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Abstract

The estimation of branching point process models by maximum

likelihood can be unstable and computationally intensive. We ex-

plore an alternative estimation method based on the Expectation-
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Maximization algorithm. The method involves viewing the estimation

of such branching processes as analogous to incomplete data problems.

Using an application from seismology, we show how the Epidemic-type

Aftershock Sequence (ETAS) model can in fact be estimated this way

and we propose a computationally efficient procedure to maximize the

log-likelihood function. Using a space-time ETAS model, we demon-

strate that this method is extremely robust and accurate and use it to

estimate declustered background seismicity rates of geologically dis-

tinct regions in Southern California. All regions show similar declus-

tered background intensity estimates except for the one covering the

Southern section of the San Andreas fault system to the East of San

Diego in which a substantially higher intensity is observed.

Keywords: earthquakes, epidemic-type aftershock sequence model, ETAS

model, space-time point process models, branching process models

1 Introduction

Point process models have long been used to describe earthquake occurrences

(Vere-Jones 1970, 1975). Ogata (1999) provides a nice review. Some of the

early applications fitted Neyman-Scott-type models in which main shocks

are viewed as cluster centers, each of which may trigger a random number

of aftershocks with magnitudes not larger than the main shock (Vere-Jones

1970, Hawkes and Adamopoulos 1973). More recent work has favored the

use of sub-critical branching process models with immigration in which all
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earthquakes can trigger aftershocks, and among these, the Epidemic-type

Aftershock Sequence (ETAS) model is considered to be among the standard

models in seismology (Ogata 1988, 1998).

ETAS and other branching process models are commonly estimated using

Maximum Likelihood (ML). However, closed form solutions are usually not

available and numerical maximization algorithms must be employed. In such

situations, computational difficulties can arise especially if the models are

complex, multidimensional, and non-linear, as this often leads to multimodal

or extremely flat log-likelihood functions.

The view of branching process models as incomplete data problems sug-

gests the use of the Expectation-Maximization (EM) algorithm established

by Dempster, Laird, and Rubin (1977). In this context, the information

about which event ‘triggers’ each other event is unobservable and can be

described probabilistically. The EM algorithm involves maximizing the ex-

pected log-likelihood, which in the context of branching point process models

is based on the probabilistic incorporation of the branching structure and is

usually easier to maximize.

In this work, we show how an EM-type algorithm may be used to maxi-

mize the log-likelihood using a partial information approach in certain steps.

This relates to partial likelihood maximization which was introduced by Cox

(1975) and which is briefly discussed by Ogata and Akaike (1982) in the con-

text of branching processes in seismology. By coupling two well-established

estimation methods (EM and a partial information approach in certain steps)
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we are able to present a highly robust and accurate estimation procedure

which can be used to estimate even very complex branching process mod-

els. In order to demonstrate the properties of our proposed method, we use

a space-time ETAS model to simulate earthquake catalogs and then com-

pare the results of the EM-type estimation algorithm to the traditional ML

procedure.

Following a description in Section 2 of self-exciting point process models

for earthquake occurrences, we describe some of the problems with conven-

tional maximum likelihood estimation of such models in Section 3. Section

4 describes a proposed alternative estimation method, based on the EM al-

gorithm, and shows its robustness and accuracy using simulations. The EM-

type algorithm is then used in Section 5 to estimate background seismicity

rates for Southern California.

2 Self-exciting point processes and the ETAS

model

Consider a simple, temporal point process N on [0,∞) adapted to a fil-

tration Ht. Assuming it exists, the conditional intensity λ(t|Ht) is defined

as the unique, non-decreasing, H-predictable process such that N([0, t)) −
∫

λ(t|Ht)dt is an H-martingale. In this representation, H must contain the

history of the process up to time t, denoted as Ht = {ti : ti < t}, but may

contain additional information as well. Since the finite-dimensional distri-
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butions of such a point process are uniquely determined by its conditional

intensity (Daley and Vere-Jones 2003), one way to model a point process is

via its conditional intensity.

In self-exciting point processes, the conditional intensity is given by

λ(t|Ht) = µ +
∑
i:ti<t

g(t− ti),

where µ > 0, g(v) ≥ 0 for nonnegative v and equals zero otherwise, and
∫∞

0
g(v)dv < 1 in order to ensure stationarity (Hawkes 1971b, Hawkes 1971a).

Early applications of self-exciting point processes to earthquake occurrence

models can be found in Hawkes and Adamopoulos (1973) as well as in Lom-

nitz (1974, Chapter 7). Modeling earthquake occurrences using a self-exciting

point process implies the separation of the seismicity into a long-term back-

ground component µ and a short-term clustering component
∑

i:ti<t g(t− ti)

which represents aftershock activity. An interesting historical note is that

Hawkes and Adamopoulos (1973), who were the first to explore the use of

a self-exciting point processes to model seismicity, concluded in their work

that these types of models do not fit the data very well and claimed that

Neyman-Scott models provide superior fit.

A particularly important example of a self-exciting point process is the

ETAS model, which was first introduced by Ogata (1988) and is widely used

to describe earthquake occurrences. Early forms of the ETAS model (Ogata
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1988) only took magnitudes and earthquake occurrence times into account:

λ(t|Ht) = µ +
∑
i:ti<t

g(t− ti,mi), (1)

where the history of the process also includes earthquake magnitudes, Ht =

{(ti,mi) : ti < t}, µ is the (in this case constant) background intensity of

earthquake occurrences, and g(·) is the so-called “triggering function”, since

it describes how earthquakes trigger aftershocks. One possible triggering

function suggested in (Ogata 1988) is

g(τi,mi) =
K0

(τi + c)(1+ω)
ea(mi−M0), (2)

where τi = t−ti is the time elapsed since earthquake i, mi is the magnitude of

earthquake i, K0 > 0 is a normalizing constant governing the expected num-

ber of direct aftershocks triggered by earthquake i, the parameters c, a, ω > 0,

and M0 is the “cut-off magnitude”, i.e. the lowest earthquake magnitude in

the data set under consideration. The term K0/(τi + c)(1+ω) describing the

temporal distribution of aftershocks is known in seismology as the modified

Omori-Utsu law. While the literature in seismology usually lets ω > −1,

the interpretation of the modified Omori-Utsu law as a probability density

function requires strictly positive values for ω.

