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Abstract

Design of the RISC-V Instruction Set Architecture

by

Andrew Shell Waterman

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Patterson, Chair

The hardware-software interface, embodied in the instruction set architecture (ISA), is
arguably the most important interface in a computer system. Yet, in contrast to nearly all
other interfaces in a modern computer system, all commercially popular ISAs are proprietary.
A free and open ISA standard has the potential to increase innovation in microprocessor
design, reduce computer system cost, and, as Moore’s law wanes, ease the transition to more
specialized computational devices.

In this dissertation, I present the RISC-V instruction set architecture. RISC-V is a free
and open ISA that, with three decades of hindsight, builds and improves upon the original
Reduced Instruction Set Computer (RISC) architectures. It is structured as a small base ISA
with a variety of optional extensions. The base ISA is very simple, making RISC-V suitable
for research and education, but complete enough to be a suitable ISA for inexpensive, low-
power embedded devices. The optional extensions form a more powerful ISA for general-
purpose and high-performance computing. I also present and evaluate a new RISC-V ISA
extension for reduced code size, which makes RISC-V more compact than all popular 64-bit
ISAs.
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and Brian Zimmer, who helped design and fabricate the early RISC-V prototypes. Many
thanks to the rest of my research group, who have all been sources of support and inspiration
in their own ways.

Thanks to Jonathan Bachrach for spearheading the Chisel HDL effort and for agreeing
to be on my quals committee, and to Per-Olof Persson for responding to a cold call to be on
my dissertation committee. On a sad note, committee member David Wessel passed away,
the loss of a mentor and a friend.

Thanks to John Board and Dan Sorin at Duke, devoted educators who engendered my
interest in digital systems and computer architecture. Without a gentle nudge from Dan, I
probably wouldn’t even have applied to grad school.

Thanks to the unsung heroes of the Par Lab and ASPIRE Lab: the system administrators,
Jon Kuroda and Kostadin Ilov, and the administrative staff, Roxana Infante and Tamille
Johnson. All of them have gone above and beyond the call of duty.

Much love to my family, who even from from 2,000 miles away have been enormously
supportive.

Finally, I am eternally indebted to my friends in Berkeley, who have made my stay here
so rewarding. In particular, my roommates—Eric, Nick, Erin, Nick, Jack, David; the cats,
Sterling and Barry; and the dog, Blue—have been a source of sanity in an endeavor that has
occasionally been far from sane.

Funding Support

Early development of the RISC-V architecture and its original implementations took place
in the Par Lab. After that project declared success in 2013, the RISC-V work continued in
the ASPIRE Lab. This research could not have happened without the financial support of
both labs’ industrial and governmental sponsors:

• Par Lab: Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award #DIG07-
10227). Additional support came from Par Lab affiliates Nokia, NVIDIA, Oracle,
and Samsung.



viii

• ASPIRE Lab: DARPA PERFECT program, Award HR0011-12-2-0016. DARPA
POEM program Award HR0011-11-C-0100. The Center for Future Architectures Re-
search (C-FAR), a STARnet center funded by the Semiconductor Research Corpora-
tion. Additional support from ASPIRE industrial sponsor, Intel, and ASPIRE affili-
ates, Google, Huawei, Nokia, NVIDIA, Oracle, and Samsung.



1

Chapter 1

Introduction

The rapid clip of innovation in computer systems design owes in no small part to the careful
design of interfaces between subsystems. Interfaces serve as abstraction layers, enabling
researchers to experiment with the design of one component without interfering with the
functionality of another. Arguably, the most important abstraction layer in a computer
system is the hardware/software interface, an observation that, surprisingly, was not made
until the introduction of the IBM 360 [4], 15 years after the introduction of the stored-
program computer [105]. IBM announced a line of six computers of vastly different cost and
performance that all executed the same software, introducing the concept of the instruction
set architecture (ISA) as an entity distinct from its hardware implementation. It is no
coincidence that the IBM 360 has long outlived its predecessors.

More recently, open computing standards, like Ethernet [43] and floating-point arith-
metic [7], have proved wildly successful, allowing free-market competition on technical merit
while supporting compatible interchange of data and interconnection of systems. It is thus
remarkable that all of today’s popular ISAs are proprietary standards. Of course, it is natu-
ral that the stewards of these ISAs seek to protect their intellectual property, but keeping the
standards closed stymies innovation and artificially inflates the cost of microprocessors [17].
Yet, there is no good technical reason for this state of affairs.

We seek to upend the status quo. This thesis describes the design of the RISC-V instruc-
tion set architecture, a completely free and open ISA. Leveraging three decades of hindsight,
RISC-V builds and improves on the original Reduced Instruction Set Computer (RISC) ar-
chitectures. The result is a clean, simple, and modular ISA that is well suited to low-power
embedded systems and high-performance computers alike.

Our ambitions were not always so grand. Yunsup Lee, Krste Asanović, David Patterson,
and I conceived RISC-V in the summer of 2010 as an ISA for research and education at
Berkeley. Two of our research ventures, RAMP Gold [92] and Maven [60], had just wound
down. These projects were based around the SPARC ISA and a lightly modified MIPS
ISA, respectively, and we sought to unify behind a single architecture for the next round of
projects. For reasons discussed in Chapter 2, we found neither SPARC nor MIPS appealing.
After weighing our options, we embarked on what we expected would be a semester-long
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effort to make a clean-slate design of a new ISA. To say we underestimated the task would
be a charitable understatement: we completed the user-level instruction set architecture four
years later. The endeavor proved to be much deeper than an engineering task. Reexploring
ISA design issues raised interesting questions and, in the end, resulted in an architecture
superior to its RISC forebears. Chapters 3 and 4 describe the RISC-V user-level ISA and
discuss these architectural design decisions. Chapters 5 and 6 describe two ongoing efforts:
an ISA extension for greater code density and a privileged architecture specification.

Before designing RISC-V, we carefully considered the possibility of adopting an existing
ISA. The next chapter explains why we ultimately chose not to do so.
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Chapter 2

Why Develop a New Instruction Set?

Perhaps the most common question we have been asked over the course of designing RISC-V
is why there is any need for a new instruction set architecture (ISA). After all, there are
several commercial ISAs in popular use, and reusing one of them would avoid the signifi-
cant effort and cost of porting software to a new one. In our minds, two main downsides
outweighed that consideration.

First, all of the popular commercial ISAs are proprietary. Their vendors have a lucra-
tive business selling implementations of their ISAs, be it in the form of IP cores or silicon,
and so they do not welcome freely available implementations that might erode their profits.
While this consideration does not itself prohibit all forms of academic computer architecture
research using these ISAs, it does preclude the creation and sharing of full RTL implemen-
tations of them. It also erects a barrier to the commercialization of successful research
ideas.

Of equal importance is the massive complexity of the popular commercial instruction
sets. They are quite difficult to fully implement in hardware, and yet there is little incentive
to create simpler subset ISAs: without a complete implementation, unmodified software
cannot run, undermining the justification for using an existing ISA. Furthermore, while
some degree of complexity is necessary, or at least beneficial, these instruction sets tend not
to be complicated for sound technical reasons. Much simpler instruction sets can lead to
similarly performant systems.

Even so, we carefully considered the possibility of adopting an existing instruction set,
rather than developing our own. In this chapter, we discuss several ISAs we considered and
why we ultimately rejected them.

2.1 MIPS

The MIPS instruction set architecture is a quintessential RISC ISA. Originally developed at
Stanford in the early 1980s [38], its design was heavily influenced by the IBM 801 minicom-
puter [81]. Both are load-store architectures with general-purpose registers, wherein memory
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is only accessed by instructions that copy data to and from registers, and arithmetic only
operates on the registers. This design reduces the complexity of both the instruction set and
the hardware, facilitating inexpensive pipelined implementations while relying on improved
compiler technology. The MIPS was first commercially implemented in the R2000 processor
in 1986 [53].

In its original incarnation, the MIPS user-level integer instruction set comprised just
58 instructions and was straightforward to implement as a single-issue, in-order pipeline.
Over 30 years, it has evolved into a much larger ISA, now with about 400 instructions [63].
While simple microarchitectural realizations of MIPS-I are well within the grasp of academic
computer architects, the ISA has several technical drawbacks that make it less attractive for
high-performance implementations:

• The ISA is over-optimized for a specific microarchitectural pattern, the five-stage,
single-issue, in-order pipeline. Branches and jumps are delayed by one instruction,
complicating superscalar and superpipelined implementations. The delayed branches
increase code size and waste instruction issue bandwidth when the delay slot cannot
be suitably filled. Even for the classic five-stage pipeline, dropping the delay slot and
adding a small branch target buffer typically results in better absolute performance
and performance per unit area.

Other pipeline hazards, including data hazards on loads, multiplications, and divisions,
were exposed in MIPS-I, but later revisions of the ISA removed these warts, reflecting
the fact that interlocking on these hazards is both simpler for the software and can
offer higher performance. The branch delay slot, on the other hand, cannot be removed
while preserving backwards compatibility.

• The ISA provides poor support for position-independent code (PIC), and hence dy-
namic linking. The direct jump instructions are pseudo-absolute, rather than relative
to the program counter, thereby rendering them useless in PIC; instead, MIPS uses
indirect jumps exclusively, at a significant code size and performance cost. (The 2014
revision of MIPS has improved PC-relative addressing, but PC-relative function calls
still generally take more than one instruction.)

• Sixteen-bit-wide immediates consume substantial encoding space, leaving only a small
fraction of the opcode space available for ISA extensions—about 1

64
as of the 2014

revision. When the MIPS architects sought to reduce code size with a compressed
instruction encoding, they had no choice but to create a second instruction encoding,
enabled with a mode switch, because they could not fit the new instructions into the
original encoding.

• Multiplication and division use special architectural registers, increasing context size,
instruction count, code size, and microarchitectural complexity.
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• The ISA presupposes that the floating-point unit is a separate coprocessor and is
suboptimal for single-chip implementations. For example, floating-point to integer
conversions write their results to the floating-point register file, typically necessitating
an extra move instruction to make use of the result. Exacerbating this cost, moves
between the integer and floating-point register files have a software-exposed delay slot.

• In the standard ABI, two of the integer registers are reserved for kernel software,
reducing the number of registers available to user programs. Even so, the registers are
of limited use to the kernel because they are not protected from user access.

• Handling misaligned loads and stores with special instructions consumes substantial
opcode space and complicates all but the simplest implementations.

• The architects omitted integer magnitude compare-and-branch instructions, a clock
rate/CPI tradeoff that is less appropriate today with the advent of branch prediction
and the move to static CMOS logic.

Technical issues aside, MIPS is unsuitable for many purposes because it is a proprietary
instruction set. Historically, MIPS Technologies’ patent on the misaligned load and store
instructions [37] had prevented others from fully implementing the ISA. In one instance, a
lawsuit targeted a company whose MIPS implementations excluded the instructions, claiming
that emulating the instructions in kernel software still infringed on the patent [98]. While
the patent has since expired, MIPS remains a trademark of Imagination Technologies; MIPS
compatibility cannot be claimed without their permission.

2.2 SPARC

Oracle’s SPARC architecture, originally developed by Sun Microsystems, traces its lineage to
the Berkeley RISC-I and RISC-II projects [78, 56]. The most recent 32-bit version of the ISA,
SPARC V8 [87], is not unduly complicated: the user-level integer ISA has a simple, regular
encoding and comprises just 90 instructions. Hardware support for IEEE 754-1985 floating-
point adds another 50 instructions, and the supervisor mode another 20. Nevertheless,
several ISA design decisions make it quite a bit less attractive to implement than the MIPS-
I:

• To accelerate function calls, SPARC employs a large, windowed register file. At pro-
cedure call boundaries, the window shifts, giving the callee the appearance of a fresh
register set. This design obviates the need for callee-saved register save and restore
code, which reduces code size and typically improves performance. If the procedure
call stack’s working set exceeds the number of register windows, though, performance
suffers dramatically: the operating system must be routinely invoked to handle the
window overflows and underflows. The vastly increased architectural state increases
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the runtime cost of context switches, and the need to invoke the operating system to
flush the windows precludes pure user-level threading altogether.

The register windows come at a significant area and power cost for all implemen-
tations. Techniques to mitigate their cost complicate superscalar implementations in
particular. For example, to avoid provisioning a large number of ports across the entire
architectural register set, the UltraSPARC-III provisions a shadow copy of the active
register window [86]. The shadow copy must be updated on register window shifts,
causing a pipeline break on most function calls and returns. Fujitsu’s out-of-order exe-
cution implementations went to similarly heroic lengths [5], folding the register window
addressing logic into the register renaming circuitry.

• Branches use condition codes, which add to the architectural state and complicate
implementations by creating additional dependences between some instructions. Out-
of-order microarchitectures with register renaming need to separately rename the con-
dition codes to obviate a frequent serialization bottleneck. The lack of a fused compare-
and-branch instruction also increases static and dynamic instruction count for common
code sequences.

• The instructions that load and store adjacent pairs of registers are attractive for sim-
ple microarchitectures, since they increase throughput with little additional hardware
complexity. Alas, they complicate implementations with register renaming, because
the data values are no longer physically adjacent in the register file.

• Moves between the floating-point and integer register files must use the memory system
as an intermediary, limiting performance for mixed-format code.

• The ISA exposes imprecise floating-point exceptions by way of an architecturally ex-
posed deferred-trap queue, which provides supervisor software with the information to
recover the processor state on such an exception.

• The only atomic memory operation is fetch-and-store, which is insufficient to imple-
ment many wait-free data structures [40].

SPARC shares many of the myopic ISA features of the other 1980s RISC architectures.
It was designed to be implemented in a single-issue, in-order, five-stage pipeline, and the
ISA reflects this assumption. SPARC has branch delay slots and myriad exposed data
and control hazards, which complicate code generation and are no help to more aggressive
implementations. Additionally, support for position-independent data addressing is lacking.
Finally, SPARC cannot be readily retrofitted to support a compressed ISA extension, as it
lacks sufficient free encoding space1.

1As compared to MIPS, SPARC’s architects wisely conserved opcode space by using smaller 13-bit
immediates for most instructions. Alas, they squandered it in other ways. The CALL instruction supports
unconditional control transfers to anywhere in the 32-bit address space with a single instruction. This
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Unlike the other commercial RISCs, SPARC V8 is an open standard [44], much to Sun’s
credit. SPARC International continues to grant permissive licenses of V8 and V9, the 64-bit
ISA, for a $99 administrative fee. The open ISA has led to freely available implementa-
tions [26, 73], two of which are derivatives of Sun’s own Niagara microarchitecture. Alas,
continued development of the Oracle SPARC Architecture [74] is proprietary, and high-
performance software is likely to follow their lead, leaving behind implementations of the
older, open instruction set.

2.3 Alpha

Digital Equipment Corporation’s architects had the benefit of several years of hindsight
when they defined their RISC ISA, Alpha [3], in the early 1990s. They omitted many
of the least attractive features of the first commercial RISC ISAs, including branch delay
slots, condition codes, and register windows, and created a 64-bit address-space ISA that
was cleanly designed, simple to implement, and capable of high performance. Additionally,
the Alpha architects carefully isolated most of the details of the privileged architecture
and hardware platform behind an abstract interface, the Privileged Architecture Library
(PALcode) [77].

Nevertheless, DEC over-optimized Alpha for in-order microarchitectures and added a
handful of features that are less than desirable for modern implementations:

• In the pursuit of high clock frequency, the original version of the ISA eschewed 8-
and 16-bit loads and stores, effectively creating a word-addressed memory system. To
recoup performance on applications that made extensive use of these operations, they
added special misaligned load and store instructions and several integer instructions
to speed realignment. The architects eventually realized the error of their ways—
application performance still suffered, and it was impossible to implement some device
drivers—and added the sub-word loads and stores to the ISA. But they were still
saddled with the old alignment-handling instructions, which were no longer terribly
useful.

• To facilitate out-of-order completion of long-latency floating-point instructions, Alpha
has an imprecise floating-point trap model. This decision might have been acceptable in
isolation, but the ISA also defines that the exception flags and default values, if desired,
must be provided by software routines. The combination is disastrous for IEEE-754-
compliant programs: trap barrier instructions must be inserted after most floating-
point arithmetic instructions (or, if a baroque list of code generation restrictions is
followed, once per basic block).

simplifies the linking model, but optimizes for the vastly uncommon case at significant cost: CALL consumes
an entire 1

4 of the ISA’s opcode space.
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• Alpha lacks an integer division instruction, instead suggesting the use of a software
Newton-Raphson iteration scheme. This approach greatly increases instruction count
for some programs and saves only a small amount of hardware. The surprising con-
sequence is that floating-point division is significantly faster than integer division on
most implementations.

• As with its predecessor RISCs, no forethought was given to a possible compressed
instruction set extension, and so not enough opcode space remains to retrofit one.

• The ISA contains conditional moves, which complicate microarchitectures with register
renaming: in the event that the move condition is not met, the instruction must still
copy the old value into the new physical destination register. This effectively makes
the conditional move the only instruction in the ISA that reads three source operands.

Indeed, DEC’s first implementation with out-of-order execution employed some chi-
canery to avoid the extra datapath for this instruction. The Alpha 21264 executed
the conditional move instruction by splitting it into two micro-operations, the first of
which evaluated the move condition and the second of which performed the move [57].
This approach also required that the physical register file be widened by one bit to
hold the intermediate result2.

The Alpha also highlights an important risk of using commercial ISAs: they can die.
Not long after Compaq purchased what remained of the faltering DEC in the late 1990s,
they chose to phase out the Alpha in favor of Intel’s Itanium architecture. Compaq sold the
Alpha intellectual property to Intel [80], and soon thereafter, HP, who had since purchased
Compaq, produced the final Alpha implementation in 2004 [55].

2.4 ARMv7

ARMv7 is a popular 32-bit RISC-inspired ISA, and by far the most widely implemented
architecture in the world [10]. As we weighed whether or not to design our own instruction
set, ARMv7 was a natural alternative due to the great quantity of software that has been
ported to the ISA and to its ubiquity in embedded and mobile devices. Ultimately, we could
not adopt ARMv7 because it is a closed standard. Subsetting the ISA or extending it with
new instructions is explicitly disallowed; even microarchitectural innovation is restricted to
those who can afford what ARM refers to as an architectural license.

Had intellectual property encumbrances not been an issue, though, there are several
technical deficiencies in ARMv7 that strongly disinclined us to use it:

2By contrast, the out-of-order MIPS R10000 processor implemented conditional moves by provisioning
a one-bit-wide register file that summarized the zeroness of each physical register. This approach is simpler
than the Alpha 21264’s, but it requires a third wakeup port in the issue window, increasing power and area
and possibly cycle time.
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• At the time, there was no support for 64-bit addresses, and the ISA lacked hardware
support for the IEEE 754-2008 standard. (ARMv8 rectified these deficiencies, as dis-
cussed in the next section.)

• The details of the privileged architecture seep into the definition of the user-level
architecture. This concern is not merely aesthetic. ARMv7 is not classically virtualiz-
able [32] because, among other reasons, the return-from-exception instruction, RFE, is
not defined to trap when executed in user mode [79, 8]. ARM has added a hypervisor
privilege mode in recent revisions of the architecture, but as of this writing, it remains
impossible to classically virtualize without dynamic binary translation.

• ARMv7 is packaged with a compressed ISA with fixed-width 16-bit instructions, called
Thumb. Thumb offers competitive code size but low performance, especially on floating-
point-intensive code. A variable-length instruction set, Thumb-2, followed later, pro-
viding much higher performance. Unfortunately, since Thumb-2 was conceived after the
base ARMv7 ISA was defined, the 32-bit instructions in Thumb-2 are encoded differ-
ently than the 32-bit instructions in the base ISA. (The 16-bit instructions in Thumb-2
are also encoded differently than the 16-bit instructions in the original Thumb ISA.)
Effectively, the instruction decoders need to understand three ISAs, adding to energy,
latency, and design cost.

• The ISA has many features that complicate implementations. It is not a truly general-
purpose register architecture: the program counter is one of the addressable registers,
meaning that nearly any instruction can change the flow of control. Worse yet, the
least-significant bit of the program counter reflects which ISA is currently executing
(ARM or Thumb)—the humble ADD instruction can change which ISA is currently
executing on the processor! The use of condition codes for branches and predication
further complicates high-performance implementations.

ARMv7 is vast and complicated. Between ARM and Thumb, there are over 600 instruc-
tions in the integer ISA alone3. NEON, the integer SIMD and floating-point extension, adds
hundreds more. Even if it had been legally feasible for us to implement ARMv7, it would
have been quite challenging technically.

2.5 ARMv8

In 2011, a year after we started the RISC-V project, ARM announced a completely re-
designed ISA, ARMv8, with 64-bit addresses and an expanded integer register set. The
new architecture removed several features of ARMv7 that complicated implementations: for
example, the program counter is no longer part of the integer register set; instructions are no

3This counts all user-level instructions in ARMv7-A, excluding NEON. Instructions that set the condition
codes are considered distinct from those that do not. Different addressing modes also count as distinct.
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longer predicated; the load-multiple and store-multiple instructions were removed; and the
instruction encoding was regularized. But many warts remain, including the use of condition
codes and not-quite-general-purpose registers (the link register is implicit and, depending on
the context, x31 is either the stack pointer or is hard-wired to zero). And more blemishes
were added still, including a massive subword-SIMD architecture that is effectively manda-
tory4. Overall, the ISA is complex and unwieldy: there are 1070 instructions, comprising
53 formats and and eight data addressing modes [18], all of which takes 5,778 pages to doc-
ument [9]. Given that, it is perhaps surprising that important features were left out: for
example, the ISA lacks a fused compare-and-branch instruction.

Like most ISAs we considered, ARMv8 closely intermingles the user and privileged
architectures, often in ways that expose the underlying implementation. In one inexpli-
cable example—which combines complicated semantics, undefined behavior, and register-
dependent properties of allegedly general-purpose registers—the load-pair instruction may
expose to user-space an imprecise exception:

“If the instruction encoding specifies pre-indexed addressing or post-indexed ad-
dressing, and (t == n || t2 == n) && n != 31, then one of the following behaviors
can occur:

• The instruction is UNDEFINED.

• The instruction executes as a NOP.

• The instruction performs a load using the specified addressing mode, and
the base register is set to an UNKNOWN value. In addition, if an exception
occurs during such an instruction, the base register might be corrupted so
that the instruction cannot be repeated.” [9]

Additionally, with the introduction of ARMv8, ARM has dropped support for a com-
pressed instruction encoding. The compact Thumb instruction set has not been brought
along to the 64-bit address space. It is true that ARMv8 is quite compact for an ISA with
fixed-width instructions, but, as we show in Chapter 5, it cannot compete in code size with a
variable-length ISA. In what is surely not a coincidence, ARM’s first 64-bit implementations
have 50% larger instruction caches than their 32-bit counterparts [13, 14].

Finally, like its predecessor, ARMv8 is a closed standard. It cannot be subsetted, making
implementations far too bulky to serve as embedded processors or as control units for custom
accelerators. In fact, tightly coupled coprocessors are essentially impossible to design around
this instruction set, since it cannot be extended by anyone but ARM. Even architects content
to innovate in the microarchitecture cannot do so without a costly license, greatly limiting
the number of people who can implement ARMv8.

4Presumably in a gambit to prevent the ISA fragmentation that plagued its earlier ISAs, ARM requires
that implementations of ARMv8 that run general-purpose operating systems implement the entire ISA,
including the Advanced SIMD instructions. For these systems, there is no software floating-point ABI.
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2.6 OpenRISC

The OpenRISC project is an open-source processor design effort that evolved out of the
educational DLX architecture of Hennessy and Patterson’s influential computer architecture
textbook [39]. As a free and open ISA, OpenRISC is legally suitable for use in academic,
research, and industrial implementations. Like the DLX, though, it has several technical
drawbacks that limit its applicability:

• The OpenRISC project is principally an open processor design, rather than an open
ISA specification. The ISA and implementation are very tightly coupled.

• The fixed 32-bit encoding with 16-bit immediates precludes a compressed ISA exten-
sion.

• The 2008 revision of the IEEE 754 standard is not supported in hardware.

• Condition codes, used for branches and conditional moves, complicate high-performance
implementations.

• The ISA provides poor support for position-independent data addressing.

• OpenRISC is not classically virtualizable because the return-from-exception instruc-
tion, L.RFE, is defined to function normally in user mode, rather than trapping5 [72].

When we first investigated OpenRISC in 2010, the ISA had two additional drawbacks:
mandatory branch delay slots, and no 64-bit address space variant. To the architects’ credit,
both of these have been rectified: the delay slots have become optional, and the 64-bit version
has been defined (but, to our knowledge, never implemented). Ultimately, we thought it
was best for our purposes to start from a clean slate, rather than modifying OpenRISC
accordingly.

