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Stochastic Density Functional Theory: Real- and Energy-Space
Fragmentation for Noise Reduction

Ming Chen,1, 2 Roi Baer,3 Daniel Neuhauser,4 and Eran Rabani1, 2, 5
1)Department of Chemistry, University of California, Berkeley, California 94720,
USA
2)Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
USA
3)Fritz Haber Center of Molecular Dynamics and Institute of Chemistry,
The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
4)Department of Chemistry and Biochemistry, University of California, Los Angeles,
California 90095, USA
5)The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science,
Tel Aviv University, Tel Aviv 69978, Israel

Stochastic density functional theory (sDFT) is becoming a valuable tool for studying ground
state properties of extended materials. The computational complexity of describing the Kohn-
Sham orbitals is replaced by introducing a set of random (stochastic) orbitals leading to linear
and often sub-linear scaling of certain ground-state observable at the account of introducing
a statistical error. Schemes to reduce the noise are essential, for example, for determining the
structure using the forces obtained from sDFT. Recently we have introduced two embedding
schemes to mitigate the statistical fluctuations in the electron density and resultant forces
on the nuclei. Both techniques were based on fragmenting the system either in real-space
or slicing the occupied space into energy windows, allowing for a significant reduction of the
statistical fluctuations. For chemical accuracy further reduction of the noise is required, which
could be achieved by increasing the number of stochastic orbitals. However, the convergence is
relatively slow as the statistical error scales as 1/

√
Nχ according to the central limit theorem,

where Nχ is the number of random orbitals. In this paper we combined the aforementioned
embedding schemes and introduced a new approach that builds on overlapped fragments and
energy windows. The new approach significantly lowers the noise for ground state properties
such as the electron density, total energy, and forces on the nuclei, as demonstrated for a
G-center in bulk silicon.

I. INTRODUCTION

Kohn-Sham (KS) density functional theory1,2

(DFT) is widely used to study a wide range
of systems due to its capability of quantita-
tively predicting ground state properties at a
moderate computational cost of O(N3

e ), where
Ne is the number of electrons. While this
moderate scaling allows for an efficient descrip-
tion of the ground state of molecules and bulk
structures with periodic boundary conditions,
the application to systems containing 104 elec-
trons or more, such as nanostructures,3 complex
materials,4 and large biomolecules,5 is still a se-
vere challenge for today’s DFT implementations.
Linear-scaling methods for DFT based on divid-
ing the entire system into subsystems6–8 require
proper treatment of the boundaries between the
fragments,8–13 while methods that rely on the
sparsity of density matrix (DM)14–20 suffer from
slow convergence for systems with small funda-
mental band gaps.19

We have recently introduced an alternative
linear-scaling approach to DFT which, does not
rely on the partitioning of the system into sub-
systems, nor does it depend on the sparsity of
the density matrix.21 Instead, it utilizes stochas-
tic orbitals, which are random linear combina-
tions of deterministic KS orbitals to calculate the
electron density and other ground-state proper-
ties. In practice, the required number of stochas-
tic orbitals does not increase with the system size
for evaluating many ground state properties,21,22

