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ABSTRACT - 

An answer to the question of how the molecules which constitute today's 

living organisms may have a r i ~ e n  on a yrebiotic earth is being sough t  within 

the context of moe r n  experimental science. 

W e  begin with the primitive a tms~ jphe re  a s  rt. i s  presently conceived Ery 

a consensus of as t ronomers  and geochemists,  namely, a reducing one,  and 

introduce variom forms of energy into this  system to delerrnine the nature 

of the molecular  changes whuch might occur  and which dl) occur. Experimi:neal 

demonstration shows that the atoms which conrs t i tute the primitive atmosphere 

are of s u c h  c h e m i c a l  charac ter  that they give rise to molecules o! biological 

i n t e re s t  a lmost  immediately under these  conditions. Autocatalytic mechanisms, 

beginning with the crude catalytic properties of the minera l  swsfacet of the 

ea r th ,  then selec t among these molecules certain c lasses  a e  favored. 

The basic problem of the generation of macrornolec~les ~f two general  types 

i~ diecuseed. The f i r s t ,  resulting from carbon-carbon linkap,e, corners via v i n y l  

polymerization. The second, resulting from dehydration condensatiur-,  has been 

m o r e  difficult to  demonstrate  experimentally as possible i n  m q u e o u s  med~:srn. 

However,  cer tain dehydrating agents are now being discovered w h i c h  show s:irn~G 

of functioning specifically in the aqueous milieu tu give r ise t o  t h e  : -o te in ,  n u  - 

cleic  acid and carbohydrate types of po3jmers .  
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'Then the question of a higher degree of order ,  leading ultimately to 

visible structure resulting from the construction of macromoleculas, i s  

discussed. It is shown that a sequence of thennodynamically controlled 

processes may be expected to give rise to secondary, tertiary and even 

quaternary structure in such systems, the last eventually reaching the range 

visible under suitable microscopic conditions. The question of membrane 

formation and boundary enclosures is still moot. 

However, the evolution of macrornalecules, according to the present lawe 

of molecular evolution, are now visible to ua. These can be seen to lead to 

the kind of organization we now recognize aa living, and new chemistry is 

daily derived via the attempt to undetstrurd the reproduce such eystems. 



ATOM TO ADAM 

M e l v i n  Calvin and G. J. Calvin 

INTRODUCTION ---- 

'The course of the ~ o c i a l  his tory of man from the time he became capable 

of recording his p r o g r e s s  is popular ly  considered the only "recorded" history.  

This ttday" i n  the his tory of mankind is so brief in relation to  all history,  and 

has bean so exaggerated in importance ae! to obscure the long course of evolu- 

tionary development preceding this period. Because man has emphasized his  

own personal  history, much a e  an individual v i e w s  the importance of his  own 

brief years in relation to recorded hhdory ,  the natural laws --  which govern 

the development of man and the countless life forms which exist wi th  him - -  
arc f requent ly  isolated from Lhoos laws which govern other matter in the 

universe. 

I& i e  difficult Ba consider living things ae: a far product oft the long con- 

tinuum from organic element fa Einstein, However, as we learn even more 

detai ls  sf the composition of If ving things, the COUTBIG becomes clear, and 

the experimental csvfdence m o r e  c~rrcrbora t iva ,  that the entities known as "liv- 

ing" fo l low the ~ i m p l e  m ~ B e e ~ l ~ ~  Yaws UP chemistry and physics, just as do the 

chemicals on the  ~ h e l f .  It becomes c3 car, too, that atoms can be combined 

into moleculeas and macromolecules In t e s t  tubes today in much the same way as 

was possible under the conditions when the earth was new, 

The expanded knowledge about the atomic and molecular constituents of 

which  living things are mads, together wi th  e;j increased understanding of the 

way molecules interact with each ather,  i. e ,  c,onmurrhcate wi th  each other, 

s o  as  to produce what we now recognize a e  l i v ing  srganhsrns,  has had 



t w o  very i n ~ e r e s t i n g  r o su l t s .  l'h* f i r s t  h a s  b ~ e n  to sriimulate 6cienr;is;s to 

create hypothetical s c h e m e s  leading frorn tne primeval nonliving ear th  to  

1-10  
the present day . Thc ~ e c o n d  h a s  been to i i iduc~. s c i e n t i s ~ c  to devise ex- 

perimental w a y s  to  t e s t  some of these schemes in po:nts  at which t h e y  rs$ight 

be arnenable to experimental labom~tory t e s t s "  A certain degree of s u c c e ~  s in  a 

var iety of these laboratory experiments  has ,  in tur.11, modified the original 

theories and has even led to  n e w  experiments  i n  both ch9mis t ry  a n d  biology. 

Conjecture as to the origin of life on the ear th  must involvu 1rnowlt:dge of 

theba havios of molecules  i n  the prebiotic period as well as a detailed and in- 

t imate understanding of the composition and function of living matter .  The 

complexity of the problem i a  both simplified and exag::erated by contarnpla- 

tion of the quantities which distinguish n~nbiot ic  systerna from those we 

call  "alive". These is a high lael of disagreement arnong ~ c i e n t i s t s  who t r y  

to define the minimum sequiaememts far living s y ~ t e r n s ,  This fact i s  in itself 

eignificant for it demons t rz l t e~  that the borderline between the living and the 

nonliving is a difficult thing to recognize. There i s  no problem in  distinguish- 

' ing the living from the nonliving at the extremes of the scale; there is  diffi- 

culty only at the borderl ine.  

A t  this bordetlinea living eyetern has no sharply defined charactesisric,  

eas i ly  distinguishing it from ai nonliving system. Rather ,  a living system is  

a molecular  aggregate posses~ling a eequence of p r o p e r k i e ~  which make it 

indisputably recognizable as "living" at one end sf' the scale and as "nonliving" 

at the other end of the scale. But somewhere in betweec the nature of these 



protjcrrids is s u c h  tha t  t h e r e  a r e  those w h o   rill bdy tha t  t t d  j y ~ t t r ~ i  i>  

"alive" and those who will say it is not. 

