
CONTINUE
CALL CCLTRITO00.5700,+0451y6HLEGEND)
CALL CCLTYRI(640.,¢675.9091423HSINGLE STRANDED SPECIES)
CALL CCLTR{640.4660.,041,20HMINIMUM LOOP SPECIES)
CALL CCLTR(6404.9645.4091918HMIN. LOOP ¢ 1 BASE)
CALL CCLTR(640.¢630.40y,19y19HMIN. LODP & 2 BASES)
CALL CCLTR{640.+615.,0s1s19HMIN. LOOP ¢+ 3 BASES)
CALL CCLTR(640.+6004.,0s1419HMIN, LOOP ¢ & BASES)
CALL CCPLOT{AL,B81,41,6HNODJOIN:9,1)
CALL CCPLOT(AL+B2,1,6HNOJOIN,8,1)
CALL CCPLOT(ALl,B83,1,6HNOJOIN,T,+1)
CALL CCPLOT(ALl,B4,1,5HNOJOIN,6,1)
CALL CCPLOT(Al4BSy1,6HNOJOIN:S,1)
CALL CCPLOT(AL:B6416HNOJOINy4,s1 )
CALL CCPLOTI(DELTFPOPOy ITMX0y4HJOIN,9¢4&)
CALL CCPLOT(DELY sFPOPl,ITMXOy4HJOIN:8+4)
CALL CCPLOTIDELT yFPOP34ITMX094HJOIN,644)
CALL CCPLOT(DELT FPOPS59ITMX094HJDINy4+4)
IFINSTAG.EQ.0) GO TO 310
CALL CCPLOVU(DELTY FPOP2y ITMXO¢4HJOIN, Ty4)
CALL CCPLOT(DELT FPOP4y ITMXO0¢4HJOIN,S¢4)
CALL CCNEXT
RETURN
END
SUBROUT INE CCLBLINX1,NY1)
COMMON/CCPOOL/XHINQXHAX'YNlN'YHAX'CCXNIN CCXHAX.CCY"!N'CC'NAX
CUHMON/CCFACT/FACTOR
ISZERO=0
XD=XMAX—-XMIN $YD=YMAX-YMIN
CCXD=CCXMAX-CCXMIN $CCYD=CCYMAX-CCYMIN

KSIZE=2
KORIENY = O -
IF { NX1 .EQ. 0 ) GO YO S

LABEL FROM RIGHT TO LEFY ALONG THE X-AXIS.

XI=XD/FLOAT(NX1)

DO 2 NX=ISZEROyNX1
CCX=CCXMAX~CCXD*FLOAT{NX)/FLOATINX1)
X={CCX-CCXMIN)*XD/CCXD+XMIN

SET X TO A TRUE ZERO IF X=0. TO WITHIN MACHINE ACCU*ACY.

IF(ABS (X/XI)elT.1.0E-6)X=0.
WRITE(98,27) X
CALL CCLTR (CCX-65.*FLOATIKSIZE)/FACTOR,
X CCYMIN-9.#FLOATIKSIZE)/FACTOR, -
X : KORIENTy KSIZE )

5 IF ( NYl .EQ. O ) RETURN



(2 XaX o)

27

GS v oq 5 0 U3 4 9

LABEL UPWARD ALONG THE Y-AXIS.
Y1=YD/FLOATINY1)
DO 3 NY=ISZERG,NY1
CCY=CCYMIN+CCYD#FLOAT(NY) /FLOATINY1)
Y={CCY-CCYMIN) #YD/CCYD#YMIN
SET v TO A TRUE ZERO IF Y=0. TO WITHIN NACHINE ACCURACY.
IF(ABS (Y/YI).LT.1.06~6)Y=0,
WRITE(98,28) ¥ 3
CALL CCLTRICCXMIN-TO.*FLOAT(KSIZE}/FACTOR,CCY,KORIENT ,KSIZED
RETURN | | '

FORMAT(F10.0)

"FORMAT (F10.2)}

END

II-13
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APPENDIX III

PROGRAM DBL

Program DBL“is used in Chapter 5 to predict the secosdary
structuies of‘an RNA molecule? 'We present a detailed explanation
-~ of the program, which should (1) make clear the various assumptions
about thermodynamic parameters made at the time the work was
completed. As more data are obtained, especially sabout loops,
several of these assumptions san be removed by chsnging the internal ‘
Jogic in specific places; (2) clarify diffidult points in the logic;
(3) explain the output of the program.

A. Input Parameters for Program DBL

Card Symbol(s) " Format Explanation
Number :
1 LAB(I) 1246 LAB(2) to LAB(12) are

printed at beginning of
the output as a label.
To extend the message to
an additional line of
output, set LAB(1l) =

bCONTD.
2 . HIN, HGG, HGA, TF10.5 HIN = the enthalpy of the
HGU, HGC, HAA double stranded AA inter-

action in cal/mole.

- o -
HGG = AHS, - HIN (The

enthaelpy of the GG double
stranded stacking inter-
action minus the AA stack-
ing interaction.)

'

3 HAU; HAG, HUA, TF10.5 Symbols have same meaning
HUG, HCG . ' as for card 2; e.g. HAU =
: e ° L H
AHAU HIN.
L '~ EKGGO, EKGAO, TF10.5 EKGGO = kgG in the text.
EKGUO, EKGCO, ' (See Chapter 3, equation
EKAAO - ' (AS®,.-AS°, ) /R
GG T AA

3.2a.) EKGGO = e
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11

EKAUO, EKAGO,
EKUAO, EKUGO,

EKCGO

SIGMAO(I),
=5,9

HSIG(I),
=5,9

RGA

INTLP, ENINT

NDEBUG

NUMMCL

- TF10.5

TF10.5

TF10.5

F10.5

IS, F10.5

I5

15

INTLP =

- NDEBUG =

IT1-2

Similarly, EKGAO = kgA =
(AsgA-As° )/R - :
e Note that

. (AS° -AS° )/R
. C o .
EKAAO = k¢, e

= 1.

h
/

Defined as in card k.

SIGMAO(I) = the loop
weighting function for a
loop with I links at
temperature T0 = 20°C

HSIG(I) = AHY, the enthalpy
of formation of a loop wlth
I links. :

RGA = KG/KA

initiation factor for a

Thus, the

" base pairing region with

at least one G-C base pair
is RGA<k Kpe

the minimum
number of links in a loop
for which the loop is
assumed to be an 1nterlor
loop.
ENINT =

-

the standard free

‘energy assigned to an
~ interior loop in cal/mole.

parameter which
determines how much output
program prints. -

‘Standard option is NDEBUG

= 0. If it is necessary
to output all intermediate
secondary structures, set
NDEBUG # O.

NUMMCL = number of different
molecules considered in the
calculation.
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I=1, 12
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EXCLP : 1246

wD(I), I =1,N B80Al
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¥
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The identity of molecule
calculated is specified in
LAB(I), I =2, 12. LAB(1)
= NONEbb for the standard
calculation. LAB(1) =
VARY15 for the option which
is explained in note under
the explanation of sub-
routine LK15V. (This option
takes a .series of solutions
consisting of three stable
vectors and calculates a
solution which assumes the
presence of these sets of
vectors. The information
of which sets of vectors to
include must be inputted:
the proper format for this
information is contained
in note 3-e.

Number of biological bases
in the RNA :

IF EXCLP =bEXCLP, then two
calculations are run; the
first allows bases in loops
to base pair and the second
does not permit bases in
loop to pair. '

IF EXCLP = EXCLP2, then
only one calculation is
performed, for which bases
in the loop may not base
pair. '

WD(I) specifies the identity
of the It base, counting
from the 5' end of the '
molecule. The sequence is
specified by the symbols

A, U, G, and C, for adenine,
uracil, guanine, and cyto-
sine respectively. Since
thymidine base pairs like
uracil, it may be specified
by U. For the odd bhases, .

D = dihydrouracil and ‘it is
forbidden to base pair, P

= pseudouracil, which is
treated like uracil; X = an

. unknown base, which is

permitted to form a base

pair with any base; Y = a

base which cannot form a
base pair.



Cards 12-15 are repeated for each of the NUMMCL RNA molecules.

B. Structure of Program DBL

1. Beginning of Program to Statement 48

This part of the program reads in data and sets up tempera-

ture dependence of the free energies. Several things should be

noted:
a. After statement 4: TBV is 1/T, in o™t in the
| "+ =AH ((p/R(1/T - 1/T) -
equation o = ooe . TBV is set equal to

1/(20 + 273.16), since o: is the loop.weighting:function at gooc.
If a loop #eighting function at any temperétﬁre other than 20°C is
read in as input data, then TBV must be‘changed within the progrém.

b. After DO 8:.the values of cb(I), I=1V4,3,2, are.
set as follows: o;(h) = 0.2 00(5); 00(3) = 0.2 oo(h);'oo(e) =
0.2*00(3). This is a rather arbitrary Quantificatiop.of the
observation that vefy small loops are destabilized; présumébiy
because of steric constrQints. Later in_the progfam (see noté 2.4),
_loéps with three or fewer links (i.e., one or two bases in the loop)
are forbidden. In all cases, SIGMAO(I) refers fo a loop with I.
links (i.e., I-1 bases). - |

| c. HSIG(1) = HSIG(2) = ..... = HSIG(5): the assump-

.'tion is made that all loops with.lESs than 5 links have’ﬁhefsame
"enthalpy as the loop with 5 links. This is unlikely to be the
case and, if the caléulation is to be performed reliably at different
temperatures, the assumption ought to be removed (when data are
available). | |

d. ENINT = -ENINT: All energies inputted into the

program are inputted as positive numbers. Thé program converts

.I4 - - . - . i . ] . . .
We.use 0.as the loop weiphling Lo conform to the Tlogic o Lhe
cprogram. (Tt is equivalent to o of Chapter h.)

I11-4
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the energy of én internal loop‘into a stability number, defined as
" the negative of the free'eneréy. Because the free energy of loop
formation is positive, the stability number will be negative for
loops.

e. v_SIGMAO(8) = ... i No value of 00(8) based on
experimental was not available. It was assumed equal to the
average of 00(7) and 00(9).

f. SIGMAO(I) = F*SIGMAO(I-1). Hairpin loops of
increasing number of links are assigned a loop weighting function
in acédrdance with the equation co(I) = [(I-l)/I)3/2 . oo(I-l). |
This is the functional relationship appropfiate.for & chain with
links which are unconstrained in‘their angulﬁr'origntations. As
data become available:for larger loops, this éssumption might
eventually be removed. Alfernatively, the 1odp.ﬁéighting functions
. could be assigned a limiting value for all loops aﬁove a limiting
loop size.“(This is effectively the procedufe uséd-in the present
vcalculations, since we assume that all ioops with greater thén
INTLP links have a free energy of ENINT kcal/mole._ (See note below. ).

g. IF(I.G.E.INTLP): Since the analysis of alternative
Secdndary structures has shown that most large loops are internal
,'loobs, we apﬁroximate all loops with more.than’INTLfrlinks with a
free energy deemed appropriate fdr internal loops} We aésign no
temperature‘dependenée‘nor size dependence to the free energy‘of.
these intérnal‘loops;
| ‘h. GUFAC = ... 'A G-U base pair is assumed to have a
free energy of -1 kcal/mole ﬁheﬁ it is involved in any doﬁbie

stranded stacking interaction.
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i. FERGA: This is the stability number associated
with the_initiation.of a loop at a G-C base Pair; As noted later,
if any GC base pair is formgd.within the base pgiring'region, it is
assumed that initiation takes place at the G-C base pair and the
stability number FERGA is added:to the total stabilit& of the base
pairing region. |

2. Statement 48 to 230.

This section takes the primary sequence of the RNA

molecule énd detefmines all possible base pairing regions which
cen be formed,; subject to the constraint that oniy G-C, A-U, and
G-U base pairs are allowed and the base pairing fegions must be
anti-parallel. It calculates two stability humbers,for each base
pairing region: one includes only the effect of the'staékingl
interactiéns;(and favorable G-C initiation, if_pfesént); the second
includes the destébilizﬁtion associated with tﬁe loop formation.
On thé basis of the secondvstabilityvpumber,»the base pqiring
regioné_(called vectors) are listed in order of descendiﬁg stability;

V'a. REAb(S,S) to READ(5,20): Input-parameters for a
given RNA molecule are read in. ‘ )
Lo b. DO 26: 1EXC = l‘and 1EXC = 2 are the o cases
considered in which baseApairing regions between bases in différent_
loops may and may not form, respectivély.. Discussion of these
options is deferred to note 3.d, where the logic is explained.

c. DO 50 ... 50 CONTINUE: ' Here, all conceivable base

paifs which can form are registered. E(I,J) = 1 meéns that ﬁhe |
Ith,and I vase takenltogether may form a G-U base pair; E(I,J) =

2 is an AU.base pair; E(I;J) = 4 is a GC base pair. The information
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is then summarized in a matrix of all values of E(1,J),0J I. TFor
example, for the sequence GAUGCCUAG, the matrix is written.

