Lawrence Berkeley National Laboratory

 Recent WorkTitle
SINGLE REGGE POLE ANALYSIS OF n- + p-\> no + n

Permalink

https://escholarship.org/uc/item/7zn4x0rg

Authors

Phillips, Roger J.N.
Rarita, William.
Publication Date
1965-10-05

University of California

Ernest O. Lawrence Radiation Laboratory

SINGLE REGGE POLE ANALYSIS OF $\pi^{-}+p \rightarrow \eta^{\circ}+n$

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory Berkeley, California

AEC Contract No, W-7405-eng-48

SINGLE REGGE POLE ANALYSIS OF $\pi^{-}+p \rightarrow \eta^{\circ}+n$ Roger J. N. Phillips and William Rarita

October 5, 1965

SINGLE REGGE POLE ANALYSIS OF $\pi^{-}+p \rightarrow \eta^{\circ}+n^{\dagger}$
Roger J. N. Phillips*
Lawrence Radiation Laboratory University of California Berkeley, California
and
William Rarita ${ }^{\dagger}$
Department of Physics University of California Berkeley, California:

October 5, 1965

There is particular interest in high-energy reactions in which a single Regge pole in the crossed channel may be believed to dominate. At present accelerator energies, elastic scatterings are not in this category. One must include several Regge poles chosen from the presently well-established mesons which form a spectrum grouped into nonets with quantum numbers 2^{+}and 1^{-}. For other reactions, however, the crosschannel quantum numbers are more restrictive, and in some cases only a single Regge pole is known with the appropriate quantum numbers. The first case of this kind to be analyzed was $\pi^{-}+p \rightarrow \pi^{0}+n$, at small momentum transfers, for which only the ρ Regge pole is known to be relevant and for which a single-pole analysis is successful. ${ }^{1,2}$

This letter presents the analysis of a second case, $\pi^{-}+p \rightarrow \eta^{0}+n$, at small momentum transfers, for which high-energy data have just become avallable. 3 Here only the Regge pole ${ }^{3}, 5,6$ (associated with the A_{2} meson) Is known to have the correct cross-channel quantum numbers. We show that these data are consistent with a single Regge pole whose trajectory in turn is consistent with the A_{2} meson mass.

We already had information about the R trajectory from $K N$ and $\overline{\mathrm{K}} \mathrm{V}$ scattering. ${ }^{1}$ Furthermore, the couplings of R to the $\bar{K} K$ and $\pi \eta$ systems are approximately related by SU_{3} symmetry, so that we were able to predict the $\pi^{-}+p \rightarrow \eta^{0}+n$ cross section before the data arrived. (7) This prediction was remarkably successful. 3 Nevertheless, it is desirable to reanalyze the $K N$ and $\overline{K N}$ data simultaneously with the new information about $\pi^{-}+p \rightarrow \eta^{\circ}+n$, without the use of SU_{3} symmetry (which is not exact), to show that the same R trajectory is consistent with both sets of data. We also achieve thereby a precise test of the accuracy of SU_{3}. symmetry.

Our formalism follows that of Ref. 1, for pseudoscalar mesonnucleon scattering. At high energies the $\eta-\pi$ mass difference effects are negligible compared with experimental errors, and we simply use elastic kinematics. The contributions of R to the nonflip and helicity-flip amplitudes A and B (which correspond to A and B in Singh's notation) ${ }^{8}$ are parameterized as follows:

$$
\begin{align*}
& A=-C_{0} \alpha(2 \alpha+1) \exp \left(C_{1} t\right) \frac{\exp (-i \pi \alpha)+1}{\sin \pi \alpha}\left(\frac{E}{E_{0}}\right)^{\alpha} \tag{1}\\
& B=-D_{0} \alpha \exp \left(D_{1} t\right) \frac{\exp (-i \pi \alpha)+1}{\sin \pi \alpha}\left(\frac{E}{E_{0}}\right)^{\alpha-1} \tag{2}
\end{align*}
$$

Here $\alpha(t)$ is the R trajectory, t is the squared momentum transfer, E is the total incident lab energy, and E_{0} is an arbitrary scale parameter which we choose to be $1 \mathrm{GeV} ; C_{0}, C_{1}, D_{0}$, and D_{1} are real constants.

