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Multiphoton Processes in Isolated Atoms and Molecules
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In the first part of this thesis the theory of coherent excitation
of a multilevel quantum mechanical system is developed. Damping of the
system is taken into accouut by the use of a density matrix formalism.
General properties of the wave function and/or the density matrix are
discussed. The physical implications for the behavior of the system are
described, together with possible applications of the formalism, includ-
ing the infrared multiphoton excitation of molecules, and optical puup-
ing in alkali atoms.

The second part of the thesis 1s a presentation of experimental re-
sults on the infrared multiphoton dissociation of molecules, followed by
a discussion of thé general features of this process. The experimental
results were obtained using a crossed laser and molecular beam method,
and the emphasis is on determining the properties of the dissociating
molecule and the dissociation products. The dissociation process is
shown to be described very well by the standard statistical theory (RRKM

theory) of unimolecular reactions, a brief presentation of which is also

included.
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PREFACE

The work leading to this thesis has been unusually varied and in-
spiring: meeting the challenges of making all the various components of
an experiment work together at the same time, enjoying the beauty of a
theory gradually making more and more sense, bringing together concepts
and experimental techniques from chemistry and physics, and having the
feeling of learning something about nature that also others are interest-
ed in learning about.

In the completion of this work I am in profound debt to my advisers,
Prof. Yuen-Ron Shen and Prof. Yuan-Tseh Lee. Ron has been deer’r in-
volved and interested in my work, always ready to share his wealth of
knowledge with me. By over and over again showing how well things real-
ly can be done, he has taught me the importance of being well organized
in learning physics, and of being clear, concise, and careful when try-
ing to teach the world about my learnings. Yuan, with his invaluable
experience and knowledge about experimental work, and physics and chem-
istry in general, has beer ready at any time to discuss problems I might
have, always with helpful suggestions and a friendliness I have only
very rarely encountered before.

The experimental work reported on here is the result mainly of the
joint efforts of Peter A. Schulz and me working in the laboratory, and
he should be credited just as much for the experimental results as I.

I am very grateful for the collaboration with Peter and the good friend-
ship that grew out of it. The resulting exchange of ideas and the shar-
ing of work-load have been invaluable, not only in obtaining the experi-

mental results, but all through the work with this thasis.
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INTRODUCTION

During the last five years, in quite a number of laboratories
around the world,efforts have been concentrated on understanding the
process of multiphoton dissociation: The process whereby a molecule
absorbs several tens of photons from a moderately strong infrared laser
field and eventually gets dissociated. In_our laboratory we have
devoted much effort to a thorough experimental characterization of the
process. Our experimental results are the subject of chapter 2 of
this work.

In describing the process theoretically, one may divide it into
two parts, according to the amount of excitation in the molecule.

The laser excitation of a molecule over its discrete levels can be
treated using the theory of interaction of a multilevel quantum
mechanical system with a strong oscillating external field. Chapter
1 of this work is devoted to an extensive development of this gene-
ral theory. A model calculation on the effect of optical pumping

in a free atom subject to decay of excited states is included as an
illustration of the theory. ©GScientists at Los Alamos have applied
the same theory to detailed model calculations on the initial multi-
photon excitation of the molecule SF6 over the discrete levels.

This is briefly discussed in chapter 1.

At higher excitation energies the density of states of the mole-
cule becomes much larger, and the states form a quasi-coatinuum.
Multiphoton excitation in this region actually involves multiple

steps of single photon resomant transitions. The above calculation



is no longer applicable. A phenomenolegical theory can, however, be
develdped. Such calculations applied to the multiphoton excitation
and dissociation of SF6 are extensively discussed elsewhere /1/.

Thus this thesis consists of two rather independent parts:
First, a chapter on the general theory of a multilevel quantum
mechanical system interacting resonantly with an oscillating external
field, and second, a chapter centered on the experimental results on

infrared multiphoton dissociation of molecules.

Reference:

1. P. A. Schulz: Ph. D. thesis, Dept. of Physics, University of

California, Berkeley 1979.



CHAPTER 1 THEORY FOR COHERENT EXCITATION OF A QUANTUM MECHANICAL SYSTEM

1.1 Introduction

In this chapter a method will be developed for describing mathematic-
ally the interaction between a strong electromagnetic field and a realis-
tic quantum system like an atom or a molecule. This problem has held the
continued attention of physicists ever since the birth of quantum mechan-
ics, and ways of attacking the problem have been discovered and rediscov-
ered by people working in various different areas of physicr. We shall
concentrate on aspects most relevant to optical (infrared or visible)
fields coherentiy exciting free atoms and molecules. However, bits and
pieces and extensions of the formalism to be presented have been used in
microwave spectroscopy, nuclear magnetic resonance, electron paramagnetic
resonance and related phenomena. An idea of the current viewpoints and
centers of interest in coherent excitations can be found in the excellent
collection of papers in Ref. 1.1.

The purpose of this chapter is not so much to develop a new formal-
ism as to unite a variety of ideas from various sources into a reasonable
simple formalism suited for calculations. The development is guided by
the realization that with the availability of digital computers and reli-
able software for solving numerical probelms in linear algebra /1.2,3/,
reduction of a problem to an eigenvalue problem or a system of linear
equations (of numerically tractable size or with a structure permitting
fast computation of solutions) is just as complete a solution as that
with a complicated analytically closed form. Analytical forms are pre-
ferable only 1f they have a structure simple enough to make important

qualitative features apparent, like, a.g., the energy denominators in



the expressions in nonlinear optics /1.4/. However, we shall see in this
chapter that important qualitative information can also be derived from
the formulation of the eigenvalue problem.

Our goal 1s to calculate observable quantities like populations in
specific quantum states, spectrum of scattered light, attenuation/gain
and polarization change of probing or exciting fields, given other exper-
imentally measurable quantities like energy levels and oscillator
strengths. Keeping in mind that a computer will be used in the calcula-
tions, we must limit ourselves to quantum systems with a finite number of
discrete levels. We will not attempt to describe ionization or dissocia-
tion induced by the field.

We will start from a simple general description, and then extend it
to various more realistic cases. For ease of presentation, we will dis-
regard all but the electric dipole interaction between the electromagne-
tic field and the quantum system. The physical probelms we will discuss
are: infrared multiphoton excitation of polyatomic molecules (which is
treated further in Chapter 2) and optical pumping of atoms into a polar-
ized state.

There are basically two different approaches to the problem. One
involves a completely quantum-mechanical treatment of the coupled system
of a quantized electromagetic field (from here on called e.m. field) and
a quantum mechanical system (from here on called q.m. system) of inter-
est. This is the so-called "dressed atom" approach /1.5/. However, if
the radiation field is sufficiently strong, a semiclassical approach is

possible. The limiting equivalence of the two approaches has been dis~



cussed in detail in a classical paper by Mollow /1.6/, and we shall use
the semiclassical approach henceforth.
If spontaneous emission and all other dephasing and depopulating

terms are negligible, the equation of motion takes the Schrodinger form
iy = (L)Y 1.1

where ¢ is the time dependent wave function of the gq.m. system in a pre-
scribed external e.m. field described by the hamiltonian hH(t). This is
often sufficient to describe microwave or infrared excitation, but in the
visible or ultraviolet, spontaneous emission cannot be neglected. If
this is the case, or if other decay or dephasing mechanisms are nonnegli-
gible, a density matrix formulation is needed. Thus the equation of mo-

tion is of the Liouville-type
i = &(t)pe 1.2

where the Liouvillian h&Zis an operator defined on the space of density
matrices, as opposed to the hamiltonian, which is defined on the space
cf wavefunctions. This has the undesirable consequence that for j.m.

system with N levels, the equation of motion involves N2 linearly inde-~
pendent components. However, formally, Eq. 1.2 is the same as Eq. 1.1,
except that in the presence of dephasing and population decay, & is not
hermitean. As discussed thoroughly in a review article by Omont /1.7/,
much the same symmetry properties that | posesses, are taken over by p.

Consider, as an illustration,a j = j, to j = jl + 1 transition in an

1

atom. In the absence of external fields, H and & are both sperically



symmetric, and ¥ will transform as the irreducible representations Dj(ED
Dj+1 under rotation. In the absence of decay, p is just the direct pro-
duct of ¢ with its complex conjugate, and will transform as (Dj(&)Dj+1)
@@, @) = 20, @40, D, D. . '@DZj)@3DZj+1®D2j+2' If the
decay terms in & are spherically symmetric, they will only couple ele-
ments of p belonging to the Dj's with the same j, and then p can be de-
composed into a multipole series. Furthermore, an external field, in the
dipole approximation only couples the Zj— multipoles to Zj- and thlw
multipoles (since the dipole operator is a tensor operator of rank 1,
transférming under rotation as Dl). For the same reason, only components
of multipoles with azimuthal quantum numbers m differing by less than 2
are coupled by the external field. This is very helpful if the field is
weak enought that relaxation dominates over excitation so that perturba-
tion theory can be applied. However, it is less useful in the strong
field limit, since then there is not even an approximate spherical sym-
metry to the total hawmiltonian, and t%e multipole expansion of p ceases
to be a good approximation. However, one advantage of using the multi-
pole representation of the density matrix still prevails even in this
case. Since the dipole operator transforms under totation as Dl,‘l’in

Eq. 1.2 transforms as D f'Dl, and thus in the matrix representation of

0
&% only elements of the density matrix connecting components with queo .
tum numbers j and m differing by less than 2 are nonzero. Thus the ma-
trix representation of % can be chosen to have a band structure, a fea-
ture which may facilitate numerical diagonalization of & /1.2/. Here,
we shall however use the standard representation of the density matrix,
T.e., the wavefunction ¢ = ZZ¢LlE> instead of the density matrix is

chosen to be decomposed into multipoles, and we write p |k><2|.

= ZpoPre



Because ¢ the Liouville Eq. 1.2 can be rewritten as an

*
=19
ko ik’
equation in real quantities only, as followa. We define a new set of

2 . . . .
N” density matrix elements b in terms of the matrix elements Pom’

pk = pkk for k = 1,2, ... ,N (k€ Nl) 1.3
= (pEm + pml)/Z for k = N+1, N+2, ... , N(N+1)/2 (k € Nz)
_ _ . _ 2
(pﬁm me)/ZI for k = N(N+1)/2, ... , N (k € N3)

We order ¢ and m so that ¢ > m. When k € NZ’

k=(-1(-2)/2+m+ NN+ 1)/2. All

k=(2 -1 ~2/2+

+ m + N, and when k € N3,

*
e thus defined are real, since ©om = Pne’ (In the multipole expansion

of the density matrix a similar pairiug of components can be made /1.7/
by combining components with equal but opposite values of the azimuthal

quantum number m.) Now, let us (by defining T = i¥) write Eq. 1.2 as

p, =-~1 1.4

em g'm' T eme'm'Pe m

Using the definition 1.3 for i’ and with T being defined from

kk'

rlml'm' in Table 1l.la, we can rewrite Eq. 1.4 as

P =~ I 1.5

k' Fkkupkv

with P and Pkk' all being real. Here, I k' is defined (with the same

k

relation between k, £, and m as in Eq. 1.3) in Table 1l.la. If we now

compare Eqs. 1.5 and 1.1, the latter having matrix form



o = 7 ot 1.6

we see a formal similarity. The differences are that whereas Hkk' is her-

mitian and of dimensionality N, is real, but not necessarily symmet-

"kk’
ric or antisymmetric, and of dimensionality Nz.

Mollow has deduced the form of Saml'm' with spontaneous emission ta-
ken into account, in the case of well separated transition frequencies
(Ref. 1.6, Eqs. 10.8 and 10.10). By going through Mollow's derivation,

we find that even with some near or exact degeneracies, Simz'm' still re-

tains the form

g&mk'm' = Hkl'émm' - Hm'méll' T Y ome'm! 1.7

r i ca; . Such a i -
where Yome'm' 1S 8 real decay matrix uch a form of gamﬂ'm' is not re
stricted to decay by spontaneous emission; other examples are given in
Refs. 1.7 and 1.8. 1In the case of spontaneous emission, the matrix

is the dipole

has the form given in, Table 1.2. 1In the table, ﬁkk

Yome'm'

moment of the transition k » R and Akl is the Einstein A~coefficient for

the transition:

0 if state k has energy hwk below that of state %
= 1.8
Akl 4 a

3 > 2 22
kk‘ukll /(3c”e”) otherwise

a is the fine structure constant, =Wy T W0y, and c and e have their

Crs

usual meaning. We also have the total Einstein coefficient for the decay

from the state k: Ak = zlAk2°



Now, let us consider the simplest case, that of an isolated q.m.
system in a perfectly monochromatlic e.m. field. The details are given in
Appendix A. Let us start with Eq. 1.6, and then gradually go to the more
general cases represented by Eq. 1.4 and 1.5.

From Appendix A we obtain the solution of Eq. 1.6:
() = 1, 626 (0)¢2expl~ 14 + n w)t] 1.9a
A2 an %y #p(O)¢expl- 10 K :

where %% are the so-called quasienergies of the system. 2% and ¢2 satis-

fy the cigenvalue equation (cf. Eq. A.5)
a.a _ y L&
Q tbk Zlﬂkl¢l' 1.9

The superscript a labels tne N eigenvalues Qa, when cach eigenvector has

N components ¢i, k=1, 2, ... N. If the hamiltonian of the system is

*
_ g . s :
HPQ hwkékl + hvklexP( iwt) + hvlkexp(lmt), the operator Hkl is defined

as

v - '
Hkll Ak6k2, + VkJL 1.9¢c

with

b = w0~ o s o] <o 1.9d

L]
—

Vig 1y — 1y
*
r = -
Vie T ) Ve Yy mmy

0 otherwise 1.9e

]
I
—
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For each k, o, is chosen as that integer that minimizes lAkl. Since HLL
is hermitian, the Qa are all real freauencies.

Let us point out a few properties of ¢k(t). In the absence of an
external field, ¢k(t)=exp(-iwkt)and thus oscillates at the frequency wk.
From Eq. 1.9 we see that if we consider an N-level system, each ¢k(t) has
up to N components oscilllating at frequencies o® + n, W witha=1, 2, ...
N. This is the AC Stark splitting effect on level k. Thus in the limit
of weak external field, for each level k there must exist at least one
62 such that o? + n W ~ Wy s and the corresponding ¢z must be much larger

than «l11 the other ¢i} b#a. In the absence of the field, ¢; = Gak and
k

Q" = Ak =0 T o,

In the extremely strong field limit where all the detunings Ak are
negligible compared with sz' the 9% are completely determined by the di-~
pole matrix elements Yep between the various levels, and are directly pro-
portional to the external field strength E, as can be seen from Eq. 1.9c,
since sz « quE. Thus in a system where N levels are strongly coupled
by an oscillating field, each level is split up into N components, and
the splitting is proportional to the field strength.

Since tbe only parameters entering in Eq. 1.9 are energy level posi-
tions and dipole transition moments, the application of Eq. 1.9 to ~alcu-
lations on a specfic atom or molecule is a question of spectroscopic know-
ledge. Given sufficiently detailed spectroscopic data, Eq. 1.9 can be
used to calculate the effect of a field of monochromatic radiation with
piecewise (in time) constant amplitude, e.g. a square pulse, on the q.m.
system.