The ETAS model has since been extended to describe the space-time-

magnitude distribution of earthquake occurrences (Ogata 1993, 1998). A
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version suggested in Ogata (1998) uses circular aftershock regions where the

squared distance between an aftershock and its triggering event follows a

Pareto distribution:

λ(t, x, y|Ht) = µ(x, y) +
∑
i:ti<t

g(t− ti, x− xi, y − yi,mi), (3)

with triggering function

g(t− ti, x− xi, y − yi,mi) = K0·ea(mi−M0)

(t−ti+c)(1+ω) ((x−xi)2+(y−yi)2+d)(1+ρ) , (4)

where (xi, yi) represents the epicenter of earthquake i, d > 0 and ρ > 0 are pa-

rameters describing the spatial distribution of triggered seismicity, and where

the history of the process up to time t is now defined as Ht = {(ti, xi, yi,mi) :

ti < t}.
Summing things up, the ETAS model can be described as a subcritical

branching process with immigration. The process is subcritical because the

expected number of aftershocks is less than unity (thus ensuring stationar-

ity) and it is characterized by immigration through spontaneous background

earthquakes. The aftershock activity is modeled through a triggering func-

tion consisting of two terms, one of which models the expected number of

aftershocks for earthquake i while the other part models the temporal or

space-time distribution of the triggered aftershocks.
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3 Conventional maximum likelihood estima-

tion of the ETAS model

The log-likelihood of model (3) is given by

`(θ) =
∑

i

λ(ti, xi, yi|Hti)−
∫ T

0

∫ y1

y0

∫ x1

x0

λ(t, x, y|Ht) dxdydt, (5)

where θ = (µ,K0, a, c, ω, d, ρ) is the parameter vector and [x0, x1]× [y0, y1]×
[0, T ] is the space-time window in which the data set (xi, yi, ti,mi) is ob-

served (Ogata 1998, Daley and Vere-Jones 2003, ch. 7). Let θ̂ denote the

value that maximizes (5), i.e. the Maximum Likelihood Estimate (MLE).

Typically, θ̂ is obtained by using a numerical optimization routine, since no

closed form solution is generally available. Unfortunately, in cases where the

log-likelihood function is extremely flat in the vicinity of its maximum, such

optimization routines can have convergence problems and can be substan-

tially influenced by arbitrary choices of starting values. In order to distin-

guish the MLE computed by numerical maximization from the one based on

the EM-type algorithm presented later, we will denote the former θ̂num and

the latter θ̂
EM

. Similarly, components of the parameter vector estimates will

be denoted µ̂num , µ̂
EM

, K̂0num
, K̂0EM

, etc.

An illustration may be helpful in order to demonstrate some of the diffi-

culties encountered when directly maximizing the log-likelihood function (5)

using numerical methods. Figure 1 shows a simulated earthquake catalog of
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638 events, using the model (3). The space-time window used for this sim-

ulation is similar to the Southern California data set described in Section 5.

Background earthquakes are simulated on an area of 8◦ of longitude by 5◦

of latitude over a period of 7500 days (approximately 20 years). Parameter

values, as shown in Table 1, are chosen to approximate those used in descrip-

tions of earthquake catalogs, based on Ogata (1998) as well as discussion

with UCLA seismologists Yan Y. Kagan and Ilya Zaliapin. For simplicity, a

truncated exponential distribution is used to model earthquake magnitudes

in accordance with the Gutenberg-Richter law (Gutenberg and Richter 1944):

f
GR

(m) =
β e−β(m−M0)

1− e−β(Mmax

GR
−M0)

, (6)

where f
GR

(m) is the probability density function, β = log(10), and M0 =

2 ≤ m ≤ M
max

GR
= 8, where the lower threshold is the approximate current

threshold (since 2001) above which catalogs of the Southern California Seis-

mic Network (SCSN) are believed to be complete (Kagan 2002, 2003), and

the upper threshold is the approximate magnitude of the strongest Califor-

nian earthquakes in historic times, the 1857 Fort Tejon earthquake and the

‘great’ San Francisco earthquake of 1906.

The use of numerical methods to maximize the log-likelihood function (5)

can be problematic in cases where the log-likelihood is extremely flat, unless

some supervision is imposed and intelligent starting values are used. Figure 2,

for instance, shows the log-likelihood for variations of each component of the
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parameter vector by up to 50% around the MLE θ̂. The log-likelihood is

quite flat around θ̂, especially with regard to the parameters µ, K0, c, and d;

as a result these parameters are difficult to estimate and they generally are

associated with rather large standard errors as well as numerical challenges

during the estimation procedure. The parameters a, ω, and ρ, on the other

hand, show much more peaked log-likelihood functions and can hence be

estimated more stably.

The issue of log-likelihood flatness can be aggravated in a multidimen-

sional context. In Figure 3, two parameters are varied while the other compo-

nents of θ̂ remain constant at their MLEs. Again, the log-likelihood function

can stay extremely flat along certain trajectories, even for large deviations

from the MLEs. The parameter c, for instance, can be increased to more than

four times its MLE and ω increased to double its MLE, yet the log-likelihood

function is reduced only very slightly. The problem of log-likelihood flat-

ness becomes increasingly severe as more and more parameters are varied at

once. In more realistic settings, where ETAS models are estimated for actual

earthquake catalogs, none of the parameters would be known in advance.

In cases where the log-likelihood function is extremely flat, the choice of

starting values can influence the results. In Figure 4, numerical ML estima-

tion is performed for eight different starting values for θ using a standard

Newton-Raphson optimization routine. The ‘true’ values of Table 1 are cho-

sen for all parameters except K0 and a, which are varied as indicated in the

figure. In two cases, the estimation results are quite close to θ, while in four
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other cases, the algorithm finds reasonable estimates for most parameters

but fails to find an acceptable estimate for K0: in fact, the algorithm does

not change the starting value for K0 at all, even though it is roughly 33% off

its ‘true’ value. In two of the cases, the algorithm fails to converge.

As shown in Figure 4, even if the starting values are close to the MLE, any

departure from an optimal choice of tolerance levels and stopping criteria for

the numerical maximization procedure can lead to poor convergence results.

