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Abstract

A Proposed Method for the Computer-aided Discovery and Design of
High-strength, Ductile Metals

by

Ian Stewart Winter
Doctor of Philosophy in Engineering - Materials Science and Engineering

University of California, Berkeley

Professor Daryl Chrzan, Chair

Gum Metal, a class of Ti-Nb alloys, has generated a great deal of interest in the
metallurgical community since its development in 2003. These alloys display numer-
ous novel and anomalous properties, many of which only occur after severe plastic
deformation has been incurred on the material. Such properties include: super-
elasticity, super-coldworkability, Invar and Elinvar behavior, high ductility, as well
as high strength. The high strength of gum metal has generated particular enthu-
siasm as it is on the order of the predicted ideal strength of the material. Many of
the properties of gum metal appear to be a direct result of tuning the composition
to be near an elastic instability resulting in a high degree of elastic anisotropy. This
presents an opportunity for the computer-aided discovery and design of structural
materials as the ideal strength and elastic anisotropy can be approximated from the
elastic constants. Two approaches are described for searching for this high ansitropy.
In the first, The possibility of forming gum metal in Mg is explored by tuning the
material to be near the BCC-HCP transition either by pressure or alloying with Li.
The second makes use of the Materials Project’s elastic constants database, which
contains thousands of ordered compounds, in order to screen for gum metal candi-
dates. By defining an elastic anisotropy parameter consistent with the behavior of
gum metal and calculating it for all cubic materials in the elastic constants database
several gum metal candidates are found. In order to better assess their candidacy
information on the intrinsic ductility of these materials is necessary. A method is
proposed for calculating the ideal strength and deformation mode of a solid solution
from first-principles. In order to validate this method the intrinsic ductile-to-brittle
transition composition of Ti-V systems is calculated. It is further shown that this
method can be applied to the calculation of an ideal tensile yield surface.
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Chapter 1

Introduction

The continued increase in computational capabilities coupled with advancements
in first-principles methods for calculating materials properties makes computational
materials design a powerful tool in the development of materials. The computer-
aided design of structural materials, however, lags behind that of other fields. This
is due to the complexity of defect-mediated plasticity, which is known to be the
predominant deformation mechanism in most metals [1, 2, 3]. Modeling defect-
mediated plasticity from first-principles is especially difficult due to the different
length and time scales involved in dislocation motion. For instance, a heavily cold-
worked metal possesses a dislocation density on the order of 1011− 1012 cm−2, which
would require approximately 100,000 atoms to simulate a straight dislocation dipole,
while density functional theory (DFT) calculations are generally only feasible for
systems with less than 1000 atoms. In addition, the mechanical behavior of a material
is generally sensitive to factors such as temperature and strain rate, which either
greatly increase the computational cost (temperature) or are impossible to match
with first-principles methods (strain rate).

A good deal of progress has been made in computer-aided structural materials
design, mostly in the form of multiscale modeling and the integrated computational
materials engineering (ICME). Examples of successes in this field include the vir-
tual aluminum casting program at Ford Motor Company [4] and the QuesTek’s
development of a corrosion-resistant landing-gear steel [5]. In both of these cases
first-principles calculations were one part of an array of different models used in the
design of the material with still a large degree of empiricism involved in the process.
While these represent advances in computer-aided design they are geared towards
optimizing the performance of conventional structural materials for which there is
already a wealth of imformation. The development of gum metal in the early 2000s
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offers a possible path towards structural materials discovery based on first-principles
calculations.

In 2003, gum metal, a class of Ti-Nb based alloys was developed by Toyota
[6]. These alloys display numerous interesting properties, many of which only occur
after the metal has been severely plastically deformed; this often means cold-swaging
the material to more than a 90% reduction in area. As shown in Figure 1.1 gum
metal possesses a yield strength of approximately 1.2 GPa, reasonable ductility (13%
elongation to fracture), along with a high elastic limit (2.5%), and the absence of
work hardening. Gum Metal’s Young’s modulus and thermal expansion coefficient
are temperature insensitive over a wide temperature range. In addition, the thermal
expansion coefficient is near zero over this same temperature range.

Figure 1.1: Depiction of the mechanical and thermal properties of gum metal. From
Saito et al. [6]. Reprinted with permission from AAAS.

Gum Metal has the interesting combination of a low elastic modulus and a yield
strength on the order of the ideal strength of the material. This observation initially
lead to speculation that it could be the case of a material in which the ideal strength
plays some role in the actual yield of the material. While this combination of proper-
ties may seem somewhat contradictory, lattice softening appears to be central to the
behavior of gum metal. It was initially discovered by pushing a body-centered-cubic
(BCC) Ti alloy towards the hexagonal close-packed (HCP) transition composition,
which leads to a softening of the elastic constants [7]. Theoretical work by Li et al.
showed that lattice softening can result in an increase in the susceptiblity of dislo-
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cations to pinning [8], allowing for mechanisms other than the dislocation motion to
initiate plastic deformation. It was further asserted that two criteria must be met for
a material to behave in a gum-metal-like fashion: 1) the material must be near an
elastic instability in order to arrest dislocation motion and 2) it must be intrinsically
ductile.

From a computer-aided design perspective these two criteria are especially at-
tractive. The reason being that the elastic constants and ideal strength are some of
the few mechanical properties of a material, that can be calculated accurately from
first-principles [9, 10]. Further, ideal strength calculations can be used to assess a
material’s ductility [11]. The implication of this is that materials can be screened for
their potential to act as a gum metal using first-principles calculations.

This dissertation presents the work that has gone into achieving this goal of
evaluating potential gum-metal-like alloys. The first two chapters detail the potential
for magnesium and lithium-magnesium alloys to display gum-metal-like behavior.
Chapter 2 describes the behavior of BCC magnesium as a function of pressure in
terms of its elastic properties. Chapter 3 uses the same approach as the first, but
instead focuses on effects of composition in a lithium-magnesium alloy on the elastic
properties and dislocation core. Chapter 4 outlines a general approach for searching
for materials in which dislocations can be easily pinned. The final two chapters deal
with the evaluation of a material’s ductility. In chapter 5 a method is introduced for
approximating the intrinsic ductility and ideal strength of a random solid solution.
Chapter 6 demonstrates how this method can be generalized to produce an ideal
yield surface. Finally, concluding remarks on this project are presented, including
future work that can be done and the possible implications on this work in the field
of structural materials design.
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Chapter 2

Dislocations near elastic instability
in high pressure body-centered
cubic magnesium

Over a decade ago researchers at Toyota developed Gum Metal, a class of TiNb
based metals that exhibit a wide variety of both novel and attractive properties [6].
These metals display an elastic limit of approximately 2− 3% at room temperature
and 4% at 77 K, a yield strength of over 1 GPa, as well as Invar and Elinvar properties.
In addition Gum Metal appears to fail at or near its ideal strength, a behavior that
has been long thought impossible in a bulk material due to the prevalence of defect
mediated plasticity [1, 2, 3]. Saito, et al. proposed three criteria for the emergence of
the ”super” properties of Gum Metal [6]. The material must have an average valence
electron number (electron/atom ratio) of 4.24, a bond order of approximately 2.87
and a d-electron orbital energy level of roughly 2.45 eV.

Subsequent work on Gum Metal suggested that a more general connection can
be made between the properties of Gum Metal and the proximity of a material to an
elastic instability [8, 12, 13, 7]. Gum Metals exist near the composition at which the
body-centered cubic (BCC) phase becomes elastically unstable and transforms into
the hexagonal close-packed (HCP) phase. The proximity to this lattice instability
is apparent in the elastic constants. Specifically the shear modulus, C ′ = 1

2
(C11 −

C12), goes to zero at the transition [6, 8]. Based on continuum anisotropic linear
elasticity theory (henceforth abbreviated as linear elasticity theory) an explanation
for the apparent failure of Gum Metal near its ideal strength has been developed.
As the elastic instability is approached the dislocations’ core radii grow. For proper
alloy compositions and sufficient dislocation densities (Gum Metal’s “ideal” behavior
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emerges only after severe cold-working[6]) an applied stress can cause the spread
dislocation cores to percolate, resulting in high shear stress regions, where plastic
deformation via shear melting should be possible [12].

This explanation for the appearance of Gum Metal like properties suggest that
it might be possible to observe similar behavior in other alloy systems and at other
types of lattice instability [13]. In fact, experimentally the BCC to face-centered cubic
(FCC) instability has been exploited to produce a Fe-Ni-Co-Ti alloy with Gum Metal
like properties [14]. As in the case of Gum Metal, the properties of this alloy are
likely strongly influenced by the d-states of the component atoms. Experimentally,
the only known examples of Gum Metals are based upon transition metals.

This suggests an interesting avenue of exploration. Can one develop a Gum Metal
alloy without the incorporation of transition metal elements? Such an alloy might be
technologically interesting as it is likely to have a high specific strength. For example,
a Mg based Gum Metal might be well suited for applications requiring a light weight
structural alloy. In what follows, we consider the potential for a non-transition metal
to display properties that have been linked to the ”super” properties of TiNb based
Gum Metals. We consider in detail the case of Mg under high pressure.

The BCC phase is elastically unstable in magnesium at ambient pressure [15],
but is predicted to be stabilized at high pressures [16]. This offers a useful model
for examining the effect of an elastic instability on the dislocation core structure as
pressure can be used to approach the instability. It is also a much simpler approach
compared to varying the composition of a binary alloy to approach an elastic insta-
bility, as none of the complexities inherent to modeling a solid solution need to be
considered.

We first calculate the relative stability of BCC Mg with respect to HCP as a func-
tion of pressure using density functional theory (DFT) and compare these results to
those already in the literature. By determining the elastic constants for a range of
pressures, we show that BCC Mg approaches an elastic instability associated with
C ′ → 0 and that this corresponds to a spreading of the dislocation core. Analysis
of the dislocation core structure indicates that interactions between the spread cores
take place. This leads, initially, to the formation of localized regions of shear (nan-
odisturbances) that are characteristic of Gum Metal [17], and ultimately results in
the nucleation of the HCP phase. Unlike Gum Metal, BCC magnesium is predicted
to be intrinsically brittle, despite being highly elastically anisotropic and having a
G/B value typically associated with ductility.
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2.1 Theory

The calculation of elastic constants was done by following the method described
by Sin’ko in which pressure terms are incorporated into the elastic constants [18].
The approach begins with writing the strain of the homogeneous body as a symmetric
second-rank tensor, which is a function of the strain magnitude, γ, and is of the form

εij = sijγ, (2.1)

where sij is the form of the strain tensor. The elastic constants can then be written
as a function of both volume at a given pressure V , and the Lagrangian strain η

C̃ijkl =
1

V

∂2E(V, η)

∂ηij∂ηkl
, (2.2a)

ηij = εij +
1

2
εikεkj. (2.2b)

It should be noted that the Einstein summation convention is used. Taking the
Taylor series expansion of the strain energy with respect to the strain magnitude
results in ∑

α,β

ξαξβC̃αβsαsβ = P (V )
∑
α

ξαs
2
α +

1

V

∂2E(V, γ)

∂γ2
|γ=0. (2.3)

The above equation is written in Voigt notation with the indices ranging from 1 to
6 and ξα = 1 if α ≤ 3 and ξα = 2 if α > 3. Tsuchiya and Kawamura found that by
selecting the strain configurations appropriately, the cubic elastic constants under
pressure (C̃ij) can be calculated from equation 2.3 using the following equations [19]

C̃11 =
1

V

∂2E(V, ε̂4)

∂γ2
|γ=0, (2.4)

C̃44 = −P
2

+
1

12V

∂2E(V, ε̂5)

∂γ2
|γ=0, (2.5)

C̃11 − C̃12 = −P +
1

2V

∂2E(V, ε̂6)

∂γ2
|γ=0. (2.6)

Here the strain tensors ε̂4, ε̂5, and ε̂6 are defined as follows
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ε̂4 =

γ 0 0
0 0 0
0 0 0

 , (2.7a)

ε̂5 =

0 γ γ
γ 0 γ
γ γ 0

 , (2.7b)

ε̂6 =

γ 0 0
0 −γ 0
0 0 0

 . (2.7c)

For a tetragonal lattice the elastic constants at pressure can be calculated using
the following six strains defined as ε̂tetr1 , ε̂tetr2 , ε̂tetr3 , ε̂tetr4 , ε̂tetr5 , and ε̂tetr6 , which are
represented in tensor form as,

ε̂tetr1 =

γ 0 0
0 0 0
0 0 0

 , (2.8a)

ε̂tetr2 =

0 0 0
0 0 0
0 0 γ

 , (2.8b)

ε̂tetr3 =

γ 0 0
0 γ 0
0 0 0

 , (2.8c)

ε̂tetr4 =

γ 0 0
0 0 0
0 0 γ

 , (2.8d)

ε̂tetr5 =

0 0 0
0 0 γ
0 γ 0

 , (2.8e)

ε̂tetr6 =

0 γ 0
γ 0 0
0 0 0

 . (2.8f)

The applied strains states do not exactly correspond to the cubic case shown in
equation 2.7. No difference was seen in the elastic constants of a cubic material when
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using equations 2.8 or 2.7. Applying these six strain states separately results in a
system of equations involving the elastic constants. The resulting six elastic constants
describing a BCT lattice are defined in equation 2.9 in terms of the pressure and the
the second derivative of the energy with respect to γ as

C̃tetr
11 =

1

V

∂2E(V, ε̂tetr1 )

∂γ2
|γ=0, (2.9a)

C̃tetr
12 = P − 1

V

∂2E(V, ε̂tetr1 )

∂γ2
|γ=0 +

1

V

∂2E(V, ε̂tetr3 )

∂γ2
|γ=0, (2.9b)

C̃tetr
13 = P − 1

2V

∂2E(V, ε̂tetr1 )

∂γ2
|γ=0 −

1

2V

∂2E(V, ε̂tetr2 )

∂γ2
|γ=0 +

1

2V

∂2E(V, ε̂tetr4 )

∂γ2
|γ=0,

(2.9c)

C̃tetr
33 =

1

V

∂2E(V, ε̂tetr2 )

∂γ2
|γ=0, (2.9d)