2.7 80x86

Intel’s 8086 architecture has, over the course of the last four decades, become the most
popular instruction set in the laptop, desktop, and server markets. Outside of the domain
of embedded systems, virtually all popular software has been ported to, or was developed
for, the x86. The reasons for its popularity are myriad: the architecture’s serendipitous
availability at the inception of the IBM PC; Intel’s laser focus on binary compatibility; their
aggressive microarchitectural implementations; and their leading-edge fabrication technol-
ogy.

The design quality of the instruction set architecture is not one of them.

5In addition to the virtualization hole, L.RFE’s behavior is also a potential vector for a side channel
attack, since it enables user code to determine the PC at which the most recent interrupt occurred.
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In 1994, AMD’s 80x86 architect, Mike Johnson, famously quipped, “The x86 really isn’t
all that complex—it just doesn’t make a lot of sense” [85]. At the time, the comment humor-
ously understated the ISA’s historical baggage. Over the course of the last two decades, it
has proved surprisingly inaccurate: the x86 of 2015 is extremely complex. It now comprises
1300 instructions, myriad addressing modes, dozens of special-purpose registers, and multi-
ple address-translation schemes. It should come as no surprise that, following the lead of
AMD’s K5 microarchitecture [85], all of Intel’s out-of-order execution engines dynamically
translate x86 instructions into an internal format that more closely resembles a RISC-style
instruction set.

The x86’s complexity would be justifiable if it ultimately resulted in more efficient pro-
cessors. Alas, the second half of Mr. Johnson’s barb rings true today. One wonders how
much thought went into the design:

• The ISA is not classically virtualizable, since some privileged instructions silently fail
in user mode rather than trapping. VMware’s engineers famously worked around this
deficiency with intricate dynamic binary translation software [23].

• The ISA has instruction lengths of any integer number of bytes up to 15, but the less-
numerous short opcodes have been used capriciously. For example, in IA-32, Intel’s
32-bit incarnation of the 80x86, six of the 256 8-bit opcodes accelerate the manipula-
tion of binary-coded decimal numbers—operations so esoteric that the GNU compiler
does not even emit these instructions. (Although x86-64 dropped this particularly
egregious example, numerous wasteful uses of the 8-bit opcode space remain, including
an instruction to check for pending floating-point exceptions in the deprecated x87
floating-point unit.)

• The ISA has an anemic register set. The 32-bit architecture, IA-32, has just eight
integer registers. Spills to the stack are so common that, to reduce pipeline occupancy
and data cache traffic, recent Intel microarchitectures have a special functional unit that
manages the stack pointer’s value and caches the top several words of the stack [46].

Recognizing this deficiency, AMD’s 64-bit extension, x86-64, doubled the number of
integer registers to 16. Even so, many programs—particularly those that would ben-
efit from compiler optimizations like loop unrolling and software pipelining—still face
register pressure.

• Exacerbating the paucity of architectural registers, most of the integer registers perform
special functions in the ISA. For example, integer dividends are implicitly sourced from
the DX and AX register pair. Shift amounts only come from the CX register, which
also serves as the induction variable register for string operations. ESI provides the
address for the post-increment load addressing mode, whereas EDI does so for post-
increment stores. In general, this design pattern results in inefficient shuffling of data
between registers and the stack.
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• Worse still, most x86 instructions have only a destructive form that overwrites one
of the source operands with the result. Frequently, this necessitates extra moves to
preserve values that remain live across destructive instructions.

• Several ISA features, including implicit condition codes and predicated moves, are
onerous to implement in aggressive microarchitectures. Yet, their complexity often
does not result in higher performance because their semantics were ill-conceived. For
example, x86 provides a conditional load instruction, but, if the unconditional load were
to cause an exception, it is implementation-defined whether the conditional version
would do so. Thus, a compiler can only rarely use this instruction to perform the
if-conversion optimization.

Recognizing the inefficiency of their conditional operations, Intel’s recent implementa-
tions go to some lengths to fuse comparison instructions and branch instructions into
internal compare-and-branch operations.

These ISA decisions have profound effects on static code size. As we show in Chapter 5,
what could otherwise be a very dense instruction encoding is not at all: IA-32 is only
marginally denser than the fixed-width 32-bit ARMv7 encoding, and x86-64 is quite a bit
less dense than ARMv8.

Despite all of these flaws, x86 typically encodes programs in fewer dynamic instruc-
tions than RISC architectures, because the x86 instructions can encode multiple primitive
operations. For example, the C expression x[2] += 13 might compile in MIPS to the three-
instruction sequence lw r5, 8(r4); addiu r5, r5, 13; sw r5, 8(r4), but the single in-
struction addl 13, 8(eax) suffices in IA-32. This dynamic instruction density has some
advantages: for example, it can reduce the instruction fetch energy cost. But it compli-
cates implementations of all stripes. In this example, a regular pipeline would exhibit two
structural hazards, since the instruction performs two memory accesses and two additions6.

Finally, the 80x86 is a proprietary instruction set. Architects brave enough to attempt
to implement an x86 microprocessor competitive with Intel’s offerings are likely to face legal
hurdles: Intel has historically been quite litigious, even in the face of their own antitrust
troubles [93].

2.8 Summary

Table 2.1 summarizes these instruction sets’ support for several features we consider essential
for a modern general-purpose ISA. All of the architectures lack at least two important tech-
nical features. ARMv8, which comes closest, is a proprietary standard. The two open ISAs,

6Some x86 implementations, like Intel’s in-order 486 [51] and Pentium [24] pipelines and Cyrix’s out-of-
order M1 [35], handled these structural hazards with hard-wired control. More recent ones, starting with the
AMD K5 [85] and Intel Pentium Pro [36], resolve the hazard by breaking these instructions into a sequence
of simpler micro-operations.
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MIPS SPARC Alpha ARMv7 ARMv8 OpenRISC 80x86

Free and Open ! !

64-bit Addresses ! ! ! ! ! !

Compressed Instructions ! ! Partial

Separate Privileged ISA !

Position-Indep. Code Partial ! ! !

IEEE 754-2008 ! !

Classically Virtualizable ! ! ! !

Table 2.1: Summary of several ISAs’ support for desirable architectural features.

SPARC and OpenRISC, lack several crucial architectural features. All of the ISAs, except,
arguably, the DEC Alpha, have other properties that substantially increase implementation
complexity, especially for high-performance implementations.

Given these limitations, we saw fit to develop our own instruction set. With the benefit
of hindsight, we created RISC-V, a free and open ISA that avoids these technical pitfalls and
is straightforward to implement in many microarchitectural styles. Its design is the subject
of the next chapter.
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Chapter 3

The RISC-V Base Instruction Set
Architecture

After surveying the contemporary ISA landscape and deeming the existing options unsuitable
for our research and educational purposes, we set out to define our own ISA. Building on
the legacy of the RISC-I [78], RISC-II [56], SOAR [83], and SPUR [42] projects, ours was
the fifth major RISC ISA design effort at UC Berkeley, and so we named it RISC-V. As one
of our goals in defining RISC-V was to support research in data-parallel architectures, the
Roman numeral ‘V’ also conveniently served as an acronymic pun for “Vector.”

The guiding principle in defining RISC-V was to make an ISA suitable for nearly any
computing device. This goal has two direct consequences. First, RISC-V should not be
over-architected for any particular microarchitectural pattern, implementation fabric, or de-
ployment target. The architects of many of the ISAs discussed in Chapter 2 made decisions
that over-optimized for the originally intended style of implementation (e.g., MIPS’ delayed
branches and SPARC’s condition codes). Alas, different application domains demand differ-
ent microarchitectural styles, and such features complicate some of those implementations.
Similarly, not all domains demand all of the features of a rich ISA (e.g., ARMv8’s SIMD);
to provision them anyway would increase cost and reduce efficiency. A running theme in
the design decisions described in this chapter is avoiding architectural techniques that would
provide minor benefit to some RISC-V implementations at undue expense to others.

The second, more important consequence of our goal to make RISC-V ubiquitous is that
the ISA must be open and free to implement. The benefits of an open standard are multifold,
but perhaps the most important one is the potential abundance of processor implementations.
Free, open-source implementations will reduce the cost of building new systems. Free-market
competition between open and proprietary implementations alike should ultimately spur
microarchitectural innovation. Concerns about the viability of intellectual property providers
are assuaged, since open-source implementations always provide a second source. The barrier
to academic-industrial interactions is lowered if the ivory tower and the corporate world share
common standards and implementations. Finally, an open standard ameliorates one set of
security concerns: entities that do not trust certain implementations of the standard—
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perhaps due to fears of industrial espionage, or of meddlesome governments—can instead
devise their own.

Concordant with making RISC-V broadly applicable, we had several specific technical
goals in defining the ISA. We sought to:

• Separate the ISA into a small base ISA and optional extensions. The base ISA is
lean enough to be suitable for educational purposes and for many embedded proces-
sors, including the control units of custom accelerators, yet it is complete enough to
run a modern software stack. The extensions improve performance for computational
workloads and provide support for multiprocessing.

• Support both 32-bit and 64-bit address spaces, as we predict the former will continue to
be popular in small systems for centuries while the latter is desirable even for modest
personal computers. We have also defined a 128-bit address space variant, which we
discuss in Section 3.4.

• Facilitate custom ISA extensions, including tightly coupled functional units and loosely
coupled coprocessors.

• Support variable-length instruction set extensions, both for improved code density and
for expanding the space of possible custom ISA extensions.

• Provide efficient hardware support for modern standards, including the IEEE-754 2008
floating-point standard [7] and the C11 and C++11 programming languages [48, 49].

• Orthogonalize the user ISA and privileged architecture, allowing full virtualizability
and enabling experimentation in the privileged ISA while maintaining user application
binary interface (ABI) compatibility.

We believe that we have met these goals. In the remainder of this chapter, we describe
the design of the RISC-V base instruction set architecture; the standard extensions are the
subject of Chapter 4.

The three base ISAs—RV32I, RV32E, and RV64I—are distinct entities, but their designs
are very closely related. RV32I and RV64I differ primarily in the width of the registers and
the size of the memory address space. RV32E is a variant of RV32I with fewer registers,
meant for deeply embedded systems where every transistor counts.

3.1 The RV32I Base ISA

RV32I is the base 32-bit integer ISA. It is a simple instruction set, comprising just 47 instruc-
tions, yet it is complete enough to form a compiler target and satisfy the basic requirements
of modern operating systems and runtimes. Eight of the instructions are system instruc-
tions (system calls and performance counters) that can be implemented as a single trapping
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31 0 31 0

x0/zero x16

x1 x17

x2 x18

x3 x19

x4 x20

x5 x21

x6 x22

x7 x23
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x9 x25

x10 x26

x11 x27

x12 x28

x13 x29

x14 x30

x15 x31

32 32

31 0

pc
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Figure 3.1: RV32I user-visible architectural state.

instruction, reducing the number of mandatory user-level hardware instructions to 40. As
with many RISC instruction sets, the remaining instructions fall into three categories: com-
putation, control flow, and memory access. RISC-V is a load-store architecture, in which
arithmetic instructions operate only on the registers, and only loads and stores transfer data
to and from memory.

There are 31 general-purpose integer registers in RV32I, named x1–x31, each 32 bits wide.
(The register specifier x0 names the constant zero; it can also be used as a destination register
to discard an instruction’s result.) The only additional register is the program counter, pc,
which holds the byte address of the current instruction. As Figure 3.1 shows, the entirety of
the user-visible architectural state totals 1024 bits.

Instructions in RV32I are 32 bits long and must be stored naturally aligned in memory,
in little-endian byte order1. Six instruction formats, which Figure 3.2 depicts, comprise the
47 instructions: four major formats, R, I, S, and U; and two variants, SB and UJ, which
are identical to S and U except for the immediate operand encoding. Instructions in these

1The choice of memory system endianness is somewhat arbitrary. Some computations, such as IP packet
processing and C string manipulation, favor big-endianness. We chose little-endianness because it is currently
dominant in general-purpose computing: x86 is little-endian, and, while ARM is bi-endian, little-endian
software is more common. While portable software should never rely on memory system endianness, much
software, in practice, does. Adopting the most popular choice reduces the effort to port low-level software
to RISC-V.
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31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode SB-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode UJ-type

Figure 3.2: RV32I instruction formats.

inst[4:2] 000 001 010 011 100 101 110 111
inst[6:5]

00 Loads F Ext. Fences Arithmetic AUIPC RV64I
01 Stores F Ext. A Ext. Arithmetic LUI RV64I
10 F Ext. F Ext. F Ext. F Ext. F Ext. RV128I
11 Branches JALR JAL System RV128I

Table 3.1: RV32I opcode map.

formats source up to two register operands, identified by rs1 and rs2, and produce up to one
register result, identified by rd. An important feature of this encoding is that these register
specifiers, when present, always occupy the same position in the instruction. This property
allows register fetch to proceed in parallel with instruction decoding, ameliorating a critical
path in many implementations.

Another feature of this encoding scheme is that generating the immediate operand from
the instruction word is inexpensive. Of the 32 bits in the immediate operand, seven always
come from the same position in the instruction, including the sign bit, which, due to its
high fan-out, is the most critical. 24 more bits come from one of two positions, and the
final immediate bit has three sources. The SB and UJ formats, which have their immediates
scaled by a factor of two, rotate the bits in the immediate, rather than using hardware muxes
to do so, as was the case in MIPS, SPARC, and Alpha. This design reduces hardware cost
for low-end implementations that reuse the ALU datapath to compute branch targets.

Table 3.1 depicts RV32I’s major opcode allocation. Major opcodes are seven bits wide,
but in the base ISAs, the two least-significant bits are set to 11. We reserve the remaining
3
4

of the encoding space for an ISA extension that significantly improves code density, which
is the subject of Chapter 5. RV32I consumes 11 of the 32 major opcodes that remain. The
other base ISAs use another four major opcodes, and the standard extensions, the subject
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Instruction Format Meaning

add rd, rs1, rs2 R Add registers
sub rd, rs1, rs2 R Subtract registers
sll rd, rs1, rs2 R Shift left logical by register
srl rd, rs1, rs2 R Shift right logical by register
sra rd, rs1, rs2 R Shift right arithmetic by register
and rd, rs1, rs2 R Bitwise AND with register
or rd, rs1, rs2 R Bitwise OR with register
xor rd, rs1, rs2 R Bitwise XOR with register
slt rd, rs1, rs2 R Set if less than register, 2’s complement
sltu rd, rs1, rs2 R Set if less than register, unsigned
addi rd, rs1, imm[11:0] I Add immediate
slli rd, rs1, shamt[4:0] I Shift left logical by immediate
srli rd, rs1, shamt[4:0] I Shift right logical by immediate
srai rd, rs1, shamt[4:0] I Shift right arithmetic by immediate
andi rd, rs1, imm[11:0] I Bitwise AND with immediate
ori rd, rs1, imm[11:0] I Bitwise OR with immediate
xori rd, rs1, imm[11:0] I Bitwise XOR with immediate
slti rd, rs1, imm[11:0] I Set if less than immediate, 2’s complement
sltiu rd, rs1, imm[11:0] I Set if less than immediate, unsigned
lui rd, imm[31:12] U Load upper immediate
auipc rd, imm[31:12] U Add upper immediate to pc

Table 3.2: Listing of RV32I computational instructions.

of Chapter 4, use eight. Nine major opcodes remain available for ISA extensions. In [102],
we describe in detail how we intend to apportion them, but at least two major opcodes will
remain reserved for nonstandard extensions.

Appendix A shows the encoding of all RV32I instructions.

Computational Instructions

RV32I comprises 21 computational instructions, including arithmetic, logic, and compar-
isons. These instructions, which Table 3.2 summarizes, operate on the integer registers; some
of the instructions take an additional immediate operand. The computational instructions
operate on both signed and unsigned integers. Signed integers use the two’s complement
representation. All immediate operands are sign-extended, even in contexts where the im-
mediate represents an unsigned quantity. This property reduces the descriptive complexity
of the ISA, and actually results in better performance in some cases2.

2MIPS zero-extended some immediates, such as for the bitwise logical operations. This choice requires
an extra instruction for operations like masking off the least-significant bit of a register.
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The arithmetic operations are addition, subtraction, and bitwise shifts. The R-type
instructions ADD and SUB perform addition and subtraction, respectively, on the values in
registers rs1 and rs2, writing the result to register rd. SLL, SRL, and SRA shift the value
in rs1 by the least-significant five bits of register rs2, performing logical left, logical right,
and arithmetic right shifts, respectively3. I-type instructions ADDI, SLLI, SRLI, and SRAI
perform the same operation as their counterparts lacking the letter I, but the right-hand
operand comes from the 12-bit signed immediate instead of register rs24.

The logical operations perform bitwise Boolean operations. AND, OR, and XOR perform
their eponymous operations on the values in registers rs1 and rs2, then write the result to
register rd. ANDI, ORI, and XORI do the same, but they substitute the 12-bit immediate in
rs2’s stead. Since the immediate operand is sign-extended, RISC-V implements bitwise log-
ical inversion, a.k.a. NOT, using XORI with an immediate of −1. In contrast, MIPS, whose
bitwise operations zero-extend their immediates, had to provide an additional instruction,
NOR, for this purpose. NOR is otherwise rarely used.

The comparison operations perform arithmetic magnitude comparisons. SLT and SLTU
perform signed and unsigned less-than comparisons between rs1 and rs2, writing the Boolean
result (0 or 1) to register rd. Their I-type counterparts SLTI and SLTIU do the same, but
source the right-hand side of the comparison from the 12-bit sign-extended immediate instead
of rs2. These instructions also provide two common idioms. SLTIU with an immediate of
1 computes whether rs1 is equal to zero; we call this pseudo-instruction SEQZ. SLTU with
rs1=x0 computes whether rs2 is not equal to zero, an idiom we refer to as SNEZ.

Finally, there are two special computational operations in RV32I, both of which use the U
format. One is LUI, short for load upper immediate, which sets the upper 20 bits of register
rd to the value of the 20-bit immediate, while setting the lower 12 bits of rd to zero. LUI is
primarily used in conjunction with ADDI to load arbitrary 32-bit constants into registers,
but it can also be paired with load and store instructions to access any static 32-bit address,
or with an indirect jump instruction to transfer control to any static 32-bit address.

The other is AUIPC, short for add upper immediate to pc, which adds a 20-bit upper
immediate to the pc and writes the result to register rd. AUIPC forms the basis for RISC-
V’s pc-relative addressing scheme: it is essential for reasonable code size and performance
in position-independent code. To demonstrate this point, Figure 3.3 shows code sequences
to load a variable that resides 0x1234 bytes away from the start of the code block, with and
without AUIPC5.

3A logical left shift by n is equivalent to multiplication by 2n. A logical right shift by n is equivalent
to unsigned division by 2n, rounding towards zero, whereas an arithmetic right shift by n is equivalent to
signed division by 2n, rounding towards −∞.

4There is no SUBI instruction, because ADDI with a negative immediate is almost equivalent. The one
exception arises from the asymmetry of the two’s complement representation: SUBI with an immediate of
−211 would add 211 to a register, which ADDI is incapable of.

5Position-independent code without AUIPC could be implemented with a different ABI, rather than
using the jal instruction to read the PC. The MIPS PIC ABI, for example, guarantees that r25 always
contains the address of the current function’s entry point. But the effect is to move the extra instructions
to the call site, since r25 needs to be loaded with the callee’s address.
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auipc x4, 0x1 jal x4, 0x4

lw x4, 0x234(x4) lui x5, 0x1

add x4, x4, x5

lw x4, 0x230(x4)

WITH AUIPC WITHOUT AUIPC

Figure 3.3: Code fragments to load a variable 0x1234 bytes away from the pc, with and
without the AUIPC instruction.

Memory Access Instructions

RV32I provides five instructions that load a value from memory into an integer register and
three that store a value in a register to memory. All of these instructions use byte addresses
to name memory locations; they form the address by adding the value in register rs1 to the
12-bit sign-extended immediate. Table 3.3 lists all of the RISC-V memory operations.

We considered supporting additional addressing modes, including indexed addressing
(i.e., rs1+rs2). However, this would have necessitated a third source operand for stores.
Similarly, auto-increment addressing modes would have reduced instruction count, but would
have added a second destination operand for loads. We could have employed a hybrid
approach, providing indexed addressing only for some instructions and auto-increment for
others, as did the Intel i860 [45], but we thought the extra instructions and non-orthogonality
complicated the ISA. Additionally, we observed that most of the improvement in dynamic
instruction count could be obtained by unrolling loops, which is typically beneficial for high-
performance code in any case.

Misaligned loads and stores are explicitly allowed6, but they are not guaranteed to exe-
cute atomically or with high performance. This caveat allows simple implementations to trap
these instructions and emulate the misaligned access in low-level system software by non-
atomically manipulating the adjacent words, but leaves the flexibility for higher-performance
systems to implement them natively in hardware. (To date, all known RISC-V processors
have employed the former strategy.) Other ISAs have approached this problem quite differ-
ently. The x86 requires that misaligned accesses execute atomically, effectively mandating
they be implemented in hardware, at significant complexity cost. MIPS and Alpha both
illegalized misaligned loads and stores, but provided additional instructions to handle the
misaligned case. These consumed significant opcode space and, in the case of MIPS, added
a new pipeline hazard. We reasoned that simply allowing misaligned accesses, but giving a
great deal of flexibility to the implementation, was a better tradeoff.

6A load or store is considered to be misaligned if the address is not divisible by the width of the access.
These operations can be complicated to implement in hardware because memories are usually organized in
at least word-sized blocks, in which case misaligned accesses must be split in two. Worse, misaligned accesses
can straddle cache line and page boundaries, the latter of which may affect the exception model.
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Instruction Format Meaning

lb rd, imm[11:0](rs1) I Load byte, signed
lbu rd, imm[11:0](rs1) I Load byte, unsigned
lh rd, imm[11:0](rs1) I Load half-word, signed
lhu rd, imm[11:0](rs1) I Load half-word, unsigned
lw rd, imm[11:0](rs1) I Load word
sb rs2, imm[11:0](rs1) S Store byte
sh rs2, imm[11:0](rs1) S Store half-word
sw rs2, imm[11:0](rs1) S Store word
fence pred, succ I Memory ordering fence
fence.i I Instruction memory ordering fence

Table 3.3: Listing of RV32I memory access instructions.

The load instructions all use the I-type instruction format. The LW instruction copies a
32-bit word from memory into integer register rd. LH and LB load 16-bit and 8-bit quantities,
respectively, placing the result in the least-significant bits of rd, and filling the upper bits of
rd with copies of the sign bit. LHU and LBU are similar, but instead they zero-fill the upper
bits.

The stores are all S-type instructions. The SW instruction copies the 32-bit value in
integer register rs2 to memory. SH and SB copy the low 16-bits and 8-bits in rs2 to half-
word and byte-sized memory locations, respectively.

Memory Access Ordering

A RISC-V thread of execution perceives all of its own loads and stores to have occurred
in program order, but in a multithreaded environment, there is no intrinsic guarantee of
the order in which one thread perceives another thread’s memory accesses. This design
is referred to as a relaxed memory model. Weak memory models like RISC-V’s are less
intuitive than sequential consistency (SC), in which “the result of any execution is the same
as if the operations of all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in the order specified by its
program” [59]. But SC effectively disallows several important memory system optimizations,
like non-blocking loads and write buffering with bypassing [1].

Leveraging the observation that few memory ordering violations can actually become vis-
ible to other threads, out-of-order microarchitectures can speculate that reordering memory
accesses is safe, and discard the incorrect execution if another thread might have been able
to detect the reordering [106]. In effect, they can reuse their existing speculation mechanisms
to give the appearance of SC but performance closer to that of a relaxed memory model [31].
Alas, this technique does not apply to simple, in-order microarchitectures, because they do
not already have this expensive speculative execution hardware. Choosing SC as our memory
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Instruction Format Meaning

beq rs1, rs2, imm[12:1] SB Branch if equal
bne rs1, rs2, imm[12:1] SB Branch if not equal
blt rs1, rs2, imm[12:1] SB Branch if less than, 2’s complement
bltu rs1, rs2, imm[12:1] SB Branch if less than, unsigned
bge rs1, rs2, imm[12:1] SB Branch if greater or equal, 2’s complement
bgeu rs1, rs2, imm[12:1] SB Branch if greater or equal, unsigned
jal rd, imm[20:1] UJ Jump and link
jalr rd, rs1, imm[11:0] I Jump and link register

Table 3.4: Listing of RV32I control transfer instructions.

model would have unduly penalized the performance of simpler RISC-V implementations.
Enforcement of memory ordering is hence made explicit in the ISA. RV32I provides a

FENCE instruction that provides an ordering guarantee between memory accesses prior
to the fence and subsequent to the fence. The arguments to the fence are two sets, the
predecessor set and the successor set, which indicate what type of accesses are to be ordered
by the fence: memory reads (R), memory writes (W), device input (I), and device output
(O). For example, the instruction fence rw,w guarantees that all loads and stores prior to
the fence will not appear to have executed before any store subsequent to the fence.

