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Message Chains for Distributed System Verification

FEDERICO MORA, University of California, Berkeley, USA
ANKUSH DESAI, Amazon Web Services, USA
ELIZABETH POLGREEN, University of Edinburgh, UK
SANJIT A. SESHIA, University of California, Berkeley, USA

Verification of asynchronous distributed programs is challenging due to the need to reason about numerous
control paths resulting from the myriad interleaving of messages and failures. In this paper, we propose an
automated bookkeeping method based on message chains. Message chains reveal structure in asynchronous
distributed system executions and can help programmers verify their systems at the message passing level of
abstraction. To evaluate our contributions empirically we build a verification prototype for the P programming
language that integrates message chains. We use it to verify 16 benchmarks from related work, one new
benchmark that exemplifies the kinds of systems our method focuses on, and two industrial benchmarks.
We find that message chains are able to simplify existing proofs and our prototype performs comparably
to existing work in terms of runtime. We extend our work with support for specification mining and find
that message chains provide enough structure to allow existing learning and program synthesis tools to
automatically infer meaningful specifications using only execution examples.

CCS Concepts: • Computing methodologies → Distributed programming languages; • Theory of
computation → Logic and verification.

Additional Key Words and Phrases: Formal verification, distributed systems, message passing
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1 INTRODUCTION

Programming error-free, reliable distributed systems is hard. Engineers need to reason about
numerous control branches stemming from a myriad interleaving of messages, the systems are
extremely tricky to debug due to the nested mesh of messages and failures, and it is surprisingly easy
to introduce subtle errors while improvising to fill in gaps between high-level system descriptions
and their concrete implementations. Yet we are dependent on distributed systems to deliver high-
performance computing, fault-tolerant networked services, and global-scale cloud infrastructures.
So what can we do to ease the job of the engineer tasked with programming a distributed system?
In this paper, we turn to a combination of formal modeling and automated reasoning. Specifically,
we propose a new set of tools—based on a novel notion of message chains—that distributed system
engineers can use to (automatically) reason about the fruits of their labor.
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Fig. 1. Contributions overview and workflow. White rectangles are artefacts; blue rectangles are components

of the framework. Red outline indicates artefacts are user inputs.

Modeling languages and automated reasoning already play an important role in raising the level
of assurance in distributed systems and cloud services. Classic domain-specific examples of the
combination include TLA+ [Lamport 2002]; newer examples include Ivy [McMillan and Padon 2020].
These languages and associated automated reasoning tools can be used to guarantee correctness
for all executions of a given system, or at least systematically explore the space in search of errors.
Unfortunately, these tools do not provide users with language primitives or abstractions to support
explicit message passing. To work at the message passing level—where a significant source of
implementation errors lie—therefore requires manual modelling and significant user effort.

To remedy this, we propose message chains, an automated method for keeping track of message
chains, and a verification framework that uses message chains to give users the vocabulary to
reason about the low-level details of explicit message passing while remaining at an intuitive level
of abstraction. Informally, message chains are sequences of logically related messages. This idea is
related to message sequence charts [ITU-T 2011] from the software engineering community, and
choreographic programming languages [Montesi 2014] from the programming languages commu-
nity. Message sequence charts are partial specifications that describe the flow of messages through
distributed systems. Engineers use these charts for testing, design, simulation, and documentation.
Choreographic programming languages, on the other hand, are high-level languages that define
distributed systems from a global perspective, focusing on communication flows. Both message
sequence charts and choreographic programming offer developers a way to reason about explicit
message passing but with the context of how messages flow through the system in question. In
this paper, we use message chains to bring these same ideas to formal verification.
Fig. 1 shows the complete workflow of our proposed approach. The user first inputs a model

(1.a) of their system written in the version of P [Desai et al. 2013, 2018] described in Sec. 5. This
model is fuzzed (1.b) to generate positive example message chains (1.c). We formally define message
chains in Sec. 3 and we formally define positive (and negative) examples in Sec. 4. The user can
optionally add negative examples (1.d) and then run the specification mining framework (1.e)
described in Sec. 4, producing likely invariants (1.f). The user can use these likely invariants as
their specification, provide their own invariants (1.g), or both. Either way, the model (1.a) and
invariants (1.f and 1.g) are given to the verification engine (1.h) described in Sec. 3 which returns
either true, if the proof by induction passes, or false otherwise. This process is usually iterative with
the user changing their model, invariants, or adding examples manually or through fuzzing. Note
that while a successful proof by induction implies there are no bugs, a failed proof by induction
does not imply there are bugs. This makes our tool unsuitable for bug finding, like all other proof
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1 data node

2 type mc := message_chain[node]

3 type sys := system[node]

4
5 function btw(w: node, x: node, y: node): Bool

6 function right(n: node): node

7 function le(x: node, y: node): Bool

8
9 event eNominate := {id: node}

10 machine Node {

11 state Search {

12 on entry do {

13 send right(this), eNominate(this)}

14 on eNominate e do {

15 let curr := e.payload.id in

16 if curr = this then goto Won

17 else if le(this, curr) then

18 send right(this), eNominate(curr)

19 else

20 send right(this), eNominate(this)}}

21 state Won {}}

(a) System model (example of Fig. 1.a)

22 function in_flight(s: sys, e: mc): Bool :=

23 s.events[e] and e is send

24 function leader(s: sys, l: node): Bool :=

25 s.machines[l].Node_state is Won

26 recursive function participated(e: mc, r: node): Bool :=

27 if e is empty then false

28 else e.source = r or participated(e.history, r)

29
30 induction (s: sys)

31 invariant unique_leader: forall (l: node, n: node)

32 leader(s, l) and leader(s, n) ==> l = n

33 invariant leader_max: forall (l: node, n: node)

34 leader(s, l) ==> le(n, l)

35 invariant participated_means_le_head:

36 forall (e: mc, n: node) let head := e.payload.id in

37 in_flight(s, e) and participated(e, n)

38 ==> le(n, head)

39 invariant not_participated_means_going_to_visit:

40 forall (e: mc, n: node) let head := e.payload.id in

41 in_flight(s, e) and not participated(e, n)

42 ==> btw(head, e.target, n) or e.target = n

(b) Specifications (example of Fig. 1.g or Fig. 1.f)

Fig. 2. Ring leader election in the UPVerifier. Definitions of btw (“between”), right, and le (“less than or

equal to”) functions omitted. btw is used to define the ring topology, right uses btw to determine the next

node in the ring given an input node, and le is used to determine who the winner should be.

by induction-based tools. But our work can be easily extended to support bug finding algorithms,
like bounded model checking.

1.1 Running Example: Ring Leader Election Protocol

To better understand this workflow, consider the following ring leader election protocol inspired
by Le Lann [1977], Chang and Roberts [1979]. The protocol consists of a set of nodes, each with
a unique label value. The goal of the protocol is for the nodes to collectively discover the node
with the greatest label. Operationally, nodes are arranged in a ring: each node can only receive
messages from the node on its “left” and can only send messages to the node on its “right.” Nodes
send messages holding label values and begin their execution by sending their own label to their
right. If a node receives a label greater than its own label, it forwards that received label to its right.
If the received label is smaller than its own label, the node sends its own label to the right. Finally,
if a node ever receives its own label, it declares itself the winner.
We display an implementation of the ring protocol in P-like syntax in Fig. 2a. This code corre-

sponds to user provided “Model” in Fig. 1.a. P programs consist primarily of event and machine
declarations. Event declarations define the kind of messages machines exchange and the payloads
these messages hold. Machine declarations define the kinds of machines in the system and how
they interact with each other. In this figure, we define one kind of event, eNominate, which holds
an identifier (line 9). We also define one kind of machine, Node, which has no fields, and two states:
Search and Won (lines 10-21). When nodes enter the Search state, they send their value to the
node on their right (lines 12-13). After sending their value, while nodes are still in the Search state,
nodes react to receiving nominations in one of three ways (lines 14-20). First, when nodes receive a
value less than their value, they send their value to the node on their right (lines 19-20). Second,
when nodes receive a value greater than their value, they forward this new value to the node on
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Node 4
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Fig. 3. Lamport diagram for an execution of Fig. 2a instantiated with four nodes. Nodes are arranged in

a ring, ordered 1, 4, 2, 3. Events are labeled 𝑛:𝑖 , where 𝑛 is the node the event occurs on and 𝑖 is the event

number on that node. Colors on arrows between send and receive events indicate message chains.

their right (lines 17-18). Third, when nodes receive their own value, they move to the Won state
(line 16). The code blocks that begin with the keyword on are handlers.

Note that Fig. 2a makes no mention of the number of nodes in the system. In fact, this definition
represents all possible instantiations of the protocol. We describe this in detail in Sec. 3. For now, it
suffices to know that the node (lower-case “n”) definition (line 1) declares a new uninterpreted sort
that represents a pointer to, or label of, Node (upper-case “N”) machines. The size of the universe
of node determines the number of Node machines, and the verification engine that we define will
be free to search for counterexamples over any possible universe of node.

1.2 Message Chains

Fig. 3 shows the Lamport diagram for an execution of the ring leader election protocol on four
nodes (the universe of node is the set {1, 2, 3, 4}). Every event in Fig. 3 corresponds to the entry
into a handler or the execution of a send instruction in Fig. 2a. In this example, node 4 is to the
right of node 1, node 2 is to the right of node 4, node 3 is to the right of node 2, and node 1 is to
the right of node 3. The execution begins with node 1 sending its own label value to node 4 (event
1:0, which corresponds to entering the on entry handler of Fig. 2a). When node 4 receives the
value 1 (event 4:0), it compares 1 to its own value, and decides to send its own value to node 2
(event 4:1). This process goes on until node 4 receives its own value (event 4:3) and declares itself
the winner. Fig. 3 also shows four message chains observed during the same execution. The first
message chain, in blue, consists of the events 1:0, 4:0, 4:1, 2:3, 2:4, 3:3, 3:4, 1:2, 1:3, and 4:3, along
with omitted associated payloads. The remaining message chains are in orange, green, and pink.
The message chains in Fig. 3 correspond to the “Positive Examples” in Fig. 1.c: these can be obtained
automatically by fuzzing the input model (Fig. 1.a).

Intuitively, message chains behave like email chains: each message in the system is passed around
with the message it was responding to, creating a history consisting of a sequence of messages that
caused the current message. Looking at this history is often useful. For example, if you receive a
reply to an email, you know that sender received your email and you can tell which email they
are responding to by looking at the chain. It does not matter whether that sender also sent other
emails to you or other people, the order in which they sent these other emails, or the content of
those other emails. For your conversation with the sender, the email chain itself provides sufficient
information. We use the same principles to reason about message-passing distributed systems.
We capture this intuitive notion by instrumenting handlers. Specifically, when a handler sends

a message without having received a message, our instrumentation begins a new message chain
containing only that message. For example, when the on entry handler of Fig. 2a is triggered at
event 1:0 of Fig. 3, we start a new message chain (in blue) containing a single message from node 1
to node 4 containing the payload 1. When a machine receives a message and reacts in the same
handler by sending a message, our instrumentation extends the message chain associated with the
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received message. For example, when the on eNominate handler of Fig. 2a is triggered at event 4:0,
we extend the blue message chain with a message from node 4 to node 2 with payload 4 (event 4:1).

1.3 Verification

Our goal in general is to prove that systems of asynchronously communicating state machines
guarantee specified safety properties. The “Verifier” in Fig. 1.h is responsible for this process. It
takes a set of properties (“User Invariants” and “Likely Invariants” in Fig. 1.g and Fig. 1.f), and
returns true if the conjunction of properties passes a proof by induction. For the ring leader election
protocol specifically, we prove that there is only ever a single node that declares itself the winner
and that the winning node has the label with the greatest value, no matter how many nodes are
included in the system. In general and for the ring leader election protocol specifically, our proofs
will rely on message chains.