The trajectory $\alpha(t)$, is given the two-parameter (Pignotti)
form

$$
\begin{equation*}
\alpha(t)=-1+[1+\alpha(0)]^{2} /\left[1+\alpha(0)-\alpha^{\prime}(0) t\right] \tag{3}
\end{equation*}
$$

$\alpha(0)$ and $\alpha^{\prime}(0)$ being the intercept and slope at $t=0$. The differential cross section, in terms of A and B, is

$$
\begin{equation*}
\frac{d \sigma}{d t}=\frac{1}{\pi s}\left(\frac{m}{4 k}\right)^{2}\left\{\left(1-\frac{t}{4 m_{N}^{2}}\right)|A|^{2}-\frac{t}{4 m_{N N}^{2}} \frac{s t+4 m_{N}^{2} p^{2}}{4 m_{N}^{2}-t}|B|^{2}\right\}, \tag{4}
\end{equation*}
$$

where s is the total c.m. energy squared, m_{N} is the nucleon mass, p is the pion lab momentum, and k is the c.m. momentum.

We first fitted the six parameters of R to the $\pi^{-}+p \rightarrow \eta^{0}+n$ data alone. The best fit, to 39 data points, has $x^{2}=27.9$, which is more than adequate. The corresponding parameters are shown in the first line of Table I (labeled solution 0). Note that a substantial slope, $\alpha_{R}{ }^{\prime}(0)$, is found, consistent with the position of the A_{2} meson at $\alpha=2$, which is 1.1 GeV from Eq. (3) compared with 1.32 GeV from experiment. The fit to data is illustrated in Fig. 1.

The best fit with no shrinkage $\left[\alpha_{R}^{\prime}(0)=0\right]$ has an intercept, $\alpha_{R}(0)$, which is 0.29 ± 0.03, and $x^{2}=37.4$, several standard deviations off from a good fit, and much worse than the case above wherein the single extra shrinking parameter $\alpha_{R}^{\prime}(0)$, evaluated to be 0.65 ± 0.15, is used to bring down the x^{2} by 9.5 .

We then reanalyzed these data together with the $K N$ and $\overline{K N}$ data previously considered. ${ }^{1}$ The new constraints were that the trajectory
$\alpha_{R}(t)$ and the ratio A_{R} / B_{R} should be the same when both sets of data are fitted (the A / B requirement comes from factorization). This reanalysis was made for solutions 1 and 2 of Ref. 1 ; the corresponding R parameters are shown on the second and third lines of Table I, and the corresponding values of x^{2} are 182 and 170 respectively, for 154 data points and a total of 18 parameters.

For completeness, the parameters for the $K N$ and $\overline{K N}$ systems are show in Tables II and III; these correspond to Tables IV and V of Ref. 1. The notation is fully explained in Ref. I. Briefly, however, we may add that the amplitudes for P, P^{\prime}, and ρ Regge poles are expressed in terms of the $\pi \mathbb{N}$ amplitudes, if we use the factorization condition

$$
\begin{equation*}
A_{i}(K N) / A_{i}(\pi N)=B_{i}(K N) / B_{i}(\pi N)=F_{0} \exp \left(F_{1} t\right) \tag{5}
\end{equation*}
$$

the $\pi \mathbb{N}$ amplitudes being already fixed for each of the solutions. The ω Regge pole contribution to B is ignored: its contribution to A is parameterized by using a difference of two exponentials-hence four parameters instead of two. The ω trajectory, not shown in the Tables, was not re-search, and retained the same values as in Rer. 1.

In the limit of exact SU_{3} symmetry, if P is a simglet and ρ belong to an octet, we expect to find in Table II

$$
\begin{array}{ll}
F_{0}(P)=2.0, & F_{1}(P)=0.0 \tag{6}\\
F_{0}(0)=0.5, & F_{1}(\rho)=0.0 .
\end{array}
$$

The results confirm what was already noted in Ref. I, namely, that the symmetry holds quite well for P and ρ, though P^{\prime} behaves neither like pure singlet nor pure octet,