GAUGCCUAG

GO
A0O
ui20
GoO1lO0
chooko
chookoo
U1201000
A00100010
GoOO1O04L4k1o00
d. IF((I-J).LE.3) E(I,J) = 0: This statement disallows

loops with:three or fewer links (i.e., 2, 1, or O bases). The above

matrix is then written:

I 1234k56789

J GAUGCCUAG
1G .0

2A 00

30 000

LG 0000

5¢C koooo
6c'hoooo‘o

TU 1201000
8A 00100000
9G 001040000

For a.short sequence, this constraint excludes a significant
fraction of base pairs. For a larger sequence, only a small per
ceht of possible base pairs are excluded. The effect is to sét all
terms three or less reﬁoved from diagonal I = J to zero.

We will illustraté the 6utput of the program for valine

tRNA from yeast. The matrix,‘which establishes all'possible,base
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pairs, is shown below. We call this the base pairing matrix.

_ GGUUUC&UGGUCPAGDCGGODAUGGCAPCUGCPUYACACGG‘GAACOCCCGAGU?CGAUCCUGGGGCGAAAUCAGCA

1Z3b567090123“567090t236567090123b567090123%567a901236567690123%567090123&567

10
G Z 00
U 3000 )
O 4 00007 i : ‘.
U 5710000 . :
T 440000 : — - ; .
_G. 7 6010000 - . :
U8 11000000 R i
-6 9 001110000 - THIS CALCULATION IS ON THE.VAL-1 T-RMA YEAST MOLECWLE ..
G 10 0011140000 - LOOPS "MAY NOT BASEPAIR ”
U 11 11000010000 -
"C 12 440000400000
P 13:°1100001010000
A714700222002000000
6 _ 15 001114010010000
0 16 0000000000000000
€ 17 44000040440000000 .
G "18 031114010014100000
__6_ .19 0011140100141000000
0 20 00000000000000000000
D 21 000000000000000000600 -
A 22.0022200200202000000000 N
U 23 11000010110C02100110000
G 24 071114010016100060003000
625 0011160100141000400000000
C 26 %4700040440000600440000000
_ A 27 002220020020200000000020000
P 28 1100001011000210011002010002
€ 29 440G0040440000400440000440000
U 30 1100001011000210314100201100000
G 31 0011140190141000400000100600000
32 44000040440000400%40000440000000
33 1100001011000210011002¢1102000600

POOPOCPPPOOODOOCOOCPROVCOPO00000B B0 »cvcﬁérbkvx»< c'vo!l

3

1

36

38
.33
40

L3S

42

L3

4
45
46
W7
48
%9
50

.51

52
53
St

55
56

s7
58
59
60
61
62
63
6l
65
66
67

68

69
70
71
72
73
74
75
76

77 002220920020203009303€2039320200222000000800000ICC0000220002002900036000200000

_ 31

11003010110002100110020110203060090
60000000000000002300000006000006000°
002220020020200000000620300202000900
4400006044000040044C00044000004000000
002220020020200000003C2090020260220000
4400006064000040044G9004400000400000000
0011140100141000403000400401416411000000
44000040460000650440000440000040003000000
002220020020200023003020000202002200000000
0011160100141030400000200401610411004060030  __
00222002002020003000002000020200220000000000
€02220023020200000000020000202002200000000000 __
46000040644000060046080644000004060300004000000
009¢J0000006009030C00G00J00600000000000000000000__
4£4000040440000640344000044560300600090003400400020
440050404400000004400006400000600000000600600000D.
4400004046000040044000046000004006030000400460000000 . :
440600404400004004400004400000400000000600400000000 N
0022200200202000300000200002C20022000000000000000030 .
0011160100141000400000130640141062100404064000040440000 . :
110000101100021001100201102000100032020102122000000000
1130001011000220J140020110200010002202040212200000000090 . . . -

46063040440000400640000440000040600000040040000000000000 . ‘

5311160100141000430030103601410421004060400006366444000000" . o .
0022200200262000300600020300202002200000€060600700000020000 ~ T T
11000010110002100110323110200010030202010212293000921000030 e
460000606400006004400C046030004000000004004000000000400000600 T -
4430004044000060066036044000004003000004306000000000400040000 :
1100991061103621051100291102060106002020102122990€0021000120000
0011140100141000630000100601410411001040400004044L 4001160010000
0011140100141000430000109401410411006040400004344460011430140000
0811160100141000490000100601410411204060403C026304446C0116301440000
001114010014100060000010049141041100604040000404444001140016410000
4400006064060750044C000440005060006050C400406090C006%090460000%0009.
0011160100241000400000100401410411004J4040000494446001140601441000000
00222002002020003330002630320200229C0000000060750003072200920029000000
0022200200202900J00000200002020022J00006000000000000022000200200000000
00222002002¢200030000020900232002230030000900C00C0002220002002090000000
110000101100021001160231102090200032029102122640000210001200001111015000
4400004044000040064000440000040007000040040500000004590490000466HI400000
£022200200202060300000203902025022000000900000006930022000200200000000€000
460000606603006C954C00044030304063I000040040002000ICH000600000466L040000000
44200040640000400460000440000040C000000400400GI00030%000600000446404%00000030 .

GGUUUCGUGGUCPAGOCLLODAVUGLGCAPCUGCPUYACACGCAGAACDCCCCAGUPCGAUCCUGGGGC GAAAUCACCA
12}b567890123b567890123“567890123%56759012355678901236567890123“5670901235567

i
'
!
|
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e. DO 110 J=1, N-1: N is the number of biological
bases in the RNA mélecule. This do loop begins the procéss of
searching for stable baée pairing regions in the molecule. The
principle of the search routine is that anti-parallel base bairing_
regions will appear in the basé pairing matrix only as lines bn
the 45° diagonal (going from the lower left to the upper right)
which have no zero. To understand thé reason for this, consider

bases 5 to 7 and 58 to 56 in valine tRNA. The base pairs formed are:

D Q o
\n
e

>
U
A

\N

8 .
As the nuﬁber in the sequence increases from 5 (for U) to 6 (for C),
the number of the complement decreases by‘l, from 58 (for A) to
- 57 (for G). This is the condition for the base pairing region to
be on the 45° diagonal, as stated above. An approximation involved
in this approach is that, if a bulge occurrs, it will break up a
complementary region into two. |

The search routine begins with the longest diagonal,‘
i.e., it starts with base 1 and 77, goes to base 2 and 76, 3 and 75,
étc. It checks to see if a base pair is allowed and continues until
a break occﬁrs, in which a base péir is not alldwed. It then .
calculates the stability number of the base pairing region, henceforth
called a vector, by summing up the stability nﬁmbefs of all double |
stranded stacking.interactions, éddihg the sﬁability nunmber for
initiation at a GC base pair if one is présent, and adding the'looé
stability number. Since the size of the internal loop, if one is

present, cannot be determined until the final structure of the
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entire molecule is known, the loop contribution is approximated by -

' the number of links between the ends of the vector, going in the 5'
S 5 71 -
to 3' direction. For example, for U C G, the loop size is taken to
AGC :
v ' 58 56 . _
be 56-7 = 49 links. (Because of the fact that we do not distinguish

a size dependence of internal loops, this approximation does not in -

this case make any difference. When the size dependence is known

v and‘included, a correction will need to be made in the final assess="

{
\

ment of stabilities of the different secondary structures for this
approximation.) Once the stability number is éalculatéd, it is
compared with a lower limiﬁ to see.if the vector is to be retained
as a possible region in a stable secondary structure. A stability
‘number of zero is taken as the lower’liﬁit‘ip the program. |

Having completed the first diagonai; the second one
is searched in the same manner. This diagonal begins with base 2
and T7, goes to 3 and 76, 4 and 75, etc. The procésé is continued
until all of the diagonals ﬁeiqw the first one have been searched
for stable véctors. (The bO 115 loop perférms the éame(routihe
for the remeining diagonals gbo#e the first diagonal.)

The logic is easily followed by noting the definition
of several variables and indices within the.DO 110_1obp:

J specifies the diagonal to be searched, and is the
index of tﬁe first_basé in ﬁhe diagonal. |

JX is the index for base on the horizontal axis; it
increases‘in increments of one as thé didgonal is seafched.

| IX is the index for thevbase'on the vertical a#is; it

decreases in increments of one.
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JMX and IMX are indices for the preceding base pair,
so that the nearest neighbor double stranded stacking stability
numbers can be used to calculate the stability_ofithe base pairing
vector.

KF is the number 5f elements in the diagonal which is
searched. |

S sums the stability numbers éssociated with the
double stranded stacking interactions;v It ovefcéuhts by allowing
an extra stacking‘interaction at each end of'the vector. When the
final sfability numbers are calculated in subroutiné LOOK,‘this
overcounting is corrected. |

In SUBROUTINE LOOK,

IFG determines if a GC base pair is present in the

. vector, so as to add the extra term for initiation at a GC.

SUM1 is the stability number of the Yeétor, not
including the léop stability number.
SUM2 is the stability number with loop included.
NCOUNT is the index of the stable vectors.
After DO loop 115, the process of finding all stable

vectors is complete. The output is shown below. Base number Il is

paired with base number J1 and base number I2 with base J2. The

first stébilit& number is without loop; the second, with.

The program then skips around a Bit, as shown by the
following comments. | |

f. 1F(ICT-230) frogram goes to 231.

g. Carqfégl to 225: Reordering of vectors accordinév

to stability numbers.
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__ENERGYWITH LOOP ENERGY

_ I g 120 g2
1 66 b8 61 53 ~ 19.76 13.84
2 73 1 66 8 12,27 .27
3 b 28 40 32  11.59 5.67 .
4 65 48 63 50 10.96 L.bb6 -
.5 66 43 64 51  10.96 4.u46 ;
6 " 68 39 66 41 10.11 4.1t -
——_ 8 74 11  9.97 3.97 _
8 68 30 o4 36 9.16 3.16 -
9 40 6 37 9 8.99 2.99
T8 T T 767 17 T 76 T 37T 8403 2403 T
11 77 23 75 25  7.98 1,98
42777777 82 T3 T 59 25 7,98 1,98 T
13 52 8 50 10  7.98 1,98
14 70 St 67 57 7.95 1,68 ,
. 15 Tr_ 62 75 b4 T.98 1.63 . -
16 75 774 1L 7.04 1,04 ]
_. 17 58 5 56 7 6463 463 .
- 18 56 43 53 46 5.99 021
o .19 67 25 66 26 6416 .16
20 T Wt 25 40 26 6.16 .16
21 67 2 82 7  6.12 .12
22 57 17 583 19 6,06 406
.23 65 11 61 15 605 .05 _
24 33 26 31 26 7.16 04
.2 6%t 1 60 2  6.04 L0
26 51 1 50 2 6.00 b
.2t 50 1 49 2  6.04 404
28 49 1 48 2 6.Cl W04
29 61 18 60 19  6.0b 06
30 61 24 60 25 6.04 0l
31 76 18 75 19 6.06 .0
32 6l 48 63 49 6.04 04
33 66 S50 65 51  6.04 o0& L
34 50 24 49 25 6.0l L0
35 49 24 48 25 6.0k 404 _
36 61 9 60 10 6.04 06 T
37 51 .18 50 19  6.04 .04
38 50 18 W9 19 "6.004 o0l
039 k9 18 . 48 19 = 6.04 WO
40 50 9 49 10 .04 J0G
“1 9 L8 10‘__600‘0 g .0‘0 o _

49
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h. Go to 157. Returns to output reordered vectors,

as shown below.

f

i. 1F(ICT-230) After 170 DO loop, in which reordered
vectors are outputted, the program goes to 232, where the base
pairing matrix is written over a%d a8 letter code is assignéd to.the
vectors. A signifies the most stable vector, B the secénd most
stable, etc. The vectors, so coded, are then'outéutted in a manner
similar to the base pairiné matrix, so that inspection ofvthe new
ﬁatrix readily shows where the most sﬁable»véctors ma& be found.
Program DBL skips to 51 to output this matrix and tﬁen returns to
230, where.the first stage of the calculation ié_cqmpleted. The

‘matrix with coded vectors is shown below.

