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Abstract

Renormalization Group Constraints on the Two-Higgs Doublet Model

by

Edward R. Santos III

We examine the constraints on the two Higgs doublet model (2HDM) due to the

stability of the scalar potential and absence of Landau poles at energy scales below

the Planck scale. We employ the most general 2HDM that incorporates an approx-

imately Standard Model (SM) Higgs boson with a flavor-aligned Yukawa sector

to eliminate potential tree-level Higgs-mediated flavor-changing neutral currents.

Using basis independent techniques, we exhibit regimes of the 2HDM parameter

space with a 125 GeV SM-like Higgs boson that is stable and perturbative up to

the Planck scale. Implications for the heavy scalar spectrum are exhibited.

The most general 2HDM contains an extended Yukawa sector that includes

new sources of flavor changing neutral currents (FCNCs), which must be sup-

pressed due to experimental bounds. The flavor-alignment ansatz asserts a pro-

portionality between the Yukawa matrices that couple the up-type (down-type)

fermions to the two respective Higgs doublet fields of the 2HDM, thereby elimi-

nating FCNCs at tree-level. If flavor-alignment is imposed at a high energy scale,

such as the Planck scale, tree-level FCNCs can be generated at the electroweak

scale via renormalization group running. We determine the size of FCNCs that

ix



can be generated at the electroweak scale via Planck scale flavor-alignment, and

use experimental bounds on flavor-changing observables to place constraints on

the flavor-aligned 2HDM parameter space.
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Chapter 1

Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012

(Refs. [5, 6]) has proven to be a major success for particle physics, providing a

confirmation of the long sought-after mechanism for electroweak symmetry break-

ing (EWSB). With the existence of the Higgs boson now confirmed, the attention

has now turned to deciphering the Higgs properties, in order to determine and

whether it is the SM Higgs boson or the lightest Higgs boson of a larger set.

Whereas the standard model (SM) has been very successful in explaining much

of particle physics to a high degree of accuracy, there exists many motivations

for physics Beyond the Standard Model (BSM), including dark matter, dark en-

ergy, sufficient CP-violation required for baryogenesis, the question of naturalness,

among others. Most recently, SM Renormalization Group (RG) calculations (Refs.
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[2, 7]) have shown that the SM is most likely not consistent at all energy scales up

to the Planck scale, due to the existence of a deeper minimum of the scalar poten-

tial at large field values. To avoid the corresponding instability of the electroweak

vacuum would require new physics entering at an intermediate energy scale.

Although the prospect of existence of new BSM physics is exciting, there is

no guarantee that the scale of the new physics is close to the electroweak scale.

Nevertheless, arguments motivated by naturalness of the electroweak symmetry

breaking (EWSB) mechanism suggest that BSM physics should be present at or

near the TeV scale (see e.g., Refs. [8, 9] for a review and a guide to the literature).

Many models of new physics have been proposed to address the origin of ESWB,

and many of these approaches possess extended Higgs sectors. However, in such

models one must specify the BSM physics in order to study the behavior of running

couplings between the electroweak scale and some very high energy scale Λ. At

present, there is no direct experimental evidence that the origin of the EWSB

scale is a consequence of naturalness. Adding additional Higgs multiplets at or

near the TeV scale by themselves does not address the origin of EWSB. Indeed,

one could argue that it makes matters worse by adding additional fine-tuning

constraints. Nevertheless, in this paper we shall accept the fine-tunings required

to sustain an extended Higgs sector near the TeV scale. After all, we know that

multiple generations exists in the fermionic sector of the Standard Model. Thus,
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we should be prepared for the possibility that the scalar sector of the theory is

also non-minimal.

Here, we shall focus on the two-Higgs doublet model (2HDM), which was

initially proposed by Lee in 1973 [10] (for a review, see e.g. Ref. [11]). It provides

a richer Higgs particle spectrum, namely three neutral scalars and a charged pair.

The 2HDM admits the possibility of CP-violation in the scalar potential, both

explicit or spontaneous. In the limit of CP-conservation, two of the neutral scalars

are CP-even, typically denoted by h and H, (where mh < mH) while the other

neutral scalar is CP-odd, denoted by A. We shall consider a very general version

of the 2HDM that is not inconsistent with present data. Such a model must

possess a SM-like Higgs boson (within the accuracy of the present Higgs data).

In addition, Higgs-mediated tree-level flavor changing neutral currents (FCNCs)

must be either absent or highly suppressed. These conditions are achieved if the

non-minimal Higgs states of the model have masses above about 350 GeV and if

the Yukawa couplings are aligned in such a way that the neutral Higgs couplings

are diagonal in the mass-basis for the neutral Higgs bosons. The most general

2HDM parameter space allowed by the present data is somewhat larger than the

one specified here. Nevertheless, the restricted parameter space outlined above

is still quite general and incorporates the more constrained 2HDMs considered in

the literature.
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Chapter 1 of this thesis begins with a review of the SM Higgs mechanism,

recapping the scalar potential and mechanism in which masses are generated for

gauge bosons and fermions. We then review constraints on the SM scalar potential

by imposing perturbativity, meta-stability, and stability. After a brief mention of

several BSM models, we recap constraints from precision electroweak data and

FCNCs, the latter in the context of the minimal flavor violation (MFV) framework.

Chapter 2 reviews the most general 2HDM, one of the simplest extensions to

the SM Higgs sector, positing the existence of a second heavier Higgs doublet, in

addition to that of the SM. The most general 2HDM provides a richer spectrum

of Higgs bosons and introduces additional sources of CP-violation, however, in its

most general form it allows FCNCs that are severely constrained experimentally.

We recap the most general 2HDM with the flavor-alignment ansatz, in which

the two sets of Yukawa matrices are proportional and thus simultaneously bi-

diagonalizable. We present the 2HDM in the basis-independent formalism (as

first presented in Ref. [12]), making no CP assumptions that would result in

constraints on the scalar potential and Higgs-fermion interactions. Conditions

for tree-level stability of the CP-violating 2HDM are also presented in the basis-

independent formalism.

Chapter 3 is based on work presented in Ref. [3], where we show that if

the recently discovered 125 GeV Higgs boson is lightest scalar, then the 2HDM
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could potentially survive up to the Planck scale under renormalization group (RG)

evolution. For regions of the parameter space that survive stability and pertur-

bativity requirements up to Planck scale, we provide bounds on the squared mass

differences between two of the heavier Higgs bosons. In particular, we find that

the heavy Higgs bosons are roughly degenerate with small deviations resulting

from the presence of constrained quartic couplings of the 2HDM scalar potential.

We also present a rough estimate of the leading two-loop effects by taking into

account the two-loop contributions to the SM RG evolution.

Chapter 4 is based on work presented in Ref. [4], where we study the ef-

fects of imposing Planck scale flavor-alignment between the two sets of Yukawa

matrices in the most general 2HDM Yukawa sector. The implications for FCNC

processes from both Higgs mediated tree-level and one-loop radiative effects are

examined. We use current experimental results to constrain the parameter space

of the alignment parameters.

In Chapter 5, we conclude by summarizing the implications of Chapters 3 and

4 for the 2HDM. Appendix A contains the derivations of the one-loop renormal-

ization group equations RGEs for the 2HDM scalar potential parameters and the

Yukawa couplings.
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1.1 Standard Model

The ATLAS and CMS experiments have recently reported (Refs. [5, 6]) the

discovery a SM-like Higgs boson at a mass of about 125 GeV. The LHC by itself

cannot claim discovery of the SM Higgs boson, only discovery of a SM-like Higgs

boson. The SM has proven to be very robust, with the Higgs boson being that of

the SM or very close to it. Precision Higgs data from future colliders are needed to

determine the exact nature of the observed Higgs boson. In this section we review

the SM Higgs mechanism as a means of EWSB and review the implications the

observed Higgs mass has on the scalar potential during RG evolution, Finally, we

briefly review the experimental constraints on non-minimal Higgs sectors.

1.1.1 Higgs mechanism

The Standard Model of particle physics, which obeys an SU(3)c×SU(2)L×U(1)Y

gauge symmetry, does not allow explicit mass terms for gauge bosons or fermions.

For gauge bosons, mass terms violate local gauge invariance, thereby requiring a

mechanism to break the SU(2)L×U(1)Y electroweak symmetry. The left and right

handed fermions transform as doublets and singlets, respectively, under SU(2)L,

and thus it is not possible to construct an SU(2)L invariant mass term for fermions.

The Higgs mechanism provides a means for EWSB by introducing a hypercharge-

one (Y = 1), complex scalar SU(2)L doublet with four real fields,
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φ =

φ+
0 + iφ+

1

φ2 + iφ3

 , (1.1)

with a tree-level scalar potential of the form,

VH = −m2φ†φ+
λ

2
(φ†φ)2. (1.2)

We require the minimum of the potential, defined to be the vacuum expectation

value (vev) v, be non-zero to induce spontaneous symmetry breaking, thereby

requiring m2 > 0. For the potential to be bounded from below at tree-level, we

must also have λ > 0. By minimizing the scalar potential (eq. 1.2) with respect

to φ, we find the the vev is v =
√
m2/λ = (

√
2GF )−1/2 = 246 GeV. By expanding

φ around the vev,

φ =

 G+

1√
2
(v + h+ iG0)

 , (1.3)

and inserting this expansion into the scalar potential (eq. 1.2), we generate a mass

term −λv2h2 for the scalar field h, now identified as the field of the physical Higgs

boson. The fields G0 and G± are identified as the massless Goldstone bosons.

Thus, the shape of the scalar potential is controlled by two parameters: the mass

of the Higgs boson (or equivalently, the Higgs self-coupling), and the vacuum

expectation value, both of which have now been determined experimentally.
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The W± and Z bosons, being massless before EWSB, each have two degrees of

freedom for a total of six. The scalar doublet (eq. 1.1) has four degrees of freedom,

one of which becomes the physical Higgs boson, the rest of which are identified

as massless Goldstone bosons. Through the Higgs mechanism, the Goldstone

bosons become the longitudinal modes of the W± and Z gauge boson, which

now each have three degrees of freedom and therefore effectively acquire masses.

This occurs via the scalar kinetic terms in the Lagrangian, where the covariant

derivative terms of the scalar field are given by Dµφ = (∂µ+ igW a
µ τ

a+ i1
2
Y g′Bµ)φ.

Expanding φ around the vev (eq. 1.3) and inserting into the scalar kinetic term

yields

LKE = |Dµφ|2 =
v2

8

[
g2((W 1

µ)2 + (W 2
µ)2) + (g′Bµ − gW 3

µ)2
]
. (1.4)

Identifying the vector boson mass eigenstates of definite electric charge,

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ), (1.5)

Zµ =
1√

g2 + g′2
(gW 3

µ − g′Bµ), (1.6)

Aµ =
1√

g2 + g′2
(gW 3

µ + g′Bµ). (1.7)

Inserting these fields into eq. 1.4, we obtain the mass terms for the physical gauge

bosons,
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LKE =

(
gv

2

)2

W+
µ W

µ− +
1

2

(
1

2

√
g2 + g′2v

)
ZµZ

µ +
1

2
(0)AµA

µ. (1.8)

In summary, the Higgs mechanism, via the inclusion of a complex hypercharge

one scalar SU(2) doublet φ with a non-zero vev, along with a scalar potential of

the form eq. 1.2, generates a new massive particle, the Higgs boson, and gives

mass to the W± and Z bosons, while recovering the massless photon:

mh =
√
λv, (1.9)

mW =
1

2
gv, (1.10)

mZ =
1

2

√
g2 + g′2v = mW/ cos θW , (1.11)

mA = 0, (1.12)

where tan θW = g′/g, is the weak mixing angle.

1.1.2 Yukawa Lagrangian

The Higgs mechanism also provides a means to generate mass terms for chi-

ral fermions. Naively, we would write a chiral fermion mass term as mf f̄f =

mf (f̄LfR + f̄RfL), but since left and right-handed fermions are SU(2) doublets

and singlets, respectively, such a mass term is not SU(2) invariant. We can,
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however, couple the left-handed fermions to the scalar field to generate a SU(2)

invariant term,

−LY = yf F̄L · φfR + h.c., (1.13)

where yf is an arbitrary coupling constant, and FL is a left-handed SU(2) fermion

doublet, which generates a mass term after the scalar field acquires a vev,

−LY =
v√
2
yf f̄LfR + h.c.. (1.14)

Thus, fermions couple to the Higgs boson with a magnitude proportional to their

masses, mf = yfv/
√

2. The strength of these couplings are determined once the

fermion mass has been measured.

In generalizing to three generations, we shall focus only on the quark sector

(the extension to leptons is fairly straightforward). With three generations, the

Yukawa couplings, yf , now become two 3×3 matrices in flavor space, Y 0
Q, where

Q = U,D. The Yukawa Lagrangian is now written as

−LY = Q̄0
L · φ̃Y

0
UU

0
R + Q̄0

L · φY
0†
D D0

R + h.c., (1.15)

where φ̃ = iτ2φ
∗ and Q is the left-handed SU(2) quark doublet,

10



Qi
L =

U i

Di


L

. (1.16)

To find the quark-mass eigenstates, we apply the following unitary transformations

to diagonalize the Yukawa matrices

PLU = V U
L PLU

0, (1.17)

PLD = V D
L PLD

0, (1.18)

PRU = V U
R PRU

0, (1.19)

PRD = V U
R PRD

0, (1.20)

where PR,L ≡ 1
2
(1 ± γ5), and the Cabibbo-Kobayashi-Maskawa (CKM) matrix is

defined to be K ≡ V U
L V

D†
L . Redefining U ≡ K†U , and Q =

(U
D

)
L
, we can rewrite

eq. 1.15 as

−LY = Q̄L · φ̃YUUR + Q̄L · φY †DDR + h.c., (1.21)

where YU and YD are the Yukawa matrices in the quark-mass eigenstate, which

are diagonalized by the rotation

YU = V U
L Y

0
UV

U†
R , (1.22)

YD = V D
R Y

0
DV

D†
L . (1.23)
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The quarks mass matrices are then identified in terms of the diagonalized Yukawa

matrices and vev as

MU =
v√
2
YU = diag(mu,mc,mt), (1.24)

MD =
v√
2
Y †D = diag(md,ms,mb). (1.25)

1.1.3 Scalar potential constraints

In this thesis, we analyze the scalar potential of the 2HDM with a SM-like

Higgs of mass 125 GeV to test validity of the theory up to the Planck scale given

the appropriate stability and perturbativity requirements. In the 2HDM, these

constraints can be much more complicated given the increased parameter space.

Thus, we review the concepts of stability, meta-stability, and perturbativity for

the scalar potential in the SM, to build intuition for how these phenomena are

exhibited in the 2HDM. Recent two-loop calculations (Refs. [1, 2]) suggest that

a 125 GeV Higgs boson leads to a scenario in which the scalar potential is in the

metastable regime.

