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Multiphoton Processes in Isolated Atoms and Molecules 
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In the first part of this thesis the theory of coherent excitation 

of a multilevel quantum mechanical system is developed. Damping of the 

system is taken into account by the use of a density matrix formalism. 

General properties of the wave function and/or the density matrix are 

discussed. The physical implications for the behavior of the system are 

described, together with possible applications of the formalism, includ­

ing the infrared multiphoton excitation of molecules, and optical pump­

ing in alkali atoms. 

The second part of the thesis is a presentation of experimental re­

sults on the infrared multiphoton dissociation of molecules, followed by 

a discussion of the general features of this process. The experimental 

results were obtained using a crossed laser and molecular beam method, 

and the emphasis is on determining the properties of the dissociating 

molecule and the dissociation products. The dissociation process is 

shown to be described very well by the standard statistical theory (RRKM 

theory) of unimolecular reactions, a brief presentation of which is also 

included. 

B I S T B I D U T I O K OF THIS DOCUMENT IS. 
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PREFACE 

The work leading to this thesis has been unusually varied and in­

spiring: meeting the challenges of making all the various components of 

an experiment work together at the same time, enjoying the beauty of a 

theory gradually making more and more sense, bringing together concepts 

and experimental techniques from chemistry and physics, and having the 

feeling of learning something abou*: nature that also others are interest­

ed in learning about. 

In the completion of this work I am in profound debt to my advisers, 

Prof. Yuen-Ron Shen and Prof. Yuan-Tseh Lee. Ron has been deejay in­

volved and interested in my work, always ready to share his wealth of 

knowledge with me. B/ over and over again showing how well things real­

ly can be done, he has taught me the importance of being well organized 

in learning physics, and of being clear, concise, and careful when try­

ing to teach the world about my learnings. Yuan, with his invaluable 

experience and knowledge about experimental work, and physics and chem­

istry in general, has beer ready at any time to discuss problems I might 

have, always with helpful suggestions and a friendliness I have only 

very rarely encountered before. 

The experimental work reported on here is the result mainly of the 

joint efforts of Peter A. Schulz and me working in the laboratory, and 

he should be credited just as much for the experimental results as I. 

I am very grateful for the collaboration with Peter and the good friend­

ship that grew out of it. The resulting exchange of ideas and the shar­

ing of work-load have been invaluable, not only in obtaining the experi­

mental results, but all through the work with this thesis. 
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for the patience, care and esthetic perfection with which s>..e has typed 

this manuscript. 
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of Energy, under contract No. W-7405-ENG-48. I gratefully acknowledge 

a fellowship from the Norwegian Research Council for Science and the 

Humanities. 



iii 

TABLE OF CONTENTS 

INTRODUCTION 

References 

Chapter 1: THEORY FOR COHERENT EXCITATION OF SIMPLE QUANTUM 

MECHANICAL SYSTEMS 

1.1 Introduction 

1.2 Formalism 

1.3 General Properties of the Density Matrix p. (t) 

1.4 Physical Implications of the Form of the Density Matrix 

1.4a Flourescence Spectrum 

1.4b Absorption Spectrum 

1.4c Limitations of the Formalism 

1.5 Optical Pumping in a Free Atom 

1.5 Other Possible Applications 

References 

Tables 

Figure Captions 

Figures 

Chapter 2: MULTIPHOTON DISSOCIATION OF MOLECULES 

2.1 Introduction 

2.2 Experimental Arrangement 

2.3 Experimental Results 

2.4 Discussion 

2.5 Concluding Remarks 

References 

Table 

Figure Captions 

Page 
1 

3 

4 

17 

19 

20 

21 

21 

23 

30 

32 

34 

43 

44 

49 

53 

56 

58 

69 

72 

75 

76 



Figures 78 

Appendices: 

A. Schrodinger and Llouvllle Equations with Oscillating 

External Fields 90 

A.l Basic Equations 90 

A.2 Perturbation Theory 96 

A.2a Time Independent Perturbation 97 

A.2b Oscillatory Perturbation I at the Same 

98 Frequency m as L 

A.2c Response of a Damped System to a Weak Oscilla­

tory Perturbation 99 

A.2d Errors Introduced by the Rotating Wave 

Approximation 104 

References 107 

B. Two-Level System 108 

References 113 

C. External Fields of Arbitrary Time Dependence 114 

References 116 

D. RRKM (Rice-Ramsperger-Kassel-Marcus) Theory of Unimolecular 

Reactions 117 

References 122 

Figure Captions 123 

Figures 124 

E. Simple Bond Rupture Reactions in Multiphoton Dissociation 

of Molecules (Reprint) 126 

F. Three- and Four-Center Elimination of HCi in the Multiphoton 

Dissociation of Halogenated Hydrocarbons (Reprint) 144 



1 

INTRODUCTION 

During the last five years, in quite a number of laboratories 

around the world.efforts have been concentrated on understanding the 

process of multiphoton dissociation: The process whereby a molecule 

absorbs several tens of photons from a moderately strong infrared laser 

field and eventually gets dissociated. In our laboratory we have 

devoted much effort to a thorough experimental characterization of the 

process. Our experimental results are the subject of chapter 2 of 

this work. 

In describing the process theoretically, one may divide it into 

two parts, according to the amount of excitation in '•he molecule. 

The laser excitation of a molecule over its discrete levels can be 

treated using the theory of interaction of a multilevel quantum 

mechanical system with a strong oscillating external field. Chapter 

1 of this work is devoted to an extensive development of this gene­

ral theory. A model calculation on the effect of optical pumping 

in a free atom subject to decay of excited states is included as an 

illustration of the theory. Scientists at Los Alamos have applied 

the same theory to detailed model calculations on the initial multi-

photon excitation of the molecule SF, over the discrete levels. 

This is briefly discussed in chapter 1. 

At higher excitation energies the density of states of the mole­

cule becomes much larger, and the states form a quasi-continuum. 

Multiphoton excitation in this region actually involves multiple 

steps of single photon resonant transitions. The above calculation 



is no longer applicable. A phenomenological theory can, however, be 

developed. Such calculations applied to the multiphoton excitation 

and dissociation of SF, are extensively discussed elsewhere /l/. 

Thus this thesis consists of two rather independent parts: 

First, a chapter on the general theory of a multilevel quantum 

mechanical system interacting resonantly with an oscillating external 

field, and second, a chapter centered on the experimental results on 

infrared multiphoton dissociation of molecules. 

Reference: 

1. P. A. Schulz: Ph. D. thesis, Dept. of Physics, University of 

California, Berkeley 1979. 
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CHAPTER 1 THEORY FOR COHERENT EXCITATION OF A QUANTUM MECHANICAL SYSTEM 

1.1 Introduction 

In this chapter a method will be developed for describing mathematic­

ally the interaction between a strong electromagnetic field and a realis­

tic quantum system like an atom or a molecule. This problem has held the 

continued attention of physicists ever since the birth of quantum mechan­

ics, and ways of attacking the problem have been discovered and rediscov­

ered by people working in various different areas of physic?. We shall 

concentrate on aspects most relevant to optical (infrared or visible) 

fields coherently exciting free atoms and molecules. However, bits and 

pieces and extensions of the formalism to be presented have been used in 

microwave spectroscopy, nuclear magnetic resonance, electron paramagnetic 

resonance and related phenomena. An idea of the current viewpoints and 

centers of interest- in coherent excitations can be found in the excellent 

collection of papers in Ref. 1.1. 

The purpose of this chapter is not so much to develop a new formal­

ism as to unite a variety of ideas from various sources into a reasonable 

simple formalism suited for calculations. The development is guided by 

the realization that with the availability of digital computers and reli­

able software for solving numerical probelms in linear algebra /1.2.3/, 

reduction of a problem to an eigenvalue problem or a system of linear 

equations (of numerically tractable size or with a structure permitting 

fast computation of solutions) is just as complete a solution as that 

with a complicated analytically closed form. Analytical forms are pre­

ferable only if they have a structure simple enough to make important 

qualitative features apparent, like, e.g., the energy denominators in 
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the expressions in nonlinear optics /1.4/. However, we shall see in this 

chapter that important qualitative information can also be derived from 

the formulation of the eigenvalue problem. 

Our goal is to calculate observable quantities like populations in 

specific quantum states, spectrum of scattered light, attenuation/gain 

and polarization change of probing or exciting fields, given other exper­

imentally measurable quantities like energy levels and oscillator 

strengths. Keeping in mind that a computer will be used in the calcula­

tions, we must limit ourselves to quantum systems with a finite number of 

discrete levels. We will not attempt to describe ionization or dissocia­

tion induced by the field. 

We will start from a simple general description, and then extend it 

to various more realistic cases. For ease of presentation, we will dis­

regard all but the electric dipole interaction between the electromagne­

tic field and the quantum system. The physical probelms we will discuss 

are: infrared multiphoton excitation of polyatomic molecules (which is 

treated further in Chapter 2) and optical pumping of atoms into a polar­

ized state. 

1.2 "''ormalism 

There are basically two different approaches to the problem. One 

involves a completely quantum-mechanical treatment of the coupled system 

of a quantized electromagetic field (from here on called e.m. field) and 

a quantum mechanical system (from here on called q.m. system) of inter­

est. This is the so-called "dressed atom" approach /1.5/. However, if 

the radiation field is sufficiently strong, a semiclassical approach is 

possible. The limiting equivalence of the two approaches has been dis-
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cussed in detail in a classical paper by Mollow /1.6/, and we shall use 

the semiclassical approach henceforth. 

If spontaneous emission and all other dephasing and depopulating 

terms are negligible, the equation of motion takes the Schrodinger form 

i* = H(t)<|> 1.1 

where if* is the time dependent wave function of the q.m. system in a pre­

scribed external e.m. field described by the hamiltonian tiH(t) . This is 

often sufficient to describe microwave or infrared excitation, but in the 

visible or ultraviolet, spontaneous emission cannot be neglected. If 

this is the case, or if other decay or dephasing mechanisms are nonnegli-

gible, a density matrix formulation is needed. Thus the equation of mo­

tion is of the Liouville-type 

ip =i?(t)p 1.2 

where the Liouvillian hi?is an operator defined on the space of density 

matrices, as opposed to the hamiltonian, which is defined on the space 

of wavefunctions. This has the undesirable consequence that for q.m. 

2 

system with N levels, the equation of motion involves N linearly inde­

pendent components. However, formally, Eq. 1.2 is the same as Eq. 1.1, 

except that in the presence of dephasing and population decay,J5? is not 

hermitean. As discussed thoroughly in a review article by Omont /1.7/, 

much the same symmetry properties that \\i posesses, are taken over by p. 

Consider, as an illustration, a j = j. to j = j + 1 transition in an 

atom. In the absence of external fields, H and SP are both sperically 



symmetric, and i/» will transform as the irreducible representations D.(+) 

D... under rotation. In the absence of decay, p is just the direct pro­

duct of ty with its complex conjugate, and will transform as (D. (+jV>... ) 

G O j G V ^ = ZD,,©^©^©. . •©D2j)©3D2j+i©D2j+2- I f t h e 

decay terms in 2? axe spherically symmetric, they will only couple ele­

ments of p belonging to the D.'s with the same j, and then p can be de­

composed into a multipole series. Furthermore, an external field, in the 

dipole approximation only couples the 2 - multipoles to 2 - and 2 -

multipoles (since the dipole operator is a tensor operator of rank 1, 

transforming under rotation as D 1 ) . For the same reason, only components 

of multipoles with aziniuthal quantum numbers m differing by less than 2 

are coupled by the external field. This is very helpful if the field is 

weak enought that relaxation dominates over excitation so that perturba­

tion theory can be applied. However, it is less useful in the strong 

field limit, since then there is not even an approximate spherical sym­

metry to the total hamiltonian, and «-He mnl.Mpole expansion of p ceases 

to be a good approximation. However, one advantage of using the multi-

pole representation of the density matrix still prevails even in this 

case. Since the dipole operator transforms under totation as D 1, l£ in 

Eq. 1.2 transforms as D-X+'D., and thus in the matrix representation of 

!£, only elements of the density matrix connecting components with qu.1 . 

turn numbers j and m differing by less than 2 are nonzero. Thus the ma­

trix representation of if can be chosen to have a band structure, a fea­

ture which may facilitate numerical diagonalization of 5?/1.2/. Here, 

we shall however use the standard representation of the density matrix. 

I.e., the wavefunction iji = E <|> | Jt> instead of the density matrix is 

chosen to be decomposed into multipoles, and we write p - E. p. . |k><8.| . 
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* Because p, = p,,, the Liouville Eq, 1.2 can be rewritten as an kp ' ik' H 

equation in real quantities only, as follows. We define a new set of 
2 N density matrix elements p, in terms of the matrix elements p„ : k lm 

0k = p k k for k = 1,2 N (k e N ) 1.3 

= (P„ + P J/2 for k = N+l, N+2 N(N+l)/2 (k € N.) 
P.m mf. 2 

= (p f m " P mJ/2i for k = N(N+l)/2, . . . , N 2 (k € N ^ 

We order s, and m so that I > m. When k £ N , k = (l - l)(l - 2)/2 + 

+ m + N, and when k e N , k = («, - 1) (I - 2)/2 + m + N(N + l)/2. All 
* p thus defined are real, since p = p . (In the multipole expansion 

lc XjUi mil/ 

of the density matrix a similar pairing of components can be made /1.7/ 

by combining components with equal but opposite values of the azimuthal 

quantum number m.) Now, let us (by defining r '-- HP) write Eq. 1.2 as 

\m lVm,ri,ml,m,0!,'m' 1 - 4 

Using the definition 1.3 for p, , and with r, , , being defined from 

r „, , in Table 1.1a, we can rewrite Eq. 1.4 as 

\ ~ ~ V rkklPk' 1- 5 

with p and IV, , all being real. Here, r , is defined (with the same 

relation between k, «,, and m as in Eq. 1.3) in Table 1.1a. If we now 

compare Eqs. 1.5 and 1.1, the latter having matrix form 
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i Hkk'* k' 1.6 

we see a formal similarity. The differences are that whereas H , is her-

mitian and of dimensionality N, - , ±s real, but not necessarily symmet-
2 ric or antisymmetric, and of dimensionality N . 

Mollow has deduced the form of if. „, . with spontaneous emission ta-
JlmJt m 

ken into account, in the case of well separated transition frequencies 

(Ref. 1.6, Eqs. 10.8 and 10.10). By going through Mollow's derivation, 

we find that even with some near or exact degeneracies, Z£. ., , still re-

tains the form 

^ImVm* H U ' 6 m m ' H m ' m 6 U ' ^n^'m' 1 # 7 

where y„ „ , , is a real decay matrix. Such a form of <£„ „, , is not re-
Iml m' Zml m 

stricted to decay by spontaneous emission; other examples are given in 

Refs. 1.7 and 1.8. In the case of spontaneous emission, the matrix 

y , , has the form given in. Table 1.2. In the table, u is the dipole 

moment of the transition k -* Jl and A. „ is the Einstein A-coefficient for 

the transition: 

!

0 if state k has energy hu>, below that of state 5. 
1.8 

4 a ">.. |y..| /(3c e ) otherwise 

a is the fine structure constant, to, = u>, - u.,, and c and e have their 

usual meaning. We also have the total Einstein coefficient for the decay 

from the state k: A^ = J 1 . 
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Now, let us consider the simplest case, that of an isolated q.m. 

system in a perfectly monochromatic e.m. field. The details are given in 

Appendix A. Let us start with Eq. 1.6, and then gradually go to the more 

general cases represented by Eq. 1.4 and 1.5. 

From Appendix A we obtain the solution of Eq. 1.6: 

Pk(t) = lal tft^^expl- i(Ua + nku)t] 1.9a 

where U are the so-called quasienergies of the system, ft and $. satis­

fy the eigenvalue equation (cf. Eq. A.5) 

..a.a _ „, da ° *k - hK,*:- i-9b 

The superscript a labels tne N eigenvalues n , when each eigenvector has 
N components <j>, , k = 1, 2, ... N. If the hamiltonian of the system is 

* H = h(j 6, + hv, exp(- icot) + hV exp(iiot), the operator H' is defined 

with 

H u • V k t

 + K, x - 9 c 

A, = (o. - n. u ; A. I < u> 1.9d \ = <°k ~ V ! lAk 

V* = 
0 otherwise 1.9e 
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For each k, n, is chosen as that integer that minimizes )A |- Since H/ 

is hermitian, the fia are all real frequencips. 

Let us point out a few properties of <f> (t). In the absence of an 

external field, <j> (t)=exp(-iio t)and thus oscillates at the frequency w, . 

From Eq. 1.9 we see that if we consider an N-level system, each tp. Ct) has 

up to N components oscillating at frequencies Q + n,w with a = 1, 2, ... 