If R is a pure octet member, we expect to find
$C_{0}\left(R: \pi^{-}+p \rightarrow \eta^{o}+n\right)=(4 / \sqrt{3}) F_{0} C_{0}(R: K N)$,

$$
\begin{equation*}
C_{1}\left(R: \pi^{-}+p \rightarrow \eta^{o}+n\right)=C_{1}(R: K N V)+F_{1} \tag{7}
\end{equation*}
$$

with similar relations for D_{0} and D_{1} :

$$
\begin{align*}
& D_{0}\left(R: \pi^{-}+p \rightarrow \eta^{0}+n\right)=(4 / \sqrt{3}) F_{0} D_{0}(R: K N) \tag{8}\\
& D_{1}\left(R: \pi^{-}+p \rightarrow \eta^{0}+n\right)=D_{1}(R: K N)+F_{1},
\end{align*}
$$

and $F_{0}=1$ and $F_{1}=0$.
In our analysis the $F_{0}^{\prime \prime s}$ were made the same in Eqs. (7) and (8), in order to satisfy the factorization principle [see, for instance, Eq. (5)]; likewise for the F_{1} 's. Their values indicate the degree of breaking of $\mathrm{SU}_{3} \cdot$

The measurements of Ref. 3 refer directly to the η-meson production followed by 2γ decay of η. To convert this to the complete η-production cross section, we have used the currently accepted branching ration $(\eta \rightarrow 2 \gamma) /(\eta \rightarrow a 11)=0.386,10$ for case (a). However, a recent experiment ${ }^{11}$ suggests this branching ratio is closer to 0.30 ; If this new value is used instead, the values of F_{0} and also C_{0} and D_{0} in Tabie I are multiplied by 1.13 , case (b). The results show in the Table below.

Solution 1	Case a	Case b
F_{0}	0.66	0.75
$\mathrm{~F}_{1}$	-0.11	
Solution 2		
F_{0}	0.68	0.77
$\mathrm{~F}_{1}$		0.02

At the resonance of $A_{2}(\alpha=2)$ the branching ration $A_{2} \rightarrow \pi \eta / K \bar{K}$ requires F_{0} to be $(0.56)^{1 / 2}=0.75$ as given by Glashow and Socolow. ${ }^{12}$ We note in Table I that all the parameters except C_{1} for the three separate solutions show good agreement. The present data seem not to be accurate nor extensive enough to determine C_{1} more precisely. That the lest massive system having the quantum numbers of R is three pions suggests that C_{1} and D_{1} of Table I should be limited by $\left(3 \mathrm{~m}_{\pi}\right)^{-2} \approx 5.6(\mathrm{GeV})^{-2}$. We observe that our three solutions satisfy this condition.

To summarize, we find:
(a) The $\pi^{-}+p \rightarrow \eta^{\circ}+n$ data are consistent with a single R trajectory with "substantial shrinkage".
(b) The R parameters are also consistent with $K N$ and $\overline{K N}$ data.
(c) The R trajectory is consistent with the A_{2} meson position.
(d) The R couplings to $\bar{K} K$ and $\pi \eta$ differ by 33% from the ratio predicted by SU_{3} symmetry, if R is pure octet and the currentiy accepted $\eta \rightarrow 2 \gamma$ branching ratio ${ }^{10}$ is used. However, a recent experiment suggests this branching ratio may be different and the agreement with exact SU_{3} symmetry may be even better.
(e) The factorization princlple is a useful constraint in establishing the R parameters. We expect it will prove a powerful tool in explaining related reactions.

The authors are grateful to Professor Geoffrey F. Chew for valuabie Information and comments, to Dr. Janos Kirz for rapid transmittal of the experimental data to us and to Mr . Farzem. Arbab for aid in computation. W. Rarita thanks Professor Burton J. Noyer for the hospitality of the Physics Department, University of California, Berkeley.
-8-

Table I. R parameters for $\pi^{-}+p \rightarrow \eta^{0}+n$.

