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Abstract: An exciting development in modeling has been the ability to estimate reliable
individual-level parameters for choice models. Individual partworths derived from these
parameters have been very useful in segmentation, identifying extreme individuals, and in
creating appropriate choice simulators.  In marketing, hierarchical Bayes models have taken the
lead in combining information about the aggregate distribution of tastes with the individual’s
choices to arrive at a conditional estimate of the individual’s parameters.  In economics, the
same behavioral model has been derived from a classical rather than a Bayesian perspective.
That is, instead of Gibbs sampling, the method of maximum simulated likelihood provides
estimates of both the aggregate and the individual parameters.  This paper explores the
similarities and differences between classical and Bayesian methods and shows that they result
in virtually equivalent conditional estimates of partworths for customers.  Thus, the choice
between Bayesian and classical estimation becomes one of implementation convenience and
philosophical orientation, rather than pragmatic usefulness.
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On the Similarity of Classical and Bayesian Estimates

of Individual Mean Partworths

Introduction

 More than any other discipline, marketing is concerned with predicting individual choice.  After

all, choice is what consumers do in selecting among alternatives in the marketplace.  A focus on

the individual values provides a critical foundation of segmentation, identification of prospects

and as input to market simulators (Wedel et al. 1999).  Initially, choice experiments were

estimated at an aggregate level.  Ratings-based conjoint methods (Green and Srinivasan 1990)

were needed to predict individual choices since there is much more information in ratings of

four alternatives compared with a selection of one.

 

 Recently hierarchical Bayes has provided a way to estimate remarkably stable individual choice

models (Allenby and Ginter 1995; Lenk, Desarbo, Green and Young 1996, Sawtooth Software

1999).  Within a Bayesian framework, these models estimate the distribution of coefficients

across the population and combine information with the individual’s choices to derive posterior

or conditional estimates of the individual’s values.  At the same time, random or mixed

coefficient choice models arising from a classical framework have permitted a similar analysis

by combining maximum likelihood estimates of the population distribution with individual

choices (Revelt and Train, 1999).   In this paper we examine the empirical differences between

these classical and hierarchical Bayes estimates.  Both methods share the same behavioral

assumptions, but derive from quite different estimation techniques and interpretive

philosophies.

 

 It is not the intent of this paper to bridge the cultural chasm between Bayesian and classical

statisticians.  Indeed, divisions between these frameworks have resisted twenty years of efforts

to bring them together (Gelman et al. 1995).  The goal of this paper is instead to show that the
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distinction is irrelevant for the purposes of estimating the mean partworths of individuals.

Since these estimates are critical for those developing segments, identifying outliers and

simulating market choices, it does not matter which method is used for the majority of our

practical and theoretical research.

 

 The two procedures are related numerically.1 When the same model is specified under the two

approaches, estimates from the classical and Bayesian procedures converge asymptotically

(Lindsey 1996).  In small samples, the two procedures provide numerically different results, due

to the different ways of treating uncertainty in the parameters of the population distribution.2

The relevant question is then an assessment of how different the results are in small samples.

 

 We investigate this question with a sample of 361 customers, using both classical and Bayesian

procedures to estimate the mean of the conditional distribution for each customer.  We use a

mixed or random coefficients logit specification of behavior, though other behavioral

representations could be used instead. We find that the results are remarkably similar for the

two approaches, even with this relatively small sample.

 

 The similarity of results, asymptotically and in our small-sample example, means that in many

contexts the differences between the two approaches arise in how the results are interpreted

more than in the numerical estimates themselves.  As has been found and exploited for other

kinds of models, the advantages of Bayesian numerical procedures for mixed logits can be

utilized while retaining a classical perspective, and classical procedures can be applied in

situations where they provide numerical conveniences, without abandoning a Bayesian

perspective.

                                                          
1 The relation is primarily due to the fact that the posterior distribution is proportional to the likelihood function
times the prior distribution. For a flat prior (as is usually specified) or asymptotically for any prior that nowhere
vanishes, the posterior distribution, which is the basis for Bayesian estimation, is therefore proportional to the
likelihood function, which is used for classical estimation. Also, the mean of the posterior, taken as an estimator, is
asymptotically equivalent to the maximum likelihood estimator.
 2 The Bayesian approach represents the uncertainty in terms of a posterior distribution, while the classical approach
represents it with the asymptotic sampling distribution of the maximum likelihood estimator.
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 In section 1, we provide the specification of mixed logits and describe how they are

conceptualized and estimated in both the classical and Bayesian perspectives.  Section 2

presents our application of a mixed logit model on 361 customers, comparing the results from

the two procedures.  Section 3 concludes with a discussion of the pragmatic reasons to choose

one system over the other.