RV32I also provides an instruction to synchronize the instruction stream with data mem-
ory accesses, called FENCE.I. A store to instruction memory is only guaranteed to be re-
flected by subsequent instruction fetches after a FENCE.I has been executed. Some archi-
tectures, like x86, provide much stronger guarantees on the ordering between stores and
instruction fetches. For systems with split instructions and data caches, the x86 design re-
quires the two caches be kept coherent, e.g., by snooping the other cache on a miss. Since
self-modifying code is relatively rare, we thought it best to allow simpler implementations
with incoherent instruction caches, and instead place the onus on the programmers of self-
modifying code to insert a FENCE.I instruction.

Control Flow Instructions

RV32I provides six instructions to conditionally change the flow of control, which Table 3.4
summarizes. These branch instructions, which use the SB-type instruction format, perform
arithmetic comparisons between two registers and can transfer control to anywhere in a range
of ±4 KiB (±1K instructions). The new address is formed by adding the sign-extended 12-bit
immediate to the current pc. BEQ compares the values in registers rs1 and rs2 and takes
the branch if they are equal. BLT compares rs1 and rs2 as two’s complement integers and
takes the branch if rs1 is smaller. BLTU treats them as unsigned integers and takes the
branch if rs1 is smaller. BNE, BGE, and BGEU perform the same operations as BEQ, BLT,
and BLTU, respectively, but have the opposite polarity.
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A common feature of branches in other RISC architectures is the branch delay slot, in
which the instruction immediately following the branch is executed whether or not the branch
is taken. This design optimizes for shallow, single-issue, in-order pipelines, in which the
branch direction would resolve in the same cycle that the subsequent instruction was being
fetched. For that microarchitectural pattern, delay slots improve pipeline utilization and
remove a control hazard. However, for deeper pipelines and for machines with superscalar
instruction dispatch, delay slots increase complexity and offer vanishing benefit. In fact,
they can even reduce performance: unfilled delay slots must be populated with a no-op,
increasing code size7. Moreover, microarchitectural techniques can be used to keep pipelines
busy without architecturally exposing a delay slot: branch target prediction can do so in
the common case. (A two-entry branch target buffer, sufficient to capture most loop nests,
adds about 128 bits of microarchitectural state, and so is easily justifiable for most pipelined
implementations.)

In addition, to resolve branches early in the pipeline, many RISC architectures provide
only simple branches. The Alpha, for example, only provides comparisons against zero;
comparing two registers takes an additional instruction. Other ISAs, like SPARC, achieved
this effect by only providing branches on condition code registers. In that case, many code
sequences require an additional instruction to set the condition codes based upon a compari-
son. In RISC-V, we reasoned that we could achieve better code size and dynamic instruction
count by folding the comparisons into the branch instruction. For pipelined implementations,
this decision might require that branches be resolved in a later pipeline stage. But modern
instruction pipelines tend to have accurate branch prediction and branch target prediction,
so the slight increase in the taken branch latency should be more than balanced by the
reduction in instruction count and code size.

We consciously omitted support for conditional moves and predication. Both enable some
form of if-conversion, a transformation by which some control hazards can be traded for data
hazards. Conditional move instructions are much weaker than predication: they add to the
critical code path, and they cannot in general be used to if-convert instructions that might
cause exceptions, like loads and stores. Full predication is much more general, but adds to
the architectural state and consumes substantial opcode space, as each instruction must be
given an additional predicate operand. Both techniques complicate implementations with
register renaming, since the old value of the destination register must be copied to the new
physical register when the predicate is false. Finally, if-conversion is usually not profitable in
the common case that the condition is predictable: branch prediction will succeed, sometimes
with higher performance, since it obviates the extra data dependence.

In addition to the branches, RISC-V provides two unconditional control transfer instruc-

7To improve performance in the face of unfilled branch delay slots, the MIPS and SPARC architects
added new instructions that only execute the delay slot instruction if the branch is taken. Thus, the delay
slot can always be filled for loop structures, since the first instruction of the loop can be copied into the
delay slot. In this case, the code size penalty remains, since the instruction must in general be duplicated
for the first loop iteration to execute correctly. Recognizing the deficiencies of branch delay slots, the MIPS
architects finally made them optional in the 2014 revision of the ISA.
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tions. The UJ-type JAL instruction, short for jump-and-link, sets the pc to anywhere in a
±1 MiB range (±256K instructions). It also writes the address of the instruction following
the JAL (pc+4) to register rd. Thus, the instruction can be used for function calls, so that
the callee knows the address to which to return. When linking to rd is not desired, as is
the case for simple jumps, x0 can be used for rd. We refer to this common idiom as the J
pseudo-instruction. The RISC-V JAL instruction is pc-relative and so can be used freely in
position-independent code8.

Finally, the I-type JALR instruction provides an indirect jump to the value in register
rs1 plus a 12-bit sign-extended immediate. This versatile instruction is used for table jumps
(as in C’s switch statement), indirect function calls, and function returns. JALR discards
the least-significant bit of the computed address, allowing software to store metadata in this
bit and slightly reducing hardware cost. JALR was designed to be coupled with the AUIPC
instruction to implement a two-instruction sequence for a pc-relative jump to anywhere
in the 32-bit address space. As with JAL, the address of instruction following the JALR
instruction (pc+4) is written to register rd.

All of the control-transfer instructions have two-byte granularity. This property is not
intrinsically useful for RV32I code, wherein all instructions are four-byte aligned, but it
enables instruction-set extensions whose instructions are any multiple of two bytes in length.
One particularly important case, discussed in Chapter 5, is the compressed ISA extension,
which adds 16-bit instructions to the ISA for improved code density.

System Instructions

Rounding out RV32I are the eight system instructions. Simple implementations may choose
to trap these instructions and emulate their functionality in system software, but higher-
performance implementations may implement more of their functionality in hardware. Ta-
ble 3.5 lists these instructions.

The ECALL instruction is used to invoke the operating system to perform a system call.
The RISC-V ISA itself does not define the parameter passing convention for system calls;
it is a property of the ABI. The expectation is that most systems will pass parameters to
system calls the same way that they pass parameters to normal function calls.

The EBREAK instruction is used to invoke the debugger. Unlike many ISAs, we did
not allow for metadata to be encoded within the EBREAK instruction word. This feature
would have consumed extra opcode space, but is not especially useful since the field cannot
be wide enough to hold a complete memory address. Instead, this information is best stored
in an auxiliary data structure, indexed by the program counter of the EBREAK instruction.

8In MIPS, by contrast, the J and JAL instructions are pseudo-absolute: the lower 28 bits of the new
pc are provided directly from the immediate, whereas the upper bits come from the pc of the delay slot
instruction. They are, as such, effectively useless in position-independent code; all unconditional control
transfers either use the conditional branch instructions (if the target is nearby) or a load from the global
offset table followed by an indirect jump.

SPARC wisely provided a pc-relative CALL instruction, but provided no corresponding JUMP instruction.
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Instruction Format Meaning

scall I System call
sbreak I Breakpoint
csrrw rd, csr, rs1 I Read and write CSR
csrrc rd, csr, rs1 I Read and clear bits in CSR
csrrs rd, csr, rs1 I Read and set bits in CSR
csrrwi rd, csr, imm[4:0] I Read and write CSR with immediate
csrrci rd, csr, imm[4:0] I Read and clear bits in CSR with immediate
csrrsi rd, csr, imm[4:0] I Read and set bits in CSR with immediate

Table 3.5: Listing of RV32I system instructions.

Name Meaning

cycle Cycle counter
time Real-time clock
instret Instructions retired counter
cycleh Upper 32 bits of cycle counter
timeh Upper 32 bits of real-time clock
instreth Upper 32 bits of instructions retired counter

Table 3.6: Listing of RV32I control and status registers.

Six more instructions are provided to read and write control and status registers (CSRs),
which provide a general facility for system control and I/O. The CSR address space supports
up to 212 control registers; presently, this space is only very sparsely populated. The CSRRW
instruction copies the value in a CSR into integer register rd, and atomically overwrites the
CSR with the value in integer register rs1. CSRRC atomically clears bits in a CSR. It
copies the old value of a CSR to register rd, then for any bit set in register rs1, it atomically
clears that bit in the CSR. CSRRS is similar, but sets bits in the CSR rather than clearing
them. The remaining three instructions, CSRRWI, CSRRCI, and CSRRSI, behave like their
counterparts without the letter I, but rather than taking the source operand from register
rs1, they take it from a 5-bit zero-extended immediate.

Since reading or writing CSRs can have side effects, we define two special cases of these
instructions, each of which explicitly lacks one of the side effects. CSRRS with rs1=x0,
which reads a CSR and sets none of the bits in it, is defined to have no write side effects.
This is the CSRR pseudo-instruction, which reads a CSR with no side effects. CSRRW with
rd=x0, which writes a CSR but discards the old value, is defined to have no read side effects.
This is the CSRW pseudo-instruction.

In most systems, the majority of CSRs are only accessible to privileged software, but
RV32I does mandate a handful of user-level CSRs that provide a basic performance diagnostic
facility. All are read-only so must be accessed using the CSRR psuedoinstruction. Table 3.6
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retry:

csrr x3, cycleh

csrr x2, cycle

csrr x4, cycleh

bne x3, x4, retry

Figure 3.4: Sample code for reading the 64-bit cycle counter in RV32.

lists them. The cycle counter records the number of clock cycles that have elapsed since an
arbitrary reference time. The instret counter ticks once per retired instruction. Finally,
the time register reports a value proportional to elapsed wall-clock time. We provide both
cycle and time because both quantities are figures of merit and are not necessarily linearly
related. Many processor implementations use dynamic voltage and frequency scaling to
modulate performance and power consumption as utilization and environmental constraints
change over time, so the time register is necessary for basic performance measurement. On
the other hand, the cycle counter is essential for diagnosing the performance of the processor
pipeline.

Ideally, the cycle, instret, and time registers would have 64 bits of precision, because
32-bit counters overflow quickly: the cycle counter, for example, wraps after about one
second in a 4 GHz implementation. In contrast, a 64-bit counter would take more than a
century to overflow, presumably beyond the mean time to failure of the processor. To ac-
commodate 64-bit counters in a 32-bit ISA, we provide additional CSRs, cycleh, instreth,
and timeh, which contain the upper 32 bits of the corresponding counter. Of course, the act
of reading both halves of one of the counters is not atomic, and the counter might overflow
mid-sequence, particularly if an interrupt occurs. Figure 3.4 shows a scheme to correctly
read the 64-bit cycle counter into the x3:x2 register pair, obviating this concern.

3.2 The RV32E Base ISA

In low-end implementations of RV32I, the 31 integer registers are often the most expensive
single hardware structure. Yet, for many embedded scenarios, a machine with substantially
fewer registers would provide sufficient performance, and so the hardware cost is unjustifiable.
Depending on the application, a design with fewer registers might also be more energy
efficient. RV32E aims to cater to this domain.

RV32I and RV32E differ only in the number of integer registers: the latter reduces the
count from 31 to 15. Figure 3.5 depicts the entirety of the user-visible architectural state in
an RV32E machine. The RV32I instructions are all present in RV32E, and their behavior is
the same, with the exception that any attempt to access the nonexistent registers x16–x31
causes an exception. However, the performance counter CSRs mentioned in the previous
section are optional in RV32E.
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31 0 31 0

x0/zero x8

x1 x9

x2 x10

x3 x11

x4 x12

x5 x13

x6 x14

x7 x15

32 32

31 0

pc

32

Figure 3.5: RV32I user-visible architectural state.

Since RV32E is only intended for deeply embedded scenarios, it is not meant to host a
fully featured operating system environment. Hence, while RV32E is not ABI-compatible
with RV32I, we are not concerned about the possibility of additional fragmentation in the
RV32 software ecosystem.

3.3 The RV64I Base ISA

For an increasing number of application domains, 232 bytes of addressable memory is insuffi-
cient. Large servers in 2015 have as much as 64 TiB of DRAM [84], requiring 46 bits to fully
address. Even some wireless phones have exceeded 4 GiB of DRAM. Hence, while RV32I is
appropriate for most small systems, its limited address space renders it unusable for many
others. The RV64I base ISA addresses the lack of addresses.

As Figure 3.6 depicts, RV64I’s user-visible state is very similar to RV32I’s: it differs only
in the widths of the integer registers and the program counter, which have all doubled in
width to 64 bits. In the same spirit, the RV32I instructions perform the same function as in
RV64I, except that they operate on the full 64-bit register. There are 12 new instructions in
RV64I, as Table 3.7 lists.

While integer arithmetic often operates on the full width of a register, especially for
the purpose of manipulating addresses, computations on sub-word quantities are also quite
common. This effect is amplified in 64-bit architectures, since popular datatypes like int

in Java and C remain 32 bits wide9. To maintain reasonable performance on 32-bit code,
RV64I adds several computational instructions that operate on the lower 32 bits of the integer

9ISO C does not actually mandate that int be 32 bits wide, but so much software erroneously relies on
this property that virtually all 64-bit C implementations have chosen not to widen the datatype to 64 bits.
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63 0 63 0

x0/zero x16

x1 x17

x2 x18

x3 x19

x4 x20

x5 x21

x6 x22

x7 x23

x8 x24

x9 x25

x10 x26

x11 x27

x12 x28

x13 x29

x14 x30

x15 x31

64 64

63 0

pc

64

Figure 3.6: RV64I user-visible architectural state.

Instruction Format Meaning

addw rd, rs1, rs2 R Add registers, 32-bit
subw rd, rs1, rs2 R Subtract registers, 32-bit
sllw rd, rs1, rs2 R Shift left logical by register, 32-bit
srlw rd, rs1, rs2 R Shift right logical by register, 32-bit
sraw rd, rs1, rs2 R Shift right arithmetic by register, 32-bit
addiw rd, rs1, imm[11:0] I Add immediate, 32-bit
slliw rd, rs1, shamt[4:0] I Shift left logical by immediate, 32-bit
srliw rd, rs1, shamt[4:0] I Shift right logical by immediate, 32-bit
sraiw rd, rs1, shamt[4:0] I Shift right arithmetic by immediate, 32-bit

lwu rd, imm[11:0](rs1) I Load word, unsigned
ld rd, imm[11:0](rs1) I Load double-word
sd rs2, imm[11:0](rs1) S Store double-word

Table 3.7: Listing of additional RV64I computational instructions.
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registers and produce 32-bit results, which are sign-extended to the full width of the register.
These are the first nine instructions in Table 3.7.

Keeping 32-bit data sign-extended in the registers keeps casts between the C types int

and unsigned int, and between int and long, costless operations. The existing branch
instructions also automatically work on both signed and unsigned 32-bit types.

There are also three new memory access instructions: LWU loads a 32-bit word and
zero-extends the result to 64 bits. LD and SD load and store 64-bit double-words.

3.4 The RV128I Base ISA

In 1976, Gordon Bell and Bill Strecker, two of the designers of DEC’s hugely successful
16-bit PDP-11 architecture, keenly observed, “There is only one mistake that can be made
in computer design that is difficult to recover from—not having enough address bits for
memory addressing and memory management” [20]. The Virtual Address eXtension to the
PDP, better known by the acronym VAX, was less an extension of PDP than a complete
redesign of the instruction set architecture: the PDP-11’s opcode space was exhausted, and
so the architecture could not be retrofitted to support a 32-bit address space.

Seeking to sidestep this pitfall, we consciously preserved a large fraction of RISC-V’s
opcode space for, among other possible extensions, a 128-bit address space variant, RV128I.
While we expect 64 bits of address space to be ample for nearly all computing devices for
decades to come, there are already plausible applications for a 128-bit address space, includ-
ing single-address-space operating systems. The fastest supercomputer as of this writing,
the Tianhe-2, has 1.3 PiB of memory, which would take 51 bits to completely byte-address.
At the historic growth rate of the memory capacity of TOP500 champions, about 70% per
year, a 64-bit address space would be exhausted in about two decades. To the extent that
global addressability of such systems is desired, we contend that flat addressability is the
best approach; RV128I provides a promising solution.

RV128I extends RV64I analogously to how RV64I extends RV32I: the width of the integer
registers is doubled; new loads and stores are added; and the base arithmetic operations are
redefined to operate on the full 128 bits. To maintain reasonable performance on 64-bit
data, new arithmetic operations that process only the lower 64 bits are added. Table 3.8
summarizes the new instructions in RV128I.

3.5 Discussion

The RISC-V base ISAs are simple and straightforward to implement, yet complete enough
to support a modern software stack. The base ISA design eschews architectural features that
add undue complexity burdens to both simple and aggressive microarchitectures.

Nevertheless, there are many application domains for which a basic integer ISA cannot
provide sufficient performance—for example, for workloads laden with floating-point compu-
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Instruction Format Meaning

addd rd, rs1, rs2 R Add registers, 64-bit
subd rd, rs1, rs2 R Subtract registers, 64-bit
slld rd, rs1, rs2 R Shift left logical by register, 64-bit
srld rd, rs1, rs2 R Shift right logical by register, 64-bit
srad rd, rs1, rs2 R Shift right arithmetic by register, 64-bit
addid rd, rs1, imm[11:0] I Add immediate, 64-bit
sllid rd, rs1, shamt[5:0] I Shift left logical by immediate, 64-bit
srlid rd, rs1, shamt[5:0] I Shift right logical by immediate, 64-bit
sraid rd, rs1, shamt[5:0] I Shift right arithmetic by immediate, 64-bit

ldu rd, imm[11:0](rs1) I Load double-word, unsigned
lq rd, imm[11:0](rs1) I Load quad-word
sq rs2, imm[11:0](rs1) S Store quad-word

Table 3.8: Listing of additional RV128I computational instructions.

tation. The next chapter describes four standard extensions to the base ISAs that improve
the performance of RISC-V implementations in these domains.
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Chapter 4

The RISC-V Standard Extensions

One of our goals in defining RISC-V was to make an ISA suitable for resource-constrained
low-end implementations and high-performance ones alike. The former domain requires a
lean base ISA, mandating that some features be left out—features that are important in
some embedded processors and for any general-purpose applications processor. RISC-V
provides such flexibility in the form of ISA extensions. This chapter describes four standard
extensions—M for integer multiplication and division, A for atomic memory operations, and
F and D for single- and double-precision floating-point—that, together, form a powerful ISA
for general-purpose computing.

4.1 Integer Multiplication and Division

In many applications, particularly those rich in fixed-point computation, integer multipli-
cation and division are common operations. Even when they do not represent a dominant
fraction of computational operations, they can account for a substantial fraction of runtime
when implemented with software subroutines. Hence, for most applications, hardware accel-
eration of these operations is desirable. Table 4.1 shows the instructions that the RISC-V
M extension provides for this purpose.

We considered further separating the M extension into separate multiplication and di-
vision extensions, but reasoned that demand for these two extensions would be highly cor-
related. Furthermore, for low-end ASIC implementations with an iterative multiplier, an
iterative divider can be added at relatively low incremental cost. On the other hand, for
many FPGA implementations, division is quite a bit more expensive to implement than
multiplication, thanks to the presence of hardened multiplier blocks; these processors may
choose to trap division instructions and emulate them in software.

Unlike some RISC ISAs, which added special architectural registers for the operands to
multiplication and division instructions, the instructions in RISC-V’s M extension operate
directly on the integer registers. This strategy reduces instruction count and latency by
eliminating instructions that move to and from the special registers; enables superior compiler
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Instruction Format Meaning

mul rd, rs1, rs2 R Multiply and return lower bits
mulh rd, rs1, rs2 R Multiply signed and return upper bits
mulhu rd, rs1, rs2 R Multiply unsigned and return upper bits
mulhsu rd, rs1, rs2 R Multiply signed-unsigned and return upper bits
div rd, rs1, rs2 R Signed division
divu rd, rs1, rs2 R Unsigned division
rem rd, rs1, rs2 R Signed remainder
remu rd, rs1, rs2 R Unsigned remainder

mulw rd, rs1, rs2 R Multiply, 32-bit
divw rd, rs1, rs2 R Signed division, 32-bit
divuw rd, rs1, rs2 R Unsigned division, 32-bit
remw rd, rs1, rs2 R Signed remainder, 32-bit
remuw rd, rs1, rs2 R Unsigned remainder, 32-bit

Table 4.1: Listing of RV32M and (below the line) RV64M instructions.

code scheduling; and reduces the size of the thread context. For some implementations,
there is a slight increase in control logic for writeback arbitration, but we feel this minor
cost is easily overshadowed by the benefits. For implementations with register renaming,
this strategy actually reduces complexity, since it eliminates a class of registers that would
otherwise need to be renamed to obtain reasonable performance.

RV32M adds four instructions that compute 32×32-bit products: mul, which returns the
lower 32 bits of the product; and mulh, mulhu, and mulhsu, which return the upper 32 bits
of the product, treating the multiplier and multiplicand as signed, unsigned, and mixed,
respectively. (The lower 32 bits of the product do not depend on the signedness of the
inputs.) The latter three instructions are essential for fixed-point computational libraries
and enable an important strength reduction optimization: division by a constant can always
be turned into multiplication by an approximate reciprocal, followed by a correction step to
the upper half of the product [34].

There are also four instructions that perform 32-bit by 32-bit division: div and divu,
for signed and unsigned division; and rem and remu, for signed and unsigned remainder.
Following C99, signed division rounds toward zero, and the remainder has the same sign as
the dividend. Division by zero does not cause an exception; programming languages that
desire this behavior can branch on the divisor after initiating the division operation. This
highly predictable branch should have little effect on performance.

Finally, RV64M extends these instructions to operate on the full 64 bits of the register,
and also adds five more instructions, with the suffix w, that operate on 32-bit data and
produce 32-bit sign-extended results.
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4.2 Multiprocessor Synchronization

In 1962, Edsger Dijkstra famously observed that an algorithm conceived by Theodorus
Dekker could solve the mutual exclusion problem using only regular loads and stores [28].
Alas, Dekker’s algorithm scales poorly beyond two concurrent threads of execution: to ac-
quire a lock shared between n threads takes O(n) operations. Consequently, the architects of
early concurrent uniprocessors and parallel multiprocessors added hardware synchronization
mechanisms to accelerate mutual exclusion, such as test-and-set, which atomically sets a bit
of memory and returns the old value.

Mutual exclusion is a completely general synchronization mechanism, and the test-and-
set approach is simple to implement. Nevertheless, this strategy also scales poorly to highly
parallel systems, as it is insufficient to construct wait-free synchronization primitives, like
non-blocking producer-consumer queues [40]. Several alternative primitives do suffice; of
them, atomic compare-and-swap (CAS) is the most popular. CAS compares a register with
a memory word, then atomically overwrites the memory word with a third datum if the
comparands were equal.

Recognizing the resurgence of parallel computing, we sought to define RISC-V to scale to
systems with a great degree of thread-level parallelism. It would have sufficed to make our
memory atomics extension, named A, consist only of CAS; indeed, we considered this option.
But CAS would have required a new integer instruction format with three source operands
(memory address, comparand, and swap value), complicating processor microarchitectures
and adding a new memory system command format with an additional data word. Instead,
we followed the lead of several early RISC ISAs, including MIPS and Alpha, by provid-
ing load-reserved (LR) and store-conditional (SC) instructions. These lower-level primitives,
conceived originally for Livermore Labs’ S-1 project [22], split atomic operations into load,
compute, and store phases. LR performs a normal load, but also registers a microarchitec-
tural reservation on the memory address. The reservation may be forfeited if too much time
elapses, or if another processor requests the same address. SC attempts to perform a store,
but it succeeds only if the reservation is still held; additionally, it writes a success or failure
code to an integer register so that software can branch on the result. Typically, an LR/SC
sequence forms the body of a loop that iterates until the SC succeeds.

LR followed by a successful SC is an atomic operation on the modified memory word. In
other words, no thread can observe another memory operation to have happened between the
two. Similarly, an SC cannot be perceived to have occurred before its paired LR operation.

The principal virtue of the LR/SC scheme is that it is both straightforward to implement
and quite general: it can be used to construct any single-word atomic operation, including
CAS (see Figure 4.1). Unfortunately, näıve implementations of LR/SC suffer from livelock
when multiple processors contend for the same data. To obviate this problem, we mandate
that LR/SC sequences of bounded length (16 consecutive static instructions) will eventually
succeed, provided they contain only base ISA instructions other than loads, stores, and taken
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retry: lr.w t0, (a0) ## atomically {

bne t0, a1, fail ## if (M[a0] == a1)

sc.w t0, a2, (a0) ## M[a0] = a2;

bnez t0, retry ## }

Figure 4.1: Compare-and-swap implemented using load-reserved and store-conditional.

branches1. This constraint allows an implementation to guarantee forward progress by simply
holding off cache interventions for a bounded length of time. Of course, it also places some
constraints on the microarchitecture. The instruction sequence must eventually fit in cache,
even if it conflicts with the reserved datum; so, for example, unified instruction/data caches
and TLBs must be at least two-way set-associative.