leading to linear scaling or even sub-linear scal-
ing DFT.21,22 In stochastic DFT, linear scaling
is achieved by introducing a statistical error in
the density and related observables, which ac-
cording to the central limit theorem, decreases
rather slowly with the number of stochastic or-
bitals, Nχ, limiting the efficiency and accuracy of
the method. Therefore, developing noise reduc-
tion schemes for sDFT is essential for achieving
chemical accuracy without the need to dramati-
cally increase Nχ.
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One approach for reducing the noise in sDFT
is based on dividing the entire system into frag-
ments. The entire system’s density is then given
as a sum of the fragment densities and a cor-
rection term sampled using stochastic orbitals.
When the sum of the fragment densities provides
a good approximation of the total system’s den-
sity, the correction term is small, leading to sig-
nificant reductions of the noise for the electron
density, energy, and forces on the nuclei. This ap-
proach has been illustrated for systems with open
boundary conditions23–25 as well as for periodic
boundary conditions.22 For the latter case, we
used overlapped fragments to ensure a reasonable
estimate of both the density and the density ma-
trix (this approach was referred to as “overlapped
embedded fragmented stochastic density func-
tional theory” (o-efsDFT).22) Recently, we intro-
duced an alternative technique to mitigate the
statistical noise, referred to as “energy-window
sDFT” (ew-sDFT),26 where the occupied space
was divided into energy-resolved subspaces (“en-
ergy windows”) and the contribution to the den-
sity for each window can be calculated simultane-
ously. This method reduces the statistical noise
in the density and the nuclei forces, but not in
the total electronic energy.26

In this paper, we combine the overlapped em-
bedded fragmented scheme with the energy win-
dow scheme. Noise reduction is obtained by
projecting both the system density matrix and
the fragment density matrix onto fixed energy
windows. The proposed energy window embed-
ded fragmented stochastic DFT (ew-efsDFT) ap-
proach reduces the noise in the electron density,
total energy, and forces on the nuclei and the to-
tal computational time by more than an order of
magnitude compared to ew-sDFT or o-efsDFT, as
illustrated for a G-center embedded in bulk sili-
con. The noise reduction is crucial for obtaining
structural information with chemical accuracy us-
ing only several tens of stochastic orbitals, as will
be shown in a proceeding publication.27

The manuscript is organized as follows: In
Sec II, we briefly review the sDFT. In Sec. III,
we present the o-efsDFT and ew-sDFT methods,
both central to the development of the current
noise reduction scheme. In Sec. IV, we provide
the details of the proposed ew-efsDFT and a sum-
mary of the algorithm. Assessment of the new
approach for a challenging G-center embedded in
bulk silicon is presented in Sec. V alongside a dis-
cussion of the computational complexity and cost
of the ew-efsDFT. Finally, in Sec. VI, we summa-

rize the main developments.

II. STOCHASTIC DENSITY FUNCTIONAL
THEORY

Consider an extended system described by KS-

DFT, with a KS Hamiltonian (ĥKS) given by:

ĥKS = t̂+ v̂nl + v̂loc + v̂H[ρ] + v̂xc[ρ], (1)

where t̂, v̂nl, v̂loc, v̂H[ρ], and v̂xc[ρ] are the opera-
tors of the kinetic energy, the non-local pseudopo-
tential energy, the local pseudopotential energy,
the Hartree energy, and the exchange-correlation
energy, respectively. The Hartree and exchange-
correlation terms depend on the electron den-
sity, ρ(r), which is formally given by (we assume
closed-shell and ignore spin-orbit couplings for
simplicity):

ρ(r) = 2Tr (ρ̂δ(r− r̂))

= lim
β→∞

2Tr
(
θβ(ĥKS, µ)δ(r− r̂)

)
, (2)

where ρ̂ = θβ(ĥKS, µ) is the one-body density

matrix, θβ(x, µ) = 1/(1 + eβ(x−µ)) is the Fermi-
Dirac distribution function parametrized by the
inverse temperature (β) and the chemical poten-
tial (µ) tuned to give the number of electrons,
Ne =

∫
drρ(r). Other smooth functions to ap-

proximate a step function can also be used in-
stead of θβ(x, µ). In KS-DFT, the electron den-
sity can also be written in terms of the KS orbitals
(eigenstates of the KS Hamiltonian), φi(r):

ρ(r) = 2

Nocc∑
i

|φi(r)|2, (3)

where Nocc is the number of occupied orbitals.
In sDFT, the trace in Eq. (2) is replaced by av-

eraging the expectation value of θβ(ĥKS, µ)δ(r−
r̂):

ρ(r) = 2
〈〈
χ
∣∣∣θβ(ĥKS, µ)δ(r− r̂)