Of thase  various proper t ies ,  I am going to choose two which IC think 

everyone will accepl  as necessary ,  although perhaps not sufficient, a t t r i -  

butes of a mo lecu la r  sys tem in  order  for i i  to be called "alive. " These two 

proper t ies  are (1)  the ability of such a molecular  aggregate to t ransfer  and 

t r a n s f o r m  energy in a directed w a y  and (2) i t s  ability to remember  how to do 

th i s ,  once having learned it, and to t r a n s f e r ,  or  cammunicate, that information 

to  anothicr sys tem like i tself  which i t  can c o n ~ t r u c t .  The two a r e ,  restated: 

(1)  The t ransfer  and t ransformat ion  of energy and ( 2 )  the transformation and 

commur~ication of information,  In a aense the second -- that is, information 

tranafcr - -  m a y  he thought of as including the energy t ransfer  problem as 

we l l ,  but I l ike to think of them as separate problems. 

Molecular  Construct ion -- 
There  s e e m s  to be a fairly general agreement  that the primitive earth is 

approximately 4 . 7  billion years old and that i t  was originally surrounded b y  

a n  a tmosphere  which w a s  composed pr imar i ly  of reducing mater ia l ,  that is, 

the atoms of hydrogen, oxygen, carbon and nitrogen in their  fully reduced, or  

hydrogenated state. This cs r reeponds  to the rekive cosmic abundance ot the 

v e s  y s a m e  e lements  - - hydrogen being the n ~ o s t  abundant ( ) 99% exclusive- of 

10a 
the rare  gases helium and neon) oxygen the n e x t ,  e tc .  Thus the  atr~i~i. ;phere 

of the pr imit ive earth 1s envisioned as containing mostly the atoms of h d ~ o g e n ,  

ca rbon ,  nitrogen and o x y ; . r n  eoimbixwd only with the overwhelmingly c h r ! i r i a n t  

hyurogen giving rno lecdas  hvdrcgen ,  methane, anrn.ar:ia and w a t e r .  
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i', hat k i d :  of corxpounds can  we n i a k  f 2 . w  t t l l ~ s c  prirnfird!d ~lr ioiecules '? 

Ultimately w e  will recognize these molecules to  b u  the rnrzin metabolic m a t e r -  

i d s  wh ich  now are  the sources  of energy  and s t ruc ture  in l iving organisms,  

but, most importantly, we have to make the chief components of living organisms 

which are three polyrr~ers  which we recognize a s  essential ,  namelyD the proteins  

(derived f rom amino acids) ,  the nucleic acids (composed of a heierocyclic base, 

a s u g a  and a phosphate) and the polymeric substances known as polysaccharides,  

cellulose,  s t a rch ,  etc ,  ( compo~ed  sf simple sugars made of carbon, hydrogen 

and oxygen with  relatively small amounts of nitragan and a. Paw other elements) ,  

( F i g .  I )  W e  have t r ied  ta devise way8 and means of making the monomeric 

mate r i a l s  of which these polygners are ccpnwtrrxcted and then s f  finding ways 

of evolving the polymer8 themselves by nonbialcrgical routes. It is  at this 

level that we can inject experimental obrseruation, and thia has been done not 

only in our  laboratory but elsewhers a% well .  

W e  thus have to accomplish two  stages of chemical evolution, i .  e a ( A )  we 

have to transform the primeval xnohecules made! of carbon, oxygen and nitrogen, 

attached to hydrogen, into the small  primitive molleculea which a re  the mono- 

m e r s  from which (2) the polymers are eventually evolved. 

The time scale  which  is available to perform these transdorrnatians fa  

given in F i g .  2. The formation of the present earth took place eomewhere 

around 4.7 billion years ago. Overlapping w i t h  this period begins the period 

of chemical ~svolution which covers ahnost the entire time scale,  The 

earliest known generally accepted fossi ls  are  less than one billion years 



ATOM MOLECULE 

Hydrogen 

Carbon 

POLYMER 

Sugar - Cellulose, Starch ,etc. 
\ 

Base -2- @zzza--I 
Amino Acid - hote in  I 

Fig. 1. Schematic representation in chemical t e r m s  of the se t  of 
formations which have to be accomplished f rom the atoms to 
produce the s t ruc ture  of the cell. 





old. However, i t  has, 5een r epo r t ed  tnrst t l l e r e  1s zrEd_inlr 1 x r . t e ~ r  - -  r ; r r x t ~ d  

elemmcs and even rer:ognizable s t r u c t u r e s  - -  i n  forn!ntions aLcl~t 2 ru i l l 1 , , 11  

years old in the Gunilini che r t  of Nor thern  M i c h i g a n .  " l ' h i ~  c h e r t  is a c a r -  

bonaceous formatil .~n in which one can, in section,  st: t formed elements  which 

appear to be pr imit ive blue -g reen  algae.  T h e  earlif3 cst lcnown fos.;ils in iru 

unequivocal sense appeared in the Cambrian pav.od, but 1 believr. t h a t  t l ~ e :  

primitive blue -g reen  algae fori l lat ions in the P r e c a m b r i a n  ms  te r ial  f roln 

Michigan might push the dating of the e a r l y  fo~ i s i l e  back about  another bil i ion 

years. The refore ,  the period of chemical evolution is probably s h o r t e r  than 

i t  appears  in  F i g ,  2, but organic evolution a$, it i t -  comiincrnly dcfin,ad mu:jt have 

begun approximately 2 billion yea r s  ago, The rnomcnt timt living, o-ganisrnr; 

appear ,  the processes  which we descr ibe  as nonliving 13r chemical (evolution) 

may have had a ra ther  s h a r p  decline because the Iiviny ma te r i a l  would rap id-  

l y  absorb and convert  the primitive moliecules axrd the relat ively  low non- 

biological chemical change would be cut off. 