3. Cards 230 to 251

The remaining part of the program determines which
vectors are compatible with others to form stable secondary
structures for an RNA molecule. The main brogram is.concerned
primérily with outputting results and ié not discussed further.
Subroutines INSPECT, COMPAR, LPK, Lles, and LPK15V do the work and
are clarified beiow.. These subroutines are contained in two'DO
loops.' DO1 répeéts the entire calculatiqn, except‘for the inputting
of fhermodynamic data, for each of the different RNA molecules whose
;ecdndary.structure is to be calculated. DO 26 performs the calcula-
tion twice for each molecule, once for the case where bases,in
hairpin loops may base pair and once fbr_the cése,where they may not

base pair.
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SUBROUTINE INSPECT
. This subroutine determines compatibility between.vectors.

a. 1F(NCOUNT.GE.90): The maximum number of vectors

considered in the calculation is 90. A maximum'(under.EOO) must . e

be set to avoid overwriting'indexed variables. Expérienqe has
shown that with the length Qf.mOIecules suifaﬁle‘for fhe program,
90 inéludes all vectors which coﬁtribute signifi?énﬁly to the
- stability of the molecule. |
b. DO 10, DO 20: These DO ldops'séf'up the comparison
of all vectors with each other, to determine Vhich ones exclude the
presencé_of others. |
| SUBROUTINE COMPARE
_This:subroutine éets up the vector exclusion matrix, for one
of two cases. We eiplain first the case where bases in loops can
base pair And then for the case where they cannot.
| c.. If EXCLF # 1, pfogram skips to 5.if base pairs
between loops ére permitted.  We explain the logic by considering’
‘the case of vector 1 (Il = 66, J1 = U8, I2 = 62, J2 = 53) compared
with vector 8 (I = 65, J1 = L8, I - 63, 02 = 50). In this
instange, the vectqrs overlap and necessérily ekclude eﬁch other.
- NSSET = IA = 1; program goes to 100 and sets INDX(I)
equal to 1 for I = 66, 65, 64, 63, 62, 48, h9 50 51 52, 53; all
other values of INDX(I) = O. Goes to 30, where NLAST = NSSET retains
these values of INDX(I , while vector 1 is compared to all other
. vectors. Program goes through DO loop set up in INSPECT taklng
vector 2, 3, ... For vector 8, JNDX(I) = 1 for I ; 65, 64, 63,

‘48, 49, 50; otherwise JNDX(I) = 0. In DO 4O, if INDX(I) and JNDX(I)
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are both 1, then an overlap between the two vectofs hasvoccﬁrrgd.
The program is set up to allow one overlap between vectors (ICASE

= 2 for ail runs); so that the first overlap:is simply noted and
E(I1, IA) is set tq 1. (I1 is the index of the firét vector, 1, and
IA the index of the second, 8).. DO 40O continues and a second over-
lap is noted. E(I1, TA) = 2 and the two vectors are excluded (i.e.,
may not appear in the s;mé final secondsry structure. If the
process were pbmpleted without an overlap being found, E(IA, I1)

is set to zero. As pointed out, this process is repeated for all
sets of two vectors, thus generating a matrix E,.which we call the
vector exclusion matrix.

If only one overlap occurs (i.e., only one of the
indices for the two  vectors is the same), then this must of necessity
occur at the end of the base pairing'region. In this case, one base
pair can be eliminated from one of the vectdrs (iﬁ the final analysis),
" with the apﬁropriate decrease in the stability ofbthe secondary |
structure accounted for.

d. If EXCLP = 1, base pairing between the loops is
forbiddén. ‘The logic is contained in the IF statements preceding

card 5 in the subroutine. The following base.pairing arrangéments

are forbidden:

60 55

29
33

20 40
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However, bases within a loop may base pair with qther bases within

the‘same'loop. For example, for the loop

25 70
2 75
v ~

base-pairingﬂarrangements for bases 26-29 are allowed.
e. SUBROUTINES LPK, LPK15, LPK15V
" The procedure followed in these subroutines is discussed

extensively in the text. Briefly, subroutine LPK assumes the

presence of V1, sets up a reduced exclusive matrix with 5 x S elements,

determines all allowable (i.e., nonoverlapping) vector sets with

one to five vectors, and calculates the energy of the allowable vector

sets. The process is repeatéd, assuming V2, V3, Vi, and V5 individ-
ually in the final solution. The stability number of the most
stable secondary structure multiplied by‘0.9'is,u$ed'as the cutoff
for the more.complete calculation, pefformed in éubroutine‘LPKIS.
In this subroutine, the reduced exclusion matrix7i; l5 x 15 and one';'
of the‘firsﬁﬂseven &ectors is gssumed to be in thé final éblution;
Subroutine LPKlSV may be used if one wishes to extend-'
the range of vecﬁors consideréd in the solution. This is done by
taking the beét three.&ectors'of the most favorsble étfuctures
using results of LPK15. in-order to use this subroutine, LAB(1) in
data card 12‘must bé_set equal to VARY1S. Then the fcllowing

additional input data must be supplied:
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Card Symbol ' Format Explanation
Number :
16 NDATA - 15 NDATA = the number of sets

~ of three vectors inputted.

AT ICHOSE(I), I=1,3 3I5 ICHOSE(I), I = 1,3 = the
' indices of the three assumed .
vectors. The NDATA sets of
three vectors are read from
 NDATA cards which follow the
format of card 17T.

]

To illustfate how this'subroutine'works, assume that the
standard calculafion has been carried out and all sélutions more
stable than a cutoff energy are choSeﬁ. The mdsflstable three
vectors fof each of these solutions are inputted intb progrem DBL in
cards 16 and 17. Fof each set of three vectors, a redﬁced exclusion
mgtrix is formed. Because all'vectors'exclﬁded by any bf the three
will not appeaf in the reduced exclusion matrix, the matrix canv
extend the calculation to a very lérge number of vectors. Once the
reduced exclusion matrix is set up, the pfoblem is solved in the
standard way. Then the process is repeated'fbr the next set of
three vectors. (The results'reported’did‘not use this method. -
Instead, fhe_solutions generated were scanned tb,sée if any vectors
beyond the.range of the program could Eé added to“thévstructure
- and stabilize it. Nonetheless, the tool provided by LPK15V could be
useful for future analysis, especially if a sizeable numbef of stable
vectors are beyond the range of the exclusion matrices.)

L. A'general note on the use of the program: -there are
two cases in which the calculation dbes not work. (1) If g'vector
exclusion matrix runs out of vectors before it is filled, thé
program will overwrite itself and printxxnsense. This has_been‘

provided f@r to some extent in LPK15: the size of the vector exclusion
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matrixvcan be reduced to as small as 10 x 10, but no smallér. ‘(2)'
If there are so many.vectors that the arrays storing their indices
_are overwritten. The upper limif is 400 vectors. Both problems
can be taken care of by changing card 62 in subroutine LOOK. This
card is set up to refain‘all vectors with'abnegative.free energj.
- For case (1), vectors with a positivé free eﬁergyICAnvbe artifically
retained. For case (2), vectors less stable than ﬁ Cutoff.value
can be éxcluded. Note that SUM of card 62 is the stability number,

the negative of the free energy.
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PROGRAM OBL(INPUT,0UTPUT, PUNCH.IAPESzlNPUt.tAPEbzourPUT.TAPET PUNC
lH,TAPE2, TAPEL)
INTEGER T
INTEGER U
INTEGER E ?
-INTEGER ELF o
INTEGER WORD ’ :
COMMONZ/A/NCOUNT, IXL1L 4003, IX21 400),JX1( hOOl-JXZ( 400'05UH1( 400)
Lo NDIF{ 400), INDX( 400),SUM2{ 400),JNDX{ 400}
CUMMON/B/NyNSSET yNLASTNVEC{2444)yNMAX{24),ENSSET(24)
COMMON/C/EL200,200)
CUMMON/D/ HD(le!.NB(le).B(leDnlSPIle)
COMMON/E/NEXCL200) .
COMMON/F/NILyNIE29NIL¢NJ2sNEJNJsN lHAx,NJMAx.lx.IA.NBAo.ler.l ICASE
COMMUN/ P/ MAXEN,NCOBEST5,NASUM
COMMON/X/SUM3(200) »SUM4(200),GUTOT, FERGA
CUMMON/Q/FELS, 5).SMlNl.&NLODP(90!.SM1N2.lLOOK
COMMUN/Z/ENMIN
COMMON/EX/EXCLP
CUOMMON/TIME/ZITML, [ TM2
COMMON/BUG/NDEBUG
UDIMENSION LAB{(12) '
DIMENSION VI25),7T(25,6),U(25,15)
DIMENSION LB{165) _
DIMENSION . SIGMAO(90) yHSIGII0) JHE(S,5)SE(5,5)
DATA WOL/1HU/, HDZIIHA/.HD3/1HG/ HD«/lHC/.uDS/IHx/.uob/xHD/.uo7/1Hv
1/ W08/ 1HP/ :
3 READ{(S,2) {LAB (KL} ,KL=1,12)
2 FURMAT{12A6)
WRITE(64+4)  (LABIKLI,KL=2,12}

4 FURMAT(2X,11A6) i o
IF{LAB({1}.FEQ.6H CONT } GO TO 3 ‘ y
T8V=1./020.4273.16) :

R=1.98%

RINV=1./1.985

GuUTOT=0 : ‘

READ (5,31) HINy HGGsHGA,HGU ,, HGC 4HAA

READ (5,31) HAU » HAG y HUA , HUG , HCG

READ (5,31) EKGGO,EKGAOQ,EKGUO s EKGCO,EKAAQD
READ (5,31) EKAUOLEKAGO EKUAOD, EXKUGO+EKCGO

READ(5,311) - (SIGMAQG(L},1=5,9)
READ{5,31) (HSIGII),1=5,9)
DO 8 1=1,3

IM=5-1

{MP=IM+1

SLGMACL IM)=0.2%SLGMAO(INP)

8 CONTINUE
SIGMAO(L)=10.%%(-14)
THSIG(1)=HSIG(2)1=HSIG{3)=HSIG(4)=HSIG(5)
READ (5,31} TEMP
TEMP=TEMP+2T73.16
TEMPV=1.,/TEMP
RT=R*TEMP
TBV=1./4273. 16*20-)
READ (5,31) RGA
READ(5,1257) INTLP,ENINT

1257 FORMAT(I5,F10.5) »

_ WRITE(6,1258) INTLP,ENINT

1258 FORMAT(* [N "THIS CALCULATION, ALL LOOPS WITH®,13,* OR MORE LINKS
1 ARE ASSUMED TO BE INTERIUR LOQPS*,/,* THE FREE ENERGY OF AN INTE
1RIOR LODP (IN CALS/MOLE) [S-TAKEN TO BE*,F10.5,//)



31

33

34

42

39

281

36
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ENINT=~ENINT
READ(5,32)  NDEBUG

READ{5,32) NUMMCL

FURMAT(TF10.5)

FORMAT(15)

SIGMAO(8)={SIGMAO(T) +SIGMAOL9) ) /2.
HSIG(BI=(HSIG(T ) +HSIGI9))/2.