Since in the infrared, spontaneous emission processes are quite slow

and can be neglected compared to the excitations induced by a strong in=
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frared laser field, this apprvach has been used with reasonable success,
to calculate the frequency and laser energv fluence dependenca nf rha en-

ergy absorbed in collisionless IR multiphoton excitation of SF Follow-

6"
ing a detalled assignment /1.9/ of a high resolution dicde laser absorp-
laser, model

tion spectrum /1.10/ of SF, in regions pumped by the CO

6 2
calculations have been performed on the molecule /1.11-13/. For laser
pulse intensities and durations of the same order of magnitude as those
used in experiments on multiphoton excitation and dissociation, the re-
sulting average excitation energy in the SF6 molecule was calculated as
a function éf laser frequency. In the model for the SF6 molecule, the
lowest 3-4 vibrational states of the triply degenerate Vs mode were in-
cluded. togéther with rotational level structure, anharmonicities and
Coriolis coupling. This gives a model hamiltonian for SF6 which was used
in Eq. 1.6 to calculate ¢k(t) of Eq. 1.9, with an average excitation en-
ergy <E> = Zk&k|¢k(tp)|2, where tP is the pulse duration. It 1s interes-
ting to see that experimentally /1.14-15/, the frequency dependence of
the multiphoton dissociation yield in SF6 is closely related to the exci-
tation in the lowlying discrete levels treated in this model. The lack
of sharp resonances, the relatively broad frequency dependence, and the
red-shift of the multiphoton excitation spectrum relative to the single
photon absorption spectrum, are properties found in multiphoton excita-
tion both theoretically and experimentally. Multiphoton dissociation is
the subject of Chapter 2 of this work, and we will leave further discus-
sion to that chapter.

The case of the idealized hamiltonian (without decay and dephasing

effects) of Eq. 1.1 has, as already pointed out, the attractive feature

that the dimensionality of the associated eigenvalue problem is equal to
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the number N of levels involved in the problem, as compared with the N2

dimengionality of the correcponding mere gencral case (Bq. 1.2). Thus,
several hundred levels can routinely be treated by standard computer pro-
grams /1.3/, and many more, if use can be made of the symmetries of the
hamiltonian of the problem. Thus its solution can be used as a zeroth
order approximation in a perturbation scheme in solving Eq. 1.4, where
the Yome'm' of Eq. 1.7 are small compared to sz'smm' - Hmm'BEQ" i.e.,
when the separation between the corresponding quasienergies o? is large
compared to the decay constants Yome'm'"

In the absence of decay, Eq. 1.1 and 1.6 are completely equivalent

to Eq. 1.2 and 1.4, and if ¢i(t) is a solution of Eq. 1.6, then

ab
p—lpR.m

a b *
(t) = ¢2(t)¢m(t) 1.10
is a solution of Eq. 1.4. Now, in the presence of decay, we must use the
results in Appendix A.2a. We have a zeroth order solution Eq. 1.10 to
2" 4me ' 'm

In analogy with Eq. A.12 we write the complete solution as

, and a perturbation operator %

the problem iogn = I 2mi'm'

T ome'm'

pzm(t) = Zabaab(t)¢z¢zexp[— i(nz - nm)wt] 1.11

where now ¢i(t) = ¢iexp[— i@ + nlm)t] are solutions of Eq. 1.6. By
substitution in Eq. 1.4 with damping, we get (cf. Eq. A.13)

a b, ab aba'b’

*ab
a -Q)a" - iza'b'Y aa'b’' 1.12a

ia” = (Q

where
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Yaba‘b' ' a* b a' b'*

= zlml'm'¢2 ¢m¢2'¢m' Yome'm'” 1.12b

According to Appendix A.2a, we should include in the sum on the right

hand side of Eq. 1.12b only terms such that n,o-n - g, + ne= 0.

As in Eq. 1.9, nkm is the integer multiple of the field frequency w

that is closest to the system eigenfrequency - If

Ylml'm' originates in spontaneovs emission, we see in Table 1.2 that un-

less ng-n -ny, +tn, = 0, we will have Yomt'm' = 0.

Following the approximation in Appendix A.2a, the only terms to be

1Lt
included in the right hand side of Eq. 1.12a should be those a? b that

thHt
oscillate at frequencies close to aab, i.e., we discard all Yaba b with

1] 1 * L}
[® - oP - @' 4 gP'| > yaba’D’, 1.13

The simplest case is that of well separated quasienergies Qa, when the

only a, b, a' and b' for which 1.13 does not hold are

a' and b = b' 1.14a

Y
1

b'. 1.14b

b and a'

or a

In this case the lowest order approximation to Eq. 1.12 is

162P = (@2 - @b - 14?380 L 2y 1.15a
. o0 ot
a2 = g yRaaaal 1.15b

a!



Thus the Nz—dimensional problem of Eq. 1.4 has been reduced tc an N~dimen-

ainnal nrableam Fa_ 1 _15h
gional problem, Lha, L. 2202,

This 1s the simplest case. If the set of quasienergies have acci-
dental near degeneracies or nearly equally spaced values, then a, b, a’
and b' with a ¥ b ¥ a' #b' can be found such that Eq. 1.13 does not hold.
One example i. the case where a system is excited close to resonance (see,

e.g., the twolevel system of Appendix B). Then, the quasienergies come
+ - + +
in pairs of equal but opposite values 9? ~- g2 , implying o - Qb =

b~ a

Q - Q . Thus, instead of Eq. 1.15a, we get
atpt att
o a
il pa/ = Q b a” 1.15¢
o o
where the 2 x 2 matrix @ is
+ + ++ + + + + - -
@ - Qb _ iva bab _1ya b'ba
Q= - -+ + - - - - = - 1.15d4
.baab Qb _q? iYb aba

This is an illustration of a more general principle: Eq.l.12a can often be
decomposed into subsets of equations of lower dimensionality (than Nz).
Each set then involves 1ab's which all have about the same ©% - Qb (in
the sense of Eq. 1.13), in analogy with standard first order degenerate
Rayleigh-Schrodinger perturbation theory.

Going back to the assumption that we do not have near degeneracies
or nearly equally spaced levels in the quasienergies o? (which are deter-
mined by dipole oscillator strengths, external field strengths, and ex-
ternal field frequency), we can use Ey4. 1.15 as an approximation for Eq.

aba'b’', a
1.12 where the y s are assumed to be small compared to the (Q° -

Qb)'s. Then, the following results are obtained:
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‘(1) Eq. 1.15b can be reduced to an eigenvalue equation by the substitu-

aaa(t) = aaa;cexp(— th) 1.15e

where aaa;c and Yc, ¢c=1, 2 ... N. are the N different solutions of the

eigenvalue problem

c_aajc

A ’ t,t.
Y a = Ea'Yaaa aaaic 1.15f

(2) Equation 1.15a has solutions of the form

a®®(t) = a®Pexp(- 12%%¢) 1.15g
where
g3 - 0@ _ gP - 1,8b3b, 1.15h
(3) Let us also define
b2¢ = 2%%%3¢ 1.154

where a® together with aab are constants to be determined from the ini-
tial values of %hn(t).
(4) By substituting Eqs. 1.15e, g, and i in Eq. 1.11, we get

pzm(t) = zé#baab¢:¢z*exp[- i[ﬂab + (nl - nm)m]t] +
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+ Sacbac¢:¢:*exp{- [yc + 1‘“1 - nm)w]}t . 1.16a

With plm(O) given, aab and b3C = 2%a%23¢ satisfy
a® =z, 430, (0) 1.16b
£,a% % - an¢;*¢;pzm(0). 1.16¢

The contents of Eq. 1.16 are as follows: In the absence of damping,
each element pgm(t) of the density matrix has up to Nz components, oscil-
lating at frequencies Q? - Qb + (n2 - nm)w, witha=1,2 ... N, b =1,

2 ... N. There are N components all oscillating at the same integer mul-
tiple (n2 - nm)w of the field frequency, corresponding to a = b above.

In the presence of damping, the components oscillating at a fre-

quency Q? - Qb + (n2 - nm)w, where Q2+ Qb, will remain the same, except

that they decay with a rate Yabab. The N components oscillating at the
same frequency (n2 - nm)m will all mix and give rise to N new components
decaying independently, at rates Yc. If, and only if, some of the o2
are nearly degenerate, will there be more than N components mixing. If
in a density matrix element pgm(t) there are several components oscillat-
ing close to the same frequency, they may be mixed by the perturbation
introduced by the damping, just like the N components oscillating at
(ng - nm)m.

Let us, for completeness, also write down the eigenvalue equations
in the case that the damping rates are of the same order of magnitude as

the quasienergies 2%. Then the full szdimensional Eq. 1.4 or 1.5 has

to be used. The eigenvalue equation is (cf. L1. A.5)



aa a
& Pom = Zl'mAZZml'm'pl'm' 1.17a

which can also be writeen as (cf. Eq. 1.5) (defining Ya = iQa)

aa _ '
Y P T Zk'rkk'pk' 1.17b
and where
] = - A - 1 -
Loms ' m' @ = 880 ¥ (VS vm'méu') Yometn
1.17c
Az and V;l, have the same meaning as in Eq. 1.9, and the relation between

Fik' and iQ;ml'm' is like between Fkk' and rlml'm' in Table 1l.la. It is
given explicitly in Table 1l.1b. If this full Nz—dimensional treatment is
necessary, the number N of levels that can be included in the practical
calculation will be severely limited.

Apart from the expansion of the density matrix into spherical mul-
tipoles discussed previously, which is only possible in the absence of
external fields, no systematic analysis of equations of the general form
1.17 seems to exist. There is no systematic way to exploit the struc-
ture of the matrix Fék' of Table 1.1b so as to decompose it into subma-
trices of lower dimensionality. However, judging from systematic distri-
bution of the relatively few nonzero elements of.Fik, (see Table 1.1b),

this would seem to be possible.

1.3 General Properties of the Density Matrix pzm(t)

So far, we have developed a formalism for finding the time-dependent

17
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field. The problem reduces to an eigenvalue problem (Eq. 1.9b, Eq. 1.15d,

Eq. 1.17b). Thus the solution of Eq. 1.4 can be written in the form
a _ .a _ .2 _
plm(t) plmexp[ [¥© + 1(nE nm)w]t}. 1.18a

For each pair %, m, pim(t) has NZ components, oscillating at the frequen-
cies Im(ya) + (nz—nm)w, a=1, 2, ... N2. Each component decays away
with time constant Re(ya). Since in Eq.1.17b, the matrix P&k' is real, if
Ya is an eigenvalue corresponding to the eigenvector pzm, Ya* is an ei-
genvalue corresponding to the eigenvector p::; i.e., the ya always occur
in complex conjugate pairs, giving rise to physically acceptable solu-

*
tions (pzm(t) = pml(t)) of the form
(t) = ap? expl- [v? + 1(n, - n)wlt} +
plm plm P ¥ ' /e
* a% a*
+ o pmlexp{- [v" + i(nm - nl)w]t}. 1.18b

Now, consider the trace of p, Trp = & (t) = 1. Using Eq. 1.18a

2P
and differentiating with respect to t, we get

d

= 3t 1.19a

0 Tro® = - yPexp(- y?0)1

a
2Pag
or

a, a a._ a
Y lezn ¥ Trp (0) = 0. 1.19b
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Thus either Ya or Tr[pa(O)] should be zero.

vhysically, as we shall see later in examples (the simplest being
the twolevel problem of Appendix B), ail Ya, except Yo, should have a
positive real part signifying damping. On the other haand, YO corresponds

to the steady state solution
p, (t +°9) = pO exp[- i(n, - n_ )uwt]. 1.20
Lm Lm R m

This solution is the only one with a nonzero trace, as shown above. Thus
the typical system has a steady state response to the external field
which oscillates at multiples (nk - nm)w of the field frequency, and all
other components pim, a # 0 decay away.

The most important component pa(t) of the density matrix, next to
the steady state solution po(t), is the one with the smallest real part
Re(ya). ‘This component is the one that determines how long it takes for
p(t) to rceach steady state, and it also shows which of the density matrix
elements Okl(t) that take that long to reach steady state.

In the twolevel system treated in Appendix B, regardless of detun-
ing from resonance and external field strength the values of non-zero
Re(ya) all have the same order of magnitude. This is, as we shall see,
not true in general. The real as well as the imaginary part of Ya may
vary strongly with external field frequency, strength, and polarization

state.

1.4 Physical Implications of the Form of the Density Matrix

So far, the only thing we have accomplished, is to show what the

form of the density matrix is for a q.m. system driven close to reson-
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ance by a steadily oscillating e.m. field, and how this solution for the
density matrix can be calculated using a computer. Let us now discuss

the physical implication of the solution for the q.m. system.

l.4a Fluorescence Spectrum

The spectrum of the radiation reemitted from the q.m. system can in
part be determined by analysis of the set of eigenvalues o? (Eq. 1.17a or

1.15f). Since the semiclassical fluorescence radiation field is propor-

-

Emulmpmz(t)’ it will have up to

tional to the oscillating dipole moment Z
N2 frequency components (corresponding to the various Re(Qa), centered at
Re(2?®) + (nm—nl)m for each integer (nm - nl). Each line has a Lorenzian
line shape with half width given by Im(ﬂa),

However, as pointed out earlier, at times long compared to the vari-
ous [Im(Qa)]_l,typicallyall components of the density matrix except one
(oscillating at integer multiples of the field frequency and thus giving
rise to elastically scattered radiation) will have died away. Analysis
of the fluorescence spectrum using the juantized description of the e.m.
field however shows (see, e.g., Ref. 1.5 or 1.6) that the fluorescence
at the frequencies Re(Qa)+(nm~nE)m will not die away in the long time limit.
Qualitatively this can be understood by realizing that two-photon fluor-
escence, which cannot be completely described in a simple semiclassical
frame, may be important. Somewhat loosely, we may say that emission of
a pair of photons with frequencies w, and w_, where w, + w_ = 2w, may be
resonantly enhanced in the driven ¢.m. system. This happens when w, or
w_ is within a distance * Im(Qa) from any of the system oscillation fre-

quencies Re(Qa)+m. But for a formally correct deduction of the steady

state fluorescence spectrum, one has to consider the equation of motion



for the quantized e.m. field, as in Refs. 1.5 and 1.6.

1.4b Absorption Spectrum

The absorption by the strongly driven system of a weak probe
field is characterized by the same resonance frequencies as the ones
observed in the resonance fluorescence spectrum, Re(Qa) -+ (nz nm)w.
The absorption spectrum can be calculated semiclassically, by first
calculating the perturbation on the density matrix induced by the probe
field. This is done in appendix A.2c. If we look at Eq. A.l8c, we see
that there are Lorenzian resonances of half widths Im(ﬂa) in p(t) for
probe [requencies w' equal to some of the integer multiples of the
external field frequency w, added to any of the Re(Qa). Depending
on the relative phases of the corresponding oscillating polarization
and the probe field, the probe field may experience absorption or
amplificucion. Absorption is a wellknown phenomenon, and recently
also amplification has been demonstrated experimentally for such a

system /1.16/.

l.4¢ Limitations of the Formalism

The formalism developed uses the rotating wave approximation, i.e.,
it is assumed thuat a limited number of levels in the q.m. ~ystem we are

studying have eigenfrequencies w, near some integer multiple oo of the

k

e.n. field frequency w. The off-resonant elements pkl(t) (where W, ~ @,

is not close io an integer multiple of the field frequency) of the den-
sitv matrix are neglected. Also, introducing the same order of magnitude
errors as by neglecting the off-resonant terms, we neglect the components

- W,.

pa (sec Eq. A.3) with frequeuncies nw that are not close to w
k2s;n k £
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According to the discussion in Appendix A.2d, the corresponding errors we

. a 2 . a
make are of order of Sim o/w in the Py’ and Is&ml'm'l /w in the Q.

2'm
The latter corrections 29? include the so-called field induced level
shifts, which thus are neglected in the rotating wave approximation. The
form of Eq. A.4 shows that for these shifts to be calculated consistently,
not only off-resonant energy levels in the system must be taken into con-
sideration, but also all the terms p;l;n with different values of n.

From appendix A.2d we conclude that there are two cases when the
solution pzm(c) of Eq. 1.18a may not be a good approximation to the
true density matrix of the system. One is if the external field is
too strong, so that the operatorg&mz,m, has off-diagonal elements that
are comparable in magnitude to the detuning from resonance of the
eigenfrequencies of the states we are neglecting. The other case is
if some of the eigenvectors pzm that we find from Eq. 1.17 are close
to being parallell. As discussed in appendix A.2d, 1if the eigen-
vectors pzm are nearly parallell, they are much more sensitive to

perturbations (like states neglected in the calculation) than if they

a b . .
om P omPme 0 if a # b, as is the case in the

are orthogonal (i.e., Z
absence of damping, for instance). Thus our formalism is essentially
an approximation for weak external fields and weak damping.