N. This is the AC Stark splitting effect on level k. Thus in the limit 

of weak external field, for each level k there must exist at least one 

fl such that f! + n, co * n). , and the corresponding <j> must be much larger 

than all the other $ , b^a. In the absence of the field, <j>, = 6 and 

In the extremely strong field limit where all the detunings A, are 

negligible compared with V, , the ft are completely determined by the di-

pole matrix elements p, between the various levels, and are directly pro­

portional to the external field strength E, as can be seen from Eq. 1.9c, 

since V a p E. Thus in a system where N levels are strongly coupled 

by an oscillating field, each level is split up into N components, and 

the splitting is proportional to the field strength. 

Since the only parameters entering in Eq. 1.9 are energy level posi­

tions and dipole transition moments, the application of Eq. 1.9 to ".alcu-

lations on a specfic atom or molecule is a question of spectroscopic know­

ledge. Given sufficiently detailed spectroscopic data, Eq. 1.9 can be 

used to calculate the effect of a field of monochromatic radiation with 

piecewise (in time) constant amplitude, e.g. a square pulse, on the q.m. 

system. 

Since in the infrared, spontaneous emission processes are quite slow 

and can be neglected compared, to the excitations induced by a strong in* 
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frared laser field, this approach has been used with reasonable success, 

to calculate the frequency and laser energy fluenoe d<*ppnHf>nr» nf i-ho en­

ergy absorbed in collisionless IR multiphoton excitation of SF.. Follow­

ing a detailed assignment I'1.9/ of a high resolution diode laser absorp­

tion spectrum /1.10/ of SF. in regions pumped by the C0» laser, model 

calculations have been performed on the molecule /l.11-13/. For laser 

pulse intensities and durations of the same order of magnitude as those 

used in experiments on multiphoton excitation and dissociation, the re­

sulting average excitation energy in the SF, molecule was calculated as 

a function of laser frequency. In the model for the SF, molecule, the 
o 

lowest 3-4 vibrational states of the triply degenerate v mode were in­

cluded, together with rotational level structure, anharmonicities and 

Coriolis coupling. This gives a model hamiltonian for SF, which was used 
o 

In Eq. 1.6 to calculate <tv(t) °f Eq. 1.9, with an average excitation en-

ergy <E> = Z.fi, |<|>. (t )| , where t is the pulse duration. It is interes-
K K. K. p p 

ting to see that experimentally /l.14-15/, the frequency dependence of 

the multiphoton dissociation yield in SF, is closely related to the exci­

tation in the lowlying discrete levels treated in this model. The lack 

of sharp resonances, the relatively broad frequency dependence, and the 

red-shift of the multiphoton excitation spectrum relative to the single 

photon absorption spectrum, are properties found in multipboton excita­

tion both theoretically and experimentally. Multiphoton dissociation is 

the subject of Chapter 2 of this work, and we will leave further discus­

sion to that chapter. 

The case of the idealized hamiltonian (without decay and dephasing 

effects) of Eq. 1.1 has, as already pointed out, the attractive feature 

that the dimensionality of the associated eigenvalue problem is equal to 
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2 the number N of levels involved in the problem, as compared with the N 

rHmpne-fntiaUfy of the corresponding sore general cas£ (Eq. 1.2). THUS, 

several hundred levels can routinely be treated by standard computer pro­

grams /1.3/, and many more, if use can be made of the symmetries o? the 

hamlltonian of the problem. Thus its solution can be used as a zerot'i 

order approximation in a perturbation scheme in solving Eq. 1.4, where 

t h e *„„(,»„! o f E1- 1 > 7 a r e s m a l l compared to H ,6 , - H ,6 .,, i.e., 
Jtm* m ay, mm mm Jt£ 

when the separation between the corresponding quasienergies ft is large 

compared to the decay constants y. ., ,. 

In the absence of decay, Eq. 1.1 and 1.6 are completely equivalent 

to Eq. 1.2 and 1.4, and if <t>.(t) is a solution of Eq. 1.6, then 

O - l ^ m ^ ' #t>*i<t>* 1.10 

is a solution of Eq. 1.4. Now, in the presence of decay, we must use the 

results in Appendix A.2a. We have a zeroth order solution Eq. 1.10 to 

the problem i p ^ = Vm'*liii*'m'pA'm' a n d a P e r t u r b a t i o n operator t^.,,.-
- ±y. ., , . In analogy with Eq. A..12 we write the complete solution as 

J6H1J6 i n 

p £ m ( t ) " E a b a a b ( t ) ^ * m e x P [ - i ( n * " V w t ] 1 " 1 1 

where now <f>,,(t) = iji.expf- i(fl + n.&))t] are solutions of Eq. 1.6. By 

substitution in Eq. 1.4 with damping, we get (cf. Eq. A.13) 

.•ab -.a „b,. ab ._ aba'b' ... , „„ 
ia - (B - fl )a - i£ a, b,Y aa'b' 1.12a 

where 
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a b a ' b ' Y' A a*At a ,J>'* , ,,. 

According to Appendix A.2a, we should include in the sum on the right 

hand side of Eq. 1.12b only terms such that n„ - n - n 0. + n , = 0. 
x- m *• m 

As in Eq. 1.9, n,<u is the integer multiple of the field frequency «i 

that is closest to the system eigenfrequency a).. If 
Y, ., , originates in spontaneous emission, we see in Table 1.2 that un­
less n„ - n - n„. + n . = 0, we will have Y„ „. . = 0. 

8. m V m HmJ. m 
Following the approximation in Appendix A.2a, the only terms to be 

a'b' included in the right hand side of Eq. 1.12a should be those a that 

oscillate at frequencies close to a , i.e., we discard all y 3 with 

| f i

a _ n b _ n

a ' + a

b | > Y

a b a b . 1.13 

The simplest case is that of well separated quasienergies tta, when the 
only a, b, a' -md b' for which 1.13 does not hold are 

a 1 and b = b' 1.14a 

or a = b and a' = b \ 1.14b 

In this case the lowest order approximation to Eq. 1.12 is 

.•ab ,-a „b abab. ab . , , , c 

ia = (0 - 8 - ±Y )ct , a =F b 1.15a 

• aa _ aaa' a' a' a' , ,,_, 
a = -2 ,Y a . 1.15b 
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2 Thus the N -dimensional problem of Eq. 1.4 has been reduced to an N-dimen-

This is the simplest case. If the set of quasienergies have acci­

dental near degeneracies or nearly equally spaced values, then a, b, a' 

and b' with a ̂  b ^ a' ̂  b' can be found such that Eq. 1.13 does not hold. 

One example i. the case where a system is excited close to resonance (see, 

e.g., the twolevel system of Appendix B). Then, the quasienergies come 
a+ - a+ b + 

in pairs of equal but opposite values ft * - ft , implying ft -ft * 
b~ a~ ft - ft Thus, instead of Eq. 1.15a, we get 

1.15c 

where the 2 x 2 matrix ft i s 

+ u+ +1 + + i + +1+1." -
,_a _b . a b a b j a b b a 
ft - ft - i y - i Y ft = I , - - +. + , - - . - - , - -I 1.15d . b a a b n b _a . b a b a ' iY ft - ft - iY 

This is an illustration of a more general principle: Eq.1.12a can often be 
2 decomposed into subsets of equations of lower dimensionality (than N ) . 

Each set then involves a 's which all have about the same fia - ftb (in 

the sense of Eq. 1.13), in analogy with standard first order degenerate 

Rayleigh-Schrodinger perturbation theory. 

Going back to the assumption that we do not have near degeneracies 

or nearly equally spaced levels in the quasienergies ft (which are deter­

mined by dipole oscillator strengths, external field strengths, and ex­

ternal field frequency), we can use Eq. 1.15 as an approximation for Eq. 

1.12 where the y 's are assumed to be small compared to the (fta -

ft )'s. Then, the following results are obtained: 
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(1) Eq. 1.15b can be reduced to an eigenvalue equation by the substitu-

a a a(t) = a a a ; Cexp(- y Ct) 1.15e 

where a ' and y , c = 1, 2 ... N. are the N different solutions of the 
eigenvalue problem 

c aa;c _ aaa'a a a ;c , ..... y a = E ,y a ' . 1.15f a 

(2) Equation 1.15a has solutions of the form 

a a b(t) = a a bexp(- ifiabt) 1.15g 

where 

r-ab _a _b . abab . ,., 
a = Q - a - ly . 1.15h 

(3) Let us also define 

, ac c aa;c , , c. 
b = a a 1.151 

where a together with a are constants to be determined from the ini­
tial values of p„ (t) . 
(4) By substituting Eqs. 1.15e, g, and i in Eq. 1.11, we get 

p*m(t> ' Z*b***l*l*"*»\- i["ab + (n* ' V * } + 
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£

a c b a c * X * e x p | - [ * c + i ( n*. - "J" 1! 1 • 1 - 1 6 a 

With P A m(0) given, a a b and b a c = a C a a a ; C satisfy 

a 3 l > - hjt*m>Am<°> X- 1 6 b 

E a C a a a ; C - E„ <t>fVp. (0). 1.16c 
c Urn I m Jim 

The contents of Eq. 1.16 are as follows: In the absence of damping, 
2 each element p. (t) of the density matrix has UP to N components, oscil-*m 

a b lating at frequencies Si - SI + (n, - n )(u, with a = 1, 2 ... N, b = 1, 

2 ... N. There are N components all oscillating at the same integer mul­

tiple (n. - n )<o of the field frequency, corresponding to a - b above. 
a m 

In the presence of damping, the components oscillating at a fre­
quency SI - SI + (n. - n )u), where SI ^ SI , will remain the same, except 

x- m 
that they decay with a rate y . The N components oscillating at the 

same frequency (n. - n )(o will all mix and give rise to N new components 

decaying independently, at rates y . If, and only if, some of the Si 

are nearly degenerate, will there be more than N components mixing. If 

in a density matrix element p (t) there are several components oscillat­

ing close to the same frequency, they may be mixed by the perturbation 

introduced by the damping, just like the N components oscillating at 

(n - n )u>. 
Jo m 

Let us, for completeness, also write down the eigenvalue equations 
in the case that the damping rates are of the same order of magnitude as 

a 2 
the quasienergies (1 . Then the full N -dimensional Eq. 1.4 or 1.5 has 
to be used. The eigenvalue equation Is (cf. i.i. A.5) 
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"Xm = V/wVPlv 1 " 1 7 a 

which can also be writeen as (cf. Eq. 1.5) (defining y = ifi ) 

^X - h*Tk<\< x- 1 7 b 

and where 

1 .17c 

A and V' , have the same meaning as in Eq. 1.9, and the relation between 

r kk- a n d ^wv i s l i k e b e t w e e n r kk- a n d r w m ' i n T a b l e l a a - u i s 

2 given explicitly in Table 1.1b. If this full N -dimensional treatment is 

necessary, the number N of levels that can be included in the practical 

calculation will be severely limited. 

Apart from the expansion of the density matrix into spherical mul-

tipoles discussed previously, which is only possible in the absence of 

external fields, no systematic analysis of equations of the general form 

1.17 seems to exist. There is no systematic way to exploit the struc­

ture of the matrix r' , of Table 1.1b so as to decompose, it into subma-

trices of lower dimensionality. However, judging from systematic distri­

bution of the relatively few nonzero elements of,T' , (see Table 1.1b), 

this would seem to be possible. 

1.3 General Properties of the Density Matrix p (t) 

So far, we have developed a formalism for finding the time-dependent 
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field. The problem reduces to an eigenvalue problem (Eq. 1.9b, Eq. 1.15d, 

Eq. 1.17b). Thus the solution of Eq. 1.4 can be written in the form 

p L ( t ) - pL e xpf- [Y* + i ( n* - V u ] t ) - 1- 1 8 a 

a 2 For each pair SL, m, p (t) has N components, oscillating at the frequen-
a 2 

cies Im(y ) + (n.-n )<D, a = 1, 2, . . . N . Each component decays away 

with time constant Re(y a). Since in Eq.1.17b, the matrix r' , is real, if 

y is an eigenvalue corresponding to the eigenvector P. , Y is an ei-
x.m 

a* a 
genvalue corresponding to the eigenvector p ; i.e., the y always occur 
in complex conjugate pairs, giving rise to physically acceptable solu-tions (p. (t) = p „(t)) of the form Jem mx. 

P * m ( t ) = a p L e X p ( " [ y 3 + i ( n £ " n m ) l 0 ] t ) + 

+ a p^expi- [y3 + i(nm - n^w]t| . 1.18b 

Now, consider the t race of p , Trp = E^p^Ct) = 1. Using Eq. 1.18a 

and d i f f e r e n t i a t i n g with respect to t , we get 

0 = - £ T r p

a = _ Y

a

e x p ( _ Y a t ) E J l p a

j l 1.19a 

Y % P U * Y a Trp a (0) = 0 . 1.19b 
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Thus either y or Tr[p (0)] should be zero. 

Physically, as we shall see later in examples (the simplest being 

the twolevel problem of Appendix B), all y , except y , should have a 

positive real part signifying damping. On the other haad, y corresponds 

to the steady state solution 

P t a ( t + 0 , > = p L e X p [ - i ( n H - n m ) l ° t ] - X- 2° 

This solution is the only one with a nonzero trace, as shown above. Thus 

the typical system has a steady state response to the external field 

which oscillates at multiples (n„ - n )co of the field frequency, and all 
Jc m 

other components p , a =£ 0 decay away. 

The most important component p (t) of the density matrix, next to 

the steady state solution p (t), is the one with the smallest real part 

Re(y ). This component is the one that determines how long it takes for 

p(t) to r?.ach steady state, and it also shows which of the density matrix 

elements p .ft) that take that long to reach steady state. 

In the twolevel system treated in Appendix B, regardless of detun­

ing from resonance and external field strength the values of non-zero 

Re(y ) al] have the same order of magnitude. This is, as we shall see, 

not true in general. The real as well as the imaginary part of y may 

vary strongly with external field frequency, strength, and polarization 

state. 

1.4 Physical Implications of the Form of the Density Matrix 

So far, the only thing we have accomplished, is to show what the 

form of the density matrix is for a q.m. system driven close to reson• 
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ance by a steadily oscillating e.tn. field, and how this solution for the 

density matrix can be. calculated using a computer. Let us now discuss 

the physical implication of the solution for the q.m. system. 

1.4a Fluorescence Spectrum 

The spectrum of the radiation reemitted from the q.m. system can in 

part be determined by analysis of the set of eigenvalues U (Eq. 1.17a or 

1.15f). Since the semiclassical fluorescence radiation field is propor­

tional to the oscillating dipole moment Z„ u„ p .(t), it will have up to 
r li toil r 

2 a 

N frequency components (corresponding to the various , centered at 
Re(fi ) + (n -n„)a) for each integer (n - n„) . Each line has a Lorenzian 

m 8. m 8. 
line shape with half width given by Im(fia). 

However, as pointed out earlier, at times long compared to the vari-
a -1 ous [Im(n )] .typically all components of the density matrix except one 

(oscillating at integer multiples of the field frequency and thus giving 

rise to elastically scattered radiation) will have died away. Analysis 

of the fluorescence spectrum using the quantized description of the e.m. 

field however shows (see, e.g., Ref. 1.5 or 1.6) that the fluorescence 

at the frequencies Re(H ) + (n -n )(m wil] not die away in the long time limit. 

Qualitatively this can be understood by realizing that two-photon fluor­

escence, which cannot be completely described in a simple semiclassical 

frame, may be important. Somewhat loosely, we may say that emission of 

a pair of photons with frequencies ID and oi_, where iot + oo = 2to, may be 

resonantly enhanced in the driven q.m. system. This happens when ta or 

u_ is within a distance **Im(fi ) from any of the system oscillation fre­

quencies Re(fi )+u. But for a formally correct deduction of the steady 

state fluorescence spectrum, one has to consider the equation of motion 
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for the quantized e.m. field, as in Refs. 1.5 and 1.6. 

1.4b Absorption Spectrum 

The absorption by the strongly driven system of a weak probe 

field is characterized by the same resonance frequencies as the ones 

observed in the resonance fluorescence spectrum, Re(S2 ) + (n n )u). 

The absorption spectrum can be calculated semiclassically, by first 

calculating the perturbation on the density matrix induced by the probe 

field. This is done in appendix A.2c. If we look at Eq. A.18c, we see 

that there are Lorenzian resonances of half widths Im(sl ) in p(t) for 

probe frequencies u' equal to some of the integer multiples of the 

external field frequency IO, added to any of the Re(fi ). Depending 

on the relative phases of the corresponding oscillating polarization 

and the probe field, the probe field may experience absorption or 

ampliflcucion. Absorption is a wellknown phenomenon, and recently 

also amplification has been demonstrated experimentally for such a 

system /1.16/. 