In this example, the Newton-type algorithm used to find the MLEs actually

yields better results if the starting values for K0 are not too close to the

‘true’ values, as the computation of gradients may actually be more accurate

in locations further away from the true parameter value.

Another problem often encountered in practice is that the log-likelihood

function can be multimodal (see e.g. Ogata and Akaike (1982)). Whenever

the numerical optimization routine converges to a solution, it is quite difficult

to determine whether it has converged to a local maximum or to the global

maximum. Even if the log-likelihood is unimodal, in cases where the log-

likelihood is flat there can be numerical multimodality due to rounding errors,

the way these errors affect intermediate and final results, and the way values

are stored in memory. In cases where the log-likelihood surface is extremely

flat such as those shown in Figures 3 and 4, such numerical problems can

explain why the MLE can be very far from the true parameter value. This

makes it difficult to use ML in simulation studies of bias and asymptotic

properties for which an automatic procedure would be desirable.
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4 ETAS estimation using an EM-type algo-

rithm

In their seminal paper, Dempster, Laird, and Rubin (1977) established the

EM algorithm as the estimation method of choice for incomplete data prob-

lems. It has been extended in various ways and adapted to a wide range of

applications. A good overview of this algorithm and its extensions is provided

by McLachlan and Krishnan (1996).

The estimation of the ETAS model can be viewed as incomplete data

problem in which the unobservable quantity ui identifies whether an earth-

quake is a background event (ui = 0) or whether it was triggered by a

preceding event, denoted as ui = j for the case that earthquake i was trig-

gered by earthquake j. This view of the ETAS model is inspired by what

Zhuang, Ogata, and Vere-Jones (2002, 2004) call “stochastic reconstruction”.

In their work, probabilities of earthquakes being background events or oth-

erwise triggered by preceding events are used to improve spatial background

intensity estimates. In our work, the branching structure of the model will

help estimate all parameters of the ETAS model, not just the background

intensity.

In the following, consider an ETAS model with an inhomogeneous back-

ground rate µ(x, y). While the EM methodology allows for quite general

forms of µ(x, y), here we model an inhomogeneous background rate by sub-

dividing the (in this case rectangular) spatial observation window [x0, x1] ×
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[y0, y1] into κ cells each with constant intensity µk, k ∈ {1, . . . , κ}. The

background intensities for the κ cells can then be collected in the vector

µ = (µ1, . . . , µκ). In order to simplify some of the upcoming expressions, it

is helpful to define the expected number of background earthquakes in cell

k, denoted as νk:

νk = µk · (area of cell k) · (length of time window), (7)

where the length of the time window is T (see (5)). Depending on the

situation, either µk or νk will be used in the formulas, since one is simply a

fixed multiple of the other. The actual number of background events in cell

k will be denoted as nk and is modeled as a Poisson random variable with

expectation νk.

If the complete branching structure of an observed ETAS process were

known (including whether an event is a background event or a triggered

event), i.e. if the unobserved quantities ui were known for all i, the complete

data log-likelihood, `c(θ), could be written as

`c(θ) =
κ∑

k=1

{− log(nk!)− νk + nk log(νk)}

+
∑

i

{− log(li!)−Gi(θ) + li log(Gi(θ))}

+
∑

i:ui 6=0

{
log(ω) + ω log(c) + log(ρ) + ρ log(d)

−(1 + ρ) log
(
(xi − xui

)2 + (yi − yui
)2 + d

)
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−(1 + ω) log(ti − tui
+ c)− log(π)

}
, (8)

where the first sum relates to the actual number of background events in each

of the κ cells. The second sum relates to the number of direct aftershocks li

(in this case triggered by earthquake i) which also follows a Poisson distri-

bution and whose expectation will be denoted as Gi(θ). Using the triggering

function g(·) defined in (4), Gi(θ) can be derived as

Gi(θ) =

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
g(t− ti, x− xi, y − yi) dxdydt

= K0π
d−ρc−ω

ρ ω
ea(mi−M0)

The third sum of (8) is due to the space-time distribution of aftershocks

(relative to their triggering events) and its density can be figured by dividing

the triggering function g(t − ti, x − xi, y − yi) by the expected number of

aftershocks Gi(θ).

Complete Data Maximum Likelihood Estimation.

Generally, the complete data log-likelihood `c(θ) cannot be maximized in

practice, since the branching structure is unobservable. However, the use

of the EM algorithm will allow a probabilistic incorporation of the branch-

ing structure. To aid in the exposition of the implementation of the EM

algorithm, assume for the moment that the quantities ui are indeed known

for all i. In the following, we will present an algorithm which maximizes
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`c(θ) using the unobservable quantities and hence produces the (in practice

unattainable) complete data MLE, denoted as θ̃. In order to find θ̃ consider

the partial derivatives of `c(θ) with respect to each of the components of θ:

0
!
=

∂`c(θ)

∂νk

= −1 +
nk

νk

, (9)

0
!
=

∂`c(θ)

∂K0

= − 1

K0

∑
i

(Gi(θ)− li), (10)

0
!
=

∂`c(θ)

∂a
= −

∑
i

((mi −M0)Gi(θ)− (mi −M0)li), (11)

0
!
=

∂`c(θ)

∂c
=

∑

i:ui 6=0

(
ω

c
− 1 + ω

ti − tui
+ c

)
+

ω

c

∑
i

(Gi(θ)− li), (12)

0
!
=

∂`c(θ)

∂ω
=

∑

i:ui 6=0

(
1

ω
+ log(c)− log(ti − tui

+ c)

)

+

(
1

ω
− log(c)

) ∑
i

(Gi(θ)− li), (13)

0
!
=

∂`c(θ)

∂d
=

∑

i:ui 6=0

(
ρ

d
− 1 + ρ

(xi − xui
)2 + (yi − yui

)2 + d

)

+
ρ

d

∑
i

(Gi(θ)− li), (14)

0
!
=

∂`c(θ)

∂ρ
=

∑

i:ui 6=0

(
1

ρ
+ log(d)− log

(
(xi − xui

)2 + (yi − yui
)2 + d

))

+

(
1

ρ
− log(d)

) ∑
i

(Gi(θ)− li). (15)

The parameters for the background intensity can be derived from (9), which

in fact represents several equations with k = 1, 2, . . . , κ. The complete data

MLE is ν̃k = nk and µ̃k can then be computed as in (7). In principle, all

other parameters have to be estimated simultaneously by solving (10)–(15),
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which can be extremely computationally intensive. While we will abstain

from formally deriving the properties of the following stepwise algorithm, we

will provide an intuition for why it converges to the maximum of `c(θ) and

hence to the complete data MLE of θ.

