
Lawrence Berkeley National Laboratory
LBL Publications

Title
Three‐Dimensional Surface Downwelling Longwave Radiation Clear‐Sky Effects in the 
Upper Colorado River Basin

Permalink
https://escholarship.org/uc/item/7zj164m2

Journal
Geophysical Research Letters, 49(4)

ISSN
0094-8276

Authors
Feldman, DR
Worden, M
Falco, N
et al.

Publication Date
2022-02-28

DOI
10.1029/2021gl094605

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7zj164m2
https://escholarship.org/uc/item/7zj164m2#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


1.  Introduction
Approximately half of the world relies on water resources derived from mountains (Huss et  al.,  2017). Un-
fortunately, these resources have been dwindling, and there is significant concern that they will be even more 
threatened in the future (Sturm et al., 2017), with changes in the phase and amount of precipitation in high-al-
titude complex terrain. The Colorado River Watershed is a prime example where dwindling snowpack (Mote 
et al., 2018) and diminished flows (Milly & Dunne, 2020) compound to impact water resources on which millions 
of people rely (James et al., 2014).

High-altitude complex terrain is particularly problematic for modeling and observations, largely driven by first-or-
der spatiotemporal heterogeneity in the processes that impact hydrology. Radiation is one such process of primary 
importance for mountainous hydrology (Brubaker et al., 1996; Kustas et al., 1994; Mizukami et al., 2014). Long-
wave radiation has long been recognized as a key driver in the modeling of snowmelt (Brutsaert, 1975; Marks & 
Dozier, 1979), impacting the timing and availability of water resources from this source (Rhoades et al., 2018). In 
addition, radiation, slopes, and aspects are key controls on ecosystem processes and drought vulnerability (e.g., 
Wainwright et al., 2020).

Ohmura  (2001) found both from a theoretical and phenomenological perspective that downwelling longwave 
radiation (DLR) is the main energy source for snowmelt. This finding was confirmed both by Hock (2003) and 
M. Zhu et al. (2017), where those works highlight the myriad dynamic and thermodynamic processes that govern 
surface temperature in complex terrain.

Abstract  In complex terrain, non-parallel surfaces receive emitted radiation from adjacent surfaces. 
Qualitatively, where surface skin temperatures and lower tropospheric temperature and humidity are not 
uniform, the downwelling longwave radiation (DLR) will be determined not just by radiation from the 
atmosphere above a given location, but also by adjacent surface temperatures. We quantify this three-
dimensional longwave radiative effect over the Upper Colorado River Basin in clear-sky conditions by 
calculating surface DLR with observed land-surface temperatures from ECOSTRESS. We find that this effect is 
due to terrain-subtended sky-view and represents ∼22% of the surface longwave flux, rising to ∼28% and ∼24% 
in the East and Southeast of the Basin, respectively, and can be >50% in extreme cases. The common omission 
of this effect in atmospheric radiation models leads to an underestimation of DLR in complex terrain, especially 
at higher elevations, which has significant implications for mountainous ecohydrology simulations.

Plain Language Summary  In the mountains, snowmelt is driven primarily by more sunlight and 
secondarily by warmer temperatures, but as areas become snow-free, they will warm much faster during the 
day than snow-covered ones will. The snow-free surfaces will radiate onto the snow-covered surfaces, warming 
them and melting them even faster. While this effect is well understood in principle, its size and where it is 
occurring are not, since they depend both on terrain and on what surface temperatures actually are. We use 
a thermal camera mounted on the International Space Station called ECOSTRESS to show how large this 
3-dimensional effect is in the Upper Colorado River from which nearly all of that river's water is derived. 
We show that the effect is concentrated in the Upper Gunnison River and that most hydrological models do 
not include it. However, fixing that omission will tend to exacerbate hydrological model biases in predicting 
snowmelt, suggesting that more snowmelt modeling work is needed.

FELDMAN ET AL.

© 2022 The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided the 
original work is properly cited and is not 
used for commercial purposes.