1.Ac Limitations of the Formalism 

The formalism developed uses the rotating wave approximation, i.e., 

it is assumed that a limited number of levels in the q.m. "ystem we are 

studying have eigenfrequencies oi near some integer multiple n, u> of the 

e.T. field frequency u. The off-resonant elements p. (t) (where u> - u 

is not close to an integer multiple of the field frequency) of the den­

sity matrix are neglected. Also, introducing the same order of magnitude 

errors as by neglecting the off-resonant terms, we neglect the components 

p, . (see Eq. A. 3) with frequencies nu that are not close to u>, - u . 
R.H £n K jo 
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According to the discussion in Appendix A.2d, the corresponding errors we 

make are of order of ^lm^mJ^ i n t h e P^j,' a n d l^ m£' m'' ' w i n t h e ° ' 

The latter corrections Aft include the so-called field induced level 

shifts, which thus are neglected in the rotating wave approximation. The 

form of Eq. A.4 shows that for these shifts to be calculated consistently, 

not only otf-resonant energy levels in the system must be taken into con­

sideration, but also all the terms p with different values of n. 

From appendix A.2d we conclude that there are two cases when the 

solution p (t) of Eq. 1.18a may not be a good approximation to the 
Jem 

true density matrix of the system. One is if the external field is 
too strong, so that the operatorjK. 0 l , has off-diagonal elements that 

oiJ6 m 

are comparable in magnitude to the detuning from resonance of the 

eigenfrequencies of the states we are neglecting. The other case is 

if some of the eigenvectors p„ that we find from Eq. 1.17 are close 
£m 

to being parallell. As discussed in appendix A.2d, if the eigen­

vectors p are nearly parallell, they are much more sensitive to 

perturbations (like states neglected in the calculation) than if they 

are orthogonal (i.e., £„ p„ p = 0 if a t b, as is the case in the 
Jim Jem mjl 

absence of damping, for instance). Thus our formalism is essentially 
an approximation for weak external fields and weak damping. 

The time scale on which this approximation is good, is limited by 
two factors. One is connected with the fact that as discussed above, 
the ft have errors Aft . Thus for times t > T, where tAft = 1, these 
errors may begin to have serious effects on p, (t) = £ a a p a x 

Urn a slm 
xexp{-i[ft + (n - n )o>]t}. This Is only important if Afta is compa­

rable in magnitude to Im(ft ) , so that the components p a do not decay 
Jim 
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away befoie the errors AQ become important. The other factor is con­

nected with ionization and dissocia'.ion continua, which are completely 

neglected in our treatment. For sufficiently intense external fields, 

multiphoton ionization and dissociation processes may be all but 

negligible /l.l/. If, however, the ionization and/or dissociation 

rates in the system we are considering are small compared to the typi­

cal magnitude of the various Q 's, then the ionization and/or disso­

ciation processes may be considered weak perturbations that may be 

ignored for times short compared to the ionization/dissociation life 

time. 

1.5 Optical Pumping in a Free Atom 

As an example of how the theory developed can be used, let us 

consider a simplified model of a free alkali atom excited on the D 

resonance line by a CW "single frequency" laser. In the model we 

will disregard the hyperfine structure of the energy levels. Except 

in the case of a strong laser field, this is a poor approximation, 

since the hyperfine splitting of the electronic ground state is sub­

stantial. The model, however, demonstrates many of the most important 

qualitative features of such a system. Thus we are considering the 
2 2 2 

S 1 ._- P.,, transition in a free atom. The P_»9 states decay by 

spontaneous emission. This is a system of a total of 6 states, giving 

rise to a 36-element density matrix. Thus the system is small enough 

to be treated using Eq. 1.17. The matrix elements u.'""., , of the 
jm;j m 

electric dipole operator of the system can be calculated with the help 

of Clebsch-Gordan coefficients, and are given in Table 1.3. If the 
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laser field is written as 2(t) = E exp(iut) + E exp(- iwt) , and £ = 
E +(x + iy) + E z + E~(- x + iy), then in Eq. 1.17c the interaction ma­
trix element V' ., , is 

jm.j'm' 

V! ., , = h _ 1E. ft , . ( - l) kE kuT^.,. , • 1.21 
jm;3 m' k=0,+l jm;j m 

The space axes and the time origin can always be chosen so that the E 

are real. From Table 1.3 the Einstein coefficients of the various tran­

sitions can easily be calculated, together with the other decay con­

stants of Eq. 1.17c (see Table 1.2). The matrix A. ... of Einstein 

coefficients is given in Table 1.4. Starting from the dipole matrix 
2 2 

element of the S, (m = %) to the P. .Am = 3/2) transition 

y o VI3/2,3/2;l/2,l/2 1 - 2 2 a 

as a basic unit, a natural unit for the Einstein coefficients is 

A o = A3/2,3/2;l/2,l/2 = 4«V> 3/<3e 2c 2) 1.22b 

where oi is the angular frequency of the transition, a is the fine struc­

ture constant, and c and e have their usual meaning. The corresponding 

natural unit of electric field is 

E = hA /u . 1.22c 
o o o 

For fields E "̂  E , the excitation rates, roughly given by u E/h, are 

small compared to the decay rates given by the Einstein coefficients, 
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whereas for E »> E , the excitation is strong compared to the damping sys-o 
tem, and we are in the saturation regime. For alkali atoms, typical di-

pole matrix elements for transitions around 600 nm wavelength are of the 
3 2 order of 3ea (where a is the Bohr radius). Thus E = 4aha to /(ec ) = o o o o 

2 2 105 V/m corresponding to a laser intensity of I = !SCE (2E ) = 5 8 W/m 
o o o 

2 =5.8 mW/cm . This very moderate laser intensity marks the transition, 

as discussed above, from the weak field regime to the saturation regime. 

The system was analyzed using Eq. 1.17b, incorporated into a com­

puter program. The program consists of constructing the damping matrix 

r., (Table 1.1b), and diagonalizing this matrix, using standard avail­

able computer software /1.3/. Given initial values for the density ma­

trix elements, the initial density matrix is expanded in terms of the 

eigenvectors p, , and the density matrix at later times is calculated. 

The program was tested on models consisting of several two-level systems 

(for which exact solutions are known, see Appendix B ) , and further 

chocked against requirements like: one and only one eigenvalue y of 

r,, , should be zero, real part of all nonzero eigenvalues y should be 

positive, circularly polarized light should polarize the system complete­

ly, a linearly polarized field should be equivalent to a superposition 

of two oppositely rotating circularly polarized fields, RCP and LCP 

light should be equivalent, and the response of the system should be 

symmetric with respect to detuning from resonance of the laser field. 

In Table 1.5, we have an example of results from a calculation with 

E « E = 0, E = E , excitation on resonance, and population initially 

incoherently distributed with equal probability in the m = + \ substates 
2 of the ground S, level. As we can see, the real "art of the nonzero -4 

decay constants all fall between 0.3A and A . This is related to the 
o o 
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fact that the Einstein coefficients of the system are in this range. In 

the strong field limit, the imaginary parts of the decay constants y 

(i.e., the oscillation frequencies of the density matrix) should be dif­

ferences between the various quasienergies il (see Eq. 1.15h). We see 

that this is approximately true, even though the field is not particu­

larly strong. These oscillation frequencies are of the same order of 

magnitude as the various V' ... (see Eq. 1.21), and thus related to 

the transition moments u. ., .. Calculations with various strengths of 
jm;j m 

the electric field E show that for small fields all the decay constants 

are real, whereas when E > E /3 (for definition of E , see Eq. 1.22) 
o o 

some of the decay constants become complex. This implies that for 

strong fields we have oscill "ions in the populations of the various 

levels. The amplitudes of these oscillations for the case described 

above, excitation on resonance with E - E , are included in Table ],5d. 
o 

In this case the oscillations damp out in of the order of one period of 

oscillation. However, our calculations show that as E increases, the 

decay rates Re(y ) do not change very much, whereas the nonzero oscilla­

tion frequencies Im(y ) increase approximately in proportioi _th E . 

Thus for strong fields, many oscillations of substantial amplitude (see 

Table 1.5d) may occur in the population of the various m-sublevels of, 
2 

e.g., the S,-level, before the oscillations damp out. Similar popula­
tion oscillations occur in the two-level system (see Appendix B). 

With a perfectly polarized field, after a time long compared to 1/ 
1 2 

Re(y ) , all the population will end up in the ?-,Am = - 3/2) and the 
2 
Si (m - - h) states of the atom, and the system reduces to a two-level 

system. If the laser field then is turned off, all the population will 
2 2 

eventually end up in the S. (m - - Sj) state, as the Po/,^ = ~ 3 / 2 ) 
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state decays. 

Figure 1.1 shows how an admixture of oppositely , >!arized light al-
-2 +2 2 ters this. We still choose E + E = E , and the graph shows the frac-

2 tion of population that eventually will end up in the S. (m = - H) state, 

as a function of E /E . Like above, we imagine the laser being turned 

on for a time long compared to 1/Re(y ), and ask what the situation is 

like long after the laser is turned off. As we can see, for (E /E ) < 1, 
2 we have to a good approximation that the St (ra = - h) population is 0.4 

-5 _ + 2 (E /E ) . I.e., the depolarization of the final population is directly 

proportional to the relative intensities of the two polarizations in the 

la-̂ er field. 

Figure 1.2 shows how the polarization of the laser light influences 

the time needed to reach the steady-state. The graph shows the smallest 

decay constant Re(y ) as a function of polarization ratio E /E . We see 

that the response to circularly polarized light (E~/E = 0) relaxes 

twice as fast as the response to linearly polarized light (E~/E » 1). 

Figure 1.3 shows in more detail how the polarization of the light 

influences the system response. The dashed curve is the magnitude of 

the smallest decay constant Re(y ) for circularly polarized light rela­

tive to the decay constant for linearly polarized light, as a function 

of laser field amplitude. The laser frequency is tuned to resonance. 

For weak fields, the polarization does not matter, whereas for fields of 

intensity I >, I , the system relaxes twice as fast towards the steady-

state response if the field is circularly polarized rather than linearly 

polarized. 

The solid curve of Fig. 1.3 is the magnitude of the steady-state 

electric dipole polarization induced in the atom by circularly polarized 
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light. The solid curve of Fig. 1.3 is the magnitude of the steady-state 

electric dipole polarization induced in the atom by circularly polarized 

light relative to the polarization for linearly polarized light. The 

laser frequency is tuned to resonance, and the induced polarization is 

90° out of phase with the laser field, like for a two-level system ex­

cited on resonance. For weak fields the polarizability of the system is 

1.5 times greater for circularly polarized light than for linearly polar-

ized light. This is because ^ 3 / 2 j 3 / 2 ; 1 / 2 > 1 / 2 | 2 = (3/2)I^3/2,1/2;X/2,1/212" 

For more intense fields, I >, I , the difference in polarizability dis­

appears . 

Figures 1.4 and 1.5 show how fast the system population is polar­

ized by cif-ularly polarized light. The smallest decay constant Re(y ) 

is plotted as a function of laser frequency detuning A from resonance, 

and of laser field amplitude E . For small field amplitudes and/or 

large detuning, Re(y ) is proportional to the field amplitude squared, 

i.e., to the laser intensity, whereas for strong fields close to reson­

ance (I >, I and |A| <, \i E /ti), the decay rate has a saturated value of 

A /3. For large detuning (|A| >, max (A /3, p E /h)) the decay rate 

Re (y 1) a A~ 2. 

Calculations were also run with various combinations of strong 

fields of different polarization, including the case with all three po­

larizations nonzero. (This is only possible usin& two crossed laser 

beams to excite the atom.) When the laser frequency was on resonance, 

the decay rates were always in the range between 0.1A and A . Only the 

eigenvectors p. were strongly affected by changes in the polarization of 

light. 

The following conclusions, drawn from the sample calculations on 
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the model system above, should be of fairly general applicability to 

systems of this kind. 

A system excited by a square pulse from a "single frequency" laser 

will during the pulse relax toward a steady-state response. This re­

sponse is quite sensitive to the polarization of the laser light. The 

rate at which the system relaxes towards the steady state during the la­

ser pulse, however, is only moderately affected by changes in the polari­

zation. 

For strong laser fields tuned to resonance with the levels excited, 

the relaxation rate is limited by the inherent decay rates of the sys­

tem. For weak fields, or fields tuned away from resonance, the rate is 

proportional to the laser intensity. This is the same type of function­

al dependence on external field strength and detuning from resonance as 

we find in the steady-state energy absorption from a laser field by a 

two-level system (see Appendix B ) , or by the atom treated above. 

After the pulse is over, the atom is left in a certain final state, 

independent of pulse duration if the pulse is long enough. The final 

state will be different from the long pulse limit only if the product 

of the pulse duration and the smallest decay rate during the pulse is 

of the order of one or smaller. For weak or off-resonant laser fields, 

this product is proportional to the laser pulse energy fluence, that 

thus becomes an important parameter. As discussed in Chapter 2, the 

pulse energy fluence is also an important parameter in the infrared mul-

tiphoton excitation of molecules. 

The above general features are not very different from what one 

would get by treating the system with plain rate equations, disregard­

ing the coherence of the excitation. However, just like in the case of 



30 

a two-level system, coherence shows up in the oscillation of population 

between the states of the system, when the driving field is sufficiently 

strong. The system we have treated is still small enough that these os­

cillations only have a few frequency components (see Table 1.5d). Then 

the net overall oscillations can be quite substantial. However, this is 

not necessarily the case for systems with more levels. Then the oscilla­

tions will have more frequency components, which might very well add up 

to produce very small net oscillations. Quack /1.19/ has carried out 

numerical and theoretical calculations showing how this can. come about, 

even in the absence of inherent damping of the system. 

1.6 Other Possible Applications 

The formalism developed above has several applications. We already 

mentioned the infrared multiphoton excitation, and we have seen an ex­

ample of optical pumping in an alkali atom. The latter case can be 

treated in greater detail if the laser field is strong enough to make 

the approximation of Eq. 1.14 valic*, i.e. well into the saturation re­

gime for the pumped transition. Then the corresponding equation of mo­

tion (1.15) can be easily solved for a system of up to a few'hundred le­

vels. Such a system might, e.g., be an alkali atom with hyperfine struc­

ture in both lower and upper states. For a square pulse of laser radia­

tion, the final polarization of the atoms, the population distribution 

over hyperfine states, the time it takes for the atoms to reach their 

final population distributions, etc., can all be calculated for various 

laser intensities, laser pulse durations and polarization states of the 

laser radiation. 

In Appendix C is shown how the formalism developed in Section 1.2 
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can be extended to cases where the amplitude, frequency and/or phase of 

the exciting field varies in time. There are quite a few experimental 

situations that might be of interest to treat with this formalism. It 

should be pointed out that the e.m. field is assumed to be completely 

coherent. Thus fields with random fluctu in phase and/or ampli­

tude are not included. For the latter type of field, considerable effort 

has been devoted to treating twolevel system models lately (see, e.g., 

11.171 and /1.18/). The approach used in Appendix B and ^'1 of this 

chapter does not attempt to cover this type of excitation. The types of 

laser sources our approach deals with are lasers with well characterized 

pulses, like transform-limited single pulses or trains of modelocked 

pulses, and phase-, frequency-, and/or amplitude-modulated "single fre­

quency" lasers. The approach of describing the field in terms of time-

dependent phase, amplitude and frequency is only feasible in a system 

with quite few levels. This is particularly true (just like in the case 

with a perfectly steady monochromatic field) if the damping in the sys­

tem is important, such that the density matrix and not the state vector 

has to be used in the full treatment. 

On the other hand, we should emphasize that we have a formalism 

which is valid for fields of rapidly varying intensity and frequency, of 

arbitrary strength, as long as the interaction matrix elements between 

field and q.m. system are small, i.e., as long as the detuning from re­

sonance of the energy levels neglected in the treatment of the system 

are large compared to the interaction matrix elements. 
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Table 1.1a 

Conversion of Eq. 1.2 into an equation involving only real quantities. 
Definition of the matrix r , (Eqs. 1.3 and 1.5). 

K^kkk'k'* 

^tonk'k'* ^^Jtmfc'm' + VlLmm'V) 

Im(r„ ., , - r .„,) 

" 2 l B ( rkkl'»'> 

~ ^^^mH'm' " rimm'4 , ) 



Table 1.1b 

The dam )ing matrix T* , of Eq. 1.17b, expressed in terms of the decay terms Y„ „, , (Eq. 1.7) 

and the matrix elements V.., of the hamiltonian (Eq. 1.9). As in Eq, 1.9a, A, = (tf, - n, u. 

\ k * e N l N 2 N 3 

N i Y k k k ' k * 2 Y k k £ ' m ' 2 V ; H . ( 5 W . - - \ m - > 

N 2 YS>mk'k' Y2.mS.'m' + YJ.mm'S,' 

- v«. v + v ; - m

6 u - + 

Jim'mil ' V m i l m ' 

N 3 Vlm ( 5mk' " \k«> Y i m i l , m ' ~ YS.mmU* 
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Table 1.2 
Values of the decay matrix y„ „i i in the case of spontaneous emission. 

x.m£ m 

Condition W i n ' 

% = m = V = m' A 

I = m + V = m' ~kV% 

I ± m, I' = H, m' = m (A„ + A )/2 
S. m 

all other zero, unless io. - u - ID. , + u . is small 
Jt m S. m 

enough to be comparable in magnitude to some 
of the A., in which case we get 

/ A . A \ * J Vi. , V m X-
+ ~z—r? u„«„ • u» !-»• i2 ,+ ,2JVm I't 
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Table 1.3 
Matrix elements v. ... of the electric dipole operator, in units of 

V P3/2,3/2:1/2,1/2" 

k = L 

J ' 3/2 1/2 
A. 