Stability of the scalar potential requires that the potential is bounded from

below at all energy scales during RG evolution. Here we follow the effective poten-

tial approach reviewed in Ref. [13], taking into account quantum loop corrections

to the tree-level potential. For the SM Higgs, the effective potential is given by
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Veff (φ) = V (0)(φ) + ~V (1)(φ), (1.26)

where V (0) is the tree-level scalar potential (eq. 1.2) and V (1) accounts for the

one-loop quantum corrections

V (1) = −m2
0φ

2 +
1

2
λ0φ

4 +
1

16π2

[
1

4
H2

(
ln
H

Λ2
0

− 3

2

)
+

3

4
G2

(
ln
G

Λ2
0

− 3

2

)
+

3

2
W 2

(
ln
W

Λ2
0

− 5

6

)
+

3

4
Z2

(
ln
Z

Λ2
0

− 5

6

)
− 3T 2

(
ln
T

Λ2
0

− 3

2

)]
,(1.27)

with

H = −m2
0 + λ0φ

2/2, (1.28)

G = −m2
0 + λ0φ

2/6, (1.29)

W = g′20 φ
2/4, (1.30)

Z = (g2
0 + g′20 )φ2/4, (1.31)

T = g2
0φ

2/2. (1.32)

For large φ, the one-loop potential can be written as

V (1)(φ) = φ4

[
λ0 +

[
βλ(λ0, g0, g

′
0)− 4λ0γ(λ0, g0, g

′
0)
]

ln

(
φ

µ0

)
+O(λ2

0, g
2
0, g
′2
0 )

]
, (1.33)
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which is just the expansion of the quartic term in the RG improved potential,

V
(1)
RG = λ(t)[ξ(t)φ]4 +O(λ(t)2, g(t)2, g′(t)2), (1.34)

where

ξ(t) = e−
∫ t
0 γ(λ(t′),g(t′),g′(t′))dt′ , (1.35)

γ is the anomalous dimension, t = ln(µ/µ0), and µ0 is the renormalization scale.

Within the approximation of eq. 1.34 we see that the stability of V (φ) is equivalent

to requiring λ(Λ) > 0 for all Λ. If at some scale before Λ = MPL, λ(Λ) < 0, then

the scalar potential is either completely unstable, or there exists a deeper potential

minimum at φ > Λ. The latter case would correspond to a metastable vacuum,

which is described in more detail later in this section. In the former case, to avoid

the scalar potential becoming unstable, new physics is required before the scale

of the instability. To illustrate this phenomena, we analyze the one-loop RGE for

the Higgs self coupling λ,

16π2dλ

dt
= 12λ2 + 12y2

t λ− 12y4
t − 3(g′2 + 3g2)λ+

3

4
(g′4 + 2g′2g2 + 3g4). (1.36)

The RHS of eq. 1.36 is dominated by three terms: 12λ2, 12y2
t λ, and −12y4

t . The

effect of the first two is to increase the value of λ during RG evolution, driving

the coupling constant to the non-perturbative regime, and the last to decrease

14



λ, driving the potential to become unstable. To reach the Planck scale, these

three terms must balance each other out appropriately, leading to a range of Higgs

masses that satisfy this condition, which at one-loop is 140 GeV . mh . 175 GeV,

where the lower and upper bounds are from requiring stability and perturbativity,

respectively.

The perturbativity requirement is sometimes confused as being an upper bound

on Higgs masses. Instead, it indicates the energy scale at which the theory becomes

non-perturbative, at which point the one-loop RGEs cease to be reliable, and the

inclusion of higher-order or non-perturbative corrections to the one-loop RGEs is

necessary. In the SM, this occurs when the Higgs self coupling (mass) is large, so

that the one-loop beta function for λ (eq. 1.36) is dominated by the λ2 term, so

to crude approximation, we get

16π2dλ

dt
≈ 12λ2, (1.37)

This allows for an analytic solution for λ(Λ),

λ(Λ) ≈ 1
2v2

m2
h
− 3

4π2 ln(Λ/v)
. (1.38)

Taking the limit λ(Λ)→∞ (known as a Landau Pole), implies that the denomi-

nator of eq. 1.38 goes to zero. Solving for Λ, we get
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Λ . e
8π2v2

3m2
h v ≈ 1046 GeV. (1.39)

Eq. 1.39 provides the largest scale at which the theory becomes non-perturbative,

such that higher-order loop corrections or non-perturbative methods must be used,

and/or new physics introduced, given a Higgs mass. The inclusion of higher

order and non-perturbative calculations provides a very similar result. Of course,

perturbativity would have long ceased before Higgs self coupling reached a Landau

pole, and so conversely, the perturbativity requirement provides an upper bound

for Higgs masses that can reach the Planck scale. Including all of the terms in

the eq. 1.36, and taking a softer perturbativity requirement λ(MPL) . 1, yields

an upper bound of mh . 175 GeV.

Eq. 1.39 informs us that the SM is well within the perturbative regime. Ex-

tended Higgs sectors (with the lightest scalar corresponding to a SM-like Higgs),

however, contain additional quartic couplings in the scalar potential that can lead

to perturbativity issues at an energy scale well below the Planck scale. It is

beneficial to use the SM as an illustration of phenomena, as the concept can be

extended to understand perturbativity contraints in BSM models with extended

Higgs sectors.

In the metastable scenario, i.e. requiring that the lifetime of the metastable

electroweak vacuum is less than the age of the universe, one finds a lower bound
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on mh that is not as strict as that from stability, as reviewed in Ref. [14]. Current

values of the Higgs mass and the top quark mass indicate that the SM Higgs

vacuum is not the true vacuum, and here we recap the meta-stability require-

ments as reviewed in Ref. [1], who provide the vacuum-decay probability for the

electroweak vacuum to have decayed during the past history of the universe as

℘0 = 0.15
Λ4
B

H4
0

e−S(ΛB), (1.40)

where H0 is the present Hubble constant, and S(ΛB) is the action of the bounce

of size R = Λ−1
B ,

S(ΛB) =
8π2

3|λ(ΛB)|
. (1.41)

Fig. 1.1a (taken from Ref. [1]) shows ℘0 as a function of the top quark mass,

where we see that the probability for our current vacuum to decay to the true

vacuum is incredibly small. In the regime that the universe is matter dominated

in the future, the lifetime of the electroweak vacuum, τEW is given by

τEW =

(
55

3π

)1/4
eS(ΛB)/4

ΛB

≈ TU

℘
1/4
0

, (1.42)

where TU ≈ 0.96H0, having defined the ‘radius’ of the present day universe to be

cTU . If the future of the universe is dominated by the cosmological constant, i.e.

dark energy, the lifetime of the electroweak vacuum is
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τEW =
3H3eS(ΛB)

4πΛ4
B

≈ 0.02TU
℘0

, (1.43)

where H = H0

√
ΩΛ. The lifetime of the electroweak vacuum for both the matter

and cosmological constant dominated cases are both particularly large, and are

shown in Fig. 1.1b (taken from Ref. [1]) as a function of the top quark mass. Such

large values for τEW indicate that the current SM electroweak vacuum lifetime is

much greater than the current lifetime of our universe, and thus is metastable.

Figure 1.1: Left panel: The probability that electroweak vacuum decay happened

in our past light-cone, taking into account the expansion of the universe. Right

panel: The life-time of the electroweak vacuum, with two difference assumptions

for future cosmology: universes dominated by the cosmological constant (ΛCDM)

or by dark matter (CDM). Figures taken from Ref. [1].

Ref. [1] also shows that the SM scalar potential is stable up to the Planck
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scale for a Higgs mass satisfying

mh > 129.6 GeV+2.0(mt−173.34 GeV)−0.5 GeV

(
αs(mZ)− 0.1184

0.0007

)
±0.3 GeV,

(1.44)

where mt is the top quark pole mass and αs(mz) is the strong coupling constant

at the electroweak scale. Taking into account the theoretical uncertainty with

the uncertainty in the top quark mass and the strong coupling constant, the

requirement for the scalar potential to be stable is

mh > (129.6± 1.5) GeV, (1.45)

and mh < 126 GeV being valid up to the Planck scale is excluded at 2.8σ (99.8%

C.L. one sided). Similarly, the instability scale ΛV is found to be

log10

ΛV

GeV
= 9.5+0.7

(
mh

GeV
−125.15

)
−1.0

(
mt

GeV
−173.34

)
+0.3

(
αs(mz)− 0.1184

0.0007

)
.

(1.46)

Thus, the most current results suggest that if the SM is the only source of

physics up to the Planck scale, the Higgs self coupling will become negative at

ΛV = 109.5 GeV, up to the uncertainties in the Higgs and top quark masses, as

well as the strong coupling constant, as seen in Fig. 1.2 (taken from Ref. [2]).

In this scenario, it appears that our current vacuum is metastable, though the
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probability of tunneling to the true vacuum state is incredibly small, as shown in

Fig. 1.1a (taken from Ref. [1]). The current situation is recapped in Fig. 1.3

(taken from Ref. [2]), and will need further precision measurements for the top

quark and Higgs masses to clarify the picture.

Figure 1.2: The instability scale ΛI at which the SM potential becomes negative

as a function of the Higgs mass (left) and of the top mass (right). The theoretical

error is not shown and corresponds to a ±1 GeV uncertainty in mh. Figures taken

from Ref. [2].

The existence of additional scalar degrees of freedom in an extended Higgs

sector provides an opportunity to cure the vacuum metastability problem of the

SM Higgs boson. However, by demanding no Landau poles and requiring a stable

scalar potential at all energy scales up to the Planck scale, one imposes strong

constraints on the parameter space of the extended Higgs sector. Investigations
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Figure 1.3: Left panel: Regions of absolute stability, meta-stability and instability

of the SM vacuum in the mt − mh plane. Right panel: Zoom in the region

of the preferred experimental range of mh and mt (the gray areas denote the

allowed region at 1, 2, and 3σ). The three boundary lines correspond to αs(mZ) =

0.1184± 0.0007, and the grading of the colors indicates the size of the theoretical

error. The dotted contour-lines show the instability scale Λ in GeV assuming

αs(mZ) = 0.1184. Figures taken from Ref. [2].
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of this type have been performed in extended Higgs sectors that add additional

singlet scalar fields [15, 16, 17, 18, 19] and in various constrained 2HDMs. Ex-

amples of the latter [20, 21, 22, 23, 24] invoke a Z2 discrete symmetry to simplify

the 2HDM scalar potential. In Ref. [25] this latter assumption was relaxed (while

imposing CP conservation) and the Higgs-fermion Yukawa couplings, apart from

the Higgs couplings to the top quark, were neglected.

1.2 Beyond the Standard Model

Despite the successes of the Standard Model, there exist many motivations for

BSM physics. For one, the SM cannot account for dark matter or dark energy.

There is also insufficient sources of CP-violation in the SM to adequately explain

the electro baryogenesis. The hierarchy problem asks why weak scale is so much

smaller than the Planck scale? The bare mass parameter of the Higgs boson

is subject to radiative corrections that are quadratically sensitive to the scale

of new physics, which naively should correspond to MPL. The Planck scale,

however would correspond to fine-tuning at 1 part in 1034, suggesting that SM

by itself suffers when considering the notion of naturalness. Theories such as

supersymmetry and those postulating extra dimensions have been invented to

solve the hierarchy problem, though no evidence of such theories has yet been

observed. It could be possible that our universe is part of a multiverse, and the
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parameters of our universe are randomly determined.

Borrowing motivation from the fact that fermions come in three generations

for no obvious reason, we have to be prepared for the possibility that the scalar

sector exhibits similar multiplicity. While an extended Higgs sector need not

necessarily solve any of the aforementioned issues of the SM, it is possible that an

extended Higgs sector (such as the 2HDM) is a low-energy effective theory for a

more complete theory at higher energies.

1.2.1 Constraints on non-minimal Higgs sectors

In BSM models with non-minimal Higgs sectors, there exist two key con-

straints that must be satisfied. The first is due to the experimental fact that

ρ = m2
W/m

2
Z cos2 θW is approximately one. The custodial symmetry SU(2)V

responsible for the tree-level relationship between the W and Z masses, is the

diagonal vector subgroup of SU(2)L×SU(2)R, which in the SM is an accidental

symmetry of the scalar potential (eq. 1.2). The ρ parameter would be exactly

unity if this symmetry were exact, but the U(1)Y hypercharge gauge interactions

and the Higgs-fermion Yukawa couplings break the custodial symmetry, leading

to finite one-loop radiative corrections to the ρ parameter. It should be noted that

the SM with any number of singlets and doublets would also exhibit a custodial

symmetry, hence providing ρ ≈ 1 at tree-level. In general,
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ρ =

∑
T,Y [4T (T + 1)− Y 2]|VT,Y |2cT,Y∑

T,Y 2Y 2|VT,Y |2
, (1.47)

where VT,Y = 〈φ(T, Y )〉 is the vevs of the neutral fields, T and Y describe the

SU(2)L isospin and hypercharge of the Higgs representation, respectively, and

cT,Y = 1, cT,0 = 1/2 for T, Y in the complex and real representations, respectively

(Ref. [26]).

In the modified minimal subtraction MS scheme (denoted by the caret), we

can define the ρ̂ parameter, assuming the validity of the SM, as

ρ̂ ≡ m2
W

m2
Z ĉZ

2 , (1.48)

where ĉZ ≡ cos θ̂W (mZ), and is less sensitive than cos θW to mt and most types

of new physics. We can define the ρ0 parameter to describe new sources of SU(2)

breaking that cannot be accounted for by the top quark or the SM Higgs,

ρ0 =
m2
W

m2
Z ĉZ

2ρ̂
= 1.00040± 0.00024, (1.49)

which is 1.7σ above the SM expected value of ρ0 = 1, after simultaneously fitting

ρ0,mh,mt, and αs to the data.

The dominant radiative corrections due to new physics appears through vacuum-

polarization amplitudes. These correction are described by the oblique “Peskin-

Takeuchi” parameters S, T, and U , introduced in Refs. [27, 28], though here we
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follow the more recent description of the oblique parameters described in Ref.

[29], in which they receive contributions only from new physics and not loop con-

tributions from mt or mh:

S ≡ 4ŝZ
2ĉZ

2

α̂(mZ)

[
Πnew
ZZ (m2

Z)− Πnew
ZZ (0)

m2
Z

− ĉZ
2 − ŝZ2

ĉZ ŝZ

Πnew
Zγ (m2

Z)

m2
Z

−
Πnew
γγ (m2

Z)

m2
Z

]
, (1.50)

T ≡ 1

α̂(mZ)

[
Πnew
WW (0)

m2
W

− Πnew
ZZ (0)

m2
Z

]
, (1.51)

S + U ≡ 4ŝZ
2

α̂(mZ)

[
Πnew
WW (m2

W )− Πnew
WW (0)

m2
W

− ĉZ
ŝZ

Πnew
Zγ (m2

Z)

m2
Z

−
Πnew
γγ (m2

Z)

m2
Z

]
, (1.52)

(1.53)

and have been experimentally determined:

S = −0.03± 0.10, (1.54)

T = 0.01± 0.12, (1.55)

U = 0.05± 0.10, (1.56)

Fixing U = 0 (as is the case in many BSM models),
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S = 0.00± 0.08, (1.57)

T = 0.05± 0.07, (1.58)

(1.59)

both cases of which are in good agreement with the SM.

The second key constraint stems from the possibility of FCNCs introduced

by additional sources of Higgs-fermion couplings. FCNCs are absent in the SM

at tree-level, but are generated through quantum loop corrections. These correc-

tions, however, are highly suppressed by the Glashow-Iliopoulous-Maiani (GIM)

mechanism (Ref. [30]). Experimentally, FCNC processes are highly constrained,

and any BSM model must have a mechanism in place to control FCNC processes.

In the most general 2HDM, for example, the Yukawa Lagrangian includes two

sets of Yukawa matrices that cannot be simultaneously diagonalized. One set of

diagonalized Yukawa matrices can be associated with the quark mass matrices, but

the other set of Yukawa matrices are arbitrary, complex 3×3 matrices that provide

source of FCNCs at tree-level, requiring a mechanism to constrain the FCNCs to

be a phenomenologically viable model. Perhaps the most popular approach in

the literature, natural flavor conservation (NFC), was introduced by Glashow,

Weinberg, and Pascos (Refs. [31, 32]), in which discrete symmetries between the

two scalar doublets could be implemented so that FCNCs are eliminated at tree-
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level by requiring at most, one scalar multiplet is responsible for providing masses

for quarks or leptons. The cost of implementing NFC, however, is that the scalar

potential becomes explicitly CP-conserving. In this thesis, we invoke the more

general flavor-alignment ansatz proposed in Ref. [33], which we review in section

2.3.