HSIGLG=HS1G(9)

DO 33 1=10,90

HSIG{1)=HSIGLG

x=1

F={X-14)/X

F=SQRT{F*%x3)

IM=1-1

SIGMAO(I )=F*SIGMAOQLIN)

CONT ENUE

DO 34 [=1,90

SIGMA= SKGMAO(ll‘EXP(HS[G(l'*RlNV‘(TBV -TEMPV))
ENLOOP (1 )=RT&ALOG(SIGMAY}

IF(1.GE.INTLP) ENLOOPILI)=ENINT

[FI.GEL.INTLP) HSIG(I)=0,

CONT INUE

RIT=RINV*®{TEMPV-(1.,/351.16))

S=EXP(—-HINZRTT)

FE(L,L)=FE(4,4)= RT‘ALOG(EKGGO‘(EXP(—HGG*RTT))’S)
FE{1,2)=FE(3,4)=RT*ALUGIEKGAQ*{EXP(-HGA*RTT}) %S}
FE(193)=FE{2,4)=RT*ALOGIEKGUO*(EXP (~HGU*RTT))%*S)
FE(Llya} = RT®ALOG(EKGCO* (EXP(~HGC*RTT ) ) *S)

“FE(2,1)=FE(4,3)=RT*ALOG(EXAGO*{ EXP(-HAG*RTT}}*S)

FE(2,2)=FE(3,3)=RT*ALUGIEKAAO* {EXP(—HAA®RTT)I*S)

FE(2,3) = RY*ALOG{EKAUD* ( EXP{-HAU*RTT))*%S)
FE(3,2) = RT*ALOG (EKUAO® {EXP(-HUA®RTT ) ) *S)
FE(3,11=FE{4,2)=RT®ALOG(EKUGO* (EXP(—HUG*RTT ) )*S)
FE(4,1) -o= RT#ALOG(EKCGO&(EXP (-~ HCG‘RTT))‘SD

CHE( 1411 =HE(4,4) =HGG#HIN

SE(Ly11=SE(4,4)=(HE(L,1}+FE(L, L) )*TEMPY
HE(1,2)=HE(3,4)=HGA+HIN
SELL,2)=SE(3, 4!‘(HE(loZ)OFE(l'ZD)‘TEMPV
HE(1,3)=HE(2,4)=HGU+HIN

SE(1,3)=SEL2,4)=(HEL1,3)+FE(L,3000TEMPY

HEL 1, 4)=HGC +HIN
SECLs4)=(HE(L,9)+FELL,4) ) *TEMPV

HE{2,21=HE( 3,3)=HAA+HIN

SE(2421=SE(343)=(HE(2,2)+FE(2,2))3TEMPY

HE(2,3)=HAU+HIN

SE(2,3)=(HE(2,3)+FE(2,3))%TEMPV

HE(2¢1)=HE{443)=HAG+HIN

SEL2,1)1=SE(4,3)=(HE(2,1)+FE{2,1)ISTEMPY

HE{3,2)=HUA+HIN

SE(3,2)=(HE{3,2)+FE(3,2))2TENPY

HE(3, 1 )=HE{ 4, 2)=HUG+HIN

SE(3,1)=SE(4,2)=({HE(3,1)+FE(3,1))*TENPY

HE{ 4,1 )=HCG+HIN

SE(4sLl)=(HE (4, L)+FE{4, L)) *TEMPV

DU 42 1=1,4 : C

FE(I,5)1=FE(S, 1)1=HE{1,5)=HE(5,11=SE(]+5)=SE(S5,1[)=0,

FE{5,5)=300,

WRITE(6,39) TEMP

FORMAT (% - THE CALCULATION IS FDR TEMPERATURE =%4FT.2,/7) .

DG 37 1=1,5 :

WRITEL6,281)

FORMAT{///,% BELOW, 1=G, 2=A, 33U, 4=C%,/)

DO 38  J=1,5 '

FERGA=RT «ALOG(RGA)

WRITE(G436) (L14JsFE(IsJd),HELT,J)SE(14J)) -
FUORMAT (= I=%,12,% J=#%,12,%  FREE: ensacv:: F12.4,* ENTHAL
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LPY=%,Fl2.4,% ENTROPY=%,F12.4)
CUNT INUE

CONT INUE

WRITE(6,46) FERGA

FORMAT (% GC INITIATION ENERGY=%,F10,3,%
LR LOOP SIZE 2=5,90%,//)

WRITE(64,47) ({IZ4ENLOOPLIZ))12=2,9)
FORMAT (2X,10012,F10,.3))

DO 48 J1=1,8

11=10.%J1

[2=11+9 .
"WRITE(6,47) { (IL,ENLOGPII1Z)}),12=11,12)
CONTINUE ‘ :
NDIM=200

00 1 IMOLCL=1,NUMMCL

NASUM=1

ITM1=0

1TM2=0 ‘

READ(5,5) (LABL{IBS),1BS=1,12)
READ{5,10) N

READ(5,+5) EXCLP

NRD=(N/80) ¢ 1

IFt (N-80%#(NRD-1)) .EQ. 0) NRD=NRD-1

DO 2% NR=1,NRD

NMIN=(NR—=1)%80 + 1

NMX=80%NR ) :

[F(NR.EQ.NRD) NMX=N

READ(5,20) (WD(1),I=NMINyNMX)

CONTINUE .

MAXEX=1

MINEX=1

IF(EXCLP.EQ.OHEXCLP ) - MAXEX=2 .
IF(EXCLP.EQ.O6HEXCLP2) MINEX=MAXEX=2

DO 26 - 1EXC=MINEX,MAXEX '

1CT=0

EXCLP=0

IF{IEXC.NEL2) GO TO 29

EXCLP=1.

LAB{8)=6H

LAB{9)=6HLOOPS

LAB{10)=6HMAY NO

LAB{L11)=6HT BASE

LAB{12)=6HPAIR

DO 30 [=1,N :
IF{WD(I).EQ.WOLl.0R.WDII1.EQ.WND8) NB(I)=]
IF{WD(1}.EQ.WOL,ORWD(I).EQ.WD8) LB(1)=3
[F(WO(1).EQ.WD2) NB(I)}=2 '
IFI{WD( 1) EQ.WD2) LBLI)=2
IF{WD(T1).EQ.WD3) NBII)=4
IF{WD(I).EQ.WD3) LB(I)=1
IF{WD(T).EQ.WD4) NB(1)=5
IF(WDIT).EQ.WD4) LBLI)=4 :
IF{WD( 1) eEQWDO6 OR WDITV.EQ.WDT) NB(L1)=9
[F{WD(1).EQ.WD5) NB(1)=—06
IFINBL{I).EQs9.0R.NBII).EQ.-6) LB(I11=3
CONTENUE _
WRITE(6,40)  ((WOLI)NBLL))yI=1,N)

DO 50 I=1,4N

E(L, 1)=0

[M=1-1

DO 60 - J=1,1M

ELF=NB(I)+NBLJ)

E(le’=0 ‘

[FIELF.EQ.3) EtL,J)=2

IT1-21

LOOP FREE ENERGIES FO



‘S0

54

51

83

91
90

70

94

92

130

IF(ELF.EQ.5)  Etl3Jd)=l
IFIELF.EQ.9) E(LyJ)=s
ITFLELF LT .0 Ell,Jd)=4
IFIELF.LT.-3) Ell,J)=2
1J=1-J

IF(IJ.LEL3) ElL,4)20
CONTINUE

CONTINUE

D0 53 I=1,N

IM=1-1

DO 54 J=1,1IM

E(J y1)=ELT,J)

CONTINUE

CONT INUE

NLINE=N/125¢1 :

WRITE(6,6) (LABLIBS), IBS=2,12)
IFOINLINE-L)%*125.EQ.N) - NLINE=NLINE-1
DU T0 NL=1,NLINE
NTOT=125+(NL-11%125

NMN=125% (NL-1)+1 :
IF{NL.EQ.NLINE) NTUT=N-125#{NLINE-1)
WRITE(6,80) (WDLI),I=1,NTOT)

DU 83 I=NMN,NTOT

[SPL1I=1-(1/10)2%}0

CONTINUE g
WRITEL6,85) (ISPLINYI=1,NTOT)
JI=(NL-L)*125¢+1

J2=J1+125 .

IF{NL.EQ.NLINE) J2sNTOT

DO 90 J=Jl,J2

IFLICT.EQ.230) GO TO 91
WRITE(6,100) (WD(JdgJy (ECTyJde1=1ydD)
G0 TO 90

WRITE(6,101) (NU(J)-J.(E(lyJ)pl=l'J2)[

CONT [NUE ,
WRITEL6,80)  (WD{I),I=1,NTOT)

TWRITE(6,85) (ISPL1),t=1,NTOT)

CONTINUE : . .
IFLICT.EQ.230) GO YO 230
DD 92 1=1,N

DO 93 J=1,N
IF(E(1+J)EQ.0) GO TO 94
EC1,03=E(14d0/72

GO TO 93

E(l,d)=-1

CONTINUE

CONTINUE

NCOUNT=0

NM=N-1

[=N '

DO 110 J=1,NM

CALL LOOK{O,1,J00)
$S=SMINL1=SMIN2=0,
[LOOK=1

IX=1+1

JX=J-1

KF={{=-J=-1)72+1

DO 120 K=1,KF

IX=Ix-1 -

IX=JX+1

IMX=JX~1

I1PX=1X+1

IFI(K.EQ. L) SMINL=0,
IFI{K.EQ.1) GO T0 134
KX=LB{JX)

KMX=LB{JIMX}
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134

120

140

110

124
125
145
115
150

157

159

167
168

170
232

241
239

8] iﬁ Gow o ;5 {) 0 ;5 i 4

IFLELIXyIX)EQ.0) KX=5
IF(ECIPX,JMX) ,EQ.0) KMX=5

S=S+FE(KMXsKX)

SMIN2=FE(KMX,KX)

IF(ILOOKJEQ,0)  SMINISFE(KMX,KX}
1LOOK=1

IFIK.EQ.KF) GO TO 140
TFLECIX,3X) el To0) CALL LOOK(1,1XeJX4SH
CONT INUE -

GU TO 110

"CALL LOOK(141IX¢JXsS)

CONTINUE

J=1

DO 115 ILK=1¢NM

I=NM-1LK#]

CALL LOOK{(041,440)

$=0.

SMIN=0.

ILOOK=1

[X=1+1

JX=J=-1

KF={Il-J-11/2+1

DO 125 K=1,KF

[X=1X-1

JX=JX+1

JMX=JX-1

IPX=IXx+1

IF{K.EQ.1) SMINL=0.
IF(K.EQesl) GO TO 124
KX=LB{JX)

KMX=LB(JMX) . .
IF(ECIX,IX).EQ.0) KX=5
[F(ECIPXyIMX).EQ.O)  KMX=5
S=SHFE(KMX oKX}
SMIN2=FE(KMXsKX) '
IFCILOOKLEQ.0) SMINLI=SFE(KMX,KX)
1LO0OK=1

IF{K.EQ.KF) GO TO 145
[F{ELIX,JX)oLTL0) CALL LOOK(L,1X4JX,S)
CONTINUE

GO 10 115

CALL LOOK(1,IXsJ%X,S)
CONTINUE

WRITE(64155)

GO TO 159

WREITE(6,158) ) ‘
WRITE{(646) {LAB(IBS),IBS=2,12)
1CT=230

WRITEL6,4,160)
IF{NCOUNT.GE.15) GO TO 168
NCP=NCOUNT+1

DU 167 IB=NCP,15
suM2(18)=0.

CUNTINUE

DO 170 [=1,NCOUNT .
WRITE(6,180) I, IXLUL)eIXLCI)oIX2¢T),9X201)sSUMLIT),SUM(T)
CONT INUE :
IF(ICT-230) 231,232,231

00 239 1=1,N .