Consider the equations (12) and (13) which relate to the temporal pa-

rameters c and ω of the aftershock distribution. Note that (12) and (13)

depend only on c and ω if the terms after the first sums in each of the equa-

tions are ignored. In this stepwise algorithm, this may be reasonable, as (10)

will subsequently guarantee that
∑

i(Gi(θ) − li) equals zero. Setting only

the first sums of (12) and (13) to zero can be interpreted as using only the

time passed between the triggering event and aftershock in order to estimate

the temporal parameters while ignoring the contribution to that part of the

log-likelihood which relates to the number of aftershocks triggered by each

earthquake. In this sense, a partial information approach is used to estimate

c and ω in this step.

Setting only the first terms of (12) and (13) to zero implies the following

system of equations:

ω

(1 + ω)c
=

1

L

∑

i:ui 6=0

1

ti − tui
+ c

, (16)

1

ω
+ log(c) =

1

L

∑

i:ui 6=0

log(ti − tui
+ c), (17)

where L is the number of triggered earthquakes, i.e. the total number of

earthquakes minus the number of background events. This system of equa-
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tions may be solved iteratively, suggesting the following procedure:

Algorithm 1

Step 0 Set c̃current to some strictly positive value.

Step 1 Compute the right hand sides of (16) and (17) using c̃current.

Step 2 Find c̃new and ω̃new by solving (16) and (17) using the quantities

computed in the previous step.

Step 3 If ∆c̃ = c̃new − c̃current and ∆ω̃ = ω̃new − ω̃current are smaller than

some stopping criterion, stop. Otherwise, the new estimates become

the current estimates and repeat steps 1–3.

Notice that Step 2 requires a numerical approach to solving (16) and (17).

However, finding zeros is a computationally simpler problem than maximizing

a function such as (5). Moreover, only two parameters have to be estimated

in this part of the estimation procedure as opposed to six if solving (10)–(15)

simultaneously.

The spatial parameters d and ρ can be estimated analogously, as (14) and

(15) are structurally identical to (12) and (13), respectively, with the squared

distance between aftershock and triggering event replacing the time elapsed

between the two events.

Finally, if the parameters of the space-time distribution of aftershocks

were known, the remaining parameters of θ, K0 and a, which govern the

number of triggered aftershocks, could be estimated as the parameters of a
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Poisson regression. In fact, (10) and (11) are the estimating equations of a

Poisson regression in which the number of triggered earthquakes (dependent

variable) is Poisson with expectation depending on the magnitude of the trig-

gering event through Gi(θ). In order to take advantage of this circumstance

in an iterative algorithm, one can condition on the current parameter esti-

mates of c, ω, d, and ρ in (10) and (11) and then iterate between estimating

those parameters on the one hand and K0 and a on the other hand.

A similar conditional likelihood approach has been investigated previously

by Ogata and Akaike (1982) for a temporal self-exciting point process model

for earthquake occurrences. Ogata and Akaike hold the parameter which is

equivalent to the parameter a in the model discussed here constant and maxi-

mize the resulting conditional log-likelihood to estimate the other parameters

of the model. They then update a using Akaike’s (1974, 1977) Information

Criterion (AIC) and iterate between these two steps. Our approach applies

the conditional likelihood methodology in both steps of this procedure and

does not require the use of any information criteria to direct the algorithm.

The following algorithm summarizes the abovementioned procedure:

Algorithm 2

Step 0 Set n = 1 and set each component of θ̃
(1)

to some strictly positive

value.

Step 1 Estimate the background intensity vector µ̃ as described above.

Step 2.1 Fix the space-time parameters at their current estimates c̃(n),
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ω̃(n), d̃(n), and ρ̃(n). Iteratively solve (10) and (11) in order to find the

estimates K̃
(n+1)
0 and ã(n+1).

Step 2.2 Find c̃(n+1) and ω̃(n+1) as described in Algorithm 1.

Step 2.3 Find d̃(n+1) and ρ̃(n+1) analogously to Algorithm 1.

Step 2.4 If ∆θ̃
(n+1)

= θ̃
(n+1) − θ̃

(n)
is smaller than some stopping crite-

rion stop. Otherwise, increase n by one and repeat steps 2.1–2.4.

Maximum Likelihood Estimation Using the EM Algorithm.

Since the quantities ui are unknown (and in fact unobservable), the com-

plete data log-likelihood cannot be expressed (nor maximized) directly in

practice. However, the expected complete data log-likelihood can be com-

puted (E-step) and then maximized (M-step). The E-step of the EM algo-

rithm requires estimating the triggering probabilities prob(n+1)(ui = j) for

all i, j based on a current estimate θ̂
(n)

EM
:

prob(n+1)(ui = j) =
g
�
ti−tj ,xi−xj ,yi−yj ,mj | θ̂

(n)

EM

�
µ̂

(n)

k: i ∈ cell k
+
Pi−1

r=1 g
�
ti−tr,xi−xr,yi−yr,mr | θ̂

(n)

EM

� . (18)

These probabilities allow finding expressions for the expected number of back-

ground events in cell k, n̂
(n+1)
k and the expected number of direct aftershocks

triggered by each earthquake i, l̂
(n+1)
i :

n̂
(n+1)
k =

∑

i ∈ cell k, i ≥ 2

(
1−

i−1∑
j=1

prob(n+1)(ui = j)

)
,
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l̂
(n+1)
i =

∑
s ≥ i+1

prob(n+1)(us = i).