The time scale on which this approximation is good, is limited by
two factors. One is connected with the fact that as discussed above,
the 02 have errors AQa. Thus for times t > 1, where TAQa = 1, these
errors may begin to have serious effects on pgm(t) = Za aapzm x

Xexp{—i[ﬂa + (nz - nm)m]t}. This 1s only important if 202 is compa-

rable in magnitude to Im(ﬂa), so that the components p:m do not decay
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away before the errors 29? become importani. The other factor is con-
nectad with ionization and dissocia’.ion continua, which are completely
neglected in our treatment. For sufficiently intense external fields,
multiphoton ionization and dissociation processes may be all but
negligible /1.1/. 1f, however, the ionization and/or dissociation
rates in the system we are considering are small compared to the typi-
cal magnitude of the various Qa's, then the ionization and/or disso-
ciation processes may be considered weak perturbations that may be
ignored for times short compared to the ionization/dissociation life

time.

1.5 Optical Pumping in a Free Atom

As an example of how the theory developed can be used, let us
consider a simplified model of a free alkali atom excited on the D2
resonance line by a CW "single frequency" laser. 1In the model we
will disregard the hyperfine structure of the energy levels. Except
in the case of a strong laser field, this is a poor approximation,
since the hyperfine splitting of the electronic ground state is sub-
stantial. The model, however, demonstrates many of the most important
qualitative features of such a system. Thus we are considering the
2S -2P transition in a free atom. The 2P

1/2 " 3/2 3/2

spontaneous emission. This is a system of a total of 6 states, giving

states decay by

rise to a 36-element density matrix. Thus the system is small enough
+

to be treated using Eq. 1.17. The matrix elements u?&f;,m, of the
L

electric dipole operator of the system can be calculated with the help

of Clebsch-Gordan coefficlents, and are given in Table 1.3. If the
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*
laser field is written as 5(:) =E exp(iwt) + E exp(- iwt), and E =

E+(ﬁ + 1y) + EOE + E (- x + 1y), then in Eq. 1.17c the interaction ma-

v
trix element ij,j'm' is
, S _ 3k k -k
Vimsi'n' "0 Zke0,e1C D E Mgy - 1.21
k

The space axes and the time origin can always be chosen so that the E
are real. From Table 1.3 the Einstein coefficierts of the various tran-
sitions can easily be calculated, together with the other decay con-
stants of Eq. 1.17¢ (see Table 1.2). The matrix Ajm;j'm' of Einstein

coefficients 1s given in Table 1.4. Starting from the dipcle matrix

element of the 2S;E(m = %) to the 2P3/2(m = 3/2) transition

Mo = V3/2,3/2;1/2,1/2 1.22a
as a basic unit, a natural unit for the Einstein coefficients is
23 22
A° = A3/2,3/2;1/2’1/2 = 4auow /(3e“c”) 1.22b

where w is the angular frequency of the transition, a is the fine struc-
ture constant, and ¢ and e have their usual meaning. The corresponding

natural unit of electric field is

=h .
Eo Ao/uo 1.22¢

For fields E <E°, the excitation rates, roughly given by uoE/h, are

small compared to the decay rates given by the Einstein coefficients,



whereas for E F’Eo, the excitation is strong compared to the damping sys-
tem, and we are in the saturation regime. For alkali atoms, typical di-
pole matrix elements for transitions around 600 nm wavelength are of the
order of 3eao (where a is the Bohr radius). Thus E = 4ahaow3/(ec2) =
105 V/m corresponding to a laser intensity of Io = lfceo(ZEo)2 = 58 W/m2
= 5.8 mW/cmz. This very moderate laser intensity marks the transition,
as discussed above, from the weak field regime to the saturation regime.

The system was analyzed using Eq. 1.17b, incorporated into a com-
puter program. The program consists of constructing the damping matrix
rkk (Table 1.1b), and diagonalizing this matrix, using standard avail-
able computer software /1.3/. Given initial values for the density ma-
trix elements, the initial density matrix is expanded in terms of the
elgenvectors p:, and the density matrix at later times 1s calculated.
The program was tested on models consisting of several two-level systems
(for which exact solutions are known, see Appendix B), and further
chocked against requirements like: one and only one eigenvalue yo of
Fkk' should be zero, real part of all nonzero eigenvalues ya should be
positive, circularly polarized light should polarize the system complete-
ly, a linearly polarized field should be equivalent to a superposition
of two oppositely rotating circularly polarized fields, RCP and LCP
light should be equivalent, and the response of the system should be
symmetric with respect to detuning from resonance of the laser field.

In Table 1.5, we have an example of results from a calculation with
E+ =E° = 0, E = Eo’ excitation on resonance, and population initially
incoherently distributed with equal probability in the m = * ) substates

of the ground ZS!i level. As we can see, the real —art of the nonzero

decay constants all fall between 0.3Ab and Ab' This is related to the
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fact that the Einstein coefficients of the system are in this ramge. In
the strong field limit, the imaginary parts of the decay comstants Ya
(i.e., the oscillation frequencies of the density matrix) should be dif-
ferences between the various quasienergies 0? (see Eqg. 1.15h). We see
that this is approximately true, even though the field is not particu-
larly strong. These oscillation frequencies are of the same order of

magnitude as the various vjm'j'm' (see Eq. 1.21), and thus related to
»

jmyi'm' Calculations with various strengths of
L]

the transition moments u
the electric field E show that for small fields all the decay constants
are real, whereas when E 2 E°/3 (for definition of Eo, see Eq. 1.22)
some of the decay constants become complex. This implies that for
strong fields we have oscill “ions in the populations of the various
levels. The amplitudes of these oscillations for the case described
above, excitation on resonance with E = Eo’ are included in Table 2.5d.
In this case the oscillations damp out in of the order of one period of
oscillation. However, our calculations show that as E increases, the
decay rates Re(ya) do not change very much, whereas the nonzero oscilla-
tion frequencies Im(y?) increase approximately in proportio: .th E .
Thus for strong flelds, many oscillations of substantial amplitude (see
Table 1.5d) may occur in the population of the various m-sublevels of,
e.g., the 2S!!-level, before the oscillations damp out. Similar popula-
tion oscillations occur in the two-level system (see Appendix B).

With a perfectly polarized field, after a time long compared to 1/
Re(yl), all the population will end up in the 2P3/2(m = - 3/2) and the
2S!!(m = - %) states of the atom, and the system reduces to a two-level
system. 1If the laser field then is turned off, all the population will

eventually end up in the 2S!’(m = ~ k) gtate, as the 2P3/2(m = - 3/2)
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state decays.
Figure 1.1 shows how an admixture of oppositely , »!arized light al-

- +
ters this. We still choose E 2 + E 2. Eg, and the graph shows the frac-

tion of population that eventually will end up in the 2Sli(m = - %) state,
as a function of E_/E+. Like above, we imagine the laser being turned
on for a time long compared to 1/Re(y1), and ask what the situation is
like long after the laser is turned off. As we can see, for (E-/E+) <1,
we have to a good approximation that the 2S%(m = ~ %) population is 0.4
(E—/E+)2. I.e., the depolarization of the final population is directly
proportional to the relative intensities of the two polarizations in the
la~er field.

Figure 1.2 shows how the polarlzation of the laser light influences
the time needed to reach the steady~state. The grapi shows the smallest
decay constant Re(yl) as a function of polarization ratio E_/E+. We see
that the response to circularly polarized light (E-/E+ = 0) relaxes
twice as fast as the response to linearly polarized light (E_/E+ = 1).

Figure 1.3 shows in more detail how the polarization of the light
influences the system response. The dashed curve is the magnitude of
the smallest decay constant Re(yl) for circularly polarized light rela-
tive to the decay constant for linearly polarized light, as a function
of laser field amplitude. The laser frequency 1s tuned to resonance.
For weak fields, the polarization does not matter, whereas for fields of
intensity I 2 Io’ the system relaxes twice as fast towards the steady-
state response i1f the field is circularly polarized rather than linearly
polarized.

The solid curve of Fig. 1.3 is the magnitude of the steady-state

electric dipole polarization induced in the atom by circularly polarized
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light. The solid curve of Fig. 1.3 is the magnitude of the steady-state
electric dipole polarization induced in the atom by circularly polarized
light relative to the polarization for linearly polarized light. The
laser frequency is tuned to resonance, and the induced polarization is

90° out of phase with the laser field, like for a two-level system ex-
cited on resonance. For weak fields the polarizability of the system is
1.5 times greater for circularly polarized light than for linearly polar-
ized light. This is because hj3/2’3/2;1/2’1/2|2 - (3/2)|u3/2’1/2;1/2’1/2|2.
For more intense fields, I 2 Io’ the difference in polarizability dis-
appears.

Figures 1.4 and 1.5 show how fast the system population is polar-
ized by ciicularly polarized light. The smallest decay constant Re(yl)
is plotted as a function of laser frequency detuning A from resonance,
and of laser field amplitude E . For small field amplitudes and/or
large detuning, Re(Yl) is proportional to the field amplitude squared,
i.e., to the laser intensity, whereas for strong fields close to reson-
ance (I 2 I and 18] 2 uoE-/h), the decay rate has a saturated value of
Ao/3. For large detuning (|A| z,max(Ao/3, uoE_/h)) the decay rate
Re (vD) =272,

Calculations were also run with various combinations of strong
fields of different polarization, including the case with all three po-
larizations nonzero. (This is only possible using two crossed laser
beams to excite the atom.) When the laser frequency was on resonance,
the decay rates were always in the range between 0.1A° and Ao. Only the
eigenvectors p: were strongly affected by changes in the polarization of
1light.

The following conclusions, drawn from the sample calculations on
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the model system above, should be of fairly general applicability to
systems of this kind.

A system excited by a square pulse from a "single frequency” laser
will during the pulse relax toward a steady-state response. This re-~
sponse 1is quite sensitive to the polarization of the laser light. The
rate at which the system relaxes towards the steady state during the la-
ser pulse, however, is only moderately affected by changes in the polari-
zation.

For strong laser fields tuned to resonance with the levels excited,
the relaxation rate is limited by the inherent decay rates of the sys-
tem. For weak fields, or fields tuned away from resonance, the rate is
proportional to the laser intensity. This is the same type of function-
al dependence on external field strength and detuning from resonance as
we find in the steady-state energy absorption from a laser field by a
two-level system (see Appendix B), or by the atom treated zhove.

After the pulse is over, the atom is left in a certain final state,
independent of pulse duration if the pulse is long enough. The final
state will be different from the long pulse limit only if the product
of the pulse duration and the smallest decay rate during the pulse is
of the order of one or smaller. For weak or off-resonant laser fields,
this product is proportional to the laser pulse energy fluence, that
thus becomes an important parameter. As discussed in Chapter 2, the
pulse energy fluence is also an important parameter in the infrared mul-
tiphoton excitation of molecules.

The above general features are not very different from what one
would get by treating the system with plain rate equations, disregard-

ing the cohereace of the excitation. However, just like in the case of



a two-level system, coherence shows up in the oscillation of population
between the states of the system, when the driving field is sufficiently
strong. The system we have treated is still small enough that these os-
cillations only have a few frequency components (see Table 1.5d). Then
the net overall oscillations can be quite substantial. However, this is
not necessarily the case for systems with more levels. Then the oscilla-
tions will have more frequency components, which might very well add up
to produce very small net oscillations. Quack /1.19/ has carried out
numerical and theoretical calculations showing how this can. come about,

even in the absence of inherent damping of the system.

1.6 Other Possible Applications

The formalism developed above has several applications. We already
mentioned the infrared multiphoton excitation, and we have seen an ex-
ample of optical pumping in an alkali atom. The latter case can be
treated in greater detail if the laser field is strong enough ta make
the approximation of Eq. 1.14 valid, i.e. well into the saturation re-
gime for the pumped transition. Then the corresponding equation of mo-
tion (1.15) can be easily solved for a system of up to a'few‘hundred le-~
vels. Such a system might, e.g., be an alkali atom with hyperfine struc-
ture in both lower and upper states. For a square pulse of laser radia-
tion, the final polarization of the atoms, the population distribution
over hyperfine states, the time it takes for the atoms to reach their
final population distributions, etc., can all be calculated for various
laser intensities, laser pulse durations and polarization states of the
laser radiation.

In Appendix C is shown how the formalism developed in Section 1.2
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can be extended to cases where the amplitude, frequency and/or phase of
the exciting fieid varies in time. There are quite a few experimental
situations that might be of interest to treat with this formalism. It
should be pointed out that the e.m. field is assumed to be completely
coherent. Thus fields with random fluctu in phase and/or ampli-
tude are not included. For the latter type of field, considerable effort
has been devoted to treating twolevel system models lately (see, e.g.,
/1.17/ and /1.18/). The approach used in Appendix B and all of this
chapter does not attempt to cover this type of excitation. The types of
laser sources our approach deals with are lasers with well characterized
pulses, like transform~limited single pulses or trains of modelocked
pulses, and phase-, frequency-, and/or amplitude-modulated "single fre-
quency" lasers. The approach of describing the field in terms of time-
dependent phase, amplitude and frequency is only feasible in a system
with quite few levels. This is particularly true (just like in the case
with a perfectly steady monochromatic field) if the damping in the sys-
tem is important, such that the density matrix and not the state vector
has to be used in the full treatment.

On the other hand, we should emphasize that we have a formalism
which is valid for fields of rapidly varying intensity and frequency, of
arbitrary strength, as long as the interaction matrix elements between
field and q.m. system are small, i.e., as long ac the detuning from re-
sonance of the energy levels neglected in the treatment of the system

are large compared to the interaction matrix elements.
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Conversion of Eq. 1.2 into an equation involving only real quantities.

Definition of the matrix rkk'

(Egqs. 1.3 and 1.5).
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Table 1.1b

The dam ing matrix Fl'(k' of Eq. 1.17b, expressed in terms of the decay terms Yome 'm (Eq. 1.7)
and the matrix elements V;LE,‘ of the hamiltonian (Eq. 1.9). As in Eq. 1.9%a, Ak = - nkm.
t e
Kk N I N, N,
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Values of the decay matrix Yome'm' in the case of spontaneous emission.