DO 241 J=1,N

E{lsJ)=1H

CONTINUE

CONTINUE

I11-23
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LOUNT=1 : '
DO 233 1=1,NCOUNT '
iM=1-1
IFLIM.EQ.OQ) GO TO 236
TFUSUM2{T).EQ.SUM2(IM)) GO TO 236
LOUNT=LOUNT +1
_ 1F{LOUNT.GE.13) LOUNT=13
236 J1l=JdX1(1) : : , :
I1=1X1¢1) . . - , e,
KOUNT =0 , S )
JMX=dX2(1) : ‘ S
DO 234 J=J1,JIMX .
IX=11-KUUNT
‘KOUNT=KOUNT+1 -
GO TO (1001,1002,1003, 1004.1005.1006.1007.1008.1009.10l0.1011.1012 ' .
1,1013%% ,L OUNT o
238 E(1X4J)=WwORD
E(J, I1X)=WORD"
GO TO 234
1001 WORD=1HA
GO TO 238
1002 WORD=1HB
: GO T0 238
1003 WORD=LHC
GO TO 238
1004 WORD=1HD
GO TO 238
1005 WORD=1HE
GO TO 238
. GO YO 238
1006 WORD=1HF’
1007 WORD=1HG
GO TO 238
1008 WORD=1HH
GO TO 238
1009 WORD=1HI
GO TO 238
1010 WORD=1HY
GO TO 238
1011 WORD=1HK
o GO TO 238
1012 WORD=1HL
"GO TO 238
1013 WORD=1HM
GO TO 238
234 CONTINUE
233  CUNTINUE
WRITE(6+6) (LAB(IBS),185=2,12) . ) .
WRITE(6,242) : : : . .
GO TO 51 : ' ) e
231 [1=0 , _ v .
DO 200 K=1,NCOUNT : _ ' : : -
 KM=K-1 ) ' ’ .
BIGSUM==1.55 ' S o o ' .
12=12+1 ' o
00 190 J=1,NCOUNT
IF(IZ.EQ.1) GO TO 195
00 210 L=1,KM
IF(J.EQ.INDX(L)) GO 7O :190
210 CONTINUE ‘
195 IF{SUM2(J).LE.BIGSUM) GO TO 190
c NOTE THAT THE LE IN-CARD 195 INTRODUCES THE BIAS. OF FAVORING THE LOWER
C NUMBERED VECTORS IF THE ENERGIES ARE THE SAME THE MINIMIZATION
C SCHEME SHOUULD AVOID THIS BIAS AND CAN BE TESTED. TOR THILS BY CHANGING
C THE LE TO LT .
BIGSUM=SUM2 (J)
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230

1233

o
Lol
L4
Ry
£ad
o
o
(€5,

INDX{K)=J
CONTINUE

CONTINUE

NCT=0

NIl=1

NI2=2"

NJL=3

NJ2=4 o

DO 220 1=1,NCOUNT

GO TO 223

NIL=NI1+4

NI2=NI2¢4

NJLl=NJ1+4a

NJ2=NJ2+4

NCT=0

NCT=NCT+1 X
IFINCT.EQ.NDIM*L) GO TO 222
INDEX=INDXCL)
E(NIL,NCTY=IX1{INDEX)
E(NI2,NCT)I=IX2( INDEX)
EINJL,NCT)=Jx1{ INDEX)
E(NJ2,NCT)=JX2UINDEX)
SUM4( 1 )=SUM2{ INDEX)

SUM3({ 1)=SUML(INDEX)

CONTINVE .

NCT=0 g

NIl=1
NI2=2
NJ1l=3
NJ2=%
DO 225 1=1,NCOUNT

GO 10 2238

NIl=NI1l+4

NI2=NI2+4

NJ1=NJ1l+4

NJ2=NJ2+4

NCT=0

NCT=NCT+1 o

IF(NCT .EQ.NDIM#+L1) GO 10 227
IXLOI)=E(NIL1,NCT}
IX2U1)=E(NI2,NCT)

JXI{IY=E(NJL4NCT)

IX24 1) =E{NJ2,NCT)

SUML (I 1=SUM3(1)

SUM2 (T )=SUMal D)
NDIFCI Y =IX1UEI-1X2(10¢el
NOTFLl=JX2{11-JX1{1}+1
IFINDIF{ 1) NENDIF1) CALL COMENT{1)
CONTINUE

60 T0 157

CONTINUE

REWIND 1

MAXEN=0

ICASE=2 .

DO 1233 I=1,NCOUNT

SUML{T ) =5UM2(1)

SUM2(1131=0.

CALL INSPECT

CALL LPK

IF(LAB(1),EQ.6HNONE } CALL LPK15
IF{LABI1).EQ.OHVARYLS) CALL LPKILISV
REWIND 1 :
WRITE(6,6) {LAB(IBS), IBS=2,12)

ui
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‘WRITE{6,245) MAXEN,ENMIN,NCO
MAX=MAXEN/25
MXLST=25
IF(125%(MAXEN/25)) JLT.MAXEN} MAX=MAXOI
DO 251 Ll=1,MAX
IF(LL1.EQ.MAX) MXLST=NDIF{1)}
READ (1) ((VIMX), (T(MX,1Z),y1Z= l.NASUN).(U(MX IZ)-ll=l-NCO)l,NX | Y
IMXLST
DO 254 MX=1,MXLST
HRITE(6,255) lV(MX).(T(MX.I[l.lZ l.NASUHl.(U(MX lZl.!l=leC0)l‘
254 CUNTINUE
251 CONTINUE
REWIND 1
26 CONT INUE
1 CONTINUE

CALL EXIT.
5 FGRMAT (12A6) ' RN
6 FORMAT(//,% THIS ‘CALCULATION IS ON THE *,3A6,*MOLECULE#,/,2X,8A6
1477) ' .

10 FORMAT(IS5)
20 FORMAT (80AL1)
40 FURMAT(lS(X:AZleyZX'.
80 FORMAT(7TX,125Al)
85 FORMAT{7X,12511)
100 . FUORMAT(1X, Alplel3le|125(l'
101 FORMAT(LIX,ALl,1X,13,1X,L125A1)
159 FORMAT({//,* UNREORDERED VECTORS *)
158 FORMAT(//,* VECTORS REORDERED ACCORDING TO ENERGY *)
160 FORMAT(/,% VECTUR NUM Il Ji 12 J2 ENERGYWITH LOOP ENERGY®,/
lY‘y/’ . ' -
180 FUORMAT(9X,13,6X,13,2Xy13,2X, l3vZXv|393Xt2F6 2)
242 FURMAT(//7/7,% GRAPH SHOWING VECTORS URDERED ACCORDING TO ENERGY"
245 FURMAT(///.% THE FINAL RESULTS ARE REPORTED . THERE ARE *,14,#
1SETS OF VECTORS WHOSE ENERGY *,/.% IS GREATER THAN‘,F6.2". THI
2S IS AN N=%x,13,% CALCULATION®,/7, : - *
3  ENERGY VI V2 V3 V4 V5 V6 VT .v8 V9 V10 VIili V12 V13 Via
4 V15 Viéex) - o -
255 FORMAT(5XF6.292X,26(2%X,12))
400 FORMAT(2X41442X,F6e24415)
END ) )
SUBROUTINE TIMER(IPLACE)
COMMON/TIME/ITML, 1 TM2 ’
UIMENS (ON ITIMELT)
CALL STATUS(lTlME(l,plTlME(Z"
TOELTI=1YIMECLII-TITM]L.
IDELT2=1TIME(2)-1TM2
FTIMEL=ITIME(1)%0.001
FTIMEZ2=ITIME(2)*0.,00])
FOEL1=IDELT1*0.001
FOEL2=1DELT2%0.,001
. WRITE(H,26) IPLACE,FTIMEL,FTIME2 .
26 FORMAT (/4% [PLACE=%,13,/% CP TIME ELAPSED IS‘ Flo 5,% [ |
IME ELAPSED [S*,F10.5) .
WRITE(6,28) FDELL,FDEL2 . ’
28 FORMAT (* CP TIME SINCE LAST CALL IS*,F10.5,% ' PP TIME SINCE
L LAST CALL [S5%,F10.51)
ITMI=ITIME(])
S ITM2=1TIME(2)
RETURN
END

SUBROUTINE INSPECT

COMMON/A/NCOUNT, IX11 400),1X2( 4000,JXL{ 400),JX2( 400),SUML{ 400}
1NDIFL 400),INDX( 400),SUM2( 4001, JINDX{ 4000 .

COMMON/B/N, NSSET.NLAST:NVEC(26:6..NHAX(24) ENSSET(24U
COMMON/C/E(200,200)
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COMMON/ZD/ WO(165)NB(165),B8(165),15P(165)
COMMON/ZE/NEXC(200)

COMMON/ZF/NTLyNI2yNJLyNJ2oNToNJyNIMAXy NIJMAX ,T1, 1A NBAD,IBADo1,ICASE
INTEGER E

THIS SUBRUUTINE LOUKS AT THE NCOUNT VECTORS AND DETERMINES THE SEQUENCE
OF VECTORS WHICH ARE COMPATIBLE (HAVE NO OVERLAP AS ODEFINED IN S.R. BAD)
WITH VECTOR NUMBER Ly 29 3y eesee s NCOUNT RESPECTIVELY
[FINCOUNT.GE.S0) NCOUNT=90 :

NBAD=0

IBAD=0

NLAST=0 -

NCT=0

DG 10 11=1,NCOUNT

E{IL,11)=0

NSSET=I1

INDSS=1

NILl=IX1(11)

NJ1=JXx10l1)

NE2=IX2(11}

NJ2=UdX2(11)

DO 20 1A=1,NCOUNT

[€(1L.EQ.IA} GO TO 20

NI=IX1{T1A)

NJ=JXY(TA)

NJMAX=JX2(1A)

CNIMAX=IX2(T1A)

CALL COMPAR
CONTINUE
CONTINUE

" WRITE(6,50)

GO TUO - (24304),1CASE

WRITE(6,6)

GO 10 9

WRITE(6,T}

GU TO 9

WRITEL6,48)

WRITE(6,60) (ISP ) (=1 ,NCOUNT)

DO 30 1=1,NCOUNT

WRITE(6,70) (TaSUM2(T) ¢NEXCTIT)o(ECT+J)9d=1,NCOUNT]))

CUNT [NUE

SCALL. RERLTE _ : :
FORMAT ( # MATRIX ALLOWS NO OVERLAP - O=ALLOWED VECTORS L=EXC
LLUDED VECTORS®,//)

FORMAT { % MATRIX ALLOWS OVERLAP OF ONE ELEMENT O=ALLOMED VECTOR
15 L=UNE OVERLAP 25TWO OVERLAPS #,//)

FORMAT (* MATRIX ALLOWS THE ENDS OF THE VECTORS TO OVERLAP

"1 0=NO OVERLAP 1=ENDS OVERLAP 2=0VERLAP" (EXCLUSION) #,//)

FORMAY (/// % VECTOR EXCLUSION MATRIX FOR ORDERED VECTORS®,//,*

"1 0=INCLUDED VECTORS 1=eXCLUDED VECTORS *,//)

FORMAT (=* ENERGY EXC *,11411)
FORMAT{1X,12,1XsFb6. ZpZX'IZ.ZXplléll)
RETURN

_END

SUBROUTINE LOOK(MyIXedX,S)

COMMON/ A/NCOUNT o IX1( 4000, 1X20 4000,J3X1{ 4001 4JX2( 4000 ,SUMIL 400}
1,NDIF( 400),INDX{ 400),SUM2( 400),JNDX{ 400}

COMMON/B/NyNSSET yNLAST ¢NVEC (24 ,4) ,NMAX( 24) ENSSET (24)

CCOMMON/D/ WO(1651,NB(L165),8(165),1SP{165)

COMMON/Q/FEL5,5) s SMINL,ENLOGP {901, SMINZ, TLOOK

COMMON/X/SUM3(200) ,5UM4&(200),GUTOT,FERGA

IF(M.EQ.0) GU TU I

MLOOP= IX=JdX+2 S

[F(MLOOP.LE.O) MLOOP=1



64

30

10

20:

IF(MLOOP.GE o900 MLOOP=90.
IF1=JXLST

[F2=JdX-1

IFG=0

DO 6 IFF=1F1,IF2
IF(WO(TIFF)EQslHGoORJMWOIIFF ) .EQ4LIHC)
IFLIFG.EQ.1) GO TO 7

CONTINUE

SUM=S~SMINL~SMIN2+FERGA*IFG+ENLOOP (MLOOP)

ILOOK=0
IF(SUM.GT.l0.)) GO TO 2

I11-28 .