You will notice from Fig .  2 that the evolution of nlnrnnlal~: is re1 ativei y 

recent, and the evolution of m a n  h i m j e l f  hy the p ro  esaJ  of rand(lxr. mutat ion 

and selection occupies an  cven still shor t e r  period of the  t ime trt-ale. What I 

have called "Social Evolution" is  so smal l  that i t  can't be r p y i  et~l-nter?; on tll! s 

t ime scale;  i n  fact ,  i t  is a matter  of only a f e v ~  thousand  y e a r s .  '7nc might s a y  a, 

rew kind of social  evolution h a s  ctnly ju s t  begun in  the 1 3 s t  c p T a ! s ~ r - l l  C ~ T  ~ Y T I ,  ~ i n c e  

m a n h a s h a d i n h i ~ o w n  h'3nrq.i the a b i l i t y t o r n a n i p u l a t c - ?  l i v ~ n  ~ i r ~ n i s ; ~ ?  i n a  

d i rec ted  w a y ,  



IN 
GEOLOGIC MILLIONS 

OF YEARS ERA 
E V E N T S  

t E v o l u t i o n  of Man 
Mammals appear 
Earliest Vertebrates 
Earliest known Fossils 

(Cambrian) 

\)-organic Evolution 

A Chemical Evolution 

Formation of the 
present earth 

(enesis of the Universe 

F i g .  2. T ime  sca l e  f o r  to ta l  evolution. 



$4 e wi l l  concentrate on the  perlcid of ~11e1:~~cal evolution and the bo rde r -  

line period oi biological  evolution,  during wt l~ch  living cells first  appeared.  

Photosynthesis must  also have bepun at t h i s  t lmelZ dnd a s  soon a s  th i s  

phenomenon appeared, the whole scheme of animal evolution and plant evolu- 

t i on  as we now s e e  it in the fossil r e c o r d  b ~ g a n  and really "explodud" at an 

enormous rate .  

I am not going to  be concerned too much w i t h  this intermediate region of 

organic evolution except to describe i ts  principles of directian which were  

determined (and still are) by the principles of chemical evolution which gBve 

rise to the living organisms in the f iws t  place. 

F ig .  3 depicts the primeval (methane, ammonia, hydrogen and safer)  and 

primitive organic  moleculee with  which chemical evolution began, The energy  

sources that we re! used in the transformation were any of several: U1tra.r-folet 

light from the aun, cosmic radiation, radioactive: minerals on the surface eX 

the earth, and the streaming of the atmo~rphere due to thermal convectSon 

giving rilse to the generation af electrostatic; poteritials and electr ic  discharges ,  

These various ~iources  of energy  induced the fracf:uring of; the carbon-hydroper ,  

hydrogen- oxygen, hydrogen-nitrogen and hydrogen- hydrogen bonds in the 

primeval atrnosphem to give high entsrgy Iratax-medfateo which w e r e  then r e -  

combined to intermediately stable forms shown in the second FOW of F i g ,  3, 

IE the last dszon  or s o  years t h i ~  kind sf evolution has been demon~tra ted  

in m e  laboratory, in our first experiments in 1950 using ianjzing radiaticn 

f Yr~rxa a n  accelerator, we showed the conversion of czrbon dioxide in w a t e r  

-31  6 hydrogen to produce formic acid. f n - ~  . t i c .  l 3  W l t h ! ~  a cc - -> 'e  



Water dioxide Methane Hydrogen Ammonia 

0 
I I  

H 
I Y 9 

H-CEN H-C-OH H-G=O HOCHg-C=O CH3-C-OH 

Hydr=y0?ic For rn ic acid Formaldehyde Gl ycolaldehyde Acetic acid 
a c ~ d  

Succinic acid GI ycine Alanine Asport ic ocid 
M U - 1 6 0 6 9 - A  

Fig. 3 .  Pr imeva l  and primitive organic molecules. 



o f  years after that, Stanley Milher used methane and ammonia in the reaction 

mixture w i t h  the resulting appearance of amino ac ids  - -  glycine, alanine, 

aspar t ic  acid. l4 This started the sea rch  f o r  a11 of the primitive monomeric 

molecules which are the csnrstitucnto of the three polymers so essent ial  for 

the  cons tructian of living o r g a n i m e  . ' 5 

In general theee processes  of ene rgy  t ransformat ion  of the primeval t o  

primitive molecules took place in & random way. T h e  s a n e  forces  which dis- 

rupt tne primeval molecules can also disrupt tho primitive rnonoxneric molec d e s  

as wel.1. One must  therefore seek autocatal ytfc prclcesrses which would soXect 

among the various possible rsesmbinationhr and which would favor one or 

another of these primitive molecules .  l h  By adding mineral catalysts, for  

example, iron, zinc, etc .  (which m a y  give rise t n  miore cornpliex substances) to 

such react ion mixtures ,  porphyrins show up quite e a r l y  in the evolutionary 

scheme and, i n  t u r n ,  theee are: catalytic for theila own formation, thus 

giving rise to  a molecular setectian in the course of chemical evolution. 

I t  is possible to produce from the primeval atmosphere a collsction of 

primitive monomeric moleculest in solution. Pt has recently bean shown that 

H C N  is  formed in this way, l7 and the pentamer of HCN, adenine, as well, even 

in  t h i s  dilute solution. F rom adenine (a nucleic acid constituent) i t  is possi  bl n 

to  make other heterocyclic bases which arc necessary for the construction of 

the. nucleic acids. Not  only adenine but sugars  are also formed from the formal-  

d,zht.de which comes d i rec t ly  from carbon dioxide, or from r n e t h a n e ,  hydroger ,  

,: , t i  v:ater. Thus i n  this mixture there is already preserlt the  base and t he  s u F a r ,  



In  t f i c  l ~ s t  s z v c r a l  n lo i~ ths ,  Ponnamperuma has obtained adenosine ui,i)rl 

u l t i a v i a l ~ i  irradiatioii of 6 dilute solution of r ibose i9  (the five -carbon b . l l a  r 

wk~ict;is required f u r  rhe formation of riboside) . If this adenosine is  irl-adiatcd 

with ultraviolet light absorbed by the adenine i n  an aqueoufs solution of prr~.u,);ruu- 

phate,  adenylic acid ia obtained and even A T P  a@ well. 20 This d r rnons r ra~os  

that not only can isuilding blocks of today's organisms be generated by al iogenic 

p r o c e s s e s ,  but the basic ' lenergy currency" w a d  by all  organisms can b3 tosmed 

in a sirnilax abiogenic conversion of tho prime energy sources, ionizing e n e r g y  

and light. 