The expected complete data log-likelihood can then be written as

E
θ̂

(n)

EM

[`c(θ)] =
∑

k

{
− log(n̂

(n)
k !)− νk + n̂

(n)
k log(νk)

}

+
∑

i

{
− log(l̂

(n)
i !)−Gi(θ) + l̂

(n)
i log(Gi(θ))

}

+
∑
i≥2

i−1∑
j=1

prob(n)(ui = j)

·
{

log(ω) + ω log(c) + log(ρ) + ρ log(d)

−(1 + ρ) log
(
(xi − xj)

2 + (yi − yj)
2 + d

)

−(1 + ω) log(ti − tj + c)− log(π)
}

. (19)

The M-step of the EM algorithm maximizes (19). In principle, this max-

imization can be performed using Algorithm 2 after replacing the quantities

nk and li with their counterparts in expectation, that is n̂
(n)
k and l̂

(n)
i , and

modifying (12)–(15) to reflect the estimated probabilities as shown in (19).

The equations (16) and (17) which are used to estimate the temporal param-

eters c and ω take on the following form:

ω

(1 + ω)c
=

1

L̂(n)

∑
s≥2

s−1∑
r=1

prob(n)(us = r) · 1

ts − tr + c
, (20)

1

ω
+ log(c) =

1

L̂(n)

∑
s≥2

s−1∑
r=1

prob(n)(us = r) · log(ts − tr + c), (21)
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where L̂(n) is the expected number of triggered earthquakes in the data set,
∑

i l̂
(n)
i . The corresponding equations for estimating d and ρ are analogous.

The following summarizes our proposed algorithm to estimate the parameters

of the ETAS model:

Algorithm 3

Step 0 Set n = 1 and set each component of θ̂
(1)

EM
to some strictly positive

value.

Step 1 (E-Step) Based on θ̂
(n)

EM
, estimate the triggering probabilities as

shown in (18).

Step 2 (M-Step) Maximize (19) using a variant of Algorithm 2 where

n and li are replaced by their current expectations n̂
(n)
k and l̂

(n)
i for all

k, i, respectively and using (20) and (21) instead of (16) and (17) in

order to update the temporal parameter estimates for c and ω. Proceed

analogously in order to update the spatial parameter estimates for d

and ρ. The new estimate will be denoted as θ̃
(n+1)

EM
.

Step 3 If ∆θ̃
(n+1)

EM
= θ̃

(n+1)

EM
− θ̃

(n)

EM
is smaller than some stopping criterion

stop. Otherwise, increase n by one and repeat steps 1–3.

Variations aimed at improving the speed of the algorithm are possible. In

the M-Step, for instance, Algorithm 2 may run only once (i.e. Step 2.4 of

Algorithm 2 may be ignored) since Step 3 of Algorithm 3 already checks

whether a further run of the algorithm could improve the estimates in any

substantial way. Other variations are possible.
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Dempster, Laird, and Rubin (1977) showed that under general conditions,

estimates obtained using the EM algorithm converge to the ML estimates. As

with other optimization algorithms, EM may converge to a local maximum or

saddle point, but the incorporation of the probabilistic branching structure

often leads to unique maxima, sometimes with closed form solutions.

Figure 5 demonstrates the robustness and accuracy of the algorithm in-

troduced in this work. Using the same starting values as the ones used to

present the difficulties of ML estimation (see Figure 4), the EM-type algo-

rithm converges to an estimate of θ very close to the ‘true’ value in all eight

situations.

In a more systematic approach, 100 earthquake catalogs are simulated

according to the model (3) using the parametrization in Table 1 and then

estimated using the proposed EM-type algorithm and conventional ML, in

which the results of our proposed algorithm are used as starting values. Fig-

ures 6 and 7 show that the sampling distributions for all components of θ

are quite similar for both methods. However, the EM-type algorithm seems

to provide estimates which are considerably less biased, as shown in Table 2

(the only exception is the background parameter µ).

A possible explanation for why the EM-type algorithm yields superior

results is that most theoretical results relating to ML estimation only hold

asymptotically (see for instance Ferguson (1996) for a genreal treatment of

this matter and Ogata (1978) who derived analogous results for point pro-

cess models). In our simulations, the number of simulated earthquakes may
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not be large enough for reaching an asymptotic regime in the numerical

maximization of the likelihood function. However, the number of simulated

earthquakes might be large enough for the EM-procedure to produce accu-

rate results. In fact, for the numerical maximization routine the theoretical

standard errors based on the Hessian matrix are substantially larger than the

ones derived by simulation, which also suggests that the asymptotic regime

assumed in the theoretical framework has not been attained.

In order to demonstrate the robustness of the proposed EM-type algo-

rithm with respect to starting values, ten earthquake catalogs are simulated

with the same parametrization as above, and then estimated using 100 dif-

ferent starting values for θ. The starting values are sampled from a uniform

distribution whose range is 1
5

of the parameter value to 5 times the param-

eter value. The results indicate that the parameter estimates are affected

only minimally by even substantial offsets in starting values. The largest ob-

served difference between the smallest and the largest parameter estimate for

a component of θ is less than 0.5% of the true parameter value, the average

being less than 0.1%. It may be relevant to note that the small variability

associated with different starting values can be controlled by the convergence

criterion used. In this implementation, our proposed algorithm was halted

as soon as each component of θ had converged to four significant digits.
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5 Application to earthquakes occurrences in

Southern California

The methodology introduced in the previous Section can be used to esti-

mate background seismicity rates in Southern California using the ETAS

model (3). Data on earthquakes in Southern California are compiled by

the Southern California Earthquake Center (SCEC) and include occurrence

times, magnitudes, and locations based on measurements taken by a net-

work of almost 400 seismographic stations throughout Southern Califor-

nia. The catalog is maintained by the Southern California Seismic Net-

work (SCSN), a cooperative project of the California Institute of Tech-

nology and the United States Geological Survey and is publicly available

at http://www.data.scec.org. The data set used in this work spans the

time period between 01/01/1984 and 06/17/2004 and is considered com-

plete above M0 = 3 (Kagan (2002), Kagan (2003)). The catalog consists

of 6796 earthquakes occurring in a rectangular area around Los Angeles be-

tween longitudes −122◦ and −114◦ and latitudes 32◦ and 37◦ (approximately

733km×556km).

One problem of interest is to estimate spatial background intensities,

which represent the occurrence rate of spontaneous, untriggered earthquakes.