 

1.  Specification of Mixed Logits

We first describe the behavioral specification, which is shared by both approaches, and then

briefly describe the conceptualization and techniques of estimation, which are different for the

two approaches. We assume that the partworths are normally distributed in the population. This

assumption is consistent with the commercially available software for the Bayesian approach

(Sawtooth Software 1999).  However, it is not required for either approach, and we later discuss

the use of non-normal distributions.

1.1 Behavioral Specification

 

 Assume each customer faces a choice among J alternatives in each of T choice situations.3

Customer n is assumed to choose the alternative in choice situation t with the highest utility.

The utility of alternative i as faced by customer n in situation t is modeled as:

 

 Unit = βn′ Xnit+enit, (1)

 

 where Xnit is a vector of independent variables that are observed by the researcher, such as

attributes of the alternative i in choice situation t.  These independent variables are considered

non-stochastic.  By contrast, the terms βn and enit are not observed by the researcher and are

considered stochastic.  The coefficient vector, βn, is assumed to be distributed normally across
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the population, independent of e and X, with mean vector b and covariance matrix W.   The

term enit is assumed to be distributed iid extreme value. The assumption of an iid extreme value

distribution for this additive error term makes the model a mixed logit instead of another type

of choice model, such as random coefficient probit.  In each choice situation, each customer

chooses the alternative that provides the greatest utility.

 

1.2  Classical Estimation

The parameters b and W are considered fixed, representing the true mean and covariance of the

βn’s in the population.  These parameters are estimated on a sample of customers drawn from

the population.  The estimators, denoted b
�

 and Ŵ , are stochastic due to sampling and are

obtained using maximum simulated likelihood estimation.  The likelihood function is

L(b,W)=∏nLn(b,W) where Ln(b,W) is the probability of customer n’s sequence of choices given

b and W.  Since enit is iid extreme value, this probability is an integral over βn of a product of

logits.  Simulation approximates this integral, using draws of βn from a normal distribution with

mean b and covariance W.  The estimator has an asymptotic distribution that is used as the

approximate sampling distribution in finite samples, as given by McFadden and Train

(forthcoming).  We denote this distribution as f(b
�

,Ŵ ).

For any b and W, the density of βn conditional on customer n’s sequence of choices is Gn(βn |

b,W)= Ln(βn) N(βn| b,W) / Ln(b,W), where N(βn| b,W)  is the normal population density with

mean b and covariance W, and Ln(βn)  is the probability of the customer’s sequence of choices

conditional on βn.  The expectation of this density, labeled E(βn| b,W), is approximated through

simulation, by taking draws of βn from N(βn | b,W), weighting each draw by the ratio Ln(βn) /

Ln(b,W),  and averaging the results.  The estimator for b and W provides the estimator

),|()( WbEE nn

���

ββ = .  The sampling distribution of )( nE β
�

 can be approximated by taking

                                                                                                                                                                                       
3 T can be as low as 1. J and T can vary over customers, though we suppress the notation for this possibility.
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draws of b
�

 and W
�

 from their sampling distribution f(b
�

,Ŵ )and calculating ),|( WbE n

��

β  for

each draw.

)( nE β
�

 can be viewed in either of two ways in classical estimation.  First, Gn(βn | b,W) can be

considered the density of βn in the subpopulation of customers who, when facing the sequence

of choice situations described by Xnit for all i and t,  make the choices that customer n made.

Then E(βn| b,W)  is the mean βn  within this subpopulation, and )( nE β
�

 is an estimator of this

mean.  Under this interpretation, the number of choice situations, as well as their characteristics

as defined by the Xnit’s, are considered fixed.  Second, one can consider the choice situations to

be sampled from a universe of possible choice situations, such that T can rise in the same way

that the number of sampled customers can rise.  Under this view, )( nE β
�

 is an estimator of

customer n’s coefficient vector, βn.  Importantly, the mean of a likelihood function that is

expressed as a density is asymptotically equivalent to the maximum likelihood estimator of that

likelihood function.  Therefore, )( nE β
�

 is asymptotically equivalent to the maximum likelihood

estimator of βn.