C̃tetr
44 = −P

2
+

1

V

∂2E(V, ε̂tetr5 )

∂γ2
|γ=0, (2.9e)

C̃tetr
66 = −P

2
+

1

V

∂2E(V, ε̂tetr6 )

∂γ2
|γ=0. (2.9f)

Ideal tensile strength calculations can be performed to determine if a material is
intrinsically brittle or ductile [20, 21]. The eigenvalues of the symmetrized Wallace
tensor [22, 23], λijkl, govern the elastic stability of a material following

λijklδεijδεkl ≥ 0. (2.10)

In the case of a uniaxial load, σ, on a BCC material applied along 〈001〉 the elastic
stability criteria are

(C33 + σ)(C11 + C22) > 2
(
C13 −

σ

2

)2

, (2.11a)

C11 − C22 > 0, (2.11b)

C66 > 0, (2.11c)

C44 +
σ

2
> 0. (2.11d)

The failure of conditions 2.11b-2.11d correspond to a shear instability (intrinsic duc-
tility) while condition 2.11a results in cleavage [24]. The elastic constants are of a
body-centered tetragonal (BCT) Bravais lattice due to an uniaxial load being applied
to the BCC crystal.
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The elastic constants can be used to define a size for a dislocation core. By
defining the dislocation core as the region for which the stress predicted by linear
elasticity theory is greater than the ideal strength, an approximation for the region in
which linear elasticity theory is no longer valid is obtained [12, 13]. Since symmetry
often links the ideal strength to the elastic constants, this definition allows for the
dislocation core radius to be written in terms of the elastic constants. In the case of
a BCC metal the dislocation core radius can be expressed as

rcore =
bK

2πfG〈111〉
. (2.12)

Here b is the Burgers vector, K, the elastic modulus governing the dislocation line
tension, G〈111〉, the shear modulus along the 〈111〉 direction (that for BCC is inde-
pendent of slip plane), and, f , a constant equal to approximately 1/9 in the case of
BCC [13]. K and G〈111〉 can be expressed as

K =
√

(C11 − C12)C44

√
2C2

11 + 2C11C12 − 4C2
12 + 13C11C44 − 7C12C44 + 2C2

44

3(C11 − C12 + 4C44)(C11 + C12 + 2C44)
,

(2.13)

G〈111〉 =
3C44(C11 − C12)

C11 − C12 + 4C44

. (2.14)

The result of equation 2.12 is that the dislocation core radius is inversely proportional
to
√
C11 − C12. It has been argued that in the case of Gum Metal, due to its small

C ′ value the application of an applied stress can cause the dislocation core region to
percolate resulting in paths of shear melting [12].

DFT can be used to compute dislocation core structures using periodic super-
cells of 〈111〉 oriented screw dislocations following the approach of Daw [25]. This
approach assumes that the distortion tensor can be written as a Fourier series

∆jk(r) =
∑
G

∆̃jk(G)eiG·r (2.15)

where ∆̃jk(G) is a component of the distortion in reciprocal space and G corresponds
to a reciprocal lattice vector. The elastic energy is written as

Wc =
1

2
Cjklm

∫
cell

dv∆jk∆lm =
1

2
ΩcCjklm

∑
G

∆̃jk∆̃
∗
lm. (2.16)
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Here ∆̃∗lm is the complex conjugate of ∆̃lm, Cjklm is the elastic tensor, and Ωc is the
volume of the cell. The equilibrium distortion tensor is determined by minimizing Wc

with respect to the distortion components subject to the constraints imposed by the
dislocations. The distortion is then integrated to produce the initial displacements
for our unit cells. In our numerical work the core radius was chosen to be b/4. For
a more in-depth discussion of this method see chapter 3.

The distortion in the cell vectors due to the introduction of the dislocation
quadrupole was determined as done by Lehto and Öberg [26]. Analysis of the dislo-
cation core structure was carried out using differential displacement maps (DD) as
developed by Vitek et al. [27]. In these maps, the magnitude of an arrow between
two nearest neighbor (NN) atoms shows the relative displacement, normal to the
page, between the two atoms as a result of the dislocation. The arrows are scaled
such that an arrow connecting NN represents a displacement of b/3. For a 〈111〉-type
screw dislocation in BCC a full dislocation is symbolized in a DD map as a circuit
which sums to b (e. g. a triangle of NN atoms connected by arrows of magnitude b/3
and pointing clockwise). The Nye tensor was calculated using the approach outlined
by Hartley and Mishin [28, 29] .

2.2 Computational Details

The relative phase stability of BCC and HCP Mg, the elastic constants, disloca-
tion core structure, and ideal tensile strength calculations were all performed using
the projector augmented wave method (PAW) as implemented in the Vienna Ab
Initio Simulation Package (VASP) [30, 31]. For the exchange-correlation functional
the Perdew, Becke, and Ernzerhof (PBE) Generalized Gradient Approximation was
employed [32]. Both the 2p as well as the 3s states were considered as valence
electrons. Phase stability calculations using PAW were conducted using primitive
unit cells. A plane-wave cutoff of 580 eV was used with a first-order Methfessel-
Paxton scheme and a smearing parameter of 0.1 eV. The convergence conditions
for energy and forces were set to 1 × 10−6 eV and 0.005 eV/Å respectively. These
values were used for all other PAW calculations, unless otherwise stated. For BCC a
21×21×21 Monkhorst-Pack grid was used, while for HCP a 21×21×13 Γ-centered
grid was implemented instead. The elastic constants calculations used a 25×25×25
Monkhorst-Pack grid with a conventional BCC unit cell. Electronic relaxations for
elastic constants calculations were set to 1 × 10−10 eV. A 135 atom BCC unit cell
was used with 2× 1× 8 Γ-centered grid for dislocation core calculations.

Ideal strength calculations [21, 20] were performed by applying a fixed strain
along the [001] direction, as this is considered the weakest direction under tension
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for BCC metals [33, 34], and varying the strain along [100] and [010] to achieve the
proper stress state. Relaxations were performed until all components of the stress
tensor other than σ33 were less than 0.05 GPa. Brillouin zone integrations were
performed using a 29× 29× 29 Monkhorst-Pack grid. The intrinsic ductility of the
material was tested by allowing the unit cell to relax along a tetragonal path. The
symmetrized Wallace tensor was evaluated by calculating the BCT elastic constants
using the same input parameters as for the cubic elastic constants described above.
The strain states for the BCT elastic constants are defined in equation 2.8.

The relative phase stability as well as the density-of-states as a function of pres-
sure were also performed using the full-potential linearized augmented plane wave
(FP-LAPW) method as implemented in the code Elk [35]. Convergence testing was
conducted with respect to the muffin-tin radius, k-point sampling, and plane-wave
cutoffs. A total energy convergence criterion of 3.0× 10−8 Ha was used.

2.3 Results

The phase stability of BCC and HCP structures was considered using both FP-
LAPW and PAW. Both methods result in a general agreement for the behavior of
the energy of the BCC phase in magnesium as a function of pressure as shown in
Figure 2.1. This leads to the conclusion that the PAW method, while using the
frozen-core approximation, models the given system reasonably well, and is suitable
for our calculations. The BCC-HCP transition volume and pressure, computed with
PAW, are in general agreement with previous work conducted using the linear muffin-
tin orbitals method (LMTO) as shown in table 1. The current work’s values for
transition volume and pressure differ from that of reference [16] by 0.8% and 7%
respectively. The partial density of states calculated using FP-LAPW shown in
Figure 2.1d demonstrates that the occupation of the d-states are negligible at least
for volumes V = 0.6V0 and higher. Calculations of the density of states, Figure
2.2, at volumes between 0.6V0 and 0.7V0 using FP-LAPW show that the elastic
instability does not appear to be related to the Fermi level approaching a van Hove
singularity, which is associated with the low shear modulus, C44, seen in V, Nb,
and Ta [36, 37, 38]. Using the common tangent construction Figure 2.1 indicates
that the two phase region does not extend far beyond the transition pressure, which
is calculated to be approximately 50 GPa and corresponds to a volume of 0.6V0.
However, the BCC phase remains elastically stable for volumes approaching V0 as
shown in Figure 2.3 and Table 2.2.
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Figure 2.1: Comparison of the total energy of the BCC phase using both the FP-
LAPW and PAW methods in 2.1a. Figure 2.1b shows a plot of the relative stability
of BCC with respect to HCP as a function of volume. The BCC phase becomes
stable at roughly half of the volume corresponding to ambient pressure and volume.
Common tangent construction for BCC and HCP as a function of volume ratio is
illustrated in Figure 2.1c. The partial density of states (DOS) for magnesium at
V = 0.6V0 is shown in figure 2.1d.

The elastic stability of the BCC phase was computed and compared to previous
work (Figure 2.3a). As ambient pressure is approached the BCC lattice becomes
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Figure 2.2: Total density of states for volumes between 0.60V0 and 0.90V0 using FP-
LAPW.

Table 2.1: BCC-HCP transformation data. V0 corresponds to the volume of HCP
magnesium under no applied pressure.

V0 (HCP) [Å3] Vtrans [Å3] Ptrans [GPa] Ref.

23.0 13.5 53.8 current work
23.2 13 50 [16]
— — 50± 6 [39]

elastically unstable. Based on the arguments given above this should result in an
increase in the dislocation core radii. The dislocation core radius normalized by
the burgers vector as calculated from elasticity theory is shown in Figure 2.3b. For
volumes 0.6V0 − 0.9V0 the core radius is large compared to Gum Metal, but also
increases as the elastic instability is neared. For comparison the dislocation core
radius of tungsten, a nearly elastically isotropic crystal, was estimated to be 1.45
b[12].

As shown in Table 2.2, the dislocation core radii of Gum Metal and the Ti3Nb
Gum Metal approximate are relatively close to the that of tungsten. The dislocation
core radius of Ti80V20, however, is 2.42. Ti3Nb contains 4.25 valence electrons per
atom (e/a), while Ti80V20 has 4.20 e/a. Near an elastic instability small fluctuations
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Figure 2.3: Figure 2.3a compares LMTO results from reference [15] with PAW
(Current Work). Figure 2.3b shows the change in the ratio between the dislocation
core radius, rcore, and magnitude of the Burgers vector, b. Lowering the pressure of
Mg appears to cause C11 − C12 → 0, leading the BCC phase to become elastically
unstable.

Table 2.2: Comparison of relative core radii and elastic constants for various Gum
Metal approximants. All elastic constants are in units of GPa.

Material C11 C12 C44 C ′ rcore/b

Ti80V20 (Theory) [12] 139 131 47 4 2.42
Ti3Nb (Theory) [40] 149 111 37.5 18.7 1.51

Ti–36Nb–2Ta–3Zr–0.3O (wt.%) [41] 125 93 28 16 1.49
Mg (V = 0.6V0) 207 178 124 14.5 1.83
Mg (V = 0.7V0) 137 112 85.5 12.5 1.93
Mg (V = 0.8V0) 84.2 76.1 59.9 4.05 2.51

in composition (changes in e/a) can have a dramatic impact on the dislocation core
radius, leading to the potential for different mechanisms for plasticity in different
regions of the material. Substituting pressure for composition this same behavior
is apparent. Comparing figures 2.3a and 2.3b, as C11 − C12 approaches zero the
dislocation core radius increases.

Dislocations core structures were computed as described in section 2.2. A quadrupo-



15

lar configuration for the dislocations was selected as this has been shown to be en-
ergetically favorable to a conventional dipole stacking [26]. Figure 2.4 illustrates the
expansion of the dislocation cores in the quadrupolar configuration as the volume
increases from 65% to 80% of the ambient volume coinciding with the drop in C ′ as
seen in Figure 2.3. The dislocation densities of the screw quadrupolar configuration
at 0.65V0, 0.70V0, and 0.80V0 is 2.66×1017 m−2, 2.53×1017 m−2, and 2.32×1017 m−2

respectively. It should be noted that the lateral displacements of atoms on the (111)
plane are included in this plot. The large displacements shown in the DD map for
the two larger volumes are indicative of the phase transformation of BCC to HCP
as illustrated in Figure 2.4 by adaptive common neighbor analysis (a-CNA)[42] as
implemented in the open visualization tool (OVITO) [43]. This is especially evi-
dent for 0.8V0, where the dislocations appear to have initiated the transformation
of almost the entire supercell into HCP (red atoms). Considering that this material
has been designed specifically such that C ′ approaches zero, the appearance of HCP
in the dislocation core is understandable. The 0.65V0 dislocation cores display an
approximant three-fold symmetry near the center of the dislocation similar to those
found by Vitek, et al. for Fe [27]. These correspond to the three {112} type planes
intersecting the dislocation cores. Interestingly, the Burgers path, which connects the
BCC to HCP phase [44] consists of a near {112̄}〈111〉 shear coupled with a softening
of N-point acoustic phonon mode [45].

Figure 2.5 depicts the projection of a screw dislocation quadrupole with all atoms
projected onto the (111) plane in order to better visualize any lateral shifts resulting
from the dislocations. The large degree of lateral displacements for both volumes is
associated with a highly anisotropic material based on a comparison to TiV dislo-
cation cores [12]. In Figure 2.5a localized regions of shear can be seen reminiscent
of nanodisturbances (defined as a dipole of partial dislocations with Burgers vectors
not corresponding to the crystal) seen in Gum Metal [17] as well as TiV Gum Metal
approximants [12]. In order to determine if the lateral displacements in the atoms
claimed to be nanodisturbances in Figure 2.5 are associated with edge dislocations,
the edge component of the Nye tensor was plotted for the dislocation quadrupolar
configuration. From Figure 2.6 no edge character is apparent for either 0.65V0 or
0.7V0 BCC Mg. However, in the case of 0.8V0 there is a direct correspondence be-
tween the regions of possible edge character outlined in Figure 2.5 and the regions
of high edge character in Figure 2.6, both of which are outlined by green circles in
the two figures.