Condition Yomg 'm'
$=m=2"=m' Al

= too ot _
L =m# 2 m Al‘l

L#gm 2" =2, m' =m (Al+Am)/2

all other zero, unless w, - w7 W + W is small

L

enough to be comparable in magnitude to some

of the Al’ in which case we get

1 Al’l Am'm > . W
+ 7Y 2Mm'm T Vare
lul‘ll 'um'ml



Table 1.3

k . X
Ma*~ix elements u,m , of the electric dipole operator, in units of

jm;ji'm

Mo© ¥372,3/2:1/2,1/2"

k=1
i 3/2 1/2
N -~ - — r -~ S
i 3/2 /2 -1/2  -=3/2 /2 -1/2
j m
3/2 0 0 0 0 0 0
5| 12 0 0 0 0 0 0
7 -1/2 0 0 0 0 Y173 0
-3/2 0 0 0 0 0 1
1{ 1/2 -1 0 0 0 0 0
71 -1/2 0o -/1/3 0 0 0 0
k=0
3/2 0 0 0 0 0 0
3] 1/2 0 0 0 0 0 V273
2} 172 0 0 0 0 V273 0
-3/2 0 0 0 ) 0
l{ 1/2 0 0 V273 0 0
21 172 0 V273 0 0 0 0
k = -1
3/2 0 0 0 0 1 0
3] 1/2 0 0 0 0 0 Y173
2] /2 0 0 0 0 0 0
\ -3/2 0 0 0 0 0 0
l{ 1/2 0 o -/1/3 0 0 0
21 1/2 0 0 0 -1 0 0
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Table 1.4
Einstein coefficients Ajm;j'm" in units of Ao = A3/2'3/2;1/2’1/2.
i’ 3/2 1/2
N , r A -~ I's A N
m 3/2 . 1/2 -1/2 -3/2 1/2 . =3/2
j m
3/2 0 0 0 0 1 0
3 1/2 0 0 0 0 2/3 1/3
2 -1/2 0 0 0 0 1/3 2/3
~3/2 0 0 0 0 0 1
1 { 1/2 0 0 0 0 0 0
2 -1/2 0 0 0 0 0 0




Table 1.5a
Quasienergies Q? (in units of Ao, see Eq. 1.22) and corresponding
. a 2 2
eigenvectors ¢jm for a 51/2 P3/2 transition excited by circularly

polarized light of intensity I = I0 (see Eq. 1.22).

a 1 2 3 4 5 6
o? -1 /173 0 0 173 1
3 n )
( 3/2 0 0 0 1 0 0
5 | 172 0 0 1 0 0 0
2 ;1/2 0 Y172 0 0 /1/2 0
¢;’lm V32 ATz 0 0 0 0 17:
Y% o /172 0 0 /172 o
| 2 {—1/2 /ij2 0 0 0 0o -/i/2




Table 1.5b
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Decay constants Re(Ya) and oscillation frequencies Im(Ya) (in units of

AO) for the system of Table 1.5a. The fourth coloumn of the table

tells which of the eigenvectors p: that give a nonzero contribution to

the expansion of the density matrix in terms of the eigenvectors.

contribution to
density matrix

a Re(ya)
0 0.0

1 0.3020
2 0.3436
3 0.3436
4 0.3436
5 0.3436
6 0.5

7 0.5

8 0.5990
9 0.5990
10 0.6564
11 0.6564
12 0.6564
13 0.6564
14 0.75
15 0.75
16 0.75
17 0.75
18 0.75
19 0.75
20 0.75
21 0.75
22 0.75
23 0.75
24 0.75
25 0.75
26 0.75
27 0.75
28 0.75
29 0.75
30 0.75
31 0.75
32 1.0

33 1.0

34 1.0

35 1.0

nonzero
nonzero

[=NeNoRoollo

nonzero
nonzero

[=R=R-Nolol-Nol-NolleNoloNolelleNolloNoNal e

nonzero
nonzero

DO OO




Table 1.5¢

o

jm3i'm’ tor the system of Table 1.5a.

Steady state density matrix p
Elements with j # j' have an additional term exp(tiwt), where w is the

laser frequency.

3’ 3/2 1/2
N ’ A \ ’ A —
\\ m' 3/2 /2 -1/2  -3/2 /2 -1/2
J m
3/2 0 0 0 0 0 0
5| 12 0 0 0 0 0 0
2 L2 0 0 0 0 0 0
-3/2 0 0 0 4/9 0 2i/9
1{ 1/2 0 0 0 0 0 0
2| .y 0 0 0 -2i/9 0 5/9

ATl it oo & -
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Table 1.5d

Population in the various levels for each of the eigenvectors DZ for
the system of Table 1.5a. The atom is initially unpolarized and in

2

the 7S level, and only eigenvectors with nonzero contributions to

1/2
the population are listed. For a # O the population may oscillate, in
which case the complex amplitude of the oscillation is listed. Also
for a # 0, the total population Tr(pa) is zero, so that negative as

well as positive populations are present even for eigenvectors that

are not associated with population oscillations (i.e., Ya is real).

j 3/2 1/2
— o~ ~ r ~ ~
m 3/2 1/2 -1/2 -3/2 1/2 -1/2
a
0 0.0 0.0 0.0 0.4444 0.0 0.5555
1 0.0 0.0 0.2776 ~-,2961 0.3351 -.3166
Re 0.0 0.0 -.2776  0.0868 0.1649 0.0259
8+9
Im 0.0 0.0 0.0781 -.0636 0.1896 -.0429
Re 0.0 0.0 0.0 ~.2351 0.0 0.2351
30431
Im 0.0 0.0 0.0 0.0713 0.0 -.0713




Figure Captions

Fig. 1.1

Fig. 1.2

Fig. 1.3

Fig. 1.4

Fig. 1.5

Fraction of population in the 281/2(m = 1/2) state, after

a long laser pulse of field amplitude ZE0 (see Eq. 1.22),
tuned to resonance, as a function of LCP relative to RCP
field amplitudes, E‘/E+.

Smallest nonzero decay constant Re(Yl), in a laser field of
amplitude 2Eo (see Eq. 1.22), tuned to resonance, as a func-
tion of LCP relative to RCP field amplitudes, E /E .
————— Ratio between the smallest nonzero decay con-
stants Re(yl), for circularly and linearly polarized light,
as a function of laser field amplitude (in units of EO, see
Eq. 1.22), —————— Ratio between the in&uced steady
state electric polarizations for circularly and linearly
polarized light on resonance, as a function of laser field
amplitude (in units of Eo’ see Eq. 1.22).

Smallest nonzero decay constant Re(yl) (in units of Ao‘

see Eq. 1.22) for circularly polarized light on resonance,
as a function of laser field amplitude (in units of Eo’

see Eq. 1.22).

Smallest nonzero decay counstant Re(Yl) (in units of Ao’ see
Eq. 1.22), for circularly polarized light, and for three
different field amplitudes B (in units of Eo, see Eq.
1.22), as a function of detuning & (in units of Ao) from

resonance.
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RESIDUAL UNPOLARIZED POPULATION

Figure 1.1
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Figure 1.2
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Figure 1.5
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CHAPTER 2 MULTIPHOTON DISSOCIATION OF MOLECULES

2.1 1Introduction

This chapter is an account of experimental ork on the process of
infrared laser-induced multiphoton dissociation (MPD). We emphasize here
the general understanding of the process. More detailed accounts of some
of the experimeni< discussed in this chapter can e found in Appendices E
and F, which are reprints of papers published previously.

i~ we shall see later, the MPD process is derinated by incoherent
excitalion of molecules. The coherent transitiuns discussed in the pre-
vious c.apter can be important for initial excitation between low-lving
discrete states. This part of the process represents & so-called "bot-
tleneck" /2.1-3/ for the multiphoton excitation, in the sense that it
may be difficult for some molecules to be excited out of these low-lying
levels. However, this seems to be of little importance for the overall
results of MPD. The experiments to be discussed here do not reveal very
much about the nature of such initial excitation. We will see that our
results can to a great extent be described independentlv from what is
discussed in Chapter 1. Central to the understanding of the MPD process
however, is the RRKM theory of unimolecular reactions. A brief outline
of this theory is given in Appendix D, and a thorough discussion of it
can be found in Ref. D.1.

Laser~induced multiphoton dissociation (MPD) of molectles is a col-
lisionless unimolecular process. In the early studies, the collision-
less nature of the process was inferred by the observation oi instantan-
eous luminesccnce [rom the dissociation products following laser excita-

tion and by the observation of linear pressure dependence of the disso-



ciation yield at sufficiently low gas pressures /2.4-7/. The experiments
were done in gas cells in which excitation may be assumed collisionless
if the laser pulse is much shorter than the mean free time betiween col-
lisions of the molecules. Even so, after the laser pulse is over, mole-
cular colli.ions in the gas cell are still unavoidable, leading to pos-—
sible collisional dissociation of excited molecules and chemical reac-
tions among dissoclation products and excited parent molecules. Thus,

it is generally recognized that the primary dissociation fragments can-
not be unambiguously identified in the gas cell experiments.

The best way to study a collisionless process is of course in a col-
lisionless experiment. A molecular beam method is therefore most appro-
priate for the study of MPD. Indeed, observation of infrared MPD in a
molecular beam provides the most direct evidence that the process is col-
lisionless /2.8/. The use of a mass spectrometer to detect the dissocia-
tion fragments from the beam allows us to identify the primary dissocia-
tion products in a straightforward vay /2.8,9/. The latter information
is in fact of great fundamental importance for the understanding of MPD,
because it reveals whether there is any correlation between the pattern
of molecular dissociation and the vibrational mode through which the ini-
tial excitation is attained.

With a molecular beam apparatus whichwill be described later in the
chapter, the angular and velocity distributions of the fragments can al-
so0 be measured. From the measurements, much additional information about
the dynamics of MPD can be deduced. Once the major dissociation frag-
ments have been identified, there are a number of important questions
that need to be answered before a reasonable physical understanding of

MPD can be achieved.

50



(1) What is the excitation mechanism? How is it possible for a molecule
to be excited over the low-lying discrete rovibrational states, up
into and through the so-called quasi-continuum /2.10/ where the mo-
lecular density of states is very high, and into the dissociative
continuum states? Does the excitation remain as an orderly vibra-
tion characteristic of the normal mode being excited, or does the
excitation become more random as the level of excitation increases?
How many photons does each molecule absorb before dissociation, or
equivalently, what is the average excitation level from which a meo-
lecule will dissociate? What eventually limits the level of exci-
tation?

(2) Through which channel (or channels) does the molecule dissociate,
and how does this depend on the laser excitation? More specifically,
how do observed dissociation products, average dissociation rates,
translational and internal energy in the products depend on parame-
ters of the laser excitation pulse: intensity, duration and frequen-
cy? 1Is the major dissociation channel in MPD different from that in
thermal decomposition? What is the dissociation rate of molecules
and how does it depend on the level of excitation?

(3) What is the dynamics of dissociation? How does the energy avail-
able to the fragments distribute itself among the various degrees
of freedom (translation, rotation, and vibration) of the fragments?
What happens to the fragments after they are produced; can they ab-
sorb more laser energy and undergo a secondary MPD?

Most of these queétions are usually difficult to answer from the
analysis of final products in the gas cell experiments. However, as we

shall see in this chapter, they can be and have been answered by measur-



ing angular and velocity distributions of the fragments in the molecular
beam experiment. In addition to the molecular beam experiments, the new-
ly developed laser induced fluorescence technique for detecting a small
number of molecules has been used to detect dissociation fragments from
collisionless MPD in a low-pressure gas cell j2.11-16/. Because of the
good spatial and temporal resolution of the probing pulse, this technique
can also yield information on the dissociation dynamics of the fragments.
In principle, this detection method sometimes is even superior to the us-
ual mass spectrometric detection method used in most molecular be=2m ex~
periments, in the sense that it can also measure the rotational and vibra-
tional energy distributions in the fragments. In practice, however, this
technique is limited to some small fragments by the fact that the optical
transitions of many larger dissociation fragments are either not known,
too complicated, or camnot be reached by the available probe laser.

With the far reaching consequences such a possibility opens up in
synthetic chemistry, it has been a hope that MPD might be mode-selective,
that is, the excitation energy should remain to a large extent in the vi-
brational mode being excited. If this were true, the dissociation pro-
ducts could be different from those expected in thermal decomposition,
and application of MPD to chemical synthesis could lead to a revolution~
ary change in the field. So far, however, aside from some erroneous con-
clusions, no concrete evidence of mode-selective MPD has been reported.
The molecular beam experiments on many molecules described here have
shown that in the infrared MPD process the rate of intramolecular energy
transfer of dissociating molecules is faster than the rate of dissocia~
tion, such that the statistical theory of unimolecular decomposition

/D.1/ can be used to describe the dissociation of excited molecules sat-
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isfactorily. This is not really surprising, as discussed in Appendix D,
in view of the fact that the energy deposition rate as well as the rate
of dissociation 1is rather slow compared with intramolecular energy trans-
fer rates. Indeed, the statistical theory, used convincingly to explain
our molecular beam experiments, is the key to answering most of the ques-
tions concerning the dynamics of MPD. It can also be used to establish a
simple and reliable phenomenological model /2.17-19/ which has been suc-
cessful in describing the MPD process more quantitatively.

The subject of this chapter is the study of MPD in a molecular beam
with high-power infrared lasers. We shall first describe the experimen-
tal apparatus and the experimental results, followed by a thorough dis~
cussion of the results, the interpretation, the various aspects of the

problem, and our present understanding of the MPD process.

2.2 Experimental Arrangement

In order to understand the dynamics of infrared multiphoton dissoci-
ation of polyatomic molecules, it is necessary to carry out experiments
under collision free conditions and obtain some information which is di~
rectly related to the dissociation dynamics. The positive identification
of primary dissociation products, the measurement of the energy distribu-
tion of the fragments and the determination of the lifetime of the excit-
ed molecules are important data that need to be obtained in order to make
an assessment of the extent of energy randomization and the level of ex-
citation prior to the dissociation of excited molecules.

The crossed laser-molecular beam arrangement is very well suited
for this purpose and is used in our experimental investigations. The mo-

lecular beam apparatus used is shown schematically in Fig. 2.1. It is a
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modification of an apparatus originally designed for crossed molecular
beam studies of cross sections for elastic and reactive scattering /2.8,
2.20/. The molecular beam was formed by expansion of the pure gas or a
gaseous mixture using a rare gas as carrier at ~ 75-200 Torr stagnation
pressure from a 0.1 mm-diameter quartz nozzle. Three stages of differen-
tial pumping were used along with two conical skimmers and a final colli-
mating slit to produce a well defined beam ~ 2 mm in diameter in the la-
ser irradiation region. The molecular beam had a very sharply delineated
angular distribution of 1.2° full width at half-maximum (FWHM). Three
stages of differential pumping were found to be necessary for this type
of experiment in order to allow detection of the dissocilation products
near the molecular beam, since the fragmentation of beam molecules in the
ionizer of a mass spectrometer produces the same mass peaks as those from
the dissociation products. The velocity distribution of the molecular
beam typically had a FWHM spread of 257 of the average velocity, or bet-
ter, The density of molecules in the beam in the irradiation region was
~ 3 x 1011/cm3. The velocity spread and the number density of the mole-
cular beam are both limited by the stagnation pressure which had to be
kept low to avoild the formation of Van der Waals dimers and polymers dur-

ing the expangion. A Tachisto TAC II grating tuned CO, TEA laser (~ 1.0

2
J/pulse) was used in our experiments as the excitation source. The laser
beam was admitted into the vacuum chamber via a ZnSe lens with a 25.4-cm
focal length. The power and the energy fluence of the laser at the mole-
cular beam was adjusted by varying the distance between the focal region
of the lens and the molecular beam. The fragments produced by multipho-

ton dissociation of polyatomic molecules at the small intersection re-

glon were detected by a triply differentially pumped quadrupole mass spec~
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trometer utilizing electron bombardment ionization and ion counting. The

pressures in the three regions of the detector were maintained at ~ 10_9,

~ 10—10, and ""10-11 Torr by a combination of ion pumps, a sublimation
pump, a liquid nitrogen trap and a liquid helium cryopump. The partial
pressure of the beam molecule in the third region where the ionizer is lo-
cated was usually kept below 10“13 Torr. The angular position of the mass
spectrometer around the beam intersection point could be varied so that
the angular distribution of the fragments could be measured. The mass
filter was usually adjusted to provide better than unit mass resolution.
As shown schematically in Fig. 2.2, external triggering at 0.5 Hz was used
to fire the laser and to enable a dual-channel scaler for recording
counts of fragments from the mass spectrometer. Separate adjustments of
delay and gate times were made to ensure that one scaler channel recorded
only background (i.e., with the laser pulse off) while the other recorded
both background and signal. Typically, 100-1000 laser shots were used to
measure the fragments produced at each laboratory angle

for the measurements of angular distributions. The angular resolution of
the detector was 1°. 1In order to positively identify the dissociation
products and to check for possible secondary dissociation of a primary
product by the same laser pulse, the angular and velocity distributions
were scanned at several mass peaks in the mass spectra of the dissocia-
tion products of a molecule under investigation. The fragment velocity
distributions at various laboratory scattering angles were obtained by
determining the arrival time of each fragment, after a flight path of 21
cm, at the detector, relative to the time origin defined by the laser
pulse. This was done by multiscaling the mass spectrometer output signal.

Typically, a 10 us channel width was used in a scan over 2.5 ms, and the
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time of flight spectra obtained were averaged over 100-5000 laser pulses.
The dissociation products and their angular and velocity distribu-

tions were extensively measured while varying the laser frequency, power,

and energy fluence and the vibrational and rotational temperatures of the

molecules.