Another benefit of LR/SC over CAS is that it avoids the so-called ABA problem, in
which a memory location is modified from the value A to the value B, then modified back
to the value A. Because CAS success is determined by value equality, it cannot detect this
scenario, complicating the implementation of wait-free data structures [27]. One common
workaround is to provide a double-word CAS operation, where the second word serves as a
version number. Alas, this approach complicates the ISA and the implementation: double-
word CAS has four source and two destination register operands and modifies two memory
words. Fortunately, LR/SC does not suffer from the ABA problem, since it detects any
intervening memory write, whether or not the value was ultimately preserved.

Atomic Memory Operations

While it would have sufficed to provide only the LR/SC primitives, we also opted to include
several atomic memory operations (AMOs), which perform simple arithmetic and logic op-
erations on a memory word, then return the old value. The operations, which Table 4.2
summarizes, include addition; signed and unsigned minimum and maximum; bitwise AND,
OR, and XOR; and swap. These AMOs enable an important optimization for highly parallel
systems: when a memory word is contended, the AMO can be sent to the memory word,
rather than obtaining exclusive access to the cache line containing the word [33]. In addition
to reducing latency, network occupancy, and cache thrashing, this strategy ameliorates an
Amdahl’s law bottleneck. In contrast, it would be difficult to perform this optimization us-
ing LR/SC routines, since they comprise general instruction sequences. Of course, architects
who do not wish to spare the hardware to implement AMOs directly can instead synthesize

1There are several subtleties to these constraints. The no-taken-branch constraint bounds the dynamic
instruction count and, taken together with the 16-instruction limit, implies that direct-mapped instruc-
tion caches suffice—provided they can hold at least 64 consecutive bytes of any alignment. (The branch
that retries the LR/SC sequence may, of course, be taken, but it must fit within the 16-instruction limit.)
Disallowing other loads and stores in the sequence allows the use of direct-mapped data caches.
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andi t0, a0, 3 # Shift

slli t0, t0, 3 # addend

sll a1, a1, t0 # into place.

addi t1, x0, 255 # Generate

sll t0, t1, t0 # mask.

andi a0, a0, ~3 # Clear address LSBs.

retry: lr.w t2, (a0) # Load operand.

add t3, a1, t2 # Perform

xor t4, t3, t2 # addition

and t1, t4, t0 # under

xor t2, t1, t2 # mask.

sc.w t2, t2, (a0) # Attempt to store result.

bne t2, x0, retry # Retry if store fails.

Figure 4.2: Atomic addition of bytes, implemented with a word-sized LR/SC sequence.

them from the LR/SC primitives, either in microcode or with a software trap to a greater
privilege level.

We consciously omitted AMOs on sub-word quantities, as they occur very rarely in most
programs. The most common sub-word AMOs are bitwise logical operations, and these are
readily implemented in terms of the word-sized AMOs, using a few additional instructions to
mask the address and shift the datum. LR/SC sequences can realize the others. Figure 4.2
shows how an atomic fetch-and-add operation on a byte-sized operand might be implemented
using LR/SC. The minimum and maximum operations may be similarly synthesized, taking
care to use branchless sequences to implement their inherent conditional operations. These
code sequences are grotesque, but they are invoked with such infrequency that they can be
tucked away in subroutines.

The RVA Memory Model

As described in Section 3.1, RISC-V has a relaxed memory model, wherein one thread’s
memory accesses may be perceived in any order by another thread, unless a FENCE instruc-
tion is executed to guarantee a specific ordering. The instructions in the A extension have
additional features that enable the efficient implementation of the release consistency (RC)
memory model [30]. RC is a relaxed consistency model that allows a great degree of con-
currency by distinguishing between different flavors of synchronization operations, assigning
different, weaker ordering properties to each. RC has become the standard memory model
for the 2011 revisions of the C and C++ languages, and it has long been compatible with
Java’s memory model.

In RC, shared memory accesses are divided into ordinary accesses—loads and stores
whose reordering would not result in a race condition—and special accesses, which comprise
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Instruction Format Meaning

lr.{w|d} rd, (rs1) R Load reserved
sc.{w|d} rd, rs2, (rs1) R Store conditional

amoswap.{w|d} rd, rs2, (rs1) R Atomic swap
amoadd.{w|d} rd, rs2, (rs1) R Atomic addition
amoand.{w|d} rd, rs2, (rs1) R Atomic bitwise AND
amoor.{w|d} rd, rs2, (rs1) R Atomic bitwise OR
amoxor.{w|d} rd, rs2, (rs1) R Atomic bitwise XOR
amomin.{w|d} rd, rs2, (rs1) R Atomic two’s complement minimum
amomax.{w|d} rd, rs2, (rs1) R Atomic two’s complement maximum
amominu.{w|d} rd, rs2, (rs1) R Atomic unsigned minimum
amomaxu.{w|d} rd, rs2, (rs1) R Atomic unsigned maximum

Table 4.2: Listing of RVA instructions. The instructions with the w suffix operate on 32-bit
words; those with the d suffix are RV64A-only instructions that operate on 64-bit words.

Acquire Ordinary Release 

Special 

Figure 4.3: Orderings between accesses mandated by release consistency. The origin of an
arrow cannot be perceived to have occurred before the destination of the arrow.

all others. RC introduces two important types of special access: acquire and release. Acquire
operations are used to gain access to shared variables, whereas release operations grant
access to others. They are frequently associated with mutex acquisition and relinquishment,
respectively. The semantics of the acquire and release primitives is given by the memory
ordering constraints in the RC model, which Figure 4.3 depicts. Before ordinary loads and
stores are allowed to perform, all previous acquires must have been performed. Likewise,
before a release is allowed to perform, all previous ordinary loads and stores must have
performed. Finally, special accesses must be totally ordered.

The latter constraint results in a stricter form of RC, RCsc, in which special accesses
are sequentially consistent. This crucial property enables the data-race-free programming
model [2], a contract between the hardware and software that guarantees the appearance of
a sequentially consistent memory system, provided that all special accesses are appropriately
annotated. The effect is that, for an important class of programs, RCsc provides both the
greater concurrency of relaxed models and the simpler programming model of sequential
consistency.
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The instructions in the A extension realize the RCsc memory model with a memory
ordering annotation, which comprises two bits on the static instruction: aq and rl. When
the aq bit is set on an LR, SC, or AMO, the instruction acts as an acquire access, so that
it cannot be perceived to have executed after any subsequent memory access issued by the
same thread. When the rl bit is set, the instruction acts as a release access, so that it cannot
be perceived to have executed before any prior memory access in that thread. When neither
aq nor rl is set, no particular ordering is guaranteed, which is appropriate for associative
reductions. When both are set, the access is defined to be sequentially consistent with
respect to other such accesses2.

4.3 Single-Precision Floating-Point

Floating-point computation is ubiquitous in some application domains, and even many
integer-oriented programs use enough floating-point to justify hardware support. Never-
theless, we excluded floating-point instructions from the base ISA to support embedded
implementations that would make no use of them, and for deployments where floating-point
arithmetic is best handled by attached coprocessors. RISC-V’s F extension adds single-
precision floating-point support, compliant with the 2008 revision of the IEEE 754 standard
for floating-point arithmetic [7].

The most contentious decision in defining the F extension was whether to reuse the
integer registers for floating-point computation, or to add dedicated floating-point registers.
The former strategy would have simplified the ISA, resulted in lower-cost implementations,
and reduced context switch time. Nevertheless, we ultimately chose to add a new set of
floating-point registers, shown in Figure 4.4, as we felt the pros outweighed the cons:

• The natural widths for the integer and floating-point registers are not necessarily the
same—for example, an RV32 machine might have double-precision floating-point.

• We wanted to grant implementations the flexibility to employ an internal recoded for-
mat, e.g., to accelerate the handling of subnormal numbers in hardware. Not rep-
resenting integers and floating-point numbers in the same registers simplifies such a
design.

• A split register file organization increases the total number of registers addressable
from a single instruction, because the opcode (floating-point versus integer) provides
an implicit register specifier bit.

2We expressly define that setting both aq and rl bits results in a sequentially consistent access, because
it is not inherently so. Together, acquire and release impose a total order on the accesses from that thread—
but not on all accesses globally. In other words, two threads could perceive different interleavings of each
other’s stream of accesses, which would violate sequential consistency. Fortunately, the addition of the
store atomicity property, imposed by single-writer cache coherence protocols [16], implies that aq+rl=sc.
Therefore, in practice, our additional restriction comes at no performance cost.
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Figure 4.4: RVF user-visible architectural state.

• A split organization provides a natural register file banking strategy, simplifying the
provision of register file ports for superscalar implementations.

• The context switch cost can be mitigated by adding microarchitecturally managed
dirty bits to the register file.

Concordant with the desire to support an internal recoded format, we also chose to avoid
representing integers in the floating-point register file at all. Unlike SPARC, Alpha, and
MIPS, which perform conversions to and from fixed-point entirely within the floating-point
register file, RISC-V uses the integer register file for the integral operands to these instruc-
tions. This choice also shortens common instruction sequences for mixed-format code—for
example, when using the result of a conversion to integer in an address calculation.

Most floating-point operations round their results, and the desired rounding scheme varies
by programming language and algorithm. We provide five rounding modes, the encoding
of which Table 4.3 shows: rounding to the nearest number, with ties broken towards the
even number; rounding towards zero; rounding towards −∞; rounding towards +∞; and
rounding to the nearest number, with ties broken by rounding away from zero. (IEEE 754-
2008 requires the only the first four, but in our experience, the fifth can be useful for the
hand-coding of library routines.)
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Rounding Mode Mnemonic Meaning

000 RNE Round to Nearest, ties to Even
001 RTZ Round towards Zero
010 RDN Round Down (towards −∞)
011 RUP Round Up (towards +∞)
100 RMM Round to Nearest, ties to Max Magnitude
111 DYN Dynamic rounding, based on frm register

Table 4.3: Supported rounding modes and their encoding.

In most programming languages, the rounding direction is expected to be specified dy-
namically. Accordingly, all floating-point instructions can use a dynamic rounding mode,
set in the frm field of the floating-point control and status register, the format of which
Figure 4.4 shows. Additionally, some operations, like casts from floating-point to integer
types in C and Java, require rounding in a specific direction. Supporting such operations
without modifying the dynamic rounding mode is desirable, and also serves to speed up
the implementation of library routines, like the transcendental functions. So, we give all
floating-point operations the option of using the dynamic rounding mode or choosing one
of the rounding modes statically. This additional three-bit field causes the F extension to
consume a substantial amount of opcode space, but we felt the generality and improved
performance justified the expense.

Exception Handling

Most floating-point operations can generate what the IEEE 754 standard refers to as excep-
tions: runtime conditions that indicate arithmetic errors or imprecision. The five exceptions
are invalid operation (raised by such operations as

√
−1); division by zero; overflow; un-

derflow; and inexact (indicating that rounding occurred). The standard does not mandate
that these exceptions cause traps, and in RISC-V, we chose not to translate these exceptions
into traps to facilitate non-speculative out-of-order completion of floating-point operations.
Had we chosen otherwise, implementors of in-order pipelines would be forced to choose be-
tween imprecise traps, which expose the implementation and complicate system software,
and in-order completion, which either deepens the integer pipeline or reduces performance.

Nevertheless, it remains possible to write software that takes action on floating-point
exceptions. The five exceptions accrue into the floating-point status register; software can
examine this register and branch to a user-level exception handler based upon its value.
Since raising the accrued exception flags is an associative operation, providing the accrued
exceptions register still permits out-of-order instruction completion. Instructions that di-
rectly manipulate the exception flags need simply interlock until all outstanding instructions
complete.
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QNaN
ISA Sign Significand Polarity

SPARC 0 11111111111111111111111 1

MIPS 0 01111111111111111111111 0

PA-RISC 0 01000000000000000000000 0

x86 1 10000000000000000000000 1

Alpha 1 10000000000000000000000 1

ARM 0 10000000000000000000000 1

RISC-V 0 10000000000000000000000 1

Table 4.4: Default single-precision NaN for several ISAs. QNaN polarity refers to whether
the most significant bit of the significand indicates that the NaN is quiet when set, or quiet
when clear. The values come from [87, 67, 54, 47, 3, 8].

NaN Generation and Propagation

The IEEE 754-1985 floating-point standard [6] forced a compromise between several indus-
trial competitors who, collectively, sought to put an end to what Velvel Kahan described as
“anarchy” in floating-point arithmetic [52]. (For some participants, the less altruistic moti-
vation was to keep Intel from running away with the standard.) To minimize dissatisfaction
amongst the factions, the standard left several details up to the implementation—for exam-
ple, whether underflow is detected before or after rounding, how NaNs are generated and
propagated, and how signaling NaNs are distinguished from quiet NaNs3.

The leeway granted by the standard has led to a surprising degree of fragmentation.
Table 4.4 lists the default NaN encoding for seven ISAs, which between them have five
distinct encodings! Two ISAs, MIPS and PA-RISC, chose to represent quiet NaNs with the
quiet bit clear, which violates the 2008 revision of the IEEE 754 standard4. The others
differ in whether the rest of the significand is set or clear, and, perhaps more surprisingly,
whether the sign bit is set. For RISC-V, we chose a scheme where the sign bit is clear and
all significand bits except the quiet bit are clear, for four reasons:

• It is the same default NaN as at least one other ISA (ARM), so our choice does not
exacerbate the fragmentation of IEEE 754 implementations.

3Signaling NaNs are those that cause the Invalid Operation exception to be raised when consumed.
Because signaling NaNs are never generated by floating-point instructions—they must be supplied as input
to a computation—they remain a very rarely used, but required, feature of the IEEE 754 standard.

4The original IEEE 754-1985 standard permitted the scheme used by the MIPS and PA-RISC, but it
quickly became apparent that it was a poor design choice. If the quiet bit has positive polarity, then a
signaling NaN can be converted to a quiet NaN simply by setting the quiet bit. But for these designs with
negative polarity, merely clearing the quiet bit might turn a signaling NaN into infinity, rather than a quiet
NaN. So, more logic is required for this conversion. For designs that propagate NaN payloads, the range of
the payload is effectively reduced.
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• It is the same as the Java programming language’s canonical NaN5. (Most other pro-
gramming languages do not define one.)

• There are 222 quiet NaN patterns, but only 222−1 signaling NaN patterns. Our choice
of canonical NaN is the only quiet NaN that cannot be generated by quieting a signaling
NaN. Thus, for systems that choose to propagate NaN payloads, generated NaNs can
be distinguished from propagated signaling NaNs.

• Clearing most significand bits has lower hardware cost than setting most significand
bits. Some functional units already require a datapath to supply zeros in the signifi-
cand, but do not have the corresponding datapath to supply all ones.

The standard also provides the option to propagate the NaN payload, i.e., the significand
bits below the quiet bit, from a NaN input to the output of an operation. This feature was
intended to preserve diagnostic information, such as the origin of the NaN. For three reasons,
we chose not to provide this feature in RISC-V:

• The NaN payload is too small to hold a complete memory address, so it is difficult to
use the feature to encode meaningful diagnostic information.

• Because NaN payload propagation is optional in the standard, it cannot be relied upon
by portable software, so the feature is rarely used.

• Propagating the NaN payload increases hardware cost.

Instead, whenever a NaN is emitted by a computational instruction, we require it be
the canonical NaN. Implementors are, of course, free to provide a NaN payload propagation
scheme as a non-standard extension, enabled by a non-standard processor mode bit, but our
default scheme remains mandatory.

Floating-Point Instructions

Table 4.5 lists the 30 new instructions that the F extension introduces. They are divided
into four categories: data movement instructions, conversions, comparisons, and arithmetic
instructions. Among the new data movement instructions are new loads and stores, FLW and
FSW, which move data between memory and the floating-point register file. Also included are
instructions that move floating-point values between the floating-point and integer register
files, FMV.X.S and FMV.S.X. Some ISAs, like SPARC and (initially) Alpha, omitted these
instructions, requiring instead that a memory temporary be used. Their design removes
a pipeline hazard but can substantially increase instruction count for mixed-format code.
Figure 4.5 demonstrates this effect for a function that computes the integer logarithm of a
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Instruction Format Meaning

flw fd, imm[11:0](rs1) I Load 32-bit floating-point word
fsw fs2, imm[11:0](rs1) I Store 32-bit floating-point word
fmv.x.s rd, fs1 R Move from floating-point to integer register
fmv.s.x fd, rs1 R Move from integer to floating-point register
fsgnj.s fd, fs1, fs2 R Inject sign
fsgnjn.s fd, fs1, fs2 R Inject complement of sign
fsgnjx.s fd, fs1, fs2 R Multiply signs

fcvt.w[u].s rd, fs1 R Convert to [un]signed 32-bit integer
fcvt.s.w[u] fd, rs1 R Convert from [un]signed 32-bit integer
fcvt.l[u].s rd, fs1 R Convert to [un]signed 64-bit integer (RV64)
fcvt.s.l[u] fd, rs1 R Convert from [un]signed 64-bit integer (RV64)

feq.s rd, fs1, fs2 R Set if equal
flt.s rd, fs1, fs2 R Set if less than
fle.s rd, fs1, fs2 R Set if less than or equal
fmin.s frd, fs1, fs2 R Compute minimum of two values
fmax.s frd, fs1, fs2 R Compute maximum of two values
fclass.s rd, fs1 R Classify floating-point value

fadd.s fd, fs1, fs2 R Add two registers
fsub.s fd, fs1, fs2 R Subtract two registers
fmul.s fd, fs1, fs2 R Multiply two registers
fdiv.s fd, fs1, fs2 R Divide two registers
fsqrt.s fd, fs1 R Compute square root
fmadd.s fd, fs1, fs2, fs3 R4 fs1×fs2+fs3

fmsub.s fd, fs1, fs2, fs3 R4 fs1×fs2−fs3
fnmadd.s fd, fs1, fs2, fs3 R4 −(fs1×fs2+fs3)
fnmsub.s fd, fs1, fs2, fs3 R4 −(fs1×fs2−fs3)

Table 4.5: Listing of RVF instructions.

floating-point number by extracting its exponent. The variant without FMV.X.S needs 60%
more instructions and may suffer a data cache miss.

A novel feature of the F instructions are the sign-injection instructions, which copy
the exponent and significand from one number, but generate a new sign. FSGNJ copies
the sign from a second number; FSGNJN copies the negated sign from a second number;
and FSGNJX takes the new sign from the product of the two input signs. When the two
source operands are the same, these instructions can be used to move, negate, or take the
absolute value of a register. In their more general form, they are useful for the hand-coding
of floating-point library routines.

The conversion instructions change between integer and floating-point formats. Integer

5We note with some amusement that Sun, the creators of the Java programming language, chose a
different canonical NaN for Java than for their ISA, SPARC.
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fmv.x.s a0, fa0 addi sp, sp, -16

srli a0, a0, 23 fsw fa0, 0(sp)

andi a0, a0, 0xff lw a0, 0(sp)

addi a0, a0, -127 srli a0, a0, 23

jalr x0, ra, 0 andi a0, a0, 0xff

addi a0, a0, -127

addi sp, sp, 16

jalr x0, ra, 0

WITH FMV.X.S WITHOUT FMV.X.S

Figure 4.5: A routine that computes blog2 |x|c by extracting the exponent from a floating-
point number, with and without the FMV.X.S instruction.

sources and destinations use the integer register file, which improves performance for mixed-
format code by eliminating explicit moves between the two register files. Not representing
integers in the floating-point register file also has the benefit of simplifying the implementa-
tion of an internal recoded floating-point format. The four conversion instructions convert to
and from signed integers (FCVT.W.S and FCVT.S.W) and unsigned integers (FCVT.WU.S
and FCVT.S.WU), using any of the supported rounding modes.

The comparison instructions set an integer register with the Boolean result of equality and
inequality tests. FEQ.S compares two floating-point numbers for equality; FLT.S performs a
less-than comparison; and FLE.S performs a less-than-or-equal comparison. The results are
always false on NaN inputs. FLT and FLE raise an invalid exception on quiet NaN inputs,
so behave like the C operators < and <=; FEQ doesn’t, so behaves like the C operator ==. To
branch on the result of a floating-point comparison, an integer BEQ or BNE on the Boolean
result is used.

Two additional comparison instructions are FMIN.S and FMAX.S, which compute the
minimum and maximum of two floating-point numbers, respectively. They implement the
IEEE 754 operations minNum and maxNum, which do not propagate NaNs: if one input
is NaN, the other is returned. FMIN’s behavior conveniently matches the C library rou-
tine fminf. Alas, it does not match the common idiom (a < b ? a : b), which always
evaluates to a if either a or b is NaN.

The final floating-point comparison instruction is the floating-point classify instruction,
FCLASS.S, which writes to an integer register a mask categorizing the floating-point num-
ber. Table 4.6 lists these classes. Since the mask is one-hot encoded, it is possible to test
membership of multiple classes with a single ANDI instruction. FCLASS is useful for the
hand-coding of library routines, since they often branch on the unusual inputs, like NaNs.
The alternative approach of moving the number to the integer register file and deconstructing
it into its constituent fields takes many more instructions.

The arithmetic instructions include the usual suspects: addition, subtraction, multipli-
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rd bit Meaning

0 rs1 is −∞.
1 rs1 is a negative normal number.
2 rs1 is a negative subnormal number.
3 rs1 is −0.
4 rs1 is +0.
5 rs1 is a positive subnormal number.
6 rs1 is a positive normal number.
7 rs1 is +∞.
8 rs1 is a signaling NaN.
9 rs1 is a quiet NaN.

Table 4.6: Classes into which the FCLASS instruction categorizes Format of result of
FCLASS instruction.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

rs3 fmt rs2 rs1 rm rd opcode R4-type

Figure 4.6: Fused multiply-add instruction format, R4.

cation, division, and square root. As required to support IEEE 754-2008 with reasonable
efficiency, we also provide four fused multiply-add (FMA) instructions, which compute any of
the four operations ±a× b± c, without an intermediate rounding of the product. This prop-
erty allows these instructions to accelerate the implementation of some floating-point library
routines, and in general can improve the performance and accuracy of many algorithms.
For programs with approximate parity between the frequency of floating-point addition and
multiplication, FMA substantially reduces the effort necessary to achieve high throughput
as compared to an architecture with only discrete multiply and add. Consider, for example,
the dense linear algebraic operation C += A×B, for 4×4 matrices stored in memory. Without
FMA, this operation takes 192 instructions, including 272 floating-point register reads and
176 writes. With FMA, it takes 128 instructions, including 208 reads and 112 writes—a 33%
reduction in instruction traffic and 29% reduction in operand traffic.

4.4 Double-Precision Floating-Point

Most general-purpose systems need both single- and double-precision floating-point, par-
tially because single-precision is not sufficiently precise for some algorithms and partially
because modern programming languages have a bias towards double-precision arithmetic.
Nevertheless, we felt that it was best to separate the F extension from the D extension, be-
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cause in some embedded domains, single-precision floating-point suffices and double-precision
floating-point is too expensive. The popular ARM Cortex-M4 [15], a 32-bit microcontroller,
embodies this design point, as do myriad digital signal processors.

The D extension is structured very similarly to the F extension, and indeed requires
the presence of the F extension. The 32 floating-point registers are doubled in width to 64
bits, and new instructions are added that operate on double-precision values. 32-bit and 64-
bit floats cannot be freely mixed in computational instructions, but instructions to convert
between the formats (FCVT.D.S and FCVT.S.D) are provided to support mixed-format
code.

We contemplated an alternative design wherein the registers remain 32 bits wide and
double-precision values are stored in aligned register pairs, as was the case in SPARC and
MIPS. However, this design is less suitable for implementations with register renaming,
wherein the two halves of the value may no longer be physically adjacent. More importantly,
this design would have halved the number of architectural registers available to double-
precision routines, reducing the effectiveness of register blocking and increasing instruction
count. Expanding the register widths seemed to be the best alternative, despite the extra
1024 bits of architectural state.

One caveat of this approach is that there is no facility to move double-precision floating-
point numbers to and from the integer register file in RV32. We contemplated adding three
instructions for this purpose. Two of them, FMVHI.X.D and FMVLO.X.D, would have
copied the upper and lower halves of a floating-point number to an integer register. The
third, FMV.D.X, would have formed a double-precision float from two integer registers and
moved that value to a floating-point register. Since the latter would have been the only
floating-point instruction with two integer sources, we thought it best to drop support for
these operations altogether and require the use of a memory temporary. The more common
case of conversions to integer datatypes is still supported for RV32D.

Table 4.7 summarizes the instructions in the D extension.