Three-Dimensional Surface Downwelling Longwave Radiation 
Clear-Sky Effects in the Upper Colorado River Basin
D. R. Feldman1 , M. Worden1,2, N. Falco1 , P. J. Dennedy-Frank1 , J. Chen1 , B. Dafflon1 , and 
H. Wainwright1

1Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 2Department of Earth System Science, Stanford University, 
Stanford, CA, USA

Key Points:
•	 �In mountains, warmer, snow-free 

surfaces emit more longwave energy 
that heat up colder, snow-covered 
surfaces

•	 �ECOSTRESS data show that this 3-D 
effect is spatially variable, accounting 
for ∼22% of surface longwave flux in 
the Upper Colorado River

•	 �Most weather and climate models 
do not include this 3-D effect and 
therefore underestimate surface 
longwave energy in complex terrain

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
D. R. Feldman,
drfeldman@lbl.gov

Citation:
Feldman, D. R., Worden, M., Falco, 
N., Dennedy-Frank, P. J., Chen, J., 
Dafflon, B., & Wainwright, H. (2022). 
Three-dimensional surface downwelling 
longwave radiation clear-sky effects in the 
Upper Colorado River Basin. Geophysical 
Research Letters, 49, e2021GL094605. 
https://doi.org/10.1029/2021GL094605

Received 19 AUG 2021
Accepted 19 JAN 2022

Author Contributions:
Conceptualization: D. R. Feldman
Data curation: D. R. Feldman, M. 
Worden
Formal analysis: D. R. Feldman, M. 
Worden, N. Falco, J. Chen, B. Dafflon, H. 
Wainwright
Funding acquisition: H. Wainwright
Investigation: D. R. Feldman, M. 
Worden, N. Falco, P. J. Dennedy-Frank, J. 
Chen, B. Dafflon, H. Wainwright
Methodology: D. R. Feldman, N. Falco, 
P. J. Dennedy-Frank, J. Chen, B. Dafflon, 
H. Wainwright

10.1029/2021GL094605
RESEARCH LETTER

1 of 11

 19448007, 2022, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021G

L
094605, W

iley O
nline L

ibrary on [29/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0003-3365-5233
https://orcid.org/0000-0003-3307-6098
https://orcid.org/0000-0001-9148-647X
https://orcid.org/0000-0002-4970-1436
https://orcid.org/0000-0001-9871-5650
https://doi.org/10.1029/2021GL094605
https://doi.org/10.1029/2021GL094605
https://doi.org/10.1029/2021GL094605
https://doi.org/10.1029/2021GL094605
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021GL094605&domain=pdf&date_stamp=2022-02-14


Geophysical Research Letters

FELDMAN ET AL.

10.1029/2021GL094605

2 of 11

DLR at a given location is a function of total hemispheric emission, and is therefore determined by the longwave 
emission of the atmosphere and the longwave emission, which itself is determined by skin temperature and 
emissivity, from terrain that subtends the location's sky-view. The importance of terrain effects on DLR has been 
confirmed by limited observations that noted emission temperatures of rocks in snow-covered environments can 
be more than 20 K above freezing (Olyphant, 1986; Sicart et al., 2006). Recently, a number of publications have 
recognized the importance of topography for longwave radiation in complex terrain (Yan et al., 2016, 2020), and 
found that topographic radiative effects may impact precipitation and snowmelt and need to be included in mod-
els to avoid biases (Gu et al., 2020; Lee et al., 2015).

Radiometrically accurate modeling in mountainous complex terrain must recognize the geometric effects from 
this terrain, though many radiation solvers use plane-parallel formulations and incur errors. The importance of 
3-D shortwave effects has been shown to have strong impacts on the location, timing, and amount of snow-melt 
(Palazzi et al., 2019), and a parameterization, based on adjustments to a plane-parallel calculation built from 
Monte Carlo codes, have been developed (Lee et al., 2015) and implemented in the Community Land Model 
(CLM; Lee et al., 2019) and the Energy Exascale Earth System Model (E3SM; Hao et al., 2021). Still, the use 
of parameterizations of 3-D longwave radiative effects is exceedingly rare, even though these effects can be in-
stantaneously larger than 100 W/m2 and represent the dominant source of uncertainty in forcing of the snowpack 
(Raleigh et al., 2015).