2.3 Experimental Results

The major MPD products identified in our molecular beam experiments
are listed in the first column of Table 2.1, which summarizes our results.
The dissoclation products observed are typically those from the channel
with the lowest activation energy. According to the measurements by sev-
eral other groups /2.11-16/ using laser induced fluorescence detection,
they appear in their ground electronic states, or in some cases /2.21-22/,
in low-lying electronic states.

For CZFSCE and CHCQCFZ, two dissociation channels corresponding to
the two lowest activation energies have been observed. For CH3CF202 the
HF and HC% molecular eliminations were suggested to have, within experi-
mental uncertainty, the same activation energies in earlier thermal dis-
sociation studies /2.23/, but the HCL elimination is the only channel ob-
served in our experiments. For SF6 and CFC£3, secondary dissociation of

the primary products is observed at high energy fluence (SF5 - SF4 + F,

CFC%, + CFC2 + CR).

2

In the cases where two competitive dissociation channels are ob-
served, the intensity of the laser pulse was found to influence the
branching ratio. Figure 2.3 shows the relative dissociation yield of

C% into CF, + CF,C% and C2F5 + C2 as a function of laser energy. The

CyFs 3 2

chlorine atom elimination has a threshold at 0.5 J/cm2 and saturates at
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1 J/cmz. The channel producing CF3 + CFZCE has approximately the same

threshold, but as the intensity is increased, the fraction dissociating

by C-C bond rupture continues to increase.

The laboratory angular and velocity distributions for SF5 in the
fluorine atom elimination from SF6 are shown in Figs. 2.4 and 2.5. The
angular distribution of the SF5 peaks as close to the SF6 beam as can be
measured (5°) and falls off monotonically with increasing angle. The ve-

locity distributions of SF, shown in Fig. 2.5 were obtained from the time

5

of flight measurements at three angles. Also shown is the SF5 beam velo-

city distribution. The angular and velocity distributions for SF_ are

6
typical of the other halogen atom elimination reactions. For example,
Figs. 2.6-8 show the laboratory angular and velocity distributions of CF3
and I from MPD of CF3I, Further examples can be found in Appendix E.
Translational energy distributions of dissociation products are de-~
rived from the measured laboratory angular and velocity distributions.
First, an assumed center-of-mass translational energy distribution of the
fragments is transformed to the laboratory coordinates, including the con-
volution over the beam velocity distribution and the length of the ionizer
in the mass spectrometer. Then, the angular and velocity distributions
in the laboratory coordinates can be calculated and fit to the experimen-
tal curves. A detailed description of this procedure is given in Appen-
dix F. Center-of-mass angular distributions of products are found to be
isotropic for all systems studied. This can be concluded from the agree-
ment between experiments and theoretical curves deduced using this assump-
tion, and from the observation that our results were independent of laser

polarization. Figure D.2 shows the translational energy distribution of

SF5 + F derived from the experimental results /2.18/. The curves drawn
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in Figs. 2.4 and 2.5 are the angular and velocity distributions calculated
from the translational energy distributions shown in Fig. D.2. Similar
results were obtained for a variety of molecules (see Appendix E).

Columns 4 and 5 of Table 2.1 give information on the average transla-
tional energy and the peak of the translational energy distribution. It
is clearly seen that except for some 3- and 4-center eliminations, which
are known to have additional potential energy barriers for dissociation,
the translational energy distributions all peak at zero kinetic energy
and the average translational energies of the products are generally very
low.

The systems with an additional potential energy barrier in the exit
channel have characteristically different translational energy distribu-
tions, which are reflected in laboratory angular and velocity distribu-
tions. Three-center elimination of HCZ from CHFZCL is one of the exan~
ples. The velocity distributions of the HCR in this case is shown in Fig.
2.9. The center-of-mass translational energy distribution peaks at 5
kcal/mole, as shown in Fig. 2.10. Four-center elimination of HCL from
CH3CC!Z.3 and CH3CFZCL and C-C bond rupture in CZFSCL all have similar char-
acteristic translational energy distributions. The three- and four-center

elimination reactions are discussed extensively in Appendix F.

2,4 Discussion
Let us start by looking at some of our typical experimental results
on the translational energy distribution of the dissociation fragments.

Shown in Fig. 2.5 are the velocity distributions of SF_ fragments from

5
MPD of SF6 at various angles with respect to the SF6 beam /2.18,24/. We

see that they are only slightly broader than that of the primary SF6 beam



because the average translational energy imparted to the fragments in the
dissociation is quite small. The same conclusion can be drawn from the

angular distribution of SF_ fragments shown in Fig. 2.4 It fallsoff ra-

5

pidly as the angle from the SF, beam increases, again indicating that

6
very little translational energy is released to the fragments. More quan-
titatively, this can be seen from the translational energy distribution

of the fragments as shown in Fig. D.2, where the distribution curves actu-
ally yield velocity and angular distributions which fit the measured ones

in Figs. 2.4 and 2.5 very well.

This form of translational energy distribution of the fragments is
actually predicted by the RRKM theory. As explained in Appendix D, it
predicts that as the excitation in a molecule increases above the dissoci-
ation energy, the dissociation rate constant increases. This will tend
to favor dissociation through the lowest-energy dissociation channel. Ex-
periments, in particular those using the molecular beam, show that the MPD
of most molecules proceeds through the lowest-energy channel (see Ref. 2.9
and Appendices E and F). The RRKM theory also predicts how the excess en-
ergy (excitation energy minus dissociation energy) is distributed among
the various vibrational modes of the molecule in the critical configura-
tion, including the relative motion of the dissociating fragments. Figure
D.2 shows the translational energy distributions that were used to fit the
experimental results, calculated from the RRKM theory for excess energies

of 5, 8, and 12 CO, laser photons. In Appendix E further examples can be

2
found. The goed fit indicates that the RRKM theory describes MPD quite
well.

Based on the fit to the experimental results of the translational

energy distribution calculated from RRKM theory, we conclude that the MPD
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results on halogenated methanes show (see Table 2.1) that most of the mo-
lecules dissociate with excess energies of 1-3 CO2 laser photons, as com-~
pared to around 8 photons for SFG' On the other hand, CZFSCQ dissociates
with around 13 photons of excess energy. How can the average excess en-

ergy depend so much on molecular structure?

To understand the above result we need to consider the excitation
scheme presented in Fig. 2.11. The laser 2xcites the molecule up a lad-
der of energy levels. As the excitation increases above the dissociation
level, the dissociation rate increases rapidly, and dissociation soon
starts to compete with the upexcitation. The average level of excitation
from which most of the molecules will dissoclate is then determined by a
balance between upexcitation and dissociation.

The picture above is the idea behind a simple phenomenological model

/2.17,18/ that has been quite successful in describirg the experimental

results on MPD of SFG' The model can be written as a rate equation
dn N N
m _ I(t) [ m _( m-1 _
dat ho  |m-1"n-1 + N a1 \ N_ ‘m-1 + n Nm kmnm 2.1
L m-1 m

*
where no is the normalized population in level m (with energy E = wmhv),
I(t) is the laser intensity, O is the cross section for absorption from
level m to level m + 1, Nm is the density of states at level m and km is

the RRKM rate constant for dissociation from level m (see Egqs. D,4-5)

mhv—EO
k=(hn)'1f dEN (mhv - E - E.) 2.2
m m A t o t .

However, just by using the simple qualitative picture of competition

between upexcitation and dissociation (which is the essential content of
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Eq. 2.1), we can alre~dy draw a number of important conclusions.

1) T1If we look at the expression for the rate constant km (Eq. 2.2),
how it depends on the molecular density of states Nm, we see that in a
heavier, more complex molecule that has more degrees of freedom and more
low frequency vibrations, (e.g., SF6 or CZFSCR), the dissociation rate
constant should increase more slowly with increase in energy. This is
quite dramatically displayed in Fig. D.1l, where the dissociation rate
constants for SF6 and CF3I are compared. Consequently, the heavier mole-

cules tend to reach higher levels of excitation before they dissociate.

This explains why the C_ F.C4 molecule has a higher excess emergy than SFG’

2Fs
which in turn has more excess energy than the halogenated methancs.

2) If the laser pulse is very short, none of the molecules dissoci~
ate before the laser pulse is over. Then the population distribution and
the level of excitation from which dissociation occurs is completely de-
termined by the total pulse energy fluence. (This follows directly from
the form of Eq. 2.1.) However, if the laser pulse is sufficiently long,
the excitation level reached is limited by the dissociation, and at this
level the upexcitation rate and the dissociation rates are about equal.
Thus the level of excitation in this case should be higher with higher
intensity, or at laser frequencies where the transition rates are higher.

When the dissociation yield is near saturation, the time it takes
for a molecule to b pumped up above the dissociation energy is about
equal to the pulse duration. The time it takes to make a transition above
the dissoclation energy is a reasonable fraction of this time (say 1/10-
1/50, since it takes some 10-50 transitions to get above the dissociation

energy). Thus, in the case of dissocilation rate limited excitation near

saturation, the lifetime corresponding to the average level of excitation,
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being about equal to the time it takes to make a transition, is of the or-
der of 1/10 of the laser pulse duration. Our molecular beam experiments
were done with a laser pulse of about 60 ns FWHM. From Table 2.1 we see
that the dissociation lifetimes corresponding to the level of excitation
calculated from the RRKM theory to fit the observed translational energy
distributions are indeed in the 1-100 ns range (mostly around 10 ns).

3) Because the density of states Nm (Eq. 2.2) is a rapidly increas-
ing function of energy E* = mhv, the RRKM dissociation rate constant km
should increase more rapidly with cxcess energy if the dissociation ener-
gy is lowered. CF31 has a dissociation energy slightly more than half of
that of SFB’ and this accounts in part for the difference in their disso-
ciation rate constants shown in Fig. D.1. An even clearer example is
N2F4, which has a disscciation energy of only about half that of CF31.
Even though it has one atom more than CF3I, and thus a higher density of
states at a given excitation energy E* = mhv, its dissociation rate grows
so rapidly with excess energy that dissociation already dominates over up-
excitation at a level one CO2 laser photon above the dissociation energy.
This is shown quite clearly by the translational energy distribution of
NF2 fragments in Fig. 2.12, as there are no fragments with more than one
photon or 3 kcal/mole of translational energy.

4) Since only a small fraction of the excess energy is released as
iranslational energy (see Appendix D), most of the excess energy remains
as internal energy in the fragments. For heavy, complex molecules which
reach high levels of excitation before dissociating, the fragments emerg-
ing from dissociation are already excited to their quasi-continuum and

can readily absorb more energy from the laser field to go through another

MPD process. This process of secondary dissociation is of course more



likely to occur if the fragments have a strong absorption band coinciding
with the laser frequency. In our experiments, we have observed secondary
dissociation in SF6 and CFC£3, with the fragments SF5 and CFCR.2 dissocia-
ting further to form SF4 and CFC&, respectively. The various products
were identified through their different electron impact ionization spec-
tra in the mass spectrometer. The laser frequency used was not in near
rzsonance with any known strong IR absorption lines of CFCQ2 or SFS’ so
the observed secondary dissociation must result from excitation of SF5
and CFCl2 already in the quasi ontinuum. Of course, for this to make
sense, the primarv dissociation must take place before the laser pulse is
over. This is certainiy the case — the translational energy distribu-

tions of SF. and CFCR, indicate that they are produced from parent mole-

5 2
cules with lifetimes shorter than 10 ns, compared to the laser pulse dura-
tion of more than 60 ns.

In MPD of CF3CQ, CF3Br, and CF3 3

tle internal energy (1-2 CO2 laser photons), but CF

I, the CF, fragment produced has lit-

3 in the ground state
is known to absorb /2.25/ close to the laser frequency used. Although

the wolecular beam experiments were not sensitive enough to detect disso-
ciation of CFB’ in gas cell experiments on the same three molecules /2.26/
CF2 radicals and F atoms have been observed, indicating that a zecondary

dissociation of CF, may have taken place.

3
Many of the products observed by the extremely sensitive laser in-
duced fluorescence detection method are probably also produced from se-
quential dissociations of intermediate products. For example, CZ’ CN,
and CH have been observed /2.14-16,22/ in the dissociation of molecules

with six or more atoms. Unfortunately, the laser induced fluorescence

detection methods is not able to reveal anything about the intermediate
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steps leading to these small final products. It seems that the secondary
or sequential dissociation is an unavecidable effect in the MPD at high
energy fluence of all but the lightest, simplest molecules. This is a
factor which often complicates the studlies of the MPD process, regardless
of the method used for detection and analysis of the dissoclation pro-
ducts.

5) For the heavier, more complex molecules, competing dissoclation
channels may also open up, provided their dissociation energies are not
too far above that of the lowest energy chamnel. If the laser intensity
is sufficiently high, the wmolecule can be excited well above the dissocia-
tion energies of several channels before dissociation dominates over up-
excitation. Then several dissociation channels may start to compete with
the lowest one. We should stress here that this effect is actually ex-
pected from the statistical theory of unimolecular dissociation. A sys-
tem in which such an effect has been observed is CZFSCl /2.27/. The en-
ergetics of the various dissoclation pathways ar-~ ot well known, except
for the lowest one, which is the C% atom elimination, with a dissociation
energy of about 83 kcal/mole /2.28/. The next lowest channel is probably
C-C bond rupture, with a dissociation energy of around 100 kecal/mole,
judging from the C-C bond strength in similar ethane derivatives /2.29/.
The RRKM calculations /2.27/ indicate that the rate constant for the C-C
bond rupture grows more rapidly with excess energy than that for the C2
atom elimination. As already pointed out (Table 2.1), the average level
of excitation in C F.C2 pumped by a 1-J TEA laser can be around 13 CO

2°5
laser photons (40 kcal/mole) above the C-C2 bond energy, well above the

2

dissociation energy of the C-C bond rupture. Thus the C-C dissociation

rate can be comparable to the C-C dissociation rate. In the experi-
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ments, a competition between the two channels has actually been observed.
If we look at low laser intensities, the CR atom elimination dominates
over the C-C bond rupture. As the laser intensity is increased, thus
pumping the molecules to higher levels of excitation, the €% elimination
channel very rapidly saturates, whereas the C-C bond rupture becomes in-
creasingly important. This effect is not peculiar to MPD experiments.

In pyrolysis of ethane compounds it has long been observed /2.30/ that at
low temperature, elimination of atoms or diatomics dominate the dissocia=-
tion, but as the temperature is increased, C~C bond rupture becomes pro-
gressively more important, making the analysis of such reactions exceed-
ingly complicated.

Now, many of the results discussed under 1) - 5) above have also
been obtained in an explicit model calculation on SF6 /2.17,18/, using a
simple set of rate equations (Eq. 2.1 with minor modifications). By fit-
ting the free parameters in the model to experimental results on energy
absorbed as a function of input laser energy fluence and laser pulse dur-
ation, the dissociation yileld as a function of energy fluences, the onset
of secondary dissociation, the level of excitation from which dissocia-~
tion occurs, and thus, the translational energy distribution in the frag-
ments, all can be calculated. All the results agree with the experiments,
#.0 . illustrate quite clearly in a more quantitative way what we have dis-
oussed above in qualitative terms.

How will these results be modified if we cannot neglect molecular
collisions? Depending on the collision partners, we can have a number of
complications:

1) Collisions between excited molecules will lead to a thermaliza-

tion of the energy deposited by the laser in the molecules via



2)

3)
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intermolecular vibrational energy transfer. Thus any differences
between thermal heating and multiphoton excitation will be washed
out. The isotopic selectivity of the process will decrease, due
to energy transfer between different isotopic species. Rotation-
al and vibrational intermolecular energy transfer during the la-
ser pulse can increase the number of molecules interacting reson-
antly with the laser field, thus reducing the bottleneck for ex-
citation out of the discrete levels into the quasi-continuum.
Collisionally induced dissociation can also occur, even in

the absence of multiphoton dissociation.