Textbook proofs of correctness for such a ring leader election protocol often assume synchronous
execution of nodes (e.g., Aspnes [2020]). For the synchronous version of this protocol, for every
round 𝑘 < 𝑛, every node sends the greatest value it has seen so far to the node on its right, and after
𝑛 rounds the protocol terminates as every node is aware of the greatest value in the ring. Proofs
of correctness for the synchronous version of this protocol use induction on the round number.
Unfortunately, most realistic implementations are not synchronous and so these textbook proofs of
correctness do not apply. In the asynchronous setting, proofs of correctness for this protocol tend
to ignore message passing altogether. For example, Koenig et al. [2020] provide a proof in mypyvy
that abstracts away individual message buffers into a single, shared, append-only relation.1 Padon
et al. [2016] provide a similar proof in Ivy.

In this paper, we propose a new verification approach based on message chains and use it to prove
the correctness of asynchronous distributed systems at the message passing level of abstraction.
For example, for the ring leader election protocol, we are able to encode and machine check a proof
of correctness that is simple, like the textbook proof, and asynchronous, like the mypyvy proof, all
while being at a lower level of abstraction than both, since it captures message passing directly.
Specifically, Fig. 2b displays the full verification of the ring leader election protocol in our prototype
verification framework, the UPVerifier. This proof, which we revisit in Sec. 3, uses two target
invariants and two auxiliary invariants—invariants used to make the target specification inductive.
The first invariant captures the desired property that there is only ever a single node that declares
itself the winner. The second invariant captures the desired property that the winning node has
the label with the greatest value. The third invariant is an auxiliary invariant. It says that the head
of every message chain always holds the largest label it has seen so far. The fourth invariant is
also an auxiliary invariant. It says that, for every message chain, if there is a node that has not yet
participated in the message chain then the message chain is going towards that node. Together,
these four invariants capture the textbook proof of correctness over every message chain: for every
message chain, the round number in the textbook proof is equal to the length of the message chain.

1.4 Specification Mining

Choosing properties and formally expressing them can be challenging for users, so we employ
specification mining techniques to lessen this burden. This process corresponds to the “Spec Miner”
in Fig. 1.e and the output of this process corresponds to “Likely Invariants” in Fig. 1.f.
The intuition behind our approach is that message chains reveal enough structure that they

can even be used to automatically learn meaningful specifications from only distributed system
execution data. That is, given only example message chains (no access to the system definition or

1Available at https://github.com/wilcoxjay/mypyvy/blob/pldi20-artifact/examples/fol/ring_id.pyv
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specifications), existing learning techniques can discover properties that hold for all executions
of a system. For example, in Sec. 4.1 we describe how an existing program synthesis technique
can be used to discover the third invariant of Fig. 2b using only example message chains. Without
message chains, given only example execution logs, the same off-the-shelf, state-of-the-art tool is
unable to learn any meaningful specifications.
This learning from examples problem is usually called specification mining [Ammons et al.

2002] or likely invariant synthesis [Ernst et al. 2001] and has applications beyond verification. For
example, specification mining can be used for automated program repair [Demsky et al. 2006],
testing [Schuler et al. 2009], system understanding [Beschastnikh et al. 2015], and more. In this
paper, we focus on validating the use of message chains for specification mining by showing that
learning techniques can discover invariants that appear in our manual verification efforts.

1.5 Roadmap and Contributions

The rest of this paper is organized as follows. We begin by giving the necessary background
on SMT and I/O Automata in Sec. 2. We use this background to formally define the verification
problem and our encoding in Sec. 3. The problem definition captures systems with any number
of machines executing for any number of steps; the encoding captures the notion of message
chains and the instrumentation needed to use them. Sec. 3 also formally defines message chain
invariants and gives a detailed verification of the running example using them. In Sec. 4 we formally
define the specification mining problem and describe two approaches for mining message chain
invariants. In Sec. 5 we implement an instance of our verification approach for the P programming
language specifically and we call the resulting tool the UPVerifier. We then empirically evaluate
our verification and specification mining approaches in Sec. 6. We conclude by surveying related
work in Sec. 7. Overall, we make the following contributions.

(1) We define message-passing distributed systems based on I/O Automata. We define the verifi-
cation problem and build a framework that compiles the problem to satisfiability modulo
theories (SMT) [Barrett et al. 2021] queries.

(2) We define the notion of message chains and integrate it into our message-passing distributed
systems. This notion is suited to programming languages like Erlang [Telefonaktiebolaget
LM Ericsson 2022], Akka [Lightbend, Inc 2022], and P [Desai et al. 2013].

(3) We instantiate our framework for a version of the P language and call the result the UPVeri-
fier. We then replicate verification efforts from related work, and simplify these proofs using
message chains. We then verify a correctness property for a system with complex message
passing—the onion routing network—and two industrial case studies.

(4) We define the notion of positive and negative message chain examples and describe how to
use existing learning and program synthesis techniques to automatically mine specifications
from examples only. We evaluate this technique by automatically mining useful specifications
for the distributed systems we verified.

2 BACKGROUND

In this section, we give the necessary background on I/O Automata (Sec. 2.1) and SMT (Sec. 2.2).

2.1 I/O Automata Background

We present a version of I/O Automata [Lynch 1996] tailored to our context along with examples
focused on our encoding. Let states and actions be disjoint sets. An I/O Automaton 𝐴 is a six-tuple

(inp(𝐴), int(𝐴), out(𝐴), states(𝐴), start(𝐴), trans(𝐴)),
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where inp(𝐴) (input actions), int(𝐴) (internal actions), and out(𝐴) (output actions) are disjoint
subsets of actions, states(𝐴) is a subset of states, start(𝐴) is a subset of states(𝐴), and trans(𝐴) is a
transition relation over state-action-state triples. Specifically, trans(𝐴) is a relation on states(𝐴) ×
inp(𝐴) ∪ int(𝐴) ∪ out(𝐴) × states(𝐴). We call individual triples (𝑠, 𝑎, 𝑠 ′) in trans(𝐴) steps of 𝐴. Like
Lynch, we require I/O Automata to be input-enabled. That is, we require that for every state 𝑠 and
action 𝛼 ∈ inp(𝐴) there exists a state 𝑠 ′ such that (𝑠, 𝛼, 𝑠 ′) ∈ trans(𝐴).

Example 2.1 (Simple Universal Buffer I/O Automata). We define an I/O Automaton called the
simple universal buffer (SUB). Intuitively, SUB represents a set of integers that other external
automata will be able to add to or remove from. Formally, for a non-empty index set 𝑅, let inp(SUB)
be {put(v)𝑖, 𝑗 | 𝑣 ∈ Z; 𝑖, 𝑗 ∈ 𝑅}; int(SUB) be ∅; out(SUB) be {get(v)𝑖, 𝑗 | 𝑣 ∈ Z; 𝑖, 𝑗 ∈ 𝑅}; states(SUB)
be the set of all sets of integers unioned with a special error state, i.e., 2Z ∪ {⊥}; start(SUB) be the
singleton set containing the empty set of integers; and trans(SUB) be a relation such that put(v)𝑖, 𝑗
actions add the integer 𝑣 to the state, and, if 𝑣 is in the set, get(v)𝑖, 𝑗 actions remove the integer 𝑣
from the state. If 𝑣 is not in the set, then get(v)𝑖, 𝑗 actions move SUB to the error state. Once in the
error state, no actions change the state. Fig. 4a illustrates the interface of SUB, where input (output)
actions are arrows toward (away from) the automaton.

We often define transition relations piecemeal through precondition-effect pairs.

Definition 2.2 (Precondition-Effect Pair). Let 𝐴 be an I/O Automaton. A precondition-effect pair
(𝑝, 𝑒) of𝐴 consist of a predicate 𝑝 (𝑠, 𝛼) over an input state and an input action, and a function 𝑒 (𝑠, 𝛼)
that takes in an input state and an input action and returns a new state. Given a precondition-effect
pair (𝑝, 𝑒), if 𝑝 (𝑠, 𝛼) is true and 𝑒 (𝑠, 𝛼) = 𝑠 ′, then we say that (𝑠, 𝛼, 𝑠 ′) ∈ trans(𝐴). As a matter of
convention, when the I/O automaton in question has an error state (like ⊥ for SUB), actions that do
not satisfy any precondition move the state of the I/O automaton to that error state. This convention
makes it easier to define input-enabled I/O automata in terms of precondition-effect pairs. When
non-determinism is needed, we extend 𝑝 and 𝑒 to take extra, non-deterministic arguments. However,
to simplify the presentation, we elide non-deterministic arguments for the remainder of this paper.

For example, the simple universal buffer (SUB) has a precondition-effect pair with precondition
𝑝 (𝑠, get(v)𝑖, 𝑗 ) B 𝑣 ∈ 𝑠 and effect 𝑒 (𝑠, get(v)𝑖, 𝑗 ) B 𝑠 \ 𝑣 . This precondition asserts that 𝑣 must be in
the set (we cannot get an element which is not present), and this effect removes 𝑣 from the set 𝑠 .

Definition 2.3 (I/O Automata Composition). When I/O Automata are compatible, they can be
composed to form new I/O Automata. A finite, non-empty set of I/O Automaton𝑀 are compatible if
their internal actions and output actions are pairwise disjoint, respectively. That is, the automaton
in 𝑀 are compatible if ∀𝐴, 𝐵 ∈ 𝑀 𝐴 ≠ 𝐵 =⇒ int(𝐴) ∩ int(𝐵) = ∅ and ∀𝐴, 𝐵 ∈ 𝑀𝐴 ≠ 𝐵 =⇒
out(𝐴) ∩ out(𝐵) = ∅. The composition of machines 𝑀 for a finite, non-empty index set 𝑅 and
enumeration 𝜇, denoted𝑀 ·, is a new I/O Automata where inp(𝑀 ·) = ⋃

𝐴∈𝑀 inp(𝐴) \⋃𝐴∈𝑀 out(𝐴);
int(𝑀 ·) = ⋃

𝐴∈𝑀 int(𝐴); out(𝑀 ·) = ⋃
𝐴∈𝑀 out(𝐴); states(𝑀 ·) is the set of all arrays 𝑠 such that for

every 𝑖 ∈ 𝑅, 𝑠 [𝑖] is a member of states(𝜇 (𝑖)); start(𝑀 ·) is the set of all arrays 𝑠 such that for every
𝑖 ∈ 𝑅, 𝑠 [𝑖] is a member of start(𝜇 (𝑖)); and trans(𝑀 ·) is the set of triples (𝑠, 𝛼, 𝑠 ′) such that ∀𝑖 ∈ 𝑅 if
𝛼 is in the actions of 𝐴 then (𝑠 [𝑖], 𝛼, 𝑠 [𝑖] ′) ∈ trans(𝑠 [𝑖]) and otherwise (𝑠 [𝑖], 𝛼, 𝑠 [𝑖]) ∈ trans(𝑠 [𝑖]).
Note that our definition of composition is associative.