4.5 Discussion

Together with one of the base RVI ISAs, the M, A, F, and D extensions provide a sufficient
basis for general-purpose scalar computation, and so we collectively term them G. While
many specific applications would benefit from the addition of a few new instructions not
included in G, we think it is unlikely that we excluded any particular scalar instruction that
would be be broadly beneficial.

RVG code is performant, but its fixed 32-bit encoding is not particularly compact. The
next chapter proposes another RISC-V ISA extension, C, which seeks to improve the density
of RVG code by providing a compressed 16-bit encoding for the most common instructions.
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Instruction Format Meaning

fld fd, imm[11:0](rs1) I Load 64-bit floating-point word
fsd fs2, imm[11:0](rs1) I Store 64-bit floating-point word
fmv.x.d rd, fs1 R Move from F.P. to integer register (RV64)
fmv.d.x fd, rs1 R Move from integer to F.P. register (RV64)
fsgnj.d fd, fs1, fs2 R Inject sign
fsgnjn.d fd, fs1, fs2 R Inject complement of sign
fsgnjx.d fd, fs1, fs2 R Multiply signs

fcvt.w[u].d rd, fs1 R Convert to [un]signed 32-bit integer
fcvt.d.w[u] fd, rs1 R Convert from [un]signed 32-bit integer
fcvt.l[u].d rd, fs1 R Convert to [un]signed 64-bit integer (RV64)
fcvt.d.l[u] fd, rs1 R Convert from [un]signed 64-bit integer (RV64)
fcvt.s.d fd, fs1 R Convert from double to single
fcvt.d.s fd, fs1 R Convert from single to double

feq.d rd, fs1, fs2 R Set if equal
flt.d rd, fs1, fs2 R Set if less than
fle.d rd, fs1, fs2 R Set if less than or equal
fmin.d frd, fs1, fs2 R Compute minimum of two values
fmax.d frd, fs1, fs2 R Compute maximum of two values
fclass.d rd, fs1 R Classify floating-point value

fadd.d fd, fs1, fs2 R Add two registers
fsub.d fd, fs1, fs2 R Subtract two registers
fmul.d fd, fs1, fs2 R Multiply two registers
fdiv.d fd, fs1, fs2 R Divide two registers
fsqrt.d fd, fs1 R Compute square root
fmadd.d fd, fs1, fs2, fs3 R4 fs1×fs2+fs3

fmsub.d fd, fs1, fs2, fs3 R4 fs1×fs2−fs3
fnmadd.d fd, fs1, fs2, fs3 R4 −(fs1×fs2+fs3)
fnmsub.d fd, fs1, fs2, fs3 R4 −(fs1×fs2−fs3)

Table 4.7: Listing of RVD instructions.
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Chapter 5

The RISC-V Compressed ISA
Extension

This chapter describes a standard extension to the RISC-V ISA called RISC-V Compressed,
or RVC for short. RVC introduces dual-length instructions to the base ISA, aiming to reduce
the static code size and dynamic fetch traffic of RISC-V programs by encoding the most fre-
quent instructions in a denser format. The smaller instruction footprint reduces the cost of
embedded systems, for which instruction storage is a significant cost, and improves perfor-
mance for cache-based systems by reducing instruction cache misses. Fetching fewer bytes
from instruction memory can significantly reduce energy dissipation, of which instruction
delivery can be a dominant fraction [69].

RVC was originally proposed in my Master’s thesis [99] as an extension to the original
RISC-V 1.0 ISA. Since then, RISC-V 2.0 has been finalized and a new ABI has been adopted,
rendering RVC 1.0 obsolete. In this chapter I describe an updated version of RVC that has
been adapted to RISC-V 2.0 and re-engineered to achieve greater code density, regularize
the ISA, and reduce the complexity of instruction decoding.

5.1 Background

The first stored-program computers used fixed-length instruction encodings [105, 58] but
were quickly followed by machines that, in an effort to reduce the cost of the program store,
employed variable-length instruction sets. The IBM Stretch [21], introduced in 1961, had
both 32-bit and 64-bit instruction formats, wherein some of the 64-bit instructions could
also be encoded as 32-bit instructions, depending on the size of operands and the registers
referenced. The CDC 6600 [95] and Cray-1 [82] ISAs, in many respects the precursors to
RISC, each had two lengths of instruction, albeit without the redundancy property of the
Stretch.

The designers of the first RISC architectures [78, 56, 67] favored regular, 32-bit fixed-
width instruction encodings that were straightforward to decode and performed only simple
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operations. In contrast, the CISC minicomputers of the era [89] employed microcoded control
and so could readily support complex instructions of variable length, using fewer bits to
encode common operations with fewer operands and simpler addressing modes. The RISC
approach enabled low-cost, high-performance single-chip implementations, but their design
came at the cost of code density. A program might have taken more RISC instructions to
encode than CISC ones, and the RISC ones were typically at least as wide; thus, it took
quite a bit more storage to represent a typical program on a RISC than on a CISC. The
RISC-I architects, for example, observed a 50% code size increase relative to the DEC VAX
and PDP-11 architectures [78].

In high-end machines, the performance impact of loose RISC instruction encodings was
mitigated as the bounty of Moore’s Law reduced the cost of integrated instruction caches.
In the domain of embedded systems, however, limited instruction memory capacity and
bandwidth often disfavored RISC architectures. To expand their markets, RISC vendors like
MIPS and ARM created variants of their ISAs, named MIPS16 and Thumb, that could be
encoded in narrower 16-bit fixed-width instructions [68, 11]. Most of these instructions were
equivalent to an existing instruction or sequence thereof in the base ISA, with restrictions
on register access patterns and operand sizes1.

Although these compressed RISC ISAs did substantially improve code size, they had
several disadvantages. Foremost, the base ISAs were not designed with their compressed
counterparts in mind. Opcode space had not been reserved for the compressed variants, and
so the only way to accommodate them was to make new, incompatible instruction sets. This
precluded the free intermixing of base ISA instructions. In MIPS16, for example, ISAs could
only be swapped with special jump instructions, and so MIPS and MIPS16 code was only
mixed at procedure-call boundaries.

The unavailability of the base ISA instructions had significant performance implications.
Some operations that could easily be encoded in a single 32-bit instruction, like loading a
large constant, might have taken as many as three 16-bit instructions. The extra intermediate
results exacerbated register pressure in ISAs that already had severely limited register sets.
Moreover, encoding an entire ISA in 16 bits meant that important functionality, like floating-
point, had to be left out. Later compressed RISC ISA variants, such as microMIPS [65] and
Thumb-2 [12], corrected this deficiency and allowed 16-bit and 32-bit instructions to be freely
intermixed. Alas, the 32-bit instructions were still not the same as those in the base ISA,
forcing implementers to design and verify two instruction decoders, increasing hardware cost,
and vastly complicating the software ecosystem.

1For example, of the 31 general-purpose registers in the MIPS ISA, most MIPS16 instructions can only
access eight. Other instructions implicitly reference one of the other 23 registers. The move instruction,
which can access any register, serves as an escape hatch.
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5.2 Implications for the Base ISA

With the benefit of hindsight, we designed RISC-V from the ground-up to seamlessly support
dual-length instructions. Crucially, the base ISA and standard extensions occupy only a small
fraction of their opcode space. Unlike earlier RISC ISAs that densely populated their 32-bit
encoding space—SPARC, for example, spent 1

4
of its opcode space on its CALL instruction

alone [88]—the base RISC-V encoding consumes less than 1
4

of its 32-bit opcode space. We
consciously reserved the remaining 3

4
of this space to encode a compressed ISA extension2.

Additionally, although the base ISA consists of only 32-bit instructions that must be nat-
urally aligned, the base control-flow instructions have a displacement granularity of 16 bits.
This design allows for ISA extensions that contain instructions whose length is any multiple
of two bytes, without adding new branches and jumps to the base ISA. We note that it
would have been straightforward to further support instructions with arbitrary byte align-
ment. We reasoned, however, that 16-bit instructions would like obtain most of the potential
savings, and so the incremental benefit of 8- and 24-bit instructions would not likely justify
the increased hardware complexity in the instruction fetch units. More importantly, this
decision would have decreased the range of branches and jumps even further, thus increasing
instruction count and offsetting some of the code size and performance improvements of the
new instruction widths.

The only change to the base ISA to support RVC, then, is to relax the alignment re-
striction on the base ISA instructions and allow them to begin on any 16-bit boundary.
Obviously, there would have been some benefit to keeping the alignment constraint in place,
as it would have simplified the instruction fetch hardware. But doing so would have forfeited
too much of the code density improvement. Suppose, for example, that 1

2
of instructions

were compressible and that they were distributed uniformly. Without the alignment re-
quirement, the RVC code would then be 1

4
smaller than the RISC-V code. But 1

3
of the

remaining 32-bit instructions would become misaligned as a result3, and, had we not relaxed
the alignment requirement, would require padding. Padding is most readily achieved by
not compressing the immediately previous instruction, effectively reducing the fraction of
RVC instructions from 1

2
to 1

3
and reducing the code size savings from 1

4
to 1

6
. Although

this effect could be mitigated to some extent by code scheduling, the additional constraints
on the compiler would expose more data hazards and reduce performance, particularly for
statically scheduled implementations.

2Another important consequence of this encoding choice is that it is very easy to detect whether an
instruction is 16 or 32 bits in length: only two opcode bits need be examined. This scheme greatly accelerates
superscalar instruction decoding, which requires that instructions be serially scanned to determine their
boundaries.

3Misalignment results from a 32-bit-wide instruction following an odd number of 16-bit-wide instructions.
Assuming uniform distribution of 16-bit instructions, which represent a fraction p of total instructions, the
probability that a 32-bit instruction will be misaligned is p(1− p) + p3(1− p) + p5(1− p) + . . . = p

1+p , or 1
3

for p = 1
2 . So, while the fractional code size reduction is p

2 without the alignment constraint, it is p2

1+p with
the constraint.
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5.3 RVC Design Philosophy

Two major design constraints guided RVC’s design. First, RVC programs should take no
more instructions to encode than their RISC-V counterparts and so should be at least as
performant4. This goal is easily achieved with a modeless design in which the base ISA
instructions are always available. An important consequence of this design is that RVC need
not be a standalone ISA, and so precious RVC opcode space need not be spent on essential
but relatively infrequent operations, like invoking the operating system with a system call.
Instead, that opcode space can be dedicated to reducing the size of the most common code
sequences.

Second, each RVC instruction must expand into a single RISC-V instruction. The reasons
for this constraint are twofold. Most importantly, it simplifies the implementation and
verification of RVC processors: RVC instructions can simply be expanded into their base ISA
counterparts during instruction decode, and so the backend of the processor can be largely
agnostic to their existence. Furthermore, assembly language programmers and compilers
need not be made aware of RVC: code compression can be left to the assembler and linker5.
This constraint does, however, preclude some important code size optimizations: notably,
load-multiple and store-multiple instructions, a common feature of other compressed RISC
ISAs, do not fit this template. Section 5.6 discusses the implications of their omission.

Given these constraints, the ISA design problem reduces to a simple tradeoff between
compression ratio and ease of instruction decode cost. At one extreme, we could map each
of the available RVC opcodes to the most common RISC-V ones, perhaps even using a
per-program dictionary [61]. While this approach would achieve the greatest compression,
it has three principal drawbacks. The dictionary lookup is costly, offsetting the instruction
fetch energy savings. It also adds significant latency to instruction decode, likely reducing
performance and further offsetting the energy savings. Finally, the dictionary adds to the
architectural state, increasing context switch time and memory usage.

Fortunately, four properties of typical RISC-V instruction streams render such a general
approach unnecessary:

• Instructions express great spatial locality of register reference. RISC-V provisions an
ample register set to minimize register spills and facilitate register blocking, but even
so, most accesses are to a small number of registers. Figure 5.1 shows the static
frequency of register reference in the SPEC CPU2006 benchmarks, sorted by register
class. Three special registers—the zero register x0, the link register ra, and the stack
pointer sp—collectively account for one-quarter of all static register references. The
first argument register a0 alone accounts for one-sixth of references.

4Indeed, RVC programs often take fewer instructions to encode than RISC-V ones. The smaller code
reduces pc-relative offsets, reducing the number of branches that displace more than 2 KiB and jumps that
displace more than 1 MiB, which require an extra instruction to encode.

5The RISC-V port of the GNU C Compiler has been programmed to favor the register subset that most
RVC instructions may address, but is otherwise ignorant of RVC’s existence. Of course, making the compiler
more RVC-aware could avail more opportunities for code compression.
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Figure 5.1: Frequency of integer register usage in static code in the SPEC CPU2006 bench-
mark suite. Registers are sorted by function in the standard RISC-V calling convention.
Several registers have special purposes in the ABI: x0 is hard-wired to the constant zero; ra
is the link register to which functions return; sp is the stack pointer; gp points to global data;
and tp points to thread-local data. The a-registers are caller-saved registers used to pass
parameters and return results. The t-registers are caller-saved temporaries. The s-registers
are callee-saved and preserve their contents across function calls.
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Figure 5.2: Cumulative frequency of integer register usage in the SPEC CPU2006 benchmark
suite, sorted in descending order of frequency.
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Figure 5.3: Frequency of floating-point register usage in static code in the SPEC CPU2006
benchmark suite. Registers are sorted by function in the standard RISC-V calling convention.
Like the integer registers, the a-registers are used to pass parameters and return results; the
t-registers are caller-saved temporaries; and the s-registers are callee-saved.

Figure 5.2 renders the static and dynamic frequencies of register reference as a cu-
mulative distribution function. Notably, just one-quarter of the registers account for
two-thirds of both static and dynamic references.

Statically, floating-point register accesses exhibit a similar degree of locality (see Fig-
ures 5.3 and 5.4), with the exception that there are no special-purpose registers to
exploit. Dynamically, an even smaller number of registers dominates: the eight most
commonly used registers account for three-quarters of accesses.

• Instructions tend to have few unique operands. Some instruction sets, such as the Intel
80x86, provide only destructive forms of many operations: one of the source operands
is necessarily overwritten by the result. This ISA decision substantially increases in-
struction count for some programs, and so RISC-V provides non-destructive forms of
all register-register instructions. Nevertheless, destructive arithmetic operations are
common: 47% of static arithmetic instructions in SPEC CPU2006 share at least one
source operand with the destination register.

Additionally, the degenerate forms of several RISC-V instructions express common
idioms. For example, the ubiquitous ADDI instruction is used to synthesize small
constants when its source register is x0, or to copy a register when its immediate is 0.

• Immediate operands and offsets tend to be small. Roughly half of immediate operands
can be represented in five bits (see Figure 5.5).
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Figure 5.4: Cumulative frequency of floating-point register usage in the SPEC CPU2006
benchmark suite, sorted in descending order of frequency.
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Figure 5.5: Cumulative distribution of immediate operand widths in the SPEC CPU2006
benchmark suite when compiled for RISC-V. Since RISC-V has 12-bit immediates, the im-
mediates in SPEC wider than 12 bits are loaded with multiple instructions and manifest in
this data as multiple smaller immediates.
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Figure 5.6: Cumulative distribution of branch offset widths in the SPEC CPU2006 bench-
mark suite. Branches in the base ISA have 12-bit two’s-complement offsets in increments of
two bytes (±210 instructions). Jumps have 20-bit offsets (±218 instructions).

Figure 5.6 shows the distribution of branch and jump offsets. Statically, branch and
jump offsets are often quite large; dynamically, however, almost 90% fit within eight
bits, reflecting the dominance of relatively small loops. Furthermore, since this data
was collected from uncompressed RISC-V programs, the branches and jumps displace
up to twice as much as they would in RVC programs. Effectively, for RVC programs,
the CDFs would translate to the left by up to one bit.

• A small number of unique opcodes dominates. The vast majority of static instructions
in SPEC CPU2006 (74%) are integer loads, adds, stores, or branches. As Table 5.1
indicates, the twenty most common RISC-V opcodes account for 91% of static in-
structions and 76% of dynamic instructions. The most common instruction, ADDI,
accounts for almost one-quarter of instructions statically and one-seventh dynamically.

Leveraging these observations, we propose a design for RVC that can express the most
common forms of the most frequent instructions, while preserving encoding regularity so as
to simplify the implementation.

5.4 The RVC Extension

The RISC-V Compressed ISA extension is encoded in the three-quarters of the 16-bit RISC-
V encoding space not occupied by the base ISA. We partition this space into 24 major
opcodes, each of which can encode 11 bits of operands. Some of the major opcodes are
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Instruction Static Frequency Cumulative Instruction Dynamic Frequency Cumulative

ADDI 23.23% 23.23% ADDI 14.36% 14.36%

LD 12.87% 36.10% LD 8.27% 22.63%

SD 8.13% 44.23% FLD 6.83% 29.46%

JAL 7.73% 51.96% ADD 6.23% 35.69%

ADD 5.71% 57.67% LW 4.38% 40.07%

LW 5.06% 62.73% SD 4.29% 44.36%

LUI 3.69% 66.42% BNE 4.14% 48.50%

FLD 3.00% 69.42% SLLI 3.65% 52.15%

BEQ 2.96% 72.39% FMADD.D 3.49% 55.64%

SLLI 2.96% 75.34% BEQ 3.27% 58.91%

SW 2.93% 78.27% ADDIW 2.86% 61.77%

ADDIW 2.33% 80.60% FSD 2.24% 64.00%

BNE 2.32% 82.92% FMUL.D 2.02% 66.02%

JALR 1.68% 84.60% LUI 1.56% 67.59%

FSD 1.56% 86.16% SW 1.52% 69.10%

BGE 1.15% 87.31% JAL 1.38% 70.49%

FMUL.D 0.84% 88.15% BLT 1.37% 71.86%

FMADD.D 0.84% 88.99% ADDW 1.34% 73.19%

BLT 0.83% 89.82% FSUB.D 1.28% 74.47%

ADDW 0.77% 90.59% BGE 1.27% 75.75%

Table 5.1: Twenty most common RV64IMAFD instructions, statically and dynamically, in
SPEC CPU2006. ADDI’s outsized popularity is due not only to its frequent use in updating
induction variables but also to its two idiomatic uses: synthesizing constants and copying
registers.

further subdivided to encode instructions that require fewer operand bits or are not common
enough to justify a larger operand encoding space.

RVC Operand Encoding

Table 5.2 lists the major RVC instruction formats; several minor formats differ in the encod-
ing of immediate operands. The CR, CI, and CSS formats can address all 32 registers and
are generally reserved for the most common operations, like copying registers or accessing
the stack.

Given that a few integer registers are accessed far more often than their peers, RVC
conserves encoding space by granting many instructions access only to the most popular ones.
The CIW, and CL instructions can access only eight, x8–x15, called the RVC registers. We
selected an aligned block of eight registers to minimize decoding circuitry6. In the standard

6The choice of x8–x15 might seem arbitrary, but had we selected x16–x23 or x24–x31 instead, the RVC
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Format Meaning 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CR Register funct4 rd/rs1 rs2 op
CI Immediate funct3 imm rd/rs1 imm op

CSS Stack-relative Store funct3 imm rs2 op
CIW Wide Immediate funct3 imm rd′ op
CL Load funct3 imm rs1′ imm rd′ op
CB Branch funct3 offset rs1′ offset op
CJ Jump funct3 jump target op

Table 5.2: Major RVC instruction formats, from [101].

calling convention, these correspond to two callee-saved registers, s0 and s1, and six caller-
saved argument registers, a0–a5.

Additionally, instructions in several of the formats implicitly access registers with special
significance in the ABI: the zero register x0, the link register x1 (ra), and the stack pointer
x2 (sp). This decision increases decoding complexity but is necessary to capture several
common idioms, like register spills, within a reasonably sized encoding space. The cost of
the decoding circuitry is mitigated by the fact that all implicit registers’ identifiers have their
three most significant bits in common (they are all zero).

Most instruction formats contain an immediate operand. Unfortunately, the most com-
mon immediate values vary considerably between instructions. For example, while some
RISC-V instructions commonly have negative immediates, others rarely do. Induction vari-
able decrements and backwards branches are typical examples of the former case. Stack-
relative loads and stores, on the other hand, never have negative offsets because the ABI
illegalizes references to the part of the stack that lies below the stack pointer7. Hence, un-
like in the base ISA, which has only sign-extended immediates, some RVC instructions have
zero-extended ones. Had we opted for sign-extended immediates only, 12% fewer loads and
stores would have been compressible.

Similarly, nearly all loads and stores in RISC-V programs are naturally aligned, in which
case their offsets are divisible by the word size. Accounting for this property, all load and
store offsets in RVC are scaled by the word size. Had we not done so, 44% fewer loads and
stores would have been compressible. Had we additionally sign-extended these immediates,
the loss would have grown to 62%—or 19% fewer opportunities for compression overall.

extension would be effectively incompatible with RV32E (the embedded ISA variant with a limited integer
register set).

7Stacks grow downwards in the standard calling convention. This convention is somewhat arbitrary, but
it is now codified in the RVC ISA.
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RVC Instructions

Table 5.3 lists the instructions in RV32C and RV64C, and the base ISA instruction to which
they expand. The ISAs have a combined total of 44 instructions, of which 39 are valid in
RV64C and 32 are valid in RV32C.

Integer arithmetic operations are the most common class of instruction, accounting for
19 opcodes. Five RVC instructions expand to ADDI alone, reflecting its frequent idiomatic
usage: increment (C.ADDI), increment stack pointer (C.ADDI16SP), generate stack-relative
address (C.ADDI4SPN), load immediate (C.LI), and C.NOP8. Many of the arithmetic in-
structions are destructive and can target only RVC registers; the most frequently used ones
can target any register.

Loads and stores are the next-most represented class of instruction, accounting for 16
opcodes. RV32C can move 32-bit integers and floats and 64-bit floats to and from memory;
RV64C supports 32-bit and 64-bit integers but only 64-bit floats. (The RV32C 32-bit floating-
point loads and stores occupy the same opcode space as the RV64C 64-bit integer loads and
stores.) For each data type, two addressing modes are provided: base-plus-displacement,
where the base address comes from one of the eight RVC registers, and stack-pointer-relative,
with a wider displacement. The former must use an RVC register for the load or store data,
whereas the latter may use any. In all cases, the displacements are unsigned and scaled by
the data size.

Control-flow instructions round out the ISA. RVC provides conditional branches that
test for equality with zero (C.BEQZ and C.BNEZ), an unconditional direct jump (C.J), and
a register-indirect jump (C.JR). Additionally, forms of the latter two instructions that link
to x1, C.JAL and C.JALR, are suitable for function calls in the standard calling conven-
tion. (Limited opcode space precluded the inclusion of C.JAL in RV64C.) C.EBREAK is a
breakpoint instruction, simplifying the debugging of RVC programs.

RVC Instruction Encoding

Table 5.4 provides the complete encoding of the RV64C instruction set. Reflecting their
ubiquity, loads and stores occupy 50% of the encoding space. Of the remaining space,
arithmetic instructions take up three-quarters, and the control-flow instructions consume
the rest.

An immediately evident feature of this encoding scheme is the multitude of immediate
operand encoding formats, a consequence of the cramped encoding space. As in the base
ISA, however, the immediate encoding is scrambled to minimize the cost of generating the
immediate operand. Despite the twelve immediate choices, eight of the 18 immediate bits
always come from the same bit positions in the instruction; five come from only two positions;
four come from three positions; and one comes from four positions.

8Unlike the base ISA, where the idiom for copying a register, MV, maps to ADDI, the RVC instruction
C.MV expands to ADD. This is because there is no RVC instruction format that can encode both a 5-bit rd
and a 5-bit rs1, but there is one that can encode rd and rs2.
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There are several other subtleties to this encoding. For the instructions with sign-
extended immediates, the sign bit always resides in the same position, bit 12. Furthermore,
these instructions all lie in a different opcode-space quadrant from those with zero-extended
immediates; hence, the most-significant immediate bits, 18 and above, can be generated from
just three instruction bits.

Decoding the register specifiers is also simpler than a cursory glance might suggest. With
the exception of instructions that access the implicit registers x0, x1, and x2, the register
specifiers each come from one of at most three positions, counting the position within the
base RISC-V ISA encoding; decoding which one requires examining just three opcode bits.
Nevertheless, decoding the register specifiers is on the critical path for many implementations,
particularly superscalars, which must analyze the data hazards between the instructions in
an issue packet. Aggressive implementations might require additional pipelining to cope
with the increased latency, or additional cross-check logic and register map table ports to
speculatively decode all combinations of register specifiers.

As Table 5.5 shows, many opcodes are reserved for potential future use. The instruction
0x0000, which would otherwise map to a redundant instruction9, is permanently reserved to
improve the likelihood of trapping errant code. Additionally, despite the temptation to use all
of the opcode space to maximize compression on current code, one major opcode and several
subminor opcodes have been reserved in case RVC fails to capture important patterns in
future software. (4.6% of the RV64C encoding space has yet to be allocated). Finally, besides
the canonical no-op, all instructions that don’t modify architectural state (e.g., increment
a register by zero) are reserved for future microarchitectural hints. On implementations for
which the hints are meaningless, these instructions will correctly perform no operation, at
no additional hardware cost.