Polymerization 

Thus the whole sequence of events from methane Lo the mononucltsotida 

hae now been c a r r i e d  out by the random eupply of energy of  the right kind to 

the primeval moleculers. We can make the monornlara which a re  the requi re-  

m e n t s  for  the polynucleotides. Ps It poosible t o  construct,  under srirnilar 

circurnstancssi, the polymers  which are required both f u r  s t ruc ture  and for 

information storage and t r a n s f e r ?  The nuelleatide i a   till not a p a l p a s  - -  
it is only the monomeric  unit which ultimately has  to combine w i t h  another 

one through phosphate linkages. Ira order to get the polymer from, for  example, 

adenylic acid, i t  wi l l  be necessary to d~ another condensation reaction between 

the phosphoric acid group of one molecule and one: of the alcohols an another 

adenylic acid molecule;  thus a bifunctional unit ikn maintained which can  be 

used in further condensation leading eventually to the u~eful polymer, 

In the case of the amino acids w e  also have ez bifunctional form (the car- 

boxyl at one end of the chain and the amino group at "&he other ) ,  and there are 

a variety of R groups, depending on the malecules wikh which one starts. 



These bifunctional molecules can then be combined into a polymeric form by a 

dehydration reaction. F i g .  4 shows the nature of the dehydration reaction 

of the precur so r s  which  lead to the proteins,  polysaccharidas and nucleic 

acids,  the biopolyme rs. 

The question now is :  JV hat kind of dehydrating agent(s)  is (are) necess-  

a r y  to bring this sequence of events about in a nonbiological sys tem in a dilute 

water  solution7 This kind of thing was recently done in the laboratory by using 

HCN itself as  a dehydrating agent, HCN ie* an anhydride of formamfde and 

i t  may behave as a specific dehydrating agent, even in dilute aqueous solution, 

By heating amino acide in solutione of HGN, one i s  able to obtain not only 

adenine but polymers ot the amino atida as wel l s2 '  Fig. 5 shows a possible 

mechaniem by which HCN might function as a specific dehydrating agent. 

The analogy of this reaction to the established synthetic reaction using 

carbodiirnlde ie  apparent. 22 'The possible m o r e  o r  less specific dehydration 

condensation function of the wide variety sf phosphoric anhydride derivatives 

has long been under exploration, 22 and their more recent23* 24. 20 application 

in aqueous solltations i e  even m o r e  promising. 

There are also other means of obtaining polypeptides, polyphosphatae, 

es tera ,  e t c ,  , for example, i n  a no&peous medium such an one might get ir, 
h 

tidal pools b? evaporation and concentration. 
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Fig .  4. Dehydration reac t ions  leading to biopolyme r s .  



0 
POLY - I1 

H2N-CH-C-NH-CH-C02H 
0 

I -H+ O=C-NH CH-C02H 
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R~ R2 H2N-C-H R2 

Fig .  5. Possible  mechanism of peptide formation with HCN a s  
dehydrating agent. 



GENIL RATION O F  ORDER A N D  NE W INFORMATIC~TJ 

If it is accepted that we can c~tJstrr ic t  polygepeides, palynucleotidee and 

polysaccharides b y  nonbiological methods,  this iw itt;elf i s  a major s tep toward 

the s t ruc tured  fea tures  which a r e  required for  urgaru::ed energy convoralon 

and information t r ans fe r .  In the p r imary  structure of those polymors i s  con- 

tained the necessa ry  dcments for energy and information t ransfer .  Evidence 

is  accumulating that  the secondary, t e r t i a ry  and even quaternary s t ruc ture  

of proteins  and nucleic ac ids  are thermodynamically stable fo rms  of a p a r t i -  

cu lar  p r i m a r y  s t ruc tu re .  I would like to make some e%perirne?ntd points: 

which will help demonstrate  that such s t ruc tura l  infon-nation wlilch is r e -  

quired f o r  both efficient energy conversion and for infcrrination transfer 

a r e  contained ult imately in the n~onorner fc  sequences that one finds in eitllwr 

of these two principal types  of polymers ,  namely, nuclr3ic acids  and the 

proteins .  

Protein Structure and Function 

F r o m  amino ac ids  one can make a polypeptide of some part icular  amino 

acid sequence, and this  polypeptide will assume a definite s t ruc tura l  a r r a n g s -  

rnent which i s  not random i n  solution. The s t ruc ture  assumed depends upor, 

the various atoms of which it i s  constructed, par t icular ly on the amide ca r -  

bonyl and the amide NH group ,  and upon an  interaction between the ;? groups 

- i l tmselves.  These l a t t e r  may be a n y  of a variety of types; hydrophobic b o r ~ - : ~ ,  

van der  W u a l s '  in teract ions,  e lectrostat ic  interactions,  hydrogen  b m d a ,  E t c .  



For our  purposes it is enough to know that  t h r r e  a r e  forces rvkr~rh hold the 

polypeptides in definite conformations,  such as ehown in Fig. 6 .  The poly- 

peptide contains within It,  just  from the sequence of bond&, the necessary  

s t ruc tura l  information to  give rise to the well  known alpha helix, This  alpha 

helix of the protein is a macros tsuc tura  of a higher degree of ordex than that 

defining the amino acid sequence alone, The helix is a secondary s t ructure of 

the protein which far spontaneouslly taken up by the primary Btructure. The 

information on how to do this fs contained in the primary s t ruc ture  (polypeptide) 

f tself. 

Evidence for this i s  abundant. F o r  examplls, it ftil possible to destroy the 

eecondary structure and then see i f  i t  will reform, This phenomenon i s  demon- 

s t rated in F i g ,  ?, which show8 it  for  polyglutamie acid. At pH 8 the gamma- 

carboxyl groups om the end of each glutamate a r e  ionized to produce negative 

charges which repe",l each other  strongly enough to destroy the alpha helix 

s t ruc ture .  Thfe i s  manifested in the form of the optical absorption 09 

the a i d e  linkage. When the amide linkages are randomly oriented with 

respec t  to each other (random coil a t  pH 8) there i s  a higher optieal absorp- 

tion. At pH 4.9, when the earboxyf groups are not ionized, the alpha helix 

is reformed and the re  is! a new optical traneition in the ordered  array of 

the arnide l inkages.  The effect i e  reversible. 25 This demonstrates that the 

cilecondary structure of the polymer is already contained in  the primary 

amino acid sequence. 