Example 2.4 (I/O Automata Composition). We define a class of I/O automaton called simple
machine (SM𝑖 ) and then compose an instance of the class with SUB from Ex. 2.1. Intuitively, SM𝑖

automaton receive integers from SUB, keep track of the most recent integer received, and send
integers to SUB that are greater than the most recent integer received. Formally, for a non-empty
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(a) Simple Universal Buffer (b) Simple Machine (c) SUB and SM1 Composition

Fig. 4. Visualizations of I/O automata for examples 2.1 and 2.4. Irrelevant actions omitted.

index set 𝑅, let inp(SM𝑖 ) be {get(v)𝑖, 𝑗 | 𝑣 ∈ Z; 𝑗 ∈ 𝑅}; int(SM𝑖 ) be ∅; out(SM𝑖 ) be {put(v)𝑖, 𝑗 | 𝑣 ∈
Z; 𝑗 ∈ 𝑅}; states(SM𝑖 ) be the integers unioned with an error state Z ∪ {⊥}; start(SM𝑖 ) be the
singleton set containing the integer zero; and trans(SM𝑖 ) be a relation such that get(v)𝑖, 𝑗 sets the
state to 𝑣 , and put(v)𝑖, 𝑗 can occur if 𝑣 is greater than the current state. Fig. 4b illustrates the interface
of SM𝑖 . The automaton SM1 is compatible with SUB and so SM1 · SUB is also an I/O automaton.
Fig. 4c illustrates this composition with irrelevant actions omitted. Note that SM1 ·SUB is compatible
with every instance SM𝑗 iff 𝑗 ≠ 1. Therefore, we could further compose simple machine instances.

Definition 2.5 (I/O Automata Executions). Let𝐴 be an I/O Automaton. An execution of𝐴 is a finite
sequence of alternating states and actions 𝑠0, 𝛼1, 𝑠1, ..., 𝛼𝑘 , 𝑠𝑘 such that 𝑠0 belongs to start(𝐴), every
𝑠𝑖 belongs to states(𝐴), and every triple (𝑠𝑖 , 𝛼𝑖+1, 𝑠𝑖+1) belongs to trans(𝐴). We use exec(𝐴) to refer
to the set of executions of 𝐴. We say that a state 𝑠 is reachable by 𝐴 if there exists an execution
𝑠0, 𝛼1, 𝑠1, ..., 𝛼𝑘 , 𝑠𝑘 ∈ exec(𝐴) with 𝑠𝑘 = 𝑠 .

For example, the sequence ∅, put(7)𝑖, 𝑗 , {7}, get(7)𝑖, 𝑗 , ∅ is an execution of SUB from Ex. 2.1. On the
other hand, the sequence ∅, get(7)𝑖, 𝑗 , ∅ is not an execution of SUB.

Definition 2.6 (I/O Automata Verification). An invariant assertion (invariant) is a predicate 𝑝 over
states. We say that an invariant holds of an I/O Automaton 𝐴 if for all reachable states 𝑠 , 𝑝 (𝑠)
holds. A counterexample is a reachable state 𝑠 such that 𝑝 (𝑠) does not hold. An inductive invariant
is an invariant 𝑝 such that for every step (𝑠, 𝛼, 𝑠 ′) ∈ trans(𝐴) if 𝑝 (𝑠) holds then 𝑝 (𝑠 ′) holds. A
counterexample to induction is a step (𝑠, 𝛼, 𝑠 ′) ∈ trans(𝐴) such that 𝑝 (𝑠) holds but 𝑝 (𝑠 ′) does not.
A proof by induction for an invariant 𝑝 is a proof that 𝑝 is inductive and that 𝑝 (𝑠) holds for every
state 𝑠 ∈ start(𝐴). A verification of an I/O Automata is a successful proof by induction.

For example, consider SM1 · SUB from Ex. 2.4 and the invariant assertion which states that every
element in the set maintained by the SUB component is greater than zero. That is, the invariant is
𝑝 ( [𝑠SM1 , 𝑠SUB]) B ∀𝑖∈𝑠SUB 𝑖 > 0. A counterexample to induction for this I/O Automaton and invariant
is the step ( [−1, {}], put0, [−1, {0}]). Note that the pre-state [−1, {}] is not reachable and that the
invariant does indeed always hold. Nevertheless, the proof by induction fails.

2.2 Satisfiability Modulo Theories (SMT) Background

We assume a working knowledge of SMT and the standard logical theories over integers, arrays,
and sequences. For more details, we refer the reader to the smt-lib standard [Barrett et al. 2016]
and works on the specific theories ( e.g., [Barrett et al. 2021; Bjørner et al. 2012]). In the remainder
of the paper, we refer to the smt-lib standard presentation of many-sorted first-order logic with
algebraic data types built-in, along with integer, array, and sequence theories, as SMT.
Fig. 5 shows the abstract syntax of untyped SMT terms and values. An SMT formula is a well-

typed term of sort Bool with no free variables. An SMT interpretation 𝐼 is a mapping on signatures
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𝑡 ::= 𝑣 | 𝑥 | 𝑓 𝑡

| 𝑐(𝑠1:= 𝑡1, ...., 𝑠𝑛:= 𝑡𝑛) | 𝑡.𝑠 | 𝑡 is 𝑐

| 𝑡1[𝑡2] | 𝑡1[𝑡2 -> 𝑡3] | concat(𝑡1, ..., 𝑡𝑛)
| forall (𝑥) 𝑡 | exists (𝑥) 𝑡 | |𝑡 |
| let 𝑥 := 𝑡1 in 𝑡2 | if 𝑡1 then 𝑡2 else 𝑡3

𝑣 ::= true | false | integer
| 𝑐(𝑠1:= 𝑣1, ..., 𝑠𝑛:= 𝑣𝑛) | 𝑣∗

| const 𝑣 | 𝑣1[𝑣2 -> 𝑣3]

Fig. 5. Untyped smt-lib term and value abstract syntax. integer represents all concrete integer values and 𝑣∗

represents all concrete, finite sequence values. The syntax 𝑡.𝑠 stands for 𝑠 (𝑡), 𝑡1[𝑡2] stands for select(𝑡1, 𝑡2),
𝑡1[𝑡2 -> 𝑡3] stands for store(𝑡1, 𝑡2, 𝑡3), and |𝑡 | stands for length(𝑡).

and we require that every interpretation obeys the semantics of the smt-lib standard and the
respective theory definitions. An Interpretation 𝐼 satisfies a formula 𝑡 if 𝑡 evaluates to true under
the interpretation 𝐼 . In this case, we write 𝐼 |= 𝑡 and call 𝐼 a model of 𝑡 . When every model of 𝑡1
is also a model of 𝑡2, we re-use notation and write 𝑡1 |= 𝑡2. We say that a formula is satisfiable
(unsatisfiable) if there (does not) exists an interpretation that satisfies it.

We deviate from the smt-lib standard slightly in the vocabulary we use related to algebraic
data types. The following clarifies the connection. If a sort 𝑡 has a non-empty set of constructors,
then we call 𝑡 an algebraic data type. If 𝑡 has a single constructor 𝑐 and every selector 𝑠 of 𝑐 is such
that it is not the case that 𝑡 appears in the sort of 𝑠 , then we call 𝑡 a record. When 𝑡 is a record
with constructor 𝑐 , we call every selector 𝑠 of 𝑐 a field of 𝑡 . If 𝑡 is an algebraic data type and every
constructor of 𝑡 has no associated selectors, then we call 𝑡 an enum. When 𝑡 is an enum, we call
every constructor of 𝑡 a variant of 𝑡 and often treat the enum as a set.

We also deviate from the smt-lib standard in that we support ad-hoc polymorphism for function
definitions (macros). This allows for a cleaner presentation when frequently using sort parameters.

2.3 I/O Automata In SMT

Our encoding of I/O Automata into SMT is straightforward: each element of the six-tuple defining
I/O Automata maps to an SMT construct. Specifically, for an I/O Automaton𝐴, we encode the set of
actions, actions, as a sort 𝑎, and we encode inp(𝐴), int(𝐴), and out(𝐴), as predicates on 𝑎. We encode
the state space, states, as a sort 𝑠 and we encode states(𝐴), as a predicate on 𝑠 . Similarly, we encode
states(𝐴), as a predicate on 𝑠 . Finally, we encode trans(𝐴), as predicates on triples (𝑠, 𝑎, 𝑠). When
transitions are defined by precondition-effect pairs, we encode the precondition as a predicate over
an input state and an input action, and the effect as a function that takes in an input state and an
input action and returns a new state. For our encoding, we require that there are a finite number of
precondition-effect pairs per query.

3 VERIFICATION APPROACH

In this section, we formulate the problem of verifying asynchronously communicating state ma-
chines, we describe our verification workflow, and we define message chain invariants. All of this is
built on top of Folds Automata (first-order logic distributed systems automata), a short-hand for
parametric compositions of I/O automata with restrictions that
(1) make modelling distributed systems easy (see Sec. 5),
(2) make encoding these systems into SMT straightforward (see Sec. 3.3), and
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(3) enable our verification workflow by integrating message chains.

3.1 Folds Automaton: Encoding Distributed Systems as I/O Automata

At a high-level, FoldsAutomata represent compositions ofmany statemachines (similar to instances
of SM𝑖 of Ex. 2.4) with a single universal buffer (similar to SUB of Ex. 2.1). Our main contribution,
and one of the key differences between Folds Automata and the I/O automata in examples 2.1 and
2.4, is that, instead of communicating by exchanging integers, Folds Automata communicate with
algebraic data types representing chains of messages.

Definition 3.1 (Message Chains). MC is an algebraic data type with two sort parameters and two
constructors. The sort parameters are E, representing the type of messages, and R, representing the
set of machine identifiers. The two constructors are empty and send. The constructor empty has no
selectors. The constructor send has four selectors: source, target, payload, and history. The
source selector represents the machine that sent the current message and is of sort R. The target
selector represents the destination of the current message and is of sort R. The payload selector
represents the contents of the current message and is of sort E. The history selector represents the
tail of the message chain and is of sort MC[E, R]. A message chain is an instance of the MC algebraic
data type. The following functional pseudo-code snippet captures this definition succinctly.

1 data [E, R] MC := | empty
2 | send {source: R, target: R, payload: E, history: MC[E, R]}

For example, send(2, 3, eNominate(4), send(4, 2, eNominate(4), empty)) is the green
message chain in Fig. 3. Note that message chains are essentially lists of triples. For convenience,
we sometimes treat message chains as sequences of triples instead. This is most relevant in Sec. 4.

Definition 3.2 (Folds Automata). A Folds Automaton 𝐴 is a triple (𝐸, 𝑅,𝑀𝑖 ), where 𝐸 is a sort
representing messages, 𝑅 is a sort representing machine identifiers, and𝑀𝑖 is a class of I/O Automata
that satisfies the following conditions.
(1) For every 𝑖 ∈ 𝑅,𝑀𝑖 is an I/O automata.
(2) If 𝑖, 𝑗 ∈ 𝑅 𝑖 ≠ 𝑗 then𝑀𝑖 and𝑀 𝑗 are compatible.
(3) inp(𝑀𝑖 ) is {get(v)𝑖, 𝑗 | 𝑣 ∈ 2𝑀𝐶 ; 𝑗 ∈ 𝑅}.
(4) out(𝑀𝑖 ) is {put(v)𝑖, 𝑗 | 𝑣 ∈ 2𝑀𝐶 ; 𝑗 ∈ 𝑅}.
(5) states(𝑀𝑖 ) is an error state ⊥, or a record with two sets of message chains, input𝑖 and output𝑖 .
(6) start(𝑀𝑖 ) must only include non-error states where input𝑖 and output𝑖 are empty.
(7) trans(𝑀𝑖 ) is a relation such that get(v)𝑖, 𝑗 updates input𝑖 to be input𝑖 ∪ 𝑣 , and put(v)𝑖, 𝑗 updates

output𝑖 to be output𝑖 \ 𝑣 , if 𝑣 was in output𝑖 (otherwise𝑀𝑖 moves to the error state ⊥).
(8) No internal action adds to input𝑖 .
(9) If an internal action removes from input𝑖 , then it removes exactly one message chain. We call

this message chain the received message chain.
(10) Internal actions can only depend on the received message chain.
(11) No internal action removes from output𝑖 .
(12) Every message chain that is added to output𝑖 is of the form send(𝑒 , ℎ), where 𝑒 is a message

and ℎ is either the received message chain, if the internal action received a message chain, or
empty if the internal action did not receive a message chain. We call 𝑒 the current message in
the message chain and we call ℎ the history of the message chain.