5.5 Evaluation

We measured the efficacy of RVC at compressing RISC-V code by comparing the static
code size and dynamic instruction fetch traffic of RVC and RISC-V versions of several pro-
grams: the SPEC CPU2006 benchmark suite [91], nominally representative of workstation
workloads; Dhrystone [104], a historical synthetic benchmark of questionable relevance but
outsized popularity; CoreMark [29], an embedded systems benchmark; and the Linux kernel,
version 3.14.29 [94]. We compiled the programs with the RISC-V port of GCC 5.2.0 and used
an assembler and linker modified to select the RVC variants of instructions whenever possi-
ble. The userland programs were dynamically linked against the C and FORTRAN runtime
libraries10. Static compression ratios were computed by dividing the size of the RVC binaries’

9C.ADDI4SPN rd′, 0, if legal, would perform the same operation as C.MV rd, sp.
10We chose not to statically link against the C library because it is far larger than most of the benchmarks,

and so it has a strongly homogenizing effect on the static instruction mix. We wished to see how effectively
RVC compresses a variety of programs, and so including the C library would have defeated this purpose. Of
course, the dynamically linked C library still contributes to the dynamic instruction mix, and this is reflected
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Figure 5.7: Static compression of RVC code compared to RISC-V code in the SPEC CPU2006
benchmark suite, Dhrystone, CoreMark, and the Linux kernel. The SPECfp outlier, lbm, is
briefly discussed in the next section.

text segments by that of their RISC-V counterparts. To compute the dynamic compression
ratios, we ran the programs on spike [100], the RISC-V ISA simulator, to obtain the dy-
namic instruction mix. We used the reference input set for SPEC and the default settings
for Dhrystone and CoreMark. For Linux, we measured the kernel boot procedure, including
the execution of the init process, the ash shell, and the poweroff command.

Static Code Compression

Figure 5.7 shows the static compression ratios for the programs in the SPEC CPU2006
benchmark suite. Compression ratios range from 68.8% to 82.2%. For SPECint, we see a
geometric mean compression ratio of 73.7%, i.e., 52.6% of RISC-V instructions were com-
pressed. For SPECfp, we see a slightly worse compression ratio of 74.1%, owing to the
underrepresentation of floating-point instructions in RVC. Dhrystone and CoreMark shrink
to 75.9% and 69.1% of their original sizes, respectively.

The Linux kernel, easily the most important benchmark in this set, compresses substan-
tially: the RVC kernel is 68.6% of the size of the RISC-V one. Interestingly, a small fraction

in our dynamic measurements.
The RVC C library’s text is 27.6% smaller than RISC-V’s.
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of this savings is attributable to a 0.5% reduction in static instruction count. Prior to com-
pression, 11% of function calls displaced more than 1 MiB, exceeding the reach of the JAL
instruction and requiring a two-instruction sequence. After compression, the total kernel
text size became less than 1 MiB, eliminating all multi-instruction call sequences.

Table 5.7 dissects this data differently, showing the contribution to compression ratio of
each RVC instruction, sorted by their frequency in the SPEC benchmarks. Unsurprisingly,
data movement instructions dominate the static code size savings, owing primarily to their
roles in function calls, prologues, and epilogues.

More importantly, the per-instruction breakdown highlights the importance of not overfit-
ting the ISA design to one particular class of program. For example, had we only considered
the SPEC benchmarks, we would have quickly concluded that instructions mostly used for
bit-twiddling, like C.SRLI, C.SRAI, and C.ANDI, weren’t good candidates for inclusion:
collectively, they only contribute 0.22% to the compression ratio for those programs. Core-
Mark, though, emphasizes small integers and so uses these instructions prolifically, deriving
1.71% of the savings from them. Similarly, the Linux kernel would suggest that including the
32-bit stack-pointer-relative loads and stores (C.LWSP and C.SWSP) wouldn’t have been
helpful for 64-bit programs, but SPEC contradicts that observation.

While the compression ratio over the base ISA is one figure of merit, comparing absolute
code size to other ISAs provides a more useful ground truth. After all, the more loosely
encoded the base ISA, the more compressible it is. Figure 5.8 shows the static code size of
the SPEC benchmarks for several 32-bit and 64-bit ISAs, normalized to RV32C and RV64C,
respectively. GCC 5.2 was used for all experiments, at the -O2 optimization level but with
code alignment disabled. RV32C is considerably denser than IA-32, ARMv7, MIPS, and
microMIPS code, and roughly ties ARM Thumb-2. Similarly, RV64C is quite a bit denser
than x86-64, ARMv8, MIPS64, and microMIPS64. Table 5.6 presents the data for each
benchmark individually.

The data lead to two interesting observations. First, the lone variable-length CISC
ISA in the roundup, x86, has surprisingly poor code density. IA-32 code is only modestly
smaller than RV32, and far larger than RV32C. This inefficiency is due in part to an archaic
calling convention that mandates arguments be passed on the stack, not in registers, but
another explanation is more fundamental: its architects have not always exercised care in
managing its opcode space. One might reasonably expect, for example, that the precious
1-byte encoding space would encode only the most ubiquitous operations. And one would
be incorrect: in a particularly galling example, six of the 256 patterns are dedicated to
instructions that manipulate binary-coded decimal quantities, an operation so rare that
GCC does not even deign to emit them. While x86-64 repented for that sin by deprecating
those instructions, it is nevertheless even less dense, owing in large part to the extra 1-byte
prefix necessary to encode the use of the expanded architectural register set.

Second, ARM’s variable-length encoding, Thumb-2, is quite a bit denser than the ARMv7-
A base ISA and performs similarly to RV32C in this comparison. Yet, ARM has decided
not to include variable-length instructions in its 64-bit ISA, ARMv8. Although the latter
offers good code size for a fixed-length encoding—it is about 8% denser than RV64 code,
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Figure 5.8: SPEC CPU2006 code size for several ISAs, normalized to RV32C for the 32-
bit ISAs and RV64C for the 64-bit ones. Error bars represent ±1 standard deviation in
normalized code size across the 29 benchmarks.

owing in large part to its load-pair and store-pair instructions—it cannot compete in code
size with a variable-length encoding. Accordingly, ARM’s first high-performance ARMv8
implementation, the Cortex-A57 [14], has a 50% larger instruction cache than its ARMv7
predecessor, the Cortex-A15 [13].

Dynamic Code Compression

The average savings in dynamic instruction fetch traffic closely reflects the static code size
savings. RVC CoreMark and Dhrystone fetch 29.2% and 29.3% fewer instruction bytes than
their RISC-V counterparts. In booting the Linux kernel there is a 26.1% reduction. On
the SPEC reference inputs, SPECint sees a 26.9% savings and SPECfp saves 22.4%. From
benchmark to benchmark, however, there is considerably more variation in dynamic code
compression than in static code compression, as Figure 5.9 shows. This effect is due primarily
to the dynamic dominance of a small sample of static code in several of the programs, but it
is often an artifact of arbitrary compiler behavior. A single unlucky code generation decision
might render a hot loop entirely incompressible. The difference in overall static code size
might barely register, while the instruction fetch traffic would increase dramatically.

A representative example of this phenomenon appeared in libquantum, an implemen-
tation of Shor’s algorithm, which spends about half of the execution time in a short loop
evaluating a Toffoli quantum gate. An arbitrary register allocation decision, shown in Fig-
ure 5.10, resulted in 1

3
of the instructions needlessly being incompressible, dragging the
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Figure 5.9: Dynamic compression of RVC code compared to RISC-V code in the SPEC
CPU2006 benchmark suite, Dhrystone, CoreMark, and the Linux kernel.

possible dynamic savings from 35% down to 27%. Adjusting the compiler’s cost model to
penalize the use of non-RVC registers in code presumed to be hot worked around the prob-
lem at no discernible cost. Obviously, profiling data would improve this technique, since
otherwise the static compiler must hazard a guess as to which code is likely to be frequently
executed.

Of course, some of the variation in compressibility is fundamental and cannot be ad-
dressed with compiler tweaks. lbm, a computational fluid dynamics program, provides a
case in point. At 8.1% savings, it has the least dynamic compression of any benchmark we
examined. Nearly all of the runtime is spent in a single large loop that consists primarily
of floating-point computational instructions, and uses 27 integer registers and 29 floating-
point registers. The relative lack of locality of register reference makes this code difficult
to compress, even if we had designed RVC to support a broader range of floating-point
instructions.

Table 5.8 breaks down the dynamic fetch traffic savings on a per-instruction basis. Given
the substantial variation of the dynamic compressibility between benchmarks, it is unsurpris-
ing that there is little consensus on the popularity of the various RVC instructions at runtime.
For example, C.FLD, which barely registers in static code size reduction, is the fourth-most
frequently executed RVC instruction in all of SPEC—even including SPECint. Meanwhile,
it is unused in Dhrystone, CoreMark, and Linux. Similarly, bit-twiddling instructions are
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00: 0104b883 ld a7,16(s1) 00: 6898 c.ld a4,16(s1)

04: 2505 c.addiw a0,1 02: 2505 c.addiw a0,1

06: 98be c.add a7,a5 04: 9742 c.add a4,a6

08: 0088b803 ld a6,8(a7) 06: 671c c.ld a5,8(a4)

0c: 07c1 c.addi a5,16 08: 0841 c.addi a6,16

0e: 00c846b3 xor a3,a6,a2 0a: 00c7c6b3 xor a3,a5,a2

12: 00b87833 and a6,a6,a1 0e: 8fed c.and a5,a1

16: 00b81563 bne a6,a1,20 10: 00b79563 bne a5,a1,1a

1a: fee543e3 blt a0,a4,0 14: ff1546e3 blt a0,a7,0

BEFORE AFTER

Figure 5.10: Code snippet from libquantum, before and after adjusting the C compiler’s
cost model to favor RVC registers in hot code. The compiler tweak reduced the size of the
code from 30 to 24 bytes.

ubiquitous in CoreMark, despite being essentially unused in the other benchmarks.

Performance Implications

One of our main goals in defining RVC is to improve energy efficiency by means of reduc-
ing execution time. Generally, RVC code should not reduce performance as compared to
RISC-V code. Misalignment of branch targets can reduce frontend performance, however,
by inducing an extra pipeline bubble on taken branches. Several microarchitectural tech-
niques exist to mitigate this performance loss and are regularly employed by superscalar
processors, even those with fixed-width instructions. Among them are frontend decoupling,
which allows frontend stalls to overlap backend stalls and is effective when combined with
accurate branch prediction, and instruction cache banking, which can eliminate the problem
almost entirely. Alternatively, the performance loss can be addressed entirely in software by
re-aligning branch targets. To do so indiscriminately would increase code size considerably—
about 3% on SPEC—but profiling feedback could be used to align only those targets of
branches that are dynamically frequent and usually taken. In the absence of dynamic infor-
mation, simply aligning loop bodies is a reasonable static heuristic: loop heads are typically
the most common targets of taken branches, and they are statically less common than other
branches.

More commonly, RVC will improve performance as compared to RISC-V code, by means
of reducing cache misses, TLB misses, and page faults. To demonstrate this point, I simulated
the SPEC CPU2006 benchmarks on idealized RISC-V and RVC processors that execute one
instruction per cycle, except for cache misses, which block for 50 cycles. The processors all
have 16 KiB 2-way set-associative data caches with 32-byte cache lines and a write-allocate,
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Figure 5.11: Speedup of larger caches, associative caches, and RVC over a direct-mapped
cache baseline, for a range of instruction cache sizes.

write-back policy. They differ in their instruction cache configurations, which range from
1 KiB direct-mapped to 16 KiB 2-way set-associative.

Using the RISC-V processors with direct-mapped caches as baselines, Figure 5.11 shows
the speedups that result from three changes: doubling the instruction cache size, making the
instruction cache two-way set-associative, or running the RVC version of the same program.
Across the range of caches, using RVC instead of RISC-V is more beneficial than increasing
the associativity, and almost as performant as doubling the cache size.

Since the cost of implementing RVC is small—700 gates in one implementation [90],
roughly the marginal area of 256 bytes of SRAM [96]—RVC obtains these performance
benefits at substantially less area cost than increasing the instruction memory size. Alter-
natively, RVC can be used to reduce the area and power of a RISC-V processor without
reducing its performance. Although a more detailed study is necessary to quantify the effect
on energy efficiency, we note that instruction cache access contributes significantly to overall
energy dissipation (27% in one study [69]) and that access energy increases rapidly with size
and associativity. Hence, by enabling the use of less aggressive instruction caches without
reducing performance, RVC has great potential to improve the energy efficiency of RISC-V
processors.
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5.6 The Load-Multiple and Store-Multiple

Instructions

Arguably the most important job of an instruction-set architect is deciding what features
should be left out. In defining RVC, the most difficult choice we made was whether to
include load-multiple and store-multiple instructions, which load or store consecutive words
in memory to or from a block of registers. Other compressed RISC ISAs, like microMIPS and
Thumb, have included these instructions, primarily to reduce callee-saved register spill and
fill code at procedure entry and exit. By our measurements, these can result in considerable
code size savings: for example, the RVC Linux kernel text would become about 8% smaller
with the use of these instructions in function prologues and epilogues.

Yet, after careful consideration, we opted against including them in RVC. The main rea-
son was that they would violate our design constraint that each RVC instruction expand into
a RISC-V instruction, thereby requiring compilers be RVC-aware and complicating proces-
sor implementations. They are also likely to be implemented with low performance in some
superscalar microarchitectures, which would prohibit the issue of other instructions dur-
ing the multi-cycle execution of the load- or store-multiple. Further reducing performance,
especially for statically scheduled microarchitectures, is the inability of the compiler to co-
schedule prologue and epilogue code with other code in the body of the function. Finally,
in machines with virtual memory, these instructions can trigger page faults in the middle of
their execution, complicating the implementation of precise exceptions or requiring a new
restart mechanism.

The final nail in their coffin came with the realization that, when static code size matters
more than runtime performance, we can obtain most of the benefit of load-multiple and store-
multiple with a purely software technique. Since prologue and epilogue code is generally the
same between functions, modulo the number of registers saved or restored, we can factor
out this code into shared prologue and epilogue millicode routines11. These routines must
have an alternate calling convention, since the link register must be preserved during their
execution. Fortunately, unlike ARM and MIPS, RISC-V’s jump-and-link instruction can
write the return address to any integer register, rather than clobbering the ABI-designated
link register. Other than that distinction, these millicode routines behave like ordinary
procedures.

Figure 5.12 shows this technique in action, using as an example a näıve recursive imple-
mentation of the factorial function. The instructions that spill ra and s0 to the stack are
replaced with a call to prologue 2, and the instructions that reload them are replaced with
a tail call to epilogue 2. In this case, factoring out the common prologue and epilogue code
reduce code size by 19%, not counting the size of the shared routines. Figure 5.13 provides
sample implementations of the two millicode routines, prologue 2 and epilogue 2.

11Millicode is a technique pioneered by IBM in their S/390 architecture [70], in which complex instructions
are implemented by high-level microcode routines that are in turn implemented with low-level microcode.
RISC-V millicode is analogous, but the implementations take the form of normal RISC-V instructions.



CHAPTER 5. THE RISC-V COMPRESSED ISA EXTENSION 67

uint64_t factorial(uint64_t x) {

if (x > 0)

return factorial(x - 1) * x;

return 1;

}

00: cd11 c.beqz a0, 1c 00: c919 c.beqz a0, 16

02: 1141 c.addi sp, sp, -16 02: 016002ef jal t0, prologue_2

04: e406 c.sdsp ra, 8(sp) 06: 842a c.mv s0, a0

06: e022 c.sdsp s0, 0(sp) 08: 157d c.addi a0, -1

08: 842a c.mv s0, a0 0a: ff7ff0ef jal ra, factorial

0a: 157d c.addi a0, -1 0e: 02850533 mul a0, a0, s0

0c: ff5ff0ef jal ra, factorial 12: 0100006f jal x0, epilogue_2

10: 02850533 mul a0, a0, s0 16: 4505 c.li a0, 1

14: 60a2 c.ldsp ra, 8(sp) 18: 8082 c.jr ra

16: 6402 c.ldsp s0, 0(sp)

18: 0141 c.addi sp, 16 WITH COMPRESSED PROLOGUES/EPILOGUES

1a: 8082 c.jr ra

1c: 4505 c.li a0, 1

1e: 8082 c.jr ra

WITHOUT COMPRESSED PROLOGUES/EPILOGUES

Figure 5.12: Näıve method to compute the factorial of an integer, both without and with
prologue and epilogue millicode calls.

prologue_2: epilogue_2:

00: 1141 c.addi sp, -16 00: 60a2 c.ldsp ra, 8(sp)

02: e406 c.sdsp ra, 8(sp) 02: 6402 c.ldsp s0, 0(sp)

04: e022 c.sdsp s0, 0(sp) 04: 0141 c.addi sp, 16

06: 8282 c.jr t0 06: 8082 c.jr ra

Figure 5.13: Sample implementations of prologue and epilogue millicode routines for saving
and restoring ra and s0.
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Figure 5.14: Impact on static code size and dynamic instruction count of compressed function
prologue and epilogue millicode routines.

Unsurprisingly, there is a code size/performance tradeoff in the implementation of these
routines. To minimize dynamic instruction count, one could have as many prologue and
epilogue routines as there are callee-saved registers—13 of each in the standard calling con-
vention. With this approach, prologues take two more dynamic instructions than if they
had been inlined; epilogues take just one more, since they are implemented using a tail call.
These routines would be fairly large, though, taking a collective 468 bytes in RV64C. At the
other extreme is a single set of routines that can handle any register count, at the cost of
more dynamic instructions per invocation. We opted for a hybrid approach with dedicated
routines only for the common case of saving or restoring at most two registers; functions
that save more registers must call the slower routine. This approach takes 122 bytes of code
in RV64C.

To evaluate this approach to prologue and epilogue compression, we implemented it in
our GCC port and ran a subset of the SPEC CPU2006 benchmarks. (We had to exclude
those that throw C++ exceptions, because our implementation does not yet furnish the
metadata needed to catch the exceptions.) Figure 5.14 shows the static code size savings of
each benchmark over the plain RVC version and the dynamic instruction count increase for
same. The improvement in code size is appreciable—an average of 4% savings—but comes
with a 3% average increase in dynamic instruction count. The variance in the latter metric
is significant, though; some benchmarks perform about the same, whereas those dominated
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00: 02b7a023 sw x11, 32(x15) 02: 202302b7 lui x5, 0x20230

04: 82822023 sw x8, -2016(x4) 06: 8282 c.jr x5

Figure 5.15: Interpretation of eight bytes of RVC code, depending on whether the code is
entered at byte 0 or at byte 2.

by very frequent function calls, especially omnetpp and perlbench, become markedly slower.
In the latter case, profiling feedback could be used to compress all but the most commonly
called functions, obtaining the bulk of the savings without the corresponding performance
loss.

We also evaluated the effectiveness of this technique on the RVC Linux kernel, which com-
prises many short functions and so should be a good candidate for this technique. Indeed,
the kernel’s text shrank by an impressive 7.5%, while the number of instructions executed
during kernel boot increased by just 2.1%. This result suggests that, when employed judi-
ciously, sharing the common prologue and epilogue code can provide a good tradeoff between
code size and runtime performance.

It is interesting to contrast this technique with the register windows of the RISC-I and
SPARC architectures. In both cases, the code to save and restore the callee-saved registers
has been factored out, making function prologues and epilogues very compact. But the
similarities end there. In the windowed architectures, the common save and restore code
resides in the operating system kernel and is invoked via synchronous exception on register
window overflow or underflow. This process is painfully slow, and it is exacerbated by the
lack of information available to the lazy save and restore routines: they know nothing of the
register usage pattern and so must conservatively spill or fill the entire window. The result
is very fast calls and returns when the call stack is no deeper than the window size, and very
slow ones otherwise. In contrast, these compressed prologue/epilogue routines do nothing to
improve performance beyond reducing instruction cache misses; on the other hand, they do
not have the performance cliffs of the register-window approach.

5.7 Security Implications

One feature of the base RISC-V ISA encoding is that instructions are all four bytes long and
must be aligned to a four-byte boundary. Attempts to jump to the middle of an instruction
word generate an exception. RVC, by design, lacks this property; indeed, the semantics
of jumping into the middle of a four-byte instruction are well defined. Consider the RVC
code in Figure 5.15, which has been disassembled twice, first starting at byte 0 and second
starting at byte 2. If execution begins at byte 0, the code performs two stores to memory.
If execution begins at byte 2, the code instead transfers control to address 0x20230000.

This property of RVC complicates the task of software fault isolation tools (a.k.a. sand-
boxes), which aim to prove the safety of untrusted code, or rewrite it so that it is provably
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safe. The dual interpretations of RVC code require either that both paths be proven safe,
or that a higher-level constraint prevents the second path from executing. Fortunately,
the latter approach has been proven to be possible for the more general problem of the
variable-length x86 [64], and the strategy has been successfully deployed in the Google Na-
tive Client [107]. The key idea is to notionally divide instruction memory into 2n-byte chunks,
then constrain code generation so that basic blocks begin only on chunk boundaries and that
no instructions span these chunks. To guarantee that indirect jumps cannot enter the middle
of a chunk, the n least-significant bits of their targets must first be masked off (e.g., with
a C.ANDI instruction). Finally, to guarantee that this masking instruction cannot itself be
skipped, it must reside in the same chunk as the indirect jump.

Static analysis can easily verify in linear time that an RVC program satisfies these proper-
ties, so the sandboxing problem is not made substantially more difficult by the variable-length
encoding.

5.8 Discussion

RISC-V, like its RISC predecessors, is not a particularly densely encoded instruction set
architecture. Its regular, fixed-width encoding simplifies pipelined microarchitectures, help-
ing to make the ISA suitable for research and educational purposes, but this property also
serves as an Achilles’ heel in domains where code size is a major concern. Embedded sys-
tems are a well-known example, as their cost and form factor strongly depend on memory
size, but not the only one. Applications processors in mobile devices account for a large
fraction of the power budget; a loose ISA encoding necessitates a large, leaky instruction
cache, exacerbating the problem. Commercial workloads in large servers often have massive
instruction working sets and are sometimes bound by the performance of the instruction
memory system. The RVC extension increases RISC-V’s applicability to all of these do-
mains by improving code density by 25%–30%, resulting in smaller programs than all of the
commercially popular 64-bit instruction sets.

Curiously, the two most popular general-purpose instruction sets are trending in the op-
posite direction. Intel’s x86 never offered especially compact code, despite its variable-length
encoding, but AMD’s 64-bit extension, x86-64, exacerbated this problem. The backwards-
incompatible change to wider addresses provided an opportunity to entirely recode the ISA,
but the instruction set architects instead chose to keep the ISAs as similar as possible, pre-
sumably to minimize instruction decoding cost. (Ironically, the x86 ISA is so complex that
adding a second, parallel instruction decoder would have barely added to the cost.) Indeed,
many x86-64 instructions are larger than their IA-32 counterparts. While AMD’s architects
wisely doubled the depth of the anemic integer register set, they also added a one-byte
penalty to use the new registers—even though most instructions only need one or two addi-
tional bits of register addresses. New AVX instructions using Intel’s amusingly-named VEX
prefix are as long as 11 bytes [47].

ARM’s decision not to bring their Thumb extension into the ARMv8 ecosystem is more
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perplexing still, given the ubiquity of their processors in deeply embedded systems. The
larger instruction caches in their newest microprocessor offerings indicate that their microar-
chitects are keenly aware of the code size deficiency of their new instruction set. Why they
traded a relatively small amount of logic for a relatively large amount of SRAM remains a
mystery to us.

Where 32-bit addresses suffice, RVC is competitive in code size with ARM’s Thumb-2
extension and superior to Intel’s IA-32. In domains that demand both 64-bit addresses and
dense code, RISC-V with the RVC extension will prove to be superior to both x86-64 and
ARMv8. We believe that RVC will be a popular RISC-V instruction set extension for simple
resource-constrained implementations and aggressive high-performance ones alike.