1.3 Bayesian Estimation

Under a Bayesian framework, b and W are considered stochastic from the researcher’s

perspective.  The researcher has a prior distribution on b and W, denoted p(b,W), and combines

this prior with the likelihood function of the data to obtain a posterior distribution. The joint

posterior for b, W, and βn for all n is proportional to ∏n Ln(βn) N(βn| b,W) p(b,W).  Draws from

this joint posterior distribution are obtained through Gibbs sampling.  That is, a sequence of

conditional draws is obtained, where each parameter is drawn conditional on a draw from the

other parameters.  For a draw of b and W, the conditional posterior for density of βn is Gn(βn |

b,W)= Ln(βn) N(βn| b,W) / Ln(b,W).  Note that this conditional posterior is the same as the

conditional density of βn used in the classical approach.  The two approaches use the same
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density for βn given values of b and W.  The two approaches only differ in the values of b and W

from which the density of βn is derived.

In Gibbs sampling, draws of b are obtained from its posterior conditional on draws of W and βn

for all n.  When βn is normally distributed, as we have assumed, then the population conditional

posterior for b is normal with mean equal to the average of βn over n and covariance W/N,

where N is the sample size.  Drawing from this distribution is easy.  Similarly, draws of W are

obtained from its posterior conditional on b and βn for all n.  When βn is normally distributed,

and the prior on W is inverted Wishart, the conditional posterior for W is also inverted Wishart,

which is easy to simulate (Gelman et al. 1995).  The simplicity of drawing from these posteriors

is one of the main computational advantages of Gibbs sampling in the Bayesian approach.  In

fact, the reason βn is assumed to be normally distributed is that, with this assumption, priors on

b and W can be specified that give easy-to-draw-from posteriors.

The Gibbs sampling provides a set of draws of βn from its posterior.  The mean of these draws

is denoted )(~
nE β .  It is the Bayesian analog of )( nE β

�

 under the classical approach.  In the

next section, we calculate and compare )(~
nE β and )( nE β

�

.

2. Application

Many states, including California, Pennsylvania, and Massachusetts, allow households to

choose the company from which they buy electricity.  We examine the factors that affect 361

residential customers’ choice of electricity supplier, using choice-based conjoint.  Surveyed

customers made 12 choices each from among four suppliers that differed on the basis of five

relevant attributes:

•  Fixed price, in cents per kilowatt-hour ( 7 or 9 cents per kWh)

•  Length of contract (0, 1, 2 or 3 years)
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•  Type of company (the local utility, a “well-known company other than the local utility”, or

“an unfamiliar company”.)

•  Time-of-use rates, with 11 cents per kWh from 8am-8pm and 5 cents per kWh from 8pm-

8am

•  Seasonal rates, with 10 cents per kWh in summer, 8 cents in winter, and 6 cents in spring

and fall.

Details on the sample and survey are provided Electric Power Research Institute (1998)4

Partworths are estimated for price, contract length, and indicator variables for whether the

company was the local utility, a well-known company other than the local utility, time-of-use

rates, and seasonal rates.  The “unfamiliar company” is taken as the base for normalization, so

that the partworths for the local utility and a well-known company are the values of these kinds

of companies relative to it.  Price and contract length are “linearized,” in that the same

partworth is applied for each one-unit increase in the variable (i.e., one-cent increase in price, or

one-year increase in contract length.)  The prices under time-of-use and seasonal rates did not

vary in the experiments; consequently, their partworths indicate the values of these rates,

including the negative value of the specified prices.  As stated in section 1, we assume that all

partworths are normally distributed across the population, with a full covariance matrix.

We estimate the expected partworths for each customer, conditional on that customer’s

observed choices.  In the Bayesian procedure, this statistic is the mean of the draws of βn for

that customer.  In the classical procedure, this statistic is the mean of the conditional

distribution of βn for the customer, based on the maximum likelihood estimates of the

population distribution.  With both procedures, the twelfth choice situation was excluded from

estimation and used to test forecasts based on the expected partworths for each customer.

                                                          
4 We are grateful to Ahmad Farqui, of EPRI, for allowing us to use these data.
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Table 1 displays the sample average of the expected partworths under the two procedures.

Column 1 gives the average over customers of the classical estimate for each customer and

column 2 gives the corresponding average of the Bayesian estimates.  The two sets of estimates

are quite similar.  The scale of the Bayesian estimates is slightly higher than that of the classical

estimates.  To account for the scale difference, the third column of Table 1 gives the average for

the classical estimates scaled such that the average price coefficient is the same for the two

procedures. With this rescaling, the two sets of averages are remarkably close.