Collisions between excited molecules and cold molecules will

lead to a deactivation of the exrited molecules. The cold colli-
sion partners may be buffer gasses, if present, or reaction pro-
ducts from the dissociation. Their presence will increase the
energy absorption necessary for a given dissociation yield, and
lower the level of excitation. Thus, in cases with competing
dissociation channels, the lowest energy channel will be favored.
Since the excited products from the dissociation can also be de-
activated via collisions, secondary dissociation of the products
will be inhibited.

Collisions between dissociation products, and between products
and other atoms or molecules present usually lead to chemical
reactions. The products from MPD are mostly highly reactive

free radicals. Thus recombination or disproportionation of the
dissociation products may occur, and complicated chemical reac-
tion chains may follow the primary dissociation. Analysis of

the process is complicated, and dependent upon detailed informa-




tion on the chemical kinetics of the reactions involved. Little
information about the dynamics of the primary dissociation can
be deduced from the final products.

In the preceding discussion on the translational energy distribution
of fragments, we have actually only considered the simple cases where the
observed distributions are in agreement with prediction of the RRKM
theory. This is usually true for simple bond rupture reactions (see Ap-
pendix E). There is negligible interaction between the fragments once
the critical configuration is passed, so that the energy distribution in
the fragments remains the same as calculated in the RRKM theory for the
critical configuration. However, in cases where such interaction cannot
be neglected, the simple RRKM theory we have used cannot take into account
this interaction, and translational energy distributions very different
from the ones we have discussed so far may result. For a number of mole-
cular elimination reactions, such as three-center elimination reactions
from halogenated methanes, and four-center elimination from halogenated
ethanes and ethenes, there is a considereable potential energy barrier
between reactant and products. This potential energy will have to be dis-
tributed between the various vibrational, rotational and translational de-
grees of freedom in the fragments as they move away from the critical con~-
figuration on the top of the barrier. The RRKM theory cannot predict any-
thing about how the energy will be distributed. It will depend on the
nature of the potential energy surface for the fragments.

As an example, we will discuss the dissociation of CHFZCQ into CF2 +
HC2, which has been studied in a molecular beam (see Appendix F) as well
as with laser induced fluorescence detection of the CF2 fragment /2.12/.

Thus, tramslational, as well as rotational and vibrational energy distri-
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butions in the CF2 fragment have been measured. The conclusions that can
be drawn from the results on CHF2C£ are representative for molecules with
this kind of dissociation dynamics.

The velocity distribution of HCL fragments at 10° from the CHFZCE
beam is showr. in Fig. 2.10, compared to the distribution calculated from
the translational energy distribution in Fig. 2.11. We see that the pro-
ducts are quite a bit faster than the CHFZC£ beam, due to the consider-
able amount of energy gained from the dissociation. Most CF2 fragments
have a translational energy of more than 2 kcal/mole while only a small
percentage have less than 1 kcal/mole. Stephenson and King /2.12/ found
the population distribution in the vibrational modes of CF2 to be well re-
presented by a thermal distribution of temperature 1160 K. The average
rotational energy was also estimated in the experiments, although its
value was too high for a detailed measurement of the distribution to be
made. However, assuming a thermal distribution, a rotational temperature
of about twice the vibrational temperature was obtained. The high trans-
lational energy content in the fragments means that there is a strong re-
pulsive interaction between the departing fragments after they pass
through the critical configuration. This repulsive interaction is quite
asymmetric, giving the fragments considerable rotational energy.

However, we want to emphasize that although RRKM theory alone may be
inadequate for predicting the final energy partitioning in the fragments,
it still predicts the dissociation rates. If we add up all the energies

in th« .ragments in the HC2 elimination from CHF,C%, using the results of

2
Xing and Stephenson, we get to a level of excitation corresponding to an
RRKM lifetime around 1 ns. This is what we should expect from the sta-

tistical theory of MPD as in the cases of the other halomethanes. 1In



fact, there exists no evidence in all the cases we have studied that the
general statistical picture of the multiphoton excitation and dissocia~

tion process does not apply.

2.6 Concluding Remarks

There are still a number of assumptions and theoretical predictions
about the dissociation that need to be checked experimentally. The par-
tition of energy between all degrees of freedom in at least one of the
two fragments from the dissociation should be measured in a case where
the RRKM theory predicts the distributions. The dissociation lifetimes
should be measured directly and independently, together with their depen-
dence on laser intensity, under well characterized conditions. The pro~
cesses of secondary dissociation and competing dissociation channels need
better characterization. The methods that so far have revealed the most
about the dissociation process are the molecular beam method and the la-
ser induced fluorescence method. A natural extension would be to use la-
ser induced fluorescence as a detection method in a molecular beam exper-
iment. Studies of this kind are already being prepared in several labor-
atories. The work is hampered by the low particle densities involved in
molecular beam experiments, insufficient knowledge of the spectroscopy of
many of the radicals produced in the dissociation, and lack of tunable
lasers in the UV frequency ranges of interest for many compounds.

Although there are some detailed questions which still need to be
further investigated, the general physical picture constructed from vari-
ous experimental and theoretical jnvestigations is quite adequate for un-
derstanding and predicting many important features of the MPD process un—

der various conditions. But since MPD is a rather complex process, it is
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not possible to draw reliable conclusions unless all the experimental re-
sults are carefully analyzed. The dependence of the dissociation yield
and the dynamics of dissociation on both the laser intensity and energy
fluence 1is an important example.

For a given chemical species, the laser intensity required for a cer-
tain fraction of the molecules to overcome the discrete state bottleneck
not only depends on the frequency, but also on the vibrational and rota-
tional temperature of the molecules. Once the molecules are excited to
the quasi-continuum, the energy fluence, not the power of the laser, was
shown to be responsible for driving the molecules throug': the quasi-con-
tinuum and beyond the dissociation level /2.3,10/. But in most of the
gas cell experiments, the dissociation yield of the molecules in the qua-
si-continuum is not simply related to the energy fluence alone. For mo-
lecules lying above the dissociation level, there is a complicated cempe-
tition between unimolecular dissociation, collisional deactivation and la-
ser upexcitation. Consequently, for a given gas pressure and a given la-
ser energy fluence, a higher laser intensity should result in a higher
level of excitation and an increased rate of dissociation. This in turn
reduces the effect of collisional deactivation and thus increases the
dissociation yield. In general, for smaller molecules, the laser inten-
sity influences the yield by limiting the fraction of the molecules which
can be excited to the quasi-continuum, but since the lifetime of small
molecules becomes very short after only a couple of excess photons are
deposited beyond the dissociation threshold, collisional deactivation
could be overcome with a rather moderate intensity at low pressure. On
the other hand, for larger molecules with many vibrational degrees of

freedom, if an appropriate frequency is chosen, a large fractiom of the
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molecules will reach the quasi-continuum at a very moderate laser inten-
sity. But since many more excess photons are required before the dissoci-
ation lifetime becomes comparable to the mean collision time, the laser
intensity 1s expected to strongly influence both the dissociation yield
and the ratio of competitive dissociation channels by controlling the le-
vel of excitation beyond the dissociation energy.

In most of the experiments carried out with a CO, TEA laser, one of-

2
ten adjusts the laser intensity or energy fluence by either adjusting the
focusing condition or attenuating the laser output. Consequently both
the laser intensity and energy fluence are varied simultaneously. If the
energy fluence requirement for dissoclation is met, the intensity of the
laser is already high enough to pump some of the molecules to the quasi-
continuum and dissociation 1s observed. However, it is important to keep
in mind that both the intensity and energy fluence of the laser can se-
parately affect the experimental results. Once the complicated depen-
dence of the excitation and dissociation dynamics on the initial distri-
bution of molecules over vibrational and rotational states, and on the
frequency, intensity, and energy fluence of the laser is properly taken

into account, we are indeed in a very good position to understand and

predict the general behavior of MPD of the systems of interest.
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Table 2.1. Dynamics of multiphoton dissociation.

Potential Average Estimated
enerpy translational average energy
Endoergicity barrier energy energy distribution available to products Estimated
Molecule (kcal/mole)  (kcal/mole) {kcal/mole) (kcal/mole) lifecime (ns)

SF5 +8F5 + F 93 0 3 25 26
SF, + F 51 0 1 7 20

CF3C1 +CF3 + Cl 86 ¢ 1.1 4 5
CF3Br * CF3 + Br n g 1.2 5 2
CF31 +CFy + I 53 0 1.1 4 1
CFaClg ™ CFC1 + Cl 82 ] 2 10 5
CFaBry * CFoBr + Br 61 0 1.6 7 5
CFCly "CFCI2 +Cl 75 0 1.2 5 12
I—b CFCl1 + Cl ~70 ~0 - - -

CaF5CL » C2F5 + C1 83 0 4 35 60
CgF5Cl *+ CF3 + CFaCl 297 0 3.3 21 200
NoF4 * 2NF 22 0 0.4 2 1
(NH3)2 ~ 2KH4 4 [ 0.3 1. -
CHCICFp * C HF, + Cl ~80 [ i - -
l::Hl::lCl?z - Cze + Hel 58 >0 1 - -
CHF2Cl + HC1 + CFqy 50 6 8 - -
CH3CCl3 * HC1 + CHpCCly 12 42 8 - -
CH3CF2C1 + HCL + CH,CFC1 14 55 12 - -

SL



Figure Captions

Fig. 2.1

Fig. 2.2

Fig. 2.3

Fig. 2.4

Fig. 2.5

Fig. 2.6

Schematic of the apparatus used for the measuremert of angular
and velocity distributions of fragments from wultiphoton disso-
ciation of polyatomic molecules.

Experimental arrangement. The "SF6 beam source" is the molecu-
lar beam source. The pulse generator triggers the laser (which
partly dissociates a section of the molecular beam) and the mul-
tichannel scaler, opens a gate to scaler 1 a few hundred micro-
seconds later (to count dissociation product signal and back-
ground signal) and a gate to scaler 2 a few milliseconds later
(to count background signal only).

Dissociation yields for the products from MPD of CZFSCE

ZFZ detected)

ce (CFyce’ detected)

CZFSCE > c2F5 + CcL (C

CZPSCE > CF3 + CF2

Angular distribution of SF_ fragments from MPD of SF6 (see also

5
Fig. D.2)

experimental distribution
- - - RRKM theory, 5 kcal/mole excess energy
- + - RRKM theory, 8 kcal/mole excess energy
————  RRKM theory, 12 kcal/mole excess energy

Speed distribution of SF_ fragments from MPD of SF6 at 5°, 10°,

5
and 15° from the SF6 beam. Symbols as in Fig. 2.4. Bottom:
SF6 beam speed distribution.

fragment from MPD of CF,I.

Angular distribution of CF 3

3
° experimental distribution
- - - RRKM “heory, 3 kcal/mole excess energy

—— RRKM theory, 4.5 kcal/mole excess energy
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Fig.

Fig.

Fig.

Fig.

Fig.

Iig.

. 10

11l

.12

RRKM theory, 6 kcal/mole excess energy

Angular distribution of I atoms from MPD of CF3I. Symbols as

in Fig. 2.6.
Speed distribution of I atoms from MPD of CF_I at 10°, 15°,
2

20°, and 25° lrom the CF.I beam. Symbols as in Fig. 2.6.
3 g

Bottom: Specd distribution of CF3[ beam.

Speed distribulion of HCYL fragments from the MPD of CHFZCZ

° experiment
~ - - calculated from Fig. 2.10
Center-of-mass translational energy distribution in the frag-

ments from MPD of CHFZCL.

Schematic representation of the excitation-dissociation pro-
cess around the dissociation energy.

Center-of-mass translational energy of a pair of NF_, fragments

2

- YD -
From the MPD of h2]4.
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Figure 2.2
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Figure 2.5
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Figure 2.6
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Figure 2.7
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Figure 2.8
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¢/ nendix A: SCHRODING® AND LIOUVILLE EQUATIONS WITH OSCILLATING

EXTER.AL }LELDS

This appendix deals with the mathemathics of solving the ini+fal

value problem associated with the equation

where ka(t) oscillates in time. The functions ;k(t) describe a
system of interest, and the oscillating part ot ka(t) Is due to an
external field. The physics of the solution to this problem is dis-
cussed in detail in chapter 1, and in this appendix, the only physics

lies in justifying the various approximat’' 'ns chosen.

A.l. Basic Equations

Consider the equation

AP - o 1
ip =1, Lkz(t)"z LZ(ka’ + L

kgeXp(IMt))pg A.lb

1 , . . .
where LE? and Lkl are time independent, and Lif is a matrix with ele-

ments that all are small compar-d to w. The generalization to
L () = L L exp(i
WL =L L exp imwt) A.2

is straightf_rward, as we shall see later.
- -

ihe assump-:.c~ of small L1

KL compared to w is well justified in
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the situation when Eq. A.1 descibes a quantum mechanical system
excited by an optical field of practical strength. This permits
a series expansion of the solution pk(t) in powers of 1/w, the lowest
order terms of which we shall make use of.
Floquet's theorem /A.1l/ states that there exists solutions of
Eq. A.1 of the form
pz(t) = exp(—iQat)Zn pz exp(~inwt) A.3

?

with values of Re(Qa) in the range between 0 and w. Provided the
various pE(O), a=1l, 2, 3, ... span the space of pk's, an arbitrary
solution of Eq. A.1l can be constructed as a linear combination of
oi(t)'s. Let us assume this to be true for a.l Lkﬂ of interest to us.
This is like assuming that the eigenvcctors of any hamiltonian of in-
terest in physics span the spac. of physical state vectors.

Inserting Eq. A.3 in Eq. A.l, we get a set of eigenvalue equations
for o?:
n = T ((Lgy = wsy ol Li;"?- -1 A-4

3 i
If Py has N components, this system has, using the completeness assump~
tion mentioned above, N linearly independent solutions. In the lite-
rature, he? is usually called the quasienergy of the system /A.2/,
when Eq. A.l represents the corresponding Schrsdinger equation.
We will limit our treatment to systems excited close to resonance

by a monochromatic field - i.e., we consider only one photon transi-

tions, or resonantly enhanced (in every step) multiphoton transitions.
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Mathematically, this amounts to the following: For each component
P that we include in the treatment, we can find an integer n such
o o
. : i - o] << w.
that the matrix element ka satisfies the relation Ika nku[ w
We note that in this appendix, L is just mathematical operator and
p the eigenvector. Thus, L may represent ithe hamiltonian and p the

wavefunction. In this case L, is the elge rrequency w, of level k.

kk k
I1f the ground state is chosen to have zero energy, n wlll take values
0, 1, 2, ... up to some maximum value nmax' We can also let L repre-

sent the liouvillian operator of a system. Th n Lﬁk is the oscillation
frequency of the k'th component of the demsity .trix (in the absence
of damping and external fields), and n will take values between —nmax

and noaxt In particular, if Pr is a diagonal component of the density

matrix, we have n, = 0, since the diagonal components of the density

k
matrix do not oscillate. With these assumptions we can apply standard
Rayleigh—Schrédinger time independent perturbation theory to Eq. A.4.
The first order solution is obtailned by including all terms pz;nk

for which ]LIC:k - nkwl << w. All other p:;n, n # m, , are negligible,
because by assumption Lik - nw = (nk - n)w, far removed from L:k - o
when n # n, - This neglect of all but one Fourier component pi;n is
the so-called rotating wave approximation, widely used in quantum
optics. Being consistent, we can also in this approximation neglect
all pk that are not excited on resonance, i.e., all Py for which

o,

of choice of n. We shall return later to the problem of estimating

-~ nw) is roughly of the same order of magnitude as w, regardless

what errors we make in applying this approximation. At this point

let us just say that it is essential for the approximation to be



o

1 .
valid that all the Lkl and Lkl’ k # 2, are small compared to w (o;,

to be more exact, compared to the (LE - nw) for which pi_n's are

k
o

neglected). In the applications of Eq. A.4 in chapter 1, the Lkl’

k # £, are either zero or equal to damping rates in the system, and

the Liz are the field-dipole interaction matrix elements. All of

these are usually very small compared to the frequency of the field

exciting the system. Furthermore, in the applications in chapter 1

® ie such that Log = 0 whenever n, # n . This allows

the ferm of Lk2 K

Eq. A.4 in the rotating wave approximation to take the form

aa a a
wp, ., =Ap . +1I L', 0, . A.5a
k,nk k k,nk ¢k Tk Z,nQ
where
A =10 - A.5b
k- kk MY .
and
o . -
LkZ if o, o,
1
1 = 1 - =
LkQ Lkl if n, n, 1 A.5c

0 otherwize

(t)

We are now in the position to make the generalization to Lkl

of the form in Eq. A.2. From the derivation of Eq. A.5 the only

modification necessary is to redefine Lﬂz:
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L' = A.5d
0] otherwize

Combining Eqs. A.5 and A.3 we then get that the erpression for oi(t)

takes the simple form
a a a
= -1 -+ .
pk(t) pkexp[ i(Q nkm)t] A.6a
where we have introduced the short form notation
A.6b

I1f Lég is hermitean, the eigenvalues o? are all real, and the
correspon”‘ng eigenvectors pi are orthogonal. 1If Lkﬁ is not hermitean.
the eigenvalues q® may be real or complex, and the eigenvectors pi
are not necessarily orthogonal.