M u c h  more than the l imited information required for the secondary struc- 

ture is contained in the p r i m a r y  amino acid sequence. The socalled te r t ia ry  

s t ruc tTl re  i s  contained as wel l .  The t e r t i a ry  s t r u c t u r e  m a y  be considered a s  



- 1 la- 

Fig .  6 .  Prote in  s t ructure 

- - - I  

RI ! R2 i R3 4 1 01  
II ' 

I 
I 

1 
0 
I I 

-N-c-c-N-c-c-N-LC-N-c-c-N 1 I [ I  I i l l l  I  

H H  I H H O I H H  
I I I I I  

H H O H  



TINOCO, HAL PERN and SIMPSON, 1962 
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Fig.  7 .  Absorpt ion spec t rum of polyglutamic acid  in both 
hel ical  and random rn i l  form n .  



the folding of the alpl'a helix coil on itself  in some special w a y .  In general ,  

the way in which  tertiary structures are arranged \ d t h  respect to each other 

could be called quaternary structure. The definitinn of th is  fourth level of 

order is  at presenc under l ively d i s c u ~ s i o n  by chemists, physicists and 

biologt s ts  . 26 

The evidence torithe fact that the tertiary structure is contained in Lhe 

primary amino acid sequence is just coming to hand. (I t  appears to  have 

existed for some time, but not recognized as such. ) The primary form of 

that evidence is the reversible denaturation of enzymesi;. Eneyrrxrts in 

general are proteins which not only require a particular amins acid s e *  

queglce and a helical B tructue but need helical sections structurally related 

in space to each other in the proper wily. For example, i t  f s not uncommon to 

have the functional g r o u p  of an enzyme contaiart of an imbdazole group of a 

histidine residue and a hydroxyl group of a serine residue and they may be 

in different partea sf the protein chain. In tbe active form sf the enzyme thev 

functian together, side by side, on the same substrate. Since we know the 

primary sequence, we therefore know that thebllcal part must have tertiary 

ratructure which bringa the histidine and ~ e r i n e  re~sideres together so that the 

two groups can dunctdon cooperatively, for example, In the hydrolysis of an 

ester. Thue we know thag there Is tertiary folding. 

Recently it ha@ been demornrstrslted in a number of calses that one can in- 

activate an enzyme and show that this inactivation involves! the destruction of the 

tertiary structure, or the quaternarby struictm~ in which earbunits are packed 

together but not linked by primary valence, By suitably incubating the: inactive 



material, as much as 95% of the enzymatic activity can be recovered. This means 

that the te r t ia ry  and quaternary  s t ruc tu res  (depending upon what the enzyme is)  

hat: been reformed spontaneously. '' One can carry this denaturation clear  

down to the random coil level, that 15 ,  go a91 the way down to  the primary strijc- 

ture ,  and can climb almost  a11 the way back through the alpha helix into the 

t e r t i a ry  folding and even into the quaternary aggregation. 'This l a s t  has in- 

deed been achieved in the c a s e  of the enzyme aldolase. 26 

The whole purpose of this  discussion is to  demonstrate that the primary 

sequence of the R groups in a polypeptide conlains all  of the 2ni:ymatic in- 

formation - -  enough to  conetsuct a whole active functioning s t ruc ture  as a 

thermodynaxnicaU y stable form. 

Nucleic Acid Structura  and Function 

The same phenomenon which wan discussed f o r  the s t ructured arrangement 

in the polypeptide holds t rue for the polpucleot ide as w e l l  - *  having formed 

the linear array &he helical s t ruc ture  folhows from it. F i g .  8 shows the con- 

etruction of the poliyrmucleotide itself. Et is a 2-desoxyribose phosphate-3u 5- 

pol lper ,  and to each drsaoxyriblc~se! suga r  molecule be attached one of the hatera-. 

cyclic bases 4 thymine, c yeasine, adenine and guanine) by B -gl ycosids amino 

linkage. Two sf these desoxyaibsea phosphate chains are specifically paired 

by a hydrogen-banded matching s f  the klc~t~,r~cycPlc  base^^ (thymine-adenine; 

cytosine-guanine), The base pairs each farm a flat plans aronaatfe system, and 

tha two polyrmer chains; are held together by &he hydrogen bondla. If the chains 

are twisted, a helix irs formed as ehown in F i g .  8, The same sort of barae 



F i g .  8. Molecu la r  drawing of components of DNA. 
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NATIVE 

0 DENATURED 

Rondom Coil 

SPECTRUM OF NA 77 VE 
CALF THYMUS DNA o m  
DENA TURED CALF 
THYMUS DNA 

200 250 300 350 

Fig .  10.  Hype rch romism on nucleic acid. 



The Next Level of Organization - 
Finally I would like to say something about the next higher o rde r  of 

structure reaching into the range of the visible - -  structures that can actu- 

ally be seen either by electron OT optical microscopy. This structure also 

m a y  be the ultimate resultant of the primary structure of the polymer. Fig. 

11 shows some collagen filaments. In the upper part of the figure they a r e  

separated into individual helices. If the proper type and amount of salt is 

added to a eolution of these helices, they will aggregate and collagen fibrils 

appear which look exactly like the natural collagen fibrila . The lower part 

of the figure showrir some of the reconstituted fibrils.  W e  are now getting 

into the visible region of structure. 

Thus we have outlined a possible sequence of events to traverse the entire 

route from methane, ammonia and water into visible biological structures. 

The point is that the information required to build visible biological otructure 

may be contained in the elaetrondc etructure of the constituent atoms and the 

rsaulting molecular structure itself. 31 The possibility that some of the 

v i ~ i b l e  organizatione of macromoleculea (leuchi a& the kamellae of ~Moroplalste) 

may thme3eEve~ be the templates (analogous to crystalkieation nuclei) for their 

own reproduction remains, There is some suggestion of the existence of such 

nonchrornosornal information transfer not only ire the fact that once lost from 

32 
certain cells they ds mot return, but in more subtle! changes as w e l l .  3 3  



FILAMENTS O F  COLLAGEN, a protein which is usually found ncid. This electron micrograph, whirh enlarge4 the filament- 75.000 
in long fibrils. were dispersed by plncing them in dilute acetic tinles. was made by Jerome Gross of  the Hervnrd hleclir.~l h l ~ o o l .  