∣∣∣χ〉〉
χ
, (4)

where |χ〉 is a stochastic orbital and 〈· · · 〉χ im-
plies averaging over an ensemble of stochastic or-
bitals. The stochastic orbitals are represented
on a real-space grid with Ng grid points; each

grid point is assigned a random value ±1/
√

∆V ,
where ∆V = V/Ng is the volume element and V
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is the volume of the supercell. Eq. (4) can be
rewritten in a compact form:

ρ(r) = 2〈|ξ(r)|2〉χ, (5)

where |ξ〉, is a projected stochastic orbital:

|ξ〉 =
√
ρ̂|χ〉 =

√
θβ(ĥKS, µ)|χ〉. (6)

The projection of the stochastic orbitals onto
the occupied space is obtained by expanding√
θβ(ĥKS, µ) in Chebyshev polynomials:28,29

√
θβ(ĥKS, µ) =

Nc∑
n=0

an(µ, β)Tn(ĥKS), (7)

where Nc is the length of the Chebyshev polyno-
mial expansion, an(µ, β) are the expansion coeffi-
cients, and Tn are the Chebyshev polynomials of
order n.

Ground state observables corresponding to any
one-body operator, Ô, can be evaluated using a
similar stochastic trace formula:

O = 2Tr(ρ̂Ô) = 2〈〈ξ|Ô|ξ〉〉χ. (8)

Since the exact electron density can only be re-
covered by averaging infinitely many stochastic
orbitals, estimates for O result in a statistical

error that decreases as N
−1/2
χ according to the

central limit theorem, where, as before, Nχ is
the number of stochastic orbitals. To achieve
chemical accuracy for the electron density and
the forces on the nuclei, Nχ may need to exceed
103 orbitals, limiting the efficiency of sDFT. The
need to develop noise reduction schemes is clear
and would extend the range of system sizes that
can be studied routinely using sDFT.

III. NOISE REDUCTION SCHEMES IN
STOCHASTIC DFT

A. Overlapped Embedded Fragmented Stochastic
DFT

Significant reduction in the statistical error
can be achieved by introducing a reference sys-
tem that provides a reasonable approximation
to the electron density and can be calculated
within KS-DFT. The full electron density is then
given as a sum of the reference system electron
density and a small correction term obtained

Cf

Df

FIG. 1. An illustration of overlapped fragmented
scheme. Each small solid blue/red square represents
a core region Cf . We want to emphasis that the red
square is different from blue squares by switching a
star to a triangle, which is analogue to a impurity
in solid. If we focus on the solid red square core re-
gion of a fragment, the region within the dashed red
square corresponds to the dressed fragment, Df . The
region between the solid red square and dashed red
square is the buffer region.

stochastically.22–25 In this section we will briefly
review the most recent developments based on
an overlapped embedded fragmented stochastic
DFT (o-efsDFT), which is central to the proposed
ew-efsDFT. Full details of the approach can be
found elsewhere.22

In o-efsDFT the supercell is divided into frag-
ments referred to as ”core regions” (see Fig. 1 for
an illustration) Cf wrapped by ”buffer regions”
(Bf ) to form dressed fragments (Df = Cf ∪ Bf )
where f is the fragment index. The fragment
density matrix, ρ̂f , is given by:

〈r|ρ̂f |r′〉 =

{∑Nf
occ

i=1 〈r|ϕ
f
i 〉〈ϕ

f
i |r′〉 r′ ∈ Df

0 r′ /∈ Df

(9)
for r ∈ Cf . In the above equation, ϕf (r) are the
KS orbitals for fragment f obtained from a deter-
ministic KS-DFT approach and Nf

occ is the total
number of occupied orbitals for the f ’th dressed
fragment. Using the above, the total electron
density can be evaluated as follows:

ρ(r) = 2
∑
f

〈r|ρ̂f ρ̂>f |r〉+ 2〈|ξ(r)|2〉χ
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− 2
∑
f

〈
〈r|ρ̂f |χ〉〈χ|ρ̂>f |r〉

〉
χ

= 2
∑
f

ρf (r) + 2〈|ξ(r)|2〉χ − 2
∑
f

〈|ξf (r)|2〉χ,

(10)

where the fragment electron density is ρf (r) =∑Nf
occ

i=1 |ϕ
f
i (r)|2, ξf (r) =

∑Nf
occ

i=1 ϕfi (r)〈ϕfi |χ〉Df

and 〈ϕfi |χ〉Df
=
∫
Df

drϕfi (r)∗χ(r). We use the

relationship ρf (r) = 〈r|ρ̂f ρ̂>f |r〉 in Eq. (10) since
KS-DFT methods in the 0K limit are adopted to
calculate fragment KS orbitals.

In the limit Nχ → ∞, the first and last terms
on the right hand side of Eq. (4) cancel, while
the remaining term converges to the determinis-
tic electron density. For a finite set of stochastic
orbitals, the noise in the second term on the right
hand side of Eq. (4) roughly cancels that in the
last term, as long as the reference system den-
sity matrix provides a reasonable approximation
to that of the full system, thereby, leading to a
significant reduction in the statistical error.22,23

B. Energy Window Stochastic DFT

A reduction in the statistical fluctuations can
also be achieved using another scheme, based
on partitioning the occupied space into “en-
ergy windows”.26 In this approach, rather than
projecting |χ〉 onto the occupied space using
Eq. (6), we divide the occupied space into en-
ergy windows, and |χ〉 is projected onto each

window using a set of projectors, P̂1, · · · , P̂Nw

(see Eq. (13)), that are calculated simultaneously
with a single Chebyshev expansion.26 The elec-
tron density is given by the sum of all projected
densities:

ρ(r) = 2

Nw∑
w=1

〈∣∣∣ξ(w)(r)
∣∣∣2〉

χ

≡ 2

Nw∑
w=1

ρ(w)(r),

(11)

where |ξ(w)〉 =
√
P̂w|χ〉 is a projected stochastic

orbital for window w. The variance of the elec-
tron density in this scheme is 8

∑Nw

w=1

[
ρ(w)(r)

]2
,

which is smaller than variance in sDFT given by

8
(∑Nw

w=1 ρ
(w)(r)

)2
.26

IV. ENERGY WINDOW EMBEDDED
FRAGMENTED STOCHASTIC DFT

Combing the energy window approach with the
fragmentation approach results in the following
expression for the electron density at a grid point
r:

ρ(r) = 2
∑
f

ρf (r)

+

Nw∑
w=1

2

〈
〈r|
√
ρ̂P̂w|χ〉〈χ|

√
P̂wρ̂|r〉

〉
χ

− 2
∑
f

〈
〈r|ρ̂f

√
P̂w|χ〉〈χ|

√
P̂wρ̂

>
f |r〉

〉
χ


= 2

∑
f

ρf (r) + 2

Nw∑
w=1

〈
|ζ(w)(r)|2

〉
χ
− 2

∑
f

Nw∑
w=1

〈
|ξ(w)
f (r)|2

〉
χ
. (12)

In the above equation, the projection operators
on the energy windows are defined as

P̂w = θβ(ĥKS, εw)− θβ(ĥKS, εw−1) 1 ≤ w < Nw

P̂Nw
= Î −

Nw−1∑
w=1

P̂w,

(13)

where {ε} ≡ ε0 · · · εNw−1 (ε0 = −∞) define the
boundaries of each energy windows and the action

of

√
ρ̂P̂w and

√
P̂w on |χ〉 is obtained using a
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proper Chebyshev series:

|ζ(w)〉 =

√
ρ̂P̂w|χ〉 =

Nc∑
n=0

a(w)
n (µ, εw, εw−1)Tn(ĥKS)|χ〉

|ξ(w)〉 =

√
P̂w|χ〉 =

Nc∑
n=0

b(w)
n (εw, εw−1)Tn(ĥKS)|χ〉.