The pressure dependence of the ideal tensile strength was computed in order to
explore the intrinsic brittle/ductile behavior of BCC magnesium. For the material
to be intrinsically ductile it must fail under a uniaxial tensile load via a shear in-
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a) b)

c) d)

e) f)

Figure 2.4: Comparison of relaxed 〈111〉 screw dislocations in a quadrupolar config-
uration for BCC magnesium at 0.65V0, 0.7V0, and 0.8V0 (figures a, c, and e respec-
tively). Figures b, d, and f show atoms colored using CNA for 0.65V0, 0.7V0, and
0.8V0. Red atoms are HCP, blue atoms correspond to BCC, green FCC and white
are unclassified.

stability instead of via cleavage (intrinsically brittle). A failure of condition 2.11a is
a consequence of a material being intrinsically brittle, as the eigenvector associated
with this condition does not result in any shearing of the crystal. A uniaxial stress



17

a) b)

c)

Figure 2.5: Projection of relaxed 〈111〉 screw dislocations in a quadrupolar configu-
ration onto the (111) plane for BCC magnesium at 0.65V0, 0.7V0, and 0.8V0 (figures
a, b, and c respectively). In Figure 2.5c, a region of suspected edge character is
highlighted by the green circle.

is applied along c and relaxations are performed under the constraint that the lat-
tice remains BCT. The elastic stability at each strain is then determined from the
eigenvalues of the symmetric Wallace tensor following equations 2.11a-2.11d.

BCC magnesium at both 0.65V0 and 0.7V0 is indicated to be intrinsically brittle
as shown in Figure 3.4. Both volumes show an elastic instability due to cleavage at
approximately 2% − 4% strain. The initial instability due to cleavage is relatively
shallow, meaning that slight differences in the elastic constants could cause a change
in behavior. This was tested by varying the smearing parameter. The elastic con-
stants were run for smearings of 0.05 eV, 0.1, 0.2, and 0.3 eV. For all values the cause
of elastic instability was found to be the same (cleavage).

The formation of an elastic instability at such small strains 2%−4% is an unusual
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a) b)

c) d)

e) f)

Figure 2.6: Comparison of relaxed 〈111〉 screw dislocations in a quadrupolar configu-
ration for BCC magnesium at 0.65V0, 0.7V0, and 0.8V0 (first, second and third rows
respectively). Coloring is done using the edge components, α13 and α23, of the Nye
tensor for the left and right columns respectively. The atom positions of plots show
the lateral shifts resulting from the dislocations. The green circles identify regions
that correspond to the regions of edge character in Figure 2.5.

feature. Examining the change in the density of states as shown for the two volumes
0.65V0 and 0.70V0 in figures 2.8b and 2.8c, there does appear to be a large shift in
the DOS for both volumes at the approximate energy range −2 eV to −1 eV. The
application of an uniaxial load changes the point group of the crystal from Oh to
D4h. This causes the group of the wave vector along Z2 → P to change from C3v to
C1h. As C1h has no 2 dimensional irreducible representation the band splits as shown
in figure 2.8a. The same band splits at Z as a result of a change in the group of
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Figure 2.7: The eigenvalues of the symmetric Wallace tensor, which correspond to the
elastic stability criteria of a crystal under an uniaxial load are shown for 0.65V0 and
0.7V0 in figures 2.7a and 2.7b respectively. Both volumes show an elastic instability
at 2%− 4% that is a result of cleavage.

the wave vector from Oh to D4h. As shown in Figure 2.8a the splitting of this band
appears to be associated with an overall increase in the energy of the occupied states
(Z1 → Z2). Interestingly, the two-fold degeneracy of the band at Z is consistent
with that of a d-band [47]. There does appear to be some d-like character near and
above the Fermi level as shown in Figure 2.1d, although it is much smaller than the
s- and p-states. It does entertain the idea though that the d-electrons, while playing
no significant role in bonding of the cubic crystal, could be involved enough in the
strained state to contribute to the material failing in cleavage.

2.4 Discussion

BCC magnesium draws many parallels to Gum Metal. Linear elasticity theory
shows that a reduction in C ′ with decreasing pressure is associated with an expan-
sion in the dislocation core radius as well as an increase in the elastic anisotropy
of the crystal. The strain field due to a screw dislocation contains more than one
non-zero component for a highly anisotropic crystal leading to large lateral displace-
ments. Dislocation core structure calculations show that as the pressure is reduced
lateral displacements become more pronounced to the point where nanodisturbances
appear. Associated with this is the formation of HCP via the Burgers path starting
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Figure 2.8: The band structure of 0.65V0 is shown with 3% applied strain and no
strain (2.8a). The band structure of 0.70V0 resembles very closely that of 0.65V0.
The change in the density of states with strain is shown in figures 2.8b and 2.8c. The
high symmetry points are those of a body-centered tetragonal lattice [46]: Γ = [000],
N = 1

2
[100], P = 1

4
[111], Z1 = 1

2
[111̄], Z2 = 1

2
[111], and X = 1

2
[001]. Z1 and Z2 are

symmetrically equivalent k-vectors in reciprocal space both corresponding to the high
symmetry point, Z.

at the dislocation core. These observations are all consistent with a previously stated
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explanation for ideal slip in a bulk material [12]. Heavily cold-working a material
near an elastic instability results in a high density of dislocations, which exhibit large
core structures. An applied stress can cause the dislocation core region to overlap,
resulting in highly stressed regions in which shear bands associated with the Burgers
path can form.

Unlike Gum Metal, BCC magnesium appears to be intrinsically brittle. With
this noted, the behavior of BCC Mg is especially intriguing considering that the
anisotropic Pugh ratio [48], B/G〈111〉, for 0.7V0 BCC Mg is approximately 6.89, sug-
gesting it is ductile. For comparison, values of the same ratio for niobium, vanadium,
and tantalum (all intrinsically ductile BCC metals) are approximately 7.9, 5.5, and
3.3 respectively. As all calculations have been conducted at 0 K there is a possibility
that a brittle to ductile transition can occur within the BCC phase.

Assuming that a material must (1) be near an elastic instability and (2) be
intrinsically ductile for its plasticity to be governed by the ideal shear strength (ISS),
the case for BCC magnesium appears to be in doubt. Condition (2) appears obvious
for a perfectly crystalline material. However, bulk materials will always contain
defects and if the theoretical studies on materials governed by ISS are to believed
it is only at enormous defect densities that the ISS will begin to govern the yield
strength. The complex stress fields associated with a high dislocation density bring
into question whether a material must be intrinsically ductile to have its plasticity
governed by the ISS.

2.5 Conclusion

The properties of BCC Mg nearing its elastic instability have been investigated
using DFT. Calculations of the elastic constants at pressure show that C ′ of the BCC
phase approaches zero with decreasing pressure, resulting in a highly anisotropic ma-
terial for volumes 0.60V0 - 0.80V0. Dislocation core calculations show the formation
of nanodisturbances between screw dislocations, which have been experimentally
observed in Gum Metal. The formation of nanodisturbances is shown to coincide
with the appearance of the HCP phase at or near the dislocation core. Ideal tensile
strength calculations indicate that, unlike Gum Metal, BCC magnesium is intrin-
sically brittle. The lack of d-states in bonding for BCC magnesium leads to the
suggestion that an intrinsically ductile material near an elastic instability could be-
have like Gum Metal.
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Chapter 3

Behavior of Dislocations in BCC
Lithium-magnesium Alloys

In the previous chapter, the connection between the presence of a crystal near a
phase transormation and the emergence of gum-metal-like behavior was considered
by examining the elastic constants and dislocation core spreading of BCC magnesium
as a function of pressure. In this chapter the same idea of tuning a crystal to be near
an elastic instability is considered, except in this case the system at hand is a lithium
magnesium alloy and the method of tuning is the composition. In addition to the
two gum metal indicators considered in the previous chapter (intrinsic ductility and
a high value of K/G111) the existence of ”soft” phonons along Γ→ N is considered.

An investigation of the phonon dispersion can give further insight into a bulk
material’s tendency to deform via a shear instability. The reduction in the reduced
modulus and thus the decrease in ISS is associated with a softening of the acoustic
phonons along Γ → N [45]. The softening of these phonons is also associated with
the Burgers path [44] between the BCC and HCP phase. It has been shown that
the softening of these phonons can result in shear faults similar to those seen in
experiment [6].

Li-Mg alloys are suggested as an interesting candidate for Gum Metal like be-
havior for several reasons. The BCC phase is elastically unstable at ambient tem-
perature and pressure in pure Mg [15]. In addition, the binary phase diagram shows
no intermetallics and a large region of BCC stability [49]. Previous studies have
demonstrated that after severe plastic deformation (SPD), either by equal-channel
angular pressing[50, 51] (ECAP) or high pressure torsion[52] (HPT), on a two phase
(BCC and HCP) 8 wt. % Li alloy superplasticity is achieved at a relatively low
temperature. HPT was shown to induced superplasticity at 323 K (0.37Tm), with
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the strain rate sensitivity estimated to be 0.3, lower than 0.5, the value typically
associated with plastic deformation via grain boundary sliding. This suggests that
other mechanisms for plastic deformation could be present. Interestingly, the appli-
cation of HPT on a Fe-Ni-Co-Ti alloy existing near a BCC to face-centered cubic
(FCC) instability results in Gum Metal like properties, such as an elastic limit of
approximately 2% and a yield strength of 2.3 GPa [14].

First principles investigations of a range of Li-Mg alloys have shown these alloys
to have an especially low value of C ′ [53, 54]. Using the Pugh ratio (B/G) as a
measure of ductility [48] ordered compounds of composition between 40 and 80 at.
% Mg were shown to be brittle despite their low value for C ′. However, Mn, Fe,
Co, Ni, Cl and Cu were shown to increase the ductility of the ordered 50 at. % B2
structure [55] according to the Pugh Criterion.

In this chapter Li-Mg alloys are evaluated as Gum Metal candidates via the three
aforementioned criteria: intrinsic ducility, high elastic anisotropy, and softening of
the acoustic phonons along Γ→ N . Here, it is shown that the dislocation core radius
and elastic anisotropy indicates that these alloys displays remarkable similarities
to Gum Metal, including the apparent formation of nanodisturbances (nanoscale
regions of local shear[17]) due to the interaction of core structures of 〈111〉 type screw
dislocations. Further investigation of the ideal tensile strength of ordered structures
of LiMg3 finds the alloy to be intrinsically brittle. However, alloying options are
identified to potentially engineer intrinsic ductility.

3.1 Dislocation Core

In the previous chapter it was shown that the screw dislocation core radius is in-
versely proportional to the square root of the two shear moduli, C44 and C ′, meaning
that softening of either shear modulus would result in the expansion of the dislocation
core. As a lattice instability is approached the dislocation core radius will expand.
This makes binary Li-Mg especially interesting as its phase diagram shows only two
stable phases (BCC and HCP) separated by a miscibility gap [49]. In addition the
BCC phase is elastically unstable at ambient pressures suggesting that a lattice in-
stability might be found as the concentration of magnesium is increased within a
solid solution alloy.

The effect of composition on the dislocation core can be further analyzed with
first principles calculation of dislocation core structures using periodic supercells of
〈111〉 oriented screw dislocations following the approach of Daw [25]. According to
this approach the distortion tensor, defined as the gradient of the displacement field
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(∆jk =
∂uj
∂xk

), can be written as a Fourier series

∆jk(r) =
∑
G

∆̃jk(G)eiG·r. (3.1)

Where ∆̃jk(G) is a component of the distortion in reciprocal space and G is a
reciprocal lattice vector. This definition allows for the elastic energy to be written
as

Wc =
1

2

∫
cell

dvCjklm∆jk∆lm =
1

2
ΩcCjklm

∑
G

∆̃jk∆̃
∗
lm. (3.2)

The initial form of a dislocation quadrupole configuration can then be obtained by
minimizing the elastic energy defined by equation 3.2 with respect to the distortion
tensor given the constraints imposed by the dislocations. The singularity of the
dislocation is approximated as a Gaussian distribution with a smearing of b/5. The
distortion in the cell vectors due to the introduction of the dislocation quadrupole is
determined as done by Lehto and Öberg [26]. The distortion of the ith lattice vector
can be written as follows

∆ai = ai + b(ai · ncut)
Lcut
Vcell

, (3.3)

where ncut is a vector normal to the cut of the dislocation (in this case [010]), Lcut
the distance between the two screw dislocations and Vcell the volume of the cell.

3.2 Phonon Behavior

Associated with the reduction in the value of C ′ is the softening of acoustic phonon
modes. However, the computational cost of an accurate calculation of the phonon
dispersion of a binary solid solution such as Li-Mg using density functional theory
(DFT) is prohibitive. This is due in much part to the size of the unit cell needed to
obtain a statistically representative distribution of atoms and the lack of any point
symmetry in a random solution. A simplified phonon dispersion was calculated based
off of the Born-von Kármán constants [56, 57]. In this case only nearest- and next-
nearest-neighbor contributions to the dynamical matrix were included, resulting in
four parameters (α1, α2, β2, and γ1) that can be determined from the elastic constants
as well as the direct calculation of one phonon mode (in this case the H-phonon) [58].
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2(α1 + α2) = a0C11, (3.4a)

2(α1 + β2) = a0C44, (3.4b)

4γ1 = a0(C12 + C44), (3.4c)

16α1 = Mω2
H , (3.4d)

where a0 is the lattice parameter and ωH is the H-phonon frequency. The relation
between the dynamical matrix and the Born-von Kármán for a given reciprocal
vector, q = 2π

a0
(p1, p2, p3), can be defined as follows

Φ11(q) = 8α1[1− cos(πp1) cos(πp2) cos(πp3)] + 2α2[1− cos(2πp1)] + ...

2β2[2− cos(2πp2)− cos(2πp3)],
(3.5a)

Φ22(q) = 8α1[1− cos(πp2) cos(πp3) cos(πp1)] + 2α2[1− cos(2πp2)] + ...

2β2[2− cos(2πp3)− cos(2πp1)],
(3.5b)

Φ33(q) = 8α1[1− cos(πp3) cos(πp1) cos(πp2)] + 2α2[1− cos(2πp3)] + ...