Plüss and Ohmura (1997) discussed terrain effects on DLR extensively and proposed a simple parameterization 
based on local air and surface temperature that is predicated on a fixed amount of snow-cover at a given location. 
However, there has been insufficient spatiotemporal data to quantify the qualitatively understood error incurred 
by omitting terrain effects from estimates of DLR in complex terrain. Thermal imagery from satellite instruments 
characterizes spatial variability in the thermal environment but imagery from, for example, MODIS or GOES, 
is of coarse resolution (∼1 and ∼2 km, respectively) relative to the relevant terrain effects (see Figure 2 and also 
Lipton, 1992; Lipton & Ward, 1997). While instruments such as Landsat and ASTER provide thermal imagery 
at much higher spatial resolution (∼100 m for Landsat 8 and ∼90 m for ASTER), those measurements are made 
on a sun-synchronous platform and are therefore unable to measure across a diurnal cycle to capture the tempo-
ral dynamics of differential land-surface heating in mountains (Hock, 1999, 2005; Hock et al., 2005; Singh & 
Kumar, 1996).

The novelty of the research presented here is that it is based on calculations informed by high-resolution thermal 
imagery from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) 
instrument across an entire mountain basin: the Upper Colorado River Basin (UCRB). ECOSTRESS produces 
unique space-based thermal imagery, with 70-m resolution at an inclined orbit aboard the International Space 
Station, thereby acquiring snapshots of the surface thermal environments in high-altitude complex terrain at a 
wide range of local solar hours (Fisher et al., 2020). ECOSTRESS surface skin temperature measurements are 
derived from mid-infrared radiometric observations in 3 micro-windows spanning wavelengths between 8 and 
12 μm. The orbit of the International Space Station precesses across the local diurnal cycle, which enables high 
spatial resolution and measurements at different local solar hours. While ECOSTRESS does not continuously 
sample a given area like geostationary platforms can, or sample regularly, such as with the 16-day repeat time of 
sun-synchronous platforms, it does collect thermal imagery across a range of local times unlike sun-synchronous 
platforms and does so at much higher spatial resolution than GOES-16 observations (70 m vs. 2 km).

In this paper, we explore the importance of terrain for DLR in the UCRB using the novel, intermittent, poten-
tially gap-filling data introduced from ECOSTRESS. We present an initial analysis of 2 years of ECOSTRESS 
observations to characterize the importance of terrain effects to DLR calculations and discuss the lessons that can 
be learned from these observations for model parameterization development. We show the value of resolution 
and spatial variability for characterizing DLR, that it contributes to snowmelt especially in specific locations of 
the UCRB, and that terrain effects should be included in hydrological models to avoid low-biases in the surface 
energy budget.
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2.  Methods
The first part of the analysis presented here focuses on the 300 km2 near Crested Butte, Colorado, since it is 
heavily studied and provides synergistic research opportunities with field work and campaigns such as the Water-
shed Function Scientific Focus Area and the Surface Atmosphere Integrated Field Laboratory (SAIL) (Feldman 
et al., 2021; Hubbard et al., 2018). The latter part of the analysis presented here looks at the UCRB, covering 
285,000 km2 of the Southwestern United States including portions of Wyoming, Utah, Colorado, New Mexico, 
and Arizona. We analyze this area because nearly all of the water resources of the much larger (640,000 km2) 
Colorado River Watershed are derived from this watershed (Tillman, 2015). The UCRB contributes to water for 
40 million people, enables ∼53 GW of electric power generation capacity, supports ∼$1.3 Trillion of economic 
activity annually, and provides ∼15 million jobs (James et al., 2014), while being the most hydrologically signif-
icant watershed in North America (Messerli et al., 2004).