We mentioned before that we shall assume the set of DE(O)

(Eq. A.3), a=1, 2, 3, ... to be complete in the vector space of
pk's. Looking at Eq. A.6 this means that the pi form a complete set.

Then (see, e.g., Ref. A.4 for details) there exists a unique set of

a . .
vectors 2 satisfying
L r22 = § . for all a and b A.7
k "kPk ~ %ap *° -
b 228 = 5 for all k and ¢ A.7b
a 'k°2 T “ke :
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The ri are related to the eigenvalue Eq. A.5a, since they also satisfy

a _.a a_,
er rkAk + Zz#k rZLZk A.7c

v . a _ a*
If Lk is hermitean, rk =Py -

The solution of the initial value problem associated with Eq.
A.! can thus be written
_ a a !
Dk(t) = Za b okexp[ iQ" + nkw)t] A.8
where
b2 =t r3 (0) A.9
k'k
The time development operator U defined by
= ' '
Pty =2, U (t,e")p, (t") A.10a

can be verified by substitution to be

abb
r

_ic08y _ Py _ et
mpmrlexp[ i@t - Q") 1nmw(t t")] A.10b

a
' =
Ue (658" = 2 i Pk
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A.2., Perturbation theory.

Just like in the standard treatment of the time independent
Schrodinger equation, where one is interested in what etfect a small
change in the hamiltonian has on the energy eigenvalues and eigen-—
vectors of the system, we are interested in what effect a small change
in the operator Lkl(t) in Eq. A.l1 may have on the solution pk(t).

Consider the equation
i, = Z2 (ka(t) + ’ka(t)) A.ll

where the solutions of the equation iék = Zl Lkgog are now assumed to

be known, given by Eq. A.6, and where ng is "small” compared to

Lkl' Since the pi are assumed to form a complete set of vectors,

we may expand pk(t):
pk(t) = Za aa(t)oiexp(—inkmt) A.12
Inserted in Eq. A.1ll this yields, with the help of Eq. A.7:
ia® = 0%a% + 1 2™ A.13a
where

ab _ a b .
LT = Ekl rk!.klplexp[l(nk - nl)wt] A.13b



From Eq. A.13 we see that the operator % . of Eq. A.1ll can be con-

k
sidered "small" when the Zab are small compared to the spacings

X a
between the various { .

For transparency it is useful to write Eq. A.13 in integral form:
a a S . a ' ab, ., b, ,
a(t) = a (to) - 1{ dt'exp[-iq (t-t )]Zbl (t")a (t") A.13c

o

From this we see that only the terms labab that oscillatc close to
the frequency @® will contribute signj ficantly to the integral for
t >> to. Thus of all the terms in Eab (see Eq. A.13b), only a few
need to be taken into account.

(t).

Let us consider four different forms of the perturbation zkl
In chapter 1 the relevance of the various forms to physical problems

is demonstrated.

A.2a. Time independent perturbation.

This case is relevant, e.g., when our system is perturbed by
weak time independent damping terms, weak external D.C. fields, etc.
With a time independent perturbation, the terms in Eq. A.13b that
have n, # n, all oscillate at nonzero integer multiples of the exter-
nal field frequency. Since the rotating wave approximation we use
presupposes |Qa| << u for all a, all terms in o3P (Eq. A.13b) with

n # n, can be disregarded, to give

zab . a b

o kg Tk'kePy A.14
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where the sum extends only over k and £ such that mo= 0. Further-
more, since the Qab are small compared to the spacings between the

various Qa, we can simplify even more. If all the Qa are nondegene-—
rate, in the lowest order approximation the effect of sz with a # b

can be neglected in comparison with the effect of lza in Eq. A.13a,

which then takes the form

aa

ya® A.15a
0

1a* = @* + 2
or

a?(t) « exp[-i(a® + an)t] A.15b

I.e., the only effect the perturbation lkl has on ps for u.ndegenerate

o® is to replace 9 in Eq. A.6 by 02 + zia.

A.2b. Oscillatory perturbation at the same frequency w as L‘E(t)'
3 Dypatl

This case corresponds, e.g., to the system being excited by an
cxternal field of a definite polarization, and being perturbed by a
small admixture of the opposite polarization. This case proceeds

exactly like case A.2a, except that the expression for Zib changes.

_ o . ok . ab
Let lkz = Eklexp(lmt) + gzkexP(—lmt)‘ Now, the only terms of %
(Eq. A.13b) that do not oscillate very rapidly are those with
ab ¥ ao b - a,o* b +
- = + =
nk nE +1. Thus lo Ekl rklklpl + Zkz rkllkpl’ where Zk means

sum over k and £ stch that n -mn, +1=0.



A.2c. Response of a damped system to a weak oscillatory perturbation.

This is relevant, e.g., for estimating the response of the system
(absorption, dispersion) to a weak prooing field at frequency w' (not
necessarily equal to the frequency w of the strong external field
driving the system). Without loss of generality, since we are

interested in the steady state response, we write Ekﬂ as

; - ,° ) i
Lkg(t) = lkz[exP(Lw t) + exp(-iw't)] A.16

o _ o¥%
ke~ Ak
described by Eq. A.l (£§E= 0), in the presence of demping have one

where § As discussed in chapter 1, the typical systems

and only one stable solution
a ;
pk(t+w) = pexp(-in wt) A17

corresponding to the eigenvalue QO = 0 in Eq. A.5a. All other o?
have negative imaginary parts. The solution A.l1l7 is the zeroth order

(t)

solution to Eq. A.1l1. Using the first Born approximation with Ekl

as the perturbation in Eq. A.l13c, we obtain for a # O:

a - t. ao o _i02 -] _ Net
a“(t) if de Zmn rzlgmpm{exP[ it + i@ + (ng nm)m +uw")t'] +
+ exp[—iQat +i@?+ (nl-nm)m -w"t']} A.18a
a ao o
— - X .
a (t) ngrlllmpmexp[i(nl nm)wt] A.18b

X{exp(im't)/[Qa + (nl—nm)m + w'] + exp(-iw't)/[Qa + (nl—nm)w - w']}
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or with Eq. A.18b inserted in Eq. A.12

o .
ok(t) = pkexp(—lnkmt) -
aao o
- - - X
Za#Ozlm pkrzllmpmexp[ i(nk n, + nm)wt]
X {exp(iw't) /[0? + (“2 - nm)w +0'] +

+ eXP(-iw't)/[Qa + (n2 - nm)w - w']} A.18c

a
From this we see that there is a resonance with a halfwidth Im(97)

' = a —
at w Re(Q™) + (nl nm)w.

The case when w' is close to a multiple (nz - nm)w of the external

field frequency w is interesting and worth further discussion, since
the above treatment is not valid in this case.

We refer back to Eq. A.13. When Rkl oscillates at a frequency
w' which is near an integer multiple of w, the only important terms
in Rab (Eq.A.13b) are those for which [(nk - nz)w * m'[ << . Then,

if we define f = nw - w', where nw is the integer multiple of w

ab
closest to w', & takes the form

ab .
L = Zm=il Zm exp(imft) A.19

where Rib is the sum of all terms in Eq. A.13b that oscillate at the

1
frequency +f. Then we see that Eqs. A.13a and A.lb have the same
form, and that in analogy with Eq. A.3 we may write the solutions

of Eq. A.13a as

a a;sn
a (t) =t a ’exp[-i(F + nf)t A.20
o(e) = £ a2 Mexp[-1(F + nB)el a
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The correspondence between Eqs. A.l and A.3 and Egqs. A.13 and A.20a

relies on the following identifications:

Eq. A.13 Eq. A.1
k

a My
ak;n a

a pk;n

k o

& ek

k o

Q - nf ka - nw
kg m

Em Lkl

f w

F o?

a

Thus FP and as;n satisfy the eigenvalue cquation (analogous to Eq. A.4)

Fa®t o (@% - npa®it 4 g 300 A.20b
p bm “a “p
For Eab = 0 the solutions are F_ = Qp and a®?" = § 8§ .. Since an
m P P ap n0
equivalent solution is F_ = Qp - nf, aa;n =§ 8§ , where m is any
p p ap mn

integer, we seek the eigenvalues Fp of Eq. A.20b that approach Qp as
Qab tends to zero.
m

The trace of the density matrix is conserved. As discussed in
chapter 1, usually the system described by Eq. A.l1 is such that
Tr p- = §_,. Using Eq. A.12 we then get that the trace of the density

a0

matrix is equal to ao(t). Thus, using Eq. A.20a, we have

0;

_ .0 _ n s
0=a'(t) = (d/dt){zpn bpap expl 1(Fp + nf)tl} A.21



A

for all possible choices of b_'s. This implies that for all times t

£ (F_ - nf)alTexp(inft) = 0 A.22
n P p

for all p. Since Fp only is detérmined modulo f, let us consider,

for a moment, £/2 > Fp > -f/2, 1If Fp # 0, Eq. A.22 implies that
aO;n
p

n = 0. As we shall se below, this only occurs if p = 0. Thus the

= 0. Only if Fp = 0 can we have ag;n # 0, and then only if

result of the requirement that the trace of the density matrix is

conserved is that

< O;n _ i
F0 = 0 and ap = 6n06p0

Now, let us remind ourselves of the properties of the Qa and

the Lab:
m

(1) The separation between the various Qa is large compared to the

l;b's, since in Eq. A.1l1 S, is assumed to be a weak perturbation
on Lkl'

(2) From the definition of Zzb following Eq. A.19 we have Q;b =0

unless m = #*1.

(3) Typically one, and only one, Qa, a = 0, is exactly zero.

In Eq. A.20b we have one case when ai;n deviates significantly

from aapSnO: when |[f| is close to any of the 0?'s. The steady state

response for f close to a2 nonzero Qa is already given by Eq. A.18.

Since |Qp - Qal >> |2;p| for a # p, Fp is close to Q° (see Eq.

A.20b), and ai’n is only considerably different from zero if a = p.
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Thus FD and “g;n can be obtained from Eq. A.20b by the approximation

;n
of including only elements ag’ H

(F = oMya® = qraPiN 4 PP P A.24
P P P m n-m p

We see that only when L s0 small as to be comparable to lgp are

the 5 significantly different from zero for n # 0.

i
“P, v
p
s an , Ht
Using cthe fact that ap’ is small compared to ag’ when a # p,

we get in this case, using Eqg. A.20b

N T A LT A6 S Y )
P m ‘n-m p p
=5 98P QPP _gf 4 one A.25
m ‘n-m p

Thus we get, combining Eqs. A.12, A.20a, A.23, and A.25

. .a a . _
pk(t) La a (t)pkexp(—lnkmt)

o
= — +
pkaxp( 1nkmt)

P3N P

+ 1 b
p#0,n pp ‘k

exp{—i(Fp +nw+ nf)t] +

k
ap _p;m a

+ b X

Zp#a,a#O,m,n pln—map P

X exp[-A(F + mu + nf)tl/(@P - @ 4 nf) A.26

k

The constants bp are determined from initial value conditions. TIf
0;0 . .
ag is chosen to be unity, bO = 1. Eq. A.26 should be compared to Eq.
; L 1imd PP pin
A.18c. Taking the limit ]f] >> [27F| (so that a ~§ )and t + o
n p n0
(so that the terms with p # 0 will decay away, because Im(Fp) =

m(a®) < 0 if p # 0), we see that Eq. A.26 reduces to Eq. A.18c.



However, Eq. A.26 in addition describes the transient response (p # 0)
and the modifications necessary to introduce in Eq. A.18c when the

conditicn |f| >> ‘l:pl is not met.

A.2d. Errors introduced by the rotating wave approximation.

In this section we will try to establish what criteria to use,
to test wether Eq. A.3a is a reasonable approximation in the descrip-
tion of a given system. Consider the following case: Suppose we

have chosen to neglect a term PN+ in Eq. A.5. This term corresponds

N+1

in zeroth order to an eigenvalue Q = AN+1 (where, following the
. = o -
notation of Eq. A.5, byl has the form byyy T LN+l,N+l nN+1w)

N+
and an eigenvector Pl L § Calling the perturbed eigenvalues

k,N+1°

of Eq. A.5a Q'a, and expanding in terms of pi the corresponding

eigervectors p'2 = I aabpb, we get
k b k
la la N . 'N 1 |a L] |a
= + # .2
o T Loy by Y S neates1 Uner,efr to Lk nerPaer 20270
. ab _
or by using Eq. A.5a and Zk rkpk = dab
1a_ab b ab . c ac b_a,N+1
= + + .27b
Q' a Q a 6b,N+ch pa Lra A.27
where
a _ N ' a
LD = Zl=l LN+1,202 A.27¢
a_ N+l _a_,
Lr ™ Zg=1 Tele,mn A.27d
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Being neglected in the unperturbed p:, | ?>IQa] for all a. Also,

L.
N+1
'@ ~0? and a°° =~ 6__, in Eq. A.27. Then for a # b, we get from Ea.

A.27b

ab b

2% = (s + 6 1.‘:)/(:2a - M. A.28

L@
b,N+17p a,N+1

If e reinsert this in Eq. A.27b we get (using a?=1) fora® N +1

a a a .a a
- Q = - .
Q Ler/(Q AN+1) A.2%a
and for a = N+ 1
N1 - N+1 N+1 c.c _ ot "
Q AN+1 Lp + Lr + Zc#N+leLr/(AN+1 Q). A.29b

This can straightforwardly be generalized to include the effect of ne-

a

a
N+1° pN+2 ... in Eq. A.5. The qual-

glecting not one, but several terms p
itative results are still the same. To the extent that AN+1’ AN+2 e
are of order of magnitude like w and not Qa, the corrections to pi are
terms of order Lkl/m (see Eq. A.28) whereas the 02 have corrections of
order |Lk2|2/m (see Eq. A.29). Strictly speaking, this holds only if
the various o: are orthonormal or close to being orthomormal. If two

a a b a2 b2
Pys P, and p, are nearly parallel and normalized, Eklpkl =1= Eklpkl ,

ab aa a2 a
then, since I, r o =0 and I r.p, = 1, the norm Zklrkl of r; 1is much
greater than one. This implies that the corresponding L: (see Eq. A.27d)
may be much greater than the various Lﬂ . Thus after Eq. A.5 (with
JN+1
a
terms py neglected on the basis that le/AE and LRLIAE are small) has

a

been solved, the various T, corresponding to normalized p: must be

105



checked to make sure they do not have a norm too different from ol.e, be-

frre the colution

—

a . -1 2 R
genvalues @ have correction of the order of 7 = [L [“/w, the time T

r,p

defines a time duration within which the corresponding pk(t) (see Eq.