(13) No internal action can depend on the history of the received message chain.
(14) Internal actions can only add to output𝑖 after any local state changes; internal actions can

only make local state changes after any input𝑖 removal.
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Intuitively, the first seven conditions (1-7) define network communication: machines send and
receive sets of message chains and have input and output buffers that are sets of message chains. The
next four conditions (8-11) ensure that machines use their own input and output buffers correctly.
Condition 12 ensures that message chains are constructed correctly. Condition 13 ensures that
message chains do not affect the behavior of the system we are modeling. That is, message chains
behave like ghost variables. Finally, condition 14 ensures that, even though machines take turns
stepping, our system is equivalent to an asynchronous composition. This follows from the same
argument put forth by Padon [2018], which is in turn due to Lipton [1975].
To give the semantics of Folds Automata, we first give the definition of the Universal Buffer,

which mediates machine communication by holding and distributing message chains.

Definition 3.3 (Universal Buffer). for a given non-empty index set 𝑅, the Universal Buffer UB,
is an I/O automata such that inp(UB) is {put(v)𝑖, 𝑗 | 𝑣 ∈ 2𝑀𝐶 ; 𝑖, 𝑗 ∈ 𝑅}; out(UB) is {get(v)𝑖, 𝑗 | 𝑣 ∈
2𝑀𝐶 ; 𝑖, 𝑗 ∈ 𝑅}; int(UB) is the empty set; states(UB) is 2𝑀𝐶 ∪ {⊥}; start(UB) is the singleton set
containing the empty set; and trans(SUB) is a relation such that put(v)𝑖, 𝑗 updates the state 𝑠 to 𝑠 ∪ 𝑣
and get(v)𝑖, 𝑗 updates the state 𝑠 to 𝑠 \ 𝑣 , if 𝑠 contained 𝑣 (otherwise SUB moves to the error state ⊥).

A Folds Automaton (𝐸, 𝑅,𝑀𝑖 ) is equivalent to the I/O Automata composition of {𝑀𝑖 | 𝑖 ∈ 𝑅} ∪
{UB}. All definitions that apply to this composed I/O Automata can be lifted to Folds Automata.
For example, an invariant assertion on a Folds Automaton 𝐹 is a predicate 𝑝 over states of the
I/O Automata corresponding to 𝐹 . Similarly, a proof by induction for an invariant 𝑝 of a Folds
Automaton 𝐹 is a proof that 𝑝 is inductive and that 𝑝 (𝑠) holds for every starting state 𝑠 of 𝐹 .

We wish to verify FoldsAutomata for all possible values of 𝑅. For example, we want to verify that
the ring leader election protocol is correct no matter how many nodes participate in the election.
To do this, we define parametric Folds Automata.

Definition 3.4 (Parametric Folds Automata). A parametric Folds Automaton is a function 𝐹 (𝑅) B
(𝐸, 𝑅,𝑀𝑖 ), where 𝐸 is a sort representing messages, 𝑅 is the parameter, and 𝑀𝑖 is a class of I/O
Automata satisfying the Folds Automaton conditions. We call every output of 𝐹 an instance of 𝐹 .

3.2 Problem Definition: Parametric Verification by Induction

Given a parametric Folds Automaton 𝐹 and an invariant 𝑝 , the verification problem is to verify
every possible instance of 𝐹 . Specifically, the verification problem is to check
(1) ∀𝑅 ∀ 𝑠 ∈ start(𝐹 (𝑅)) 𝑝 (𝑠); and
(2) ∀𝑅 ∀ (𝑠, 𝛼, 𝑠 ′) ∈ trans(𝐹 (𝑅)) 𝑝 (𝑠) =⇒ 𝑝 (𝑠 ′).
In our setting, given our encoding into I/O automata, error states encode the malfunction of the

runtime itself—something that we do not wish to reason about. For example, an action get(v)𝑖, 𝑗
when 𝑣 is not in the set maintained by the Universal Buffer will result in the Universal Buffer
transitioning to the error state ⊥ and the message chain 𝑣 “magically” appearing in the input buffer
of the 𝑗 th machine. Therefore, to avoid nonsensical counterexamples deriving from these transitions,
we implicitly assume that all invariants are such that 𝑖𝑛𝑣 (𝑠) = 𝑖𝑛𝑣 (𝑠) ∨ error(𝑠), where error is a
predicate that returns true iff any machine is currently in an error state. When input programs do
not specify an initial set of states, we take it to be equal to the conjunction of invariants.

3.3 Encoding and Complexity

Encoding Folds Automata is exactly like encoding I/O automata. Encoding parametric Folds
Automata requires only a small change. Specifically, we encode the state space of a parametric
Folds Automaton as an extensional array whose index sort is a parameter and whose element

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 300. Publication date: October 2023.



300:12 Federico Mora, Ankush Desai, Elizabeth Polgreen, and Sanjit A. Seshia

sort is the sort representing states of the individual I/O Automata in the composition. The prob-
lem of verification by induction can then be encoded as an SMT query using an uninterpreted
sort for the parameter of the parametric Folds Automaton. Satisfying interpretations represent
counterexamples, while unsatisfiability proofs represent proofs of correctness.

When invariants contain quantifiers, the verification queries are as expressive as first-order logic
and the problem is undecidable. Note that there are fragments of first-order logic that are decidable
(e.g., EPR [Lewis 1980]) but we support logical theories that are outside of these fragments (e.g.,
sequences for EPR). When no invariant contains quantifiers, the verification by induction problem
can be posed as a quantifier-free SMT query. Unfortunately, it is a long-standing open problem
to determine the decidability of quantifier-free queries over sequences with length constraints
[Day et al. 2023] and so the decidability of our verification by induction problem is also unknown.
Without quantifiers and without sequences, since the theories of equality, linear integer arithmetic,
arrays, and algebraic data types are strongly polite and decidable [Bonacina et al. 2019; Sheng et al.
2020], their combination and our verification problem is decidable.

3.4 Message Chain Invariants

Our problem formulation implicitly supports a novel kind of invariant, message chain invariants,
that developers can use along with their usual invariants to verify their systems. Intuitively, message
chain invariants describe the way that messages flow through a distributed system. Formally, we
define a message chain invariant to be an invariant of the from

∀𝑐1, ..., 𝑐𝑛 ∈ 𝑀𝐶
𝑛∧
𝑖

alive(𝑠, 𝑐𝑛) =⇒ 𝑟 (𝑐1, ..., 𝑐𝑛),

where 𝑠 is the current state of the system, alive is a predicate that returns true iff the message chain
𝑐𝑖 is not empty and is held by the universal buffer or any machine’s buffers, and 𝑟 is a predicate
over message chains. We call 𝑟 the message chain invariant since the rest of the predicate is fixed.

Consider the four message chains in Fig. 3. One message chain invariant that is true for all four
message chains is that the payload at the head of every message chain holds the largest label value
seen so far by that message chain. This turns out to be true for all message chains in the system,
and is a crucial fact used in the verification of the ring leader election protocol.
Since predicates in our language can be recursive and solvers directly support these functions

[Suter et al. 2011], message chain invariants over a single message chain (𝑛 = 1) can theoretically
express any recursively enumerable language over sequences of messages. When properties are
over more than a single message chain (𝑛 > 1), these invariants can express properties akin to
hyperproperties for traces [Clarkson and Schneider 2010]. However, message chains invariants
cannot express properties about the state of individual machines.

3.5 Ring Leader Election Protocol Verification Example

To better understand message chain invariants and our end-to-end workflow, consider the P imple-
mentation and verification by induction query for the ring leader election protocol displayed in Fig. 2.
This verification by induction query has two target invariants. The first invariant, unique_leader,
states that there is only ever one node that declares itself as the winner. The second invariant,
leader_max, states that this winning node has the greatest label. Note that neither of these two
invariants are message chain invariants: we support message chain invariants, non message chain
invariants, and combinations thereof.

Proposition 3.5 (Ring). The protocol introduced in Sec. 1.1 and implemented in Fig. 2a is correct.
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Proof. We define the semantics of P programs in terms of Folds Automata in Sec. 5. Given
these semantics, the verification query in Fig. 2 without the last two invariants, is not inductive.
This can be explained by two counterexamples. Consider a two-node system—nodes labeled 1 and
2—and the following two message chains
(1) 𝑐 B send(2, 1, eNominate(1), send(1, 2, eNominate(1), empty)) and
(2) 𝑐 ′ B send(1, 1, eNominate(1), empty).

For the first counterexample, suppose node 2 has declared itself the winner and input1 contains
the message chain 𝑐 . This system will satisfy both target invariants before taking a step but will
falsify unique_leader when node 1 receives 𝑐 . For the second counterexample, suppose node 2
has declared itself the winner and input1 contains the message chain 𝑐 ′. Again, this system will
satisfy both invariants before taking a step but will falsify unique_leader when node 1 receives 𝑐 ′.
To complete the proof by induction, the user can introduce two auxiliary message chain

invariants—the last two invariants in Fig. 2. The first auxiliary invariant blocks the first counter-
example by asserting that the head of every message chain always holds the largest label it has
seen so far. Formally, this is the message chain invariant

𝑟 (𝑐) B ∀𝑛 participated(𝑐, 𝑛) ==> 𝑛.𝑖𝑑 ≤ 𝑐.𝑖𝑑,
where participated(𝑐, 𝑛) is a helper function that is true iff the node 𝑛 was the source or target of
a message in the message chain 𝑐 . For the counterexample two-node system above, the head of
𝑐 cannot hold the label 1 since the node labeled 2 has participated in 𝑐 , thus our added auxiliary
invariant 𝑟 blocks the first counter-example.
The second auxiliary invariant blocks the second counterexample above by asserting that, for

every message chain, if there is a node that has not yet participated in the message chain then the
message chain is going towards that node. Formally, this is the message chain invariant

𝑟 ′(𝑐) B ∀𝑛 ¬participated(𝑐, 𝑛) ==> (between(𝑐.𝑖𝑑, 𝑐 .target, 𝑛) ∨ 𝑐.target = 𝑛),
where between(𝑐.𝑖𝑑, 𝑐 .target, 𝑛) is a helper function that is true iff the target of the message chain 𝑐
is between the node labeled 𝑐.𝑖𝑑 and the node labeled 𝑛 in the ring. For the counterexample two
node system above, the node labeled 2 has not participated in the message chain 𝑐 ′ so the target of
𝑐 ′ should be 2 (not 1), thus our added auxiliary invariant 𝑟 ′ blocks the second counterexample.