We use the ECOSTRESS land surface temperature and emissivity (LSTE) Product at 70-m resolution, which 
includes retrievals of land surface temperature (LST) under clear-sky conditions. The instrument collects data at 
a given location at irregular intervals and at varying times of day, since it is manifested on the International Space 
Station (ISS) and collects data according to the ISS orbit. Given the difficulty in determining LST from ECOS-
TRESS in the presence of clouds, we only use LST data for which the ECOSTRESS reports cloud-free conditions 
with quality-assurance flags reporting good quality L1B data and <1 K LST accuracy. The approach used for 
determining whether pixels are cloud-contaminated uses thermal tests developed directly from the MODIS and 
VIIRS cloud mask algorithms (Hulley, 2016). In addition, we use 30-m terrain data from the Global Digital Ele-
vation Model Version 3 from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER; 
Abrams et al., 2020) for elevation, slope, and aspect calculations area-averaged to 70-m. Finally, we use snow 
depth retrievals from the Airborne Snow Observatory (ASO) surveys (Painter et al., 2016) collected in 30–31 
March, 2018 and 24 May 2018.

We use the approach of Plüss and Ohmura (1997), which provides a set of formulas for calculating terrain effects 
on DLR: the DLR at a given location is the result of integrated radiance contributions from sky and terrain, as 
shown in Equations 1a–1f.

DLR = 𝐿𝐿
↓
𝑎𝑎 + 𝐿𝐿
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where 𝐴𝐴 𝐴𝐴
↓
𝑎𝑎 is the portion of the DLR from the atmosphere (sky) and 𝐴𝐴 𝐴𝐴

↓
𝑠𝑠 is the portion of the DLR from surface (ter-

rain). The sky radiance Ia is formally a function of zenith angle θ and azimuth angle φ and, practically speaking, 
it can be adequately represented as a function of near-surface humidity ea and near-surface air temperature Ta as 
shown in Equation 1f from Brutsaert (1975). In Equation 1b, the lower interval bound for zenith integration over 
the sky is set by the elevation angle H, which varies azimuthally. The angle i between the vector vertical to the 
surface and the vector of interest is given in Equation 1c as a function of inclined surface inclination angle β. The 
terrain irradiance is given in Equation 1d where the summation terms are based on the parameterization of terrain 
radiance where LB is the emitted radiance of a 0°C blackbody, and a and b are spatially invariant constants in a 
parameterization, as given in Plüss and Ohmura (1997). The summation index j represents discretization of azi-
muth angle for a given radius and the summation index k represents the discretization of radius. Each summation 
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term in Equation 1d represents the contribution of radiance to the total irradiance by including the discrete solid 
angles Ωj,k subtended by terrain elements at a range of radii and azimuth angles from the surface of interest. The 
summation of azimuth angle is discretized into N intervals over 2π radians with M radius increments, where 
radius increments practically extend 2 km from the surface of interest (and was verified with heuristic tests in 
the Supporting Information S1) (Lipton, 1992; Lipton & Ward, 1997). In Equation 1e, we approximate the solid 
angle subtended by a terrain element at a given radius and azimuth by determining the unobstructed viewing 
angle γj,k from the surface of interest to the terrain element j, k and using the formula for the solid angle of a cone, 
following the sky-view calculation in complex terrain of Zakšek et al. (2011). This formulation neglects thermal 
scattering and simplifies atmospheric emission and treats surface emissivity as a scalar term, but the use of the 
Brutsaert (1975) formulation and the omission of thermal scattering has been found to incur mean bias errors 
of less than 2.5 W/m2 relative to field observations (Howard & Stull, 2013; M. Zhu et al., 2017) and has been 
shown to be reasonable for clear-sky conditions in complex terrain (Bennett et al., 1960; Flerchinger et al., 2009; 
Unsworth & Monteith, 1975), to which we limit the analysis presented here.

We use the formulae in Equations 1a–1f to develop instantaneous maps of DLR based on ECOSTRESS surface 
temperature observations in Equation 1c. Surface air temperature (SAT) and surface humidity are required for 
Equation 1f, and we set SAT to 3°C less than LST observations and humidity to 50% of saturation vapor pressure. 
We test the impact of systematic biases in SAT and surface humidity with sensitivity tests based on ECMWF 
reanalysis fields in the Supporting Information S1 and we find that error in SAT and surface humidity produces 
a second-order effect on DLR, at less than 10 W/m2 and find that DLR is sensitive to LST to first order and SAT 
and surface humidity to second-order.