FIBRILS O F  COLLAGEN formed spontaneously out of filaments chloride was ndded to the dilute ncetir arid. T11r.c long fihrild arc  
such as those shown a Love  when 1 per cent of sodium identiral in appearance a i t h  t l~oac of c.ollagu11 Iwlurc diqwrsiot~.  

F ig .  11. Structure  of collagen. 



CHLOROPLAST WITH M ITOCHONORIA QUANTASOMES FROM SPINACH 
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NEG.-STAI N ED M I TOCHON DRl A 
(PARK and PACKER) 
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Fig.  12.  E l e c t r o n  m i c r o g r a p h  showing the "fundamental  pa r t i c l e s "  
of biology: r i bosomes ,  e lec t ron  t r an spo r t  pa r t i c l e s  of the 
mi tochondr ia ,  quan tasomes  of the chloroplas ts  and unit l ipoprote in  
m e m b r a n e .  
a .  Chlamydomonas  ce l l s  showing ch lorop las t s ,  mi tochondr ia ,  
r i bosomes  and m e m b r a n e s .  5a - - -  
b. Spinach ch lorop ias t s  showing quan tasomes .  '"D 

c .  Negative -s ta ined mitochondr ia .  3 5 ~  
d. P o l y s o m e s  making hemoglobin. 3% 



W e  w i l l  not d iscuss  here the organization of these macromolecules ( p r o -  

teins, nucleic ac ids ,  carbohydrates)  into cellular units since experimental in- 

formation is lacking. W e  know that such units exist ,  and m a y  e v e n  have a c e r -  

tain l imited number of fo rms  common to  all living cel ls  - -  the .'fundaxl~anial -- 
par t ic les"  of biology. 34 F i g .  I 2  %S a composite e l e ~ t r o n  micrograph of 

various ora.~~ins35 
which  purports  to show four sf these units: the ribosomes, the electron t r ans -  

port par t ic les  of the mitochondria (more  recently called oxysomes),  the quanta- 

eomev of chloroplasts  and the unit lipoprotein membrane so  essent ial  to the 

emclosure of the ce l l  organel les  as well as the cell itself. There  is  l i t t le  

information about the physics  and chemistry of the organization of the m a c r o -  

molecules into closed, membrane  bounded packages which w e  call  ce l l s ,  36 

A good bit of work is  going ~ a a  in suriace chemis tryB . part icular ly of surface 

active mater ia l s  which tend to  spread out on the surface of an aqueous l a y e r  

in a two-dimeneional ordered way. The gradual evolution o i  biologically 

active membrane a t ruc turee  f r o m  emch matarialo can as yet only be imagined 

and remains  to be experimantaUy demonstrated, 

HNFORMATPON TRANSFER 

W e  have now arrived at the, stage sf enclosing the energy t r ans fe r  and 

information communication apparatus within a cell wall, The next problem is  to 

pass this structural. and operational information from one cel l  to another,  Here 

we introduce two aubdiviefons of the infarmation t r ans fe r  process; ( I )  the! 

transcription of information from one cell t o  another, in which the language! 

is ~t j lL  t f x  sanle, i. e . ,  efmply passing knowledge f rom one place to another 

without using it, and ( 2 )  the translation of the i n s i ~ ~ t i ~ s ~ ~  which may be con- 

tained in the transcription into the e m s  tructfon of a new cell, f .  e , ,  fallowing 





the imr ruc t l ons  to c r r ~ i t c  the  m a c h i n e  whlch can r n a n u i a c t u r t  & n e w  ser oi 

iii;;truciions. In tlLi:s lab t irlstauce in format ian  m a y  Lc t r a n s r ~ l i t i o d  f roin one 

cel l  to anothur  cocicd In a l i n e a r  sequence of btiser> 1 : 3  n n ~ d e i c  d( id ( ~ r a n l j -  

c r i p t i o n ) ,  and  thcra t hdt  l inear  sequence oi Liaheb i:a t r ,xusia ted i n ~ o  a lirienr 

sequence of a r r ~ l n f ,  a c id s  which g ives  r i s e  Lo the :~truc.:tl~rc of the cel l  i t s ( - l f .  

How is th i s  t r , i n s l  at lon ;iccornpliuhed 7 

F i g ,  1 3  stlows the t w o  kinds of l inear a r rays :  t.he b,~set i  in the nuclcic 

acid which  c o n t a m  the coded genet ic  ~nkormatlolz v ~ h ~ c l ~  I s  handed on frolrl one 

cell to another ,  and the  p ro te ins  (used by the cell in structural ant1 enzymatic 

functions) which  requi re  only the specifichrion cpf ;L l i n e a r  array of  mino no 

acids. The coded tranvc r ip t ion  is made  by simply zipping up another ~ ~ 2 t  of 

base8 complementary to the f i r s t  one, followhg which I w a  scr ips  are seyisr-  

ated with cne  going t o  the daughter cell for infornm.tion transfer. The  trans- 

fer  of one kind of linear array into the other is EL rnuc 11 m a r e  complex operation 

All Basts of information-handling machinery exists In the cell for this pus- 

pose, and the control a~pabret1r3 which determine0 w h e n  ta  read, trandate 

and carry out P particular bit of the available inetructh~ns fe only  new be- 

coming erllcpwhy kr~own ta ue, Hn the Bast f ew  p a r a  it has became posehe to  

begin the compilation of the "dictionary" for the t ransla t ion.  How the actual 

tranelatisn i a  aecomg%Behed l e  more cornpSlex. 