A.6) can be trusted.
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APPENDIX B: Two-level System

The two-level system with a lower state 1 of zero energyv and an wn-
per state 2 of energy h& is the simplest nontrivial q.m. system. Its
interaction with a strong e.m. field has been treated extensively /B.1/.
We review here a few results of the problem relevant to the formalism of
Chapter 1, as a simple illustracion. The Hamiltonain of the system in a

field E = Eo cos wt can be written as

iwt -iwt

<O 0\ 0 e + e
H = + Vi . . B.1
0 8/ elmt + e_lmt

where V = qu/Zh, and p is the dipole matrix element for transitions
from 1 to 2. In the rotating wave approximation when & = w, this re-

duces to the eigenvalue problem (cf. Eq. A.5)

.8 '¢1\= 0 v\ /e,

B.2
¢2/ VvV A ¢2
with A = & - w,which has solutions
+
of =508+ a2+ DT B.3a
+ -
or 8 =V tang @ = -V cot¢
P ~si
1 1 cos¢ sing
+ - J° B.3b
¢2 ¢2 sing cos¢

1
where tan¢ = |A + (A2 + 4V2)1]/2V. Thus ¢1(t) will have components os-



.'. -
cillating at 2 and Q , whereas ¢Z(t) will have components oscillating

+ - L U -
at @ + mand 9 + m This ic what 15 vofeiied Lu as AT Stark splitting

of levels 1 and 2. The splitting is

B.4

Thus the fluorescence spectrum from the system due to the oscillating

polarization <#|u|¢> will have components at the combination frequencies

wand w * Q.
ac

The widths of the —omponents in the spectrum can be obtained from

the density matrix formulation.

spontaneous emission) there are two decay constants A

problem, and Eq. A.5 takes the form

a
i - v
°11 0 1Al v
a
-1 -V
Py B 0 1Al \Y
Qa a - . 0
o7 _v Voo-iA, - B
a v o o-v 0 -iA, + A
P21 2

or, using the real, symmetrized form of Eq. 1.17b, with Ya = iQ

0y 0 —Al 0 -2V Py

alPo 0 Al 0 2V Py
Y =

3 0 0 A2 -A Py

p4 v -V A Az p4

By using p_ = Py = Py and Py =0y + Py

For weak damping (e.g., weak collisions,

and A

1 2 in the

a
11
pa
22 B.5
a
P12
a
P21
- a
B.6

= 1, one can easily recognize Eq.

109



110

B.6 as the optical Block equations:

N 0 0 0 0 Py
o A A 0 4y o_
Ya o= 1 1 . B.7
p3 0 0 A2 -A pl
04 0 -V A A2 04)

For completeness, we also remind ourselves that in the case of spontan—
eous emission being the only damping mechanism, Al = A and A2 = kA,
where A is the Einstein A-coefficient of the tramnsition.

. . a .
Equation B.7 has one solution vy = 0 corresponding to

(e}
o, 1
0° - @+ A
= B.8a
(o]
fq - AV/N
(e}
4 - A2V/N
where
2 2 2
N=4"+ Ay + 4y A2/A1. B.8b

As we can see, the in-phase component (relative to the external field)
of the density matrix, pg, gives the dispersive response of the system,
whereas the out~of-phase component pZ gives the absorption, which has a
halfwidth A, + 4V2A2/A1. The term 4V2A2/A1 is the power broadening of

the absorption.
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Fer a #:O,Di = (0, and the eigenvalue Ya satisfies the cubic equation

2

SRR NI Wit 25+ v’ oA = 0 B.9
a . .
whereas Py Is given by
a

6 4T - ) ]
al _ -
pql =N Ay A])
a a
oy G - ADGE - Ay B.10

and the normalization constant Na is determined by initial conditions.

If 2V and A are small compared to A, and A there are two roots

1 2°

Ya of Eq. B.9 near A2 and one near Al' If Idl > 2V, where d = %(Al - AZL

~

we get simple expressions [  r these roots:

=+

Yo = A, + Vz/d + i[AZ - (Vz/d)zJ

)
3

B.11la

8vld/(4d” + 4%). B.11b

=<
1}

=3
i

Thus, with the introduction of a weak oscillatory external field, the
decay constants for the nonstationary components pi (with a # 0) change
slightly. If Vz/d > A, the off-diagonal elements of p will oscillate at
the field frequency w (all the Ya are real) and have no components os-—
cillating at the system eigenfrequency & = o + A.

If A, and A, are small compared to V, w2 can use Eq. 1.15 and Eq.

1 2
B.3 to find



where

For zero detuning (A

A

v

' oo

Y 1°

ﬁk(t > o) = pE(t) on the time scale given by A

detuning.

2
_Al

2
(cos™¢ -
Al\cos b

2 )
sin"¢ cos ¢ + Az(c

”
sin“¢)2

2

m/4) this reduces to y

1

and A

4
Y4 & sine)

7
+ 4A2 sin"d cos ¢.

= A2, whereas for large detuning (tand = A/V ~ 1) we

27
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B.12
B.13a
3.13b
Y +
(A1 Az),
obtain vy = AZ’

Thus a two-level system relaxes to its steady-state response

regardless of

In the semiclassical picture, the resonance fluorescence scattering

ie proportional to the oscillating polarization, which in a two-level

system is proportional to nB(t).

Thus we have four comporents of scat-

N . . (o]
tered light: one elastically scattered component, corresponding to 03(tL

one of halfwidth y' centered at

to pi(t), and two components of

v
responding to pé(t).
Lg. B.6 has ta be so

a
Y Only on resonan

1f A]. A2
lved. This
ce (A =

. a
nonzero eigenvalues vy :

+
=1

+ 1(av: - &

the driving frequency w, corresponding

halfwidth y, centered at w Qac’ cor-

and V are of comparable magnitude,

then

amounts to solving the cubic Eq. B.9 for

2)%

0) do we get simple expressions for the

B.l4a

B.1l4b



where & = li(Al + AZ)' Thus, on resonance, the triplet structure of the

fluorescence spectrum is retained for external fields such that 2V > d.
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APPENDIX C: External Fields of Arbitrary Time Dependence

In Appendices A and B we have treated the equation 16 = Lp,
where L = L0 + Llexp(imt) + L1+eXP(-1mt), and Lo and L1 are time inde-
pendent operators. This can easily be formally extended to the case
where w, LO and Ll vary in time. Let LO and L1 depend on a set of real
parameters {Em}, which vary in time. The parameters may, e.g., be ex-
ternal field amplitudes, frequencies, and phases, in which case the
treatment applies to excitation of a quantum mechanical system by a
train of picosecond pulses, by a frequency chirped pulse, by a phase and/
or amplitude modulated single longitudinal mode laser field, or by a
laser pulse of Fourier transform limited bandwith.

Now let the solutions of

1p

" zz[ng({Em}) + Liz({Em})exp(imt) + L;:({Em})exp(— wt)lp, C.1

be
a _.a - a
pk(t) pkexp[ 1(Q° + mk)t] c.2

when the Em's are constant. The Qa’ p: and wy are then functions of the

Em's. If the Em's depend con time, we seek a solution of the form
a a
L Ea a (t)pkexp(—iwkt) c.3

Using C.1 and the rotating wave approximation (see Sect.A.l of Appendix

A), we obtain the following equation of motion for a? (using Zkr:p: =



6ab’ see Eq. A.7)

ia? = o%? - szabah C.4a
with
A% = ip (\if Z—;E £ - dion ryor | =
izkm ;gg pkém + i&nerpE . C.4b

This is, of course, only useful if the Qa, pi, ra and Bpi/BEm are known

k
for the values of Em of interest. This limits the usefulness of Eq. C.4
to problems with only a few levels involved, or other systems where sim~
ple analytical solutions for Qa, pi and ri can be found. However, we
have transformed Eq. C.l, which has terms oscillating rapidly at a fre~
quency w, into Eq. C.4, which has terms varying with the slower paraume-
ters Em. This is of great importance for numerical integration of the
problem. Note that Eq. C.4 is valid even if Em is rapidly varying - the
only approximation used is the rotating wave approximation.
If ETn is varying sufficiently slowly, and in addition the o? are
nondegenerate, we can neglect Aab compared to Qa, and get the so-called
. . . . ~a a a
ac¢iabatic /C.1/ approximation ia” = Q“a°, or
a a ] t a
a (t) = a (to)exp - i -j/P dt'n ({Em(t')}) . c.5
t
)

For a two-level system excited at resonance with no damping, this re-

duces to the familiar result, related to the pulse area theorem /C.1/,
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that the state of the system at time t only depends on the integrated

_

field amplitude ~/ ) dt’Eo(t'), and not on the detailed time dependence
o

of the field. Analogous, although not as simple and transparent,

statements can be made about any multilevel system, with basis in Eq.

C.5.

Yoro Tor a5 oassume that o csprical system with damping. As
discussed in Chapter 1, one and only one stationary state pk(t > ®) =
pz(t) exists. If the system initially is in this state, then aa(to) =
dao in Eq. C.5, and Q? = QO = 0, implying aa(t) = Gao for all t. Thus
the adiabatic approximation of Eq. C.5 only works rigorously, in the

presence of damping, when the field varies so slowly that the system is

left in its initial state after the field is turned off.
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APPENDIX D: RRKM (Rice-Ramsperger-Kassel-Marcus) Theory of Unimolecular

Reactions

The RRKM theory /D.1l/ is designed to describe unimolecular reactions
in the gas phase, where molecules are constantly being energized and de-
energized by collisions. This way, some of the molecules may be supplied
with Mmnough energy to dissociate. In the theory one assumes that, ou
average, the molecules with internal energy within a small range about
any given energy are randomly distributed over the available energy
states in that range. One further assumes that the dissociation proceeds
so slowly that this holds even for molecules excited above the dissocia-
tion energy, i.e., that the dissociating states are being rapidly replen-
ished as molecules dissociate.

Even though the multiphoton excitation is in several respects very
different from thermal, collisional excitation, the above picture can be
directly transferred to describe multiphoton dissociation. Based on our
experimental results, we can say that the process can be understood as
composed of two stages: the multiphoton excitation, and the uanimolecular
dissociation competing with the excitation, when the molecules have in-
ternal energy above the dissociation energy. Multiphoton excited mole-
cules, prior to dissociation, are likely to have energies distributed
randomly in all available degrees of freedom. This experimental result
is not surprising, in view of the following: The excitation and dissoci-
ation rates typically observed are in the range of 10_9 sec_1 or smaller
(see Chapter 2). Intramolecular relaxation rates for highly excited mo-

lecules, as deduced from a series of chemical activation experiments
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/D.2/, are lOll - lO12 sec—l. Thus a statistical theory should be per-

fectly applicable in describing the dissociation of multiphoton excited
molecules.

In this appendix, the basic ideas in the RRKM theory will be present-
ed, and in the simplest possible form, expressions will be deduced for
the dissociation rate constants and the translational energy distribution
of fragments from a given energy above the dissociation energy. For more
extensive discussions, see Ref. D.1.

In a statistical approach, the impnrtant concept is that of the
available phase space, i.e., the collection cf states available to the
system. Consicer a bound molecule. For a molecule with energy above the
dissociation energy Eo, a somewhat arbitrary but intuitively acceptable
boundary between "bound" and '"dissociated" system is defined. The coor-
dinate in tha molecule corresponding to movement of the two dissociation
fragments relative to one another, normal to this houndary, is called the
"reacticn coordinate." Then consider any configuration of atoms in the
molecule where the distance along the reaction coordinate of the dissoci-
ation fragments from this boundary is smaller than a distance A. This

' (The size

region of phase space is called the "critical configuration.'
of A is immaterial, since it is an auxiliary parameter that cancels out
in the final mathematical expressiomns.)

The number of states available to a bound molecule with energy be-

* *
tween E and E + AE is
*
N(E )AE , D.1

* *
where N(E ) is the density of states in the molecule at energy [ . At a
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given energy, the possible configurations of the molecule is limited by
the molecular potential energy surface and (for E* >’E0, the dissociation
energy) by the arbitrary boundaries defined as a division between the
bound and dissociated molecule. For calculation of the density of states
N(E*), this complicated surface 1is usually approximated by that of har-
monic oscillators with frequencies equal to the low-energy vibrational
frequencies of the molecule.

The number of states available in the critical configuration is cal-
culated in the same manner, but here one essentially has to guess what
this region of phase space looks like. The common assumption is one of a
"particle in a box" for one coordinate (corresponding to the region of
thickness 2A along the reaction coordinate} and harmonic oscillators for
the remaining coordinates. One then has to make guesses or estimates of
the oscillation frequencies for motion orthogonal to the reaction coordi-
nate. The number of states with energy between E* and E* + AE available
for a molecule where the fragments are separating with a relative kinetic
energy between Et and Et + AEt (Et = %uuz, where p is the reduced mass of
the two dissociation fragments, and u is their relative speed along the

reaction coordinate) is then
(28/h) (u/EY%E, - NTE" - E - E)aE D.2
wiE, £ -E - E AE. .

NT(E) is now the density of states in the critical configuration, re-

stricted to coordinates orthogonal to the reaction coordinate, approxi-
mated by a harmonic oscillator density of states. Thus the probability
of finding a molecule in the critical configuration, with relative kine-

tic energy of the dissociation fragments between Et and Et + AEt,is



T *
. (28/bWN'(E" - E_ - E)
p(E %) = e BE, . D.3
N(E)

The rate at which dissociation takes place, is half of this probability
(since only the fragments moving away from each other can dissociate),
divided by the time 2A0/u a molecule spends in the critical configur-
ation before it dissociates:
+ *
N(E ~E -E)
o

* t
k(E ,Et)AEt = AE . D.4

hN(E™) t

The total dissociation rate is found by integrating over all values of Et:

*
E -E
* o x
k(E ) = k(E ,Et)dEt. D.5

(o}

The corresponding average dissociation lifetime is

~ £ -1 ]
T . = (k(E )) . D.6

E

In Fig. D.1 are shown dissociation rates as a function of excess energy

%
E - Eo’ for the molecules CF3I and SF6' The normalized distribution of

relative translational energy in the dissoctation fragments is

Examples of typical center-of-mass translational energy distributions can

be found in Fig. 2.9. The distribution in the fragments from SF6 for

three different excess energies are shown. Further examples can be found

i20



in Appendix F. Expression D.7 can be used to describe corre;tly the en-
ergy distribution of the dissociation fragments in the center-of-mass co-
ordinates only if there are no interactions between the fragments after
the critical configuration is passed. As seen in Chapter 2, this is true
for a number of atomic elimination cases. However, if there is a poten-
tial energy barrier (Appendix F) between reactant and products, or if
there is appreciable angular momentum in the molecule before dissociation
/D.3/, the above expressions have to be modified.

The translational energy di:ctributions,Eq.D.7,look very much like ex-
ponentials, especially for high energies E*, and in heavy molecules. It
is easy to understand why this is so, in a statistical picture of the dis-
sociation. To any single degree of freedom in a molecule with many de-
grecs of freedom, the rest of the molecule looks like a heat bath, even
though the molecule as a whole has a well-defined energy. Thus, any sing-
le degree of freedom, including the one corresponding to the reaction co-
ordinate, will have a close to theremal, i.e., exponential, energy dis-
tribution. The energy is shared between all degreees of freedom, and on-
ly a small fraction resides on average in any one degree of freedom.
Translated, this means that only a small fraction of the excess energy
E* - Eo will end up as translational energy in the fragments, especially
if the dissociating molecule has many atoms. Most of the energy thus re-

mains as internal energy in the fragments.
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Figure Captions

Fig. D.1

Fig.

RRKM dissociation rates as functions of excess energy for CF3I

and SF6.

Center-of-mass translational energy distribution of the frag-
ments from the MPD of SF6, calculated from RRKM theory.

- — - 5 kcal/mole excess energy
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Appendix E
See Journal of Chemical Physics, Vol. 70, No. 2, January 15, 1979

Appendix F
See Journal of Chemical Physics, Vol. 69, No. 6, September 15, 1978