CHAPTER 5. THE RISC-V COMPRESSED ISA EXTENSION 72

Instruction Format Base Instruction Meaning

C.ADD CR add rd, rd, rs2 Add registers
C.ADDI CI addi rd, rd, imm[5:0] Increment register
C.ADDI16SP CI addi x2, x2, imm[9:4] Adjust stack pointer
C.ADDI4SPN CIW addi rd′, x2, imm[9:2] Compute address of stack variable
C.ADDIW CI addiw rd, rd, imm[5:0] Increment 32-bit register (RV64)
C.ADDW CR addw rd, rd, rs2 Add 32-bit registers (RV64)
C.AND CS and rd′, rd′, rs2′ Bitwise AND registers
C.ANDI CI andi rd′, rd′, imm[5:0] Bitwise AND immediate
C.BEQZ CB beq rs1′, x0, offset[8:1] Branch if zero
C.BNEZ CB bne rs1′, x0, offset[8:1] Branch if nonzero
C.EBREAK CR ebreak Breakpoint
C.FLD CL fld rd′, offset[7:3](rs1′) Load double float
C.FLDSP CI fld rd, offset[8:3](x2) Load double float, stack
C.FLW CL flw rd′, offset[6:2](rs1′) Load single float (RV32)
C.FLWSP CI flw rd, offset[7:2](x2) Load single float, stack (RV32)
C.FSD CL fsd rs2′, offset[7:3](rs1′) Store double float
C.FSDSP CSS fsd rs2, offset[8:3](x2) Store double float to stack
C.FSW CL fsw rs2′, offset[6:2](rs1′) Store single float (RV32)
C.FSWSP CSS fsw rs2, offset[7:2](x2) Store single float to stack (RV32)
C.J CJ jal x0, offset[11:1] Jump
C.JAL CJ jal x1, offset[11:1] Jump and link (RV32)
C.JALR CR jalr x1, rs1, 0 Jump and link register
C.JR CR jalr x0, rs1, 0 Jump register
C.LD CL ld rd′, offset[7:3](rs1′) Load double-word (RV64)
C.LDSP CI ld rd, offset[8:3](x2) Load double-word, stack (RV64)
C.LI CI addi rd, x0, imm[5:0] Load immediate
C.LUI CI lui rd, imm[17:12] Load upper immediate
C.LW CL lw rd′, offset[6:2](rs1′) Load word
C.LWSP CI lw rd, offset[7:2](x2) Load word, stack
C.MV CR add rd, x0, rs2 Copy register
C.OR CS or rd′, rd′, rs2′ Bitwise OR registers
C.SD CL sd rs2′, offset[7:3](rs1′) Store double-word (RV64)
C.SDSP CSS sd rs2, offset[8:3](x2) Store double-word to stack (RV64)
C.SLLI CI slli rd, rd, imm[5:0] Shift left, immediate
C.SRAI CB srai rd′, rd′, imm[5:0] Arithmetic shift right, immediate
C.SRLI CB srli rd′, rd′, imm[5:0] Logical shift right, immediate
C.SUB CS sub rd′, rd′, rs2′ Subtract registers
C.SUBW CS subw rd′, rd′, rs2′ Subtract 32-bit registers (RV64)
C.SW CL sw rs2′, offset[6:2](rs1′) Store word
C.SWSP CSS sw rs2, offset[7:2](x2) Store word to stack
C.XOR CS xor rd′, rd′, rs2′ Bitwise XOR registers

Table 5.3: RV32C and RV64C instruction listing.
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 nzimm[5:4|9:6|2|3] rd′ 00 C.ADDI4SPN

001 imm[5:3] rs1′ imm[7:6] rd′ 00 C.FLD

010 imm[5:3] rs1′ imm[2|6] rd′ 00 C.LW

011 imm[5:3] rs1′ imm[7:6] rd′ 00 C.LD

101 imm[5:3] rs1′ imm[7:6] rs2′ 00 C.FSD

110 imm[5:3] rs1′ imm[2|6] rs2′ 00 C.SW

111 imm[5:3] rs1′ imm[7:6] rs2′ 00 C.SD

000 0 0 0 01 C.NOP
000 nzimm[5] rs1/rd6=0 nzimm[4:0] 01 C.ADDI

001 imm[5] rs1/rd6=0 imm[4:0] 01 C.ADDIW

010 imm[5] rs1/rd6=0 imm[4:0] 01 C.LI

011 nzimm[9] 2 nzimm[4|6|8:7|5] 01 C.ADDI16SP
011 nzimm[17] rs1/rd6={0, 2} nzimm[16:12] 01 C.LUI

100 nzimm[5] 00 rs1′/rd′ nzimm[4:0] 01 C.SRLI
100 nzimm[5] 01 rs1′/rd′ nzimm[4:0] 01 C.SRAI
100 imm[5] 10 rs1′/rd′ imm[4:0] 01 C.ANDI
100 0 11 rs1′/rd′ 00 rs2′ 01 C.SUB
100 0 11 rs1′/rd′ 01 rs2′ 01 C.XOR
100 0 11 rs1′/rd′ 10 rs2′ 01 C.OR
100 0 11 rs1′/rd′ 11 rs2′ 01 C.AND
100 1 11 rs1′/rd′ 00 rs2′ 01 C.SUBW
100 1 11 rs1′/rd′ 01 rs2′ 01 C.ADDW

101 offset[11|4|9:8|10|6|7|3:1|5] 01 C.J

110 offset[8|4:3] rs1′ offset[7:6|2:1|5] 01 C.BEQZ

111 offset[8|4:3] rs1′ offset[7:6|2:1|5] 01 C.BNEZ

000 nzimm[5] rd6=0 nzimm[4:0] 10 C.SLLI

001 imm[5] rd imm[4:3|8:6] 10 C.FLDSP

010 imm[5] rd6=0 imm[4:2|7:6] 10 C.LWSP

011 imm[5] rd6=0 imm[4:3|8:6] 10 C.LDSP

100 0 rs16=0 0 10 C.JR
100 0 rd6=0 rs26=0 10 C.MV
100 1 0 0 10 C.EBREAK
100 1 rs16=0 0 10 C.JALR
100 1 rd6=0 rs26=0 10 C.ADD

101 imm[5:3|8:6] rs2 10 C.FSDSP

110 imm[5:2|7:6] rs2 10 C.SWSP

111 imm[5:3|8:6] rs2 10 C.SDSP

Table 5.4: RV64C instruction encoding.
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 0 00 Illegal Instruction
100 — 00 Reserved for future use

000 0 6=0 0 01 Reserved hint
001 — 0 — 01 Reserved for future use
010 — 0 — 01 Reserved hint
011 0 0 6=0 01 Reserved hint
011 1 0 — 01 Reserved hint
011 0 — 0 01 Reserved for future use
100 0 — 0 01 Reserved hint
100 111 — 1 — 01 Reserved for future use

000 0 6=0 10 Reserved hint
011 — 0 — 10 Reserved for future use
100 — 0 6=0 10 Reserved hint

Table 5.5: Reserved encodings in RV64C.



CHAPTER 5. THE RISC-V COMPRESSED ISA EXTENSION 75

32-bit ISAs 64-bit ISAs
Benchmark RV x86 ARM Thm2 MIPS µM RV x86 ARM MIPS µM

astar 1.41 1.30 1.26 0.94 1.53 1.06 1.37 1.27 1.26 1.57 1.07
bwaves 1.42 1.32 1.29 0.94 1.45 1.22 1.32 1.69 1.19 1.45 1.20
bzip2 1.44 1.15 1.35 0.94 1.53 1.08 1.42 1.11 1.23 1.55 1.14
cactusADM 1.34 1.29 1.35 1.02 1.57 1.18 1.34 1.36 1.28 1.56 1.16
calculix 1.38 1.34 1.36 1.01 1.52 1.17 1.38 1.43 1.21 1.42 1.05
dealII 1.45 1.35 1.33 0.93 1.59 1.09 1.45 1.38 1.27 1.60 1.06
gamess 1.34 1.22 1.29 0.96 1.39 1.14 1.31 1.34 1.17 1.34 1.11
gcc 1.35 1.16 1.39 0.95 1.46 1.10 1.34 1.19 1.24 1.48 1.15
GemsFDTD 1.31 1.41 1.32 0.97 1.48 1.24 1.31 1.60 1.17 1.59 1.39
gobmk 1.41 1.09 1.28 0.92 1.57 1.02 1.41 1.11 1.30 1.62 1.06
gromacs 1.37 1.20 1.27 1.00 1.46 1.14 1.28 1.34 1.13 1.42 1.10
h264ref 1.37 1.22 1.33 0.98 1.48 1.14 1.35 1.23 1.17 1.48 1.18
hmmer 1.38 1.26 1.32 0.95 1.55 1.07 1.37 1.29 1.26 1.54 1.01
lbm 1.20 0.99 1.41 1.24 1.61 1.38 1.19 1.23 1.06 1.43 1.26
leslie3d 1.41 1.39 1.38 0.97 1.47 1.19 1.36 1.67 1.24 1.47 1.22
libquantum 1.44 1.26 1.51 1.21 1.59 1.20 1.40 1.33 1.34 1.63 1.26
mcf 1.35 1.26 1.36 0.99 1.65 1.14 1.34 1.34 1.36 1.72 1.21
milc 1.35 1.33 1.41 1.07 1.67 1.24 1.37 1.42 1.34 1.62 1.19
namd 1.30 1.45 1.28 1.05 1.47 1.29 1.28 1.61 1.12 1.36 1.17
omnetpp 1.40 1.29 1.29 0.94 1.55 1.06 1.39 1.26 1.36 1.42 1.01
perlbench 1.36 1.25 1.45 1.00 1.61 1.12 1.35 1.28 1.31 1.60 1.09
povray 1.29 1.32 1.32 1.07 1.57 1.25 1.28 1.46 1.19 1.57 1.29
sjeng 1.30 1.12 1.29 0.96 1.43 1.08 1.32 1.11 1.19 1.44 1.06
soplex 1.41 1.40 1.38 1.03 1.69 1.22 1.40 1.40 1.33 1.66 1.19
sphinx3 1.35 1.23 1.30 0.97 1.52 1.08 1.34 1.25 1.28 1.50 1.02
tonto 1.39 1.47 1.33 0.95 1.50 1.15 1.39 1.63 1.20 1.49 1.17
wrf 1.39 1.28 1.31 0.91 1.34 1.04 1.34 1.34 1.10 1.31 1.01
xalancbmk 1.50 1.29 1.36 0.87 1.64 1.02 1.49 1.26 1.40 1.64 1.07
zeusmp 1.35 1.10 1.38 1.06 1.43 1.21 1.30 1.24 1.05 1.41 1.17

Geo. Mean 1.37 1.26 1.34 0.99 1.53 1.15 1.35 1.34 1.23 1.51 1.14

Table 5.6: SPEC CPU2006 code size for several ISAs, normalized to RV32C for the 32-bit
ISAs and RV64C for the 64-bit ones. Thm2 is short for ARM Thumb-2; µM is short for
microMIPS.
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RV32GC RV64GC
Instruction Dhry- Core- SPEC SPEC Linux Max

stone Mark 2006 2006 Kernel
C.MV 1.78 5.03 4.06 3.62 5.00 5.03
C.LWSP 4.51 2.80 2.89 0.49 0.14 4.51
C.LDSP — — — 3.20 4.44 4.44
C.SWSP 4.19 2.45 2.76 0.45 0.18 4.19
C.SDSP — — — 2.75 3.79 3.79
C.LI 2.99 3.74 2.81 2.35 2.86 3.74
C.ADDI 2.16 3.28 1.87 1.19 0.95 3.28
C.ADD 0.51 1.64 1.94 2.28 0.91 2.28
C.LW 2.10 1.68 2.00 0.74 0.62 2.10
C.LD — — — 1.14 2.09 2.09
C.J 0.32 1.71 1.63 0.97 1.53 1.71
C.SW 1.59 0.85 0.73 0.27 0.26 1.59
C.JR 1.52 1.16 0.49 0.44 1.05 1.52
C.BEQZ 0.38 1.14 0.76 0.55 1.24 1.24
C.SLLI 0.06 1.09 0.57 0.93 0.57 1.09
C.ADDI16SP 0.19 0.26 0.32 0.42 1.01 1.01
C.SRLI 0.00 0.81 0.05 0.12 0.31 0.81
C.BNEZ 0.19 0.53 0.53 0.32 0.80 0.80
C.SD — — — 0.25 0.79 0.79
C.ADDIW — — — 0.77 0.50 0.77
C.JAL 0.38 0.59 0.05 — — 0.59
C.ADDI4SPN 0.57 0.37 0.45 0.50 0.30 0.57
C.LUI 0.32 0.37 0.44 0.56 0.52 0.56
C.SRAI 0.13 0.48 0.07 0.03 0.03 0.48
C.ANDI 0.00 0.42 0.20 0.07 0.35 0.42
C.FLD 0.00 0.00 0.16 0.39 0.00 0.39
C.FLDSP 0.00 0.02 0.20 0.31 0.00 0.31
C.FSDSP 0.13 0.09 0.15 0.26 0.00 0.26
C.SUB 0.25 0.09 0.13 0.06 0.11 0.25
C.AND 0.00 0.00 0.07 0.03 0.21 0.21
C.FSD 0.00 0.00 0.08 0.18 — 0.18
C.OR 0.06 0.18 0.09 0.04 0.14 0.18
C.JALR 0.13 0.07 0.17 0.10 0.14 0.17
C.ADDW — — — 0.16 0.12 0.16
C.EBREAK 0.00 0.02 0.00 0.00 0.08 0.08
C.FLW 0.00 0.00 0.05 — — 0.05
C.XOR 0.00 0.04 0.01 0.01 0.03 0.04
C.SUBW — — — 0.04 0.03 0.04
C.FLWSP 0.00 0.00 0.03 — — 0.03
C.FSW 0.00 0.00 0.02 — — 0.02
C.FSWSP 0.00 0.00 0.02 — — 0.02

Total 24.46 30.92 25.78 25.98 31.11 —

Table 5.7: RVC instructions in order of typical static frequency. The numbers in the table
show the percentage savings in static code size attributable to each instruction.
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RV32GC RV64GC
Instruction Dhry- Core- SPEC Linux Max

stone Mark 2006 Kernel
C.ADDI 3.70 3.91 4.36 1.26 4.36
C.LW 4.15 3.89 1.09 0.87 4.15
C.MV 1.93 4.01 1.70 1.37 4.01
C.BNEZ 0.44 2.57 0.47 3.62 3.62
C.SW 3.55 1.62 0.32 0.68 3.55
C.LD — — 1.43 3.29 3.29
C.SWSP 3.26 0.32 0.20 0.03 3.26
C.LWSP 2.96 0.48 0.14 0.02 2.96
C.LI 2.22 1.47 0.81 2.73 2.73
C.ADD 2.07 2.69 2.64 1.84 2.69
C.SRLI 0.00 2.48 0.20 0.38 2.48
C.JR 2.07 0.34 0.46 0.42 2.07
C.FLD 0.00 0.00 1.63 0.00 1.63
C.SDSP — — 1.14 1.38 1.38
C.J 0.44 0.46 0.33 1.35 1.35
C.LDSP — — 1.34 1.31 1.34
C.ANDI 0.15 1.30 0.10 0.23 1.30
C.ADDIW — — 1.26 1.03 1.26
C.SLLI 0.15 1.10 1.24 0.89 1.24
C.SD — — 0.39 1.13 1.13
C.BEQZ 0.59 0.95 0.74 0.76 0.95
C.AND 0.00 0.00 0.21 0.75 0.75
C.SRAI 0.00 0.72 0.02 0.01 0.72
C.JAL 0.59 0.26 — — 0.59
C.ADDI4SPN 0.44 0.16 0.07 0.05 0.44
C.FLDSP 0.00 0.00 0.40 0.00 0.40
C.ADDI16SP 0.13 0.18 0.28 0.38 0.38
C.FSD 0.00 0.00 0.29 0.00 0.29
C.FSDSP 0.00 0.00 0.25 0.00 0.25
C.ADDW — — 0.19 0.04 0.19
C.XOR 0.00 0.19 0.06 0.02 0.19
C.OR 0.15 0.08 0.05 0.04 0.15
C.SUB 0.15 0.03 0.05 0.04 0.15
C.LUI 0.02 0.06 0.09 0.10 0.10
C.JALR 0.00 0.05 0.05 0.03 0.05
C.SUBW — — 0.04 0.02 0.04
C.EBREAK 0.00 0.00 0.00 0.00 0.00
C.FLW 0.00 0.00 — — —
C.FLWSP 0.00 0.00 — — —
C.FSW 0.00 0.00 — — —
C.FSWSP 0.00 0.00 — — —

Total 29.18 29.29 24.03 26.11 —

Table 5.8: RVC instructions in order of typical dynamic frequency. The numbers in the table
show the percentage savings in dynamic code size attributable to each instruction.



78

Chapter 6

A RISC-V Privileged Architecture

The preceding three chapters have described the RISC-V user-level ISA and have largely
steered clear of system-level issues. This descriptive tack is not merely stylistic: it also reflects
a technical decision to orthogonalize the RISC-V user ISA and privileged architecture. The
reasons for this separation are multifold:

• It allows the user ISA to be shared across a wide variety of systems. Real-time em-
bedded systems with a trusted code base demand significantly different features of the
privileged architecture than do hypervised server systems with I/O virtualization. If
the user and privileged architectures are separated, though, the same user ISA can be
used for both, reducing software development costs.

• It facilitates experimentation in privileged architectures. Researchers can devise and
implement novel memory translation and protection schemes, new security features,
and alternative I/O mechanisms without having to rewrite application code.

• It simplifies the implementation of full virtualization. Exposing privileged features
to unprivileged software adds complexity to hardware-assisted virtualization, and can
make classical virtualization impossible1.

Consequently, rather than defining the RISC-V privileged architecture, we propose a ref-
erence RISC-V privileged architecture, RPA, designed to support Unix-like operating systems
with page-based virtual memory. RPA naturally supports classical virtualization and can be
extended to support hardware-accelerated virtualization, akin to the IBM System/370 [75].
Additionally, the virtual memory facility can be replaced with a lower-cost base-and-bounds

1A famous example of the latter is the x86 FLAGS register, which holds both user-visible condition codes
and privileged fields, such as the interrupt-enable flag. User-mode writes to the privileged portion of the
FLAGS register are ignored. This silent failure foils classical virtualization, in which the guest operating
system runs in user mode: guest attempts to disable interrupts, for example, cannot be intercepted and
emulated by the host OS. VMware heroically worked around this limitation with an intricate dynamic
binary translation scheme [23].
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Figure 6.1: The same ABI can be implemented by many different privileged software stacks.
For systems running on real RISC-V hardware, a hardware abstraction layer underpins the
most privileged execution environment.

protection and translation scheme to support lighter-weight embedded systems. The remain-
der of this chapter describes RPA’s major features, focusing on the interface to supervisor
software. A more complete description is available in [103].

6.1 Privileged Software Interfaces

In a conventional general-purpose system, applications make requests of the operating system
using a system-call convention defined in an application binary interface (ABI). Application
code need not know details of the underlying mechanisms that implement the system call; it
suffices to know the interface. This abstraction improves modularity. Indeed, user software
may even be ignorant of the identity of its application execution environment (AEE): ordi-
narily, it is an operating system, but it could just as easily be an emulator that speaks the
same ABI.

Curiously, most privileged execution environments do not afford operating system soft-
ware the same courtesy. The OS typically performs such actions as arming timers and routing
interrupts by interacting directly with the underlying hardware platform. This approach lim-
its either implementation flexibility or OS portability, and it complicates and decelerates full
virtualization. In contrast, RPA abstracts the supervisor execution environment (SEE) that
underpins the operating system by way of a supervisor binary interface (SBI). The SEE may
be a simple boot loader with primitive I/O abstraction, similar to the PC BIOS; or a hyper-
visor that fully virtualizes the I/O and memory systems; or even an SBI-level emulator. A
uniform SBI allows the same OS code to run on any of these SEEs.

The analogy continues to the hypervisor, which interacts with the hypervisor execution
environment (HEE) via a hypervisor binary interface (HBI). This design simplifies the im-
plementation of recursive virtualization.

Of course, the abstraction must terminate at some point. For native RISC-V hardware
systems, the lowest-level execution environment interacts with the hardware via a hardware
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Level Description Number of Levels Supported Modes
U User/Application 1 M
S Supervisor 2 M, U
H Hypervisor 3 M, S, U
M Machine/Trusted 4 M, H, S, U

Table 6.1: RPA privilege modes and supported privilege mode combinations.

abstraction layer (HAL). The HAL isolates the execution environment from the implementa-
tion details of the hardware platform, such as the location of control registers in the address
map. Hiding platform-specific details improves the reusability of execution environment
software. Figure 6.1 shows a logical view of this design.

6.2 Four Levels of Privilege

A secure system need only have two privilege modes—privileged, where operating system
(OS) code runs, and unprivileged, in which application code executes. Such a scheme suffices
to protect the system from errant user processes and protect user processes from each other;
various ISAs, like SPARC, have successfully employed this strategy [87]. As long as all
privileged instructions generate traps when executed in user mode, it also suffices to support
classical virtualization, in which guest OSes systems run in unprivileged mode. In that
scheme, the host OS, running in privileged mode, emulates privileged functionality on the
guests’ behalf.

Nevertheless, there are compelling reasons to provide additional privileged modes. The
DEC Alpha, for example, provides a third, greater privilege level in which PALcode (Priv-
ileged Architecture Library) executes [77]. PALcode presents a high-level interface to OS
code for certain low-level functionality, which, like RPA’s SBI, abstracts the implementa-
tion details from the OS. The PALcode mechanism can also implement missing hardware
functionality, allowing low-end implementations to omit hardware support for expensive op-
erations.

Similarly, while a two-level scheme suffices to support virtualization, many guest OS
operations can be significantly accelerated with additional hardware support. Minimizing the
number of guest instructions that result in a trap into the hypervisor reduces virtualization
overhead. The obvious means to reduce the frequency of these trapping events is to run the
guest OS in privileged mode. Ordinarily, doing so would compromise the isolation between
guests. To maintain inter-guest protection, we can add a hyperprivileged mode in which the
hypervisor executes. Coupled with an additional memory protection scheme, the hypervisor
can maintain isolation between virtual machines with much lower overhead than the classical
virtualization approach.
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Address Address Minimum
Bits 11:10 Meaning Bits 9:8 Privilege

00 Read/Write 00 U
01 Read/Write 01 S
10 Read/Write 10 H
11 Read-Only 11 M

Table 6.2: RPA privilege modes and supported privilege mode combinations.

Accordingly, RPA exposes four modes of increasing level of privilege. The least-privileged
mode is User (U), in which application code normally executes. Above that is Supervisor
(S) mode, which provides basic exception processing and virtual memory support; OS code
normally executes in this level. The Hypervisor (H) mode is a placeholder for a privilege
mode designed to host a virtual machine monitor; we have yet to define H-mode. Finally,
the Machine (M) mode has unfettered access to all hardware features. The first three
modes are optional; only M-mode is required. Table 6.1 summarizes the privilege modes
and supported combinations. Providing only M-mode suffices for many embedded systems,
though adding U-mode provides some isolation between system software and application
code, easing debugging. An M/S/U system can support a traditional Unix-like OS. Adding
H-mode further supports a hardware-assisted hypervisor.

6.3 A Unified Control Register Scheme

Each privilege mode requires a handful of control and status registers (CSRs) to support,
among other features, exception processing and interrupt handling. To minimize both soft-
ware and hardware complexity, all CSRs are accessed through the same six-instruction in-
terface described in Chapter 3. In that chapter, the only CSRs defined were the read-only
performance counters; the more-privileged modes add several read-only and writable CSRs.

The CSRs reside in an ample 12-bit address space, set by the immediate operand width
in the CSR access instructions. In an effort to minimize the descriptive complexity of the
privileged architecture and to simplify its hardware implementation, we divide the address
space into privilege regions, as Table 6.2 shows. The two most-significant bits indicate
whether a CSR is read-only, and the next two bits give the minimum privilege mode at
which the register may be accessed. In a scheme described in [103], we further subdivide
the address space into standard and non-standard subspaces, demarcating a region that non-
standard extensions may use without fear of the space being reclaimed by future standard
extensions.

Several CSRs, such as the user-level performance counters, must be writable at higher
privilege levels. RPA addresses this need by allowing CSR shadows: a CSR may be redun-
dantly mapped into the writable portion of a greater privilege mode’s CSR address space. For
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Name Meaning

sstatus Processor status register
stvec Trap handler base address
sie Interrupt-enable register

sscratch Scratch register
sepc Exception program counter
scause Trap cause
sbadaddr Bad address
sip Interrupt-pending register

sptbr Page table base register
sasid Address-space identifier

Table 6.3: Listing of supervisor-mode control and status registers.

example, the user-level cycle counter has address 0xC00, i.e., read-only with user privilege.
Its writable shadow, cyclew, has address 0x900, i.e., writable with supervisor privilege.

6.4 Supervisor Mode

The RPA supervisor mode provides an interface against which traditional Unix-like operating
systems may be written. In keeping with the abstract SBI interface, only a minimal view
of the machine state is exposed to supervisor software. In particular, the supervisor cannot
directly interrogate the hardware to determine the existence of greater privilege levels.