(14)

Finally, as before, the density of each fragment is

given by ρf (r) =
∑Nf

occ
i=1 |ϕ

f
i (r)|2 and the stochas-

tic projected orbitals for each fragment are given
by:

ξ
(w)
f (r) =

Nf
occ∑
i=1

ϕfi (r)〈ϕfi |ξ
(w)〉Df

. (15)

For all applications below, εw are held fixed
for the entire self-consistent procedure and are
independent of the chemical potential, µ. Other
choices of the window boundaries can affect the
level of noise; however, significant simplicity is
achieved for fixed window boundaries. In this
case, the chemical potential can be obtained by
solving:

N(µ) =2
∑
f

∫
Cf

drρf (r) + 2 〈〈χ|ρ̂(µ)|χ〉〉χ

− 2
∑
f

Nw∑
w=1

〈∫
Cf

dr|ξ(w)
f (r)|2

〉
χ

, (16)

where
∫
Cf

dr imply that the integrals are pre-

formed in real-space in region r ∈ Cf . In the
above equation, 〈χ|ρ̂(µ)|χ〉 is evaluated by ex-
panding ρ̂ in a Chebyshev series 〈χ|ρ̂(µ)|χ〉 =∑Nc

n=0 cn(µ)〈χ|Tn(ĥKS)|χ〉 and the chemical po-
tential is determined by solving for N(µ∗) = Ne

where Ne is the total number of electrons in the
system.

Similar to the electron density, other ground
state observables such as the kinetic energy

Ek =

2
∑
f

Nf
occ∑
i=1

〈ϕfi |t̂|ϕ
f
i 〉Cf

+ 2

Nw∑
w=1

〈
〈ζ(w)|t̂|ζ(w)〉

〉
χ

− 2

Nw∑
i=1

∑
f

〈
〈ξ(w)
f |t̂|ξ

(w)
f 〉Cf

〉
χ
, (17)

or the non-local pseudopotential energy

Enl = 2
∑
f

∑
I,RI∈Cf

Nf
occ∑
i=1

〈ϕfi |v̂
I
nl|ϕ

f
i 〉Df

+ 2

Nw∑
w=1

∑
I

〈
〈ζ(w)|v̂Inl|ζ(w)〉

〉
χ

− 2

Nw∑
w=1

∑
f

∑
I,RI∈Cf

〈
〈ξ(w)
f |v̂

I
nl|ξ

(w)
f 〉Cf

〉
χ
,

(18)

or the non-local pseudopotential contribution to
the forces on the nuclei

FInl =2

Nf
occ∑
i=1

〈
ϕfi

∣∣∣∣ ∂v̂Inl∂RI

∣∣∣∣ϕfi 〉
Df

+ 2

Nw∑
w=1

〈〈
ζ(w)

∣∣∣∣ ∂v̂Inl∂RI

∣∣∣∣ζ(w)

〉〉
χ

− 2

Nw∑
w=1

〈〈
ξ
(w)
f

∣∣∣∣ ∂v̂Inl∂RI

∣∣∣∣ξ(w)
f

〉
Df

〉
χ

, (19)

is expressed in ew-ofsDFT as a sum of three
terms, where the first term and the last term can-
cel each other in the limit Nχ → ∞ (see supple-
mentary material).

The proposed ew-efsDFT method to reduce the
noise in the density, energy, and forces on the
nuclei can be summarized as follows:

1. Generate the KS orbitals {ϕfi (r)} for
each dressed fragment and ρf (r) =∑Nf

occ
i=1 |ϕ

f
i (r)|2 using a deterministic DFT.

ρ(r) = 2
∑
f ρf (r) is used as the initial elec-

tron density guess.