THE ABOVE CARD REPRESENTS THE ENERGY CUTOFF HH!CH ELININATES FROM
CUNSIDERATEON THOSE DOUBLE STRANDED REGIONS OF INSUFFICIENT ENERGY

TO BIND

CIXLST=1X-1

JXLST=Ux+1
S=0- )

RETURN
NCOUNT=NCOUNT +1
IXL{NCOUNT)=IXLST
JXL{NCUOUNT ) =JXLST
[X2{NCOUNT)I=1X#+1
JX2UINCOUNTI=IX-1
SUML{NCUUNT )=,001 {SUM-ENLUCP [MLOOP) )
SUM2{NCOUNT )=,001#%SUM
GUTOT=0

IXLST=1X-1

JXLST=yx+l

S=0.

RETURN

IXLST=1X

JXLST=JX

RETURN

- END

SUBRUUT[NE COMP AR

COMMON/A/NCOUNT, IX1( 400),1X20 400),JX1( 400)'JX2( 4001}, SUMLL 400)

LsNDIF{ 400),INDOX( 400),SUM2{ 400),JNOXL 400)
COMMON/B/N,NSSET,NLAST, NVEC(ZQ 4)1NMAX(24)'ENSSET(24)

COMMON/C/€E(200,200)
COMMON/E/NEXC(200)

COMMON/E/NIL,ZNIZ, NJl1NJZoNl:NJleMAX.NJHAX'll IA,NBAO.IBAO L, lCASE

CUMMUN/EX/EXCLP

INTEGER E ’

IF(EXCLP.NE.L) GO YO 5

EX=0

[F{NI.GT.NJL.AND.NI. LT.Nll’ EX=EX+1
IF{NJ.GT «NJLJAND . NJJLT.NIL} EX=EX#+]

LF{NINAX.GT JNJL.AND . NJMAXLT.NTLD ~ EX=EX+]
TFANIMAX.GToNJL oANDJNIMAXaLTLNIL) EX=EX¢l

IFIEX.EQ.4.0R.EX.EQ.O0) GO TO 5
E(ILl,1A)=2 ,
RETURN
NDIFLl=NJ2
NOIFA=NJMAX
IFINSSETJNE. NLASID GO TO 100
NLAST=NSSET
DO 10 I=1,N"
JNDX(I)=0
CONTINUE
KCT=0 :
DO 20 J=NJ,NDIFA
[=NI-KCTY
KCT=KCT+1L
JNDX(1¥=1
JNDX{J)=1
CONT ENUE
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DO 40 I=1,N
CIFLCINOXC L) #UNDX( T M) .EQ.2) CALL BAD

{F(IBAD~-1) 40,60,60
40 CONTINUE .
IFI{NBAD,EQ.1) GO TO 50
E(lL,1A)=0
SUMZ(NSb&li-SUMZ(NSSETDoSUMl(lAi
NEXC{NSSET )= NEXC(NSSET)#I
60 [8AD=0
RETURN : 4
50 ECIL,1A)=1
_NBAD=0
RETURN
100 DO 110 [=1,N
INDX({I1=0
110 CONTINUE
KCT=0
DU 120 J=NJLNDIF1
1=NI1-KCT
KCT=KCT+1
INOX(TI=1
INDX(J)=1
120 CONTINUE
SUMZ2(NSSET)=SUMLINSSET)
NEXCINSSET)=0
GO Y0 30
END
SUBROQUTINE BAD .
COMMON/E/NILyNI2oNJ1sNI24sNT o NSy NEMAX , NJMAXs I1y IAyNBAD, IBAD, T ICASE
COMMUN/C/EL200,200)
INTEGER E
IF(ICASE-2) 10,20,30
10 E(IL,lA)=1 '
“1BAD=1
RETURN .
20 CALL BAUL2 . N
RETURN '
30 CALL BAD3
RETURN
" END
SUBROUTINE BAD2
COMMON/ZF/ZNIL  NT2oNJLoNJ2ZyNT o NJy NIMAX, NIJMAX, 11, TA,NBAD, IBAD,1,ICASE
. COMMON/C/EL200,200)
INTEGER E
NBAD=NBAD¢1
IF(NBAD.EQ.2) GO YO 10
RETURN
10 E(IL,LA)=2
NBAD=0
IBAD=1
RETURN
END
SUBROUTINE BAD3
COMMON/F /NI, le.NJl.NJz.NI.NJ.NlMAX.NJMAx.ll 1A,NBAD, IBAD,1,1CASE
COMMON/C/E(200,2001)

INTEGER E
IF{IEQ.NI.OR.ILEQ.NJ.OR.1.EQ.NIMAX.OR,1.EQ.NJMAX} GO TO 10

IF(1.EQ.NI1.0ReI.EQ.NJ1.OR.I.EQ.NI2.0R.1.EQ.NJ2} GO TO 10
{8AD=1
E{Il,1A)=2
RETURN —
10 NBAD=NBAD+1 .
“IF{NBAD.GE.2) GO Y0 20
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RETURN

20 WRITE(6,30) NBAD'II'IA
30 FURMAT (* 3RD. EXCLUSION CRITERION ENO OVERLAPS IN THIS UNUSUAL

LCASE*, 13, % TIMES FOR THE VECTORS*,13,%¢ -AND®,1(3)

RETURN
END

SUBROUTINE LPK
COMMUN/ A/NCOUNT , IX1{ 400), IX2( 400),JdX1( 400), JXZ( 400).SUN1( 400)

1o NOIFL 4003, INOX( 400),SUM2( 400),JNOX( 400)
COMMON/C/E12004200)
COMMON/P/MAXEN,NCUOBESTS5 NASUM
CUMMON/BUG/NDEBUG
DIMENSION' NENF(70.7OIvlLP(SO).lAA(b):LABEL(b).IlPOS(SZ)lePOS()Z)
1,13P0S(320,14P0S132),15P05(32)
"DIMENSION S125),T(25,6),U(25415)
INTEGER E
AESTS5=0.0
MX=0 .
IF(NDEBUG.EQ.0) GO TO 6
HRITE(6,5)
6 00 10 1=1,5
NCT=0
DU 20 J=1,NCOUNY
IFIECL,J0.EQ.1) GO TO 20
NCT=NCT+1 . :
INDX(NCT)=J
IF(].EQ.J). NORDER=NCT
20 C ONT INUE :
00U 30 11=1,NCT
DO 40 12=1,NCT
I11=INDX{11)
[22=INDX(L2) .
NEWE(TL,12)=E(111,122)
40 CONT INUE
30 CONT INUE :
' [F(NDEBUG.EQ.O) GO TO 82
WRITE(6,50) I
WRITE{6455)
D0 60 K=1,NCT
ILP(K)=INDX{KI-10%( INOX(K)/10}
60 CONT INUE
WRITE(GL,70) ([LP(K)wal,NCT)
00 80 K=1,NCT ‘ o »
: WRITE(6,90).  { INDX{K), {NCWE(K L) yL=14NCTL)
80  CONTINUE
82 DO 100 L=1,5
MM=L :
IF(L.GE.NORDER) MM=L+1
[AA(L)=MM
100 CONTINUE
11X=1AACL)
12X=1AA(2)
13X=1AA(3)
1ax=1AA(4)
[SX=1AA(S)
NTWON=0 ‘
DO 110 Ji=142
DO 120  J2=1,2
DO 130 J3=1,2
DU 140 J4=1,2
DO 150 JS5=1,2
LABELL LY=J1-1
LABEL(2)=J2~1
LABEL{3)=J43~1
LABEL(4)=44-1
LABEL(S)=J5-1
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00 160 MOL=1,5
' ML=lAA(MDL)

IF(LABEL(MDLI.NE.1) GO TO 160
NEW=LABEL (1) *NEWE ( [1XsML)+LABEL (2) SNEWE (12X, ML) +LABEL (31 #NEWE (13X,
LML}+LABEL (%) SNEWE (14X ML) +LABEL(S)*NEWE( 15X ML)
IF(NEW.GE.1) GO TO 150
160 CONTINUE
NTWON=NTWON®# 1
11POS(NTWON)=LABEL(1) .
12POS{NTWON)=LABEL(2) "
13P0S(NTWUN)=LABEL (3)
- 14POS{NTWON)=LABEL(4)
15P0S(NTWON)=LABEL(S)
K1X=INOX(11X)
K2X=INDX{12X)
K3X=INDX(13X)
KeX=INOX{14X)
KSX=INDX(15X)
SUMZ(NTHOND’LABFL(ll#SUMllKIX)OLAB[L(2)‘SUM1(K2X)0LABELl3)¢SUN1(K3
LX) +LABEL(4)%SUML{K4X) +LABEL{5)¥SUML(KSX)¢SUML(T) .
IFIBESTS,LT.SUM2(NTWUNI ) BESTS5=SUM2(NTWON)
150 CONTIENUE
140 CONTINUE
130 CONTINUE
120 CONTINUE
110 CONTINUE ,
IF(NDEBUG.EQ.O) GO TO 10
DO 170 LK=1,NTWON \
WRITE(6,175) LK
WRITE(64180) llPOS(LK).(ZPOS(LK).l3POS(LKi'[4POS(LKl 15POSILK),
1SUM2(LK)
170 CONTINUE

10 CONTINUE ) : : o
5 FORMAT(//+%  THE ASSUMPTION IS (TEMPORARILY) MADE THAT ONE GIVEN :

LVECTOR [S INCLUDED IN THE FINAL SOLUTION OF THE PROBLEM*,/,* ALL
2 COMBINATIONS OF THE (REMAINING BEST) FIVE: VECTORS ARE CONSIDERED
3AND THOSE NOT EXCLUDED BY THE E MATRIX *¢/,* ARE REPORTED. - THE
GLENERGY IS ALSO REPORTED FUR EACH ALLOWED COMBINAYION OF VECTORS*)

50 FURMAT(//// % THE VECTOR WHICH 1S HERE ASSUMED TO BE IN THE MOST
LSTABLE SET OF VECTORS 1S%,1[3,/)

55 FORMAT(/,% THE NEW VECTOR EXCLUSION MATRIX IS REPDRIED° /)

70 FORMAT (6X,6012)

90 FORMAT (2X+124+2X46012)

175 FORMAT(* VECTOR SET NUMBER*,13,/+8X,%Vl] v2 v3 A LY VS B3
INERGY &) : :

180 FOURMAT{8X,12¢3Xg1243X+1293X912¢3X912¢5X,F6.2)
RETURN
END

SUBROUTINE LPKLS
COMMON/A/NCOUNT 4 EX1( 400),1X2{ 400%,JX1I 400) ,JX2( 4001 ,SUMLL 400)

L,NDIF( 400),INDX{ 400),SUM2( 400),JINDX{ 400)
COMMON/C/E(200,200)
COMMUN/L/TLPL165), TAALLS),LABEL(15)
COMMON/P/MAXEN,NCU4BESTS ¢ NASUM
COMMON/ Z/ENMIN
COMMON/BUG/NDEBUG
DIMENSION SUM3(200)

D {MENS ION NPOS(25)

DIMENSION S{25),T(25561,U(254+15)
DIMENSION INDNEW(25) ’
DIMENS {ON NEWEL(T0,70)

DIMENSION MDOSTP(15)

INTEGER T

kY
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INTEGER U
INTEGER E’
IF(NCOUNT.GT.70) NCOUNT=TO
SUM1L(40)=0, '
IFINDFBUG.EQ.0) GO TO 7
WRITE(6,5) '
7 IFINCOUNT .GT.15) GO TO 4
NCPLUS=NCOUNT +1
DO 3 (=NCPLUS,15
3 SUMI{1)=0.
5 ENMIN=0.9%BESTS
NUM=17
NCO=15
MX=0
NCOP=NCU+1
12CT=0
0O 10 1I=1,NUM
‘D0 '6 KK=5,15 .
MDOSTPIKK)=2 ‘ .
6 CUNTINUE
NCT=0
DO 20 J=1,NCOUNT
IF(ELL,J).EQ.1) GO TO 20
NCT=NCT+1
INDX{NCT)=J
IF(1.EQ.J) NORDER=NCT
.20 CUNTINUE
NCP=NCT+1
IFINCT.GE.15) GO TQ 22
DO 21  J=NCP, 16
21 INOX(J)=40
22 CONTINUE
© IFINDEBUG.EQ.O) GO T0 23
WRITE(6,25)  {NCO, NUM.([NOX(KAPPA).KAPPA-l.NCT))
23 [+(NCTWGE.40) 'NCT=39
DO 30 Il=1,NCT"
DO 40 [2=]1,NCT-
LL1=INDX(IY)
[22=1NDX{12)
NLWF(ll;IZ)—E(lll'IZZ)
40 CONTINUE
30 CONTINUE
- 1FINDEBUG.EQ.O0) GO TO 82
WRITELG6,50) I :
WRITE{6455)
DO 60 K=1,NCT
-ILP(K)-INDX(K)—IO*(INDX(K)IIOD
60 CONTINUE
" WRITE(6,7T0) (ILPLK} K=14NCT)
DO 80 K=1,NCT
WRITE(6,90) CINDXEK) o INEWEIK L) pL=14NCT))
80 COUNTINUE : '
82 00 100 L=1,NCO
MM=L .
IF(L.GE.NORDER) MM=L¢+1
LAA(L) =MM '
100 COUNTINUE
ILX=1AAC1)
12X=1AA(2)
13X=1AA(3)
[4X=1AA(4)
I5X=1AA(5) -
16X=1AAL6) .
I7X=1AA(T)
18X=1AA(8)
19X=1AA(9)