One way to approach this problem is to use the stochastic decustering method

introduced by Zhuang, Ogata, and Vere-Jones (2002, 2004, 2005), who use

a spatial kernel density smoother as an estimate of µ(x, y) in (3). As an

24



alternative, one may instead incorporate known geological features of South-

ern California and estimate background intensities in the ETAS model for

geologically distinct regions within the study area. We use a regionaliza-

tion proposed by Zaliapin, Keilis-Borok, and Axen (2002) who identify seven

distinct regions based on fault orientation, historical slip, and tectonic set-

ting. The resulting regions are in agreement with the main geological and

fault activity maps for California (Jennings 1977, 1994). Region 1 covers the

Southwestern offshore continental borderland of Southern California where

Northwest striking right-lateral faults dominate. Region 2 covers the South-

east portion of the study area, from the Salton Trough well into Northern

Mexico. This region covers the Southern section of the San Andreas fault

system where it branches out into several Northwest striking right-lateral

faults. The Northwestern part of Southern California is characterized by the

creeping section of the San Andreas fault (region 3). Region 4, in which

the 1994 Northridge earthquake occurred, includes the Western Transverse

Ranges with East striking left-lateral and normal faults covering the major

part of the Los Angeles metropolitan area. The narrow region 5 includes the

left-lateral striking Garlock fault system whose orientation is East-West. Re-

gion 6 mainly covers the Mojave block with mostly Northwest striking right-

lateral faults and also the Eastern Transverse Ranges, where East striking

left-lateral faults and thrust faults are present. The two largest earthquakes

in the space-time area studied in this work occurred here (the 1992 Landers

and 1999 Hector Mine earthquakes). The Western Great Basin, Northeast of
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the Garlock fault system, is characterized by North and Northwest striking

right-lateral and normal faults (region 7). Finally, region 0 incorporates areas

of relative seismic stability not covered in the regions outlined above. For a

more detailed description of this regionalization, see Zaliapin, Keilis-Borok,

and Axen (2002).

The space-time ETAS model (3) with µ(x, y) varying across seismic re-

gions is estimated using the EM-type algorithm introduced in the previous

section. A conventional maximization of the log-likelihood could be challeng-

ing, as the parameter estimates can be heavily influenced by a poor choice

of starting values as shown in Section 3. Moreover, judging from the simu-

lations described in Section 4, the conventional ML approach may have an

increased bias compared to the EM-type algorithm, since it seems to require

a substantially larger sample size in order to attain the asymptotic regime

guaranteeing consistent estimation.

The estimation results are presented in Table 3 and Figure 8. The declus-

tered background intensities for six of the seven regions are quite similar and

range between 3.500 × 10−3 and 6.970 × 10−3 events per day per squared

degree. This is a remarkable result, as strong earthquakes with large af-

tershock clusters were observed in the Western Transverse Ranges (region 4)

and the Mojave block (region 6) with 817 and 2822 earthquakes, respectively,

while the Garlock fault system (region 5) had very few (148) observed seis-

mic events. Nevertheless, our declustered background seismicity estimates

suggest that the occurrence rate of spontaneous, untriggered earthquakes is
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similar in six of the seven regions. Only region 2, the area covering the

Southern section of the San Andreas fault system to the East of San Diego,

has a substantially higher background intensity of 16.945 × 10−3 events per

day per squared degree.

In a recently published article, Fialko (2006) finds that the Southern

section of the San Andreas fault system shows a high level of seismic strain

accumulation. Given that the last two great Californian earthquakes in 1857

and 1906 ruptured the middle and Northern sections of the San Andreas

fault, respectively, it is believed that faults in the Southern section of the

fault system currently pose the highest seismic risk in California (see Fialko

(2006) and references therein). This is supported by palaeoseismological

evidence estimating the average recurrence time of large earthquakes in that

area to be between 200 and 300 years together with the fact that no such

large event (magnitude 7 or larger) has been observed in the last 250 years.

Fialko concludes that the Southern San Andreas fault system may be in the

late phase of its interseismic recurrence.

The ETAS model usually assumes that the earthquake magnitude distri-

bution is separable from the space-time features of the model. Therefore,

in this framework, an increased background seismicity rate in a particular

area does not imply an increased risk of a large-magnitude event other than

to the extent that more strong earthquakes may occur simply because more

earthquakes are expected in general. However, our analysis does show an

elevated seismic activity in the region covering the Southern section of the
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San Andreas fault system and in this sense an elevated seismic risk exists in

this region compared to all other regions in Southern California.

6 Discussion and concluding remarks

In this work, we presented an EM-type algorithm which maximizes the ex-

pected complete data log-likelihood function. The advantages of this algo-

rithm compared to conventional ML estimation were substantial for the case

of estimating the space-time ETAS model, in terms of convergence, bias, and

robustness to choice of starting values.

This methodology should also work well for other specifications of ETAS

models. In fact, it is applicable to all kinds of branching process models where

the information of which event ‘triggers’ which other event is not observable

but can be described probabilistically, as this allows the incorporation of the

branching structure in expectation.

As the simulations in Section 3 illustrate, if the number of observations is

limited, our proposed estimation procedure may in fact yield more accurate

results, as the asymptotic regime under which the desirable properties of

conventional ML are well-known may not be reached. In addition, even

in cases where a direct numerical maximization of the log-likelihood may

be preferred, the EM-type algorithm proposed here may be a useful way of

obtaining starting values for the optimization routine. Further, the reliability

with which the EM-type procedure converges to a reasonable estimate may
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be especially attractive for simulation studies in which one is interested in

repeatedly simulating and estimating a model, e.g. in order to estimate the

bias or variance of certain parameter estimates. Such repetitions are very

difficult using ML due to the required oversight involved and occasional lack

of convergence.

Our seismological application involved the use of geologically distinct re-

gions within Southern California, incorporating the known morphological and

tectonic conditions present in this region. However, it should be noted that

the EM-type algorithm could just as well be combined with a spatial kernel

smoothing method as used by Zhuang, Ogata, and Vere-Jones (2002, 2004,

2005) in order to estimate continuous background intensities.

Our results suggest that the declustered background intensity in the area

covering the Southern section of the San Andreas fault system to the East of

San Diego is substantially higher than in other regions of Southern California.