Together, these two auxiliary invariants block all counterexamples to induction for all system
instances—not just for the two-node system above. The UPVerifier, our prototype implementation
for the P programming language defined in in Sec. 5, using Z3 [de Moura and Bjørner 2008], will
accept this proof by induction in less than a tenth of a second (see Sec. 6). This proof is like doing
the textbook proof of correctness described in Sec. 1 on every message chain at once: for every
message chain, the round number in the textbook proof is equal to the length of the message chain.
Yet our proof captures the nitty-gritty details of individual machine message passing. □

4 SPECIFICATION MINING

Up until now, we have assumed that users provide system models and specifications. This is the
same requirement imposed by related work. However, in practice, specifications are not always
obvious and formally expressing them is not always easy. In this section, we describe an approach
to mining specifications—message chain invariants—using existing learning techniques.
The inputs to a specification mining tool are a set of pairs. The first element of each pair is a

message chain and the second element is a Boolean indicating if the message chain can appear in
an execution of the system. We call these pairs examples, and we say that an example is a positive
(negative) example if the Boolean is true (false). For example, for the ring leader election protocol,

(1) (Send(1, 4, eNominate(1), Empty)), true) is a positive example and
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(2) (Send(1, 4, eNominate(4), Empty)), false) is a negative example.
Given a set of positive and negative examples, the output of a specification mining tool is

a function that evaluates to true for the positive examples and false for the negative examples.
Intuitively, this function represents a system specification that is likely to hold, but is not guaranteed
to hold. Note that allowing negative examples makes this definition slightly more general than
the related definitions of Ernst et al. [2001] and Ammons et al. [2002]. Positive examples can be
generated easily by fuzzing the target system. Negative examples, on the other hand, are harder to
generate automatically. In our setting, we take negative examples to be hints from the user: they
are examples that the user believes can never occur during an execution.

4.1 Specification Mining Using Recursive Function Synthesis

When message chains are represented as algebraic data types, our specification mining problem
matches the programming-by-example problem [Halbert 1984] for functional, recursive programs.
In this section, we describe how to use an existing program synthesis technique in this space,
Burst [Miltner et al. 2022], to mine message chain invariants.

Burst is a synthesis tool based on bottom-up enumeration. The Burst algorithm, by design, will
produce syntactically short functions. Burst begins by synthesizing a recursive function that satisfies
the specification (positive and negative examples) assuming that undefined recursive calls behave
exactly as required to satisfy the specification (referred to as “angelic” semantics). It then checks
whether the synthesized recursive function satisfies the specification under the actual semantics,
and, if not, strengthens the specification based on the existing assumptions. This process repeats
until a recursive function is found that satisfies the specification and has no undefined recursive
calls. However, the synthesizer may have to backtrack some of the specification strengthening if
the specification is made unsatisfiable by any added assumptions.

At a high-level, to synthesize message chain invariants using Burst, we give it queries consisting
of the algebraic data type definition of message chains; a function signature (maps a message chain
to a Boolean), examples (message chains that occur and do not occur); and a basic library of helper
functions. This library includes functions for computing logical operators (like conjunction and
negation) and simple functions for reasoning about message chains (like a function that takes
a message chain and returns the innermost message if one exists). Burst then returns recursive
functions that evaluate to true on all positive examples and false on all negative examples.

4.2 Specification Mining Using Extended Non-Erasing Pattern Learning

When message chains are represented as sequences, our specification mining problem matches
the problem of learning formal languages from examples. In this section, we describe how to use
non-erasing pattern languages to mine message chain invariants using only positive examples. We
first give the necessary background on non-erasing pattern learning and then provide an extension
to tailor it to our distributed systems domain.

4.2.1 Non-Erasing Pattern Languages Background. We present patterns and pattern languages [An-
gluin 1980], but with definitions tailored to smt-lib. Let Σ be a zero-ary sort with finite cardinality
greater than two, which represents a finite alphabet of size equal to the cardinality of the sort.
Let 𝑋 = {𝑥1, 𝑥2, . . .} be a countable set of symbols disjoint from Σ, which we refer to as pattern
variables. A sequence over Σ is an 𝑛-ary concatenation of symbols where every 𝑡1, . . . , 𝑡𝑛 is an
element of Σ, and the set of non-zero finite sequences over Σ is denoted Σ+.
A pattern 𝑝 is a sequence over Σ ∪ 𝑋 , i.e., an 𝑛-ary concatenation of symbols 𝑡1, . . . , 𝑡𝑛 where

every 𝑡𝑖 is an element in Σ∪𝑋 . We use juxtaposition to represent concatenation, so write 𝑝 B 𝑡1...𝑡𝑛 .
We use Var(𝑝) to denote the pattern variables that occur in 𝑝 . Patterns define languages in the
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following way. For a pattern 𝑝 , call 𝑒 (𝜔 ′) B 𝑝 = 𝜔 ′ ∧∧
𝑥 ∈Var(𝑝) |𝑥 | ≥ 1 the characteristic formula

of 𝑝 , where the pattern variables in 𝑝 are free variables, |𝑥 | denotes the length of 𝑥 , and𝜔 ′ is a given
sequence in Σ+. The language of a pattern 𝑝 , 𝐿(𝑝), is the largest set of sequences such that for every
𝜔 ∈ 𝐿(𝑝), 𝑒 (𝜔) is satisfiable. When𝑚 is a model of 𝑒 (𝜔) for a particular 𝑝 , we say that𝑚 justifies
𝜔 ∈ 𝐿(𝑝). For example, for Σ B {𝑓 , 𝑔, ℎ} and 𝑋 B {𝑥1, 𝑥2, ...} the pattern 𝑝 B 𝑥1𝑥2𝑥3𝑥2𝑥1 defines a
pattern language 𝐿(𝑝) that contains the sequence fghgf and the sequence hfggggfh but does not
contain fghfg, and the model {𝑥1 B 𝑓 , 𝑥2 B 𝑔, 𝑥3 B ℎ} justifies that fghgf ∈ 𝐿(𝑝). We use this
notion of justification to, at a high level, learn the most strict but justified semantic constraints on
patterns over a useful concept class. The characteristic formula constrains the model to map each
variable in Var(𝑝) to a concatenation of at least one symbol in 𝜔 . We do not use erasing patterns,
where variables can map to the empty sequence, in this work.

Angluin [1980] defines ℓ-minl and Shinohara [1982] presents an algorithm to compute it. The
ℓ-minl algorithm takes in a set of sequences in Σ+ and returns the longest pattern that best describes
the examples. We treat the ℓ-minl algorithm as a black box but rely on the following theorems.
Theorem 4.1 (Angluin [1980]). Let Σ be a zero-ary sort with finite cardinality greater than two,

let Ω ⊆ Σ+ be a set of finite sequences over Σ and let 𝑝 be the output of the ℓ-minl algorithm. Then 𝑝
is the longest pattern such that Ω ⊆ 𝐿(𝑝) and there is no pattern 𝑞 with Ω ⊆ 𝐿(𝑞) and 𝐿(𝑞) ⊊ 𝐿(𝑝).

Theorem 4.2 (Angluin [1980], Shinohara [1982]). The ℓ-minl algorithm can be computed by a
deterministic polynomial-time Turing machine using an oracle in NP. Specifically, for a given pattern
𝑝 and set of sequences Ω ⊆ Σ+, the NP oracle checks Ω ⊆ 𝐿(𝑝) by checking 𝜔 ∈ 𝐿(𝑝) at most |Ω |
times. This membership check is NP-Complete for erasing and non-erasing patterns [Jiang et al. 1994].

4.2.2 Extended Non-Erasing Pattern Learning. Given only positive input message chain examples,
the ℓ-minl algorithm can quickly learn a non-erasing pattern that likely holds for all message chains
in the target system. Note that most similar learning algorithms, like those for learning regular
languages, require both positive and negative examples. Unfortunately, non-erasing patterns on
their own are not specific enough for our domain. This is in part due to the fact that no non-erasing
pattern containing at least one variable cannot represent a finite language, and many distributed
systems only exhibit bounded message chains. For example, suppose you have a simple client-server
system where clients send requests to servers and servers respond to the client. Every message
chain in this system has length at most two, but no non-erasing pattern can represent this language.
To fix this, we extend the ℓ-minl algorithm with an enumerative approach that learns a con-

junction of constraints. These constraints are useful for the distributed systems domain and yet
guarantee that the enumerative algorithm terminates. We call the resulting pattern a path-pattern
and denote it 𝑝 [𝑙], where 𝑝 is the base ℓ-minl pattern and 𝑙 is a set of added constraints. When
adding constraints, the goal is to be as specific as possible without being too specific. We formalize
the notion of too specific in the following definition. Given a set of sequences Ω and a pattern 𝑝
with characteristic formula 𝑒 , we say that a path-pattern 𝑝 [𝑙] is too specific iff∨

𝜔 ∈Ω 𝑒 (𝜔) ̸|= 𝑙 . That
is, if every model that can be used to justify the training set is preserved by 𝑙 , 𝑙 is not too specific.
Consider the following two examples. First, let Σ B {𝑓 , 𝑔}, let Ω B {𝑓 𝑔, 𝑔𝑓 , 𝑓 𝑓 }, and the

corresponding pattern 𝑝 B 𝑥1𝑥2. In this case, the constraint 𝑙 B |𝑥1 | = 1 ∧ |𝑥2 | = 1 is better than
the constraint 𝑙 ′ B true because it gives us more information about the variables in the pattern.
It is more specific. Second, keep Σ and 𝑝 as before, but take Ω to be {𝑓 𝑔, 𝑔𝑓 𝑓 , 𝑔𝑔𝑔𝑔} and consider
the three different constraints 𝑙 B |𝑥1 | = 1, 𝑙 ′ B |𝑥2 | = 1, and 𝑙 ′′ B true. While it is the case
that Ω ⊆ 𝐿(𝑝 [𝑙]) = 𝐿(𝑝 [𝑙 ′]) = 𝐿(𝑝 [𝑙 ′′]), the first two constraints are too specific while the last
constraint is not. That is, they impose constraints on the roles the variables in the pattern play
that are not supported by evidence: if these path-patterns represented machine indexes, the first
path-pattern would say that 𝑥1 always represents a single machine, the second path-pattern would
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say that 𝑥2 always represents a single machine, and the last path-pattern would make no such
unfounded judgments. Therefore, in this case, we would consider 𝑙 ′′ to be the best choice. We
now describe our procedure for learning two kinds of constraints over ℓ-minl patterns: length
constraints and membership constraints.

Learning Lengths The procedure to discover length constraints uses the following proposition.

Proposition 4.3 (Lengths). Let Ω be a set of sequences, 𝑝 [𝑙] be a pattern such that Ω ⊆ 𝐿(𝑝 [𝑙])
and 𝑝 [𝑙] is not too specific, 𝑥 ∈ Var(𝑝) be a variable, 𝑥1, 𝑥2 ∉ Var(𝑝) be two fresh variables, and
𝑝 ′ B 𝑝 ⟨𝑥1𝑥2/𝑥⟩ be 𝑝 but with all occurrences of 𝑥 substituted with 𝑥1𝑥2. If Ω ∩ 𝐿(𝑝 ′[𝑙]) = ∅, then

(1) 𝑝 [𝑙 ∧ |𝑥 | = 1] is more specific than 𝑝 [𝑙] and
(2) 𝑝 [𝑙 ∧ |𝑥 | = 1] is not too specific.

Proof. (1) Let 𝑒𝑙 be the characteristic formula of 𝑝 [𝑙]. The characteristic formula of 𝑝 [𝑙 ∧ |𝑒 | = 1]
is then 𝑒𝑙 ∧ |𝑥 | = 1 and 𝑒𝑙 ∧ |𝑥 | = 1 |= 𝑒𝑙 holds by the semantics of conjunction. (2) Now suppose for
contradiction that 𝑝 [𝑙 ∧ |𝑥 | = 1] is too specific. That is, suppose that∨

𝑠∈𝑆
𝑒𝑙 (𝜔) ̸|= 𝑙 ∧ |𝑥 | = 1.