We also calculate the fraction of DLR from terrain contributions by comparing the results from Equations 1d 
and 1b, including across the entire UCRB. We recognize that an analysis of the collective impacts of terrain on 
DLR across the diurnal cycle is an important consideration. We therefore develop diurnally averaged contribu-
tions of the terrain to DLR simply by averaging the instantaneous snapshots of observationally derived DLR from 
Equation 1 and rationale and limitations of that approach below.

Finally, we briefly look into the forcing that terrain effects exert on the snowpack. We overlay the longwave clear-
sky DLR with the change in snow depth measured by the Airborne Snow Observatory (ASO) measured from the 
end-of-winter peak to early May for a range of slope and aspects.

3.  Results
The relationship between the LST measurements and DLR is shown in Figure 1, which presents instantaneous 
LST measurements from ECOSTRESS and our corresponding calculations of DLR using Equations 1a–1f. In 
spite of data gaps from clouds, these plots predictably show generally increasing surface temperatures with in-
creasing solar elevation angle for several snapshots in June 2020, though we recognize that surface temperature 
is strongly influenced by local meteorological conditions, and that these snapshots may be associated with dif-
ferent weather systems. At the same time, though, the DLR calculations in Figure 1 corresponding to those LST 
measurements, while having more gaps due to clouds causing outages in DLR calculations of adjacent pixels, 
do exaggerate gradients in surface temperature and produce persistent “hot-spots” (indicated with blue arrows). 
These “hot-spots,” such as the northwestern and western sides of the domain are shown in Figure 1, and are con-
centrated where the fraction of the sky visible from a given location (its sky-view) is most subtended by terrain 
with surrounding warm surfaces.

In Figure 2, we show the importance of spatial resolution in resolving these 3-dimensional longwave radiative 
effects at the surface. The panels of the figure show calculations following Equations 1a–1f of diurnally averaged 
DLR at 70-m resolution and successive calculations where both surface temperature and terrain were area-aver-
aged to 500-m, 1 km, and 2 km resolution, with the latter resolution corresponding to the resolution of geostation-
ary observations. These illustrate that a significant amount of spatial information is obscured at 500 m resolution, 
and then generally corrupted at 1 and 2 km resolution.

Domain-wide bias and RMSE statistics for different resolutions are presented in Figures 2e and 2f, respectively. 
These plots show that under-resolving complex terrain can lead to remarkably large domain-average bias and 
RMSE values: DLR exhibits a low bias by ∼30 W/m2 and an RMSE of ∼45 W/m2 for 2 km resolution versus 
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70 m resolution. The heuristic plots in Figures 2e and 2f address whether 70 m resolution is, itself, sufficient to 
produce unbiased and low RMSE estimates of DLR. From the shape of the RMSE heuristic curve, which grows 
quasi-logarithmically with resolution, there may not be additional information from including higher-resolution 
information. The bias heuristic is strictly positively signed, implies both that the exclusion of terrain-effects 
systematically underestimates DLR and that LST observations collected both by GOES and polar-orbiting in-
struments like MODIS and VIIRS at 2 and 1 km resolution, respectively, underestimate DLR by under-resolving 
terrain effects.

Next, we show a comparison of shortwave and longwave terrain effects for illustrative purposes in Figure 3. This 
figure shows changes in ASO-derived snow-depth change during spring melt from 30 March 2018 to 24 May 