While our analysis does not directly imply an increased risk of a strong

earthquake occurring in this area as suggested for instance by Fialko (2006)

and references therein, it does single out this region as markedly different

from all other regions in Southern California.

Note, however, that while Southern California appears to be rather nat-

urally divided into distinct seismic regions, a subjective element in outlining

the regions remains. Changes to the borders of the regions could in fact

change the background intensity estimates, as could misspecification of the

ETAS model. For instance, the space-time model employed in this work uses
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circular aftershock regions, whereas spatial aftershock distributions observed

in Southern California are rather elliptical with mainly North-Northwest and

East-West orientations. The investigation and application to California seis-

micity of ETAS models with non-circular aftershock distributions are impor-

tant directions for further research.

7 Acknowledgements

This material is based upon work supported by the National Science Founda-

tion under Grant No. 0306526. We thank Yan Kagan, Yingnian Wu, and Ilya

Zaliapin for helpful comments, and the Southern California Earthquake Cen-

ter for its generosity in sharing their data. All computations were performed

in R.

References

Akaike, H. (1974): “A new look at statistical model identification,” IEEE

Transactions on Automatic Control, AU–19, 716–722.

(1977): “On Entropy Maximization principle,” in Application of

Statistics, ed. by P. R. Krishnaiah, pp. 27–41. North-Holland.

Cox, D. R. (1975): “Partial likelihood,” Biometrika, 62, 269–276.

30



Daley, D., and D. Vere-Jones (2003): An Introduction to the Theory of

Point Processes. Springer, New York, second edn.

Dempster, A., N. Laird, and D. Rubin (1977): “Maximum likelihood

from incomplete data via the EM algorithm,” Journal of the Royal Statis-

tical Society, Series B, 39(1), 1–38.

Ferguson, T. S. (1996): A Course in Large Sample Theory. Chapman &

Hall, London.

Fialko, Y. (2006): “Interseismic strain accumulation and the and the earth-

quake potential on the southern San Andreas fault system,” Nature, 441.

Gutenberg, B., and C. F. Richter (1944): “Frequency of Earthquakes

in California,” Bulletin of the Seismological Society of America, 34.

Hawkes, A. G. (1971a): “Point spectra of some mutually exciting point

processes,” Journal of the Royal Statistical Society, Series B, 33(3), 438–

443.

(1971b): “Spectra of some self-exciting and mutually exciting point

processes,” Biometrika, 58, 83–90.

Hawkes, A. G., and L. Adamopoulos (1973): “Cluster models for earth-

quakes – regional comparisons,” Bulletin of the International Statistical

Institute, 45(3), 454–461.

31



Jennings, C. W. (1977): Geological map of California, scale 1:750,000 Cal-

ifornia Division of Mines and Geology, Sacramento, CA.

(1994): Fault activity map of California and adjacent areas, scale

1:750,000 California Division of Mines and Geology, Sacramento, CA.

Kagan, Y. Y. (2002): “Modern California earthquake catalogs and their

comparison,” Seismological Research Letters, 73(6), 921–929.

(2003): “Accuracy of modern global earthquake catalogs,” Physics

of The Earth and Planetary Interiors, 135, 173–209.

Lomnitz, C. (1974): Global Tectonics and Earthquake Risk. Elsevier, Lon-

don.

McLachlan, G. J., and T. Krishnan (1996): The EM Algorithm and

Extensions. Wiley-Interscience.

Ogata, Y. (1978): “The asymptotic behaviour of maximum likelihood esti-

mators for stationary point processes,” Annals of the Institute of Statistical

Mathematics, 30, 243–261.

(1988): “Statistical Models for Earthquake Occurrences and Resid-

ual Analysis for Point Processes,” Journal of the American Statistical As-

sociation, 83, 9–27.

(1993): “Space-time modeling of earthquake occurrences,” Bulletin

of the International Statistical Institute, 55, 249–250.

32



(1998): “Space-time point-process models for earthquake occur-

rences,” Annals of the Institute of Statistical Mathematics, 50, 379–402.

(1999): “Seismicity Analysis through Point-process Modeling: A

Review,” Pure and Applied Geophysics, 155, 471–507.

Ogata, Y., and H. Akaike (1982): “On Linear Intensity Models for Mixed

Doubly Stochastic Poisson and Self-Exciting Point Processes,” Journal of

the Royal Statistical Society, Series B (Methodological), 44(1), 102–107.

R Development Core Team (2005): R: A language and environment

for statistical computing R Foundation for Statistical Computing, Vienna,

Austria, ISBN 3-900051-07-0, http://www.R-project.org.

Vere-Jones, D. (1970): “Stochastic Models for Earthquake Occurrence,”

Journal of the Royal Statistical Society, Series B, 32(1), 1–62.

(1975): “Sochastic Models for Earthquake Sequences,” Geophysical

Journal of the Royal Astronomical Society, 42, 811–826.

Zaliapin, I., V. Keilis-Borok, and G. Axen (2002): “Premonitory

spreading of seismicity over the fault’s network in southern California:

Precursor Accord,” Journal of Geophysical Research, 107, (B10), 2221,

doi:10.1029/2000JB000034.

Zhuang, J., Y. Ogata, and D. Vere-Jones (2002): “Stochastic declus-

tering of space-time earthquake occurrences,” Journal of American Statis-

tical Association, 97(458), 369–380.

33



(2004): “Analyzing earthquake clustering features by using

stochastic reconstruction,” Journal of Geophysical Research, 109, B05301,

doi:10.1029/2003JB002879.

34



Table 1: Specification of the space-time-magnitude ETAS model
used for simulation. The ETAS model is described in (3). Note that a
homogeneous background intensity (measured in events per day per squared
degree) is used which does not depend on the location. The time is measured
in days, spatial distances are measured in degrees. A truncated exponential
distribution (6) is used to simulate magnitudes.

parameter value space-time window
µ(x, y) 0.0008 for background events

K0 0.0000305
a 2.3026 [0◦, 8◦]× [0◦, 5◦]× [0, 7500 days]
c 0.01
ω 0.5 parameters of the magnitude distribution
d 0.015 M0 2
ρ 0.8 M

max

GR
8

Table 2: Bias of the parameter estimates using the EM-type algo-
rithm and a numerical maximization of the log-likelihood. The bias
of the proposed EM-type algorithm and the conventional ML procedure is
compared by simulating 100 processes and estimating them using these two
methods. For most parameters, the EM-type algorithm yields results that
are closer to the ‘true’ parameter values described in Table 1.