Then there exists a model𝑚 of
∨

𝜔 ∈Ω 𝑒𝑙 (𝜔) that is not a model of 𝑙 ∧ |𝑥 | = 1 and that interprets 𝑥
as the sequence 𝑧 such that 𝑒𝑙 (𝜔) evaluates to true for some sequence 𝜔 ∈ Ω. Since𝑚 |= 𝑙 (𝑝 [𝑙] is
not too specific by assumption) we have that𝑚 ̸ |= |𝑥 | = 1 and therefore that 𝑧 is of length at least
two. Let 𝑒𝑝′ be the characteristic formula of 𝑝 ′[𝑙] and let𝑚′ be the model that is like𝑚 in every
way but extended to interpret 𝑥1 as the first element of 𝑧 and 𝑥2 as the rest of 𝑧. The contradiction
is that we have𝑚′ |= 𝑒𝑝′ (𝜔) but, by the antecedent of the implication, 𝜔 ∉ 𝐿(𝑝 ′[𝑙]). □

The procedure itself starts with the set of constraints
∧

𝑥 ∈Var(𝑥) |𝑥 | = 1. For every 𝑥 ∈ Var(𝑝),
we check Ω ∩ 𝐿(𝑝 ′[𝑙]) = ∅, where 𝑝 ′ is constructed as in Prop. 4.3. If Ω ∩ 𝐿(𝑝 ′[𝑙]) = ∅ holds for 𝑥 ,
then we keep |𝑥 | = 1 in the conjunction and we move to the next variable. If it does not hold, then
we remove |𝑥 | = 1 from the conjunction and we move to the next variable.

Proposition 4.4 (Effective Procedure for Discovering Lengths). Let 𝑆 be a set of sequences
over Σ, 𝑝 be a pattern with Ω ⊆ 𝐿(𝑝), and 𝑙 be the output of the above procedure. We claim that 𝑝 [𝑙]
is not too specific and that for every set of constraints 𝑙 ′ of the same form that is not too specific, 𝑝 [𝑙] is
more specific than 𝑝 [𝑙 ′]. Furthermore, the above procedure runs in O(|𝑝 |) time using an oracle in NP.

Proof. We use the same oracle as the ℓ-minl algorithm in Thm. 4.2 but instead of checking
Ω ⊆ 𝐿(𝑝) we check Ω ∩ 𝐿(𝑝 ′[𝑙]) = ∅, where 𝑝 ′ is constructed as in Prop. 4.3. We call this oracle
once for every variable that appears in 𝑝 , which is at most the size of 𝑝 . Correctness follows directly
from Prop. 4.3 and two facts. First, if |𝑥 | = 1 is too specific on its own, then so is every conjunction
that contains |𝑥 | = 1. Second, the most specific set of constraints is the largest set. □

Discovering Membership Discovering membership constraints follows a similar process. To
make things more tractable, we assume that users supply a list of pairwise disjoint subsets of Σ of
interest. The following proposition is key.

Proposition 4.5 (Membership). Let Ω be a set of sequences over Σ, 𝑝 [𝑙] be a pattern such that
Ω ⊆ 𝐿(𝑝 [𝑙]) and 𝑝 [𝑙] is not too specific,𝑥 ∈ Var(𝑝) be a variable,𝑥1, 𝑥2 ∉ Var(𝑝) be two fresh variables,
and 𝜎 be a strict subset of Σ. If for every 𝑐 ∈ Σ \𝜎 it is the case that Ω∩𝐿(𝑝 ⟨𝑥1𝑐𝑥2/𝑥⟩{𝑥1, 𝑥2}[𝑙]) = ∅,
then (1) 𝑝 [𝑙 ∧ 𝑥 ∈ 𝜎+] is more specific than 𝑝 [𝑙] and (2) 𝑝 [𝑙 ∧ 𝑥 ∈ 𝜎+] is not too specific.

Proof. Similar to Prop. 4.3, suppose for contradiction that 𝑝 [𝑙 ∧ 𝑥 ∈ 𝜎+] is too specific. That is,
suppose that

∨
𝑠∈𝑆 𝑒𝑙 (𝑠) ̸|= 𝑙 ∧ 𝑥 ∈ 𝜎+. Then there exists a model𝑚 of

∨
𝑠∈𝑆 𝑒𝑙 (𝑠) that is not a model
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of 𝑙 ∧ 𝑥 ∈ 𝜎+ and that interprets 𝑥 as the sequence 𝑧 such that 𝑒𝑙 (𝑠) evaluates to true for some
sequence 𝑠 ∈ 𝑆 . Since𝑚 |= 𝑙 (𝑝 [𝑙] is not too specific by assumption) we have that𝑚 ̸ |= 𝑥 ∈ 𝜎+ and
therefore that 𝑧 is a sequence of the form 𝑦1𝑐𝑦2, where 𝑦1 and 𝑦2 are fresh, erasing variables and
𝑐 ∈ Σ \ 𝜎 . Let 𝑒𝑝′ be the characteristic formula of 𝑝 ⟨𝑥1𝑐𝑥2/𝑥⟩{𝑥1, 𝑥2}[𝑙] for the same 𝑐 and let𝑚′ be
the model that is like𝑚 in every way but extended to interpret 𝑥1 as the first element of 𝑦1 and
𝑥2 as 𝑦2. The contradiction is that we have𝑚′ |= 𝑒𝑝′ (𝑠) but, by the antecedent of the implication,
𝑠 ∉ 𝐿(𝑝 ⟨𝑥1𝑐𝑥2/𝑥⟩{𝑥1, 𝑥2}[𝑙]). □

The procedure to discover membership constraints is again a simple loop. We start with the set of
constraints

∧
𝜎

∧
𝑥 ∈Var(𝑥) 𝑥 ∈ 𝜎+. For every𝑥 ∈ Var(𝑝) and input subset𝜎 , we checkΩ∩𝐿(𝑝 ′[𝑙]) = ∅

for every 𝑐 ∈ Σ \ 𝜎 , where 𝑝 ′ is constructed as in Prop. 4.5. If Ω ∩ 𝐿(𝑝 ′[𝑙]) = ∅ holds for 𝑥 for every
𝑐 , then we keep 𝑥 ∈ 𝜎+ in the conjunction and we move to the next variable. If Ω ∩ 𝐿(𝑝 ′[𝑙]) = ∅
does not hold for 𝑥 for every 𝑐 , then we remove 𝑥 ∈ 𝜎+ from the conjunction and we move to the
next variable. The proof that this is an effective procedure is the exact same as that of Prop. 4.4 but
note that we also depend on the number and size of input sets 𝜎 .
In summary, ℓ-minl gives us the best pattern from a syntactic perspective (Thm. 4.1) and we

refine this pattern to get the best path-pattern from a semantic perspective. At a high-level, to
synthesize message chain invariants using this algorithm, we give it queries consisting of positive
examples generated by fuzzing, and it returns path-patterns that capture these examples.

4.3 Combining Specification Mining Approaches Into One Framework

We combine the recursive function synthesis approach and the extended non-erasing pattern
learning approach into one framework and, for each target distributed system of interest, we give
the framework many different queries. The queries all follow the same structure described above,
but we categorize and clean the input data before calling the individual tools.
For categorization, we tag example message chains with the last instruction relevant to them,

and we group message chains by this tag. For example, for the ring leader election protocol in
Fig. 2a, there are four groups: message chains that just started at line 13; message chains that
have reached the leader at line 16; and message chains that have just been extended at lines 18
and 20. For cleaning, we take each group of message chains and we generate new sets of message
chains that each focus on a different aspect. Specifically, we generate a set that removes all payload
information from message chains, leaving only the sequence of nodes visited by each message
chain (the source of each message along with the final target); and we generate a set that removes
all source and target information, leaving only the sequence of payload values exchanged.
For the ring leader election protocol, this categorization and cleaning process generates 12

queries (4 groups, 3 versions of queries each). We give all twelve queries to both specification
mining methods (using algebraic data type and sequence encoding as appropriate) and we return
24 suggested invariants to the user. The input queries to Burst contain three negative examples
generated by hand and 8 positive examples generated automatically by fuzzing. The three negative
examples represent three obviously impossible message chain: one where a node sends a value that
is not its own and it did not receive; one where a node sends a value to a node that is not on its
“right;” and one where a node receives its own value and instead of declaring itself the winner and
stopping, it extends the message chain by sending a new message.

5 THE UPVERIFIER

To demonstrate the expressive power of our problem formulation, we implement a verification
framework accepting programs written in a version of the P programming language—a large,
functional subset that treats message buffers as sets of message chains instead of queues of messages.
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We call our implementation the UPVerifier, for unbounded verification of P programs. The
UPVerifier implementation is available2 as an OCaml project consisting of approximately 5000
lines of code. This code also includes fuzzing infrastructure to generate positive example message
chains. We implement the extended ℓ-minl algorithm as a Python program of approximately 250
lines that uses Z3 for the NP oracle that checks sequence membership. The Python code is available
with the OCaml code. We use Burst out of the box for synthesis of recursive functions.

P is a natural fit for our approach because of its domain-specific structure but our approach
generalizes to standard message-passing distributed system languages. In particular, the most
important aspect of P to support message chains, the notion of a handler, is shared across many
programming languages. For example, Erlang uses the receive keyword and Akka uses the method
receiveMessage on Behaviors for a similar notion.

We support only the core features of P that are specific to distributed systems. For example, we
support the definition of machines and messages, but we do not support foreign function calling or
modules. We also assume that sequential code blocks—like the body of event handlers—is written
in the syntax of Fig. 5 and uses the associated smt-lib semantics.
At a high level, our compiler encodes P programs into parametric Folds Automata. We use P

event declarations to create a message sort and P machine declarations to create as a class of I/O
Automata, the two required components for an Folds Automaton. The sort of messages (𝐸) is
given by an algebraic data type with 𝑒 constructors, where 𝑒 is the number of events in the input P
program. The 𝑖𝑡ℎ constructor of 𝐸 holds a single record representing the payload type of the 𝑖𝑡ℎ
event declaration in the input P program.

The state space of P machines follows a similar encoding. It is represented by an algebraic data
type𝑀 with𝑚 + 1 constructors, where𝑚 is the number of machine kind declarations in the input P
program. The 𝑖𝑡ℎ constructor of𝑀 holds a single record representing the fields of the 𝑖𝑡ℎ machine
kind declaration in the input P program. Specifically, the 𝑖𝑡ℎ record holds the variables of the P
machines, a state indicator, an entry flag, a “this” reference, and the required input𝑖 and output𝑖
buffers. The state indicator is an enum whose variants are the set of states named by the Pmachines.
The entry flag is a Boolean. The last constructor of𝑀 is ⊥ and has no selectors.