\ . ' 
r 
ill 1/2 -1 /2 •> 

-3/2 
f 
111 -1 /2 

j ""X^ 
' 3/2 0 0 0 0 0 0 

3 1/2 0 0 0 0 0 0 

1 ' -1 /2 0 0 0 0 /T73 0 
-3 /2 0 0 0 0 0 1 

if 1 / 2 -1 0 0 0 0 0 if 1 / 2 

0 -/I73 0 0 0 0 

k = 0 

3/2 0 0 0 0 0 0 

3 J 
1/2 0 0 0 0 0 /in 

2 1 -1/2 0 0 0 0 /2T3 0 
-3/2 0 0 0 0 0 0 

1 f 1/2 
2 1 -1 /2 

0 
0 

0 
/27I 

/27I 
0 

0 
0 

0 
0 

0 
0 

k = - 1 

' 3/2 0 0 0 0 1 0 

3 1/2 0 0 0 0 0 /T7J 
2 ' -1 /2 0 0 0 0 0 0 

-3 /2 0 0 0 0 0 0 
1 f 1/2 
2 1 -1/2 

0 
0 

0 
0 

-fUl 
0 

0 
-1 

0 
0 

0 
0 



Table 1.4 
Einstein coefficients A. ., ,, in units of A = A_ .,,,_-.,. y o. 
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J' 3/2 1/2 J' 
3/2 1/2 •1/2 -3/2 1/2 • -3/2 

j m N. 
3/2 0 0 0 0 1 0 

3 
2 

1/2 

-1/2 

0 

0 

0 

0 

0 

0 

0 

0 

2/3 

1/3 

1/3 

2/3 

-3/2 0 0 0 0 0 1 

1 ' 1/2 0 0 0 0 0 0 
2 ."1/2 0 0 0 0 0 0 
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Table 1.5a 

Quasienergies fl (in units of A , see Eq. 1.22) and corresponding 
.a , 2„ 

eigenvectors 9. for a S ,„- P ..-transition excited by circularly 

polarized light of intensity 1 = 1 (see Eq. 1.22). 

a 1 2 3 4 5 6 

fia - 1 -/I7I 0 0 /T/3 1 

5 m 

' ' 3/2 • 0 0 0 1 0 0 

3 1/2 0 0 1 0 0 0 

2 -1 /2 0 /m 0 0 /I72 0 

* 3 • -3 /2 Jl/2 0 0 0 0 sm 
1 , ' 1/2 0 Jm 0 0 -Jin 0 

2 , -1/2 JT/2 0 0 0 0 -/T/2 
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Table 1.5b 

Decay constants Re(y ) and oscillation frequencies Im(y ) (in units of 

A ) for the system of Table 1.5a. The fourth coloumn of the table 

tells which of the eigenvectors p, that give a nonzero contribution to 

the expansion of the density matrix in terms of the eigenvectors. 

a Re( Y
a) Im(Ya) contribution to 

density matrix 

0 0.0 0.0 nonzero 
1 0.3020 0.0 nonzero 
2 0.3436 0.4085 0 
3 0.3436 0.4085 0 
4 0.3436 -.4085 0 
5 0.3436 -.4085 0 
6 0.5 0.0 0 
7 0.5 0.0 0 
8 0.5990 1.0549 nonzero 
9 0.5990 -1.0549 nonzero 
10 0.6564 1.5161 0 
11 0.6564 1.5161 0 
12 0.6564 -1.5161 0 
13 0.6564 -1.5161 0 
14 0.75 0.5204 0 
15 0.75 0.5204 0 
16 0.75 0.5204 0 
17 0.75 0.5204 0 
18 0.75 -.5204 0 
19 0.75 -.5204 0 
20 0.75 -.5204 0 
21 0.75 -.5204 0 
22 0.75 0.9683 0 
23 0.75 0.9683 0 
24 0.75 0.9683 0 
25 0.75 0.9683 0 
26 0.75 -.9683 0 
27 0.75 -.9683 0 
28 0.75 -.9683 0 
29 0.75 -.9683 0 
30 0.75 1.9843 nonzero 
31 0.75 -1.9843 nonzero 
32 1.0 0.0 0 
33 1.0 0.0 0 
34 1.0 0.0 0 
35 1,0 0.0 0 
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Table 1.5c 

Steadv state density matrix p. ,, , for the system of Table 1.5a. 

Elements with j / j' have an additional term exp(±iu>t), where <D is the 

laser frequency. 

j' 3/2 1/2 

\ -
ill 1/2 -1/2 -3/2 1/2 -1/2 

i • \ 
3/2 0 0 0 0 0 0 

3 1/2 0 0 0 0 0 0 
2 -1/2 0 0 0 0 0 0 

-3/2 0 0 0 4/9 0 2i/9 

1 1/2 0 0 0 0 0 0 
2 . "1/2 0 0 0 -2i/9 0 5/9 
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Table 1.5d 
Population in the various levels for each of the eigenvectors p, for 

the system of Table 1.5a. The atom is initially unpolarized and in 
2 the S, ._ level, and only eigenvectors with nonzero contributions to 

the population are listed. For a f 0 the population may oscillate, in 

which case the complex amplitude of the oscillation is listed. Also 

for a ̂  0, the total population Tr(p ) is zero, so that negative as 

well as positive populations are present even for eigenvectors that 

are not associated with population oscillations (i.e., Y is real). 

J 3/2 1/2 
t * r \ 

a 
m 212 1/2 -1/2 -3/2 1/2 -1/2 

0 0.0 0.0 0.0 0.4444 0.0 0.5555 
1 0.0 0.0 0.2776 -.2961 0.3351 -.3166 

' Re 0.0 0.0 -.2776 0.0868 0.1649 0.0259 
8+9 • 

Im 0.0 0.0 0.0781 -.0636 0.1896 -.0429 
Re 0.0 0.0 0.0 -.2351 0.0 0.2351 

30+31 • 
Im 0.0 0.0 0.0 0.0713 0.0 -.0713 
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Figure Captions 
2 Fig. 1.1 Fraction of population in the S ..(m = 1/2) state, after 

a long laser pulse of field amplitude 2E (see Eq. 1.22), 

tuned to resonance, as a function of LCP relative to RCP 

field amplitudes, E /E . 

Fig. 1.2 Smallest nonzero decay constant Re(y ) , in a laser field of 

amplitude 2E (see Eq. 1.22), tuned to resonance, as a func­

tion of LCP relative to RCP field amplitudes, E~/E . 

Fig. 1.3 - - - - - Ratio between the smallest nonzero decay con­

stants Re(y ), for circularly and linearly polarized light, 

as a function of laser field amplitude (in units of E , see 
o 

Eq. 1.22). — Ratio between the induced steady 

state electric polarizations for circularly and linearly 

polarized light on resonance, as a function of laser field 

amplitude (in units of E , see Eq. 1.22). 

Fig. 1.4 Smallest nonzero decay constant Re(y ) (in units of A , 

see Eq. 1.22) for circularly polarized light on resonance, 

as a function of laser field amplitude (in units of E , 
o 

see Eq. 1.22). 

Fig. 1.5 Smallest nonzero decay constant Re(y ) (in uflits of A , see 

Eq. 1.22), for circularly polarized light, and for three 

different field amplitudes E (in units of E , see Eq. 
o 

1.22), as a function of detuning A (in units of A ) from 
o 

resonance. 
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Figure 1.2 
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Figuia 1.4 
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Figure 1.5 

^ 

z 
m 
z o u 
5 u 
UJ 

O 
(Z 
L±J 
M 
Z o 

CO 
LJ 

< 

.0001 

.001-

.01 J I. 10. 
DETUNING A FROM RESONANCE 

XBL 799-11278 



49 

CHAPTER I MULTIPHOTON DISSOCIATION OF MOLECULES 

2.1 Introduction 

This chapter is an account of experimental ork on the process of 

infrared laser-induced multiphoton dissociation (MPU). We emphasize here 

the general understanding of the process. More detailed accounts of some 

of the experiment discussed in this chapter can >e found in Appendices E 

and F, which are reprints of papers published previously. 

t, we shall see later, the MPD process is doirinated by incoherent 

excif.alion of molecules. The coherent transitions discussed in the pre­

vious c.iapter can be important for initial excitation between low-lying 

discrete states. This part of the process represents a so-called "bot­

tleneck" /2.1-3/ for the multiphoton excitation, in the sense that it 

may be difficult for some molecules to be excited out of these low-lying 

levels. However, this seems to be of little importance for the overall 

results of MPD. The experiments to be discussed here do not reveal very 

much about the nature of such initial excitation. We will see that our 

results can to a great extent be described independently from what is 

discussed in Chapter 1. Central to the understanding of the MPD process 

however, is the RRKM theory of unimolecular reactions. A brief outline 

of this theory is given in Appendix D, and a thorough discussion of it 

can be found in Ref. D.l. 

Laser-induced multiphoton dissociation (MPD) of moleci les is a col-

lisionless unimolecular process. In the early studies, the collision-

less nature of the process was inferred by the observation of instantan­

eous luminescence from the dissociation products following laser excita­

tion and by the observation of linear pressure dependence of the disso-
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ciation yield at sufficiently low gas pressures /2.4-7/. The experiments 

were done in gas cells in which excitation may be assumed collisionless 

if the laser pulse is much shorter than the mean free time between col­

lisions of the molecules. Even so, after the laser pulse is over, mole­

cular colli^ions in the gas cell are still unavoidable, leading to pos­

sible collisional dissociation of excited molecules and chemical reac­

tions among dissociation products and excited parent molecules. Thus, 

it is generally recognized that the primary dissociation fragments can­

not be unambiguously identified in the gas cell experiments. 

The best way to study a collisionless process is of course in a col-

lisiouless experiment. A molecular beam method is therefore most appro­

priate for the study of MPD. Indeed, observation of infrared MPD in a 

molecular beam provides the most direct evidence that the process is col­

lisionless /2.8/. The use of a mass spectrometer to detect the dissocia­

tion fragments from the beam allows us to identify the primary dissocia­

tion products in a straightforward vay /2.8,9/. The latter information 

is in fact of great fundamental importance for the understanding of MPD, 

because it reveals whether there is any correlation between the pattern 

of molecular dissociation and the vibrational mode through which the ini­

tial excitation is attained. 

With a molecular beam apparatus which will be described later in the 

chapter, the angular and velocity distributions of the fragments can al­

so be measured. From the measurements, much additional information about 

the dynamics of MPD can be deduced. Once the major dissociation frag­

ments have been identified, there are a number of important questions 

that need to be answered before a reasonable physical understanding of 

MPD can be achieved. 
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(1) What is the excitation mechanism? How is it possible for a molecule 

to be excited over the low-lying discrete rovibrational states, up 

into and through the so-called quasi-continuum /2.10/ where the mo­

lecular density of states is very high, and into the dissociative 

continuum states? Does the excitation remain as an orderly vibra­

tion characteristic of the normal mode being excited, or does the 

excitation become more random as the level of excitation increases? 

How many photons does each molecule absorb before dissociation, or 

equivalently, what is the average excitation level from which a mo­

lecule will dissociate? What eventually limits the level of exci­

tation? 

(2) Through which channel (or channels) does the molecule dissociate, 

and how does this depend on the laser excitation? More specifically, 

how do observed dissociation products, average dissociation rates, 

translational and internal energy in the products depend on parame­

ters of the laser excitation pulse: intensity, duration and frequen­

cy? Is the major dissociation channel in MPD different from that in 

thermal decomposition? What is the dissociation rate of molecules 

and how does it depend on the level of excitation? 

(3) What is the dynamics of dissociation? How does the energy avail­

able to the fragments distribute itself among the various degrees 

of freedom (translation, rotation, and vibration) of the fragments? 

What happens to the fragments after they are produced; can they ab­

sorb more laser energy and undergo a secondary MPD? 

Most of these questions are usually difficult to answer from the 

analysis of final products in the gas cell experiments. However, as we 

shall see in this chapter, they can be and have been answered by measur-
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lag angular and velocity distributions of the fragments in the molecular 

beam experiment. In addition to the molecular beam experiments, the new­

ly developed laser induced fluorescence technique for detecting a small 

number of molecules has been used to detect dissociation fragments from 

colllsionless MPD in a low-pressure gas cell /2.11-16/. Because of the 

good spatial and temporal resolution of the probing pulse, this technique 

can also yield information on the dissociation dynamics of the fragments. 

In principle, this detection method sometimes Is even superior to the us­

ual mass spectrometric detection method used in most molecular be°m ex­

periments, in the sense that it can also measure the rotational and vibra­

tional energy distributions in the fragments. In practice, however, this 

technique is limited to some small fragments by the fact that the optical 

transitions of many larger dissociation fragments are either not known, 

too complicated, or cannot be reached by the available probe laser. 

With the far reaching consequences such a possibility opens up in 

synthetic chemistry, it has been a hope that MPD might be mode-selective, 

that is, the excitation energy should remain to a large extent in the vi­

brational mode being excited. If this were true, the dissociation pro­

ducts could be different from those expected in thermal decomposition, 

and application of MPD to chemical synthesis could lead to a revolution­

ary change in the field. So far, however, aside from some erroneous con­

clusions, no concrete evidence of mode-selective MPD has been reported. 

The molecular beam experiments on many molecules described here have 

shown that in the infrared MPD process the rate of intramolecular energy 

transfer of dissociating molecules is faster than the rate of dissocia­

tion, such that the statistical theory of uniaolecular decomposition 

/D.l/ can be used to describe the dissociation of excited molecules sat-
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isfactorily. This is not really surprising, as discussed in Appendix D, 

in view of the fact that the energy deposition rate as well as the rate 

of dissociation is rather slow compared with intramolecular energy trans­

fer rates. Indeed, the statistical theory, used convincingly to explain 

our molecular beam experiments, is the key to answering most of the ques­

tions concerning the dynamics of MPD. It can also be used to establish a 

simple and reliable phenomenological model /2.17-19/ which has been suc­

cessful in describing the MPD process more quantitatively. 

The subject of this chapter is the study of MPD in a molecular beam 

with high-power infrared lasers. We shall first describe the experimen­

tal apparatus and the experimental results, followed by a thorough dis­

cussion of the results, the interpretation, the various aspects of the 

problem, and our present understanding of the MPD process. 

2.2 Experimental Arrangement 

In order to understand the dynamics of infrared multiphoton dissoci­

ation of polyatomic molecules, it is necessary to carry out experiments 

under collision free conditions and obtain some information which is di­

rectly related to the dissociation dynamics. The positive identification 

of primary dissociation products, the measurement of the energy distribu­

tion of the fragments and the determination of the lifetime of the excit­

ed molecules are important data that need to be obtained in order to make 

an assessment of the extent of energy randomization and the level of ex­

citation prior to the dissociation of excited molecules. 

The crossed laser-molecular beam arrangement is very well suited 

for this purpose and is used in our experimental investigations. The mo­

lecular beam apparatus used is shown schematically in Fig. 2.1. It is a 
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modification of an apparatus originally designed for crossed molecular 

beam studies of cross sections for elastic and reactive scattering 12.S, 

2.20/. The molecular beam was formed by expansion of the pure gas or a 

gaseous mixture using a rare gas as carrier at ~ 75-200 Torr stagnation 

pressure from a 0.1 mm-diameter quartz nozzle. Three stages of differen­

tial pumping were used along with two conical skimmers and a final colli-

mating slit to produce a well defined beam ~ 2 mm in diameter in the la­

ser irradiation region. The molecular beam had a very sharply delineated 

angular distribution of 1.2° full width at half-maximum (FWHM). Three 

stages of differential pumping were found to be necessary for this type 

of experiment in order to allow detection of the dissociation products 

near the molecular beam, since the fragmentation of beam molecules in the 

ionizer of a mass spectrometer produces the same mass peaks as those from 

the dissociation products. The velocity distribution of the molecular 

beam typically had a FWHM spread of 25% of the average velocity, or bet­

ter. The density of molecules in the beam in the irradiation region was 

11 3 

~ 3 x 10 /cm . The velocity spread and the number density of the mole­

cular beam are both limited by the stagnation pressure which had to be 

kept low to avoid the formation of Van der Waals dimers and polymers dur­

ing the expansion. A Tachisto TAC II grating tuned CO. TEA laser (~ 1.0 

J/pulse) was used in our experiments as the excitation source. The laser 

beam was admitted into the vacuum chamber via a ZnSe lens with a 25.4-cm 

focal length. The power and the energy fluence of the laser at the mole­

cular beam was adjusted by varying the distance between the focal region 

of the lens and the molecular beam. The fragments produced by multipho-

ton dissociation of polyatomic molecules at the small intersection re­

gion were detected by a triply differentially pumped quadrupole mass spec-
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trometer utilizing electron bombardment ionization and ion counting. The 
_9 pressures in the three regions of the detector were maintained at ~ 10 , 

~ 10 , and "" 10 Torr by a combination of ion pumps, a sublimation 

pump, a liquid nitrogen trap and a liquid helium cryopump. The partial 

pressure of the beam molecule in the third region where the ionizer is lo-
-13 cated was usually kept below 10 Torr. The angular position of the mass 

spectrometer around the beam intersection point could be varied so that 

the angular distribution of the fragments could be measured. The mass 

filter was usually adjusted to provide better than unit mass resolution. 