Another popular approach to constrain FCNCs in extended Higgs sectors is to

invoke minimal flavor violation (MFV), introduced in Ref. [34] as a framework

for BSM models to extend the SM with small flavor-changing perturbations that

obey experimental constraints. MFV essentially requires that all flavor and CP-

violating interactions are linked to the known structure of Yukawa couplings. The

MFV hypothesis can be consistently defined independently of the structure of

the new-physics model. In the context of MFV, it is possible to relate various

FCNC processes, as MFV implies that all flavor-changing effective operators are

proportional to the same non-diagonal structure.

27



Chapter 2

Two-Higgs Doublet Model

The Two-Higgs Doublet Model (2HDM) is amongst the simplest of extensions

to the SM Higgs sector, and postulates the existence of a second heavier scalar

doublet. This results in a richer Higgs spectrum consisting of three neutral Higgs

bosons, one of which resembles the SM Higgs, and two charged Higgs bosons.

Many BSM models, including supersymmetric models, incorporate a 2HDM for

their Higgs sector, though a 2HDM makes sense by itself. In fact, a general 2HDM

has many benefits such as the possibility of CP-violation in the scalar and Yukawa

sectors, that are not present in models such as supersymmetry.

One of the distinguishing features of the most general 2HDM is the fact that

the two scalar doublet, hypercharge-one fields are indistinguishable. One is always

free to define new linear combinations of the scalar doublets that preserves the
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form of the kinetic energy terms of the Lagrangian. A specific choice for the scalar

fields is called a basis, and any physical prediction of the theory must be basis

independent. In this thesis, we employ a basis-independent formalism introduced

in Ref. [12]. We consider the most general 2HDM scalar potential (which is

potentially CP-violating) and the most general Yukawa sector, which introduces

three additional independent 3× 3 matrix Yukawa couplings. Without additional

assumptions, the latter yields Higgs-mediated tree-level FCNCs, in conflict with

observed data. In order to circumvent this, we impose an “alignment ansatz”,

introduced in Ref. [33], which postulates that the independent Yukawa coupling

matrices are proportional to the corresponding quark and charged lepton mass

matrices. In this case one finds that, in the mass basis for the quarks and leptons,

the matrix Yukawa couplings are flavor diagonal, and the Higgs-mediated tree-level

FCNCs are absent. One way to achieve flavor-alignment in the Yukawa sector is to

introduce a set of discrete symmetries which constrain the Higgs scalar potential

and Yukawa couplings. The so-called Type-I and II 2HDMs [35], and the related

Type X and Type Y 2HDMs [36, 37] provide examples of this type. Indeed,

Ref. [38] showed that the flavor-alignment is preserved under RGE running if and

only if such discrete symmetries are present. The flavor-alignment ansatz is more

general, but requires fine-tuning in the absence of an underlying symmetry.
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2.1 Basis-Independent Formalism

In a generic basis, the most general renormalizable SU(3)C×SU(2)L×U(1)Y

gauge-invariant 2HDM scalar potential is given by

V = m2
11

(
Φ†1Φ1

)
+m2

22

(
Φ†2Φ2

)
−
[
m2

12Φ†1Φ2 + h.c.
]

+1
2
λ1

(
Φ†1Φ1

)2
+ 1

2
λ2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+{1

2
λ5

(
Φ†1Φ2

)2
+
[
λ6

(
Φ†1Φ1

)
+ λ7

(
Φ†2Φ2

)](
Φ†1Φ2

)
+ h.c.

}
, (2.1)

where Φ1,Φ2 are two hypercharge-one complex scalar doublets. The two doublets

separately acquire vacuum expectation values (vevs) 〈Φ0
1〉 = v1/

√
2 and 〈Φ0

2〉 =

v2/
√

2 with the constraint v2 = |v1|2 + |v2|2 ' (246 GeV)2. The parameters λ1,2,3,4

and m2
11,m

2
22 are real whereas λ5,6,7 and m2

12 are potentially complex. The 2HDM

is CP-conserving if there exists a basis in which all of the parameters and the

vacuum expectation values are simultaneously real.

We shall adopt a basis-independent formalism as developed in Ref. [12], which

provides basis-independent 2HDM potential parameters that are invariant under

a global U(2) transformation of the two scalar doublet fields, Φa → Uab̄Φb (a,

b̄ = 1, 2).

It is convenient to define the so-called Higgs basis of scalar doublet fields,

H1 =

H+
1

H0
1

 ≡ v∗1Φ1 + v∗2Φ2

v
, H2 =

H+
2

H0
2

 ≡ −v2Φ1 + v1Φ2

v
, (2.2)
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so that 〈H0
1 〉 = v/

√
2 and 〈H0

2 〉 = 0. The Higgs basis is uniquely defined up to

a rephasing of the H2 field, H2 → eiχH2. In the Higgs basis, the scalar potential

takes the familiar form,1

V = Y1

(
H†1H1

)
+ Y2

(
H†2H2

)
+
[
Y3H

†
1H2 + h.c.

]
+ 1

2
Z1

(
H†1H1

)2
+ 1

2
Z2

(
H†2H2

)2

+Z3

(
H†1H1

)(
H†2H2

)
+ Z4

(
H†1H2

)(
H†2H1

)
+ {1

2
Z5

(
H†1H2

)2
+
[
Z6

(
H†1H1

)
+Z7

(
H†2H2

)](
H†1H2

)
+ h.c.

}
, (2.3)

where Y1, Y2, and Z1,2,3,4 are real parameters and uniquely defined, whereas Y3

and Z5,6,7 transform under a rephasing of H2, viz., [Y3, Z6, Z7] → e−iχ[Y3, z6, Z7]

and Z5 → e−2iχZ5. Minimizing the scalar potential then yields

Y1 = −1
2
Z1v

2, Y3 = −1
2
Z6v

2. (2.4)

The scalar potential is CP-violating if no choice of χ can be found in which all

Higgs basis scalar potential parameters are simultaneously real.

1As discussed in Appendix A, the squared-mass and coupling coefficients, Y1, Y2, and Z1,2,3,4

can be expressed as U(2)-invariant combinations of the scalar potential coefficients and the vevs,
whereas Y3 and Z5,6,7 are U(2)-pseudoinvariant combinations of the scalar potential coefficients
and the vevs that are rephased under a U(2) transformation [12].
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2.1.1 Higgs mass eigenstates

The tree-level mass eigenstates of the neutral scalars can be obtained by diag-

onalizing the neutral scalar squared-mass matrix in the Higgs basis [39, 40],

M = v2


Z1 Re(Z6) −Im(Z6)

Re(Z6) 1
2
[Z3 + Z4 + Re(Z5)] + Y2/v

2 −1
2
Im(Z5)

−Im(Z6) −1
2
Im(Z5) 1

2
[Z3 + Z4 − Re(Z5)] + Y2/v

2

.
(2.5)

The diagonalizing matrix is a real orthogonal 3×3 matrix that is parameterized

by three mixing angles θ12, θ13, and θ23 (details can be found in Ref. [40]). In

terms of U(2)-invariant combinations of the mixing angles and scalar potential

parameters, the squared-masses of the three neutral Higgs bosons, denoted by h1,

h2 and h3 respectively, are given by [40],

m2
k = |qk2|2 Y2 + v2

{
q2
k1Z1 + 1

2
|qk2|2

[
Z3 + Z4 − Re(Z5e

−2iθ23)
]

+Re(qk2)Re(qk2Z5e
−2iθ23) + 2qk1Re(qk2Z6e

−iθ23)

}
, for k = 1, 2, 3,(2.6)

where the qki are invariant combinations of the mixing angles shown in Table

2.1. It is convenient to choose a convention where m1 < m2 < m3 (which can

always be arranged by an appropriate choice of neutral Higgs mixing angles). The

squared-mass of the charged scalars is given by

m2
H± = Y2 + 1

2
Z3v

2. (2.7)
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Table 2.1: qki as a function of the neutral Higgs mixing angles in the Higgs basis.

k qk1 qk2

1 cos θ12 cos θ13 − sin θ12 − i cos θ12 sin θ13

2 sin θ12 cos θ13 cos θ12 − i sin θ12 sin θ13

3 sin θ13 i cos θ13

2.1.2 Decoupling limit

The decoupling limit corresponds to taking the squared-mass parameter of the

Higgs basis field H2 large while holding the Higgs quartic coupling parameters

fixed. The advantage of invoking the decoupling limit is to create an effective

one-doublet model (i.e. a SM-like Higgs boson) and a set of heavier Higgs bosons

roughly degenerate in mass. In the perturbative regime, we take |Zi| <∼ O(1) and

Y2 � v2. In this case [40, 41],

sin θ12 ∼ sin θ13 ∼ O
(
v2

Y2

)
. (2.8)

In addition, the decoupling limit requires that

Im(Z5e
−2iθ23) ∼ O

(
v2

Y2

)
, (2.9)

which implies that

Re(Z5e
−2iθ23) = −|Z5| . (2.10)
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The overall sign in eq. (2.10) [which is not determined by eq. (2.9)] is fixed in the

convention where m2 < m3. Using the above results in eq. (2.6) yields

m2
1 = Z1v

2

[
1 +O

(
v2

Y2

)]
, (2.11)

m2
2 = Y2 + 1

2
v2

[
Z3 + Z4 − |Z5|+O

(
v2

Y2

)]
, (2.12)

m2
3 = Y2 + 1

2
v2

[
Z3 + Z4 + |Z5|+O

(
v2

Y2

)]
. (2.13)

At energy scales below Y2, the effective low-energy theory corresponds to the

Standard Model with one Higgs doublet. Consequently, in the decoupling limit the

properties of h1 approach those of the SM Higgs boson. The non-minimal Higgs

states are roughly degenerate in mass, m2
2 ∼ m2

3 ∼ m2
H± ∼ Y2, with squared-mass

splittings of O(v2),

m2
3 −m2

2 ' |Z5|v2 , (2.14)

m2
3 −m2

H± ' 1
2

(
Z4 + |Z5|

)
v2 . (2.15)

In the decoupling limit of a general 2HDM, the tree-level CP-violating and

flavor-changing neutral Higgs couplings of the SM-like Higgs state h1 are sup-

pressed by factors of O(v2/Y 2
2 ). The corresponding interactions of the heavy

neutral Higgs bosons (h2 and h3) and the charged Higgs bosons (H±) can exhibit

both CP-violating and flavor non-diagonal couplings. If Y2 is sufficiently large,

then FCNCs mediated by the lightest neutral scalar can be small enough to be

consistent with experimental data. However, for values of Y2 of order 1 TeV and
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below, tree-level Higgs-mediated FCNCs are problematical in the case of a generic

Yukawa sector.

2.2 Bounded from below conditions for a general

2HDM potential

To ensure the existence of a stable electroweak vacuum, the 2HDM scalar

potential must be bounded from below, i.e. it must assume positive values for

any direction for which the fields are tending to infinity. If it ceases to be bound

from below, then new sources of physics must arise at an intermediate energy

scale to save the theory. This requirement places some restrictions on the allowed

values of the quartic Higgs couplings. For the case of the scalar potential given in

eq. (2.1) with λ6 = λ7 = 0, those necessary and sufficient conditions are given in

eqs. (3.1)–(3.4).

We now review the analogous conditions for the most general renormalizable

2HDM potential, found in Refs. [42, 43]. It is particularly convenient to introduce

a new notation for the scalar potential, based on gauge invariant field bilinears.

Indeed in many 2HDM studies, such as the comparison of the value of the potential

in different vacua, the classification of scalar symmetries and stability conditions,

the bilinear formalism provides a significant simplification in the calculations. This
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formalism also reveals a hidden Minkowski structure in the potential, which was

established in Refs. [42, 43]. A similar Minkowskian notation has been employed

in Refs. [44, 45, 46, 47, 48].

There are four independent gauge-invariant field bilinears, which are defined

by

r0 = Φ†1Φ1 + Φ†2Φ2,

r1 = −
(

Φ†1Φ2 + Φ†2Φ1

)
= −2 Re

(
Φ†1Φ2

)
,

r2 = i
(

Φ†1Φ2 − Φ†2Φ1

)
= −2 Im

(
Φ†1Φ2

)
,

r3 = −
(

Φ†1Φ1 − Φ†2Φ2

)
.

(2.16)

These four quantities form the components of a covariant four-vector, rµ =

(r0 , ~r) with respect to SO(3,1) transformations. We also define rµ = gµνrµ =

(r0 , −~r) where gµν is the usual Minkowski metric. It is straightforward to verify

that r0 ≥ 0 and rµrµ ≥ 0, the latter being a consequence of the Schwarz inequal-

ity. That is, the four-vector rµ lives on or inside the forward lightcone LC+. The

vacuum that preserves SU(2)×U(1) electroweak symmetry [i.e., 〈Φ1〉 = 〈Φ2〉 = 0]

corresponds to the apex of LC+; all neutral vacua correspond to the surface of

LC+, and any charge breaking vacua would lie on the interior of LC+. Trans-

formations of the scalar fields that preserve the scalar field kinetic energy terms

leave r0 invariant and correspond to SO(3) rotations of the three-vectors, ~r.

In terms of the bilinears defined in eq. (2.16), the scalar potential can be
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written as

V = −Mµr
µ + 1

2
rµΛµ

νrν , (2.17)

with the 4-vector Mµ and the mixed tensor Λµ
ν given by

Mµ =

(
−1

2
(Y1 + Y2), Re Y3, −Im Y3, −1

2
(Y1 − Y2)

)
(2.18)

and

Λµ
ν =

1

2



1
2
(Z1 + Z2) + Z3 −Re (Z6 + Z7) Im (Z6 + Z7) −1

2
(Z1 − Z2)

Re (Z6 + Z7) −Z4 − Re Z5 Im Z5 −Re (Z6 − Z7)

−Im (Z6 + Z7) Im Z5 −Z4 + Re Z5 Im (Z6 − Z7)

1
2
(Z1 − Z2) −Re (Z6 − Z7) Im (Z6 − Z7) −1

2
(Z1 + Z2) + Z3


.

(2.19)

To ensure that the scalar potential is bounded from below one needs to evaluate

the eigenvalues and eigenvectors of the matrix Λµ
ν . Then one can determine condi-

tions on the eigenvalues and eigenvectors such that rµΛµ
νrν ≥ 0. The eigenvalues

Λa (a = 0, 1, 2, 3) of the matrix Λ will be determined by the usual characteristic

equation,

det(Λµ
ν − Λa gµ

ν) = 0. (2.20)

since gµ
ν = δνµ is just the 4×4 identity matrix. The corresponding eigenvectors cor-

responding to eigenvalue Λa will be denoted by V (a). For the most general 2HDM

potential, the eigenvalues are the solutions of a quartic equation, which can in
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principle be determined analytically (although the corresponding expressions are

not particularly transparent). However, it is straightforward to numerically eval-

uate the eigenvalues and corresponding eigenvectors. Note that in general, some

of the eigenvalues may be complex (since the real matrix Λµ
ν is not symmetric

unless Z6 = Z7 = 0 and Z1 = Z2).

Having evaluated the eigenvalues and eigenvectors of Λµ
ν , we make use of

Proposition 10 of Ref. [42] to conclude that the 2HDM potential is bounded from

below if and only if the following conditions are met:

1. All the eigenvalues Λa are real.

2. Λ0 > 0.