2. For each stochastic orbital χ(r) (defined
above), calculate and store on the grid
the projected stochastic orbital ζ(w)(r) =

〈r|
√

P̂w|χ〉 and also store the Chebyshev

moments, 〈χ|Tn(ĥKS)|χ〉.

3. For each window and for each stochas-
tic orbital, generate and store on the grid

ξ
(w)
f (r) =

∑Nf
occ

i=1 ϕfi (r)〈ϕfi |ξ(w)〉Df
.

4. Solve for µ∗ (N(µ∗) = Ne) with the regula
falsi method using the Chebyshev moments

(〈χ|Tn(ĥKS)|χ〉), ξ(w)
f (r), and ρf (r).25
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FIG. 2. An A-type G-center (two carbon atoms
shown in blue) embedded in a Si512 supercell (Si-Si
bonds shown in yellow). The A-type G-center is con-
stituted by a substitutional carbon atom, an inter-
stitial carbon atom, and an interstitial silicon atom,
which are highlighted as spheres.

5. For each window and for each stochas-
tic orbital, generate and store on the grid
the stochastic projected orbitals ζ(w)(r) =

〈r|
√
ρ̂(µ∗)P̂w|χ〉 using the chemical poten-

tial determined in the previous step.

6. Generate and store the electron density ρ(r)
using Eq. (12) with all stochastic orbitals.

7. Update the density and the KS Hamilto-
nian using the iterative subspace (DIIS)
method30 and repeat the above steps until
self-consistency is achieved, using the same
random number seed.

V. APPLICATION TO G-CENTER IN BULK
SILICON

We demonstrate the ew-efsDFT for low G-
center defect concentration in bulk silicon.31,32

We focus on the A-type31 G-center impurity em-
bedded within a Si512 supercell (see the struc-
ture in Fig. 2). We performed Γ point DFT
calculations using the Perdew-Burke-Ernzerhof
(PBE)33 functional with Troullier-Martins norm-
conserving pseudopotentials34 in the Kleinman-
Bylander form.35 As a result of localized orbitals

ew-efsDFT
o-efsDFT

|Δ
ρ|

ρ S
T

D

0.0

1.0

2.0

3.0

ew-efsDFT
o-efsDFT

×10-3a.u.

8.0

6.0

4.0

2.0

0.0
0.0 10.0 20.0

x (Å)

Carbon

Carbon

FIG. 3. Upper panel: The absolute value of the elec-
tron density difference (|∆ρ|) between the stochastic
(ew-efsDFT in red, o-efsDFT in blue) and a deter-
ministic calculation. Lower panel: The standard de-
viation of electron density (ρSTD) evaluated with ew-
efsDFT (red line) and o-efsDFT (blue line). |∆ρ| and
ρSTD are shown along the x axis with y = 5.3Åand
z = 5.0Å. The peak marked by “Carbon” corresponds
to a region closed to a carbon atom.

around the carbon atoms, a 40Ryd wave func-
tion cutoff (80Ryd for the density cutoff) was
used, corresponding to real space grid spacing of
0.18Å. In-gap states require a large β ≈ 900 in in-
verse Hartree to sufficiently converge the ground
state properties with respect to the electron tem-
perature. 80 stochastic orbitals were used in
both ew-efsDFT and o-efsDFT. The dressed frag-
ments were Si64 with periodic boundary condi-
tions while the size of each core region was Si8.
As pointed out above, 41 energy windows were
used in ew-efsDFT with a width that is inversely
proportional to the density of states at the center
of the window. This guarantees that each energy
windows contains roughly the same number of KS
orbitals, thereby lowering the statistical noise.