The internal actions of the resulting family of I/O Automata is {𝑒 𝑗,𝑖 | 𝑒 ∈ 𝑁 𝑗 ∈ 𝑅} ∪ 𝜖𝑖 , where 𝑁
is the set of event names. We will use the action 𝑒 𝑗,𝑖 to trigger that the current machine, 𝑖 , receives
a message of kind 𝑒 , from some other machine, 𝑗 . We will use 𝜖𝑖 to trigger P entry handlers: the
first code block that executes after a machine enters a given state. The transitions are defined
by precondition-effect pairs derived from handlers as follows. For a handler of event 𝑒 within P
machine state declaration 𝑙 for a machine kind 𝐾 , let𝑚 be a message chain and let 𝑠 be the machine
instance at index 𝑖 , the precondition for the action 𝑒 𝑗,𝑖 asserts (1) 𝑠 .this = 𝑖 , (2) 𝑠 ∈ 𝐾 , (3) 𝑠 .state = 𝑙 ,
(4) ¬𝑠 .entry, (5)𝑚 ∈ 𝑠 .input𝑖 , and (6)𝑚.current ∈ 𝑒 . In other words, the precondition for the action
𝑒 𝑗,𝑖 asserts the 𝑖 th machine (1) is the correct target, (2) is of the correct kind, (3) is in the correct state
with (4) its entry flag is set to false, and (5) is actually receiving a message chain (5) whose head is
of the correct kind. For an entry handler, the precondition for the action 𝜖𝑖 asserts (1) 𝑠 .this = 𝑖 ,
(2) 𝑠 ∈ 𝐾 , (3) 𝑠 .state = 𝑙 , and (4) 𝑠 .entry. In other words, the precondition for the action 𝜖𝑖 asserts
that the 𝑖 th machine (1) is the correct machine, (2) is of the correct kind, (3) is in the correct state,
and (4) its entry flag is set to true. We also enforce that every entry handler effect sets the entry
flag to false and that every event handler that receives a message chain e removes e from input𝑖 .
The effects for the actions 𝑒 𝑗,𝑖 and 𝜖𝑖 are given by the corresponding handler blocks (𝑒 event

handlers and entry handlers). We extend the language of Fig. 5 with some syntactic sugar. First, we
provide a send keyword that represents a procedure that takes the index of the target machine

2Available at https://github.com/FedericoAureliano/upverifier
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Table 1. Comparison on benchmarks from Koenig et al. [2020]. First two columns are verification times, next

three count invariants, last two flag the use of quantifier alternations. Asterisk free columns refer to a direct

translation of the mypyvy verification without the use of message chain; #Inv* and ∃∀?* refer to an improved

proof that uses message chains. The UPVerifier is faster and requires fewer quantifier alternations.

Benchmark mypyvy UPVerifier # Inv M # Inv P # Inv P* ∃∀? ∃∀?*
ring-id 0.365s 0.138s 4 4 4 N N
toy-consensus-forall 0.380s 0.064s 4 5 N
consensus-wo-decide 0.338s 0.072s 5 8 N
sharded-kv 0.407s 0.045s 5 5 N
learning-switch 0.410s 0.048s 6 6 N
consensus-forall 0.566s 0.120s 7 10 N
lockserv 0.406s 0.049s 9 9 N
ticket 0.402s 0.068s 14 9 N
firewall 0.364s 0.033s 2 2 1 Y N
sharded-kv-no-lost-keys 0.328s 0.589s 2 2 Y
client-server-ae 0.323s 0.037s 2 3 Y
toy-consensus-epr 0.392s 0.106s 4 4 Y
client-server-db-ae 0.403s 0.060s 5 8 4 Y N
ring-id-not-dead 0.479s 0.194s 6 5 5 Y Y
consensus-epr 0.557s 0.088s 7 8 Y
hybrid-reliable-broadcast 0.676s 0.489s 8 5 Y

t, the payload of the message p, and (implicitly) the message chain that triggered the handler h,
and adds send(this, t, p, h) to output𝑖 . Second, we provide a goto keyword that represents a
procedure that takes a state label and sets the state value to that label and the entry flag to true.

We make a few simplifications in the implementation that manifest in our evaluation benchmarks.
First, instead of the state of the system being an array, we represent the state of the system as
a record with two selectors: events and machines. The first, events, represents the state of the
universal buffer. The second, machines, represents the states of all other machines. Second, instead
of two buffers per machine, we collapse all buffers into the events selector.

6 EMPIRICAL EVALUATION

We aim to answer the following research questions. (RQ1) Is the UPVerifier expressive enough to
replicate existing proofs from other systems? (RQ2) How does the performance of the UPVerifier
compare to the state-of-the-art? (RQ3) Do message chains help simplify proofs? (RQ4) Can we
automatically mine meaningful message chains specifications using only examples? (RQ5) Can we
use the UPVerifier to verify industrial distributed systems?

6.1 RQ1 and RQ2: Baseline Comparison of Expressive Power and Performance

To evaluate the expressive power of the UPVerifier, we take verified benchmarks from Koenig
et al. [2020] written in mypyvy, and re-verify them using the UPVerifier. This set of benchmarks
contains consensus protocols like the ring election protocol, standard systems like sharded key-
value store services, and more complicated systems, like the hybrid reliable broadcast originally
described by Widder and Schmid [2007] and modeled by Berkovits et al. [2019].

The UPVerifier and mypyvy make different modeling choices and so the translation process is
not always straightforward. For example, while the UPVerifier intrinsically encodes implementa-
tion details like machine kinds and message buffers, mypyvy users would need to manually model
these details. This encourages mypyvy users to write proofs at higher levels of abstraction and
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means that the corresponding UPVerifier proof must explicitly link the implementation details
to the abstract proof. For example, for the client-server system (described in detail in Sec. 6.2.1),
the mypyvy model uses three logical relations to keep track of all messages that have been sent
and received so far in the system. These relations abstract the notion of a message buffer—we can
infer that a message is in the buffer if it has been sent but not yet received. We use the same logical
relations in the UPVerifier version of the proof but also maintain the implementation level detail
of message buffers by adding one auxiliary invariant that amounts to saying that these abstract
relations are append-only versions of the concrete message buffer in the system.
On the other hand, when mypyvy models do include low-level detail, translation into the

UPVerifier can actually simplify the proof since these details are frequently handled by the
programming model itself. For example, the “ticket” benchmark models threads as state machines
with three states. The UPVerifier version of the proof encodes this directly by defining one
machine kind called “Thread” which has three states. The mypyvy model defines three relations on
threads, each acting as a flag to indicate when a thread is in the given state. This complicates their
proof because auxiliary invariants must be added to ensure that no thread can be in more than one
state at a time, a property that is tautological in the UPVerifier model.
Table 1 summarizes the data required to answer RQ1. Each row of the table corresponds to a

benchmark. The first column contains the name of the benchmark in question, and the columns
labeled “# InvM” and “# Inv P” display the number of invariants used in themypyvy andUPVerifier
proofs, respectively. While in general, the number of invariants is not always indicative of the
complexity of a proof, in our context, where a one-to-one translation was made whenever possible,
the number of invariants gives an idea of the extra proof considerations required.
Overall, we find that the UPVerifier is comparably expressive to mypyvy and that it can

successfully verify existing benchmarks. When our programming model requires extra proof
considerations, we are able to address these considerations with few auxiliary invariants. In terms
of RQ1, we answer that yes, the UPVerifier is expressive enough to replicate proofs from other systems.

To evaluate the performance of the UPVerifier, we revisit Table 1. The second column shows the
wall-clock time taken by mypyvy to verify each benchmark; the third column shows the wall-clock
time taken by the UPVerifier to verify the corresponding benchmark. All verification times are
collected on a 2.3 GHz Quad-Core Intel Core i7 CPU with 32 GB of RAM. With the exception of the
benchmark “sharded-kv-no-lost-keys” the UPVerifier is faster on every single case. Thus, for RQ2,
we answer that the UPVerifier performs comparably to mypyvy in terms of runtime. Note that, as a
sanity check, we introduced bugs into all benchmarks and attempted to verify the buggy version.
No proof by induction succeeded, as expected.

6.2 RQ3: Simplification Power

To evaluate the simplification power of message chains, we take four benchmarks from related
work and attempt to use message chains to improve the proofs. We then explore a new benchmark
that is difficult for existing tools but is trivial in our framework. The four benchmarks from existing
work, “client-server-db-ae,” “firewall,” “ring-id,” and “ring-id-not-dead,” are those in Table 1 that
display message chain that are longer than three messages.

6.2.1 Client-Server-Database. The first system is a client-server system inspired by Feldman et al.
[2017]. This system involves three kinds of machines: clients, servers, and databases. Clients send
requests to servers which then consult a database. Once the server receives an answer from the
database, it forwards the response to the original client. Feldman et al. verify that whenever a
client in the client-server-database system receives a response, the same client had sent a matching
request. This property is like the no-forge property of Griffin et al. [2020] (which states that no
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machine “forges” a message) and requires significant machinery to state and verify. Namely, for a
message-passing model without message chains, this proof requires three ghost variables, which
track every request and response ever sent by the system, three invariants to ensure that the
concrete message buffers are abstracted by these ghost variables, and four invariants of the form
∀∃ that state that for every response, there existed a request that “matches” that response.

Stating and verifying this no-forge property using message chain invariants, on the other hand, is
easy and requires no modeling tricks: message chains provide the vocabulary that would otherwise
need to be integrated into the system model manually. Specifically, the message chain-based uses
four invariants. The first invariant uses the path-pattern on machine indexes 𝑥1𝑥2𝑥3𝑥2𝑥1 [𝑥1 ∈
𝐶 ∧ 𝑥2 ∈ 𝑆 ∧ 𝑥3 ∈ 𝐷], where Σ B 𝐶 ∪ 𝑆 ∪ 𝐷 , 𝐶 is the set of client machine indexes, 𝑆 is
the set of server machine indexes, and 𝐷 is the set of database machine indexes. This path-
pattern captures the desired no-forge property and the invariant states that every message chain
is a prefix of that path-pattern. The second invariant, states that for every message chain 𝑚𝑐 ,
mc.message.val = mc.history.message.val. The third invariant states that the payload of the
first message in every message chain is the original client. Finally, the fourth invariant again uses a
path-pattern but this time on sequences of message kinds 𝑞𝑞𝑝𝑝 [], where 𝑞 represents an eRequest
message, 𝑝 represents an eResponse message and Σ B {𝑞, 𝑝}. Together, these four invariants are
inductive for all system instances and message interleavings.

6.2.2 Firewall. The second models a set of nodes communicating through a firewall, where the
firewall blocks traffic coming from outside a network unless the traffic is in response to an internal
request. In the firewall case, the property asserts that every message received by an internal node
was either sent by another internal node or was sent as a response to an internal node from
an external node. Like the client-server-database system, the mypyvy encoding defines abstract
relations to keep track of what messages have been sent out, and then when a message is received,
the encoding asserts that there exists some message in the abstract relation with the desired
property. This specification is a ∀∃ properties that establishes the provenance of node interactions.
To make the encoding inductive, auxiliary invariants are needed.

Using message chains and the UPVerifier we can replace the ∀∃ properties with a single
message chain invariant that does not contain existential quantifiers. Specifically, the solution to
the existential part of the property is given by the first element of every message chain. Again, no
abstraction is needed to verify this system at the message-passing level.

6.2.3 Ring Leader Election Protocol. The final two systems from related work, “ring-id” and “ring-
id-not-dead,” are variants of the ring election protocol described in Sec. 1 and verified in Sec. 3.5,
where “ring-id-not-dead” includes an extra goal invariant specifying that the system is never “stuck.”
As previously described, we use message chain invariants to verify both systems using a proof that
is simple and asynchronous, all while being at a lower level of abstraction than proofs from related
work, since it captures message passing directly.

6.2.4 The Onion Routing Network. Finally, we detail a new verification that is difficult for related
work but easy for our framework: the Onion Routing (Tor) network. Tor is a distributed network
comprised of relay nodes used to anonymize TCP-based web traffic. TCP-based web traffic is
normally not anonymous because anyone in the network can view the source and destination of
packets. In the Tor network, clients build a path through network nodes to a target server and then
send their requests through this path. Each step of the path is encrypted on top of the previous steps
of the path, making a layered structure (like an onion). When a node receives a packet, it decrypts
the message (peels one layer of the onion) to determine the node it should forward the packet to.
In this way, each node in the path knows the identity of its successor and predecessor, but no other
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nodes. To send a response back to a client, servers follow a similar process in reverse. By scrambling
network activity, Tor makes it difficult for observers to trace client-server communication.
We modeled the Tor network using three machine kinds: Client, Node, and Server. Client

machines build a path to Server machines through some sequence of Node machines and then
back to themselves through a second sequence of Node machines. Message payloads hold a todo
variable that corresponds to the path left to traverse. When a Node machine receives a message,
it “peels” an element of the todo variable, and forwards the message to the next machine in line.
Server machines behave similarly but could also do some processing to serve the given request.