As shown schematically in Fig. 2.2, external triggering at 0.5 Hz was used 

to fire the laser and to enable a dual-channel scaler for recording 

counts of fragments from the mass spectrometer. Separate adjustments of 

delay and gate times were made to ensure that one scaler channel recorded 

only background (i.e., with the laser pulse off) while the other recorded 

both background and signal. Typically, 100-1000 laser shots were used to 

measure the fragments produced at each laboratory angle 

for the measurements of angular distributions. The angular resolution of 

the detector was 1°. In order to positively identify the dissociation 

products and to check for possible secondary dissociation of a primary 

product by the same laser pulse, the angular and velocity distributions 

were scanned at several mass peaks in the mass spectra of the dissocia­

tion products of a molecule under investigation. The fragment velocity 

distributions at various laboratory scattering angles were obtained by 

determining the arrival time of each fragment, after a flight path of 21 

cm, at the detector, relative to the time origin defined by the laser 

pulse. This was done by multiscaling the mass spectrometer output signal. 

Typically, a 10 us channel width was used in a scan over 2.5 ms, and the 
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time of flight spectra obtained were averaged over 100-5000 laser pulses. 

The dissociation products and their angular and velocity distribu­

tions were extensively measured while varying the laser frequency, power, 

and energy fluence and the vibrational and rotational temperatures of the 

molecules. 

2.3 Experimental Results 

The major MPD products identified in our molecular beam experiments 

are listed in the first column of Table 2.1, which summarizes our results. 

The dissociation products observed are typically those from the channel 

with the lowest activation energy. According to the measurements by sev­

eral other groups 12.11-16/ using laser induced fluorescence detection, 

they appear in their ground electronic states, or in some cases /2.21-22/, 

in low-lying electronic states. 

For C.F,C£. and CHC£CF_, two dissociation channels corresponding to 

the two lowest activation energies have been observed. For CH-CF-C& the 

HF and HCJl molecular eliminations were suggested to have, within experi­

mental uncertainty, the same activation energies in earlier thermal dis­

sociation studies /2.23/, but the HCJl elimination is the only channel ob­

served in our experiments. For SF, and CFC2.,, secondary dissociation of 

the primary products is observed at high energy fluence (SF. •*• SF, + F, 

CFCit- -> CFC2. + CJ,). 

In the cases where two competitive dissociation channels are ob­

served, the intensity of the laser pulse was found to influence the 

branching ratio. Figure 2.3 shows the relative dissociation yield of 

C-F CI into CF_ + CEM and C-F. + CJl as a function of laser energy. The 
2 chlorine atom elimination has a threshold at 0.5 J/cm and saturates at 



57 

1 J/cm . The channel producing CF, + CF-C2 has approximately the same 

threshold, but as the intensity is increased, the fraction dissociating 

by C-C bond rupture continues to increase. 

The laboratory angular and velocity distributions for SF in the 

fluorine atom elimination from SF, are shown in Figs. 2.4 and 2.5. The 

angular distribution of the SF,. peaks as close to the SF, beam as can be 

measured (5°) and falls off monotonically with increasing angle. The ve­

locity distributions of SF^ shown in Fig. 2.5 were obtained from the time 

of flight measurements at three angles. Also shown is the SF beam velo­

city distribution. The angular and velocity distributions for SF, are 
o 

typical of the other halogen atom elimination reactions. For example, 

Figs. 2.6-8 show the laboratory angular and velocity distributions of CF, 

and I from MPD of CF,I. Further examples can be found in Appendix E. 

Translational energy distributions of dissociation products are de­

rived from the measured laboratory angular and velocity distributions. 

First, an assumed center-of-mass translational energy distribution of the 

fragments is transformed to the laboratory coordinates, including the con­

volution over the beam velocity distribution and the length of the ionizer 

in the mass spectrometer. Then, the angular and velocity distributions 

in the laboratory coordinates can be calculated and fit to the experimen­

tal curves. A detailed description of this procedure is given in Appen­

dix F. Center-of-mass angular distributions of products are found to be 

isotropic for all systems studied. This can be concluded from the agree­

ment between experiments and theoretical curves deduced using this assump­

tion, and from the observation that our results were independent of laser 

polarization. Figure D.2 shows the translational energy distribution of 

SF, + F derived from the experimental results /2.18/. The curves drawn 
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in Figs. 2.4 and 2.5 are the angular and velocity distributions calculated 

from the translational energy distributions shown in Fig. D.2. Similar 

results were obtained for a variety of molecules (see Appendix E). 

Columns 4 and 5 of Table 2.1 give information on the average transla­

tional energy and the peak of the translational energy distribution. It 

is clearly seen that except for some 3- and 4-center eliminations, which 

are known to have additional potential energy barriers for dissociation, 

the translational energy distributions all peak at zero kinetic energy 

and the average translational energies of the products are generally very 

low. 

The systems with an additional potential energy barrier in the exit 

channel have characteristically different translational energy distribu­

tions, which are reflected in laboratory angular and velocity distribu­

tions. Three-center elimination of HCd from CHF«C4 is one of the exam­

ples . The velocity distributions of the HCJ. in this case is shown in Fig. 

2.9. The center-of-mass translational energy distribution peaks at 5 

kcal/mole, as shown in Fig. 2.10. Four-center elimination of HCA from 

CH_CC£_ and CH,CF„Cfc and C-C bond rupture in C.F,.CJl all have similar char­

acteristic translational energy distributions. The three- and four-center 

elimination reactions are discussed extensively in Appendix F. 

2.4 Discussion 

Let us start by looking at some of our typical experimental results 

on the translational energy distribution of the dissociation fragments. 

Shown in Fig. 2.5 are the velocity distributions of SF, fragments from 

MPD of SF, at various angles with respect to the SF, beam /2.18.24/. We 

see that they are only slightly broader than that of the primary SF, beam 
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because the average translational energy imparted to the fragments in the 

dissociation is quite small. The same conclusion can be drawn from the 

angular distribution of SF^ fragments shown in Fig. 2.4 It falls off ra­

pidly as the angle from the SF, beam Increases, again indicating that 

very little translational energy is released to the fragments. More quan­

titatively, this can be seen from the translational energy distribution 

of the fragments as shown in Fig. D.2, where the distribution curves actu­

ally yield velocity and angular distributions which fit the measured ones 

in Figs. 2.4 and 2.5 very well. 

This form of translational energy distribution of the fragments is 

actually predicted by the RRKM theory. As explained in Appendix D, it 

predicts that as the excitation in a molecule increases above the dissoci­

ation energy, the dissociation rate constant increases. This will tend 

to favor dissociation through the lowest-energy dissociation channel. Ex­

periments, in particular those using the molecular beam, show that the MPD 

of most molecules proceeds through the lowest-energy channel (see Ref. 2.9 

and Appendices E and F). The RRKM theory also predicts how the excess en­

ergy (excitation energy minus dissociation energy) is distributed among 

the various vibrational modes of the molecule in the critical configura­

tion, including the relative motion of the dissociating fragments. Figure 

D.2 shows the translational energy distributions that were used to fit the 

experimental results, calculated from the RRKM theory for excess energies 

of 5, 8, and 12 CO. laser photons. In Appendix E further examples can be 

found. The good fit indicates that the RRKM theory describes MPD quite 

well. 

Based on the fit to the experimental results of the translational 

energy distribution calculated from RRKM theory, we conclude that the MPD 
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results on halogenated methanes show (see Table 2.1) that most of the mo­

lecules dissociate with excess energies of 1-3 CO. laser photons, as com­

pared to around 8 photons for SF,. On the other hand, C.F.Cfc dissociates 

with around 13 photons of excess energy. HDW can the average excess en­

ergy depend so much on molecular structure? 

To understand the above result we need to consider the excitation 

scheme presented in Fig. 2.11. The laser excites the molecule up a lad­

der of energy levels. As the excitation increases above the dissociation 

level, the dissociation rate increases rapidly, and dissociation soon 

starts to compete with the upexcitation. The average level of excitation 

from which most of the molecules will dissociate is then determined by a 

balance between upexcitation and dissociation. 

The picture above is the idea behind a simple phenomenological model 

12.17,18/ that has been quite successful in describing the experimental 

results on MPD of SF,. The model can be written as a rate equation 

I(t) I m I m-1 —-— la ,n . + — a n ,, -i—n— a , ha I m-1 n-1 N . m m+1 \ N m-1 j, m-1 \ m 

dn m 

~T? = V w la ,n . + „ a n ., -I " a , + o l N l - k n 2.1 dt ha | m-1 n-1 N n m m+1 \ N m-1 if m m m 

* where n is the normalized population in level m (with energy E = mhv), 

I(t) is the laser intensity, a is the cross section for absorption from 
m 

level m to level m + 1, N is the density of states at level m and k is 
m * m 

the RRKM rate constant for dissociation from level m (see Eqs. D.4-5) 

/
mhv-E ° t dE N (mhv - E - E ) 2.2 

t o t 

However, just by using the simple qualitative picture of competition 
between upexcitation and dissociation (which is the essential content of 
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Eq. 2.1), we can already draw a number of important conclusions. 

1) If we look at the expression for the rate constant k (Eq. 2.2), 
m 

how it depends on the molecular density of states N , we see that in a 
m 

heavier, more complex molecule that has more degrees of freedom and more 

low frequency vibrations, (e.g., SF, or C„F,.C£.), the dissociation rate 

constant should increase more slowly with increase in energy. This is 

quite dramatically displayed in Fig. D.l, where the dissociation rate 

constants for SF and CF,I are compared. Consequently, the heavier mole-

cules tend to reach higher levels of excitation before they dissociate. 

This explains why the C„F,.C)l molecule has a higher excess energy than SFfi. 

which in turn has more excess energy than the halogenated methanes. 

2) If the laser pulse is very short, none of the molecules dissoci­

ate before the laser pulse is over. Then the population distribution and 

the level of excitation from which dissociation occurs is completely de­

termined by the total pulse energy fluence. (This follows directly from 

the form of Eq. 2.1.) However, If the laser pulse is sufficiently long, 

the excitation level reached is limited by the dissociation, and at this 

level the upexcitation rate and the dissociation rates are about equal. 

Thus the level of excitation in this case should be higher with higher 

intensity, or at laser frequencies where the transition rates are higher. 

When the dissociation yield is near saturation, the time it takes 

for a molecule to b>; pumped up above the dissociation energy is about 

equal to the pulse duration. The time it takes to make a transition above 

the dissociation energy is a reasonable fraction of this time (say 1/10-

1/50, since it takes some 10-50 transitions to get above the dissociation 

energy). Thus, in the case of dissociation rate limited excitation near 

saturation, the lifetime corresponding to the average level of excitation, 
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being about equal to the time it takes to make a transition, is of the or­

der of 1/10 of the laser pulse duration. Our molecular beam experiments 

were done with a laser pulse of about 60 ns FWHM. From Table 2.1 we see 

that the dissociation lifetimes corresponding to the level of excitation 

calculated from the RRKM theory to fit the observed translational energy 

distributions are indeed in the 1-100 ns range (mostly around 10 ns). 

3) Because the density of states N (Eq. 2.2) is a rapidly increas-
* 

ing function of energy E = mhv, the RRKM dissociation rate constant k 

should increase more rapidly with excess energy if the dissociation ener­

gy is lowered. CF_I has a dissociation energy slightly more than half of 

that of SF,, and this accounts in part for the difference in their disso­

ciation rate constants shown in Fig. D.l. An even clearer example is 

N_F,, which has a dissociation energy of only about half that of CF,I. 

Even though it has one atom more than CF I, and thus a higher density of 
* 

states at a given excitation energy E = mhv, its dissociation rate grows 

so rapidly with excess energy that dissociation already dominates over up-

excitation at a level one C0„ laser photon above the dissociation energy. 

This is shown quite clearly b} the translational energy distribution of 

NF» fragments in Fig. 2.12, as there are no fragments with more than one 

photon or 3 kcal/mole of translational energy. 

4) Since only a small fraction of the excess energy is released as 

translational energy (see Appendix D), most of the excess energy remains 

as internal energy in the fragments. For heavy, complex molecules which 

reach high levels of excitation before dissociating, the fragments emerg­

ing from dissociation are already excited to their quasi-continuum and 

can readily absorb more energy from the laser field to go through another 

MPD process. This process of secondary dissociation is of course more 
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likely to occur if the fragments have a strong absorption band coinciding 

with the laser frequency. In our experiments, we have observed secondary 

dissociation in SF, and CFCS.., with the fragments SF C and CFCS.- dissocia-o J J £ 

ting further to form SF, and CFCS., respectively. The various products 

were identified through their different electron impact ionization spec­

tra in the mass spectrometer. The laser frequency used was not in near 

resonance with any known strong IR absorption lines of CFCS.. or SF,., so 

the observed secondary dissociation must result from excitation of SF 

and CFCS.. already in the quasi ontimium. Of course, for this to make 

sense, the primary dissociation must take place before the laser pulse is 

over. This is certainly the case — the translational energy distribu­

tions of SF. and CFCS.. indicate that they are produced from parent mole­

cules with lifetimes shorter than 10 ns, compared to the laser pulse dura­

tion of more than 60 ns. 

In MPD of CF C£, CF Br, and CF I, the CF fragment produced has lit­

tle internal energy (1-2 CO. laser photons) , but CF in the ground state 

is known to absorb 12.251 close to the laser frequency used. Although 

the uolecular beam experiments were not sensitive enough to detect disso­

ciation of CF , in gas cell experiments on the same three molecules /2.26/ 

CF radicals and F atoms have been observed, indicating that a secondary 

dissociation of CF may have taken place. 

Many of the products observed by the extremely sensitive laser in­

duced fluorescence detection method are probably also produced from se­

quential dissociations of intermediate products. For example, C., CN, 

and CH have been observed /2.14-16,22/ in the dissociation of molecules 

with six or more atoms. Unfortunately, the laser induced fluorescence 

detection methods is not able to reveal anything about the intermediate 
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steps leading to these small final products. It seems that the secondary 

or sequential dissociation is an unavoidable effect in the MPD at high 

energy fluence of all but the lightest, simplest molecules. This is a 

factor which often complicates the studies of the MPD process, regardless 

of the method used for detection and analysis of the dissociation pro­

ducts. 

5) For the heavier, more complex molecules, competing dissociation 

channels may also open up, provided their dissociation energies are not 

too far above that of the lowest energy channel. If the laser intensity 

is sufficiently high, the molecule can be excited well above the dissocia­

tion energies of several channels before dissociation dominates over up-

excitation. Then several dissociation channels may start to compete with 

the lowest one. We should stress here that this effect is actually ex­

pected from the statistical theory of unimolecular dissociation. A sys­

tem in which such an effect has been observed is C„F,-C)l 12.21/. The en­

ergetics of the various dissociation pathways ar^ not well known, except 

for the lowest one, which is the CJi. atom elimination, with a dissociation 

energy of about 83 kcal/mole /2.28/. The next lowest channel is probably 

C-C bond rupture, with a dissociation energy of around 100 kcal/mole, 

judging from the C-C bond strength in similar ethane derivatives /2.29/. 

The RRKM calculations 12.211 indicate that the rate constant for the C-C 

bond rupture grows more rapidly with excess energy than that for the Ci 

atom elimination. As already pointed out (Table 2.1), the average level 

of excitation in C_F.C£ pumped by a 1-J TEA laser can be around 13 C0_ 

laser photons (40 kcal/mole) above the C-CX. bond energy, well above the 

dissociation energy of the C-C bond rupture. Thus the C-C dissociation 

rate can be comparable to the C-CJ. dissociation rate. In the experi-
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ments, a competition between the two channels has actually been observed. 

If we look at low laser intensities, the CC atom elimination dominates 

over the C-C bond rupture. As the laser intensity is increased, thus 

pumping the molecules to higher levels of excitation, the C2. elimination 

channel very rapidly saturates, whereas the C-C bond rupture becomes in­

creasingly important. This effect is not peculiar to MPD experiments. 

In pyrolysis of ethane compounds it has long been observed /2.30/ that at 

low temperature, elimination of atoms or diatomics dominate the dissocia­

tion, but as the temperature is increased, C-C bond rupture becomes pro­

gressively more important, making the analysis of such reactions exceed­

ingly complicated. 

Now, many of the results discussed under 1) - 5) above have also 

been obtained in an explicit model calculation on SF, /2.17.18/, using a 
o 

simple set of rate equations (Eq. 2.1 with minor modifications). By fit­

ting the free parameters in the model to experimental results on energy 

absorbed as a function of input laser energy fluence and laser pulse dur­

ation, the dissociation yield as a function of energy fluences, the onset 

of secondary dissociation, the level of excitation from which dissocia­

tion occurs, and thus, the translational energy distribution in the frag­

ments, all can be calculated. All the results agree with the experiments, 

ir.- ' illustrate quite clearly in a more quantitative way what we have dis­

eased above in qualitative terms. 