PROT E I N NUCLEIC ACID 
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Fig. 13. S t ruc ture  of protein and nucleic acid. 
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hand corner depicts the new daughter  cel l  containing the new DNA which i s  

now ready to be t rans la ted  into the format ion of a whole orgarism, How is the 

linear array of bases t rans la ted  into protein molecules which are both struc- 

tu ra l  and e n z p a t i c ?  From the DNA a linear a r r a y  of complementary bases can be! 

made whish are hooked together by r ibose eugar molecules into an RNA mole-  

cule, t h m ~  forming a complementary template to the DNA or some pa r t i cu l a r  

part of it.  This template which is made in the cel l  nucleus, and which presum- 

ably camee out of the nucleus in some unknown fashion, is called " r n e ~ s e n g e r ' ~  

(template) RNA. It i e  the mate r i a l  which reads the coded massage off the 

nuclear t r anda t ing  and construction apparatu~ in the cell cytoplasm, enabling 

Bt to make the proper material. The messenger  RNA is a linear eequence of 

baeea corre~lponding either to the whole or part (we beaieve it is part in the: 

higher cells but it may be the whole nucleic acid in the simple v i rueea)  of 

the genetis nucleic acid, TRe "factory" org'aest3rnbly line" 9s FA combination 

0 
of nudeoprotein~ which ba in a amall particle, about 200 A in size,  the 

1% he now quite d e a r  that it  fe  not poesiblie to get the rate of construction 

that ieneesslsary with only one rfbcreme working an a single messenger KNA,  

The situation now appears to be that the3 meseenger  RNA can have severa l  

t ibeeorns~ rolling along t e;irndtsweoens8y. 37' 38 The ribosome 

various amounts of polypeptides, and if the, RNA messenger has information 

for seve ra l  proteins, presumably there are cer ta in  punctuation marks a l o q  

i t  which induce the detachment of the ribosome with its comp8etsd protein  



molecule for r e l ease ,  The potein molecule,  having come free, folds up into 

i t@ eecondary and t e r t i a ry  s t ruc ture ,  and takes up i t s  function. The ribosome 

then goes back to pick up m0re measenges 

Gorrerapondingliy at each lone of them punctexa~iaon markti an ent i re  syn- 

thet ic  apparatus  begins, Recently I have seen  electron micrographs of 

polysomes, which are collections of seven o r  eight groups, which etar  
*t 

different points along the messenger ,  26@ 39 each  one of these points presumably 

being punctuated in some way, as yet unknown. The messenger  evidently is 

making many things eimultaneously, 

H o w  do the ribosome and messenger  collaborate to make  a poliypeptide 

of a par t icu lar  variety'? Here  i t  ie; necessa ry  to  have a translation mechanism. 

U p  to  thie point the DNA has only been t ranscr ibed  into RNA; the translation 

m u s t  now be accomplished. ~ h e h r n i n o  acids in F i g .  14 (5)  c o m e  in f rom the 
I 

medium, outside and they a re  t ransformed by enzymes,,, Fig .  14 16) fnto 

activated amino ac ids  ( 7 ) ;  the special  enzymes which do this s e e m  to form an 

enzyme e s t e r ,  generally an the carboxyl group of the amino acid, which i s  

then t r ans fe r red  to a specific smal l  molecule of what is called "transfer" 

( o r  soluble, f. e . ,  s-RNA) RNA (8). This  molecule has  a ve ry  specialized 

cha rac te r ;  i t  is smalE, only about eighty bases  long. Each of the s -RNA's  

has somewhere on it a threeebase sequence which corresponds to a specific 

amino acid. While the l i te ra ture  sugges t s  that the t ransfer  RNA which is 

made up of some eighty bases is a hairgin-like s t ruc tu re  whose ends dorm a 

complementary double helix, thie has recent ly been called fnto quegl.larl. 26 

However ,  %OR the moment l e t  u s  accept this  hypothesis ,  The s-RNA then 



contains th re r  bases ,  presumably a t  the btiiii in  the hairpin,  which a r t  ~l.st 

paired. These  unpaired bases have been called the "codon" for a particular 

amino acid. The special enzyme (6 )  to activate the amino acid which  is 

transferred to the specific s - K N A  eontaixafng the specific codon also has 

amino acid specificity. Several of the variow transfer RNA'a haw bean 

isolated as  pure substances -- alanine transfer  RNA, serine transfer  R N A ,  

etc ,  -- and work is rapidly progressing now toward the determination of the 

complete base sequence in the transfer  R N A 1 s .  There m a y  be two or  

three codons for one amino acid, but i t  is also clear  that there a r e  differ- 

encee in the t 'handlet' structure of the different transfer RMA's from diffes- 

snt organisms. 26 

Thia transfer  RNA (s -RNA) iaa really the translating mechanism within 

the cell. The relation between the three basesl and the amino acid i a  con- 

tained in the t ransfer  RNA, The three bases match up w i t h  the csrsee- 

pcmding three bases in the messenger RNA and thus put the amino acids in 

the right sequence a e  directed by the messenger,  The amino acids, thue 

suitably activated and gllaced, then "zip up" and the proper protein emerges, 

by an a e  yet unknown mechanism. 

There must exist a control apparatus within the cell that determines 

which part8 of the DNA should be read at  a given time. Every cell of a 

particular organism contains the aama kind of DNA (genetic mate rial) 

but every call does not mainufactu~e the s a m e  things -- the cells that 

make the brain make different things from the cells which go to make up 

other organs and tissues eruch as fingers, fiver, ete, T h i ~  i s  the basic 



problem of control  of growth and different iat ion,  Hk w do the i l i i tere~l;  

cell:, kno\b that they have d i f l e r e n ~  functions / 'what tell:; the andivldual 

ce l l s  w h a t  par t s  of tb DNA t o  read'  Mere m u ~ t  u p r a t e  the ccjntrol 

mechanism which  determines how a cell belmve,i even  though it6 genetic 

conutitucion is predetermined by the base sec;ut=ncd: uf i t o  t n h e r i ~ e d  DN,I .  

How the genetic cons t i tu t~or~  ot the cell is to be expressed;  when and In 

o rde r ,  i s  determined not m e r e l y  hy the DNA Lut by the envsronmcnt,  l i e re  

we come to  a pomt at  which social  evolution, the control of evolution by man ,  

can really t.ake hold, certainly on a ce l lu la r  Pevcl and probably on a n  Q r g a n -  

bernic one as wel l .  