Figure 1.  (a) Instantaneous ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) land surface temperature (LST) observation 
over ERW (outlined in black) on 12 June 2020 at UTC 00:17 (18:17 Mountain Standard Time [MST]). (b) Instantaneous calculation of downwelling longwave radiation 
(DLR) over ERW on 12 June 2020 at UTC 00:17, based on ECOSTRESS LST observation. (c and d) Same as (a and b) but on 24 June 2020 at UTC 12:15 (06:15 
MST). (e and f) Same as (a and b) but on 24 June 2020 at UTC 18:45 (12:45 MST). Blue arrows in (b, d, and f) highlight “hot-spots” of persistently high DLR from 
terrain.
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2018 with overlays of longwave radiation contours. The radiation contours are calculated from ECOSTRESS 
observations available in the spring of 2020. We recognize that these are not temporally collocated, but since 
we do not have ASO surveys that measure snowmelt during the period where ECOSTRESS has collected data, 
we are displaying these results for illustrative purposes. We also note that there is some interannual consistency, 
scaled by the amount of precipitation received in a given year, to the spatial patterns of snow deposition and melt 
in this area (Raleigh et al., 2019). The callout boxes in Figure 3 show areas with enhanced longwave radiation and 
show the distributions of terrain aspect, slope, and sky-view. In the callouts, snow-melt loosely follows gradients 
in DLR, but variation in slope, aspect, and sky-view point to multiple factors influencing the surface energy 
balance, not just in the longwave but also in the shortwave. The Supporting Information S1 explores these spatial 
relationships in more detail.

Figure 2.  (a) Diurnally averaged downwelling longwave radiation (DLR) (W/m2) calculated over ERW (outlined in black) in the Upper Colorado River Basin at 
70 m resolution from June 2020. (b) Same as (a) but recalculated with surface temperatures and elevation area-averaged to 500 m resolution. (c) Same as (b) but with 
resampling to 1 km resolution. (d) Same as (d) but with resampling to 2 km resolution. (e) ERW-averaged DLR bias (abscissa value minus 70 m value) as a function of 
resolution. (f) Same as (e) but showing ERW-averaged RMSE as a function of resolution.
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Figure 4 expands the analysis across the UCRB to quantify the percentage of DLR from terrain effects in 2° × 2° 
sub-regions for all observations from ECOSTRESS between April and June 2020. The histograms show the 
fractional contribution of the terrain to DLR from instantaneous ECOSTRESS LST observations as a function of 
elevation in each subset. The first finding from this UCRB-wide analysis is that there is a surprising amount of 
variability in the histograms for different sub-regions of the UCRB. Some sub-regions of the UCRB, for example, 
the east and southeast exhibit the largest terrain effects, while the northern and southwestern sub-regions exhibit 
the smallest terrain effects. The spatial variability is driven by sky-view factor variability in each sub-region (see 
Supporting Information S1). In the east and southeast, 24.3% and 27.8% of DLR is contributed by terrain across 
most elevations, respectively, while terrain effects on DLR in the north are 22.8%, and the southwest are 17.5%. 
Together, the average terrain contribution to DLR is 21.6% across the UCRB.

In Figure 5, the effects of neglecting terrain effects on DLR are shown across the UCRB. Again depending on 
sky-view, terrain effects can induce very large biases, and some of these biases are concentrated in narrow eleva-
tion ranges for different sub-regions, especially in the northern sub-region of the UCRB. These findings shows 
that shorter-term biases in DLR from neglecting terrain effects can be up to 100 W/m2 and that those biases 
extend across the UCRB.

4.  Discussion
Together, these results point to the role of fine-scale terrain in influencing the surface radiative energy budget, 
and that the well-known terrain effects on shortwave radiation need to be evaluated alongside terrain effects on 
longwave radiation. Specifically, from ECOSTRESS LST observations, we find that terrain effects exaggerate 
gradients in LST to produce “hot-spots” in DLR over the UCRB that persist across diurnal to synoptic variability 
in LST. We find that calculations of the thermal energy environment that do not explicitly account for terrain 
effects will be low-biased and have very large RMSEs if these effects are not resolved below 500 m. We also 
show that significant longwave and shortwave terrain effects are not necessarily collocated. UCRB-wide analysis 
reveals that longwave terrain effects are spatially concentrated in the East and Southeast of the UCRB due to 
diminished sky-view in those areas.