Table 2 displays the standard deviation of the expected partworths over sampled customer.

These standard deviations are similar, and when the scale difference is accounted for, the two

sets of standard deviations are very close.

Table 3 arrays the correlation matrix for the vector of expected partworths under both

approaches. The upper-triangular portion of the matrix gives the correlations for the classical

estimates, and the lower-triangular portion gives the correlations for the Bayesian estimates.

The corresponding upper and lower figures are quite similar.  For example, the correlation

between the price coefficient and the contract length coefficient is 0.106 for the classical

estimates and 0.104 for the Bayesian estimates.  Note that the price coefficient is very highly

correlated with the time-of-use and seasonal coefficients.  This correlation is expected since

these variables are all price-related.  Both the Bayesian and classical procedures are more prone

to simulation noise when coefficients are highly correlated; stated alternatively, both methods

require more draws to obtain a given level of accuracy when there is high correlation among

coefficients.  It is particularly noteworthy, therefore, that the two methods provide such close

estimates in our study despite such high correlations.

Table 4 displays the correlation between estimates under the two methods.  For example, the

first row gives the correlation over the sampled customers between their expected price

coefficient estimated by the Bayesian method and their expected price coefficient estimated by
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the classical method.  The correlation is 0.975.  The correlation is even higher for the other

partworths.  These correlations are remarkably high, particularly given that each approach is

subject to simulation noise.  The two methods are giving essentially the same results, aside

from the small scale factor.

As stated above, the last choice experiment was retained for testing. We forecasted each

customer’s choice in their last experiment using the expected partworths.  The results are given

in Table 5.  Each customer’s expected partworths were used in a logit formula to calculate the

probability for each alternative in the customer’s last choice.  The average probability for the

chosen alternative (where the average is over the sampled customers) is practically the same for

both methods: 0.6299 for the Bayesian estimates and 0.6293 for the classical estimates. We also

examined the hit rates, the ability of each model to predict the alternative actually chosen out of

the four alternatives.  Again, the results were nearly the same: the Bayesian estimates resulted

in a 71% hit rate, virtually identical to the 72% for the classical procedure.  Importantly, the

Bayesian and classical methods provide the same prediction for more than 96% of the

respondents.

3. Discussion

We have applied both hierarchical Bayes and maximum likelihood estimation procedures to the

same random parameter structure.  Despite substantial algorithmic differences, the Bayesian

and the classical estimates of the individual partworths are virtually identical.  Our focus here

has been on the estimated parameters for each person, as those are the critical measures used in

customer selection, segmentation, and market simulations.

With normal distribution in a mixed logit model, both methods are fairly straightforward to

implement.  With other specifications, there can be differences in the convenience attached to

the computational procedures employed by each approach.  The main differences as we see

among them are the following.
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(1) For the classic case, it can sometimes be difficult to locate the maximum of the likelihood

function with some distributions and behavioral models.  The likelihood function can have

multiple local maxima, and assuring oneself that a local maximum is indeed the global

maximum can be computationally difficult.  Also, the likelihood function might not be well

approximated by a quadratic.  The standard numerical maximization procedures work best

when the function is close to a quadratic. We have found that the maximization procedures can

often fail to find an increase even though a maximum has not been located. This problem does

not seem to arise with mixed logits using normal distributions for the coefficients, as we are

using in the current paper.  However, we have found it to arise with other distributions,

particularly log-normals. (See the discussion below about non-normal distributions.)  Bayesian

procedures have an advantage in these circumstances because the maximum of the likelihood

function does not need to be located under these procedures.  Rather, draws from the posterior

are taken. The average of these draws can be used as a classical estimator that is asymptotically

equivalent to the maximum likelihood estimator.

(2) When the dimension of βn is large, its covariance W has numerous elements.  In classical

estimation, each element of the upper diagonal of W generates a parameter that utilizes a degree

of freedom.  Computationally, the derivative of the likelihood function with respect to each

element of W must be calculated, such that, with a full W, computation time rises exponentially

with the number of coefficients.  To maintain a manageable number of parameters, off-diagonal

elements of W are often constrained to zero under classical approaches.  In contrast, the

Bayesian approach can handle a full W almost as easily as a restricted W, as computation time

rises much more moderately with the number of parameters.