3. Λ0 > {Λ1 , Λ2 , Λ3}. There may or may not be degeneracies among the

three eigenvalues Λi (i = 1, 2, 3).

4. There exist four linearly independent eigenvectors V (a) corresponding to the

four eigenvalues Λa, for a = 0, 1, 2, 3.

5. The eigenvector V (0) = (v00, v10, v20, v30), corresponding to the eigenvalue

Λ0, is real and time-like. That is, it can be normalized so that

|V (0)|2 = v2
00 − v2

10 − v2
20 − v2

30 = 1.

6. The remaining three eigenvectors V (i) = (v0i, v1i, v2i, v3i) are real and space-
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like, i.e. normalized so that

|V (i)|2 = v2
0i − v2

1i − v2
2i − v2

3i = −1.

To illustrate this technique, we shall reproduce the bounded from below condi-

tions for a potential with a Z2 symmetry in the Higgs basis so that Z6 = Z7 = 0.

Without loss of generality, we can choose Z5 real by rephasing the Higgs basis

field H2. The matrix Λ = Λµ
ν is then given by

Λ =
1

2



1
2
(Z1 + Z2) + Z3 0 0 −1

2
(Z1 − Z2)

0 −Z4 − Z5 0 0

0 0 −Z4 + Z5 0

1
2
(Z1 − Z2) 0 0 −1

2
(Z1 + Z2) + Z3


,

(2.21)

so that two of its eigenvalues can be immediately read off as Λ1 = −Z4 − Z5 and

Λ2 = −Z4 + Z5. The remaining two eigenvalues are

Λ± = Z3 ±
√
Z1Z2. (2.22)

Since the eigenvalues must be real, if follows that

Z1Z2 > 0. (2.23)

Λ+ is the largest eigenvalue and thus must corresponds to the time-like eigenvector.

Hence, we identify Λ0 = Z3 +
√
Z1Z2 and Λ3 = Z3 −

√
Z1Z2. Imposing the
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requirement that the scalar potential is bounded from below, it follows that the

eigenvalues obtained above must all be real and obey the following inequalities:

Λ0 > 0⇒ Z3 > −
√
Z1Z2 (2.24)

Λ0 > {Λ1 , Λ2 , Λ3} ⇒ Z3 + Z4 − |Z5| > −
√
Z1Z2 , (2.25)

which are the Higgs basis equivalents of eqs. (3.3) and (3.4). The time-like eigen-

vector is V (0) = (x, 0, 0, y), where the components x and y are related via the

eigenvector equation by

y =
Z1 + Z2 −

√
Z1Z2

Z1 − Z2

x . (2.26)

Since the time-like normalization condition implies that x2 − y2 = 1, we obtain

x2 =
(Z1 − Z2)2

4
√
Z1Z2(Z1 + Z2)

. (2.27)

Thus we see that we must have Z1+Z2 > 0, which when combined with eq. (2.23)

yields

Z1 > 0 , Z2 > 0. (2.28)

Thus we recover the Higgs basis equivalents of eqs. (3.1) and (3.2).

2.3 Yukawa sector and flavor-alignment

The most general 2HDM Yukawa sector, describing Higgs-fermion interactions,

includes six Yukawa matrices (as compared to three in the SM). In a generic basis,
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the Yukawa Lagrangian for the Higgs–quark interactions is given by eq. (A.1).

Following the discussion of Appendix A, we can re-express the Yukawa Lagrangian

in terms of the quark mass-eigenstate fields [49],

−LY = UL

(
ηU1 Φ0∗

1 + ηU2 Φ0∗
2

)
−DLK

†(ηU1 Φ−1 + ηU2 Φ−2
)
UR

+ ULK
(
ηD†1 Φ+

1 + ηD†2 Φ+
2

)
DR +DL

(
ηD†1 Φ0

1 + ηD†2 Φ0
2

)
DR + h.c., (2.29)

where ηU,D1,2 are 3× 3 Yukawa coupling matrices and K is the CKM matrix.

Using eq. (2.2), one can rewrite eq. (2.29) in terms of the Higgs basis scalar

doublet fields,

−LY = UL(κUH0†
1 + ρUH0†

2 )UR −DLK
†(κUH−1 + ρUH−2 )UR

+ ULK(κD†H+
1 + ρD†H+

2 )DR +DL(κD†H0
1 + ρD†H0

2 )DR + h.c.,(2.30)

where2

κQ ≡ v∗1η
Q
1 + v∗2η

Q
2

v
, ρQ ≡ −v2η

Q
1 + v1η

Q
2

v
. (2.31)

Note that ρQ → e−iχρQ with respect to the rephasing H2 → eiχH2. Since 〈H0
1 〉 =

v/
√

2 and 〈H0
2 〉 = 0, it follows that the κU,D are proportional to the diagonal quark

mass matrices, MU and MD, whose matrix elements are real and non-negative,

MU =
vκU√

2
= diag(mu,mc,mt), MD =

vκD√
2

= diag(md,ms,mb) . (2.32)

2As noted in eq. (A.6), the ρQ are U(2)-pseudoinvariant combinations of the Yukawa coupling
matrices and the vevs, whereas the κQ are U(2)-invariants.
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The Yukawa couplings of the Higgs doublets to the leptons can be similarly treated

by replacing U → N , D → E, MU → 0, MD → ME and K → 1, where

N = (µe, νµ, ντ ), E = (e, µ, τ) and ME is the diagonal charged lepton mass matrix.

Since the Yukawa matrices ρU,D,E are independent complex 3× 3 matrices, it

follows that the Yukawa Lagrangian exhibited in eq. (2.30) generically exhibits

tree-level Higgs mediated FCNCs. The off-diagonal elements of the ρU,D matrices

are highly constrained by experimental data to be very small. As first shown by

Glashow, Weinberg and Pascos (GWP) [31, 32], it is possible to naturally eliminate

tree-level Higgs mediated FCNCs if for some choice of basis of the scalar fields, at

most one Higgs multiplet is responsible for providing mass for quarks or leptons

of a given electric charge. In the 2HDM, the GWP condition can be imposed in

four different ways by employing the appropriate Z2 discrete symmetry [35, 36,

37, 50, 51]:

1. Type-I Yukawa couplings: ηU1 = ηD1 = ηL1 = 0,

2. Type-II Yukawa couplings: ηU1 = ηD2 = ηL2 = 0.

3. Type-X Yukawa couplings: ηU1 = ηD1 = ηL2 = 0,

4. Type-Y Yukawa couplings: ηU1 = ηD2 = ηL1 = 0.

For example, it follows from eq. (2.31) that in the Type-I 2HDM,

ρU,D,L =
v1

v∗2
κU,D,L , (2.33)
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and in the Type-II 2HDM,

ρU =
v1

v∗2
κU , ρD,L = −v2

v∗1
κD,L . (2.34)

In light of eq. (2.32), the ρF (F = U,D,L) are diagonal matrices in which case

the neutral Higgs–fermion Yukawa interactions are flavor-diagonal at tree-level.

If only phenomenological considerations are invoked in choosing the Higgs–

fermion Yukawa couplings, then it is possible to consider the more general case

of the flavor-aligned 2HDM introduced in Ref. [33]. In this model applied to the

Higgs basis, one imposes the following conditions

ρU = αUκU , ρD = αDκD, and ρL = αLκL, (2.35)

which generalize the Type-I and II results exhibited in eqs. (2.33) and (2.34). In

eq. (2.35), the alignment parameters, αU,D,L, are arbitrary complex constants.3

The flavor-alignment condition shown in eq. (2.35) is not imposed by any symme-

try, and is strictly unnantural (i.e., it can be achieved only by a fine-tuning of the

model parameters). Equivalently, as observed in Ref. [38], the flavor-alignment is

preserved under RGE running only in the case of Type I, II, X and Y Yukawa

couplings, which correspond to the conditions

3In practice, if the magnitude of the alignment constants are too large, then some of the
Higgs-fermion Yukawa couplings will develop Landau poles below the Planck scale. In our
analysis, we will determine the allowed regions of the flavor-aligned 2HDM parameter space
where such Landau poles are absent.
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αU = αD∗ = αL∗ (type-I), (2.36)

αU = − 1

αD
= − 1

αL
(type-II), (2.37)

αU = αD∗ = − 1

αL
(type-X), (2.38)

αU = − 1

αD
= αL∗ (type-Y). (2.39)

Nevertheless, one can imagine the possibility of new dynamics above the elec-

troweak scale that could be responsible for an approximately flavor-aligned 2HDM.

Thus, in our analysis we shall employ the more general eq. (2.35), which is suffi-

cient for satisfying the phenomenological FCNC constraints.
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Chapter 3

Renormalization Group Stability

and Perturbativity Analysis

In this chapter, we examine the theoretical consistency of the most general

2HDM between the electroweak scale and the Planck scale, using the one-loop

RGEs of the model to investigate the possible occurrence of Landau poles and

instability of the scalar potential. We focus on the decoupling regime of the 2HDM

where the 125 GeV Higgs boson is SM-like [41, 52], and assume Yukawa alignment

in the flavor sector [33] to avoid Higgs-mediated tree-level FCNCs. Our aim is

to exhibit the allowed regions of the 2HDM parameter space that are free from

both Landau poles and vacuum instability below the Planck scale. In particular,

a 2HDM that satisfies these constraints does not require further BSM physics to
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stabilize the theory.

Let us assume that the observed SM-like Higgs boson (with mh ' 125 GeV)

is part of a 2HDM in the decoupling limit with a flavor-aligned Yukawa sector,

with no other new physics present beyond the 2HDM below the Planck scale.1 We

shall examine whether there are regions of the 2HDM parameter space that yield

a consistent model under RG running from the electroweak to the Planck scale.

In general, two potential problems can arise in the RG evolution. First, Landau

poles could arise from the divergence of the 2HDM quartic scalar couplings and/or

Yukawa couplings. Second, the 2HDM scalar potential could become unstable at

a higher energy scale. The case of Landau poles is fairly straightforward, although

the precise energy scale at which they arise cannot be strictly determined, since

it lies outside the perturbative regime of the RGEs. In practice, we shall consider

that a Landau pole occurs when the relevant coupling exceeds 100 for some energy

scale Λ ≤MPL. Indeed, once such a large coupling is reached, it will very quickly

diverge at an energy scale very close to Λ. In our analysis, we employ the one-loop

RGEs for the quartic scalar couplings of the 2HDM in the Higgs basis given in

Appendix A. These equations are strongly coupled, and thus a divergence in one

quartic scalar coupling will cause a divergence in the rest. The leading effects of

two-loop running will be assessed at the end of this section.

1Incorporating light neutrino masses via the seesaw mechanism [53, 54, 55, 56, 57] with the
mass scale of the right-handed neutrino sector assumed to be of order a typical grand unified
scale has a very minor impact on the considerations in this paper.
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In the SM, the requirement that the scalar potential is stable at all energy

scales below the scale Λ is easily implemented. It is sufficient to require that the

SM quartic scalar coupling is positive, i.e. λSM(Λ) > 0 for Λ > v. Requiring that

the 2HDM scalar potential is stable at all energy scales below the scale Λ leads to

a more complicated set of conditions. In the 2HDM with an unbroken, or softly

broken, Z2 discrete symmetry that sets λ6 = λ7 = 0 in eq. (2.1), the stability

conditions were first obtained in Ref. [58],

λ1 > 0 , (3.1)

λ2 > 0 , (3.2)

λ3 > −
√
λ1λ2 , (3.3)

λ3 + λ4 − |λ5| > −
√
λ1λ2 . (3.4)

However, in the case of a completely general scalar potential, the correspond-

ing stability conditions are far more complicated (with no simple analytic form).

Ref. [42] provides an algorithm for deriving the stability conditions for a general

2HDM, with no symmetry or CP assumptions imposed on the 2HDM scalar po-

tential. In terms of the Higgs basis parameters, this algorithm is summarized

in Appendix 2.2. Except for special cases for the quartic scalar couplings, the

corresponding stability conditions must be determined numerically.

We now describe in detail the procedure used in our analysis. We assume that

we are in the decoupling regime of the 2HDM, where the mass scale of the heavy
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Higgs sector is of O(ΛH). In light of eqs. (2.7), (2.12) and (2.13), we henceforth

set Λ2
H ≡ Y2.

1. Start with the SM Higgs potential defined at the scale of the 125 GeV Higgs

boson.

2. Use SM RG evolution to run the Higgs-self coupling parameter λ and the

fermion mass matrices up to the scale ΛH .2

3. Match the one-doublet Higgs potential with the 2HDM potential by taking

Z1 = λ(ΛH) and κF =
√

2MF (ΛH)/v (for F = U,D). This establishes

the low energy boundary conditions. The effects of the lepton masses are

negligible and have been ignored.

4. Scan over all other 2HDM quartic scalar coupling parameters Zi and Yukawa

alignment parameters αF (F = U,D). The latter fix the values of the

ρF (ΛH).

5. Run the 2HDM RGEs for the Zi, κ
F and ρF up to higher energies Λ. Check

for stability of the potential at the scale Λ using the procedure summarized

in Section 2.2.

2Starting the RG evolution at mZ , we use a five flavor scheme to run up to mt and a six
flavor scheme above mt. Running quark mass masses at mZ and mt are obtained from the
RunDec Mathematica software package [59], based on quark masses provided in Ref. [29]. For
simplicitly, the effects of the lepton masses are ignored, as these contribute very little to the
running of the Zi.
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6. Stop the running if a Landau pole is encountered or if the stability conditions

cannot be satisfied.

For the scalar sector, we scanned over the parameter space using 100,000

points, with |Zi| . O(1), for i = 2, ..., 7, to enforce the decoupling limit. These

points were also subject to the constraint that they obey the stability conditions

presented in Appendix 2.2. Note that when |Zi| � 1 for i = 2, ..., 7, we recover

the SM Higgs sector. The choice of ΛH is subject to the condition Λ2
H � v2, so

that we are safely in the decoupling regime. Moreover, in order for the 2HDM to

be distinguishable from the SM Higgs sector, ΛH should not be significantly larger

than O(1 TeV). We considered two different values, ΛH = 500 GeV and 1 TeV,

although the allowed parameter regime in which the 2HDM remains consistent

up to the Planck scale is not especially sensitive to the precise value of ΛH in the

desired mass range. In the case of ΛH = 500 GeV, it is plausible that the heavy

Higgs boson states could be detected in high luminosity LHC running. Indeed, as

we shall demonstrate later in this section, differences in the squared-masses of the

heavy Higgs states can provide an important consistency check of this framework.

The Yukawa couplings play a fundamental role in this analysis. As discussed

in Section 2.3, we have employed the flavor-aligned 2HDM to describe the Yukawa

sector, with random complex alignment parameters whose moduli were varied by

several orders of magnitude. The evolution of the Yukawa couplings in the flavor-
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aligned 2HDM was first performed in Ref. [60]. Notice that the running of the

Yukawa couplings can also generate Landau poles. Due to the large size of the

top quark mass, at least one of the Yukawa couplings will be of order one at

the electroweak scale, so that a Landau pole in the top-quark Yukawa coupling

below the Planck scale can be generated by the RG running. The alignment

parameters, unique for both the up and down quark sectors, were log random

generated in such a way as to prevent such Landau poles in the running of the

Yukawa couplings up to Planck scale. In the RG running, the initial value of the

top Yukawa coupling was taken to be yt(mt) = 0.94, corresponding to an MS top

quark mass of mt(mt) = 163.71 ± 0.9 GeV [29]. The non-occurrence of Landau

poles then leads to the constraints

|αU | . 0.95 and |αD| . 81.5 (ΛH = 500 GeV), (3.5)

|αU | . 0.97 and |αD| . 84 (ΛH = 1 TeV), (3.6)

as seen in Fig. 3.13. These results are quite consistent with those obtained in

Ref. [60].