How will these results be modified if we cannot neglect molecular 

collisions? Depending on the collision partners, we can have a number of 

complications: 

1) Collisions between excited molecules will lead to a thermaliza-

tion of the energy deposited by the laser in the molecules via 



intermolecular vibrational energy transfer. Thus any differences 

between thermal heating and multlphoton excitation will be washed 

out. The isotopic selectivity of the process will decrease, due 

to energy transfer between different isotopic species. Rotation­

al and vibrational intermolecular energy transfer during the la­

ser pulse can increase the number of molecules interacting reson­

antly with the laser field, thus reducing the bottleneck for ex­

citation out of the discrete levels into the quasi-continuum. 

Collisionally induced dissociation can also occur, even in 

the absence of multiphoton dissociation. 

2) Collisions between excited molecules and cold molecules will 

lead to a deactivation of the excited molecules. The cold colli­

sion partners may be buffer gasses, if present, or reaction pro­

ducts from the dissociation. Their presence will increase the 

energy absorption necessary for a given dissociation yield, and 

lower the level of excitation. Thus, in cases with competing 

dissociation channels, the lowest energy channel will be favored. 

Since the excited products from the dissociation can also be de­

activated via collisions, secondary dissociation of the products 

will be inhibited. 

3) Collisions between dissociation products, and between products 

and other atoms or molecules present usually lead to chemical 

reactions. The products from MPD are mostly highly reactive 

free radicals. Thus recombination or disproportionation of the 

dissociation products may occur, and complicated chemical reac­

tion chains may follow the primary dissociation. Analysis of 

the process is complicated, and dependent upon detailed informa-
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tion on the chemical kinetics of the reactions involved. Little 

information about the dynamics of the primary dissociation can 

be deduced from the final products. 

In the preceding discussion on the translational energy distribution 

of fragments, we have actually only considered the simple cases where the 

observed distributions are in agreement with prediction of the RRKM 

theory. This is usually true for simple bond rupture reactions (see Ap­

pendix E). There is negligible interaction between the fragments once 

the critical configuration is passed, so that the energy distribution in 

the fragments remains the same as calculated in the RRKM theory for the 

critical configuration. However, in cases where such interaction cannot 

be neglected, the simple RRKM theory we have used cannot take into account 

this interaction, and translational energy distributions very different 

from the ones we have discussed so far may result. For a number of mole­

cular elimination reactions, such as three-center elimination reactions 

from halogenated methanes, and four-center elimination from halogenated 

ethanes and ethenes, there is a considereable potential energy barrier 

between reactant and products. This potential energy will have to be dis­

tributed between the various vibrational, rotational and translational de­

grees of freedom in the fragments as they move away from the critical con­

figuration on the top of the barrier. The RRKM theory cannot predict any­

thing about how the energy will be distributed. It will depend on the 

nature of the potential energy surface for the fragments. 

As an example, we will discuss the dissociation of CHF„C£ into CF + 

HC£, which has been studied in a molecular beam (see Appendix F) as well 

as with laser induced fluorescence detection of the CF_ fragment /2.12/. 

Thus, translational, as well as rotational and vibrational energy distri-



butions in the CF„ fragment have been measured. The conclusions that can 

be drawn from the results on CHF-CX. are representative for molecules with 

this kind of dissociation dynamics. 

The velocity distribution of HCi fragments at 10° from the CHF-Ci 

beam is shown, in Fig. 2.10, compared to the distribution calculated from 

the translational energy distribution in Fig. 2.11. We see that the pro­

ducts are quite a bit faster than the CHF.CJl beam, due to the consider­

able amount of energy gained from the dissociation. Most CF- fragments 

have a translational energy of more than 2 kcal/mole while only a small 

percentage have less than 1 kcal/mole. Stephenson and King /2.12/ found 

the population distribution in the vibrational modes of CF. to be well re­

presented by a thermal distribution of temperature 1160 K. The average 

rotational energy was also estimated in the experiments, although its 

value was too high for a detailed measurement of the distribution to be 

made. However, assuming a thermal distribution, a rotational temperature 

of about twice the vibrational temperature was obtained. The high trans­

lational energy content in the fragments means that there is a strong re­

pulsive interaction between the departing fragments after they pass 

through the critical configuration. This repulsive interaction is quite 

asymmetric, giving the fragments considerable rotational energy. 

However, we want to emphasize that although RRKM theory alone may be 

inadequate for predicting the final energy partitioning in the fragments, 

it still predicts the dissociation rates. If we add up all the energies 

in thi, fragments in the HCA elimination from CHF-CA, using the results of 

King and Stephenson, we get to a level of excitation corresponding to an 

RRKM lifetime around 1 ns. This is what we should expect from the sta­

tistical theory of MPD as in the cases of the other halomethanes. In 
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fact, there exists no evidence in all the cases we have studied that the 

general statistical picture of the multiphoton excitation and dissocia­

tion process does not apply. 

2.6 Concluding Remarks 

There are still a number of assumptions and theoretical predictions 

about the dissociation that need to be checked experimentally. The par­

tition of energy between all degrees of freedom in at least one of the 

two fragments from the dissociation should be measured in a case where 

the RRKM theory predicts the distributions. The dissociation lifetimes 

should be measured directly and independently, together with their depen­

dence on laser intensity, under well characterized conditions. The pro­

cesses of secondary dissociation and competing dissociation channels need 

better characterization. The methods that so far have revealed the most 

about the dissociation process are the molecular beam method and the la­

ser induced fluorescence method. A natural extension would be to use la­

ser induced fluorescence as a detection method in a molecular beam exper­

iment. Studies of this kind are already being prepared in several labor­

atories. The work is hampered by the low particle densities involved in 

molecular beam experiments, insufficient knowledge of the spectroscopy of 

many of the radicals produced in the dissociation, and lack of tunable 

lasers in the UV frequency ranges of interest for many compounds. 

Although there are some detailed questions which still need to be 

further investigated, the general physical picture constructed from vari­

ous experimental and theoretical investigations is quite adequate for un­

derstanding and predicting many important features of the MPD process un­

der various conditions. But since MPD is a rather complex process, it is 
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not possible to draw reliable conclusions unless all the experimental re­

sults are carefully analyzed. The dependence of the dissociation yield 

and the dynamics of dissociation on both the laser intensity and energy 

fluence is an important example. 

For a given chemical species, the laser intensity required for a cer­

tain fraction of the molecules to overcome the discrete state bottleneck 

not only depends on the frequency, but also on the vibrational and rota­

tional temperature of the molecules. Once the molecules are excited to 

the quasi-continuum, the energy fluence, not the power of the laser, was 

shown to be responsible for driving the molecules through the quasi-con­

tinuum and beyond the dissociation level /2.3,10/. But in most of the 

gas cell experiments, the dissociation yield of the molecules in the qua­

si-continuum is not simply related to the energy fluence alone. For mo­

lecules lying above the dissociation level, there is a complicated compe­

tition between unimolecular dissociation, co^lisional deactivation and la­

ser upexcitation. Consequently, for a gi/en gas pressure and a given la­

ser energy fluence, a higher laser intensity should result in a higher 

level of excitation and an increased rate of dissociation. This in turn 

reduces the effect of collisional deactivation and thus increases the 

dissociation yield. In general, for smaller molecules, the laser inten­

sity influences the yield by limiting the fraction of the molecules which 

can be excited to the quasi-continuum, but since the lifetime of small 

molecules becomes very short after only a couple of excess photons are 

deposited beyond the dissociation threshold, collisional deactivation 

could be overcome with a rather moderate intensity at low pressure. On 

the other hand, for larger molecules with many vibrational degrees of 

freedom, if an appropriate frequency is chosen, a large fraction of the 
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molecules will reach the quasi-continuum at a very moderate laser inten­

sity. But since many more excess photons are required before the dissoci­

ation lifetime becomes comparable to the mean collision time, the laser 

intensity is expected to strongly influence both the dissociation yield 

and the ratio of competitive dissociation channels by controlling the le­

vel of excitation beyond the dissociation energy. 

In most of the experiments carried out with a CO- TEA laser, one of­

ten adjusts the laser intensity or energy fluence by either adjusting the 

focusing condition or attenuating the laser output. Consequently both 

the laser intensity and energy fluence are varied simultaneously. If the 

energy fluence requirement for dissociation is met, the intensity of the 

laser is already high enough to pump some of the molecules to the quasi-

continuum and dissociation is observed. However, it is important to keep 

in mind that both the intensity and energy fluence of the laser can se­

parately affect the experimental results. Once the complicated depen­

dence of the excitation and dissociation dynamics on the initial distri­

bution of molecules over vibrational and rotational states, and on the 

frequency, intensity, and energy fluence of the laser is properly taken 

into account, we are indeed in a very good position to understand and 

predict the general behavior of MPD of the systems of interest. 
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Table 2.1. Dynamics of multiphoton dissociation. 

Potential Average Peak of Estimated 
energy translational translational average energy 

Endoersicitv barrier energy energy distribution available to products Estimated 
Molecule (kcal/mole) (kcal/mole) (kcal/mole) (kcal/mole) (kcal/mole) lifetime (ns) 

SF5 * S F 5 • F 

1—«- SF, + F 4 

93 

51 

0 

0 

3 

1 

0 

0 

25 

7 

20 

20 

CF3CI -• CF3 * CI 86 0 1.1 0 4 5 

CF3Br •* CF3 + Br 71 0 1.2 0 5 2 

CF3I •+ CF3 • I 53 0 1.1 0 4 1 

CF 2Clj * CF 2C1 • CI 82 0 2 0 10 5 

CF2Br2 ~*~ CF2Br + Br 61 0 1.6 0 7 5 

CFCI3 * CFC1 • CI 75 0 1.2 0 5 12 

1—•- CFC1 • CI ~70 - 0 - 0 - -
C2F5CI ->• C2F5 • CI 83 0 4 0 35 60 
C2F5CI •» CF3 • CF2CI >97 0 3.3 0.4 21 200 
N2F4 * 2NF 2 22 0 0.4 0 2 1 
(MH3) 2 * 2SH 3 It 0 0.3 0 1.5 -
CHC1CF 2 * CjHFj • CI -80 0 i 0 - -
CHCICF 2 -• C F • HCl 58 >0 1 0 - -
CHF 2C1 •• HCl • CF 2 50 6 a 5 - -
CH3CCI3 ->• HCl • CH 2CC1 2 12 42 8 > - -
CH3CF2CI -<• HCl + CH 2CFC1 14 55 12 6 - -
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Figure Captions 

Fig. 2.1 Schematic of the apparatus used for the measuremert of angular 

and velocity distributions of fragments from 'oultiphoton disso­

ciation of polyatomic molecules. 

Fxg. 2.2 Experimental arrangement. The "SF, beam source" is the molecu­

lar beam source. The pulse generator triggers the laser (which 

partly dissociates a section of the molecular beam) and the mul­

tichannel scaler, opens a gate to scaler 1 a few hundred micro­

seconds later (to count dissociation product signal and back­

ground signal) and a gate to scaler 2 a few milliseconds later 

(to count background signal only). 

Fig. 2.3 Dissociation yields for the products from MPD of C-F.CS. 

C 2F «. •* C„F 5 + CI (C?/t detected) 

C2V5Ci •* CF 3 + CF2CH (CF 2«. + detected) 

Fig. 2.4 Angular distribution of SF fragments from MPD of SF, (see also 
-> b 

Fig. D.2) 

experimental distribution 

- - - RRKM theory, 5 kcal/mole excess energy 

- • - RRKM theory, 8 kcal/mole excess energy 

RRKM theory, 12 kcal/mole excess energy 

Fig. 2.5 Speed distribution of SF,. fragments from MPD of SF, at 5°, 10°, 

and 15° from the SF, beam. Symbols as in Fig. 2.4. Bottom: 
SF, beam speed distribution. o 

Fig. 2.6 Angular distribution of CF fragment from MPD of CF.I. 

•> experimental distribution 

- - - RRKM theory, 3 kcal/mole excess energy 

RRKM theory, 4.5 kcal/mole excess energy 
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• • • RRKM theory, 6 kcal/mole excess energy 

7 Angular distribution of I atoms irom MPD of CF I. Symbols as 

in Fig. 2.6. 

8 Speed distribution of I atoms from MPD of CF01 at 10°, 15°, 

20°, and 25° from the CF I beam. Symbols as in Fig. 2.6. 

Bottom: Speed distribution of CF 1 beam. 

9 Speed d istribul ion of HCJ. fragments frori the MPD of CHF C/ 

° experiment 

- - - calculated from Fig. 2.10 

10 Center-of-mass translational energy distribution in the frag­

ments from MPD of CHF Ci.. 

11 Schematic representation of the excitation-dissociation pro­

cess around the dissociation energy. 

12 Center-of-mass translational energy of a pair of NF fragments 

from the MPD of N„F, . 
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Figure 2.1 
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Figure 2.2 
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Figure 2.4 
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Figure 2.6 
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Figure 2.7 
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Figure 2 . 8 
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Figure 2.9 
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Figure 2.10 
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/ lendix A: SCHRODINC AND LIOUVTLLE EQUATIONS WITH OSCILLATING 

EXTEK..AL i-1 ELDS 

Tii is appendix d<'als with the mathemath ics of solving the ini*":al 

value problem associated with the equation 

l<\ - ? . 'lc, ( t ) , A - l a 

where L, (t) oscillates in time. The functions ; , (t) describe a k». k 
system of interest, and the oscillating nart ol L, (t) is due to an 

k>' 

external field. The physics of the solution to this problem is d i s ­

cussed in detail in chapter 1, and in this appendix, the only physics 

lies in justifying the various approximat -ns chosen. 

A.1. Basic Equations 

Consider the equation 

l \ = h V C ) pf. = \(X\9. + L^xP(iu,t))p^ A.lb 

where L, and L are time independent, and L is a matrix with ele­

ments that all are small compared to w. The generalization to 

L. „(t) =- I L™ exp(imwt) A.2 
k£ m k~ 

is straightforward, as we shall see later. 

ihe assump '-c~ of snail L compared to u is well justified in 
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the situation when Eq. A.l descibes a quantum mechanical system 

excited by an optical field of practical strength. This permits 

a series expansion of the solution P v(t) in powers of l/oi, the lowest 

order terms of which we shall make use of. 

Floquet's theorem /A.l/ states that there exists solutions of 

Eq. A.l of the form 

p, (t) = exp(-ifl t)£ p, exp(-inut) A.3 
k n K;n 

with values of Re(fi ) in the range between 0 and u. Provided the 

various p (0), a = 1, 2, 3, ... span the space of p, 's, an arbitrary 

solution of Eq. A.l can be constructed as a linear combination of 

p, (t)'s. Let us assume this to be true for a^l L of interest to us. 

This is like assuming that the eigenvectors of any hamiltonian of in­

terest in physics span the space of physical state vectors. 

Inserting Eq. A.3 in Eq. A.l, we get a set of eigenvalue equations 

for Qa: 

«X;n - V ( Lk* - »« MK;n + i^;,-l> A'4 

If p has N components, this system has, using the completeness assump­

tion mentioned above, N linearly independent solutions. In the lite­

rature, hfl is usually called the quasienergy of the system /A.2/, 

when Eq. A.l represents the corresponding Schrodinger equation. 

We will limit our treatment to systems excited close to resonance 

by a monochromatic field - i.e., we consider only one photon transi­

tions, or resonantly enhanced (in every step) multiphoton transitions. 
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Mathematically, this amounts to the following: For each component 

p that we include in the treatment, we can find an integer n such k k 
' , satisfies the relation |L,, ..,~ that the matrix element L, satisfies the relation jL,„,, - n,_(u| << to. 

We note that in this appendix, L is just mathematical operator and 

p the eigenvector. Thus, L may represent i.he hamiltonian and p the 

wavefunction. In this case L, , is the eige rrequency to, of level k. 

If the ground state is chosen to have zero energy, n, will take values 

0, 1, 2, ... up to some maximum value n . We can plso let L repre-r max 
sent the liouvillian operator of a system. Th n L,, is the oscillation 

frequency of the k'th component of the density Jtrix (in the absence 

of damping and external fields), and n will take values between -n 

and n . In particular, if p, is a diagonal component of the density max K 

matrix, we have n = 0, since the diagonal components of the density 

matrix do not oscillate. With these assumptions we can apply standard 

Rayleigh-Schrodinger time independent perturbation theory to Eq. A.4. 