There are interesting statistical and cryptographic properties to verify for the Tor network, but we
focus on basic correctness: every complete message chain should start at a client, go through some
non-zero number of intermediate nodes, reach the desired server, return through some non-zero
number of intermediate nodes, and end at the same client that began the interaction. To verify this
property, we introduced a single ghost variable to messages, done, and added code to maintain
it such that concat(done, todo) stays constant throughout every message chain. Intuitively,
whenever a machine peels an element off of todo, it now adds it onto done. From there it is easy
to prove that concat(done, todo) always has the shape defined by the target specification and
that every message chain is a prefix of concat(done, todo). Since this proof used interpreted
sequence functions heavily (e.g., prefix and concat), we chose to represent the message chain using
the smt-lib theory of sequences instead of algebraic data types, which would have required us to
manually define these functions. Related work would have a much harder time verifying the same
property of the same system at the individual message passing level of abstraction.

For RQ3 we find that message chains can simplify proofs when the system involves communication.

6.3 RQ4: Specification Mining

We evaluate our specification mining framework on the four unique systems from the benchmarks
that display message chain of length longer than three messages because these are the hardest
cases. The other benchmarks from related work are either simplified versions of the four (e.g.,
‘client-server-ae‘ is like ‘client-server–db-ae‘ but without a database) or they do not display very
complicated message passing (e.g., ‘ticket‘ which we briefly describe in Sec. 6.1). We generate
examples and create specification mining queries as described in Sec. 4. All specification mining
runs terminated in less than a second.
For “ring,” we are able to automatically discover the first auxiliary invariant of Prop. 3.5, and

the correct, but less immediately useful fact that the suffix of message chains leading to a victory
is a list of nodes from left to right, ending in the leader. For “client-server-db-ae,” we are able
to to automatically discover the first (target) and fourth (auxiliary) invariants described in the
verification in Sec. 6.2.1; and that every message chain in the client-server-db system begins with a
Client—a fact that is very close to the third invariant of the same verification. For “firewall” we
are able to discover the specification that every message arriving at an internal node must have
originated from an internal node; that the firewall blocks messages originating from external nodes;
that blocked message chains are of length at most one; and that complete message chains are of
length at least one. For “tor,” we are able to mine the target invariant described in Sec. 6.2.4.

In total, this means six out of 24 invariants used in the proofs were mined. Removing the mined
specifications from their respective proofs makes each of the proofs fail: these six specifications
are essential. The mined specifications that do not appear in the hand written proofs may still be
useful for other proofs or other applications, like testing, debugging, and documentation, but a
thorough evaluation of the effectiveness for other applications is needed to draw any conclusions
about them. In conclusion, for RQ4, we find that we can learn meaningful specifications using only
message chain examples, but a rigorous evaluation, especially for other applications, is required.
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6.4 RQ5: Industrial Distributed Systems

To evaluate the UPVerifier on industrial benchmarks, we conduct two case studies on verification
problems provided to us by our industrial collaborators.

6.4.1 GlobalClock. The first industrial case study models and verifies a system like the Clock-
Bound [Amazon.com, Inc. 2023] protocol, which is a mechanism for generating timestamps that
are guaranteed to be within some bound of “true time.” Here, “true time” is just the time of a
reference machine, but when this reference machine is reliable, the protocol can be used to evaluate
distributed consistency by comparing the timestamps of events.
The protocol offers an API that clients can query. When one requests a time from the system,

one receives a time range 𝑇𝑖 = (𝐸𝑖 , 𝐿𝑖 ), where 𝐸𝑖 corresponds to the earliest time guaranteed
to have passed and 𝐿𝑖 represents the latest time guaranteed to have not yet passed. Internally,
the API consists of many systems with local clocks communicating with a corresponding global
reference clock. When requesting time from a local clock, the local clock will send a query to their
corresponding global clock who then responds with a “true time” that the local clocks use to return
a lower and upper bound on time.
Our industrial partners have target specifications for this system. Specifically, that (1) for two

time requests 𝑇1 and 𝑇2, if 𝑇1 and 𝑇2 happened on the same node and 𝑇2 happened after 𝑇1 then
𝐸2 ≥ 𝐸1; (2) for two time requests 𝑇1 and 𝑇2, if 𝑇2 happened after 𝑇1 then 𝐿2 > 𝐸1; and (3) for two
time requests 𝑇1 and 𝑇2, if 𝐿1 < 𝐸2 then 𝑇1 happened before 𝑇2.

The model and proof is 150 lines of code and takes less than two seconds to verify. We used ten
auxiliary invariants, including one message chain invariant. The message chains in this system are
up to five messages long and we use a message chain invariant to ensure that every local clock
only ever participates in one message chain at a time. This is a powerful invariant because it blocks
spurious counterexamples to induction stemming from rogue messages targeting local clocks. This
is an example of a message chain invariant over multiple message chains, as described in Sec. 3.4.

6.4.2 Two-Phase Commit Multi-Version Concurrency Control. The second industrial case study
is a distributed transaction commit protocol that implements multi-version concurrency control
(MVCC) [Bernstein and Goodman 1983] using a two-phase commit (2PC) [Gray and Lamport 2006]
protocol for agreeing on transactions. The general idea of MVCC is to allow non-blocking reads and
writes by maintaining multiple versions of the data in question. Whenever a write occurs, a new
version of the data is created. Reads can observe the most recent version of the data and do not need
to wait for concurrent writes to terminate. The main issue is when two writes occur simultaneously.
In this case, the system must agree on what writes to commit and in what order. 2PC is used to
resolve this issue. Whenever a write transaction is initiated, it must broadcast a commit request to
all participants. If all participants agree, then the transaction can be committed—the write can take
place—and the transaction announces its success.
Our industrial partners have target specifications for this system. Specifically, (1) we only read

the latest committed transactions; (2) for two read transactions 𝑇1 and 𝑇2, if 𝑇1 happened before 𝑇2
then the version read by𝑇1 must be earlier or equal to the version read by𝑇2; and (3) if a transaction
announces success then all participants must have agreed to commit the corresponding write. This
model and proof is 250 lines of code and takes approximately 12 minutes to verify.
The 2PC portion of this protocol is particularly interesting because it demonstrates a common

phenomenon in distributed systems where an action depends on multiple concurrent messages.
That is, in 2PC, coordinators require all participants to vote “yes” before telling them all to commit
(and abort if any vote “no”). In terms of message chains, this means that many message chains
end at the coordinator and only the message chain corresponding to the last “yes” vote or the first
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“no” vote is extended. An interesting aspect of our approach is that, since it is a non-deterministic
choice of which message chain is extended (in the asynchronous setting the order that votes arrive
in is non-deterministic), message chain invariants reason about all of them at once.
For example, it may be surprising but, a single message chain invariant is sufficient to capture

important implementation details like that the coordinator in 2PC will never send a commit
message if any participant voted “no”. Specifically, the message chain invariant is (in pseudocode):
c.head is commit ==> c.tail.head is vote(``yes''). This works because the verification
engine is free to pick any of the votes as the prefix that is extended, therefore the verification only
succeeds if all of the possible prefixes satisfy the invariant. The same principle applies for different
thresholds (e.g., quorums).

In summary, we give an affirmative answer to RQ5: the UPVerifier can be used to verify industrial
benchmarks and that message chains play an important role.

7 RELATEDWORK

Ivy [McMillan and Padon 2020] is a synchronous reactive programming language and framework
for designing, testing, and verifying distributed algorithms. Ivy supports a multitude of features,
including compilation to executable code and verification through model checking and induction,
all while ensuring that every query to an SMT solver belongs to a decidable fragment of first-order
logic. Mypyvy [Feldman et al. 2019] is inspired by Ivy but contributes a methodology for inferring
inductive invariants through lightweight user guidance. Specifically, users provide mypyvy with a
system model and an automaton that describes the high-level “phases” of the system in question;
mypyvy then uses the automaton to decompose the invariant inference problem, and return a
safety guarantee based on a set of inferred phase invariants. QuickSilver [Jaber et al. 2020a,b]
presents a framework for modeling and verifying distributed systems based on sound abstractions
of complex components, and then verifying the system assuming the complex components are
verified separately. IronFleet [Hawblitzel et al. 2015] is a methodology for verifying distributed
system implementations that was validated through a large-scale case study of a practical, real
distributed system. The UPVerifier differs in that it is domain-specific and supports verification at
the message passing level of abstraction using message chains.

I4 [Ma et al. 2019] is a property-directed reachability (PDR) based approach to verifying distributed
systems. I4 learns an inductive invariant over a bounded number of steps of the protocol and then
uses this to infer a general inductive invariant for the infinite distributed protocol. Koenig et al.
[2020] extend the PDR algorithm using first-order quantified separators. SWISS [Hance et al. 2021]
and DistAI [Yao et al. 2021] tackle the same problem but with approaches that are not based on
PDR. Inductive invariant synthesis (what they do) and specification mining (what we do) are two
different problems. Inductive invariant synthesis is when you have a target property (something
you would like to guarantee) and you want to find auxiliary invariants to make your proof by
induction pass. Specification mining is when you have a system that you can observe and you want
to come up with properties that likely hold. Furthermore, none of these tools are tailored to the
message passing level of abstraction.
Jeppu et al. [2020] propose a program synthesis-based technique for automatically learning

models from distributed system execution traces. This work follows a long line of related techniques
starting in the 1970s [Biermann and Feldman 1972]. Many modern techniques in this space are
based on Evidence-Driven State Merge (EDSM) [Lang et al. 1998]. Our work is complementary in
that we aim to mine specifications instead of models. In that sense, our work is more similar to
likely invariant synthesis techniques, like Daikon [Ernst et al. 2001]. However, we also provide a
verification framework and our invariants are tailored to the distributed systems domain.
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Schwarz and Mattern [1994] define a notion of causal histories that has some features in common
with our notion of message chains. For a given event 𝑒 , the causal history of 𝑒 is the set of events
that happened-before [Lamport 1978] 𝑒 . Message chains are a focused and ordered version of causal
histories. That is, the chain relation in a message chain induces a sub-relation of happened-before
but the inverse is not true. See Fig. 3 for a visual comparison (e.g., event 2:1 happens before event
2:2 but the two events are not related in terms of message chains). Some of our key insights are
that thread order is not necessarily important in the context of asynchronous message-passing
verification, and that a lightweight but useful abstraction (message chains) that ignores thread
order can be extracted from the syntax of message-passing programming languages.

The most related work is that of Talupur and Tuttle [2008] who observe that message sequence
charts can be used as a proof artifact. The authors formalize the notion of message flows, which
in our framework are akin to a sequence of actions, and integrate Message Flows into the CMP
proof method [McMillan 2001]. In follow-up work [Sethi et al. 2014], the authors note that the
“key limitation of our approach is that the invariants have to be derived manually by inspecting
counterexamples.” Our work addresses this limitation. Other than the use of specification mining,
message chains differ frommessage flows in three big ways: expressive power, verification flexibility,
and programming language integration. In terms of expressive power, message flows can only
express fixed length sequences, so they cannot capture properties like those we use for the ring
leader election protocol or the onion routing protocol, among others. In terms of verification
flexibility, due to how they compile flows to the CMP verification method, their users can only
specify a disjunction of possible flows, whereas our users can also express conjunctions and
negations. Finally, we show how to use these ideas in real programming languages.
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