The effect of the alignment parameters in the one-loop quartic scalar coupling

RGEs is to bolster the negative Yukawa terms, thereby further driving the quartic

scalar couplings to be negative during RGE evolution. The influence of the Yukawa

3For ΛH = 1 TeV, the figure corresponding to Fig. 3.1 looks nearly identical, so we do not
display it here.
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Figure 3.1: Distribution of absolute values of the flavor-alignment parameters,

for regions of 2HDM parameter space which remain valid up to the Planck scale,

assuming ΛH = 500 GeV.

couplings in the scalar couplings RG evolution is dominated by y4
t terms (where

yt is the top quark Yukawa coupling) in the one-loop β-functions, where they

provide a negative contribution. In this manner, the large size of the top quark

Yukawa coupling tends to drive Z1 negative at large energy scales, thus provoking

an instability in the potential. This will occur unless the starting point value

(at the electroweak scale) of Z1 is large enough. Since Z1 is directly related to

the lightest CP-even mass in the decoupling regime, requiring the stability of the

scalar potential between the electroweak scale and the Planck one therefore yields

a lower bound on mh. Similarly, if the initial value of Z1 at the electroweak scale
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is too large, then a Landau pole will appear in the running of Z1 below the Planck

scale due to the fact that the leading Zi contributions to the β-functions of the

quartic scalar couplings are positive, thereby driving the quartic scalar couplings

to larger values as the energy scale increases. Preventing the occurrence of Landau

poles thus establishes an upper bound on Z1, and thus on mh.

Within the SM, these demands can only be satisfied up to the Planck scale by

a rather narrow window of Higgs boson masses, which excludes the observed value

of 125 GeV. As we shall now see, the complexity of the 2HDM scalar potential

“opens up” that narrow window to include the known value of the Higgs mass.

3.1 Numerical Analysis

3.1.1 Results from one-loop RG running

Let us now compare the effect of the one-loop running of the SM scalar cou-

pling, with its effect on the 2HDM quartic scalar couplings. The results of our

calculations are shown in Fig. 3.2, which we now analyze in detail. The full 2HDM

running begins at ΛH = 1 TeV, where the Zi for i = 2, . . . , 7 are chosen.4 The red

points in Fig. 3.2 correspond to choices of parameters Zi for which an instability

of the potential occurred for a given higher scale Λ > ΛH . The blue points cor-

4The corresponding plot for ΛH = 500 GeV looks nearly identical, so we do not exhibit it
here.
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Figure 3.2: RG running of 2HDM quartic scalar couplings, with ΛH = 1 TeV.

Red points correspond to parameter choices for which an instability occurs in the

scalar potential; blue points indicate the presence of a Landau pole. The upper

solid black line indicates the occurrence of a Landau pole in the SM. The lower

solid black line indicates the limit for which the SM potential becomes unstable.

respond to parameter choices for which a Landau pole occurred during the RG

running at some scale Λ > ΛH . These results are to be compared with the cor-

responding results of the SM Higgs sector also shown in Fig. 3.2: the upper solid

line indicates the maximally allowed value of mh to avoid a Landau pole and the

lower solid line indicates the minimal value of mh needed to avoid a negative SM

quartic scalar coupling, at all energy scales below Λ. We recover the well-known

one-loop SM result that 140 . mh . 175 GeV in order to preserve vacuum sta-
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bility and avoid Landau poles in the running of the quartic scalar coupling at all

energy scales up to MPL [13, 61, 62] .

The distribution of red and blue points in Fig. 3.2 has some interesting features.

First, there are no blue points above the SM-Landau pole line. In fact, although

the 2HDM scalar potential has several scalar couplings, their contributions to the

2HDM β-functions are mostly positive. As such, when one of these couplings starts

to become very large in its RG evolution, the others will not be able to counteract

that growth, and a Landau pole is reached. Consequently, the upper limit for

the quartic scalar coupling Z1 that controls the value of mh hardly differs from

the corresponding SM result. Second, note the appearance of many blue points

below the SM-instability line. These correspond to Landau poles that occur for

relatively low values of mh, which is equivalent to low values of Z1. However, even

though the initial value of Z1 at ΛH may be small, the values of other Zi can be

large, and thus Landau poles in these couplings can be generated, yielding those

blue points below the SM instability line.

The most interesting aspect of our results concerns the distribution of the red

points, which correspond to the violation of one or more of the 2HDM stability

conditions at the energy scale Λ. We see a great “density” of points around

the SM-instability line. These points may be interpreted as regions of 2HDM

parameter space that constitute small deviations from SM behavior. But the
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remarkable difference with the SM result is the appearance of many points below

and to the right of the SM-instability line. For these points, the instability of the

scalar potential occurs at a larger value of Λ for a given value of mh as compared

to the SM.

Indeed, the full impact of the 2HDM on the RG evolution may be best appreci-

ated by examining the rightmost boundary of Fig. 3.2 corresponding to Λ = MPL.

On this boundary, we find both blue and red points, for a range of Higgs masses

from about 118 GeV up to 175 GeV. Thus we see that a range of 2HDM param-

eters exists for which it is possible to have a SM-like Higgs boson with a mass of

125 GeV, without that mass value implying an instability of the potential (or a

Landau pole) between the electroweak and Planck scales.

Let us now analyze more closely the region of parameter space for which the

2HDM is consistent up to the Planck scale. According to Fig. 3.2, only a narrow

range of mh (which corresponds to a narrow interval of values of Z1) is consistent

with a 2HDM with a stable vacuum and no Landau poles from the electroweak

to the Planck scale. Since the 2HDM quartic couplings are all coupled together

in their RG running, it follows that the allowed ranges for all Zi, not only Z1,

will likewise be quite narrow. This has interesting implications on the scalar mass

spectrum. In fact, in light of eq. 2.14, the squared-mass splitting of the two heavy

neutral Higgs states depends primarily on |Z5|. Likewise, eq. 2.15 shows that the
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Figure 3.3: Histograms of squared-mass differences of the heavy scalar states for

ΛH = 500 GeV. The left panel shows values of squared-mass difference between

the two heavier neutral states. The middle and right panels shows the values of the

squared-mass difference between the lighter and heavier of the two heavy neutral

states and the charged Higgs boson, respectively. The histograms correspond to

2HDM parameters for which there are no Landau poles and vacuum stability is

satisfied at all energies below the Planck scale.

squared-mass splitting of the heavier neutral Higgs boson and the charged Higgs

boson primarily depends on Z4 and |Z5|. Since the possible values of Z4 and

|Z5| are restricted to a narrow range of values, it follows that the squared-mass

splittings of the heavy Higgs states should also be strongly constrained.

For a 125 GeV SM-like Higgs boson, we have evaluated the squared-mass

splittings of the heavier Higgs bosons for 2HDM parameters that are consistent

with a stable scalar potential and an absence of Landau poles up to the Planck

scale. The histograms shown in Figs. 3.3 and 3.4 exhibit the distribution of
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Figure 3.4: Histograms of squared-mass differences of the heavy scalar states for

ΛH = 1 TeV. The left panel shows values of squared-mass difference between the

two heavier neutral states. The middle and right panels shows the values of the

squared-mass difference between the lighter and heavier of the two heavy neutral

states and the charged Higgs boson, respectively. The histograms correspond to

2HDM parameters for which there are no Landau poles and vacuum stability is

satisfied at all energies below the Planck scale.

squared-mass differences between the two heavy neutral states (these differences

are positive by definition) and between the lighter of the two heavy neutral states

and the charged Higgs pair, for ΛH = 500 GeV and 1 TeV, respectively. Given the

formulae in section 2.1.2, all the heavier scalars have masses of order ΛH in the

decoupling limit. The statistics of these histograms are summarized in Tables 3.1

and 3.2.

If the 2HDM is valid up to the Planck scale, then the mass differences among

the heavy Higgs states must be quite small. This presents a challenge for heavy
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min max mean std. dev.

(m2
3 −m2

2)/v2 0.01 0.26 0.09 0.05

(m2
2 −m2

H±)/v2 −0.20 0.11 0 0.05

(m2
3 −m2

H±)/v2 −0.07 0.19 0.09 0.04

Table 3.1: Squared mass splittings of the heavier Higgs bosons of the 2HDM with

ΛH = 500 GeV, for 124 . mh . 126 GeV, for points that survive up to the Planck

scale, using one-loop calculations.

Higgs searches at future colliders. It may be that such a spectrum could only

be reliably determined at a multi-TeV lepton collider. Indeed, if the heavy Higgs

spectrum could be determined at some future collider, it would provide a nontrivial

check of the present framework in which the 2HDM is valid up to the Planck scale.

The results shown in Table 3.1 are not particularly sensitive to the value of

ΛH . For example, if ΛH = 1 TeV, then the distribution of possible squared-

mass differences yields the results shown in Table 3.2. Of course, in this case

the corresponding mass differences are even smaller, and the separate discovery

of each of these new scalar states at a future collider is even more challenging.
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min max mean std. dev.

(m2
3 −m2

2)/v2 0 0.29 0.09 0.05

(m2
2 −m2

H±)/v2 −0.23 0.12 0 0.06

(m2
3 −m2

H±)/v2 −0.08 0.19 0.09 0.04

Table 3.2: Squared mass splittings of the heavier Higgs bosons of the 2HDM with

ΛH = 1 TeV, for 124 . mh . 126 GeV, for points that survive up to the Planck

scale, using one-loop calculations.

3.1.2 The effects of two-loops RG running

In the SM, the inclusion of the two-loop terms in the RGEs will shift the

scalar potential instability boundary to a higher energy scale, which lowers the

minimum Higgs boson mass that is consistent with a stable scalar potential all the

way up to the Planck scale. In particular, the results in Ref. [2] yield a minimal

value of mh ' 129 GeV for vacuum stability. It is further argued that given

the currently observed value of 125 GeV for the Higgs boson, the SM vacuum is

metastable under the assumption of no new physics beyond the Standard Model

below about 1010 GeV. This means that the effect of including the two-loop effects

in the running lowers the minimal acceptable value of the Higgs mass from ∼ 140

GeV to ∼ 129 GeV.

We expect that employing the full two-loop RG analysis for the 2HDM would
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provide a similar downward shift in the lower bound of Higgs masses that survive

up to the Planck scale, as well as increase the fraction of points that survive. In

practice, implementing this full two-loop procedure is very delicate and computa-

tionally expensive. Instead, we present a procedure to estimate the two-loop RG

results. Note that the stability curve for the SM scalar potential at two-loops is

both shifted to a higher energy scale, and is less steep as a function of the Higgs

mass, relative to the one-loop SM scalar potential stability curve. In essence, go-

ing from one-loop to two-loops shifts the stability curve energy scale to a higher

scale for a particular Higgs mass. From our one-loop SM calculations and the

two-loop SM calculations of Ref. [2], we determine the energy scale shift of the

SM scalar potential stability curves due to the inclusion of two-loop RG running.

Taking ΛH = 1 TeV, the resulting scale shift function is shown in the left panel of

Fig. 3.5, which then yields our “two-loop” result shown in the right panel, which

is obtained by applying the scale shift to our one-loop calculation. This shift is

applied only to those points in which the scalar potential became unstable, not

for points that hit a Landau pole before the Planck scale. The upper bound on

the SM Higgs mass due to the absence of Landau poles does not exhibit a similar

shift from one-loop to two-loop calculations. As in the case of Fig. 3.2, the case

of ΛH = 500 GeV yields nearly identical results.

In our one-loop calculations, only 707 (or 0.707%) of the 100,000 points ana-
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Figure 3.5: Left panel: Scale shift for converting the one-loop scalar potential

instability boundary to the two-loop scalar potential instability boundary for a

SM-like Higgs boson. Right panel: Higgs boson mass bounds in the flavor-aligned

2HDM, incorporating the scale shift shown in the left panel, assuming that ΛH =

1 TeV. Red points indicate an instability in the running; blue points indicate the

presence of a Landau pole.

lyzed survive to the Planck scale in the 123 GeV to 128 GeV region. With the

conversion shift and a double check that they satisfy the stability requirement for

2HDM quartic scalar coupling parameters, 1,371 more points reach the Planck

scale for a total of 2,078 (or 2.078%) at the Planck scale, an increase of 94%

relative to the one-loop results. With an increase in the number of points, the

“two-loop” squared mass splittings of the heavier Higgs bosons for points that
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min max mean std. dev.

(m2
3 −m2

2)/v2 0 0.31 0.11 0.05

(m2
2 −m2

H±)/v2 −0.23 0.12 0 0.05

(m2
3 −m2

H±)/v2 −0.09 0.23 0.11 0.04

Table 3.3: Squared-mass splittings of the heavy Higgs bosons of the 2HDM with

ΛH = 1 TeV, for mh ' 125 GeV, for points that survive to the Planck scale, using

the two-loop extended procedure.

survive up to the Planck scale are shown in Fig. 3.6 and statistics summarized

in Table 3.3. Comparing Tables 3.2 and 3.3, we see that there exists only slight

differences in the squared-mass splittings of the heavier Higgs bosons when the

approximate two-loop effects are included. Nonetheless, the increase in the num-

ber of points for which the model remains consistent all the way up to the Planck

scale is according to what one should expect, in light of the observation that the

two-loop contributions increase the stability of the SM potential. Thus, this quick

estimate suggests that the 2HDM parameter space for which RG running of the

quartic scalar couplings up to the Planck scale leaves the potential stable, and

for which no Landau poles occur during that running, is larger than the one-loop

calculation may lead to believe.
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Figure 3.6: Histograms of squared-mass differences of the heavy scalar states for

ΛH = 1 TeV, using the two-loop extended procedure. The left panel shows values

of squared-mass difference between the two heavier neutral states. The middle

and right panels shows the values of the squared-mass difference between the

lighter and heavier of the two heavy neutral states and the charged Higgs boson,

respectively. The histograms correspond to 2HDM parameters for which there are

no Landau poles and vacuum stability is satisfied at all energies below the Planck

scale.
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Chapter 4

Flavor Violation via Planck Scale

Flavor-Alignment

The most general 2HDM typically exhibits FCNCs which are incompatible

with experimental data. To avoid large FCNC requires either an artificial fine-

tuning of parameters in the Yukawa sector or the existence of a symmetry that au-

tomatically removes FCNC in the tree-level approximation. The flavor-alignment

ansatz reviewed in Section 2.3 asserts a proportionality between the two sets of

Yukawa matrices making them simultaneously bi-diagonalizable, thereby elimi-

nating FCNCs at tree-level. In addition, the flavor-aligned 2HDM (A2HDM)

preserves the relative hierarchy in the quark mass matrices, and provides addi-

tional sources of CP-violation in the Yukawa Lagrangian via introduction of three
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complex alignment parameters. In special cases, flavor-alignment can be imple-

mented by a symmetry in the low-energy effective theory. Examples of this include

the type I, II, X and Y Yukawa sectors of the 2HDM. For these models, flavor-

alignment is stable with respect to RG running [38]. However, the generic form

of flavor-alignment requires a fine tuning of parameters of the Yukawa sector, and

can only be implemented at a particular momentum scale.