µ̂ K̂0 â ĉ ω̂ d̂ ρ̂

[×10−4] [×10−5]
‘true’ values 8.000 3.050 2.303 0.01000 0.500 0.01500 0.800
numerical MLEs 8.011 2.993 2.275 0.01086 0.519 0.01625 0.841
standard errors (0.527) (0.708) (0.113) (0.00283) (0.058) (0.00409) (0.103)
bias in % of
‘true’ value +0.14% -1.86% -1.22% +8.56% +3.80% +8.35% +5.13%
EM-type estimates 7.925 2.993 2.296 0.01019 0.501 0.01564 0.824
standard errors (0.516) (0.708) (0.109) (0.00265) (0.056) (0.00423) (0.112)
bias in % of
‘true’ value -0.94% -1.85% -0.27% +1.91% +0.20% +4.30% +3.00%
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Table 3: Estimation results of space-time ETAS model (3) for South-
ern California, 1984-2004, M0 = 3. The estimated background intensi-
ties (measured in events per day per squared degree) are between 3.5× 10−3

and 6.97× 10−3 in six of the seven regions, including the two in which major
earthquakes occurred. Region 2, however, has a substantially higher declus-
tered background intensity of 16.945× 10−3. See Figure 8.

k µ̂k number of area description
[events per day earthquakes of region of region

per degree2] in region [degree2]
1 3.500× 10−3 501 6.37 SW; coastal and offshore region
2 16.945× 10−3 1357 3.26 SE; S. section of S.A. fault system
3 3.921× 10−3 476 6.14 NW; creeping section of S.A.
4 5.216× 10−3 817 3.85 Western transverse ranges
5 6.970× 10−3 148 1.68 Garlock fault system
6 5.294× 10−3 2822 3.43 Mojave block, E. transverse ranges
7 6.130× 10−3 637 2.75 Western Great Basin
0 0.019× 10−3 38 12.52 Rest

K̂0 â ĉ ω̂ d̂ ρ̂
4.823× 10−5 1.034 0.01922 0.222 4.906× 10−5 0.497
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Figure 1: Simulated earthquake process using a space-time-
magnitude ETAS model. This figure shows a simulated earthquake cat-
alog using model (3) with a parametrization as described in Table 1. The
simulated catalog consists of 638 earthquakes (241 background events and
397 aftershocks). The spatial distribution is presented on the left, although
32 (triggered) earthquakes are not shown because they are outside the spec-
ified space-time window. The temporal distribution is shown on the right.
The spike in activity starting on day 5527 is caused by a magnitude 5.33
earthquake and its aftershocks and corresponds to the cluster on the lower
right side of the spatial plot.
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Figure 2: Flatness of the log-likelihood function for varying one pa-
rameter at a time. This figure demonstrates the relative flatness of the
log-likelihood function for some components of the parameter vector θ̂ (two
graphs are shown to improve the legibility). The log-likelihood stays very
flat when µ, K0, c, and d are varied around their MLEs. This indicates po-
tentially high standard errors and/or numerical challenges for the estimation
of these parameters. The parameters a, ω, and ρ have much more peaked
log-likelihood functions and can hence be estimated more easily.
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−50%

ρ̂

+50%

+100%

+150%

Figure 3: Flatness of the log-likelihood in multidimensional settings.
The problem of flatness of the log-likelihood (shown in grey levels) function
can be aggravated in a multidimensional context. In this analysis, pairs of
components of θ̂ (ĉ, ω̂ on the left and â, ρ̂ on the right) are varied, while all
the other components are fixed at their MLEs (small white circle). Along
certain trajectories, even large deviations from the ‘true’ values reduce the
log-likelihood only marginally.
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Figure 4: Difficulties in estimating ETAS parameters when maximiz-
ing the log-likelihood numerically. Except for K0 and a, the starting
values (black dots) for the components of θ are set to the ‘true’ values (see
Table 1). The white circles show the estimation results of the numerical
maximization routine (θ̂num) and the ‘+’ symbol depicts the location of the
‘true’ K0 and a. The numerical maximization routine converges to an esti-
mate close to θ in only two cases. It fails to converge in two cases and seems
incapable of improving the K0 estimate for the four starting configurations
in which K0 is modified by 33%. This could be due to the relative flatness of
the log-likelihood function (shown in grey-levels) with respect to variations
of K0.
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Figure 5: Estimation of ETAS parameters using the EM-type al-
gorithm. Using the same starting values as in Figure 4 (black dots), the
EM-type algorithm converges to an estimate close to the ‘true’ value in all
eight situations. The white circles show the estimation results and the ‘+’
symbol indicates the location of the ‘true’ θ.
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Figure 6: Sampling distributions of parameter estimates using the
EM-type algorithm. Using the parameter values of Table 1, 100 earth-
quake catalogs were simulated and then estimated using the EM-type algo-
rithm proposed in this work. The estimates do not seem to be substantially
biased and standard errors are reasonably small. The vertical lines on each
histogram indicate the ‘true’ parameter values. The location of the mean
based on the 100 estimates is shown as the large triangle on the bottom
of each histogram. The standard error is shown in parentheses and one as
well as two standard error intervals are represented by the middle and small
triangles, respectively.
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Figure 7: Sampling distributions of parameter estimates when nu-
merically maximizing the log-likelihood. The ETAS parameters for the
same 100 simulated earthquake catalogs as in Figure 6 are estimated using
ML, where the results of the EM-type algorithm serve as starting values.
The sampling distributions are quite similar but the estimates seem to be
slightly more biased.
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Figure 8: Declustered background intensity estimates for Southern
California. Background intensities are estimated for geologically distinct
regions in Southern California using the space-time ETAS model (3). The
declustered background intensities (measured in events per day per squared
degree) are quite similar for six of the seven regions including the ones in
which the largest earthquakes and aftershock clusters were observed. The
only region with a substantially larger background rate is the Southern sec-
tion of the San Andreas fault system to the East of San Diego (region 2).
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