151

157

107
105

110=1AA(10)
I11=1AACLLY

112=1AA(12)
113=1AA(13)
I14=1AA(14)
[15=1AA(15)
NTWON=0

KT=0 .
Da 151 [IFf=1,NCOP

IFCINOX(IFI.EQ.L) GO TO 151

KT=KT+1
INONEW(KTI=INOX{IF) -
CONT INUE

IFINDEBUG.EQ.O0) GO TO 157

WRITE(6,155) {

WRITE(6,196) (INONEW(IF),IF=1,
IF(NCT.GT.15) GO TO 105

DU 107 KK=RNCT,15
MDOSTP{KK)=1
CONTINUE
MAXS5=MDOSTP{5)

CMAX6=MDOSTP{6)

MAXT=MDOSTP (7}
MAXB=MDOSTP(8)
MAX9=MDOSTP{9)
MAX10=MDOSTP(10)}
MAX11=MDOSTP{L1L)
MAX12=MDOSTP{12)
MAX13=MDOSTP(13)
MAX14=MDOSTPI14)
MAX15=MDOSTP{15)

DO 110 Jl=1,2
LABEL({ 1) =J1~1

DO 120 J2=1,2
LABEL({2)=42-1

DO 130 J3=1,2
LABEL(3)=J3-1

DO 140 J4=1,2
LABEL{4)=U4-1

DO 150  J5=1,MAXS
LABEL{5)=J5-1

DO 260 Jb6=1,MAXE
LABEL(6)=J6-1

DO 270 JT7=1,MAXT
LABELIT7)=JT-1

DO 280 JB=1,MAX8
LABEL(8)=J8-1

DO 290 J9=1,MAX9
LABEL(99=J9-1 |

DO 300 J10=1,MAX10
LABEL{10)=J10-1

DO 310 Jll=1,MAXI11
LABEL(11l)=J11~-1

DO 320 Ji12=1,MAX12
LABEL(L2)=012-1

DO 330 J13=1,MAX13
LABEL(13)=J13-1 .

DO 340 Jl4a=1,MAX14
LABEL{14)=J14~1 '
DO 350 J15=1,MAX1S
LABEL(1501=J15-1

DO 160 MOL=1,NCO
IF{LABEL{MOL) .NEL1)

GO TO 160

NCT)
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160

181

499

500

503

504

345
350
340
330
320
310
300
290
280

‘ML=1AALMDL) . ' _
NEW=LABEL{ 1) eNEWE (I LX/MLICLABEL(2)SNEWELI2XMLI+LABEL(3)*NENE(13X,
LML) ¢LABEL14) oNEWETL4X s MLISLABEL(SIONEWE(ISX, ML) +LABELIG)*NEWELT6X
2y MLIFLABEL(T)#NEWELLTX ML) +LABELIRISNEWE(IBX,MLISLABEL (9 ) *NEWEL 19X
3,MUISLABELCLIO ) ANEWE (L0, ML) ¢LABELCILISNEWET T L1 ,ML) +LAREL (12) NEWEL
4112 MUY +LABEL(L3)SNEWELTLI3,ML) +LABEL(14)*NEWE(TL14,)ML)SLABEL(15) ¢NE
SWELLL15,ML)
IF(NEW.GE. L) GO TO 350
CUNTINUE
NTWON=NTWON+1
K1X=ENDX{T11X)
K2X=INDXET2X)
K3X=INOX(I3X)
K4X=INDX{ 14X}
K5X=INDX{15X)
KoX=INDX{16X)
KIX=INDX{ 17X}
KBX=INDX{18X) ,
K9X=INDX(19X) _ [
K10=INOX(110) v
KLLI=INDX(IL1)
KL2=INDX(112)
K13=INDOX(113),
KL4=INDX([14)
K15=INDX{115)
SUM3(Nrw0N)—LABEL(1)tSUMl(le)oLABEL(2|tsunl(xzxtoLAeEL(Bbtsunltxs
1X)+LABEL( 4) #SUMLIK4X) +LABEL(S)*SUMLIKSX)+LABEL(6)*SUMLIKSX)+LABEL(
2T)%SUMLIKTX) +LABEL{B I *SUML(KBX) +LABEL{9)#SUMLIKIX) +LABELL10)®SUMLL

3K10)+#LABEL{LL ) #SUMI(KLLI+LABEL(12)®SUMLIKL2} +LABELUL3)#SUML{KL13)eL

4ABFL(IL4) *SUMLEKLG)*LABELILSI*SUMLIKLS ) ¢SUMLLT)
TF{SUM3B(NTWON) .LT.ENMIN) GO TO 345
IFINDEBUG.EQ.Q) GO TO 499
WRITE(6,180) (NThUN.SUM3(NhHON).(LABEL(KMN).KHN—lyNCD))
[2CT=12CT+1 _
[F(IZCT,.LT.30) GO TO 499
12CT=0
- WRITE(6,155) I . .
WRITE(6,1560) ( INONEW{IF), [F=1,NCO)
{F{SUM3(NTWON).LT.ENMIN) GO TO 350
DO 500 [IF=1,NCO
JF=TAA(IF)
NPOS({F'—LABEL(lF)*lNDX(JF)
CONTENUE
MAXEN=MAXEN+1
MX=MX+1
S(MX)=SUM3(NTWON)
DO 503 12=1,NASUM
TIMX,12)=1
CONT INUE
DO 504 11=1,NCO
U(MX.IZD=NPOS([1)
CONT INUE _
[F{MX.LT.25) GO0 TO 350 -
WRITE(L)Y  ((SIMX) o (TEMX4IZ),12=1,NASUM) , (UIMX, lZ),lz 14,NCO) ) 4 MX= 1,
1251}
MX=0
GO TO 350
NTWON=NTWON-1
CONTINUE
CONTINUE
CONTINUE
CONT INUE
CONTINUE
CONTINUE
CONTINUE
- CONTINUE
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270 CONTINUE
260 CONTINUE
150 CONTINUE ~
140 CONTINUE
130 CONTINUE
120 CONTINUE
110 CONTINUE
10 CUNTINUE
NOIF{1)=MX
MXLST=MX : ‘
WRITE(L)  (USIMXYp{TIMX,12),1Z=1,NASUM),(U(MX,{2Z),1Z=1,NCO)),MX=1,
IMXLST)
5 FURMAT (// % THE ASSUMPTION IS (TEMPORARILY) MADE THAY ONE GIVEN

LVECTOR S INCLUDED IN THE FINAL SOLUTION OF THE PROBLEM®,/,# ALL
2 COMBINATIONS OF THE (REMAINING BEST) FIVE VECTORS ARE CONSIDERED
3AND THOSE NOT EXCLUDED BY THE E MATRIX *,/,%* ' ARE REPORTED. THE
4ENERGY [S ALSU REPORTED FUR FACH ALLOWED COMBINATION OF VECTORS*)
25 FORMAT(/,% ALL COMBINATIONS OF THE FIRST*,13,% VECTORS ARE CONSID
LERED WHERE ONE GIVEN VECTOR OF*,13,/,% IS ASSUMED TO BE IN THE FI
2NAL CUNFIGURATION. WITH THIS ASSUMPTION THE REDUCED EXCULSION MAT
3RIX*,/,¢ CONTAINS THE FOLLOWING VECTORS*,/,40(1X,12),/,40(1X,12)
Q9 /9400 1%X, 020,/ 24001X%X,12))
50 FORMAT(////,¢ THE VECTOR WHICH IS HERE ASSUMEO TO BE IN THE MOST
1STABLE SET OF VECTORS [S5%,13,/)
55 FORMAT{(/,* THE NEW VECTOR EXCLUSION MATRIX [S REPORTED*,/)
70 FORMAT(6X,6012)
90 FORMAT (2X412+92X,6012) -
155 FORMAT(/,5X ¢ *ENERGY VI v2 V3 V& V5 V6 VT V8 V9 V10 Vil
1 V12 V13 vi4 VIS INCLUDED VECTOR=%,13)
156 FORMAT (14X,25(2X,12})
180 FORMAT(%# VECTOR SET*,14,4/+5%XsF6e243X,25(2X, IZ))
RETURN
END .
SUBROQUTINE LPKLSV
CUMMON/A/NCOUNT . IX1{ 400),1IXx2( 4001,JXL( 400),JXx2( 400),SUML{ 400)
LyNDIF( 400),INDXL 400),SUM2( 400),INODXI 400!
COMMUN/C/EL200,2001)
CUMMON/L/ILP(LOS),TAALLS),LABEL (1S5}
COMMON/P/MAXEN,NCO,BESTS,NASUM
COMMUN/ Z/ENMIN
DIMENSION SUM3(200)
DIMENSION NPUSI(25)
DIMENS JUN INONEW(25)
DIMENSIUN ICHOSE[10),NORDER{10)
DIMENSION NEWE(165,165)
DIMENSION MDOSTP(15)
DIMENSION S{25),T(25,6),U(25,15)

INTEGER E
INTEGER T
INTEGER U
EQUIVALENCE(E.NENE' )
cl FINAL VALUE OF NCT = NUMBER OF ELEMENTS IN THE REDUCED EXCLUSION MATRIX
c2 INOX{ L)y 0=1,NCT = ABSOLUTE INDEX (AS DUTPUTTED UNDER HEADING REDRDERED
c3 VECTORS) OF ALL VECTORS WHICH ARE IN REDUCED EXCLUSION MATRIX
C4 TAA{L),1=1,NCO = INDEX (RELATIVE TO POSITION [N REDUCED EXCLUSION MATRIX)
Ccs OF FIRST NCO VECTORS WITH THOSE VECTORS ASSUMED TO BE IN THE FINAL
Co6 ARRANGEMENT NOT INCLUDED IN THIS LIST
C? [1Xpaeer 19Xy [10140s INCO CORRESPOND TO TAA{1)yeeeeelAAL9),TAA(10) ...
c8 KlXpeoeaoosKlOsae o KNCO CORRESPOND TO INDX{I1X)seeaeoINDX{110)soeeoa )
c9 K1lXys seee = ABSOLUTE INDEX OF THE FIRST NCO VECTORS IN REDUCED EXCLUSION

Clo0 MATRIX NOT INCLUDING THE CHOSEN (ASSUMED) VECTORL(S)
ENMIN=0.9%B8ESTS
NASUM=3



- MX=0

1020

12¢7=0 :

READ(S,2)  NDATA

NCO=15

NCOP=NCO+1

WRITEL6,5)  NASUM,NCO

REWIND 2

DO 1020 [M=1,NCOUNT

WRITE(2) (E(IMyJM)yJM=1,NCOUNT)
CUNT INUE

00 1 NTUT=1,NDATA

. D0 93 15=10,15

93

il
12

20
35
45

40
30

31

42

49

60

MDOSTP(1S)=2 v .
CONT INUE : '
NLAST=NCOUNT

DO 4 J=1,NCOUNT

INDX(J)=J

CONT INUE o

READ(5,3) ICHOSE(L), ICHOSE(2), ICHOSE(3)
FORMAT (315) =
11CH=ICHUSE(L)

[2CH=ICHOSEL2)

13CH=ICHOSE(3) _
SUMT=SUMLLTLCH) +SUMLLI2CH) + SUMLUT3CH)

DO 10 ICH=1,NASUM

DU 11 ILK=1,NCO
1ECINOX(ILK) . EQ.ICHOSE(ECH)) GO TO 12
CONTINUE

[=1LK

NCT=0.