(3) Identification is less of an issue in Bayesian compared with classical approaches.  In the

classical estimation, unidentified parameters cannot be estimated.  In the Bayesian approach,

the prior can provide needed identification, or a flat prior can be specified such that unidentified

parameters manifest themselves as flat areas of the posterior.
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Reasons (1)-(3) provide motivation for estimation of mixed logits with Bayesian procedures

even if a classical perspective is maintained.  The computational disadvantage of Bayesian

procedures arises from their need to draw from conditional posteriors.  When the coefficients

are jointly normally distributed, priors can be specified that make the conditional posteriors for

b and W easy to draw from.  However, changes in the distributional assumptions can be difficult

to implement in the Bayesian procedures.  In the classical procedure, alternative distributions

can easily be specified for the coefficients.  Further, some coefficients can be assumed to be

fixed while others vary, and different distributions can be specified for different coefficients.

For simulated maximum likelihood the only change in the estimation procedure occurs in the

line of code that specifies the draws of the coefficients.  With Bayesian procedures, the

situation is not as easy.  For example, suppose one coefficient is assumed to be fixed while the

others are jointly normal. This change cannot be implemented by simply setting the variance of

the fixed coefficient to zero within the sampling algorithm for drawing the coefficients for each

person.  The algorithm used with mixed logits (i.e., Metropolis-Hastings) accepts new draws for

some customers and rejects new draws for other customers such that the fixed coefficient would

differ over customers in one iteration of draws rather than being the same for all customers.

Instead, a new layer of conditioning is required in the Gibbs sampling, requiring draws of the

fixed coefficient conditional on the mean, covariance, and values of the random coefficients.

Similarly, if non-normal distributions are specified for the coefficients, the conditional

posteriors for the parameters of these distributions are not normally distributed.  By contrast,

when βn is normally distributed, the conditional posterior of b is normal and the conditional

posterior of W is inverted Wishart, under appropriate priors. With other distributions, its is not

as easy to specify priors that give easy-to-draw-from conditional posteriors. Work in this area is

proceeding (e.g., Boatwright, McCulloch and Rossi, forthcoming), but the requirement that the

conditional posterior be derivable and easy to draw from is a necessary requirement and a

limitation of Bayesian methods.
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Our finding of equivalence in expected partworths at the individual level probably won’t bring

Bayesian and classic thinkers together, because they fundamentally disagree on the meaning of

uncertainty.  Still, for most marketing applications, our results provide sufficient convergence

to permit one to use either method.  Those most comfortable with maximum likelihood can

bask in its familiar statistics, while those most comfortable with Bayesian concepts of

uncertainty may frolic in its waves.  From a predictive perspective it does not matter.
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Table 1

Average of Expected Partworths

Classical Bayesian Scaled Classical
Price -1.044 -1.120 -1.120
Contract Length -0.260 -0.286 -0.279
Local Utility 2.714 2.821 2.91
Well-known Company 2.090 2.193 2.24
Time-of-use Rates -9.894 -10.54 -10.61
Seasonal Rates   -10.11 -10.84 -10.84

Table 2
Standard Deviation of Expected Partworths

Classical Bayesian Scaled Classical
Price 0.693 0.784 0.743
Contract Length 0.380 0.419 0.407
Local Utility 1.983 2.044 2.127
Well-known Company 1.381 1.468 1.481
Time-of-use Rates 6.643 7.061 7.125
Seasonal Rates 6.054 6.615 6.493
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Table 3
Correlation Matrix of E (b )

Classical estimates in upper triangle. Bayesian estimates in lower triangle

Price Contract
Length

Local
Utility

Well-
known

Company

Time-of-
use Rates

Seasonal
Rates

Price 1 0.106 0.649 0.523 0.903 0.942

Contract
Length

0.104 1 0.335 0.245 0.083 0.036

Local Utility 0.667 0.290 1 0.828 0.625 0.615

Well-known
Company

0.466 0.205 0.789 1 0.488 0.466

Time-of-Use
Rates

0.898 0.116 0.651 0.433 1 0.937

Seasonal
Rates

0.932 0.057 0.644 0.411 0.943 1

Table 4
Correlation between Classical and Bayesian Estimates

Price .975
Contract length .988
Local utility .985
Well-known company .978
Toll rates .981
Seasonal rates .979

Table 5:  Prediction for Last Choice Situation

Classical Bayesian
Average Probability of
the chosen alternative

0.6293 0.6299

Number of Matches
out of 361

261 256
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