The supervisor mode provides two main services to supervisor software: an exception
processing facility and virtual memory management. RPA furnishes supervisor software with
a handful of CSRs to avail itself of these features, which Table 6.3 lists. The most important
of them is the sstatus register, which controls the privilege level, the global interrupt enable,
and the status of the floating-point extensions and the non-standard extensions. In addition
to controlling the availability of the extensions, the sstatus register indicates whether their
architectural state has been modified, allowing the OS to avoid saving and restoring the
state on context switches. The register’s most-significant bit summarizes the dirtiness of the
extension state, so that the OS can determine with a single BLT instruction whether it must
save any of the state on a context switch.

Additional CSRs support exception processing. stvec holds the address to which the
pc is set upon an exception. When an exception occurs, sepc is set to the address of the
offending instruction. scause indicates why the exception occurred, and, if the cause was a
misaligned or invalid address, sbadaddr records it.

To simplify virtualization and improve failure isolation, RPA favors an abstract I/O
device model, even when the supervisor software is running bare-metal. In this model,
device drivers execute in a separate process from the OS; the OS interacts with them via
SBI calls. Communication with device drivers is thus similar to communication with other
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processors. Accordingly, the RPA supervisor mode lacks device interrupts. In fact, there
are only two interrupt classes: software interrupts, which are triggered by other threads
of execution, and timer interrupts, which are triggered by the real-time counter. The sip

CSR indicates if either class of interrupt is pending; corresponding bits in sie mask these
interrupts. Since the mechanisms for timer and interprocessor interrupts vary from system
to system, the SBI provides abstract interfaces to request them.

Virtual Memory

The RPA supervisor mode provides a page-based virtual memory system, in which both
physical memory and the virtual address space are divided into fixed-size pages. A virtual
page can map to any physical page, or none at all, as specified by an in-memory high-radix
tree structure called the page table. To simplify memory allocation, each node in the tree is
also the size of a page. The physical address of the root node is stored in the sptbr CSR,
which can be swapped on context switches to give each process a unique virtual address
space.

In both RV32 and RV64, pages are 4 KiB, as is the case for IA-32, x86-64, ARMv7,
ARMv8, and SPARC V8. We had originally contemplated a larger page size, a position that
proved to be remarkably contentious, in part because the page size is exposed to application
software by way of the ABI. While portable software should not make assumptions about
the page size—even for a given ISA—in practice, much software does. Choosing the most
popular page size reduces the porting effort.

More importantly, the page size has a substantial performance impact for some appli-
cations. A greater page size increases the amount of memory that an address translation
cache of a certain capacity can map. It also loosens the associativity constraints on virtually
indexed, physically tagged caches2, potentially reducing cache access energy. On the other
hand, since pages are the memory allocation quantum, larger pages exacerbate internal frag-
mentation, thereby wasting physical memory. This phenomenon is perhaps most noticeable
in an operating system’s file cache: caching small files dramatically improves overall system
performance, but sacrifices significant physical memory to internal fragmentation [97].

A mitigating factor in our decision to not increase the page size is that RPA supports
superpages at any level of the page table structure. In RV32, the page table is a two-level
radix-1024 tree, so in addition to 4 KiB pages, it also allows 4 MiB megapages. RV64 has
multiple page table organizations, corresponding to different virtual address space sizes; the
simplest 39-bit mode has a three-level radix-512 page table. This scheme gives not only 2 MiB
megapages, but also 1 GiB gigapages3. While these superpages are difficult for application

2A virtually indexed, physically tagged cache is a design in which the cache is indexed in parallel with
the address translation process. Of course, doing so requires the cache index to be known prior to address
translation. Since the only part of the address known in advance is the page offset, the size of one cache set
cannot exceed the page size.

3We gave the different superpage sizes idiomatic names to avoid confusion. We could have named them
L1 and L2 superpages, but it would’ve been ambiguous whether we were counting from the root or the leaves.
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Supervisor User
Type Meaning Global R W X R W X

0 Pointer to next level of page table.
—

1 Pointer to next level of page table—global mapping. •
2 Supervisor read-only, user read-execute page. • • •
3 Supervisor read-write, user read-write-execute page. • • • • •
4 Supervisor and user read-only page. • •
5 Supervisor and user read-write page. • • • •
6 Supervisor and user read-execute page. • • • •
7 Supervisor and user read-write-execute page. • • • • • •
8 Supervisor read-only page. •
9 Supervisor read-write page. • •

10 Supervisor read-execute page. • •
11 Supervisor read-write-execute page. • • •
12 Supervisor read-only page—global mapping. • •
13 Supervisor read-write page—global mapping. • • •
14 Supervisor read-execute page—global mapping. • • •
15 Supervisor read-write-execute page—global mapping. • • • •

Table 6.4: Page table entry types.

code to use directly, researchers at Rice University devised a scheme to automatically promote
large, contiguous memory allocations to superpages [71]. Transparent superpages have since
been implemented to great effect in Linux and FreeBSD, reducing the pressure on architects
to provide larger base pages.

Page-based virtual memory systems provide not only address translation, but also a
memory protection mechanism. Each virtual page can be configured with one of ten sets of
permissions, encoded in a four-bit field in the page table entry. These correspond to types
2–11 in Table 6.4. Like most virtual memory systems, we allow pages to be marked as read-
only or writable, either by the supervisor only or by the user as well. We additionally allow
pages to be marked non-executable, which prevents a class of security attack, including buffer
overflows that write instructions to the stack. Along the same lines, while the supervisor’s
permissions are ordinarily a superset of the user’s permissions, we allow pages to be marked
executable by the user but non-executable by the supervisor. This option prevents errant
operating system code from inadvertently executing untrusted user code. In our Linux kernel
port, every user-executable page is so marked.

Address-Translation Caching

A virtual-to-physical address translation must be performed for every instruction fetch and
for every load and store. Since these translations require multiple memory accesses them-
selves, they would result in a slowdown of hundreds of percent if not somehow accelerated.
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Hence, nearly all systems with virtual memory cache the results of address translations in a
TLB4. To simplify the hardware, most systems do not keep these caches coherent with the
page table; instead, they require that system software flush the translation caches upon page
table modification. In fact, some architectures, like MIPS, even require that the OS fully
manage the cache. In that design, TLB misses cause synchronous exceptions, and a trap
handler refills the TLB.

The software-refill approach has two main advantages: it slightly reduces hardware cost,
and it makes the hardware agnostic to the page table data structure. Indeed, with software
refill, the operating system can even take an adaptive approach—for example, by switching
from a radix tree to an inverted page table [25]. But it also has two significant drawbacks.
First, it adds ISA complexity in other ways. The MIPS design, for example, requires addi-
tional instructions to refill and strike TLB entries. Second, and more importantly, it erects
a performance bottleneck for high-performance systems. Software refill exceptions cause
pipeline flushes, which are particularly expensive for dynamically scheduled microarchitec-
tures. In contrast, with hardware TLB refill, these microarchitectures can often schedule
useful work around the TLB miss, decoupling the execution units from the high-latency
memory operation.

We felt the advantages of hardware TLB refill easily justified the minor cost of a hard-
ware refill unit. The only remaining question was whether we could rationalize eliminating
the possibility of alternative page table data structures, like inverted page tables. But re-
searchers have shown that simple radix trees often perform better [50], and, when coupled
with translation path caches, result in fewer DRAM accesses per TLB miss [19]. Accordingly,
RPA specifies hardware TLB refill, using only the radix tree structure.

We briefly note that RPA does allow software TLB refill using M-mode support routines.
Although we do not recommend this design, supervisor software would be none the wiser.

RPA does not require that TLBs be kept coherent with page table updates. Instead,
it adds an instruction, SFENCE.VM, which guarantees that prior page table writes are
ordered before subsequent address translation operations. This definition makes no mention
of TLBs, but in TLB-based systems, it may indeed be implemented by flushing the TLB.
The advantage of our approach is that it provides cleaner semantics with respect to the side
effects of the flush operation, and that it supports a wider variety of address translation
caching schemes. Its definition also avoids exposing a pipeline hazard, unlike many other
architectures. For example, in the MIPS R4000, five instructions must be executed between
writing a TLB entry and fetching an instruction from the corresponding virtual memory
page [66].

4TLB stands for Translation Lookaside Buffer. It is an an anachronistic and esoteric name for what
would be better described as an address translation cache.
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6.5 Hypervisor Mode

RPA has reserved opcode space and CSR address space for a future hypervisor mode, but we
have yet to define one. One of the most important functions of the hypervisor is to virtualize
physical memory, and so the hypervisor mode will provide an additional layer of address
translation, from supervisor physical addresses to hypervisor physical addresses. A plausible
implementation would use an address translation scheme very similar to the one described
in the previous section.

6.6 Machine Mode

Machine mode is the only required privilege mode in RPA, because it has access to all hard-
ware features. Accordingly, M-mode software is assumed to be fully trusted. M-mode is
designed to be sufficient to host simple embedded systems that derive little benefit from
memory protection, but it also fills a crucial role in more complex designs. For systems with
a supervisor-mode operating system, the primary role of M-mode is to abstract the hard-
ware platform and provide any missing hardware features. In our RISC-V implementations,
for example, M-mode software emulates misaligned loads and stores, unbeknownst even to
supervisor software. It also emulates the standard floating-point extensions when they are
unimplemented in hardware. In that respect, M-mode software is part and parcel of the
hardware implementation.

M-mode does not, by default, translate memory addresses; it interacts with the physical
memory system directly. It does, however, furnish a facility to execute loads and stores
using a lower privilege mode’s address translation scheme. This feature is especially useful
for emulating missing hardware functionality.

An exception processing scheme very similar to the S-mode facility handles, by default, all
traps, regardless of their source and ultimate destination. Trap-redirection instructions can
quickly vector a subset of traps to less-privileged software when appropriate—for example, to
the supervisor to handle virtual memory page faults. Interrupt handling is also similar to the
S-mode approach, though most platforms will provide many more interrupt causes than are
visible to S-mode, including non-maskable interrupts. M-mode provides a wait-for-interrupt
instruction that may stall the processor until any interrupt becomes pending, saving energy.
(It is defined in such a way that it can execute as a no-op in simple implementations.)

Device I/O mechanisms are implementation-defined, but in sophisticated systems, they
are generally expected to use memory-mapped I/O. Simpler systems might use CSR-mapped
I/O exclusively, which can be easier to implement because I/O operations may be identified
upon decode, rather than after effective address generation. While it would be simpler for
all systems to use CSR-mapped I/O, it is impractical because, for many applications, the
I/O address space needs to be indexable. Additionally, some existing device drivers assume
memory-mapped I/O and would have to be rewritten.
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Interprocessor interrupts are effectively mandatory for multiprocessor systems. The
mechanism is implementation-defined, but it is generally expected to follow the platform’s
device I/O conventions. In our implementations, all processors’ CSRs are mapped into the
physical address space, so processors can write each other’s software interrupt pending bits
directly.

Finally, a real-time counter and a comparator trigger timer interrupts. This lone mech-
anism provides timer interrupts for all less-privileged software; when multiple timers are
required, they are multiplexed by M-mode software.

6.7 Discussion

The Reference Privilege Architecture provides a simple interface for traditional operating
systems, hardware-accelerated hypervisors, and classical virtualization strategies. Its design
is not yet complete—in particular, the hypervisor mode and the SBI have yet to be defined.
We expect all but the hypervisor layer to be finalized in 2016.

A rich design space exists in privileged instruction set architecture, much of it yet to be
explored. RPA’s simplicity makes it suitable for some forms of experimentation, but more
divergent approaches to computer security problems in particular may favor replacing large
parts of the architecture. In particular, coupling memory protection to address translation,
while expedient, is an anachronistic approach to a pivotal problem that fails to provide the
flexibility and granularity that modern software demands. We excitedly await the fruits of
computer architecture and operating systems researchers’ labor on this and other important
problems in the privileged architecture space.
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Chapter 7

Future Directions

In defining RISC-V, we believe we have succeeded in making a broadly applicable user-level
ISA. It is free, open, simple, and modular. Yet, much design work remains. Notably, the
privileged architecture is incomplete: the reference hardware platform and the various binary
interfaces remain to be specified. There is also much to be done in the user ISA.

For example, we see two outstanding issues in the multiprocessor memory system. The
first is definitional: an operational model of the memory system remains to be specified.
Informally, we lean towards a model that mandates store atomicity and respects read-after-
write hazards in the instruction stream. We briefly note that such a stricture does not
preclude techniques like value speculation [62]; it just increases their implementation com-
plexity, placing greater onus on the misspeculation detection mechanisms.

The second is a missing feature: multi-word atomicity. The A extension provides atomics
only on word-sized quantities. In contrast, some ISAs provide a double-word compare-and-
swap (DW-CAS) operation. The most common use of DW-CAS is to sidestep the ABA
problem1 by using the second word as a sequence number. This workaround is unneces-
sary in RISC-V, since the load-reserved/store-conditional primitives do not suffer from the
ABA problem. But the omission of DW-CAS still presents the potential for incompatibility.
Nevertheless, we view DW-CAS as a band-aid, and instead favor a more general multi-word
atomicity facility, along the lines of the original transactional memory proposals [41]. But it
seems prudent to wait and see what direction the programming language community takes,
rather than over-architecting a heavyweight ISA extension that might go largely unused.

Another pivotal ISA feature we have yet to specify in RISC-V is efficient support for
data-level parallelism. The most popular ISAs provide a fixed-width SIMD architecture.
This rigid approach exposes a forward-incompatible programming model: as successive ISA
versions expand the SIMD width, old software cannot exploit the increased parallelism with-
out recompilation. Likewise, software compiled for wider SIMD cannot execute natively on
old hardware. In contrast, traditional vector architectures need not expose the vector length

1As described in Section 4.2, the ABA problem arises when a memory location is modified from the value
A to the value B, then modified back to the value A. Since the success or failure of CAS is based upon value
equality, CAS cannot detect this scenario.
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statically [76]. The design is therefore scalable, in that the same program binaries execute
at full performance on machines with any vector length. This vastly superior architectural
paradigm will eventually form the RISC-V V extension.

We further expect that RISC-V will be used and extended in ways that we would never
be able to anticipate. One of the most exciting prospects for RISC-V is its role as a research
vehicle. We eagerly anticipate the free expression of other engineers’ creativity in the form
of novel ISA extensions and microarchitectural realizations.
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Appendix A

User-Level ISA Encoding

This appendix contains the encodings of the instructions in the RV32G and RV64G user-level
ISAs, described in Chapters 3 and 4.
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RV32I Base Instruction Set
imm[31:12] rd 0110111 LUI
imm[31:12] rd 0010111 AUIPC

imm[20|10:1|11|19:12] rd 1101111 JAL
imm[11:0] rs1 000 rd 1100111 JALR

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

imm[11:0] rs1 000 rd 0000011 LB
imm[11:0] rs1 001 rd 0000011 LH
imm[11:0] rs1 010 rd 0000011 LW
imm[11:0] rs1 100 rd 0000011 LBU
imm[11:0] rs1 101 rd 0000011 LHU

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB
imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH
imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW

imm[11:0] rs1 000 rd 0010011 ADDI
imm[11:0] rs1 010 rd 0010011 SLTI
imm[11:0] rs1 011 rd 0010011 SLTIU
imm[11:0] rs1 100 rd 0010011 XORI
imm[11:0] rs1 110 rd 0010011 ORI
imm[11:0] rs1 111 rd 0010011 ANDI

0000000 shamt rs1 001 rd 0010011 SLLI
0000000 shamt rs1 101 rd 0010011 SRLI
0100000 shamt rs1 101 rd 0010011 SRAI
0000000 rs2 rs1 000 rd 0110011 ADD
0100000 rs2 rs1 000 rd 0110011 SUB
0000000 rs2 rs1 001 rd 0110011 SLL
0000000 rs2 rs1 010 rd 0110011 SLT
0000000 rs2 rs1 011 rd 0110011 SLTU
0000000 rs2 rs1 100 rd 0110011 XOR
0000000 rs2 rs1 101 rd 0110011 SRL
0100000 rs2 rs1 101 rd 0110011 SRA
0000000 rs2 rs1 110 rd 0110011 OR
0000000 rs2 rs1 111 rd 0110011 AND

0000 pred succ 00000 000 00000 0001111 FENCE
0000 0000 0000 00000 001 00000 0001111 FENCE.I

000000000000 00000 000 00000 1110011 ECALL
000000000001 00000 000 00000 1110011 EBREAK
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RV64I Base Instruction Set (in addition to RV32I)
imm[11:0] rs1 110 rd 0000011 LWU
imm[11:0] rs1 011 rd 0000011 LD

imm[11:5] rs2 rs1 011 imm[4:0] 0100011 SD
000000 shamt rs1 001 rd 0010011 SLLI
000000 shamt rs1 101 rd 0010011 SRLI
010000 shamt rs1 101 rd 0010011 SRAI

imm[11:0] rs1 000 rd 0011011 ADDIW
0000000 shamt rs1 001 rd 0011011 SLLIW
0000000 shamt rs1 101 rd 0011011 SRLIW
0100000 shamt rs1 101 rd 0011011 SRAIW
0000000 rs2 rs1 000 rd 0111011 ADDW
0100000 rs2 rs1 000 rd 0111011 SUBW
0000000 rs2 rs1 001 rd 0111011 SLLW
0000000 rs2 rs1 101 rd 0111011 SRLW
0100000 rs2 rs1 101 rd 0111011 SRAW

RV32M Standard Extension
0000001 rs2 rs1 000 rd 0110011 MUL
0000001 rs2 rs1 001 rd 0110011 MULH
0000001 rs2 rs1 010 rd 0110011 MULHSU
0000001 rs2 rs1 011 rd 0110011 MULHU
0000001 rs2 rs1 100 rd 0110011 DIV
0000001 rs2 rs1 101 rd 0110011 DIVU
0000001 rs2 rs1 110 rd 0110011 REM
0000001 rs2 rs1 111 rd 0110011 REMU

RV64M Standard Extension (in addition to RV32M)
0000001 rs2 rs1 000 rd 0111011 MULW
0000001 rs2 rs1 100 rd 0111011 DIVW
0000001 rs2 rs1 101 rd 0111011 DIVUW
0000001 rs2 rs1 110 rd 0111011 REMW
0000001 rs2 rs1 111 rd 0111011 REMUW
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RV32A Standard Extension
00010 aq rl 00000 rs1 010 rd 0101111 LR.W
00011 aq rl rs2 rs1 010 rd 0101111 SC.W
00001 aq rl rs2 rs1 010 rd 0101111 AMOSWAP.W
00000 aq rl rs2 rs1 010 rd 0101111 AMOADD.W
00100 aq rl rs2 rs1 010 rd 0101111 AMOXOR.W
01100 aq rl rs2 rs1 010 rd 0101111 AMOAND.W
01000 aq rl rs2 rs1 010 rd 0101111 AMOOR.W
10000 aq rl rs2 rs1 010 rd 0101111 AMOMIN.W
10100 aq rl rs2 rs1 010 rd 0101111 AMOMAX.W
11000 aq rl rs2 rs1 010 rd 0101111 AMOMINU.W
11100 aq rl rs2 rs1 010 rd 0101111 AMOMAXU.W

RV64A Standard Extension (in addition to RV32A)
00010 aq rl 00000 rs1 011 rd 0101111 LR.D
00011 aq rl rs2 rs1 011 rd 0101111 SC.D
00001 aq rl rs2 rs1 011 rd 0101111 AMOSWAP.D
00000 aq rl rs2 rs1 011 rd 0101111 AMOADD.D
00100 aq rl rs2 rs1 011 rd 0101111 AMOXOR.D
01100 aq rl rs2 rs1 011 rd 0101111 AMOAND.D
01000 aq rl rs2 rs1 011 rd 0101111 AMOOR.D
10000 aq rl rs2 rs1 011 rd 0101111 AMOMIN.D
10100 aq rl rs2 rs1 011 rd 0101111 AMOMAX.D
11000 aq rl rs2 rs1 011 rd 0101111 AMOMINU.D
11100 aq rl rs2 rs1 011 rd 0101111 AMOMAXU.D
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RV32F Standard Extension
imm[11:0] rs1 010 rd 0000111 FLW

imm[11:5] rs2 rs1 010 imm[4:0] 0100111 FSW
rs3 00 rs2 rs1 rm rd 1000011 FMADD.S
rs3 00 rs2 rs1 rm rd 1000111 FMSUB.S
rs3 00 rs2 rs1 rm rd 1001011 FNMSUB.S
rs3 00 rs2 rs1 rm rd 1001111 FNMADD.S
0000000 rs2 rs1 rm rd 1010011 FADD.S
0000100 rs2 rs1 rm rd 1010011 FSUB.S
0001000 rs2 rs1 rm rd 1010011 FMUL.S
0001100 rs2 rs1 rm rd 1010011 FDIV.S
0101100 00000 rs1 rm rd 1010011 FSQRT.S
0010000 rs2 rs1 000 rd 1010011 FSGNJ.S
0010000 rs2 rs1 001 rd 1010011 FSGNJN.S
0010000 rs2 rs1 010 rd 1010011 FSGNJX.S
0010100 rs2 rs1 000 rd 1010011 FMIN.S
0010100 rs2 rs1 001 rd 1010011 FMAX.S
1100000 00000 rs1 rm rd 1010011 FCVT.W.S
1100000 00001 rs1 rm rd 1010011 FCVT.WU.S
1110000 00000 rs1 000 rd 1010011 FMV.X.S
1010000 rs2 rs1 010 rd 1010011 FEQ.S
1010000 rs2 rs1 001 rd 1010011 FLT.S
1010000 rs2 rs1 000 rd 1010011 FLE.S
1110000 00000 rs1 001 rd 1010011 FCLASS.S
1101000 00000 rs1 rm rd 1010011 FCVT.S.W
1101000 00001 rs1 rm rd 1010011 FCVT.S.WU
1111000 00000 rs1 000 rd 1010011 FMV.S.X

000000000011 00000 010 rd 1110011 FRCSR
000000000010 00000 010 rd 1110011 FRRM
000000000001 00000 010 rd 1110011 FRFLAGS
000000000011 rs1 001 rd 1110011 FSCSR
000000000010 rs1 001 rd 1110011 FSRM
000000000001 rs1 001 rd 1110011 FSFLAGS
000000000010 00000 101 rd 1110011 FSRMI
000000000001 00000 101 rd 1110011 FSFLAGSI

RV64F Standard Extension (in addition to RV32F)
1100000 00010 rs1 rm rd 1010011 FCVT.L.S
1100000 00011 rs1 rm rd 1010011 FCVT.LU.S
1101000 00010 rs1 rm rd 1010011 FCVT.S.L
1101000 00011 rs1 rm rd 1010011 FCVT.S.LU
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RV32D Standard Extension
imm[11:0] rs1 011 rd 0000111 FLD

imm[11:5] rs2 rs1 011 imm[4:0] 0100111 FSD
rs3 01 rs2 rs1 rm rd 1000011 FMADD.D
rs3 01 rs2 rs1 rm rd 1000111 FMSUB.D
rs3 01 rs2 rs1 rm rd 1001011 FNMSUB.D
rs3 01 rs2 rs1 rm rd 1001111 FNMADD.D
0000001 rs2 rs1 rm rd 1010011 FADD.D
0000101 rs2 rs1 rm rd 1010011 FSUB.D
0001001 rs2 rs1 rm rd 1010011 FMUL.D
0001101 rs2 rs1 rm rd 1010011 FDIV.D
0101101 00000 rs1 rm rd 1010011 FSQRT.D
0010001 rs2 rs1 000 rd 1010011 FSGNJ.D
0010001 rs2 rs1 001 rd 1010011 FSGNJN.D
0010001 rs2 rs1 010 rd 1010011 FSGNJX.D
0010101 rs2 rs1 000 rd 1010011 FMIN.D
0010101 rs2 rs1 001 rd 1010011 FMAX.D
0100000 00001 rs1 rm rd 1010011 FCVT.S.D
0100001 00000 rs1 rm rd 1010011 FCVT.D.S
1010001 rs2 rs1 010 rd 1010011 FEQ.D
1010001 rs2 rs1 001 rd 1010011 FLT.D
1010001 rs2 rs1 000 rd 1010011 FLE.D
1110001 00000 rs1 001 rd 1010011 FCLASS.D
1100001 00000 rs1 rm rd 1010011 FCVT.W.D
1100001 00001 rs1 rm rd 1010011 FCVT.WU.D
1101001 00000 rs1 rm rd 1010011 FCVT.D.W
1101001 00001 rs1 rm rd 1010011 FCVT.D.WU

RV64D Standard Extension (in addition to RV32D)
1100001 00010 rs1 rm rd 1010011 FCVT.L.D
1100001 00011 rs1 rm rd 1010011 FCVT.LU.D
1110001 00000 rs1 000 rd 1010011 FMV.X.D
1101001 00010 rs1 rm rd 1010011 FCVT.D.L
1101001 00011 rs1 rm rd 1010011 FCVT.D.LU
1111001 00000 rs1 000 rd 1010011 FMV.D.X
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