00 20 J=1,NLAST

JNDX{J}=INDXLJ) :

IF(E(I,J).EQ.1) GO TO 20

CNCT=NCT+l

INDXINCT )=INDX(J)

NCT LESS THAN OR EQUAL TO J°
CONTINUE

IF{ICH.EQ.1} GO TO 31

[L1=0 '

00 30 Il=1sNCT

I1l=111+¢]

IF{INDXETLY oNE, JNDX(III)) "GO TO 35
122=0

DO 40 - 12=1+NCT

122=122+1
IF{INDX(T2) . NEL.JNDX{122)) GO TO 45
NEWELEL,120=E(111,122) :
Il Le 11l AND 12 LE 122

CONT INUE

CONTINUE

-GO TO 49

DO 41 [1=1,NCT

DO 42 12=1,NCT

I11=INDXCIL)

[22=INDX{12)

NEWE(11,12)=E1111,122)

[1 LESS THAN OR EQUAL TO I11 AND [2 LESS THAN oa EQUAL TO 122
CONT INUE

CONT INUE

WRITE{6,50) (ICHOSE(IL)4IL=1,NASUM)
WRITE{6,455)

DU 60 K=1,NCT
ILP(KI=INDX{X)-10*(INDX{K)/10)

COUNT INVUE

WRITE(6,70)  (ILP(K) ,K=1,NCT)

00 80 K=1yNCT
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K]
[

80

10

83
84

86
85

101

102

100

151

Couvas00s6 I

WRITE(6,90) CINDX(K) o (INEWECK L) s L=1,4NCT))

CONTINUE

NLAST=NCT
CONTINUE

IF(NLAST .GE .(NCO+NASUM))

ND=NLAST—NASUM

DO 83 IHP=ND,NCO

MDOSTP({IHP)=1
CONTINUE

MAX10=MDOSTP(10}
MAX11=MDOSTP{11}
MAX12=MDOSTP(12)
MAX13=MDOSTP(13)
MAX14=MDOSTP(14)
MAX15=MDOSTPL15)

DO 85
DO 86

IFLINDX{IX) EQ.ICHOSE(1Y))

IX=1,NCT
[Y=1,NASUM

CONT INUE
CUNTINUE
NHOPE=0

DO 100 L=1,NCO
NHOPE=NHOPE ¢1

DO 102 IRS=1,NASUM
IF{NHOPELEQ.NORDERI(IRS))

CONTINUE
[AA(L ) =NHOPE
CUNTINUE
11X=1AA(1)
12X=1AA(2)
[3X=1AA(3}
L4X=1AA(4)
[5X=TAA(5)
16X=1AA16)
17X=TAA(T)
18X=1AA(8)

T19X=1AA(9)

[10=1AA(10)}
L11=1AaAC]11)
I12=1AA(12)
113=1AA{13)
[14=1AA(14)
115=1a4(15)
NTWON=0
KT=0

DO 151 [If=1,NCO

JF=LAA(IF)

INONEW (IF )=INDXUJF)
IF(IF.GT.{NLAST-NASUM))

CONT INUE
WRITE(6,155)

GO TO 84

NORDERELY)=1X

GO 10 101

INDNEW (IF)=0

( ICHOSE{IF ), 1F=1,NASUM)

WRITE(6,156) LINDNEWLIF),IF=1,NCO)

DU 110 J1=1,2
LABEL(Ll)=J1~1
DO 120 J2=1,2
LABEL(2)=J2-1

- DO 130 J3=1,2

LABEL(3)=J3~1
DO 140 J4=142
LABEL{4)=J4]
DO 150 J5=1,2
LABEL(5)=J5—1
D3 260 J6=1,2
LABEL(6)=J6-1
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160"

499

500

DO 270 J7=1,2
LABELLT)=JT7-1

. DO 280 J8=1,2

LABEL(8)=U8—-1

D0 290  J9=1,2
LABEL(9)=U9-1

DU 300 J10=1,MAX10
LABEL(LO)=J10-1

DU 310 Jll=1,MAXIL
LABELCLL)=J11~1

DG 320 J12=1,MAX12
LABELE12)=J12-1

DO 330 J13=1,MAX13]
LABEL(L13)=J413~1

DO 340 Jl4a=1,MAX1l4
LABEL(14)=J14-1

DO 350 J15=1,MAXLS
LABEL{15)=J15~1

DO 160 MOL=1,NCO
IF(LABEL(MDL).NE.1) GO TO 160
ML=TAA(MODL)

I11-38

NEW=LABEL( L} *NEWE(LILX, ML)OLABELIZ)*NEHE!IZX MLI+LABEL(3)I*NEWELTIDX,
LML) ¢LABELU4) *NEWE{L14X ML) +LABELUSYENEWE(ISX,MLI*LABELL6)*NEWELT EX
2+MLYSLABEL(TISNEWE(ITX ML) +LABEL(S)*NEHE(IBX ML) +LABEL{9)*NEWE( 19X

"3y MLIHLABEL(LO)*NEWEC T 1O ,ML)+LABEL{LL)*NEWE(TLL,ML)+LABEL (L2 )*NEWE!(

4112, ML)OLABEL(13)*NEHE(ll3oMLl*LABEL(lél‘NEHE(llhoMLitLABEL(IS)tNE

SWE(I[15,ML)
IF{NEW.GE.l) GO TO 350
CONTINUE '
NTWON=NTWON+1
KIX=INDX{I1X)
K2X=INDOX{12X)
K3X=INOX{13X)
K&X=TNDX(14X)
K5X=INOX{ L5X)
K6X=INDX{ L6X)
KTIX=INDX{TITX)
K8X=INOXL{I18X)
K9X=INDX(19X)
K10=1NOX(110)
K1t={NDX(I11)
K12=INDX(112)
K13=INDX(EL13)
Kla=INDX{1L4)
K1S=INDX(I15)

SUMBINTWON) =LABEL{ 1) #SUMLIKLIX) ¢LABEL{2)*SUMLIK2X) +LABEL{3)%SUMLLK3

IX)#LABEL{4) *SUMLIKGX)+LABEL(5)*SUMLIKSX) ¢LABEL{6)5SUMLIKEX) +LABEL
27)#SUMLIKTX)+LABELIBI#SUML (K8X) +LABEL(9) «SUMLIKIX )} +LABELILO) *SUMLL
3K10l0LABEL(ll)#bUMl(Kll)0LABtL(12|*SUH1(K12)5LABEL(13)*SUMI(K13)0L ' .

4A8EL(14)*5UM1(K14)+LABEL(lS)‘SUMl(Klb)#SUNT
[FLSUM3INTWONILLT.ENMINY GO TO 345

- HRITE(6,1801 (NYNUN SUM}(NTWON).(LABEL(KHN) KMN= l'NCOIl

S 12CT=12CT+1

IF(EZCT.LT.30) GO TO 499
12CT1=0

WRITE(6,155) °  (ICHOSELIF),1F=1,NASUM)
"WRITE{6,156) { INDNEW(IFY,IF=1,NCO)
[FISUM3{NTWON).LT.BESTS5) GO TO 350

DO 500 1F=1,NCO
JE=TAALIF)
NPOSLEF)I=LABEL{IF)®INOX(JF)
CONTINUE |

MAXEN=MAXEN+1

MX=MX+1 ,

S{MX)=SUM3 (NTWON)

DO 503 [Z=1,NASUM
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503

504

345
350
340
330
320
310
300
290
280
270
260
150
140
130
120
110

1010

5

50

55
70
90
155

156
180

20

{] {) SE IR éi' ;g {j {} ;5 éﬁ 22
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TIMX, T2 )=LCHOSELIZ)
CUNTINUE

DO 504 [11=1,NCO
UI{MX,12)=NPOSILZ)
CONTINUE C
[FIMX.LT.25) - GO YO 350 .
WRITELL)  (USIMX) p LT IMXL2),o 1 2=y NASUM) , (U(MX,1Z),12=14,NCOII,MX=1,
125)
MX=0 ' .
G0 TO 350
NTWON=NTWON-1
CONTINUE
CONTINUE
CONT [NUE
CONTINUE
CONT INUE
CONTINUE
CONT INUE
CONT INUE
CONTINUE
CONTINUE
CONT [NUE
CONT INUE
CONT INUE °
CONT INUE
CUNT INUE

" REWIND 2

DO 1010 [M=1,NCOUNF

READ(2) (E(IMyIM)yJM=1,NCOUNT)}

CONT INUE

CONTINUE

WRITECL)  ((SEMX),(TUMX,12),12=1,NASUM) (UIMX,12Z),1Z=1,NCO}I MX=1,
IMXLST) .

FORMAT(15)

FURMAT(//,%* THE ASSUMPTION IS MADE THAT#*,12,%* VECTORS ARE INCLUD
LED IN THE FINAL SOLUTION OF THE PROBLEM*,/,* AtL COMBENATIONS OF
2 THE (REMAINING BEST)I*,13,%# VECTORS ARE CONSIDERED AND THOSE NOV
3EXCLUDED BY THE E MATRIX%,/,% ARE REPORTED. x)

FORMAT(////4% THE VECTCORS WHICH ARE HERE ASSUMED TO BE IN THE MOS
1T STABLE SET OF VECTORS ARE#*,1013,/)

FORMAT(/,% THE NEW VECTOR EXCLUSION MATRIX IS REPORTED®*,/)

FURMAT(6X,12011)

FURMAT(2X,12,2X,12011) .

FORMAT (/45X ,*ENERGY VI V2 V3 V4 V5 V6 VT V8 V9 V10 Vil
1 viZ V13 Vvi4 V15 INCLUDED VECTORS=#,613)

FURMAT(14X,25(2X,12))

FORMAT (% VECTOR SET#*,144/45X,F6e2,3X,25(2X,121)

RETURN

END
SUBROUTINE RERITE
COMMON/A/NCUUNT , IX1{ 40031, 1X2( 400),JX1( 400),3X2( 400),SUMLl 400}
1,NDIF{ 4001, INOX{ 400),5UM2( 400},INDX{ 400}

COMMON/C/E(200,200)

CUMMUN/E/NEXC{200)

COMMON/ D/ WDL165),NB{165),3(165),15P(165) )
COMMON/ZF/NIL NI2sNJLoNJ2ZeNToNJ, NIMAXyNIMAX, T1,1A,NBAD,1BAD,[,ICASE

INTEGER E : :

IF{ICASE.NE.2) GO TO 100
DO 10 I=1,NLOUNT
b0 20 J=1,NCOUNT

IFIE(1,J).EQ.0) GO TO 20
ECLyd)=EllyJd)-1
CONTINUE
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10 CONTINUE
WRITE(6,50) ,
WRITE(6,60) (ISPLId,1=1,NCOUNT)
DO 30 [=1,NCOUNT _
: WRITE(6,70)  (1,SUM2LT) NEXCUIIolE(LsJ)d=14NCOUNT)) "
30 CONTINUE
50 FORMAT(* THE VECTOR EXCLUSION MATRIX IS REWRITTEN FOR THE PURPOSE .
1S OF THE SEARCH ROUTINES®*,/,% 0=NU OVERLAP (1E. NO FATAL OVERL s
. 2AP) 1=0VERLAP (EXCLUSION)®) : S o
60 - FORMAT(®¥ . ENERGY EXC #,11411)

70 FORMAT(1X1241X,F6.242Xe12,2X,11411) :
100 RETURN ' : ' . ST |
END . _

SUBROQUTINE COMENT(KLM)
GO TO (1,213,415+6+T),KLM

1 WRITE(6410)

- RETURN

-2 CONTINUE
RETURN

3 CONT INUE
RETURN

4 CONTINUE
RETURN

5 CONTINUE
RETURN

6 CONT INUE
- RETURN

1 CONTINUE
RETURN

10 FORMAT(* NDIF AND NOIFL ARE NOT EQUAL AT 225 --SHOULD BE F.E.®)
END ) . : o

e -
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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