FROM CHEMICAL TO SOCIAL EVI.>LUTI[ON 

W e  are now just beginning to l e a r n  the mechanisms which control the 

way in which a cell can develop. It is tho variety in this devdopmene which 

can give rise to a brain cell, an eye cell, e t c . ,  all from the same initial 

cell, Of more direct and immediate concern is what happens i f  the cells 

go wild, a o  they ds i f  the control mechanism is faulty, and they become 

malignant. W e  are here in the region of theory baoed upon a combination 

of bacterial and virus genetics, on the dne hand, and some enzymeehsml~:ry 

on the other. The control of the reading of the DNA is exercised through, 

or can be influenced by, something from outside the cell .  For example, a 

@mall molecule outside the cel l  can determine! whether cer ta in  particular 

part of the DNA molecule inside the cell can be transcribed into messenger 



o r  not. This  promises  to give us  a handle on the control of development. 

If we can  already do this with one type of ma te r i a l  and organism, it is not 

an  improbable ext;rapolation to believe that, as chemis ts ,  we  can make a 

la rge  variety of mater ia l s ,  some of which could, fo r  example, produce a 

new or abnormal  type of organism.  At bir th  the human has a cer ta in  nurn- 

b e r  of bra in  cells. WlOlO, which is normally all i t  will eve r  have. The 

bra in  ce l l s  make  a great number of connections - -  excitatory,  inhibitory, 

e t c , ,  - -  which a r e  the basie, for behavior of this computer  which is the 

human bra in .  If it  be, possible to  control the growth of var ious develop- 

ing ce l l s  in the brain (and there  should be chemicals  which can  accelerate  

o r  dece lera te  the growth of ce r t a in  specific kinds of cel ls) ,  i t  is quite 

c l e a r  that we might change the i r  number o r  at  leas t  their  distribution. 

If the computer  i s  l imited by the number of connections i t  can  make ,  and 

i f  one could go from 10-10 to l o 1  brain ce l l s ,  there is a chance that the 

capacity of the brain could be increased .  This i s  theoretically now within 

o u r  range. 

We a r e  approaching not only the means of selectively transforming the 

gene but what is even c loser ,  the means  of deciding which ones t o  read  and 

which ones to not read,  and how long to read  them. What effect might this 

have on social  evolution ? 

Social evolution, on a physiological level,  up until now has been d e t e r -  

mined p r imar i ly  by the s a m e  processes  of random mutation and selection 

that gave r i s e  to the human r a c e  in the f i r s t  place. W e  now have corn1Eg 

into our hands the tools for  the control of genet ic  information itself, a n d  



clrjser s t i l l  may be the abil i ty to control the gene~ic  expression of infor- 

rn.ition which is in a n y  exist ing cell. This would ilot entail  any c h a n g ~  In 

the infui-marlan (mutation o r  recombinallon) but rxlerely to control how i t  

i s  used.  

Cn the bacterial level both things have already been done; transduction 

in microbes has been achieved. One can introduce genes into the chromosome 

of a bacterium (almost at  will) which can be incorporated eventually into the: 

bacterial chromosomes. This i s  what happens wi th  lysogenic viruses; they 

get into the cell and remain there, and eventually some of them do get 

attached to the chromosome and become part of the bacterial chromosome. 

This is changing the bacterial chrorn~sorne by introducing new information. 

More easily done ie the control of the expression of the existing bacterial 

gene by simple molecules, 40,41 b y  the environment itself. These can pens- 

trate into and out of the cell almost at wil l  and can, in turn, exerciee con- 

trolling function on the ability of that cell to expresls i ts  genes, 

Through thie mechanism it  m a y  be polrssible for us to control virus 

disease, cancer, and perhaps even change the adaptability of men, thusi 

leading to directed social evolution. The moment we s ta r t  thinking about 

things of thie nature, we cannot escape the enormous problems involved. 

Who i s  going to decide to change men, and how many of them, and in 

what way? 4 2 ' 4 3  This ia a problem which w e  will  face and we should 

begin thinking about i t  now. 



One of the most far-reaching developments in social  evolution w i l l  

come about from this  new knowledge of the manipulation of the basic  

polymeric materials of which  all hiving substance is composed. Vve a r e  

learning the chemical composition of the genes, and their  constituents, 

the chromosornee, and t h e i r  s t ructural  arrangernant. W e  a re  learning how 

to a l t e r  genetic material deliberately to produce t.lSpes wi th  predetermined 

cha rac te r i s t i c s ,  This is  being done with  microorganierns in the labora tory  

right now. But in the future ,  a s  our kncpwledgg l;sows, we should have 

the same power  with plants and animals and m a n  himself, 

T w o  aspects  of this situation should be conoidered, from the human 

point of view.  Many 0% the studies of genetic ma te r i a l  are being carried 

out in the i n t e re s t  of controlling virus diseases and cancer .  There is 

l i t t le  doubt that eventually euccesa wil l  ba achieved. 'The same genetic 

knowledge will con eain the infcsrmatfon~ we need for controlling both the 

g'quantity'P and the Hqualitylt of the population. W e  m a y  have the power to 

intensify certain h m a n  traits, delete others ,  and perhaps even develop 

n e w  ones . $3  An important corollary of this f s the approaching power to 

control  mene$ minds by chemical means, bringing with it the major prob- 

l e m  sf how and by whom t h i ~  power should be exercised. 42,43 
I 

The distance from Atom to A lam cover s  billions of years.  By 

following natural Bawa of the behavior of matter, the procese has been 

orderly, even in its infinite cornplexft'y. But during these yearo the l a w s  



of ndture have functiuned i n  a laboratory in  tvhich ~ a c h  atom had i t s  d e c -  

tiny, but within w11icC no encompassing c o r n p r e h e ~ ~ s i o n  of the whole could 

sway the course of experiment.  

Today the world is quite as awavome ta conternplate as  it must have 

been in i t s  beginnings, for today mall has a little knowledge ! With each 

thread of n e w  truth, the responsibility to weigh the consequence of i t s  

application becomes m ore critical. The rate of evolution can change 

tremendously with man ' s  new knowledge, a n d  the responsibility to 

control the rate and the direction of change must depend on w i s d o m ,  

A s  i t  has to this day, t ime will, record our succesB - -  or our failure. 



F'or r t ?v i e iva  o t  the gGnera l  theories of the  o r i g in  of life on lhe ear i l l ,  
see  Xefs. 1-10. 
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