In this chapter, we imagine that new physics beyond the SM enforces flavor-

alignment near the Planck scale. In this case, we can employ RG running to

compute the matrix Yukawa couplings at the electroweak scale. In this set up,

deviations from flavor-alignment will emerge at the electroweak flavor scale, creat-

ing a source for tree-level FCNCs. This is similar work performed in [63], who use

meson mixing and B decays to constrain the CP-conserving flavor-aligned 2HDM

parameter space, via flavor-alignment at the Planck scale. They arrive at their

results first analytically in the leading log approximation, and then numerically by

evolving the one-loop RGEs down from the Planck scale, but miss a key contribu-

tion from off-diagonal sources that are negligible in the leading log approximation,

but not in full numerical calculations. Our work includes these contributions in

the context of the more general CP-violating A2HDM. We consider experimental

constraints on top quark and B decays, and find that Bs → µ+µ− can be used to

provide constraints on the A2HDM parameter space.
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4.1 Planck scale flavor-alignment

To study the maximal amount of FCNCs that can be generated in the A2HDM

at the electroweak scale, we establish flavor-alignment at the Planck scale, and

run the one-loop RGEs from the Planck scale to the electroweak scale. Thus, we

impose the following boundary conditions for the running of the one-loop 2HDM

Yukawa RGEs (provided in Appendix A):

κQ(ΛH) = Y Q(ΛH), (4.1)

ρQ(MPL) = αQκQ(MPL), (4.2)

where Y Q are the SM Yukawa matrices in the quark-mass eigenstate, and ΛH is

the scale of the heavier doublet, taken in this chapter to be ΛH = 400 GeV, such

that we are sufficiently in the decoupling limit. Satisfying these two boundary

conditions is not trivial, since they are imposed at opposite ends of the RGE

running. For example, to set flavor-alignment at the Planck scale, we must know

the values of κQ(MPL). This involves running up κQ(ΛH) to the Planck scale,

but since the one-loop RGEs are strongly coupled to the ρQ matrices, we must

supply values for ρQ(ΛH) to being the running. With no a priori knowledge of

which values of ρQ(ΛH) lead to flavor-alignment at the Planck scale, we begin by

asserting flavor-alignment at ΛH via a low-scale alignment parameter α′Q:
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ρQ(ΛH) = α′QκQ(ΛH). (4.3)

In general, this flavor-alignment will be broken during RGE evolution to the

Planck scale, and a procedure is needed to reestablish flavor-alignment at the

Planck scale. To accomplish this, we decompose ρQ(MPL) into portions that are

aligned and misaligned with κQ(MPL):

ρQ(MPL) = αQκQ(MPL) + δρQ, (4.4)

where αQ represents the aligned portion (in general, different from α′Q), and δρQ

the corresponding degree of misalignment at the Planck scale. To minimize the

misaligned portion of ρQ(MPL), we implement the cost function

∆Q ≡
3∑

i,j=1

|δρQij|2 =
3∑

i,j=1

|ρQij(MPL)− αQκQij(MPL)|2, (4.5)

which once minimized, provides the optimal value of αQ for flavor-alignment at

the Planck scale:

αQ ≡
∑3

i,j=1κ
Q∗
ij ρ

Q
ij∑3

i,j=1κ
Q∗
ij κ

Q
ij

, (4.6)

based on the alignment parameters α′Q at ΛH . We subsequently reassert flavor-

alignment at the Planck scale using this optimized alignment parameter,
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ρQ(MPL) = αQκQ(MPL), (4.7)

and evolve the one-loop RGEs back down to ΛH . At ΛH , we use eq. 4.1 to match

the boundary conditions for the 2HDM and SM, and then run the SM down

(using the one-loop SM RGEs provided in Ref. [64]) to the electroweak scale to

check the accuracy of the resulting quark masses. If any of the quark masses

differ from their experimental values1 by more than 3%, we reestablish the correct

quark masses at the electroweak scale, run back up to ΛH , and then rerun this

procedure repeatedly until the two boundary conditions are satisfied. The result

is flavor-alignment between κQ(MPL) and ρQ(MPL), and a set of ρQ matrices at

the electroweak scale that provide a source of FCNCs.

Note that this work is similar to the analysis done by Ref. [63], in which

they implement Planck scale flavor-alignment in a CP-conserving A2HDM, and

constrain the A2HDM parameter space using experimental constraints from B0
s ↔

B̄0
s mixing and Bs → µ+µ−. They perform their analysis first in the leading

logarithm approximation, showing that in this limit, |ρD32|/|ρD23| ' 0.019, thus the

dominant contribution to FCNCs in B mixing and decays is from ∆D
23. Next,

they perform their full numerical analysis, relying on the observation, |ρD23| �
1Starting the RG evolution at mZ , we use a five flavor scheme to run up to mt and a six

flavor scheme above mt. Running quark mass masses at mZ and mt are obtained from the
RunDec Mathematica software package [59], based on quark masses provided in Ref. [65]. For
simplicitly, the effects of the lepton masses are ignored, as these contribute very little to the
running of the Zi.
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|ρD32|, independent of scale, obtained from their approximate analytic results, and

subsequently place limits on the flavor-alignment parameter space.

Our implementation is more flexible in a number of ways. First, we choose a

framework allowing for CP-violation in both the scalar potential in the Yukawa

sector, via complex alignment parameters. Second, we observe that in the large

alignment parameter limit, ρD32(ΛH) is non-negligible, and in fact we find via our

numerical running, |ρD32(ΛH)| � |ρD23(ΛH)|. This is the result of the off-diagonal

elements in βρD being driven by large values of the alignment parameters, making

the leading log approximation unreliable. In the large alignment parameter limit,

the terms that couple to the CKM matrix dominate the off-diagonal elements

of βρD , favoring for example, the growth of ρD32 relative to ρD23. In the small

parameter limit, however, we indeed recover |ρD32(ΛH)|/|ρD23(Λ)H | ' 0.019, showing

consistency between our calculations.

4.1.1 Leading logarithm approximation

In the small alignment parameter limit, it is possible to obtain approximate

analytic solutions to the one-loop β-functions provided for the Yukawa matrices

in Appendix A. For Y D, the SM down-type Yukawa matrix in the quark mass

eigenstate, the off-diagonal terms in the β-function are generated by the term
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βY Dij = 16π2
dY D

ij

dt
, (4.8)

= −3

2
[K†Y UY U†KY D]ij. (4.9)

for i 6= j, where K is the CKM matrix, t = ln(µ/mt), and µ is the renormalization

energy scale. The off-diagonal elements of βY Dij (mt) are very small, and so to very

good approximation, we can approximate Y D
ij (Λ) to leading log order

Y D
ij (Λ) ≈ Y D

ij (mt) +
βY Dij (mt)

16π2
log

(
Λ

mt

)
. (4.10)

Since Y D
ij (mt) = 0 (for i 6= j), eq. 4.10 simplifies to

Y D
ij (Λ) =

βY Dij (mt)

16π2
log

(
Λ

mt

)
, (4.11)

= − 1

16π2

3

2
[K†Y U(mt)Y

U†(mt)KY
D(mt)]ij log

(
Λ

mt

)
. (4.12)

Note that,

|Y D(mt)32|
|YD(mt)23|

=
|[K†Y U(mt)Y

U†(mt)VCKMY
D(mt)]32|

|[K†Y U(mt)Y U†(mt)KY D(mt)]23|
, (4.13)

=
|[K†M2

UVCKMMD]32|
|[K†M2

UKMD]23|
, (4.14)

' 0.019, (4.15)

independent of the scale Λ. Furthermore, the boundary condition between κD(ΛH)

and Y D(ΛH) (eq. 4.1) implies that |κD(ΛH)32|/|κD(ΛH)23| ≈ 0.019. In the small
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Figure 4.1: Regions of the A2HDM parameter space where |ρUij| � |ρUji| (green

points) and |ρUij| � |ρUji| (blue points), for i > j. The left panel is for i, j = 2, 1,

the middle panel is for i, j = 3, 1, and the right panel is for i, j = 3, 2.

alignment parameter limit, this ratio also holds for ρD(ΛH), and in fact, more

generally, one finds

|ρQ(ΛH)ij|
|ρQ(ΛH)ji|

� 1, (4.16)

for i > j. This is the basis for Ref. [63] ignoring ρD32 in lieu of ρD23.

In the large alignment parameter, however, the leading log approximation

fails. Indeed, the terms in βρQ that couple to the CKM matrix dominate the RG

running, and drive

|ρQ(ΛH)ij|
|ρQ(ΛH)ji|

� 1, (4.17)

for i > j. Hence, ρQij with i > j cannot be neglected in the large alignment
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Figure 4.2: Regions of the A2HDM parameter space where |ρDij | � |ρDji| (green

points) and |ρDij | � |ρDji| (blue points), for i > j. The left panel is for i, j = 2, 1,

the middle panel is for i, j = 3, 1, and the right panel is for i, j = 3, 2.

parameter limit, particularly in the down sector, as they generate the largest

sources of FCNCs during RG running (though the ρQji still contribute appreciably),

and hence will be the most useful in placing constraints on the A2HDM. Fig.

4.1 show the regions of the A2HDM parameter space where |ρUij| � |ρUji| and

|ρUij| � |ρUji|, for i > j, and Fig. 4.2 shows these limits for ρD.

4.2 Experimental Bounds

For our numerical analysis, we use the procedure described in the previous

section, taking the A2HDM to be in the decoupling limit such that the lightest

Higgs boson resembles that of the SM. The two heavier neutral scalars are denoted

by H and A, corresponding to the CP-even and CP-odd eigenstates, and are
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roughly degenerate in mass mH ≈ mA ≈ ΛH in the decoupling limit, where ΛH

is subject to the condition Λ2
H � v2 . The decoupling limit also enforces the

condition cos(β−α) ≈ 0, where α is the CP mixing angle between the two heavy

neutral Higgs bosons, and β is given by the ratio of the vevs in a generic basis,

tan β = v2/v1. In the calculations that follow, we take mH = mA = 400 GeV, and

(β − α) = π/2 + 0.1, to be consistent with the Higgs data. For Bs → µ+µ−, we

define the coupling ρL22 ≡ 10yµ = 10
√

2mµ/v.

4.2.1 Flavor-changing top decays

We calculate the tree-level branching ratios for t → qh, for q = u, c, arising

from misalignment generated via radiative corrections during RG running, given

in Ref. [66]:

BR(t→ uh) = 1
2

cos2(β − α)(|ρU13|2 + |ρU31|2)

×2v2

m2
t

(1−m2
h/m

2
t )

(1−m2
W/m

2
t )

(
1 +

2m2
W

m2
t

)
ηQCD, (4.18)

BR(t→ ch) = 1
2

cos2(β − α)(|ρU23|2 + |ρU32|2)

×2v2

m2
t

(1−m2
h/m

2
t )

(1−m2
W/m

2
t )

(
1 +

2m2
W

m2
t

)
ηQCD, (4.19)

where ηQCD = 1 + 0.97αs = 1.10 is the NLO QCD correction to the branching

ratio. These expressions are based on the leading order formulae for both t→ Wb

and t → qh decay rates, assuming the top quark decay width is dominated by
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the SM value of Γ(t → Wb). The results of our calculations for the A2HDM,

presented in Fig. 4.3, give BR(t → qh) . 10−11, for both q = u, c. The SM

contribution to the branching ratio is of order 10−13 − 10−15, as calculated in

Refs. [67, 68, 69, 70]. Indirect bounds placed on the branching ratio for t → ch

are given in Refs. [71, 72] to be of order ∼ 10−3, whereas Ref. [73] uses LHC

results to obtain BR(t → ch) < 2.7%. These experimental constraints are many

orders of magnitude greater than our calculated branching ratios, and thus we find

that these top quark decays cannot provide constraints to the A2HDM parameter

space.

Note that the A2HDM alignment parameter space probed in this analysis

is constrained to be perturbative, that is, that none of the Yukawa couplings

encounter a Landau pole during one-loop RGE running, producing similar bounds

to eq. 3.5 for ΛH = 400 GeV. The parameter space of the A2HDM obeying

the Landau pole constraints, and having gone through the iterative boundary

condition matching procedure described in the previous section, can be seen in

either Figs. 4.1 or 4.2. For constraints on the A2HDM parameter space to be

placed using t → qh for (q = u, c), then this would require the off-diagonal

elements ρU13 and ρU23 (and their respective permutations) to be several orders of

magnitude larger than is currently allowed. The size of these terms are bound

by Landau poles, and thus the inability to place constraints using these flavor-
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Figure 4.3: Histogram of branching ratios for t → uh and t → ch, in the left

and right panels, respectively. Although enhancements with respect to the SM

rate are possible, the resulting decay rate is many orders of magnitudes below the

current experimental bound of BR(t→ qh) . 10−3, for both q = u, c.

changing top decays can be traced back to constraints on the A2HDM parameter

space via Landau poles.

4.2.2 Leptonic B decays

In the down sector, Bs → `+`− can be mediated by the neutral Higgs bosons

at tree-level in the most general 2HDM, but not at tree-level in the SM. In the

A2HDM, misalignment and hence tree-level FCNCs can be generated at the elec-

troweak scale via RG running, if flavor-alignment is imposed at a high energy

scale, such as the Planck scale, whereas Bs → τ+τ− should be favored since the
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coupling depends on the lepton masses. However, these τ ’s decay to jets and lep-

tons whose invariant mass does not reconstruct the τ , and thus cannot be tagged

in detectors. Bs → µ+µ− is more easily tagged (Ref. [63]). For our calculations,

we follow the approach of Ref. [74], who show that in the presence of new physics,

we can calculate

BR(Bs → µ+µ−)

BR(Bs → µ+µ−)SM
'
(
|S|2 + |P |2

)
×
(

1 + ys
Re(P 2)− Re(S2)

|S|2 + |P |2

)(
1

1 + ys

)
, (4.20)

where BR(Bs → µ+µ−)SM is the SM prediction for the branching ratio extracted

from an untagged rate, ys = (8.8 ± 1.4)% has to be taken into account when

comparing experimental and theoretical results, and

S ≡ mBs

2mµ

(CS − C ′S)

CSM
10

√
1−

4m2
µ

m2
Bs

, (4.21)

P ≡ mBs

2mµ

(CP − C ′P )

CSM
10

+
(C10 − C ′10)

CSM
10

. (4.22)

The Ci are the Wilson coefficients corresponding to the operators

O
(′)
S =

mb

mBs

(s̄PR(L)b)(¯̀̀ ), (4.23)

O
(′)
P =

mb

mBs

(s̄PR(L)b)(¯̀γ5`), (4.24)

O
(′)
10 = (s̄γµPR(L)b)(¯̀γµγ5`), (4.25)
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Figure 4.4: Tree level neutral Higgs boson mediated Bs → µ+µ− in the 2HDM.

which based on the tree-level diagram given in Fig. 4.4, we calculate for the

2HDM as

CP =
mBs

mb

ρD∗32 ρ
L
22

1

m2
A

, (4.26)

C ′P =
mBs

mb

ρD∗23 ρ
L
22

1

m2
A

, (4.27)

CS = −mBs

mb

ρD∗32 ρ
L
22

1

m2
H

, (4.28)

C ′S =
mBs

mb

ρD∗23 ρ
L
22

1

m2
H

, (4.29)

The authors of Ref. [74] provide BR(Bs → µ+µ−)SM = (3.32 ± 0.17) × 10−9,

obtained from recent lattice results presented in Refs. [75, 76, 77]. This in good

agreement with BR(Bs → µ+µ−)exp = (2.4±0.16)×10−9, which they obtain using

a combination of LHC results provided in Refs. [78, 79, 80].