The first order solution is obtained by including all terms p 
k ; n k 

for which |L , - n m| << u. All other p v - , n ^ IL , are negligible, 

because by assumption L., - nu = (n - n)u, far removed from L. , - n, co 

when n ^ n . This neglect of all but one Fourier component p, _ is k K jn 
the so-called rotating wave approximation, widely used in quantum 

optics. Being consistent, we can also in this approximation neglect 

all p, that are not excited on resonance, i.e., all p, for which 

(L - nio) is roughly of the same order of magnitude as u, regardless 

of choice of n. We shall return later to the problem of estimating 

what errors we make in applying this approximation. At this point 

let us just say that it is essential for the approximation to be 
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valid that all the L, and L , k 4 &, are small compared to oi (or, 

to be more exact, compared to the (L - noO for which p 's are 

neglected). In the applications of Eq. A.4 in chapter 1, the L, , 

k 5* I, are either zero or equal to damping rates in the system, and 

the L, are the field-dipole interaction matrix elements. All of 

these are usually very small compared to the frequency of the field 

exciting the system. Furthermore, in the applications in chapter 1 

the form of L, „ is such that L' = 0 whenever n, ̂  n. . This allows kl k£ k I 
Eq. A.4 in the rotating wave approximation to take the form 

i 2 a p k ; n k

 = Vk;n k

 + hfr L k* p *;n^ k*5* 

where 

A k = L kk " V A - 5 b 

and 

L k J l i f n l = n k 

L k * - • 
L L l f ni - \ 
0 otherwize 

A.5c 

We are now in the position to make the generalization to L, (t) 
of the form in Eq. A.2. From the derivation of Eq. A.5 the only 
modification necessary is to redefine L/.: 
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f Lk£ i f \ = nS, " n 

L k * = A - 5 d 

0 otherwize 

Combining Eqs. A.5 and A.3 we then get that the expression for p (t) 

takes the simple form 

p (t) = p exp[-i(ft + n,co)t] A.6a 

where we have introduced the short form notation 

pk E Pk;n, A - 6 b 

If L' is hermitean, the eigenvalues fi are all real, and the 

correspcr'-'ng eigenvectors p are orthogonal. If L is not hermitean. 
a a 

the eigenvalues U may be real or complex, and the eigenvectors p, 
are not necessarily orthogonal. 

We mentioned before that we shall assume the set of p (0) 

(Eq. A.3), a = 1, 2, 3, ... to be complete in the vector space of 

p 's. Looking at Eq. A.6 this means that the p form a complete set. 

Then (see, e.g., Ref. A.4 for details) there exists a unique set of 

vectors r, satisfying 

a b I, r
t P k

 = 5 , for all a and b A.7a 

£ rfcp^ = 6 for all k and I A.7b 
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The r are related to the eigenvalue Eq. A.5a, since they also satisfy 

\Q* - 4\+ h* * & k

 A-7c 

If L' is hermitean, r = p . 

The solution of the initial value problem associated with Eq. 

A.J can thus be written 

p (t) = I bapaexp[-i(fia + n, io)t] A.8 

where 

b a - E k r ap k(0) A.9 

The time development operator U defined by 

P k(t) = Zz Uk(t(t,t')p^(t') A.10a 

can be veri fied by substitution to be 

V̂'* = 'abm OkWi^I- 1^ 1" 1 - «bt'> - T ' " ' ) ! A-10b 
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A.2. Perturbation theory. 

Just like in the standard treatment of the time independent 

Schrodxnger equation, where one is interested in what etfect a small 

change in the hamiltonian has on the energy eigenvalues and eigen­

vectors of the system, we are interested in what effect a small change 

in the operator L, (t) in Eq. A.l may have on the solution n, (t) . kj, k 
Consider the equation 

lK = h ( L w ( t ) + * k * ( t ) ) A - u 

where the solutions of the equation ip, = £ L. p are now assumed to 

be known, given by Eq. A.6, and where 8, is "small" compared to 

L . Since the p are assumed to form a complete set of vectors, 

we may expand p (t): 

P,(t) = £ a aa(t)pj*exp(-in uit) A.12 

Inserted in Eq. A.11 this yields, with the help of Eq. A.7: 

ia a = B a a a + E. 8, a b
a
b A. 13a 

b 

where 

* a b = E u r k £ k i p f c e x p [ i ( n k " n a > a ) t ] A , 1 3 b 
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From Eq. A. 13 we see that the operator JL of Eq. A. 11 can be con-
ab sidered "small" when the Ji, are small compared to the spacings 

between the various Q . 

For transparency it is useful to write Eq. A.13 in integral form: 

a a(t) = a 3(t ) - i/tdt'exp[-if2a(t-t')]j:uS,ab(t')ab(t') A.13c o t b o 

From this we see that only the terms I a that oscillate close to 

the frequency U will contribute sign:cicantly to the integral for 
ab t >> t . Thus of all the terras in I (see Eq. A.13b), only a few o 

need to be taken into account. 

Let us consider four different forms of the perturbation I (t). 

In chapter 1 the relevance of the various forms to physical problems 

is demonstrated. 

A.2a. Time independent perturbation. 

This case is relevant, e.g., when our system is perturbed by 

weak time independent damping terms, weak external D.C. fields, etc. 

With a time independent perturbation, the terms in Eq. A.13b that 

have IL ^ n all oscillate at nonzero integer multiples of the exter­

nal field frequency. Since the rotating wave approximation we use 

presupposes |fi | << oi for all a, all terms in H (Eq. A.13b) with 

n 7* n can be disregarded, to give 

C - Ki r !w! A-14 
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where the sum extends only over k and S, such that n = n . Further-
ab more, since the £ are small compared to the spacings between the 

various R , we can simplify even more. If all the fl are nondegene-
ab rate, in the lowest order approximation the effect of I with a ^ b o 

can be neglected in comparison with the effect of S. in Eq. A. 13a, 

which then takes the form 

ia a = (a* + J,aa)aa A. 15a 
o 

a a(t) <r exp[-i(«a + J>aa)t] A.15b 

a I.e., the only effect the perturbation SL, has on p, for n.mdegenerate 
3 3 3 33 

n is to replace fi in Eq. A.6 by Q + SL 

A.2b. Oscillatory perturbation at the same frequency m as L (t), 

This case corresponds, e.g., to the system being excited by an 

external field of a definite polarization, and being perturbed by a 

small admixture of the opposite polarization. This case proceeds 
ab exactly like case A. 2a, except that the expression for J, changes. 

o o*̂  ab 

Let SL, = 8, exp(iojt) + I , exp(-iwt) . Now, the only terms of S. 

(Eq. A.13b) that do not oscillate very rapidly are those with 

r^ - nt = ±1. Thus A a b = l ^ r ^ p j + 2 ^ r(|i°*pj, where E* means 

.sum over k and I si ch that n, - n„ ± 1 = 0. 
\ 
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A.2c. Response of a damped system to a weak oscillatory perturbation. 

This is relevant, e.g., for estimating the response of the system 

(absorption, dispersion) to a weak probing field at frequency u)' (not 

necessarily equal to the frequency co of the strong external field 

driving the system). Without loss of generality, since we are 

interested in the steady state response, we write I as 

\ a ( t ) = J O e x p ( l a ) ' t ) + exp(-icd't)] A.16 

where J> = I , . As discussed in chapter 1, the typical systems 

described by Eq. A.l (l, = 0), in the presence of damping have one 

and only one stable solution 

p (t-*») = p exp(-in.ut) A.17 

c o r r e s p o n d i n g t o t h e e i g e n v a l u e P. - 0 i n Eq. A . 5 a . A l l o t h e r fi 

have n e g a t i v e imag ina ry p a r t s . The s o l u t i o n A.17 i s t h e z e r o t h o r d e r 

s o l u t i o n t o Eq. A. 1 1 . Using t h e f i r s t Born a p p r o x i m a t i o n w i t h S, ( t ) 

as t h e p e r t u r b a t i o n i n Eq. A . 1 3 c , we o b t a i n f o r a 4 0 : 

a a ( t ) = - i / d t ' E . r \ ° p ° { e x p [ - i n a t + i ( f l 3 + (n - n )m + w ' ) t ' ] + -o" Jan S, $,nrm H m 

+ e x p [ - i f l a t + i ( n a + (n - n )io - ( o ' ) t ' ] } A.18a 
J6 m 

a a ( t ) - -£„ rffc° p ° e x p [ i ( n „ - n )oit] X A.18b J-m J, £nTm ^ L I m 

X { e x p ( i u ' t ) / [ n a + (n - n )<i> + &>'] + e x p ( - i o j ' t ) / [ « a + ( n . - n )u - u']} 
iL ID JO in 
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or with Eq. A.18b inserted in Eq. A.12 

p, (t) = pexp (-intuit) 

8, 

X {exp(iw't)/[fla + (n. - n )w + OJ'] + 
- z unL« P ^ ^ P°exp[-i(n. - n + n )u>t] X a?0 In k I £m m r k £ m 

+ exp(-iu)*t)/[na + (n„ - n )w - u']> A.18c 
I m 

From this we see that there is a resonance with a halfwidth Im(fi ) 

at ID' = Re(fta) + (n. - n )u. £ in 
The case when ui' is close to a multiple (n. - n )« of the external 

x, m 
field frequency on is interesting and worth further discussion, since 

the above treatment is not valid in this case. 
We refer back to Eq. A.13. When i. oscillates at a frequency 

u' which is near an integer multiple of a), the only important terms 
ab in I (Eq.A.13b) are those for which | (n, - n )w + u'| << io. Then, 

if we define f = nw - w' , where nu is the integer multiple of ui 

closest to u', SL takes the form 

H a b = I ^ )tabexp(imft) A. 19 
m=±l m 

ab where £ is the sum of all terms in Eq. A.13b that oscillate at the 

frequency ±f. Then we see that Eqs. A.13a and A.lb h^ve the same 
form, and that in analogy with Eq. A.3 v,e may write the solutions 
of Eq. A.13a as 

a a(t) = T. a a ; nexp[-i(F + nf)t] A.20a 
P n P P 
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The correspondence between Eqs. A.l and A.3 and Eqs. A.13 and A.20a 

relies on the following identifications: 

Eq. A . 1 3 Eq. i 

k 
a P k 

k ; n 
a 

a 
a 

p k ; n 

« k 
L kk 

ak - nf L k k ' 

m 4 
f U) 

F fl* 

Thus F and a ' satisfy the eigenvalue equation (analogous to Eq. A.4) 

- a;n ,„a r, a;n , _ „ab bin—ra . n n l F a ' = (n - nf)a ' + 1, I a ' A.20b p p p bm m p 

For I = 0 the solutions are F = Q and a ' = 6 6 „. Since an m p p ap nO 
equivalent solution is F = J2 - mf, a ' = 6 6 , where m is any 

p p ap mn J 

integer, we seek the eigenvalues F of Eq. A.20b that approach fi as 
„ab r 8, tends to zero. 
m 

The trace of the density matrix is conserved. As discussed in 

chapter 1, usually the system described by Eq. A.l is such that 

Tr p = 6 .. Using Eq. A.12 we then get that the trace of the density au 
matrix is equal to a (t). Thus, using Eq. A.20a, we have 

0 = a°(t) = (d/dt){E b a°;nexp[-i(F + nf)t]} A.21 pn p p p 
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for all possible choices of b 's. This implies that for all times t 

X (F - nf)a°'nexp(inft) = 0 A.22 
n p p 

for all p. Since F only is determined modulo f, let us consider, 

for a moment, f/2 > F > -f/2. If F ± 0, Eq. A.22 implies that - p p 
a ' = 0 . Only if F = 0 can we have a ' ^ 0, and then only if 
P P P 

n = 0. As we shall se below, this only occurs if p = 0. Thus the 

result of the requirement that the trace of the density matrix is 

conserved is that 

F,, = 0 and a 0 ; n = 6 n<5 „ A.23 
U p r.O pO 

Now, let us remind ourselves of the properties of the il and 

the I : m 
(1) The separation between the various ft is large compared to the 

ab I 's, since in Eq. A. 11 jL is assumed to be a weak perturbation m k£ 
on L, „. 

(2) From the definition of I following Eq. A.19 we have I = 0 
m m 

unless m = ±1. 

(3) Typically one, and only one, fi , a = 0, is exactly zero. 

In Eq. A.20b we have one case when a ' deviates significantly 

from 6 S -•. when [f j is close to any of the tt 's. The steady state 

response for f close to a nonzero ft is already given by Eq. A.18. 
Since |fiP - ft I >> I J. I for a + p, F is close to ftP (see Eq. i i i m i p 

A.20b), and a ' is only considerably different from zero if a = p. 
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ThuH F and a ' can be obtained from Eq . A.20b by the approximation D P 
P J n of including only elements a ; 
P 

(,.- - ^ ) a
, ) ; n = -nf;i P ; n + V. >.PP a P ; m A.24 

p p p m n-m p 

We see that only when f L. H O small as Lo be comparable to '). are 
n 

the a ' ' ,s significantly different from zero for n # 0. P 
,,. r • a : n , , , , p ; n , , 
ilsinn die lact that a is small compared to a when a f p, 

we get in this case, using Eq. A.20b 

aa;n = ,. pap a p ; m / ( F _ ra + 

p m n-m p p 
= l f a p a P ; m/(ft P - fla + ,,f) A.25 

m n-m p 

Thus we get, combining Eqs. A.12, A.20a, A.23, and A.25 

P,(t) = 1 a (t)p kexp(-in, i»t) = 

= p,axp(-in uit) + 

+ T. ,_ b a P ; np, Pexpi-i(F + n, u> + nf)t] + Pf0,n p p k p k 
, „ap p:m a u + I , , b 8, ' a K ' p, X 

p?a,af0,m,n p n-m p k 
X exp[-i(F + n io + nf)t]/(« P - fia + nf) A.26 P K 

The constants b are determined from initial value conditions. If P 
a ' is chosen to be unity, b = 1. Eq. A.26 should be compared to Eq. 

A. 18c. Taking the limit Ifl » k p p | (so that a P' n - 6 „) and t •* » 
1 1 n ' p nO 

(so that the terms with p ^ 0 will decay away, because Im(F ) = 

Im(flP) < 0 if p ^ 0), we see that Eq. A.26 reduces to Eq. A.18c. 
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However, Eq. A.26 in addition describes the transient response (p ̂  0) 

and the modifications necessary to introduce in Eq. A.18c when the 

condition Ifl >> Il I is not met. ii i „ 

A.2d. Errors introduced by the rotating wave approximation. 

In this section we will try to establish what criteria to use, 

to test wether Eq. A.5a is a reasonable approximation in the descrip­

tion of a given system. Consider the following case: Suppose we 

have chosen to neglect a term p N,, in Eq. A.5. This term corresponds 
N+l in zeroth order to an eigenvalue Q - A (where, following the 

notation of Eq. A.5, A N + 1 has the form A N + 1 = L ° + 1 ) N + 1 " n
N + l u ) 

N+l and an eigenvector p = 6, „ .. Calling the perturbed eigenvalues 

of Eq. A. 5a 0,' , and expanding in terms of p, the corresponding 
,a ab b 

eigenvectors p = E a p, , we get 

^'V - <-i \i»i+ \,n+A=i w ; a + L k , N + i p N : i A - 2 7 a 

or by using Eq. A. 5a and E, r
k p , = 6 , 

„,a ab „b ab c ac b a,N+l „_, n a = Q a + 6. „,,! L a + L a A.27b b,N+l c p r 

where 

Lp3 " <-l K+lA 
a = N+l a , 
r h%=\ % 4 ,N+l A.27d 
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Being neglected in the unperturbed p , |A | > |fl | for all a. Also, 

fi'a *= Sla, and a a C * 6__, in Eq. A.27. Then for a =£ b. we get from Eq. 

A.27b 

a a b = ( 6 b , N + l L p a + fia,N+lLr>/("a-fib)- A ' 2 8 

If >'e reinsert this in Eq. A.27b we get (using a ** 1) for a ̂ N + 1 

fi,a - n a = LaLa/(fia - A L 1 ) A.29a 
r p N+l 

and for a = N + 1 

n,N+l . TN+1 , ,N+1 , _ ,cTc.,. _c fi - A„,, = L + L + E j.,.,L L /(A„,, - Si ) . A. 29b N+l p r c^N+l p r N+l 

This can straightforwardly be generalized to include the effect of ne­

glecting not one, but several terras p ., P w,- ••• in Eq. A.5. The qual­

itative results are still the same. To the extent that A.,,., A 1 T 1„ ... 
N+i N+i 

are of order of magnitude like u and not J2 , the corrections to p, are 

terms of order L, ./ID (see Eq. A.28) whereas the ft have corrections of 

order jIL. ( /u (see Eq. A.29). Strictly speaking, this holds only if 

the various p, are orthonormal or close to being orthonormal. If two 

p, , p, and p. are nearly parallel and normalized, Eijpij = 1 = £, |p.| , 

then, since Z,r,p, = 0 and E.r.p. = 1> the norm S. Jr. | of r, is much 

greater than one. This implies that the corresponding L (see Eq. A.27d) 

may be much greater than the various L* . Thus after Eq. A.5 (with 

terms p neglected on the basis that L ./A and L. /A are small) has 

been solved, the various r. corresponding to normalized p a must be 
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checked to make sure they do not have a norm too different from oue, be­

fore the Solution C — tl be trusted- AISO ?in/,p t-he> cr^lrjt-^nnc fr*r 1-ha ei­

genvalues £2 have correction of the order of T * |L I /u, the time T 
r,p' 

defines a time duration within which the corresponding p. (t) (̂ ee Eq. 