A. Results

In Fig. 3 we assess the accuracy of ew-efsDFT
for the electron density (upper panel) and the
standard deviation in the electron density (lower
panel) for selected positions in the vicinity of the
G-center. The density and standard deviation
were calculated from 5 independent ew-efsDFT
or o-efsDFT runs, with 80 stochastic orbitals
for each run. For clarity, we plot the absolute
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Method Ek/Ne Enl/Ne EH/Ne Eloc Exc Etot/Ne

dDFT 10.1767 5.7871 2.0194 -8.7085 -8.1027 -26.8197

o-efsDFT 10.1735(35) 5.7882(36) 2.0222(19) -8.7074(40) -8.1052(8) -26.8205(11)

ew-efsDFT 10.1778(11) 5.7874(4) 2.0193(6) -8.7086(11) -8.1028(3) -26.8186(4)

TABLE I. The kinetic energy (Ek), the nonlocal pseudopotential energy (Enl), the Hartree energy (EH), the
local pseudopotential energy (Eloc), the exchange-correlation energy (Exc), and the total energy (Etot), all per
electron in eV obtained by a deterministic DFT (dDFT), o-efsDFT, and ew-efsDFT. The standard deviation
is presented in parenthesis.

value of the electron density difference between
the stochastic and the deterministic calculations.
Both the deviations from the deterministic elec-
tron density and the standard deviation obtained
by the ew-efsDFT (shown in red) are significantly
smaller than the corresponding o-efsDFT results
(shown in blue). The noise of the electron density
is significantly smaller, by approximately a factor
of 5 when compared to o-efsDFT.

In Table I we list the kinetic energy (Ek),
the nonlocal pseudopotential energy (Enl), the
Hartree energy (EH), the local pseudopotential
energy (Eloc), the exchange-correlation energy
(Exc), and the total energy (Etot), all per elec-
tron. The reference deterministic calculation is
converge (on the grid) to all significant digits
shown. In parenthesis we provide the standard
error, which is significantly smaller in ew-efsDFT
compared to o-efsDFT for all quantities. We find
that the standard error in the total energy per
electron decreased by a factor of ≈ 3 when 41
windows were used. The total energy per elec-
tron in both ew-efsDFT and o-efsDFT are slight
outside one standard deviation from the deter-
ministic DFT result.25,36 We note in passing that
the ew-sDFT approach (without fragmentation)
does not reduce the noise in the total energy per
electron, as discussed previously.26

In Fig. (4) we plots the force on the nuclei along
the x-direction for selected atoms obtained by
the ew-efsDFT (upper panel) and the o-efsDFT
(lower panel). Error bars indicate the standard
deviation for each force. Clearly the statisti-
cal fluctuations are significantly smaller for ew-
efsDFT compared to o-efsDFT. In order to esti-
mate the overall noise reduction efficiency, we av-
eraged the standard deviations of Fx (nuclei force
along x axis) over all atoms. The averaged stan-
dard deviation of Fx is ≈ 0.53eV/Å for o-efsDFT
and ≈ 0.09eV/Å for ew-efsDFT. Similar results
were also obtained for other force components Fy
and Fz, which implies that ew-efsDFT standard
deviations of nuclei forces is about a factor of 6

smaller than that in o-efsDFT. In other words,
to achieve similar noise level in o-efsDFT would
require ≈ 30 times more stochastic orbitals. No
bias was observed for forces on the nuclei in ew-
efsDFT.
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FIG. 4. Forces on the nuclei along the x-direction
(Fx) for selected atoms calculated from ew-efsDFT
(upper panel) and o-efsDFT (lower panel). Error bars
in the forces on the nuclei were obtained from 5 runs.
Blue symbols are Fx calculated from a deterministic
DFT. The dashed line signifies the boundary between
carbon and silicon atoms

B. Computational Cost

In Table II we summarize the total wall time
and the contribution from the Chebyshev mo-

ments, 〈χ|Tn(ĥKS)|χ〉, and from the projections
of |χ〉 onto the occupied space and the energy
windows. The number of stochastic orbitals, the
size of the core and dressed fragments, the grid
size, and all other parameters were the same for
both approaches. The overall wall time seems
to be very similar, comparing ew-efsDFT and o-
efsDFT methods. Each SCF iteration is ≈ 50%
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o-efsDFT ew-efsDFT