Fig. 4.5 shows the results of our evaluation of eq. 4.20 as a function of the

down-type alignment parameter. The largest deviations of the predicted A2HDM

branching ratio from the SM prediction occur in the limit |ρD32| � |ρD23|, which

corresponds to the large alignment parameter limit, as seen in Fig. 4.2. In the
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large alignment parameter limit, the terms in βρD that couple to the CKM matrix

dominate, and drive the off-diagonal elements of ρD to be very large during RG

running, with contributions from ρD32 dominating those from ρD23. Since the SM

prediction is in good agreement with experimental results, we can place constraints

on the A2HDM parameter space, by requiring that |ρD32| � |ρD23|, so that the

branching ratio not differ significantly from that of the SM. This in turn implies

that the A2HDM must be in the small alignment parameter limit. Fig. 4.6

shows regions of the A2HDM parameter space that produce a branching ratio of

Bs → µ+µ− within 10%, 10%–20%, and > 20% of the SM calculation, and thus

provides upper bounds on the values of the alignment parameters at the Planck

scale.
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Figure 4.5: A2HDM branching ratio for Bs → µ+µ− relative the the SM, as a

function of |αD|. Left panel: results for |ρD32| � |ρD23|, corresponding to the small

alignment parameter limit. Right panel: results for |ρD32| � |ρD23|, corresponding

to the large alignment parameter limit, implying large branching ratios relative

to the SM are generated only when |ρD32| � |ρD23|.
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Figure 4.6: Constraints on the A2HDM parameter space from Bs → µ+µ−. The

blue points correspond to regions of parameter space that deviate from BR(Bs →

µ+µ−)SM by less than 10%. The red points correspond to regions of parameter

space that deviate from BR(Bs → µ+µ−)SM between 10% - 20%. The green points

indicate the region of parameter space that deviate from BR(Bs → µ+µ−)SM by

more than 20%.
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Chapter 5

Conclusions

The discovery of a SM-like Higgs boson with a mass mh = 125 GeV has focused

attention on the validity of the Standard Model at higher energies. Putting aside

the question of the origin of the electroweak symmetry breaking (e.g., accepting

the fine-tuning of parameters inherent in fixing the electroweak scale), one can

ask whether the Standard Model is consistent all the way up to the Planck scale.

Refined calculations of the radiatively-corrected scalar potential suggest that the

Standard Model vacuum is at best metastable (and long-lived), with a deeper

vacuum located at field values near 1010 GeV, well below the Planck scale.

Adding new degrees of freedom has the potential of ameliorating the problem of

an unstable vacuum. In this thesis we considered the two Higgs doublet extension

of the Standard Model (2HDM) and examined the range of parameters for which
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the 2HDM is stable and perturbative at all energy scales below the Planck scale.

Our aim was to make the minimal number of assumptions regarding the structure

of the 2HDM required by the experimental data. Since the observed Higgs boson

is SM-like (within the accuracy of the limited Higgs data set), we considered the

2HDM with the most general scalar potential in the decoupling regime. The

Yukawa sector was treated using the flavor-alignment ansatz, in which the second

set of Yukawa matrices is proportional to the SM-like set at the electroweak scale to

protect against tree-level Higgs-mediated FCNCs. Although the flavor-alignment

condition is not protected by a low-energy symmetry (except in special cases,

which lead to 2HDMs of Types I, II, X or Y), it provides a more general framework

which at present is consistent with experimental data.

We scanned over the scalar potential parameters and the flavor-alignment pa-

rameters to fix the boundary conditions at the scale of the heavy Higgs states.

We then employed one-loop RGEs to run the 2HDM parameters up to the Planck

scale, and required that no Landau poles are encountered, without generating an

instability in the scalar potential. In contrast to the Standard Model, it is pos-

sible to have a SM-like Higgs boson with a mass of 125 GeV while maintaining

the validity of the 2HDM up to the Planck scale. We also presented a scheme to

estimate the effects of the RG-running at two-loops, by applying a scale shift seen

in going from the one-loop SM scalar potential stability curve to the two-loop SM
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scalar potential stability curve. Such effects increase the number of points in the

2HDM parameter scan that survive Landau pole and stability requirements up to

the Planck scale.

The larger range of allowed values of mh in the 2HDM (as compared with the

SM) is a direct consequence of the fact that the 2HDM scalar potential contains

more quartic scalar couplings than the SM, which increases the stability of the

potential at all scales between the electroweak and the Planck scale. In contrast,

we observed that the theoretical upper bound on mh in the 2HDM based on

the non-existence of Landau poles up to Planck scale hardly differs from the

corresponding SM behavior. This can be understood as follows. In the SM, the

negative top Yukawa contribution in the quartic scalar coupling β-function drives

that coupling to negative values during RG running, unless its starting point is

sufficiently large. In the 2HDM, even if the initial values of some of the quartic

scalar couplings are small, and even though the top quark contributions to the

β-functions are still negative, other couplings are allowed to have large values,

which (in some cases) counterbalance any putative instabilities arising due to RG

running. The 2HDM scalar potential is thus comparatively more stable than that

of the SM.

Thus, we have obtained bounds on the square-mass differences of the heavier

Higgs bosons in the parameter regime where the 2HDM remains valid up to the
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Planck scale. If the 2HDM is realized in nature, this could provide an important

check of the consistency of the model.

In addition, we explored the consequences of asserting flavor-alignment at the

Planck scale on electroweak flavor observables. In the flavor-aligned 2HDM, all

sources of FCNCs are eliminated at tree-level if flavor-alignment is imposed at the

electroweak scale. If flavor-alignment is instead imposed at a higher energy scale,

such as the Planck scale, perhaps enforced by new physics beyond the SM, then the

tree-level flavor-alignment will be broken during one-loop RG running down to the

electroweak scale, generating sources of FCNCs. These FCNCs are constrained

by experimental bounds on flavor-changing observables, and subsequent bounds

can be placed on the flavor-aligned 2HDM parameter space by requiring that the

model be consistent with current experimental results.

We required that the alignment parameters at the high scale remain pertur-

bative, that is, they avoid Landau poles during RG running. The effect of this

requirement is that it provides an upper bound on the values of the alignment

parameters at the Planck scale. This in turn provided an upper bound on the size

of FCNCs generated at the electroweak scale. The flavor-changing observables we

considered to constrain the flavor-aligned 2HDM parameter space were t → uh,

t→ ch, and Bs → µ+µ−. In the case of the top quark decays, we found that the

branching ratios for both of these decay modes is far below that given by current
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experimental bounds, and thus were not able to place constraints on the flavor-

aligned 2HDM. The inability to place constraints using top decays is related to

the requirement that the alignment parameters remain perturbative during RG

running.

By considering the leptonic decay BS → µ+µ− corresponding to the flavor

transition b → s, we placed constraints on the parameter space of the flavor-

aligned 2HDM by requiring that the predicted tree-level branching ratio in the

2HDM not deviate significantly from that of the SM. Our bounds on the flavor-

aligned 2HDM parameter space correspond to the small alignment parameter

limit, that is, that the alignment parameters be much smaller than the bounds

provided by requiring the parameters remain perturbative.
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Appendix A

One-Loop Renormalization

Group Equations for 2HDM

The one-loop RGEs for the SM used in this analysis are provided by Ref. [64].

The 2HDM one-loop RGEs in various bases are given in Refs. [38, 42, 81, 82,

83]. The one-loop RGEs found in the literature typically assume a 2HDM scalar

potential with a Z2 symmetry, Φ1 → Φ1, Φ2 → −Φ2, to avoid FCNCs and/or

are explicitly CP-conserving. Here, we present one-loop RGEs for the full 2HDM,

using a basis-independent approach and making no CP assumptions.
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A.1 Yukawa Couplings

In a general 2HDM, the Higgs fermion interactions are governed by the fol-

lowing interaction Lagrangian:

−LY = Q0
L Φ̃āη

U,0
a U0

R +Q
0

L Φa(η
D,0
ā )†D0

R + E
0

L Φa(η
E,0
ā )†E0

R + h.c. , (A.1)

summed over a, ā = 1, 2, where Φ1,2 are the Higgs doublets, Φ̃ā ≡ iσ2Φ∗ā, Q
0
L and

E0
L are the weak isospin quark and lepton doublets, and U0

R, D0
R, E0

R are weak

isospin quark and lepton singlets. [The right and left-handed fermion fields are

defined as usual: ψR,L ≡ PR,Lψ, where PR,L ≡ 1
2
(1± γ5).] Here, Q0

L, E0
L, U0

R, D0
R,

E0
R denote the interaction basis states, which are vectors in the quark and lepton

flavor spaces, and ηU,01 , ηU,02 , ηD,01 , ηD,02 , ηE,01 , ηE,02 are 3 × 3 matrices in quark and

lepton flavor spaces.

The neutral Higgs states acquire vacuum expectation values,

〈Φ0
a〉 =

vv̂a√
2
, (A.2)

where v̂av̂
∗
ā = 1 and v = 246 GeV. It is also convenient to define

ŵb ≡ v̂∗āεab , (A.3)

where ε12 = −ε21 = 1 and ε11 = ε22 = 0.

It is convenient to define invariant and pseudo-invariant matrix Yukawa cou-

plings [12, 40],

κF,0 ≡ v̂∗āη
F,0
a , ρF,0 ≡ ŵ∗āη

F,0
a , (A.4)
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where F = U , D or E. Inverting these equations yields

ηF,0a = κF,0v̂a + ρF,0ŵa . (A.5)

Note that under the U(2) transformation, Φa → Uab̄Φb [cf. eq. (A.41)],

κF,0 is invariant and ρF,0 → (detU)ρF,0 . (A.6)

The Higgs fields in the Higgs basis are defined by [40]

H1 ≡ v̂∗āΦa , H2 ≡ ŵ∗āΦa , (A.7)

which can be inverted to yield Φa = H1v̂a + H2wa . One can rewrite eq. (A.1) in

terms of the Higgs basis fields,

−LY = Q0
L (H̃1κ

U,0 + H̃2ρ
U,0)U0

R +Q
0

L (H1κ
D,0 † +H1ρ

D,0 †)D0
R

+E
0

L (H1κ
E,0 † +H1ρ

E,0 †)E0
R + h.c. , (A.8)

The next step is to identify the quark and lepton mass-eigenstates. This is

accomplished by replacing H1 → (0 , v/
√

2) and performing unitary transforma-

tions of the left and right-handed up and down quark multiplets such that the

resulting quark and charged lepton mass matrices are diagonal with non-negative

entries. In more detail, we define:

PLU = V U
L PLU

0 , PRU = V U
R PRU

0 , PLD = V D
L PLD

0 , PRD = V D
R PRD

0 ,

PLE = V E
L PLE

0 , PRE = V D
R PRE

0 , PLN = V E
L PLN

0 , (A.9)
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and the Cabibbo-Kobayashi-Maskawa (CKM) matrix is defined as K ≡ V U
L V

D †
L .

Note that for the neutrino fields, we are free to choose V N
L = V E

L since neutrinos

are exactly massless in this analysis. (Here we are ignoring the right-handed

neutrino sector, which gives mass to neutrinos via the seesaw mechanism).

In particular, the unitary matrices V F
L and V F

R (for F = U , D and E) are

chosen such that

MU =
v√
2
V U
L κ

U,0V U †
R = diag(mu , mc , mt) , (A.10)

MD =
v√
2
V D
L κ

D,0 †V D †
R = diag(md , ms , mb) , (A.11)

ME =
v√
2
V E
L κ

E,0 †V E †
R = diag(me , mµ , mτ ) . (A.12)

It is convenient to define

κU = V U
L κ

U,0V U †
R , κD = V D

R κ
D,0V D †

L , κE = V D
R κ

E,0V E †
L , (A.13)

ρU = V U
L ρ

U,0V U †
R , ρD = V D

R ρ
D,0V D †

L , ρE = V D
R ρ

E,0V E †
L . (A.14)

Eq. (A.6) implies that under the U(2) transformation, Φa → Uab̄Φb,

κF is invariant and ρF → (detU)ρF , (A.15)

for F = U , D and E. Indeed, κF is invariant since eqs. (A.10)–(A.12) imply that

MF =
v√
2
κF , (A.16)

which is a physical observable. The matrices ρU , ρD and ρE are independent

pseudoinvariant complex 3× 3 matrices. The Higgs-fermion interactions given in
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eq. (A.8) can be rewritten in terms of the quark and lepton mass eigenstates,

−LY = UL(κUH0 †
1 + ρUH0 †

2 )UR −DLK
†(κUH−1 + ρUH−2 )UR

+ULK(κD †H+
1 + ρD †H+

2 )DR +DL(κD †H0
1 + ρD †H0

2 )DR

+NL(κE †H+
1 + ρE †H+

2 )ER + EL(κE †H0
1 + ρE †H0

2 )ER + h.c.(A.17)

We now write down the renormalization group equations (RGEs) for the

Yukawa matrices ηU,0a , ηD,0a and ηE,0a . Defining D ≡ 16π2µ(d/dµ), the RGEs

are given by [38]:

DηU,0a = −
(
8g2

s + 9
4
g2 + 17

12
g′ 2
)
ηU,0a +

{
3Tr
[
ηU,0a (ηU,0

b̄
)† + ηD,0a (ηD,0

b̄
)†
]

+Tr
[
ηE,0a (ηE,0

b̄
)†
]}
ηU,0b − 2(ηD,0

b̄
)†ηD,0a ηU,0b + ηU,0a (ηU,0

b̄
)†ηU,0b

+1
2
(ηD,0
b̄

)†ηD,0b ηU,0a + 1
2
ηU,0b (ηU,0

b̄
)†ηU,0a , (A.18)

DηD,0a = −
(
8g2

s + 9
4
g2 + 5

12
g′ 2
)
ηD,0a +

{
3Tr
[
(ηD,0
b̄

)†ηD,0a + (ηU,0
b̄

)†ηU,0a

]
+Tr

[
(ηE,0
b̄

)†ηE,0a

]}
ηD,0b − 2ηD,0b ηU,0a (ηU,0

b̄
)† + ηD,0b (ηD,0

b̄
)†ηD,0a

+1
2
ηD,0a ηU,0b (ηU,0

b̄
)† + 1

2
ηD,0a (ηD,0

b̄
)†ηD,0b , (A.19)

DηE,0a = −
(

9
4
g2 + 15

4
g′ 2
)
ηE,0a +

{
3Tr
[
(ηD,0
b̄

)†ηD,0a + (ηU,0
b̄

)†ηU,0a

]
+Tr

[
(ηE,0
b̄

)†ηE,0a

]}
ηE,0b + ηE,0b (ηE,0

b̄
)†ηE,0a

+1
2
ηE,0a (ηE,0

b̄
)†ηE,0b . (A.20)

The RGEs above are true for any basis choice. Thus, they must also be true
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in the Higgs basis in which v̂ = (1, 0) and ŵ = (0, 1). In this case, we can

simply choose ηF,01 = κF,0 and ηF,02 = ρF,0 to obtain the RGEs for the κF,0 and

ρF,0. Alternatively, we can multiply eqs. (A.19)–(A.20) first by v̂∗a and then by

ŵ∗a. Expanding η†ā, which appears on the right-hand sides of eqs. (A.19)–(A.20), in

terms of κ† and ρ† using eq. (A.5), we again obtain the RGEs for the κF,0 and ρF,0.

Of course, both methods must yield the same results, since the diagonalization

matrices employed in eqs. (A.10)–(A.12) are defined as those that bring the mass

matrices to their diagonal form at the electroweak scale. No scale dependence is

assumed in the diagonalization matrices, and as such they are not affected by the

operators D.