Figure 3.  Upper left panel shows contours of springtime clear-sky downwelling longwave radiation at the surface over the ERW. Underlying color contours show 
change (May 2018–April 2018) in SWE measured by ASO. Three callout regions of the ERW along with distributions of their terrain slope, aspect, and sky-view are 
also shown.
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Figure 4.  Elevation-resolved histogram of the fraction of downwelling longwave radiation from terrain, with calculations derived from ECOsystem Spaceborne 
Thermal Radiometer Experiment on Space Station (ECOSTRESS) in 2° × 2° sub-regions across the Upper Colorado River Basin (UCRB) between April and June 
2020. The center depicts the entire UCRB and its sub-regions with a number in each sub-region indicating the maximum local solar hour time between ECOSTRESS 
observations used to develop diurnal cycle averages, while the color of the sub-region indicates how many ECOSTRESS observations are acquired for that sub-region.

Figure 5.  Same as Figure 4 except showing two-dimensional elevation-resolved histograms of DLR bias from neglecting topographic effects.
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However, there are several caveats to these results. First, the approach we took to determine DLR used reanal-
ysis values for surface air temperature and humidity, which could incur error up to 10 W/m2 (see Supporting 
Information S1).

Second, for diurnally averaged estimates, we would prefer to use LST observations from ECOSTRESS in an 
assimilation framework, but do not have a competent model for LST diurnal cycle in complex terrain at the res-
olution of ECOSTRESS.

Third, LST retrievals from ECOSTRESS, while subjected to validation activities (Hulley et al., 2021), may con-
tain biases in complex terrain since terrain elements need to be incorporated in such retrievals. Otherwise, they 
can be biased high by as much as 1 K in algorithms that do not include these effects (Lipton, 1992; Lipton & 
Ward, 1997; X. Zhu et al., 2020) and ECOSTRESS georegistration accuracy in complex terrain (Smyth, 2018) 
can induce uncertainty in the analysis.

Fourth, for this analysis, we only considered clear-sky conditions. LW terrain effects are strongest in the clear-sky 
due their ability to produce to higher surface temperatures, so these results provide a likely upper-bound on 3-D 
LW radiative effects in complex terrain. Finally, we only focused on a limited time-period at the end of spring 
melt where LST over snow-covered surfaces remains near the freezing point while LST over snow-free surfaces 
can vary by more than 30°K (see Supporting Information S1). We expect terrain effects to be smaller than what 
is presented here in the cold season, though they could be comparable in the warm season.

Despite these caveats, there are implications for the representation of atmospheric and surface radiation in com-
plex terrain from these findings. From these findings, it is reasonable to recommend that longwave terrain effects 
be included in atmospheric and surface models. Models across a range of complexities, from atmospheric pro-
cess models like the Weather Research and Forecasting (WRF) model to Earth System Models generally do not 
include these effects. The persistence of exaggerated effects of terrain on DLR across meteorological conditions 
and the strong dependence of these effects on topography suggest that the contributions of terrain to DLR would 
be amenable to a straightforward sub-grid parameterization based on DEM, surface temperature, and fractional 
snow coverage. Given our finding that a low-bias in DLR is incurred in surface energy budgets of models of 
high-altitude complex terrain from the omission of three-dimensional longwave effects, the inclusion of these ef-
fects in models will impact their fidelity with regards to snowpack and snow processes (Essery et al., 2009, 2013; 
Feng et al., 2008), which have been identified as a major area of weakness for land surface models (Dirmeyer 
et al., 2006). The inclusion of these effects will also exacerbate the common issue in reanalyses and regional and 
global climate models wherein they produce erratic year-to-year melt rates relative to observationally constrained 
snow products (Rhoades et al., 2018). It will do so by tending to increase DLR and produce greater forcing on the 
snowpack and increased snowmelt.

Data Availability Statement
ECOSTRESS data are freely available and can be downloaded from https://ecostress.jpl.nasa.gov/data. The AS-
TER GDEM is freely available to download from https://asterweb.jpl.nasa.gov/gdem.asp. GOES-16 data are 
freely available to download from https://noaa-goes16.s3.amazonaws.com/index.html. ASO snow depth data are 
freely available to download from https://nsidc.org/data/ASO_50M_SD/versions/1.
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