2β2[2− cos(2πp1)− cos(2πp2)],
(3.5c)

Φ12(q) = 8γ1 sin(πp1) sin(πp2) sin(πp3), (3.5d)

Φ23(q) = 8γ1 sin(πp2) sin(πp3) sin(πp1), (3.5e)

Φ13(q) = 8γ1 sin(πp3) sin(πp1) sin(πp2). (3.5f)

The H-phonon frequency was calculated following the approach outlined by Ho, et
al. [59]. The frequency was achieved by determining the curvature of the energy
curve according to equation 3.6 where Uq is the amplitude of the wave, ∆Eq the
change in energy per atom as a result of the phonon, and M is the average atomic
mass of the system

∆Eq =
1

2
Mω2

qU
2
q. (3.6)

From the phonon dispersion not only can the dynamical stability of the material
be determined, but the behavior of the Γ→ N phonons can be considered. In BCC
the N point corresponds to the 〈1

2
1
2
0〉 direction in reciprocal space [60]. The softening

of these phonons [45] is associated with the transformation from BCC to HCP via
the Burgers path [44] and is an indication of proximity to the BCC/HCP transition.
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3.3 Computational Details

The elastic constants, dislocation core structure relaxation, and phonon calcula-
tions were performed within the projector augmented wave method (PAW) as coded
in the Vienna Ab Initio Simulation Package (VASP) [30, 31]. The Perdew, Becke, and
Ernzerhof (PBE) Generalized Gradient Approximation exchange-correlation func-
tional was employed [32]. The Li valence states were chosen to be 1s2s2p while for
Mg the 2p and 3s states were considered to be the valence states. Unless otherwise
noted a plane-wave cutoff of 400 eV was used with a first order Methfessel-Paxton
scheme employing a smearing parameter of 0.1 eV. Ionic relaxations were performed
until such that all forces were less than 0.005 meV/Å.

The elastic constants were caculated from a 16-atom special quasirandom struc-
ture (SQS) generated using the alloy theoretic automated toolkit (ATAT) [61]. Both
pairs and triplet clusters were considered within a range of 3a0. Convergence tests
were completed with respect to the number of K-points and varied depending on
composition. However values were within the range of 1400 - 2000 points. As the
SQS cell is not necessarily cubic the elastic tensor was symmetrized following the
method of Tasnádi, et al [62]. The elastic constants were calculated performing 4
deformations of varying magnitude for the six independent strains and after obtain-
ing the stresses from VASP via the Hellmann-Feynmann theorem performing a linear
fit [63].

Ideal tensile strength calculations were performed by applying a strain along
[001] and relaxing the other lattice vectors such that all stresses, using the Hellman-
Feynmann theorem, apart from σ33 were below 0.05 GPa. The elastic constants at
each strain were then determined using determined using a 21× 21× 21 Monkhorst
Pack grid.

For dislocation core structure calculations an initial cell consisting of 135 atoms
was generated from elasticity theory. A 270 atom unit cell was then created by
translating the unit cell by one lattice vector along [111]. The initial 270 atoms were
then shuffled in order to create a disordered alloy at the desired composition. Atomic
positions, but not the lattice vectors, were then relaxed using a 2× 1× 4 Γ-centered
grid. Analysis of the dislocation core structure was carried out using differential
displacement maps as developed by Vitek, et al. [27]. Compositional effects on
atom relaxations were corrected for by relaxing two cells of identical arrangement
of atom types with one cell containing the dislocation quadrupole and the other
being a perfect BCC lattice. Displacements in the perfect BCC random alloy were
subtracted from displacements in the quadrupole configuration.

The H-phonon was calculated by generating 4 random configurations of a 16
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atom unit cell of the desired composition. 4 configurations was deemed appropriate
as all frequencies were within 2% of one another. The H-phonon was then applied to
each cell with the amplitude of displacement ranging from -1% to 1% of the lattice
parameter. Calculations were done using a 10×10×10 Γ-centered K-point grid with
a plane-wave cutoff energy of 500 eV.

3.4 Results

Figure 3.1 shows several noticeable trends in the ISS, elastic moduli, as well as
core radius of of a 〈111〉 type screw dislocation. Li-Mg alloys appear to show a high
ratio of the Young’s modulus to shear modulus along 〈111〉, which is consistent with
how Ti-V is found to behave [8]. As Figure 3.1c illustrates this behavior can be tied
to the anisotropy parameter K/G〈111〉. The anisotropy parameter is also directly
proportional to the dimensionless pinning length, l∗c [8]. This parameter determines
the average obstacle spacing necessary for a dislocation to be pinned.

The ISS estimated from the elastic constants appears to decrease with an increase
in anisotropy. The ISS can be estimated as approximately 0.8 - 1.0 GPa at the BCC-
HCP transition (approximately 75 at. % Mg). The resulting core radius predicted
from elasticity theory is abnormally large. For reference the core radius of Tungsten
is approximately 1.45b while that of Ti36Nb2Ta3Zr0.3O (wt.%) is 1.51b [64]. It is
important to note that although the core radius of a 〈111〉 screw dislocation in Gum
Metal does not appear to be that different than that of tungsten, because of the fact
that Gum Metal exists near an elastic instability, composition fluctuations can lead
to large dislocation core regions. This is illustrated in figures 3.1c, where the elastic
anisotropy as well as the core radius increase rapidly near the elastic instability.

Dislocation Core Structure

DFT calculations of the dislocation core structure of a quadrupole configuration
for 〈111〉 type screw dislocations as shown in Figure 3.2 shows a large degree of core
spreading on the (111) plane in agreement with the results from elasticity theory.
Of particular interest are the large lateral displacements of atomic columns shown
in Figure 3.2b. The displacements become so large in areas that localized shearing
of the crystal appears to have occurred. The structure is reminiscent of the nanodis-
turbances detected in Gum Metal [17]. The localized shearing occurs in the region
between dislocation cores highlighted in Figure 3.2a. This same behavior has been
identified in other investigations of Ti-V [12] and BCC Mg at high pressure [65]. It
appears to suggest that the formation of these nanodisturbance like structures is a
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Figure 3.1: The ISS is estimated from the elastic constants of Li-Mg at various com-
positions (3.1a). A reduction in the ISS corresponds to a high degree of anisotropy
between the Young’s modulus and shear modulus along different axes (3.1b). A mea-
sure for the anisotropy of the crystal K/G〈111〉 is shown to have a significant affect
on the core radius (3.1c). The core radius at all compositions studied is higher than
that predicted for Gum Metal.

result of dislocation core interaction, possibly due to the overlap of spread dislocation
cores.

Lattice Dynamics

All of the above observations regarding the formation of nanodisturbance like
structures, spreading dislocation cores, as well as overall elastic anisotropy can be
seen from the perspective of the approximated phonon dispersion. As the HCP
phase is approached (Mg content is increased) Figure 3.3 shows the softening of
the Γ → N branch. Specifically it can be shown that the lattice shuffling resulting
from the N-phonon coupled with a near 〈11̄2〉{111} (approximately 13◦ from 〈11̄2〉
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a)

b)

Figure 3.2: The dislocation core (3.2a) shows a large degree of spreading. Along
the vertical axis the region between dislocations appears to show large displacements
(orange oval). The projection of atomic columns of onto the (111) is shown in 3.2b.
Large lateral displacements are seen in the projection. For reference two straight
black lines are drawn. Lateral shifts are especially large in the area within the yellow
oval, which corresponds to the orange oval in 3.2a.

on a {111} plane) transforms the BCC phase to HCP [45]. The orientation of the
shear associated with this transformation is approximately the same as the large
shear faults that have been reported in Gum Metal[6](13◦). In addition, the N-
phonon appears lower than the phonon associated with the transformation of BCC
to the hexagonal ω phase [58], which corresponds to the lowest frequency between
the P and H points in the dispersion (qω ≈ (1

3
, 1

3
, 2

3
)). It seems then unlikely from

these observations that a transformation path other than the Burgers path would be
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d)

Figure 3.3: The phonon dispersion is plotted for increasing compositions of Mg from
68.75 at. % (3.3a) 75 at. % (3.3b) 87.5 at. % (3.3c) and 93.75 at. % (3.3d).
The formation of soft phonons along Γ → N can clearly be seen with increasing
magnesium content.

preferred.

Ideal Tensile Behavior

As described earlier, for a material to be a possible candidate for Gum Metal
it must be intrinsically ductile. Ideal tensile strength calculations were carried out
on two BCC-type ordered structures near the BCC-HCP transition (DO3 and L60)
to approximate the behavior of a Li-Mg alloy. These two structures were used to
approximate a random alloy at this composition range. The DO3 structure can be
defined in terms of a primitive unit cell of the face-centered cubic lattice with four
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atoms of the form

a =
a0

2
(e2 + e3), (3.7a)

b =
a0

2
(e1 + e3), (3.7b)

c =
a0

2
(e1 + e2), (3.7c)

τ1 = 0, (3.7d)

τ2 =
1

4
a +

1

4
b +

1

4
c, (3.7e)

τ3 =
1

2
a +

1

2
b +

1

2
c, (3.7f)

τ4 =
3

4
a +

3

4
b +

3

4
c. (3.7g)

L60 is related to the L12 structure as BCC is related to FCC along the Bain path.
According to Figure 3.4 the DO3 structure displays cleavage failure at approximately
9% percent strain. This is in keeping with the behavior of the energy-strain curves
for the tetragonal path of the two different structures, which show the stabilization
of FCC at approximately 25 − 30% strain. The material is preferentially following
the Bain transformation path. Since FCC is shown from the energy curve to be
metastable, a maximum stress must exist between the FCC and BCC phases, mean-
ing that the material fails via cleavage; it is intrinsically brittle. This is in agreement
with the estimate of the Pugh criterion [53].
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Figure 3.4: The elastic stability criteria plotted as a function of strain for the DO3

structure. The plot shows that a failure via cleavage is achieved at a strain of ap-
proximately 9%.
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Figure 3.5: The stress-strain and energy-strain relation for the DO3 structure under
a 〈100〉 type tensile load. Only the tetragonal path is explored in this simulation. The
formation of the FCC phase can be seen at a strain of approximately 25− 30%

3.5 Discussion

From the first principles ideal tensile strength calculations it is not clear if the
compositions of Li-Mg studied so far will behave as Gum Metal. This is due to
the intrinsically brittle behavior seen for the ordered phases. Interestingly, Li, et
al. found this to be the case for TiV alloys using the virtual crystal approximation
[8] even at the special number of 4.24 valence electrons per atom. An initial guess
at the origin of the brittle behavior comes from the plot of elastic moduli in Figure

3.1b where
G〈111〉
Y〈100〉

is shown to be approximately 0.5. This is not only higher than the

intrinsically ductile Nb and V whose values are approximately 0.15-0.25, but other
intrinsically brittle BCC metals such as Mo and W with ratios of roughly 0.35 -
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Figure 3.6: The stress-strain and energy-strain relation for the L60 structure under a
〈100〉 type tensile load. Only the tetragonal path is explored in this simulation. The
formation of the FCC phase can be seen at a strain of approximately 25− 30%. This
corresponds to the ordered L12 structure.

0.40 [36]. However, this appears to only work for BCC materials that see an elastic
instability as a result of C66 → 0 for a [001] tensile load. Looking at the ratio of
moduli in terms of the cubic elastic constants, which is written as

G〈111〉

Y〈100〉
=

3(C11 + C12)C44

(C11 + 2C12)(C11 − C12 + 4C44)
(3.8)

shows that for C11 = C12 the ratio becomes exactly 1
2
. While C ′ is soft, as Figure

3.4 shows, with the application of a uniaxial stress C ′ increases monotonically until
failure occurs.

For the orthorhombic path to be activated in Li-Mg alloys (for intrinsic ductility
to be obtained), the shear instability that initiates the orthorhombic path must be
designed to occur before cleavage can occur. Within the face-centered orthorhombic
(FCO) reference frame the condition C11−C12 must occur sooner in the tensile load.
The tensile loading of a BCC crystal can result in two possible sequences of stress-free
states. The BCC→FCC→BCT ordering is consistent with the tensile path while the
BCC→BCT→FCC corresponds to an orthorhombic path [36, 66]. It follows that if
the FCC phase could be made elastically unstable then the orthorhombic path would
be preferred, and intrinsic ductility could be achieved. It is also possible that Li-Mg
alloys undergo a brittle-ductile transition at some point below room temperature,
which would negate the need to perform any alloying in order to achieve ductility.
However, calculation of a brittle-ductile transition temperature from first-principles
is an computationally challenging task.

If Li-Mg alloys can be tuned to be intrinsically ductile, then they become an
intriguing structural material. Assuming that yield stresses near 40−50% of the ISS
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could be reached, at a composition of 68.75 at. % Mg a specific strength of roughly
290-440 MPa cm3 g−1 would be possible. In comparison Gum Metal is approximately
194 MPa cm3 g−1 [6], while high-specific-strength steels (HSSS[67]) have been able
to achieve specific strengths of approximately 190 MPa cm3 g−1.

3.6 Conclusion

A first-principles investigation of the mechanical properties of a range of Li-Mg
alloys is presented. Analysis of the elastic constants of solid solutions using special
quasirandom structures shows many similarities in the behavior of the elastic con-
stants of Li-Mg with those of Gum Metal as the BCC-HCP transition composition is
approached. A large elastic anisotropy due to the softening of the reduced modulus
results in a large nondimensional dislocation pinning length as well as large dislo-
cation core radii. Associated with this is behavior is the emergence of large shear
faults in the dislocation cores. As the material is found to be intrinsically brittle
at all compositions studied more work is needed to make the structure intrinsically
ductile.
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Chapter 4

Computational Discovery of
Gum-Metal-like Structural Alloys

The computational aided design of structural alloys is, by now, a well established
field [68, 69, 5, 70]. Most often, computation is used to improve the properties
of an existing structural material (e.g. steel, Ti, Al-alloys), and improvements are
based on the fundamental understanding of the deformation mechanisms governing
the mechanical properties of the alloys (e.g. dislocation slip vs. twinning). While
the insights obtained are impressive and technologically important, they ultimately
lead to improvements in relatively well-understood structural materials with well
understood deformation mechanisms.