DκU,0 = −
(
8g2

s + 9
4
g2 + 17

12
g′ 2
)
κU,0 +

{
3Tr
[
κU,0κU,0 † + κD,0κD,0 †

]
+Tr

[
κE,0κE,0 †

]}
κU,0 +

{
3Tr
[
κU,0ρU,0 † + κD,0ρD,0 †

]
+Tr

[
κE,0ρE,0 †

]}
ρU,0 − 2

(
κD,0 †κD,0κU,0 + ρD,0 †κD,0ρU,0

)
+κU,0(κU,0 †κU,0 + ρU,0 †ρU,0) + 1

2
(κD,0 †κD,0 + ρD,0 †ρD,0)κU,0

+ 1
2
(κU,0κU,0 † + ρU,0ρU,0 †)κU,0 , (A.21)
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DρU,0 = −
(
8g2

s + 9
4
g2 + 17

12
g′ 2
)
ρU,0 +

{
3Tr
[
ρU,0κU,0 † + ρD,0κD,0 †

]
+Tr

[
ρE,0κE,0 †

]}
κU,0 +

{
3Tr
[
ρU,0ρU,0 † + ρD,0ρD,0 †

]
+Tr

[
ρE,0ρE,0 †

]}
ρU,0 − 2

(
κD,0 †ρD,0κU,0 + ρD,0 †ρD,0ρU,0

)
+ρU,0(κU,0 †κU,0 + ρU,0 †ρU,0) + 1

2
(κD,0 †κD,0 + ρD,0 †ρD,0)ρU,0

+1
2
(κU,0κU,0 † + ρU,0ρU,0 †)ρU,0 , (A.22)

DκD,0 = −
(
8g2

s + 9
4
g2 + 5

12
g′ 2
)
κD,0 +

{
3Tr
[
κD,0 †κD,0 + κU,0 †κU,0

]
+Tr

[
κE,0 †κE,0]

}
κD,0 +

{
3Tr
[
ρD,0 †κD,0 + ρU,0 †κU,0

]
+Tr

[
ρE,0 †κE,0]

}
ρD,0 − 2(κD,0κU,0κU,0 † + ρD,0κU,0ρU,0 †)

+(κD,0κD,0 † + ρD,0ρD,0 †)κD,0 + 1
2
κD,0(κU,0κU,0 † + ρU,0ρU,0 †)

+ 1
2
κD,0(κD,0 †κD,0 + ρD,0 †ρD,0) , (A.23)

DρD,0 = −
(
8g2

s + 9
4
g2 + 5

12
g′ 2
)
ρD,0 +

{
3Tr
[
κD,0 †ρD,0 + κU,0 †ρU,0

]
+Tr

[
κE,0 †ρE,0]

}
κD,0 +

{
3Tr
[
ρD,0 †ρD,0 + ρU,0 †ρU,0

]
+Tr

[
ρE,0 †ρE,0]

}
ρD,0 − 2(κD,0ρU,0κU,0 † + ρD,0ρU,0ρU,0 †)

+(κD,0κD,0 † + ρD,0ρD,0 †)ρD,0 + 1
2
ρD,0(κU,0κU,0 † + ρU,0ρU,0 †)

+1
2
ρD,0(κD,0 †κD,0 + ρD,0 †ρD,0) , (A.24)
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DκE,0 = −
(

9
4
g2 + 15

4
g′ 2
)
κE,0 +

{
3Tr
[
κD,0 †κD,0 + κU,0 †κU,0

]
+Tr

[
κE,0

†
κE,0

]}
κE,0 +

{
3Tr
[
ρD,0 †κD,0 + ρU,0 †κU,0

]
+Tr

[
ρE,0

†
κE,0

]}
ρE,0 + (κE,0κE,0 † + ρE,0ρE,0 †)κE,0

+1
2
κE,0(κE,0 †κE,0 + ρE,0 †ρE,0) , (A.25)

DρE,0 = −
(

9
4
g2 + 15

4
g′ 2
)
ρE,0 +

{
3Tr
[
κD,0 †ρD,0 + κU,0 †ρU,0

]
+Tr

[
κE,0

†
ρE,0

]}
κE,0 +

{
3Tr
[
ρD,0 †ρD,0 + ρU,0 †ρU,0

]
+Tr

[
ρE,0

†
ρE,0

]}
ρE,0 + (κEκE,0 † + ρE,0ρE,0 †)ρE,0

+1
2
ρE,0(κE,0 †κE,0 + ρE,0 †ρE,0) . (A.26)

Using eqs. (A.13) and (A.14), we immediately obtain the RGEs for the κF and

ρF ,

DκU = −
(
8g2

s + 9
4
g2 + 17

12
g′ 2
)
κU +

{
3Tr
[
κUκU † + κDκD †

]
+ Tr

[
κEκE †

]}
κU

+

{
3Tr
[
κUρU † + κDρD †

]
+ Tr

[
κEρE †

]}
ρU − 2K

(
κD †κDK†κU

+ρD †κDK†ρU
)

+ κU(κU †κU + ρU †ρU) + 1
2
K(κD †κD + ρD †ρD)K†κU

+1
2
(κUκU † + ρUρU †)κU , (A.27)
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DρU = −
(
8g2

s + 9
4
g2 + 17

12
g′ 2
)
ρU +

{
3Tr
[
ρUκU † + ρDκD †

]
+ Tr

[
ρEκE †

]}
κU

+

{
3Tr
[
ρUρU † + ρDρD †

]
+ Tr

[
ρEρE †

]}
ρU − 2K

(
κD †ρDK†κU

+ρD †ρDK†ρU
)

+ ρU(κU †κU + ρU †ρU) + 1
2
K(κD †κD + ρD †ρD)K†ρU

+1
2
(κUκU † + ρUρU †)ρU , (A.28)

DκD = −
(
8g2

s + 9
4
g2 + 5

12
g′ 2
)
κD +

{
3Tr
[
κD †κD + κU †κU

]
+ Tr

[
κE †κE]

}
κD

+

{
3Tr
[
ρD †κD + ρU †κU

]
+ Tr

[
ρE †κE]

}
ρD − 2(κDK†κUκU †

+ρDK†κUρU †)K + (κDκD † + ρDρD †)κD + 1
2
κDK†(κUκU † + ρUρU †)K

+1
2
κD(κD †κD + ρD †ρD) , (A.29)

DρD = −
(
8g2

s + 9
4
g2 + 5

12
g′ 2
)
ρD +

{
3Tr
[
κD †ρD + κU †ρU

]
+ Tr

[
κE †ρE]

}
κD

+

{
3Tr
[
ρD †ρD + ρU †ρU

]
+ Tr

[
ρE †ρE]

}
ρD − 2(κDK†ρUκU †

+ρDK†ρUρU †)K + (κDκD † + ρDρD †)ρD + 1
2
ρDK†(κUκU † + ρUρU †)K

+1
2
ρD(κD †κD + ρD †ρD) , (A.30)

DκE = −
(

9
4
g2 + 15

4
g′ 2
)
κE +

{
3Tr
[
κD †κD + κU †κU

]
+ Tr

[
κE

†
κE
]}
κE

+

{
3Tr
[
ρD †κD + ρU †κU

]
+ Tr

[
ρE
†
κE
]}
ρE + (κEκE † + ρEρE †)κE

+1
2
κE(κE †κE + ρE †ρE) , (A.31)

94



DρE = −
(

9
4
g2 + 15

4
g′ 2
)
ρE +

{
3Tr
[
κD †ρD + κU †ρU

]
+ Tr

[
κE

†
ρE
]}
κE

+

{
3Tr
[
ρD †ρD + ρU †ρU

]
+ Tr

[
ρE
†
ρE
]}
ρE + (κEκE † + ρEρE †)ρE

+1
2
ρE(κE †κE + ρE †ρE) . (A.32)

A.2 Scalar Parameters

The 2HDM scalar potential in a generic basis shown in eq. (2.1) can be written

in a more compact form,

V = Yab̄(Φ
†
āΦb) + 1

2
Zab̄cd̄(Φ

†
āΦb)(Φ

†
c̄Φd) . (A.33)

Hermiticity requires that Yab̄ = Y ∗bā and Zab̄cd̄ = Z∗dc̄bā. In addition, the form

of the scalar potential given in eq. (A.33) implies that Zab̄cd̄ = Zcd̄ab̄. The full

one-loop beta-function for Zab̄cd̄ is given by,

DZab̄cd̄ = 4Zab̄ef̄Zcd̄f ē + 2Zaf̄ed̄Zcd̄f ē + 2Zaf̄cēZfb̄ed̄ + 2Zab̄ef̄Zcēf d̄ + 2Zaēf b̄Zcd̄ef̄

−
(
3g′2 + 9g2

)
Zab̄cd̄ + 3

4

(
3g4 − 2g′2g2 + g′4

)
δab̄δcd̄ +

(
3g′2g2

)
δad̄δcb̄

−4NcTr
[
ηQa η

Q†
b̄
ηQc η

Q†
d̄

]
+ 4
(
Tr
[
ηQ†ē ηQa ]Zeb̄cd̄ + Tr

[
ηQ†
b̄
ηQe
]
Zaēcd̄

+Tr
[
ηQ†ē ηQc

]
Zab̄ed̄ + Tr

[
ηQ†
d̄
ηQe
]
Zab̄cē

)
. (A.34)

The squared-mass and coupling coefficients of the 2HDM scalar potential in
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the Higgs basis [cf. eq. (2.3)] can be written in the form of invariants or pseu-

doinvariants with respect to the U(2) transformations, Φa → Uab̄Φb, as shown in

Ref. [12]. The three squared-mass parameters are given by

Y1 ≡ Yab̄ v̂
∗
ā v̂b , Y2 ≡ Yab̄ ŵ

∗
ā ŵb , Y3 ≡ Yab̄ v̂

∗
ā ŵb , (A.35)

and seven coupling parameters are given by

Z1 ≡ Zab̄cd̄ v̂
∗
ā v̂b v̂

∗
c̄ v̂d , Z2 ≡ Zab̄cd̄ ŵ

∗
ā ŵb ŵ

∗
c̄ ŵd , (A.36)

Z3 ≡ Zab̄cd̄ v̂
∗
ā v̂b ŵ

∗
c̄ ŵd , Z4 ≡ Zab̄cd̄ ŵ

∗
ā v̂b v̂

∗
c̄ ŵd , (A.37)

Z5 ≡ Zab̄cd̄ v̂
∗
ā ŵb v̂

∗
c̄ ŵd , (A.38)

Z6 ≡ Zab̄cd̄ v̂
∗
ā v̂b v̂

∗
c̄ ŵd , (A.39)

Z7 ≡ Zab̄cd̄ v̂
∗
ā ŵb ŵ

∗
c̄ ŵd . (A.40)

Note that under a U(2) transformation, v̂a → Uab̄v̂b, whereas

ŵa → (detU)−1Uab̄ŵb . (A.41)

Consequently, Y1, Y2, Z1,2,3,4 are real U(2)-invariants, whereas Y3, Z5,6,7 are po-

tentially complex U(2)-pseudoinvariants, which are rephased under a U(2) trans-

formation,

[Y3, Z6, Z7]→ (detU)−1[Y3, Z6, Z7] and Z5 → (detU)−2Z5 . (A.42)

Using the above results in eq. (A.34), the one-loop RGEs for the quartic cou-

96



plings in the Higgs basis are:

DZ1 = 12Z2
1 + 4Z2

3 + 4Z3Z4 + 2Z2
4 + 2|Z5|2 + 24|Z6|2 −

(
3g′2 + 9g2

)
Z1

+3
4

(
g′4 + 2g′2g2 + 3g4

)
− 4NcTr

[
κQ†κQκQ†κQ

]
+ 16

(
2Tr
[
κQ†κQ

]
Z1

+Tr
[
κQ†ρQ

]
Z6 + Tr

[
ρQ†κQ

]
Z∗6
)
, (A.43)

DZ2 = 12Z2
2 + 4Z2

3 + 4Z3Z4 + 2Z2
4 + 2|Z5|2 + 24|Z7|2 −

(
3g′2 + 9g2

)
Z2

+3
4

(
g′4 + 2g′2g2 + 3g4

)
− 4NcTr

[
ρQ†ρQρQ†ρQ

]
+8
(
2Tr
[
ρQ†ρQ

]
Z2 + Tr

[
κQ†ρQ

]
Z7 + Tr

[
ρQ†κQ

]
Z∗7
)
, (A.44)

DZ3 = 2
(
Z1 + Z2

)(
3Z3 + Z4

)
+ 4Z2

3 + 2Z2
4 + 2|Z5|2 + 4|Z6|2 + 4|Z7|2 + 8Z6Z

∗
7

+8Z∗6Z7 −
(
3g′2 + 9g2

)
Z3 +

3

4

(
g′4 − 2g′2g2 + 3g4

)
− 4NcTr

[
κQ†κQρQ†ρQ

]
+4
(
2Tr
[
κQ†κQ

]
Z3 + 2Tr

[
ρQ†ρQ

]
Z3 + Tr

[
κQ†ρQ

]
Z6 + Tr

[
ρQ†κQ

]
Z∗6

+Tr
[
κQ†ρQ

]
Z7 + Tr

[
ρQ†κQ

]
Z∗7
)
, (A.45)

DZ4 = 2(Z1 + Z2)Z4 + 8Z3Z4 + 4Z2
4 + 8|Z5|2 + 10|Z6|2 + 10|Z7|2 + 2Z6Z

∗
7

+2Z∗6Z7 −
(
3g′2 + 9g2

)
Z4 +

3

2
g′2g2 − 4NcTr

[
κQ†ρQρQ†κQ

]
+4
(
2Tr
[
κQ†κQ

]
Z4 + 2Tr

[
ρQ†ρQ

]
Z4 + Tr

[
κQ†ρQ

]
Z6 + Tr

[
ρQ†κQ

]
Z∗6

+Tr
[
κQ†ρQ

]
Z7 + Tr

[
ρQ†κQ

]
Z∗7
)
, (A.46)
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DZ5 = 2Z5

(
Z1 + Z2 + 4Z3 + 6Z4

)
+ 10Z2

6 + 10Z2
7 + 4Z6Z7 −

(
3g′2 + 9g2

)
Z5

−4NcTr
[
κQ†ρQκQ†ρQ

]
+ 8
(
Tr
[
κQ†κQ

]
Z5 + Tr

[
ρQ†ρQ

]
Z5 + Tr

[
ρQ†κQ

]
Z6

+Tr
[
ρQ†κQ

]
Z7

)
, (A.47)

DZ6 = 12Z1Z6 + 6Z3

(
Z6 + Z7

)
+ 4Z4

(
2Z6 + Z7

)
+ 2Z5

(
5Z∗6 + Z∗7

)
−
(
3g′2 + 9g2

)
Z6 − 4NcTr

[
κQ†κQκQ†ρQ

]
+ 4
(
3Tr
[
κQ†κQ

]
Z6

+Tr
[
ρQ†ρQ

]
Z6 + Tr

[
ρQ†κQ

]
Z1 + Tr

[
ρQ†κQ

]
Z3 + Tr

[
ρQ†κQ

]
Z4

+Tr
[
κQ†ρQ

]
Z5

)
, (A.48)

DZ7 = 12Z2Z7 + 6Z3

(
Z6 + Z7

)
+ 4Z4

(
Z6 + 2Z7

)
+ 2Z5

(
Z∗6 + 5Z∗7

)
−
(
3g′2 + 9g2

)
Z7 − 4NcTr

[
κQ†ρQρQ†ρQ

]
+ 4
(
3Tr
[
ρQ†ρQ

]
Z7

+Tr
[
κQ†κQ

]
Z7 + Tr

[
ρQ†κQ

]
Z2 + Tr

[
ρQ†κQ

]
Z3 + Tr

[
ρQ†κQ

]
Z4

+Tr
[
κQ†ρQ

]
Z5

)
. (A.49)

Finally, we note that the anomalous dimensions, which contribute to the quar-

tic coupling beta-functions, are given by

γab̄ = − 1

32π2
(3g′2 + 9g2)δab̄ +

1

4π2
Tr[ηQa η

Q†
b̄

]. (A.50)
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