A.6) can be trusted. 
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APPENDIX B: Two-level System 

The two-level system with a lower state 1 of zero energy and an up­

per state 2 of energy h£ is the simplest nontrivial q.m. system. Its 

interaction with a strong e.m. field has been treated extensively /B.l/. 

We review here a few results of the problem relevant to the formalism of 

Chapter 1, as a simple illustracion. The Hamiltonain of the system in a 

field E = E cos ut can be written as o 

B.l 

where V = yE /2h, and y is the dipole matrix element for transitions 

from 1 to 2. In the rotating wave approximation when S * u , this re­

duces to the eigenvalue problem (cf. Eq. A.5) 

(*iW° v 1 B.2 

w i t h A = £ - a),which has s o l u t i o n s 

ST = %[A ± (A 2 + 4 V 2 ) 1 5 ] B.3a 

o r si = V tanij) Q = - V cot<f 

B.3b 

2 2 h where tan<f> = lA + (A + 4V )^]/2V. Thus *. (t) will have components os-
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d i l a t i n g at ft and ft , whereas * , ( t ) w i l l have components o s c i l l a t i n g 
+ T J i i < at ! i ' + ni and 0, + 

of leve ls 1 and 2. The s p l i t t i n g i s 

Lu d» iv oLarn. s p l i t t i n g 

+ 2 2 h 
Q - ft = (A + 4V ) • 

B.4 

Thus the fluorescence spectrum from the system due to the o s c i l l a t i n g 

po la r i za t ion <<I>|u|<i>> w i l l have components a t the combination frequencies 

w and u + ft 
ac 

The widths of the .omponents in the spectrum can be obtained from 

the density matrix formulation. For weak damping (e.g., weak collisions, 

spontaneous emission) there are two decay constants A., and A in the 

problem, and Eq. A.5 takes the form 

B.5 

r a i 
pll 
a 

p22 
a 

pl_ 
a P n 

0 i A l -V V 

0 - i A l V -V 

V V -iA 2-- A 0 

V -V 0 -iA 2 + A 

/- a i 

Ki a 
p22 
a P 1 2 

a 
p21 

or, using the real, symmetrized form of Eq. 1.17b, with y = ift 

p l 
P 2 

p3 
p4 

0 - A l 0 -2V 

0 A l 0 2V 

0 0 A2 -A 

V -V A A, 

B.6 

By using p_ = p„ - p.. and p = p + p_ = 1, one can easily recognize Eq. 
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B.6 as the optical Block equations: 

0 0 0 

A l A l 0 AV 

0 0 A 2 -A 

0 -V A A 1% 

B.7 

For completeness, we also remind ourselves that in the case of spontan­

eous emission being the only damping mechanism, A = A and A„ = hk, 

where A is the Einstein A-coefficient of the transition. 

Equation B.7 has one solution y = 0 corresponding to 

P+ 
0 

P_ 

o 
p 3 

0 
. P 4 

(A2 + A2)/N 

AV/N 

A2V/N 

B.8a 

where 

N = A 2 + A 2 + 4V 2A 2/A . B.8b 

As we can see, the in-phase component (relative to the external field) 

of the density matrix, p , gives the dispersive response of the system, 

whereas the out-of-phase component p, gives the absorption, which has a 
2 2 

halfwidth A 2 + 4V A 2/A . T h e t e r m 4 V A2^ A1 l s t h e P o w e r broadening of 
the absorption. 
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For a ̂  0,p = 0, and the eigenvalue y satisfies the cubic equation 

(Y a - A 1)[(y a - A 2 ) 2 + A 2] + W2(ya - A J - 0 B.9 

whereas p is given by 

1 at 
P_ 

a 
P 3 

a 

4V( Y 

-A(Y° 

A 2) 

V 
(Y" - AJ)(/ - A 2) B.10 

and the normalization constant N is determined by initial conditions. 
a 

If 2V and A are small compared to A and A , there are two roots 

Y of Eq. B.9 near A„ and one near A... If |d| S> 2V, where d = h (A - A ), 

we get simple expressions I- r these roots: 

+ 2 9 2 2 5<5 Y~ = A 2 + Vz/d + ifA - ( V 7 d ) T B.lla 

Y 1 = A - 8V 2d/(4d 2 + A 2 ) . B.llb 

Thus, with the introduction of a weak oscillatory external field, the 

decay constants for the nonstationary components p (with a ̂  0) change 
2 

slightly. If V /d > A, the off-diagonal elements of p will oscillate at 

the field frequency ui (all the y are real) and have no components os­

cillating at the system eigenfrequency 8 = m + A. 

If A and A are small compared to V, we can use Eq. 1.15 and Eq. 

B.3 to find 
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y± = + i il + y , Y 1 = Y* B.12 
ac 

where 

2 2 4 4 
y = 2A s i n <t> cos ty + A„(c •(> + s i n <f) B.13a 

2 2 2 2 2 
Y ' = A (cos i|i - s i n <()) + 4A s i n 0 cos <|>. .5.13b 

For zero detuning (A = 0 =» <$> = TT/4) this reduces to y = U(A + A ) , 

Y' = A., whereas for large detuning (tan<|) ̂  A/V •' 1) we obtain y = A„, 

Y* = A . Thus a two-level system relaxes to its steady-state response 

P (t -> '») = p (t) on the time scale given by A and A , regardless of 

detuning. 

In the seraiclassical picture, the resonance fluorescence scattering 

is proportional to the oscillating polarization, which in a two-level 

.system is proportional to n_(t). Thus we have four components of scat­

tered light: one elasticalLy scattered component, corresponding to p (t), 

one of halfwidth y' centered at the driving frequency u, corresponding 

to p„(t), and two components of halfwidth y, centered at u> ± fi , cor-j ac 
responding to p"(t). If A , A and V are of comparable magnitude, then 

Eq. B.6 has to be solved. This amounts to solving the cubic Eq. B.9 for 

Y ; Only on resonance (A = 0) do we get simple expressions for the 

nonzero eigenvalues Y : 

+ — 2 — ? k y' = A ± 1(4V - A ) B.14a 

Y 1 = A 2 B.14b 
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where x = ^(A. + A.). Thus, on resonance, the triplet structure of the 

fluorescence spectrum is retained for external fields such that 2V > d. 
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APPENDIX C: External Fields of Arbitrary Time Dependence 

In Appendices A and B we have treated the equation ip « Lp, 

where L » L + L exp(ioit) + L exp(-io)t), and L and L are time inde­

pendent operators. This can easily be formally extended to the case 

where ai, L and L vary in time. Let L and L depend on a set of real 

parameters {E }, which vary in time. The parameters may, e.g., be ex­

ternal field amplitudes, frequencies, and phases, in which case the 

treatment applies to excitation of a quantum mechanical system by a 

train of picosecond pulses, by a frequency chirped pulse, by a phase and/ 

or amplitude modulated single longitudinal mode laser field, or by a 

laser pulse of Fourier transform limited bandwith. 

Now let the solutions of 

ip k = ^[L° J l({E m}) + Lj^({En})exp(iUt) + Lj*({Em})exp(- i*)t)]Pjl C.l 

be 

p£(t) = p£exp[- i(Sla + a>k)t] C.2 

when the E 's are constant. The fl , p. and o), are then functions of the m a k k 
E 's. If the E 's depend on time, we seek a solution of the form 
m m 

P f c - E a aa(t)pkexp(-iuikt) C.3 

Using C.l and the rotating wave approximation (see Sect-A.1 of Appendix 

A ) , we obtain the following equation of motion for a a (using E.r. p. » 
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6 , , see Eq. A.7) ab 

•a ,_a a ab b . ia = tt a - E A a C.4a b 

with 

,ab ._ | a k • . • a b I A = ill, \r -r=— E - nun. r. p, I = km\ k 5E m k k k/ 

K • ab\ 
= - izi ("aS~ Pi E + iwn. rfp. ). C.4b 

km\3E k m k k k / 

This is, of course, only useful if the fi , p , r, and 3p,/3E are known 

for the values of E of interest. This limits the usefulness of Eq. C.4 m 
to problems with only a few levels involved, or other systems where sim­

ple analytical solutions for ti , p, and r can be found. However, we 
k k 

have transformed Eq. C.l, which has terms oscillating rapidly at a fre­

quency to, into Eq. C.4, which has terms varying with the slower parame­

ters E . This is of great importance for numerical integration of the 
ra 

problem. Note that Eq. C.4 is valid even if E is rapidly varying - the 
only approximation used is the rotating wave approximation. 

If E is varying sufficiently slowly, and in addition the U are 
nondegenerate, we can neglect A compared to fi , and get the so-called 
aciiabatic /C.l/ approximation ia = fl a , or 

a (t) = a (t )exp o)exp - i / dt'n a({E m(t')})|. 
L fc

0 J 
C.5 

For a two-level system excited at resonance with no damping, this re­

duces to the familiar result, related to the pulse area theorem /C.l/, 
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that the state of the system at time t only depends on the integrated 

field amplitude / dt'E (t'), and not on the detailed time dependent 

of the field. Analogous, although not as simple and transparent, 

statements can be made about any multilevel system, with basis in Eq. 

C.5. 

VT,-,,. •>-... ,]f. n 3 S u m c that ' .^i^al jjaUi with damping. As 

discussed in Chapter 1, one and only one stationary state p (t ->• <=) = 

p, (t) exists. If the system initially is in this state, then a (t ) = 
6 in Eq. C.5, and fia = a = 0, implying a 3(t) = 6 for all t. Thus ao > r / ao 
the adiabatic approximation of Eq. C.5 only works rigorously, in the 

presence of damping, when the field varies so slowly that the system is 

left in its initial state after the field is turned off. 
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APPENDIX D: RRKM (Rice-Ramsperger-Kassel-Marcus) Theory of Unimolecular 

Reactions 

The RRKM theory /D.l/ is designed to describe unimolecular reactions 

in the gas phase, where molecules are constantly being energized and de-

energized by collisions. This way, some of the molecules may be supplied 

with mough energy to dissociate. In the theory one assumes that, or. 

average, the molecules with internal energy within a small range about 

any given energy are randomly distributed over the available energy 

states in that range. One further assumes that the dissociation proceeds 

so slowly that this holds even for molecules excited above the dissocia­

tion energy, i.e. , that the dissociating states are being rapidly replen­

ished as molecules dissociate. 

Even though the multiphoton excitation is in several respects very 

different from thermal, collisional excitation, the above picture can be 

directly transferred to describe multiphoton dissociation. Based on our 

experimental results, we can say that the process can be understood as 

composed of two stages: the multiphoton excitation, and the unimolecular 

dissociation competing with the excitation, when the molecules have in­

ternal energy above the dissociation energy. Multiphoton excited mole­

cules, prior to dissociation, are likely to have energies distributed 

randomly in all available degrees of freedom. This experimental result 

is not surprising, in view of the following: The excitation and dissoci-
-9 -1 ation rates typically observed are in the range of 10 sec or smaller 

(see Chapter 2). Intramolecular relaxation rates for highly excited mo­

lecules, as deduced from a series of chemical activation experiments 
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/D.2/, are 10 - 10 sec . Thus a statistical theory should be per­

fectly applicable in describing the dissociation of raultiphoton excited 

molecules. 

In this appendix, the basic ideas in the RRKM theory will be present­

ed, and in the simplest possible form, expressions will be deduced for 

the dissociation rate constants and the translational energy distribution 

of fragments from a given energy above the dissociation energy. For more 

extensive discussions, see Ref. D.l. 

In a statistical approach, the important concept is that of the 

available phase space, i.e., the collection of states available to the 

system. Consicer a bound molecule. For a molecule with energy above the 

dissociation energy E , a somewhat arbitrary but intuitively acceptable 

boundary between "bound" and "dissociated" system is defined. The coor­

dinate in tha molecule corresponding to movement of the two dissociation 

fragments relative to one another, normal to this boundary, is called the 

"reaction coordinate." Then consider any configuration of atoms in the 

molecule where the distance along the reaction coordinate of the dissoci­

ation fragments from this boundary is smaller than a distance A. This 

region of phase space is called the "critical configuration." (The size 

of A is immaterial, since it is an auxiliary parameter that cancels out 

in the final mathematical expressions.) 

The number of states available to a bound molecule with energy be-
* * 

tween E and E + AE is 

N(E*)AE , D.l 

. * * 
where N(E ) is the density of states in the molecule at energy E . At a 
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given energy, the possible configurations of the molecule is limited by 

the raolecular potential energy surface and (for E > E , the dissociation 

energy) by the arbitrary boundaries defined as a division between the 

bound and dissociated molecule. For calculation of the density of states 

N(E ), this complicated surface is usually approximated by that of har­

monic oscillators with frequencies equal to the low-energy vibrational 

frequencies of the molecule. 

The number of states available in the critical configuration is cal­

culated in the same manner, but here one essentially has to guess what 

this region of phase space looks like. The common assumption is one of a 

"particle in a box" for one coordinate (corresponding to the region of 

thickness 2A along the reaction coordinate) and harmonic oscillators for 

the remaining coordinates. One then has to make guesses or estimates of 

the oscillation frequencies for motion orthogonal to the reaction coordi-

nate. The number of states with energy between E and E + AE available 

for a molecule where the fragments are separating with a relative kinetic 
2 energy between E and E + AE (E = îiu , where u is the reduced mass of 

the two dissociation fragments, and u is their relative speed along the 

reaction coordinate) is then 

(2A/h)(2y/Et)!sAEt • N +(E - E - E )AE. D.2 
t t o t 

N (E) is now the density of states in the critical configuration, re­

stricted to coordinates orthogonal to the reaction coordinate, approxi­

mated by a harmonic oscillator density of states. Thus the probability 

of finding a molecule in the critical configuration, with relative kine­

tic energy of the dissociation fragments between E and E + AE , is 
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A (2A/hu)NT(E - E - E ) 
p(E" P. ) = • z 2 £_ A E _ D_ 3 

1 N(E") C 

The rate at which dissociation takes place, is half of this probability 

(since only the fragments moving away from each othct can dissociate), 

divided by the time 2A/u a molecule spends in the critical configur­

ation before it dissociates: 

t * * N (E - E - E ) 
k(E ,E )AE = 2 _E_ A E . D.4 

Z Z hN(E ) L 

The total dissociation rate is found by integrating over all values of E : 
* -E -E 

/

& —11. 
0 * k(E ,E )dE . D.5 

The corresponding average dissociation lifetime is 

T A = (k(E*)) l . D.6 
E 

In Fig. B.l are shown dissociation rates as a function of excess energy 
ft E - E , for the molecules CF.I and SF,. The normalized distribution of o J b 
relative translational energy in the dissoc i.ation fragments is 

P *(E-> = T *k(E*,E ). D.7 
E L E 

Examples of typical center-of-mass translational energy distributions can 
be found in Fig. 2.9. The distribution in the fragments from SF, for 
three different excess energies are shown. Further examples can be found 
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in Appendix F. Expression D.7 can be used to describe correctly the en­

ergy distribution of the dissociation fragments in the center-of-mass co­

ordinates only if there are no interactions between the fragments after 

the critical configuration is passed. As seen in Chapter 2, this is true 

for a number of atomic elimination cases. However, if there is a poten­

tial energy barrier (Appendix F) between reactant and products, or if 

there is appreciable angular momentum in the molecule before dissociation 

/D.3/, the above expressions have to be modified. 

The translational energy dittributions,Eq.D.7,look very much like ex­

ponentials, especially for high energies E , and in heavy molecules. It 

is easy to understand why this is so, in a statistical picture of the dis­

sociation. To any single degree of freedom in a molecule with many de­

grees of freedom, the rest of the molecule looks like a heat bath, even 

though the molecule as a whole has a well-defined energy. Thus, any sing­

le degree of freedom, including the one corresponding to the reaction co­

ordinate, will have a close to theremal, i.e., exponential, energy dis­

tribution. The energy is shared between all degreees of freedom, and on­

ly a small fraction resides on average in any one degree of freedom. 

Translated, this means that only a small fraction of the excess energy 
A 

E - E will end up as translational energy in the fragments, especially 

if the dissociating molecule has many atoms. Most of the energy thus re­

mains as internal energy in the fragments. 
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Figure Captions 

Fig. D.1 RRKM dissociation rates as functions of excess energy for CF I 

and SF.. o 
Fig. D.2 Center-of-mass translational energy distribution of the frag­

ments from the MPD of SF., calculated from RRKM theory. 
o 

- - - 5 kcal/mole excess energy 

- • - 8 kcal/mole excess energy 

— 22 kcal/mole excess energy 
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Appendix E 
See Journal of Chemical Physics, Vol. 70, No. 2, January 15, 1979 
 
Appendix F 
See Journal of Chemical Physics, Vol. 69, No. 6, September 15, 1978 
 
 