In contrast, the computational discovery of structural materials is far less com-
mon. Typically, the search has focused on identifying super-hard materials [71, 72,
73, 74, 75], as one can screen for these materials by evaluating combinations of the
elastic constants. While super-hard materials will find structural applications, the
broader class of structural alloys includes those that can be plastically deformed
more extensively. To address this need, recent efforts focus on the discovery of high
entropy alloys (HEAs) [76, 77]. Li et al. [78] note that dual phase HEA alloys can be
made very strong and tough. The mechanisms invoked to explain this effect are the
extreme solid solution strengthening observed in HEAs and a phase transformation
induced hardening of the second phase. Notably, the improvement in mechanical
properties is achieved by reducing the stability of the relevant phases.

In 2003, researchers at Toyota introduced a Ti-Nb based alloy that they named
Gum Metal [6]. This body-centered-cubic (BCC) solid solution alloy displays numer-
ous technologically interesting properties, many of which emerge only after extensive
cold-working of the material. These properties include super-elasticity (an elastic
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limit of approximately 2.5% at room temperature), a near constant Young’s mod-
ulus and zero thermal expansion coefficient from about 80 K - 550 K, little or no
work-hardening while still displaying over 12% elongation, and a high yield strength
(∼1.2 GPa). Surprisingly, post mortem microstructural investigations revealed a
dearth of dislocations [6]. This fact, when coupled with the observation that the
strength of Gum Metal is comparable to its ideal shear strength (ISS), led Saito et
al. to conclude that Gum Metal is a bulk engineering alloy that deforms at ideal
strength.

This claim remains controversial as it seems to contradicts 80 years of metallurgi-
cal wisdom asserting that bulk alloys do not deform at ISS. Accordingly, the deforma-
tion of Gum Metal has attracted much attention, and the deformation mechanisms
leading to its unusual behavior are beginning to be identified [8, 79, 80, 81, 82].

Since the early 1970’s it has been known that TiNb alloys can display the shape
memory affect [83]. Gum Metal was developed by tuning the composition of a TiNb
alloy near instability by driving its shear modulus C ′ = 1

2
(C11−C12) to zero, placing

the alloy near the β (BCC) to α (hexagonal-close-packed; HCP) transus [6, 84, 7].
The same approach has been applied to develop another Gum-Metal-like alloy that
exploits proximity to the the face-centered-cubic (FCC) to BCC transition. This
Fe-Ni-Co-Ti alloy is ductile (elongation to fracture of 9.4%) while having a yield
strength of 2.2 GPa [14]. So known Gum Metals are similar to the tough, ductile
HEAs [78] in that they, too, have been engineered to be near the limits of structural
stability.

4.1 Theory

Theoretical work suggests that Gum-Metal-like behavior is possible near an FCC
to HCP transition as well [13]. Moreover, the form of the elastic anisotropy that
develops at the transitions between BCC, FCC and HCP phases can spread the dis-
location cores [12, 13] and make the dislocations extremely susceptible to pinning
by obstacles (and consequently extremely susceptible to solid solution strengthen-
ing), even at stresses approaching ISS [8]. Moreover, the spreading and overlap of
dislocation cores can lead to the appearance of nanodisturbances in the microstruc-
ture [17, 12], a defect structure observed in Gum Metal. Interestingly, all of these
properties can be deduced from a simple calculation of the elastic constants of the
materials, and from computation of their ideal strengths [8, 12, 13, 21, 20, 36, 85].
So, while the deformation mechanism active in Gum Metal remains controversial,
the materials properties that lead to Gum-Metal-like behavior can be identified.
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This observation enables a purely computational four step approach to the dis-
covery of Gum-Metal-like alloys: (1) Develop a general elastic anisotropy parameter,
Ac, that is related to the susceptibility of a dislocation to being pinned and can be
used to construct a structure map. (2) Evaluate this parameter for a set of materi-
als. (3) Screen for materials of especially high anisotropy Ac. (4) Assess the elastic
stability of solid solution alloys with the same composition.

Using the elastic constants in the Materials Project database [86, 87], we consider
the cubic materials in space groups 225 and 229, and identify alloys with the propen-
sity to display Gum-Metal-like behavior. Many of the identified alloys are known
shape memory alloys. Of these, alloys based on the Al-Cu or Al-Cu-Mn system seem
most promising technologically. Consequently, these are explored in more detail.

The means by which elastic anisotropy impacts dislocation core structures leads
to a suitable definition of Ac. A requirement for a material to fail at its ideal strength
is that the stress needed to initiate dislocation motion must be greater than ISS. This
stress can be estimated using a simple two-dimensional line tension model that looks
at the interaction of a dislocation with a random array of infinitesimal pinning sites
[88]. The critical shear stress for dislocation motion in this model scales inversely with
the average distance between pinning sites and scales linearly with the dislocation
energy factor.

By equating the critical shear stress for dislocation motion to ISS, the critical
non-dimensional average pinning length of obstacles, l∗c = l/b can be determined
[8]. For many systems, it is reasonable to assume that ISS scales with a particular
shear modulus, G{hkl}〈uvw〉. Taking as an example the case of a 〈111〉 type screw
dislocation in BCC, the ISS can be approximated as σideal = 0.11G〈111〉[24]. (Note
that the shear modulus along 〈111〉 is isotropic with respect to the shear plane
for BCC.) The modulus governing the dislocation line tension can be determined
analytically in terms of the elastic constants. This results in l∗c ∝ Ks

G111
, with

Ks

G111

=

√
(C11 − C12 + 4C44)(2C2

11 + 2C11C12 − 4C2
12 + 13C11C44 − 7C12C44 + 2C2

44)

27C44(C11 − C12)(C11 + C12 + 2C44)
.

(4.1)
The ratio Ks/G〈111〉 can be viewed as an anisotropy parameter (in an isotropic mate-
rial, the ratio is one). For the screw dislocations in BCC crystals, the ratio is inversely
proportional to

√
C11 − C12 and

√
C44. As an elastic instability is approached and

these shear moduli approach 0, Ks/G〈111〉 → ∞, and l∗c diverges. Similar behavior
is found to accompany the elastic instability of edge dislocations in BCC [8] and for
dislocations in materials near to other phase transitions [13]. Materials with large
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values of the anisotropy parameter K
G

have the potential to display Gum-Metal-like
behavior.

An elastic anisotropy parameter for any crystalline system can be derived from
Stroh’s formalism [89]. Accordingly, the general non-dimensional elastic anisotropy
parameter related to the pinning of dislocations is defined to be

Ac =
bpKpqbq
b2Gmin

, (4.2)

where Gmin is the smallest shear modulus oriented along the Burgers vector and K is
the modulus associated with the energy factor of a dislocation, with Burgers vector
b.

The modulus of the energy factor (K) of an arbitrary straight dislocation is
derived from Stroh’s formalism [89], which can be used to solve the elastic field of a
straight dislocation in an anisotropic continuum. In these problems the displacement
can be written in terms of position, x, as

uk(x) =
6∑

α=1

AkαDαf(m · x+ pαn · x). (4.3)

The orthonormal basis set consisting of m, n, and t forms the coordinate system,
while pα is a complex variable, Dα is a boundary condition dependent constant, and
Akα is a complex constant. In addition to Akα it is useful to define an additional
vector, Lkα, which is defined in terms of Akα and the elastic constants, Cijkm, as

Ljα =
1

pα
(mm)jkAkα + (mn)jkAkα, (4.4)

with Einstein summation notation assumed. Here the parenthesis are used as a
short hand notation: (mm)jk ≡ miCijkrmr. In the case of a dislocation with a line
direction along t with no external forces present the displacement can be written
as[90]

ul(x) = − 1

2πi

6∑
α=1

AlαLsαbs ln(mqxq + pαnqxq). (4.5)

The stress field can then be represented as

σjk = −Cjklrbs
2πi

6∑
α=1

AlαLsα
mr + pαnr

mqxq + pαnqxq
. (4.6)
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The energy factor associated with the dislocation can be found by calculating the
work done against the force generated from the creation of the dislocation [91]. This
amounts to an energy per unit length of W

L
= 1

2
bjσjknk, allowing for the energy factor

to be written in terms of Lα and Aα as

E = bl

(
i

4π

6∑
α=1

±LlαLsα
)
bs. (4.7)

In which the ± signifies a positive sign for α = 1, 2, 3 and a negative sign for α =
4, 5, 6. Noting that the definition of K is

Kjk =
i

4π

6∑
α=1

±LjαLkα, (4.8)

the energy factor can be defined as E = bjKjkbk.
The integral formalism[90] can be used to solve for K numerically. The integral

formalism is based on the principle that the vectors Akα and Lkα can be shown to be
invariant to rotations of the basis vectors m and n about the t axis by an arbitrary
angle, ω, and that pα must obey ∫ 2π

0

pαdω = ±2πi. (4.9)

With these main points in hand it can be shown that

Kjs =
i

8π2

∫ 2π

0

[
(mm)js − (mn)jr(nn)−1

rk (nm)ks
]
dω. (4.10)

Ac can be evaluated for hundreds of compounds in a matter of minutes. One
can then construct an Ac-based structure map by plotting the points

(
Ascrewc , Aedgec

)
for each of the considered materials, with Ascrewc (Aedgec ) the computed anisotropy for
screw(edge) dislocations with a given Burgers vector.

4.2 Results

To construct the structure map, Ac was computed for all materials in the Materi-
als Project [86] elastic constants database with symmetry spacegroups Im3̄m (229)
and Fm3̄m (225). Spacegroup 229 contains BCC while spacegroup 225 encompasses
FCC as well as ordered structures with atomic positions consistent with BCC such
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as D03 and L21. Calculations of Ac were carried out for both screw and edge dislo-
cations with Burgers vectors in the direction 〈111〉 and 〈110〉. In the case of edge
dislocations the slip systems used were 〈111〉{11̄0} and 〈110〉{11̄1}.
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Figure 4.1: Comparison of the anisotropy parameter of the 15 materials with space
group 229 with selected Ti-Nb and Ti-V systems for both an edge and screw dislocation
for Burgers vectors oriented in the 〈111〉 (4.1a) and 〈110〉 (4.1b) directions. For the
edge dislocations this corresponds to a 〈111〉{110} slip system in Figure 4.1a and a
〈110〉{111} slip system in Figure 4.1b. The Ti-Nb ordered systems consist of 25, 50,
and 75 at. % Ti[7]. The VCA calculation consists of nine compositions at 5, 15, 25,
35, 45, 55, 65, 75, and 80 % Ti system[8, 12]. The G1 structure is known to be the
lowest energy 16 atom configuration for 25 at. % Ti as calculated in DFT[40].

Viewing the plots of the 〈111〉 and 〈110〉 type Burgers vectors for the Im3̄m
(Figure 4.1) and Fm3̄m (Figure 4.2) space groups it can be seen that depending on
the Burgers vector used Ac values change greatly. For instance the highest value
of Ascrewc in Figure 4.1 is approximately 1.6 for b = 〈111〉 and 3.5 for b = 〈110〉.
However, as the point of this plotting procedure is to identify outliers, the fact that
the same ordering of materials by anisotropy is seen regardless of which Burgers
vector is used in the calculation is an important finding. For instance, in the case of
the space group 225 compounds the Spearman rank correlation coefficient between
the two slip directions is 0.998 and 0.790 for a screw and edge dislocation respectively.

The structure maps reveal interesting trends. First, consider the Ti-Nb and
Ti-V approximants to Gum Metal plotted in FIGs. 1 and 2. When viewed on
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Figure 4.2: Comparison of the anisotropy parameter of the 227 materials with space
group 225 with selected Ti-Nb and Ti-V systems for both an edge and screw dislocation
for Burgers vectors oriented in the 〈111〉 (4.1a) and 〈110〉 (4.1b) directions. For the
edge dislocations this corresponds to a 〈111〉{110} slip system in Figure 4.1a and a
〈110〉{111} slip system in Figure 4.1b. See 4.1 for more information on Ti-Nb and
Ti-V systems.

the structure map, the Ti-Nb approximants to Gum Metal do not have the most
extreme Ac’s of the compounds plotted. However, Gum Metal itself is a much more
complicated alloy than the approximants and can include signficant additions of O,
Hf, Ta, Zr and V. The Ti-V approxmants to Gum Metal, as computed using the
virtual crystal approximation, reveal that the anisotropy ratios can be very sensitive
to the number of valence electrons. Small changes in valence electron count can lead
to large changes in Ac. Near the point of instability, a 10% change in valence electron
count leads to almost a factor of two change in Aedgec . So it is possible that while
Ti-Nb does not itself possess an extreme Ac, the effects of alloying additions may
lead to a substantially larger Ac than computed here. Importantly, the map reveals
that there are stoichiometric intermetallic compounds that have larger Ac’s than the
prototypical alloy. These are the compounds of interest.

Figure 4.2 shows a noticeable branching in the data, especially at higher screw
dislocation anisotropies, alluding to a certain dependence between the edge and screw
dislocation anisotropies. It is difficult to discern the exact relation between the shown
edge and screw dislocations as no simple analytic solution for the edge components
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of K exists for the given edge slip systems [91]. However, a simple solution exists
for the 〈110〉{001} slip system and as Figure 4.3 shows, it gives results qualitatively
in agreement with the〈110〉{11̄1} system.
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Figure 4.3: Comparison of the analytically derived results for the 〈110〉{001} slip
system (denoted [110]) with the numerically computed 〈110〉{11̄1} edge slip system
(denoted [112]). Note that as the Burgers vector is the same for both calculations,
the screw anisotropy is equal.

For all slip directions and planes, a splitting behavior is seen at high anisotropy
with the left branch appearing almost linear and the right branch trending sublinear
with increasing edge anisotropy. Analysis of the 〈110〉{001} slip system suggests
that the branches arise because of two different types of instability: C44 → 0 and
C11 − C12 → 0.