Wall time (h) 25.11 25.22

Number of

SCF Iterations 25.6 16.4

Time for One

SCF Iteration (h) 0.98 1.54

Time for Calculating

〈χ|Tn(ĥKS)|χ〉 (h) 0.32 0.73

Time for Generating

|ξ〉 or |ξ(w)〉 (h) 0.64 0.72

Time for projecting

|ζ(w)〉 with ρ̂frag (h) N/A 0.04

TABLE II. Averaged computational time (in hours)
for o-efsDFT and ew-efsDFT. The wall-time and
number of SCF iterations are averaged over 5 inde-
pendent runs. Time of calculating |ξ(w)〉, |ζ(w)〉, and

|ξ〉 and time of projecting |ξ(w)〉 with ρ̂frag are aver-
aged over all SCF iterations and all 5 runs. All cal-
culations were performed on a 40 node cluster com-
puter, where each node contains two 16-core Intel
Xeon Processors E5-2698 v3 at 2.3GHz.

longer in ew-efsDFT, but the number of SCF
iterations required to achieve a similar conver-
gence is smaller in ew-efsDFT, resulting in sim-
ilar wall times. Note that the statistical error
in ew-efsDFT is much smaller than o-efsDFT.
To achieve similar statistical errors in o-efsDFT
would result in wall times that are roughly 30
times longer than ew-efsDFT.

The main difference between the two meth-
ods is the computational time for generating

the Chebyshev moments, 〈χ|Tn(ĥKS)|χ〉. In o-
efsDFT we used the relation T2n = 2T 2

n − 1 to

evaluate Tn(ĥKS)|χ〉 for n > Nc/2, thereby com-
puting only 1/2 the number of moments. This
relation cannot be used in ew-efsDFT since each
stochastic orbital is projected onto all energy win-
dow to generate |ξ(w)〉 and |ζ(w)〉. Other smaller
contributions to the computational time differ-
ence between the two methods can be traced
to the need to generate Nw projected stochas-
tic orbitals in ew-efsDFT compared to only one
projected orbital in o-efsDFT, resulting in ≈
20% increase in generating |ξ〉 vs. |ξ(w)〉. In
addition, in ew-efsDFT one has to compute

|ξ(w)
f 〉 with the fragment density matrix, i.e.∑Nf

occ
i=1 ϕfi (r)〈ϕfi |ξ(w)〉Df

, in each SCF iteration
while in o-efsDFT projection of |χ〉 is preformed
only once at the beginning of the calculation.

VI. SUMMARY

In this work, we have developed an approach
to reduce the statistical fluctuations in the elec-
tron density, total energy, and in the forces
on the nuclei within the stochastic DFT frame-
work, without increasing the number of stochas-
tic orbitals. This achievement was made pos-
sible by combining the overlapped embedded-
fragmented stochastic DFT22 with the energy
windows stochastic DFT.26 The new approach
builds on both real-space and energy-space frag-
mentation, resulting in a significant reduction of
the noise in single-particle observables without af-
fecting the computational time. The performance
of the ew-efsDFT was tested for a G-center em-
bedded in bulk silicon with a small fundamen-
tal gap and in-gap impurity states, making this
a rather challenging system for DFT. Compared
to o-efsDFT and ew-DFT (not shown explicitly
here), the statistical error in the forces is ap-
proximately 6 times smaller in ew-efsDFT result-
ing in a reduction of ≈ 30 in the computational
wall time. This reduction in noise/computational
time is important to accurately describe struc-
tural properties of extended systems without the
need to increase the number of stochastic orbitals.
Application of the ew-efsDFT method to struc-
tural minimization are currently underway.27
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