Solution	$\alpha(0)$	$\alpha^{\prime}(0)$	C_{0}	C_{1}	D_{0}	D_{1}
		$\left[(\mathrm{GeV})^{-2}\right]$	($\mathrm{mb} \times \mathrm{GeV}$)	$\left[(\mathrm{GeV})^{-2}\right]$	(mb)	$\left[(\mathrm{GeV})^{-2}\right]$
0	0.40 ± 0.03	0.65 ± 0.25	(a) 2.91	1.06	(a) -48 (b) -54	1.97
1	0.41 ± 0.02	0.8 ± 0.1	(a) 2.90 (b) 3.29	4.64	(a) -53	1.86
2	0.37 ± 0.01	0.60 ± 0.05	(a) 3.76 (b) 4.27	4.77	(a) -55 (b) -62	2.04

(a) 0.386 used as branching ratio
(b) 0.30 used as branching ratio

Table II. Parameters relating P, P^{\prime}, and ρ contributions to $\pi \mathbb{N}$ and $K \mathbb{N}$.

Solution	P		P'		ρ	
	F_{0}	F_{1}	F_{0}	F_{1}	F_{0}	. F_{1}
		$\left[(\mathrm{GeV})^{-2}\right.$		$\left[(\mathrm{GeV})^{-2}\right]$		$\left[(\mathrm{GeV})^{-2}\right]$
1	0.90	-0.21	0.29	-1.84	0.51	0.51
2	0.90	-0.22	0.29	-1.22	0.50	0.47

Table III. KN amplitude coefficients for R and ω.

Solution	R				ω			
	$\begin{gathered} \mathrm{C}_{0} \\ (\mathrm{mb} \times \mathrm{Ge} \end{gathered}$	$\begin{gathered} \mathrm{C}_{1} \\ \mathrm{GeV})^{-2} \end{gathered}$	D_{0} mb	$\begin{gathered} D_{1} \\ \mathrm{GeV})^{-} \end{gathered}$	$\begin{aligned} & C_{0} \\ & b \times G \end{aligned}$	$\begin{gathered} \mathrm{C}_{1} \\ \mathrm{GeV}) \end{gathered}$	$\begin{aligned} & \mathrm{C}_{3} \\ & \mathrm{GeV})^{-2} \end{aligned}$	G
i	1.91	4.75	-35	1.98	6.03	11.0	0.09	0.84
2	2.38	4.75	-35	2.02	6.69	11.0	0.002	0.65

FOOTNOTES AND REFERENCES

\dagger This work supported in part by the U. S. Atomic Energy Commission. Present address: A.E.R.E., Harwell, Berkshire, England. Visiting Scientist.
2. R. K. Logan, Phys. Rev. Letters I4, 414 (1965).
3. O. Guisan, J. Kirz, P. Sonderegger, A. V. Stirling, P. Borgeaud, C. Bruneton, P. Falk-Vairant, B. Amblard, C. Caversasio, J. P. Guillaud, and M. Yvert, Phys. Letters 18, 200 (1965).
4. A. Pignotti, Phys. Rev. 134, B630 (1964).
5. A. Ahmadzadeh, Phys. Rev. 134, B633 (1964).
6. R. J. N. Phillips and W. Rarita, Phys. Rev. 138, B723 (1965).
(7.) R. J. N. Phillips and W. Rarita, Phys. Rev. 140, B200 (1965).
8. V. Singh, Phys. Rev. 129, 1889 (1963).
9. A factor of $2 / \sqrt{3}$ from SU_{3} symmetry relating the charge exchange $\pi^{-} p \rightarrow \eta^{0} n$ and $K^{-} p \rightarrow K_{n}^{0}$, and another factor of 2 relating charge exchange to elastic scattering.
10. A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Barkas, P. L. Bastien, J. Kirz, and M. Roos, Lawrence Radiation Laboratory Report UCRL8030, Part I, March 1965 Edition (Wallet card Aug. 1965).
11. V. Z. Peterson (University of Hawaii), private communication. Ve thank Professor Peterson for communicating his results before publication.
12. S. L. Glashow and R. H. Socolow, Phys. Rev. Letters 15, 329 (1965).

Fig. 1. $\pi^{-}+p \rightarrow \eta^{0}+n$ differential cross sections at $5.9,9.8$, 13.3, and $18.2 \mathrm{GeV} / \mathrm{c}$, from Ref. 3 converted to complete η° production by using the currently accepted branching ratio of Ref. 10, that is, 0.386. The full lines are the results of Solution 0 . The sets of data are spaced by a decade. The dots are the Group I and the squares are the Group II data of Ref. 3.

Fig. 1

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