For all structure maps presented in this work a splitting behavior is seen at high
anisotropy with the left branch appearing almost linear and the right branch losing
a linear dependence with increasing edge anisotropy. While numerical methods must
be employed in order to evaluateK of a general straight dislocation, there are certain
orientations in which a simple analytical solution of K does exist. In the 〈110〉{001}
slip system K has two edge components (Key and Kex) and a screw component (Ks)
expressed in terms of the elastic constants as[91]
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Kex =
C11 + 3C12 + 2C44

2

√
C44(C11 − C12 + 2C44)

C11(C11 + 3C12 + 6C44)
, (4.11a)

Key = (C11 + 3C12 + 2C44)

√
C44(C11 − C12 + 2C44)

2(C11 + C12 + 2C44)(C11 + 3C12 + 6C44)
, (4.11b)

Kss =

√
(C11 − C12)C44

2
. (4.11c)

By utilizing the above equations the slope of the data can be approximated as
Kss/Kex . As high anisotropy is generally a result of either C44 → 0 or C11 → C12 it
is of interest to explore Kss/Kex and Kss/Key in these limits:

lim
C11→C12

Kss

Kex

= 0, (4.12a)

lim
C44→0

Kss

Kex

=

√
2C11

C11 + 3C12

, (4.12b)

lim
C11→C12

Kss

Key

= 0, (4.12c)

lim
C44→0

Kss

Key

=

√
C11 + C12

C11 + 3C12

. (4.12d)

In the limit of C11 → C12 the ratios Kss/Kex and Kss/Key go to zero. This is
the origin of the apparent flattening of the right branch at the higher anisotropies.
For C44 → 0 the ratios Kss/Kex and Kss/Key remain finite, explaining why the
left branch remains nearly linear. Due to the complexity of the 〈111〉{11̄0} edge
slip system this analytical analysis on the slope of the data cannot be carried out.
However, direct examination of elastic constants shows that the branching shown in
figures 1a and 2a is due to materials having low values of C44 (left branch) or C ′ (right
branch): the Ac structure map is able to discern different elastic instabilities. Further
examination of the numerical results in figures 4.1 and 4.2 reveal that the branching
has the same origins. Hence, the structure map is able to separate compounds
according to the type of instability.

In Table 4.1 the compounds in spacegroup 225 (Fm3̄m) with the highest values of
Asc (screw dislocation) are listed (a table of all compounds is included in the supple-
mentary materials). This table reveals interesting trends. Many of the compounds
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Table 4.1: Listing of the compounds from spacegroup 225 that contained the highest
screw anisotropy. Asc corresponds to a screw dislocation and Aec an edge dislocation.
Compound Asc(〈110〉) Aec(〈110〉{111}) Asc(〈111〉) Aec(〈111〉{110}) low modulus

LiSiCu2 2.42 4.18 1.27 3.20 C ′

ZrS 2.44 3.15 1.28 1.28 C44

YCd3 2.44 4.78 1.29 3.38 C ′

TiAlPd2 2.47 5.55 1.33 3.74 C ′

MgCdAg2 2.60 5.26 1.33 3.64 C ′

Li3In 2.60 4.74 1.31 3.41 C ′

Li2MgCd 2.75 5.31 1.36 3.71 C ′

AlCu3 2.79 5.75 1.39 3.91 C ′

LiAg2Ge 2.92 6.35 1.44 4.20 C ′

MnAlPd2 3.03 7.11 1.49 4.53 C ′

MnAlCu2 3.08 6.57 1.47 4.34 C ′

YTe 3.11 4.07 1.48 1.47 C44

Li2ZnSn 3.14 6.03 1.45 4.16 C ′

Li3Pd 3.76 9.20 1.70 5.59 C ′

contain Li or Pd. For reference, Li has the highest Ac values of all BCC materials
with Asc(b = 〈111〉) = 1.61 and Asc(b = 〈110〉) = 3.47. Another observation is that
alloys of similar compositions to the compounds shown in Table 4.1 are known to
be shape memory alloys (SMAs). It is already known that many SMAs have a low
value of C ′[84, 92, 93]. Al-Cu-Mn systems are known SMAs[94]. TiPd (similar to
TiAlPd2) has been shown to be a high-temperature SMA[95, 96]. The emergence of
the shape memory effect appears to accompany higher anisotropy in the Ti-Nb and
Ti-V systems as well. For instance, Ti-(22-27) at.% Nb alloys and Ti-10V-2Fe-3Al
(83.8 at.% Ti)[97] exhibit shape memory behavior[83, 93].

Two of the compounds in the table were selected for further study: AlCu3 and
MnAlCu2. These compounds were selected because they contain relatively inexpen-
sive materials, and if alloys with Gum-Metal-like properties can be formed at or
near these compositions, they are likely to have a significant technological impact.
Since Gum-Metal-like behavior emerges in the disordered solid solution phase, it
is interesting to explore if solid solutions at these compositions remain elastically
stable.

Elastic constants were computed using density functional theory (DFT) as im-
plemented in the Vienna Ab initio Simulation Package (VASP) [30, 31]. The Perdew,
Becke, and Ernzerhof (PBE) Generalized Gradient Approximation exchange-correlation
functional was employed [32]. A plane-wave cutoff of 400 eV was used with a
first-order Methfessel-Paxton smearing[98] employing a smearing parameter of 0.05
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eV. Ionic relaxations were performed until all forces were less than 0.005 eV/Å. A
15× 15× 15 Γ-centered k-point mesh was employed, which ensured that the elastic
constants were converged to less than a 2% difference for MnAlCu2 and a 10% dif-
ference for AlCu3. To approximate a solid solution a 16-atom special quasirandom
structure (SQS) [99, 100] was generated using the alloy theoretic automated toolkit
(ATAT) [61]. Both pairs and triplet clusters were considered within a range of 3a0,
a0 being the lattice parameter associated with the (on average) BCC crystal. The
elastic constants were calculated performing 4 deformations of varying magnitude for
the six independent strains and after obtaining the stresses from VASP performing
a linear fit [63]. The elastic constants were then symmetrized by generating the 48
transformation matrices associated with the point group of a BCC crystal and then
averaging the elastic constants over the 48 transformations

Csym
ijkl =

1

48

48∑
α=1

a
(α)
ip a

(α)
jq a

(α)
kr a

(α)
ls Cpqrs, (4.13)

with a(α) corresponding to the transformation matrix of the αth element of the point
group. For MnAlCu2 the unit cell was initialized in a ferromagnetic state.

Our calculations for the AlCu3 (D03) and MnAlCu2 (L21) ordered structures
broadly match those generated by the materials project (see Table 4.2). For the
AlCu3 phase, there is a 9% difference in the values of C44, which is relatively large, but
not atypical for DFT calculations of the elastic constants. The AlCu3 SQS structure
also has noticeably different elastic constants compared to the ordered structure.
Most importantly, the disordered phase is elastically unstable (C11 −C12 < 0). This
is not surprising considering that the ordered structure is already highly elastically
anisotropic, and for such materials, changes in ordering can drastically change the
elastic behavior [40].

Table 4.2: Calculated SOEC’s for ordered and disordered structures of Al-Cu system
as well as ordered MnAlCu2. C11, C12, and C44 are all in GPa.

Compound AlCu3[87] AlCu3 Al0.25Cu0.75 MnAlCu2[87] MnAlCu2

C11 147.51 158 137 138.26 140
C12 122.08 117 141 116.56 123
C44 99.25 108 107 103.02 105

The apparent instability of the SQS Al-Cu system complicates the computer-
aided search for Gum Metal-like materials. An AlCu BCC solid solution is known to
exist at temperatures above 843 K,[101] but finite temperature effects are beyond the
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scope of this work. However, there is an extensive literature on β-stabilizers for Al-
Cu. Lanzini et al.[102] found the order-disorder transformation in compositions near
AlCu3 to be first-order and that the addition of a BCC stabilizer (Be). Fe, Mn, Ni, Sn,
Be, Zn, and Cr are all known to either maintain or lower the β transition temperature
for an Al0.25−yCu0.75−yX2y system [103]. Cr has been shown to help stabilize high-
entropy alloys containing Al and Cu [104]. In addition, a BCC solid solution for
Al-Cu-Cr exists at 873 K [105]. A BCC solid solution exists near Al0.25Cu0.75 at
similar temperatures for Al-Cu-Zn systems [106].

Since MnAlCu2 in the L21 structure also displays a high anisotropy (see Table 4.1)
the Al-Cu-Mn systems merit further consideration. Al-Cu-Mn systems are known
SMAs.[94] At low Al compositions (less than 16 at.-% Al) the BCC phase can be
stabilized at room temperature via quenching. The resulting alloy exhibits super-
elasticity (7.5%), high ductility (15% elongation to fracture), and a yield strength
of 250 − 500 MPa [107]. Similar to Gum Metal, low Al content Al-Cu-Mn alloys
show significant cold-workability (60 - 90 % rolling reduction before cracking). In
another parallel, Al-Cu-Mn, as well as Cu-Zn-Al alloys exhibit Invar behavior [108].
It is still not clear if this Invar behavior found in Al-Cu-X systems is due to the
same mechanism as in Gum Metal. Al-Cu-X materials’ Invar behavior appears to
be a direct result of a martensitic transformation, while there exist contradictory
observations for Gum Metal [6, 109]. Based on the analysis presented here and the
experimental data, we hypothesize that severely cold working a disordered Al-Cu-
Mn alloy with the proper composition will generate an alloy with Gum-Metal-like
properties.

In conclusion, a methodology for the computational discovery of Gum-Metal-like
alloys has been introduced. The method rests on the identification of a dislocation-
based elastic anisotropy paramater that has been linked with the interesting behavior
of Gum Metal. This parameter is then used in conjunction with data from the
Materials Project to construct a structure map that allows identification of materials
susceptible to Gum-Metal-like behavior, and several candidate alloys are identified.
Though the identification of Gum Metals is the primary focus of the work, it is noted
that the Ac structure maps may be useful for discovering and optimizing both shape
memory alloys and HEAs.
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Chapter 5

Approximation of the Ideal
Strength of Alloys from
First-Principles

The ideal strength (IS) provides the theoretical upper limit to the strength of a
material and is one of the few mechanical properties of crystals that can be easily
calculated using first-principles methods[110, 9, 10] and be measured experimentally
[111, 112, 113, 114]. While a perfectly crystalline material does not exist in any
engineering application, ideal strength calculations have been shown to be useful in
numerous areas: The IS has been applied to understanding the homogeneous nucle-
ation of dislocation under nanoindentation[115, 116, 117], the unstable propagation
of a cleavage crack[118, 119], as well as the intrinsic ductility of a crystal[120, 121, 36]
and the preferred cleavage plane of transition metal aluminides[122]. Perhaps most
famously, the failure in Frenkel’s attempt to calculate the yield strength of a crystal
in terms of ideal slip [123] ultimately led to the theory of defect-mediated plastic-
ity (DMP) [3, 2, 1]. While DMP is the predominant deformation mechanism in
structural materials, IS still plays an integral role in understanding the mechanical
properties of crystalline materials. This is especially relevant to the development of
alloy systems over the past decade, whose yield strength is on the order of the ideal
strength[6, 14].

While IS calculations for elemental or ordered crystals can be performed with rela-
tive ease, the calculation of the IS of a random solid solution using density-functional
theory (DFT) continues to be problematic for several reasons. Perhaps most impor-
tantly, all IS calculations rely heavily on the symmetry of an undeformed crystal,
which is not present in a random solid solution. Previous studies have used methods
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such as the virtual crystal approximation (VCA) or coherent potential approximation
(CPA) to compute the ideal strength of solid solutions while retaining the symmetry
of the crystal[8, 124]. These methods, however, fail to take into account the local
configurations of the atoms in the alloy. A method is proposed, which attempts to
overcome these two barriers by combining the calculation of the elastic constants of
a small set of ordered structures (SSOS)[125] with nonlinear elasticity in a manner
resembling that developed by Wang and Li for high symmetry structures[126].

5.1 Theory

We begin by defining the symmetric Wallace tensor, which governs the elastic
stability of an anisotropic solid, as [22, 23]

Λklmn = C ′klmn +
1

2
(τkmδln + τknδlm + τlmδkn + τlnδkm − τklδmn − τmnδkl) . (5.1)

Here δln is the Kronecker-delta, τkm the Second Piola-Kirchhoff stress tensor, and
C ′klmn the second-order elastic constants of the solid under finite deformation (ECFD).
C ′klmn is defined as

C ′klmn =
1

V (η)

(
∂2E

∂βkl∂βmn

)
β′,η

, (5.2)

with V (η) being the volume at a finite (Green-Lagrangian) strain (η), E the elastic
energy, and β an infinitesimal strain applied in addition to the finite strain (See Fig-
ure 5.1 for a graphical representation). A material is elastically unstable if det Λ ≤ 0,
and is said to be intrinsically ductile if the eigenvector associated with the instability
has only shear components; the material fails in a manner other than the Young’s
modulus going to zero.

We will approximate the elastic energy using a Taylor series expansion of the
elastic energy up to the the third order. It should be noted, however, that this
method works for any order.

V0∆E ≈ 1

2!
Cklmnηklηmn +

1

3!
Cklmnpqηklηmnηpq + ..., (5.3)

with the second- and third-order elastic constants (SOEC and TOEC) being defined
as
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Figure 5.1: Illustration of the three strain states considered in the derivation of C ′klmn.
F is the deformation gradient mapping the reference configuration (X) to the finite
strain state (x). f maps x to x̄, which is under a combined finite and infinitesimal
strain.

Cklmn =
1

V0

(
∂2E

∂ηkl∂ηmn

)
η=0

, (5.4a)

Cklmnpq =
1

V0

(
∂3E

∂ηkl∂ηmn∂ηpq

)
η=0

. (5.4b)

By combining equations 5.2 and 5.3 the elastic constants under finite deformation
can be determined entirely in terms of the elastic constants and the finite strain.

Three configurations are considered in deriving the ECFD: the zero strain refer-
ence configuration (X), configuration under a finite strain of η (x), and a configura-
tion under a combined finite and infinitesimal strain (x̄). These configurations can
be mapped to each other by the use of deformation gradients, which are defined as

Fkm =
∂xk
∂Xm

, (5.5a)

F̄km =
∂x̄k
∂Xm

, (5.5b)

fkm =
∂x̄k
∂xm

. (5.5c)

The deformation gradient is related to the Green-Lagrange strain by

ηkm =
1

2
(FpkFpm − δkm) , (5.6)
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and can be analytically solved for entirely in terms of the strain. With F = F (η)
in hand we can define all configurations in terms of the applied strains[127] using
equation 5.5, assuming that f can be expressed in terms of the infinitesimal strain
(β) as

fkm = δkm + βkm. (5.7)

By substituting the Taylor series expansion of the elastic energy in terms of the
combined infinitesimal and finite strain state (η̄) into the definition of the ECFD
C ′klmn can be expressed as

C ′ijkl =
1

J(η̄)
(Cmnpq + Cmnpqrsη̄rs)

(
∂2η̄mn
βijβkl

η̄pq +
∂η̄mn
βkl

∂η̄pq
βij

)
, (5.8)

where J(η̄) = det F̄ . It should be noted that equation 5.8 is similar to that deter-

mined by Wang and Li [126], but includes the term ∂2η̄mn

βijβkl
η̄pq. As F̄ can be determined

entirely in terms of η and β, equation 5.8 is completely defined in term of η and the
elastic constants. For a uniaxial load applied along the [001] direction the ECFD are
[11]

C ′11 = C11 + (3C11 + C12 + C111 + C112) ζ + (−C11 + C12 + C112) ξ, (5.9a)

C ′12 = C12 + (2C12 + 2C112)ζ + (−C12 + C123)ξ, (5.9b)

C ′13 = C12 + (C112 + C123)ζ + (C12 + C112)ξ, (5.9c)

C ′33 = C11 + (−2C11 + 2C12 + 2C112)ζ + (4C11 + C111), (5.9d)

C ′44 = C44 +
1

4
(C11 + 3C12 + 4C144 + 4C166)ζ +

1

4
(C11 + C12 + 4C44 + 4C166)ξ,

(5.9e)

C ′66 = C44 +
1

2
(C11 + C12 + 4C44 + 4C166)ζ +

1

2
(C12 − 2C44 + 2C144)ξ. (5.9f)

Here ζ and ξ are components of the Green-Lagrangian strain tensor such that the
tensor has the form in Voigt notation η = (ζ, ζ, ξ, 0, 0, 0). Using the expansion of τ
in terms of η and knowing that τ11 = 0 for a uniaxial load applied along [001], both
η and τ can be defined entirely by ξ.

This formalism allows for the symmetric Wallace tensor to be efficiently approx-
imated for a solid solution. One can do this by calculating the SOEC and TOEC
[11] of a special quasirandom structure (SQS)[99, 100], which in general consists of
a triclinic cell, but retains the local structure of the alloy, and then symmetrizing to
match the point group of the macroscopic crystal using the equations
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Cklmn =
1

nG

nG∑
α=1

a
(α)
kp a

(α)
lq a

(α)
mra

(α)
ns C

SQS
pqrs , (5.10a)

Cklmnpq =
1

nG

nG∑
α=1

a
(α)
kr a

(α)
ls a

(α)
mt a

(α)
nu a

(α)
pv a

(α)
qwC

SQS
rstuvw, (5.10b)

with nG being the number of elements in the point group and Einstein summation
notation implied. The final elastic constants are then found by performing a weighted
averaging of the three highest performing SQS structures. The effective value for a
general material property (f) of an alloy can be expressed as [125]

〈f〉 ≈
nSQS∑
β=1

wβf
(
σSQSβ

)
, (5.11)

with σSQSβ being the configuration of the βth SQS structure and wβ being the weight

for the βth configuration.

5.2 Method

5.2.1 SQS Generation

SQS were generated in this work using a genetic algorithm (GA), described in
detail elsewhere [128]. The optimization process starts by calculating the atomic cor-
relation functions of a random solid solution, xrandom and the vector describing the
correlation functions of the finite-sized supercell xscell. The norm of the difference of
xrandom and xscell is minimized in the GA optimization procedure and the fitness of
any atomic configuration is inversely proportional to

∥∥xrandom − xscell
∥∥.

In total 4 pair correlation functions are considered, which correspond to a cut-off
distance r of r < 1.7a, where a represents the lattice constant of the BCC conven-
tional cell. In addition, 4 triplet correlation functions are used. These are selected
such that no triplets contain pairs longer than 1.42a. The point correlations are im-
plicitly imposed by specifying an alloy composition. These remain fixed during the
GA optimization process, and hence require no further consideration. The atomic
correlation functions of a large collections of SQS cells are computed in every GA iter-
ation using the alloy theoretic automated toolkit (ATAT) [129, 130, 61] and fed back
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into the GA for further optimization. Higher weights were assigned to the atomic cor-
relations functions corresponding to short distances and higher multiplicities, given
their higher anticipated contributions to total energies and elastic constants of SQS.
The result of varying these weights however, was found to have only a small impact
on the final optimized SQS.

5.2.2 Generation of TOEC

Below is an outline of the method used to calculate the third-order elastic con-
stants [11].

The third-order elastic constants are defined as

Cijklmn = ρ0
∂3E

∂ηij∂ηkl∂ηmn
|η=0. (5.12)

Using Voigt notation this can be written as

Cijk = ρ0
∂3E

∂ηi∂ηj∂ηk
|η=0. (5.13)

If the TOEC contains Voigt symmetry, but no point symmetry other than the
identity, the sixth-order elastic tensor will consist of 56 unique constants. By evalu-
ating the second derivative of the stress components with respect to η for 14 unique
strain states defined as
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η1 =
(
η 0 0 0 0 0

)
, (5.14a)

η2 =
(
0 η 0 0 0 0

)
, (5.14b)

η3 =
(
0 0 η 0 0 0

)
, (5.14c)

η4 =
(
0 0 0 2η 0 0

)
, (5.14d)

η5 =
(
0 0 0 0 2η 0

)
, (5.14e)

η6 =
(
0 0 0 0 0 2η

)
, (5.14f)

η7 =
(
η η 0 0 0 0

)
, (5.14g)

η8 =
(
η 0 η 0 0 0

)
, (5.14h)

η9 =
(
η 0 0 2η 0 0

)
, (5.14i)

η10 =
(
η 0 0 0 2η 0

)
, (5.14j)

η11 =
(
0 η η 0 0 0

)
, (5.14k)

η12 =
(
0 0 0 2η 2η 0

)
, (5.14l)

η13 =
(
0 0 0 2η 0 2η

)
, (5.14m)

η14 =
(
0 0 0 0 2η 2η

)
. (5.14n)

results in a vector, τ , containing 84 terms that consist of the 56 TOEC. Writing
the TOEC as a 56× 1 array, ξ, the 84× 56 matrix, A, can be defined as

Aik =
∂τi
∂ξk

(5.15)

Defining B to be the pseudoinverse of A the TOEC can be defined as

ξi = Bikτk (5.16)

The components of τ were evaluated numerically using the finite difference method.
A 9 point central difference stencil about η = 0 was used to calculate the second
derivative of the 2nd Piola-Kirchhoff stress components. While the maximum strain
used in the finite difference calculations is system dependent and determined from
convergence testing with respect to the TOEC, a maximum strain of ηmax = 0.05
has been shown to be appropriate for most systems studied.

5.2.3 Computational Details

We performed elastic constants calculations using density functional theory (DFT)
as implemented in the Vienna Ab initio Simulation Package (VASP) [30, 31]. The
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Perdew, Becke, and Ernzerhof (PBE) Generalized Gradient Approximation exchange-
correlation functional was employed [32]. A plane-wave cutoff of 600 eV was used
with a first-order Methfessel-Paxton smearing [98] employing a smearing parameter
of 0.2 eV. Ionic relaxations were performed until all forces were less than 0.005 eV/Å.
A 10 × 10 × 10 Γ-centered k-point mesh was employed. To ensure that the elastic
constants were converged calculations were run with a 14×14×14 Γ-centered k-point
mesh for one SQS at each composition. SOEC were within 2% for the two meshes,
while TOEC were found to be within a range of 1− 25%. In all cases the lower and
higher density k-point mesh predicted the same elastic instability. In the case of V,
a 25 × 25 × 25 Γ-centered k-point mesh was employed for both SOEC and TOEC
calculations. The SOEC and TOEC were calculated following the approach outlined
by de Jong et al. [63, 11]. The SOEC and TOEC were calculated for the following
16 atom supercells: V, Ti6V10, Ti7V9, Ti8V8, Ti9V7, and Ti10V6. The TOEC were
calculated for the three best elastically stable SQS cells at each structure. Both
an arithmetic as well as a weighted mean of the elastic constants using the SSOS
method (see equation 5.11) were calculated and considered to represent the elastic
properties of the bulk random alloy.

Results

Comparing V results between reference [8] and the current work shown in Figure
5.2, a 35% difference in the ideal tensile strength σITS is observed. This is a notice-
able difference, but not necessarily unexpected as only the SOEC and TOEC are
included in the expansion of the elastic energy. The inclusion of higher-order terms
would likely decrease this difference, but at a much higher computational cost. Most
importantly, V appears to fail via a shear instability for both methods; specifically
C ′66 → 0. Examining the SQS cells, one sees the general decrease of the σITS with
increasing Ti content in agreement with VCA results. The exception to this trend
are Ti10V6 cells.

There are several possible reasons for this, the first being that as Ti content
is increased the material becomes more elastically anisotropic, leading to higher
variation in the elastic properties of SQS cells depending on configuration, meaning
that perhaps more SQS cells than just three are needed to accurately quantify the
properties of the random alloy. Another possible reason for the bump in σITS at
Ti10V6 is that the material has undergone the ductile-to-brittle transition (see Figure
5.3). As shear instabilities occur at lower strains and thus lower σITS, this would
mean that even though the elastic constants might be softer, a larger strain can be
applied leading to a higher σITS.
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Figure 5.2: Comparison of ideal tensile strength of Ti-V systems calculated using
VCA [8] and from nonlinear elasticity. The results for the three best SQS cells are
shown along with their mean.

Figure 5.3: Estimation of the ductile-to-brittle transition for the Ti-V system. The
results for the three best SQS cells are shown along with their mean. ξC is the strain
at which cleavage failure is predicted to occur and ξS is the strain at which ductile
failure is predicted to occur (specifically C ′66 = 0). A ductile-to-brittle transition
appears at approximately 55 at % Ti in agreement with the VCA prediction [8].

While the method described in this work appears to consistently underestimate
σITS compared to VCA, it does appear to accurately reproduce the ductile-to-brittle
transition. VCA predicts that the ductile-to-brittle transition occurs at 55 at. %
Ti. The current work shows the difference between the onset of a shear instability
and cleavage instability occur at nearly simultaneous strains for the Ti9V7 system
(56.25 at. % Ti). It should be noted that while the difference between the strains
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at the cleavage and shear strain instabilities (ξC − ξS) decreases with increasing Ti
content the behavior of the individual SQS cells is more dispersed. The most obvious
example of this is the best SQS for the 50 at. % Ti cell, which shows the largest
difference in shear and cleavage instability of all cells considered.

5.3 Discussion

The fact that the σITS predicted from this work is lower than that calculated
by VCA is not all together surprising. A major advantage of this method is that
the effects of local configurations of atoms in the alloy are implicitly included in the
elastic constants. It is possible that the incorporation of these local contributions
could lead to a lower σITS. However, elastic constants higher than TOEC should be
included in this calculation to test this idea further. Higher order terms would most
definitely lead to a more accurate model of the ideal strength, but at a much higher
cost; a triclinic cell has at most 21 SOEC, 56 TOEC, and 126 fourth-order elastic
constants.

In addition to modeling the intrinsic ductile-to-brittle transition this model can
in principle be applied to determine the ideal yield surface of an alloy for any type of
applied strain state. Although, depending on the system higher order terms in the
elastic constants might be necessary for more complex stress-strain relations such
as those seen in transition metal aluminides [122, 131]. If applicable, this offers
a tremendous savings in calculations for understanding both the intrinsic ductility
as well as strength as a function of orientation, without needing any further ideal
strength calculations.
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Chapter 6

Ideal Tensile Yield Surface of a
Crystal

The computational cost of calculating the ideal strength of a material using DFT
can vary widely. For instance, the calculation of the ideal tensile strength of a
cubic system under an uniaxial load is a relatively simple computation. However,
the costs can increase dramatically for lower symmetry structures and/or high index
orientations. In addition, data obtained from the IS calculation for one configuration
in a crystal cannot be used to speed up the IS calculation for another configuration.
As a result, a calculation such as the ideal tensile yield surface of a cubic crystal is
an impractical venture.

However, by approximating the elastic stability of a crystal with nonlinear elas-
ticity theory, the ideal yield surface for any applied load becomes easily accessible.
There is an upfront computation cost in terms of calculating the higher-order elastic
constants, but for high symmetry structures this is on the order of the computation
cost associated with the ideal tensile strength of the material along the 〈001〉 direc-
tion. In this chapter, it is shown how one can generalize the method introduced in
chapter 5 to create the ideal tensile yield surface of a material. This method works
by first, defining the form of the applied load (in this case it is uniaxial) and then
expanding the Green-Lagrangian strain in terms of the applied stress, so that the
symmetric Wallace tensor can be constructed.

To test this method, the ideal tensile and compressive yield surfaces of copper are
constructed both with and without fourth-order elastic constants. It is shown that,
provided accurate elastic constants are used, this model reproduces the maxima and
minima tensile load directions in Cu predicted from direct IS calculations in DFT in
addition to correctly predicting the form of the eigenstrain associated with failure.
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6.1 Theory

6.1.1 Stress-strain Relations

For an arbitrary orientation, the strain state associated with the uniaxial load
(written in terms of the second Piola-Kirchhoff stress as τkm = τ0δk3δm3) will be
complex due to the lack of symmetry. As the formalism developed in chapter 5 uses
strain as an input, a general relationship between the stress and strain needs to be
approximated. To account for this the strain is approximated in terms of the stress
using the elastic compliance tensors (D) [132]. To begin the derivation, the elastic
energy must be written as a Taylor series expansion in terms of either the stress or
strain,

E =
1

2!
Dijklτijτkl +

1

3!
Dijklmnτijτklτmn +

1

4!
Dijklmnpqτijτklτmnτpq + ..., (6.1a)

E =
1

2!
Cijklηijηkl +

1

3!
Cijklmnηijηklηmn +

1

4!
Cijklmnpqηklηijηmnηpq + ... (6.1b)

The compliance tensors D can be determined by taking into account the fact that

∂τij
∂τkl

= Iijkl, (6.2a)

∂2τij
∂τkl∂τmn

= 0, (6.2b)

∂3τij
∂τkl∂τmn∂τpq

= 0, (6.2c)

(6.2d)

where Iijkl is the fourth-order identity tensor; Iijkl = 1
2

(δikδjl + δilδjk). As both the
compliance tensors and the elastic constants are evaluated at the stress free and
strain free states, the compliance tensors are defined by differentiating the expansion
of the elastic energy,
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∂2E

∂τij∂τkl
= Dijkl, (6.3a)

∂3E

∂τij∂τklτmn
= Dijklmn, (6.3b)

∂4E

∂τij∂τklτmnτpq
= Dijklmnpq. (6.3c)

By substituting equations 6.3 into the derivatives of τ (τij = ∂E
∂ηij

) with respect to τ ,

the compliance tensors can be found in terms of the elastic constants,

Dijkl = C−1
ijkl, (6.4a)

Dijklmn = −DijpqCpqrsuvDrsklDuvmn, (6.4b)

Dijklmnpq = Dα
ijklmnpq +Dβ

ijklmnpq (6.4c)

Dα
ijklmnpq = −DpqabDcdijDefklDghmnCabcdefgh, (6.4d)

Dβ
ijklmnpq = −DpqabCabcdef (DcdijmnDefkl +DefklmnDcdij +DcdijklDefmn), (6.4e)

which then allow for the strain to be written in terms of the stress,

ηij = Dijklτkl +
1

2!
Dijklmnτklτmn +

1

3!
Dijklmnpqτklτmnτpq + ... (6.5)

6.1.2 General Ideal Tensile Calculation

Now that it is possible to approximate the applied strain for any stress, the
ideal tensile yield surface can be constructed. This consists of multiple steps. A
direction 〈uvw〉, along which the uniaxial load will be applied, is chosen. Then a
transformation matrix is constructed that maps the original reference frame (defined
by the 3 orthonormal vectors ei) to the current reference frame (defined by the 3
orthonormal vectors e′i where e′3 is along 〈uvw〉). The stress tensor associated with
the uniaxial load in the current reference frame can then be defined as τij = τ0δi3δj3
and rotated into the original reference frame.

At this point the symmetric Wallace tensor can be constructed by entering the
stress tensor into equation 6.5. For a cubic system the ECFD are defined in chapter
5 only in terms of the SOEC’s and TOEC’s. Including the FOEC’s greatly increases
the complexity of the ECFD. However, the derivation remains exactly the same as
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that described in the previous chapter. By rotating the symmetric Wallace tensor
into the current reference frame, one can solve for the stress (either compressive or
tensile) needed to initiate an elastic instability (det Λ = 0). To obtain the Cauchy
stress associated with failure, σ, its relation with the second Piola-Kirchhoff stress
tensor is used,

σij =
1

J
FikτklFjl, (6.6)

with J being the Jacobian, which is defined as J = detF .
The mode of this instability (shear or cleavage) can then be found by determining

the eigenvector associated with the instability. The intrinsic ductility for the uniaxial
load along an arbitrary direction can be assessed by calculating the Young’s modulus
for the particular orientation. If the Young’s modulus causes the elastic instability,
the material is said to be intrinsically brittle. A more computationally inexpensive
way to determine if the material failed in an intrinsically brittle manner is to view
the η3 component of the eigenstrain associated with the elastic instability. If it is
equal to zero then a shear instability occurred. Otherwise, the material failed in
an intrinsically brittle manner. Throughout this chapter the η3 component of the
eigenstrain associated with the elastic instability will be referred to as a measure of
intrinsic brittleness (IB).

6.2 Results

The elastic constants (SOEC’s, TOEC’s, and FOEC’s) used in this study were
calculated by Wang and Mo [133]. The specific values are shown in tables 6.1, 6.2,
and 6.3. The yield surface was generated by evaluating 181 equispaced points with
respect to the stereographic projection on the irreducible wedge of cubic system. The
ideal compressive and tensile strengths were calculated at each of the points as well
as the IB for both load types.

Table 6.1: SOEC of Cu used in the calculation of the ideal yield surface. All values
are in GPa.

C11 C12 C44

168 114 74.5

Figure 6.1 compares the ideal tensile yield strength calculated with and without
FOEC’s. Qualitatively comparing the two yield surfaces one sees little difference.
Both approximations predict that the 〈110〉 direction to be the weakest tension and
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Table 6.2: TOEC of Cu used in the calculation of the ideal yield surface. All values
are in GPa.

C111 C112 C123 C144 C166 C456

-1500 -970 -71 -7 -901 45

Table 6.3: FOEC of Cu used in the calculation of the ideal yield surface. All values
are in GPa.

C1111 C1112 C1122 C1123 C1144 C1155 C1255 C1166 C1456 C4444 C4455

11900 6830 6600 -98 135 6630 -308 5740 -417 5090 -191

the 〈111〉 direction to be the strongest. Further, the numerical values for both
maxima and minima are similar. The smallest value of σITS over the surface was
3.32 and 4.94 with and without FOEC’s, while the highest value of σITS over the
surface was 12.7 and 12.3 with and without FOEC’s.

a) b)

Figure 6.1: The ideal tensile yield surface of Cu plotted over the irreducible wedge of a
cubic system. Figure a shows the yield surface including only SOEC’s and TOEC’s.
Figure b includes the FOEC’s. The filled circle and square correspond to the smallest
and highest ideal yield strength on the yield surface respectively.

As shown in Table 6.4, the results of this work both with and without FOEC’s
included compare well to the literature values for ideal tensile strength calculations
along the high symmetry directions. In the 〈001〉 direction the nonlinear elasticity
calculation differs from the direct DFT result by 21% and 10% with and without
FOEC’s, while for the 〈011〉 direction the difference is 36% and 5%. Finally, the
nonlinear elasticity results differ from DFT in the 〈111〉 directions by 37% and 39%.
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While the results can differ from DFT, especially in the case of 〈111〉 the ordering the
yield strengths is consistent between DFT and the nonlinear elasticity calculations.

Table 6.4: Comparison of ideal yield strength for high symmetry directions (〈001〉,
〈110〉, and 〈111〉) with literature. Under the method column DFT refers to the cal-
culation of the ITS directly from DFT.

σITS Direction Instability Method

Tension
7.38 〈001〉 C11 − C12 no FOEC
4.94 〈011〉 Cleavage no FOEC
12.3 〈111〉 Cleavage no FOEC
10.4 〈001〉 C11 − C12 w/FOEC
3.31 〈011〉 Cleavage w/FOEC
12.7 〈111〉 Cleavage w/FOEC
9.4 〈001〉 C11 − C12 DFT [134]
5.2 〈011〉 Cleavage DFT [135]
20.3 〈111〉 Cleavage DFT [135]

Compression
3.78 〈001〉 Cleavage no FOEC
15.2 〈011〉 Cleavage no FOEC
20.9 〈111〉 Cleavage no FOEC
3.23 〈001〉 C66 w/FOEC
7.15 〈011〉 Cleavage w/FOEC
16.0 〈111〉 Cleavage w/FOEC
3.5 〈001〉 Cleavage DFT[134]

For the compressive ideal yield strength (Figure 6.2), again, one sees qualitative
agreement between the two approximations. The surface including FOEC’s has the
same maximum and minimum σITS as that excluding FOEC’s. However, one does see
a larger difference in the actual values of the yield strength as a function of direction.
For instance, σITS at 〈111〉 is 16.0 with FOEC’s and 20.9 without. Comparing these
results to the literature, for the 〈001〉 direction the calculation without FOEC’s
appears to be closer in value to DFT results than the calculations with FOEC’s.
Combining this observations with those from the tensile case, it is not apparent
that the increased complexity inherent to including higher-order terms results in any
increase in accuracy. This is most likely due to the great difficulty in accurately
determining the FOEC’s.

Comparing the results of intrinsic brittleness for tensile loads (Figure 6.3) no
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a) b)

Figure 6.2: The ideal compressive yield surface of Cu plotted over the irreducible
wedge of a cubic system. Figure a shows the yield surface including only SOEC’s
and TOEC’s. Figure b includes the FOEC’s. The filled circle and square correspond
to the smallest and highest ideal yield strength on the yield surface respectively.

apparent difference is seen from including FOEC’s. Both approximations predict
cleavage where DFT predicts cleavage and both methods predict failure via a shear
instability (C11 − C12) for 〈001〉 in agreement with DFT calculations. In the case
of a compressive load, a larger discrepancy is seen between the two approximations
as shown in Figure 6.4. The yield surface without FOEC’s predicts that Cu is
intrinsically brittle over the entire surface while the inclusion of FOEC leads to
intrinsic ductility at 〈001〉 with the material failing via C66 → 0. It appears that
including only SOEC’s and TOEC’s in the calculation is actually more accurate as,
using the only data point available in the literature, DFT predicts that a compressive
load along 〈001〉 will result in cleavage of the crystal.

6.3 Discussion

To generalize this concept further, any material pulled along a direction not
associated with an axis of symmetry in the crystal must be intrinsically brittle. This
can be confirmed, again, by viewing the eigenstrains associated with the symmetric
Wallace tensor, which all contain some finite η3 component.

This is not altogther too surprising a finding, as the description of intrinsic duc-
tility has since its inception been intimately related to symmetry. For instance, the
shear instability C66 seen in vanadium, niobium, and tantalum is often explained as a
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a) b)

Figure 6.3: The ideal brittleness measurement for an applied tensile load of Cu plot-
ted over the irreducible wedge of a cubic system. Figure a shows the yield surface
including only SOEC’s and TOEC’s. Figure b includes the FOEC’s.

a) b)

Figure 6.4: The ideal brittleness measurement for an applied compressive load of Cu
plotted over the irreducible wedge of a cubic system. Figure a shows the yield surface
including only SOEC’s and TOEC’s. Figure b includes the FOEC’s.

transformation from a body-centered-tetragonal (BCT) structure to an face-centered-
orthorhombic (FCO) structure [36, 121, 66, 33]. This is only possible because the
loaded crystal contains a high enough symmetry for it to be possible for the crystal
to transform into a different crystal class (BCT or FCO). For low symmetry struc-
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tures this is not possible. The crystal has only one possible path to follow, which
necessitates that it fails via cleavage (the Young’s modulus reaches 0).
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Chapter 7

Conclusion

The goal of this research has been to develop and implement a methodology for
the computer-aided materials design of Gum Metal-like alloys. The attempts at
achieving this goal began with attempting to find Gum Metal-like behavior in mag-
nesium and lithium-magnesium alloys by tuning the elastic properties of the material
with respect to pressure and lithium content. In the case of tuning with respect to
pressure, as the pressure was reduced from the region of absolute stability for the
BCC phase, dislocation core spreading occurred, leading to structures resembling
nanodisturbances. Ideal tensile strength calculations of BCC Mg as a function of
pressure showed that despite its low shear modulus, BCC Mg was predicted to be
intrinsically brittle at absolute zero.

In the case of lithium-magnesium alloys, a softening of the shear modulus, C11−
C12, and the acoustic phonon branch between the Γ and N high symmetry points
took place, as the composition approaches the stability limit for the BCC phase.
Nanodisturbances appeared in conjunction with this softening as in the case of high
pressure magnesium. Again, ideal tensile strength calculations predicted that ordered
phases of lithium-magnesium alloys were intrinsically brittle.

In order to generalize this method further an anisotropy parameter associated
with the susceptibility of dislocations to pinning was modified to be applicable to
any straight dislocation in any crystal system. Using the Materials Project’s elastic
constants database several candidate Gum Metals were identified. Many of these
materials already bear numerous striking resemblances to Gum Metal, including Al-
Cu-Mn solid solutions. In addition, it is noted that the approach may be suitable
for discovery and optimization of both shape memory and high entropy alloys.

Finally, in order to evaluate the intrinsic ductility of these candidate materials
a method was developed to approximate the elastic stability of random alloy by a
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combination of nonlinear elasticity theory and special quasirandom structures. Using
BCC Ti-V system as a test case, it was shown that the ductile-to-brittle transition
can be accurately calculated for this system. The approach was further generalized
to allow for the calculation of the ideal tensile surface of a solid.

Using what has been learned from this work, three projects appear to be of ut-
most interest. The first, is to further investigate the candidacy of Al-Cu-Mn for
gum-metal-like behavior. To begin with, it would be of interest to calculate the
intrinsic ductility of the Al-Cu-Mn compositions of interest using the methodology
outlined in chapter 5. This would not necessarily be a simple calculation due to the
relatively large system needed to approximate the compositions of interest (around
30-50 atoms would likely be needed). In addition to this Al-Cu-Mn alloys are known
to be ferromagnetic and the BCC phase at room temperature is only achieved af-
ter quenching, leading to the possiblity that it is elastically unstable at absolute
zero, where DFT calculations are conducted. Experimental work on these Al-Cu-Mn
systems is a more important and likely more promising approach to take, in under-
standing these alloys’ connection to Gum Metal. One possible experiment to conduct
is to cold-work the material as close to its limit as dictated by its cold-workability
(60-90 % reduction in area) and then measure its stress-strain curve.

A second project to pursue is to calculate the anisotropy parameter described
in chapter 4 for all structures in the Materials Project’s elastic constants database.
Only cubic materials were considered in this work, but structure maps described in
this work were designed such that they could be made for any straight dislocation in
any crystal system. As well, the number of materials in the elastic constants database
has more than doubled since this work began, meaning that there are thousands more
materials that can be evaluated.

Finally, the suggestion that the anisotropy parameter described in this work could
be used as a descriptor of strong and tough HEAs merits further consideration. Much
computational work can be done to further exam this claim. For starters, using the
SSOS method the total energy calculations of five component HEAs can be efficiently
and accurately computed [125]. It should be trivial then to calculate the elastic
constants for these five-component systems, allowing for an efficient determination
of their anisotropy parameter.
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[36] N. Nagasako, M. Jahnátek, R. Asahi, and J. Hafner. Anomalies in the response
of V, Nb, and Ta to tensile and shear loading: Ab initio density functional
theory calculations. Phys. Rev. B, 81:94108, 2010.
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[40] P. Lazar, M. Jahnátek, J. Hafner, N. Nagasako, R. Asahi, C. Blaas-Schenner,
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