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Chemisorption of muonium onto the surface of gold nanoparticles has been observed. Muonium
(µ+e−), a light hydrogen-like atom, reacts chemically with uncapped 7 nm gold nanoparticles embed-
ded in mesoporous silica (SBA-15) with a strong temperature-dependent rate. The addition rate is fast
enough to allow coherent spin transfer into a diamagnetic muon state on the nanoparticle surface. The
muon is well established as a sensitive probe of static or slowly fluctuating magnetic fields in bulk mat-
ter. These results represent the first muon spin rotation signal on a nanoparticle surface or any metallic
surface. Only weak magnetic effects are seen on the surface of these Au nanoparticles consistent with
Pauli paramagnetism. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4967460]

Gold nanoparticles (GNPs) have interesting and surpris-
ing properties due to their finite size, which leads to their use in
many areas,1 e.g., medicine,2 biotechnology,3 and nanotech-
nology.4 Another important application is in catalysis, espe-
cially for hydrogenation reactions.5–11 Although well studied,
the magnetic properties of gold nanoparticles are very contro-
versial. While bulk gold is diamagnetic, theories predict and
recent studies report ordered magnetism in GNPs.12 However,
the precise nature and origin of this magnetism are unclear,
and the huge discrepancy between various experimental results
still lacks a conclusive explanation. A key problem in studying
GNPs is that they tend to aggregate. This is often addressed
by adding an organic capping layer. Magnetism is observed in
thiol-capped GNPs,12–14 yet it is often attributed primarily to
the gold sulfur bond present in such compounds instead of the
finite size of the GNP. There are only a few studies investigat-
ing magnetism in uncapped GNPs,15–18 and with para-, ferro-,
and ferrimagnetism reported, there is no consensus.

The approach chosen here is to embed uncapped GNPs in
a matrix of mesoporous silica (SBA-15) and investigate mag-
netic properties of the surface of these nanoparticles using
muon spin rotation (µSR). Previous studies have shown that
a large fraction of muons injected into fine silica powders
form muonium (Mu) which escapes and thermalizes in the
voids.19–23 Muonium (µ+e−) is a light hydrogen-like atom
with only 1/9th the mass of hydrogen. This means that all

a)Electronic mail: mdehn@triumf.ca

quantum mechanical aspects of its reactions are greatly ampli-
fied relative to its heavier cousins hydrogen and deuterium.
While a great deal of information now exists on muonium reac-
tions in the gas and liquid phase, almost nothing is known about
the reactions of Mu with metal surfaces or nanoparticles.24,25

In this paper, we report on Mu reacting with uncapped
GNPs. We show that Mu chemisorbs on the gold and that the
resulting diamagnetic or bare µ+ state on the surface remains
spin-polarized. Although the positive muon is widely known
as a sensitive magnetic probe of magnetism in bulk matter
or thin films, this is the first µSR signal from a nanoparticle
surface or any metallic surface for that matter. The magnetic
effects we observe on uncapped 7 nm GNPs are consistent
with weak rapidly fluctuating electronic moments as in a Pauli
paramagnet.

A detailed description of the µSR technique can be found
elsewhere.26 Basically, the time evolution of the muon spin
polarization is observed directly via the parity-violating decay
of the muon in which the decay positrons are emitted pref-
erentially along the direction of the muon spin at the time of
decay.

In the presence of an external magnetic field, one differen-
tiates between transverse field (TF) geometry, where the field
is applied perpendicular to the initial muon spin polarization,
and longitudinal field (LF) geometry where the field direc-
tion coincides with the initial polarization. The polarization
of a free muon precesses about the field direction B with its
Larmor frequency ωµ = γµ |B|, where the muon gyromag-
netic ratio γµ = 2π · 0.013 55 MHz/G. In insulators, the µ+
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may capture an electron to form Mu. The time evolution of
the muon polarization for Mu is governed by both the Zee-
man and muon electron hyperfine interactions. In general,
the Mu TF precession signal is composed of four discrete
frequencies, two of which are of the order of the hyperfine
frequency ν0 = 4463.3 MHz27 and not observable without
special detectors;28,29 the other two collapse for small fields,
typically . 10 G, into a single line with an effective gyromag-
netic ratio γMu = 2π · 1.39 MHz/G, i.e. 100 times faster than
the bare muon.

Only a fraction of the incoming muons form Mu; there-
fore, at t = 0, both diamagnetic µ+, i.e., unbound muons pre-
cessing at or very close to the free muon Larmor frequency, and
Mu are observed in silica. Those muons that stay diamagnetic
and do not form Mu are called prompt. The observed asymme-
try signal in a transverse magnetic field contains contributions
from both components,

STF(t) = AµRµ(t) cos(ωµt + φµ)

+ AMuRMu(t) cos(ωMut + φMu). (1)

Two mesoporous silica (SBA-15) samples were investi-
gated, one pure and one loaded with 4.5 wt. % gold nanopar-
ticles, synthesized using a hydrothermal method.30 Specific
surface area measurements with the Brunauer-Emmett-Teller
(BET) method31 yielded an area of 595 m2 g�1 with a 7.5 nm
average pore size for the pure silica and 431 m2 g�1 surface
area with a 3.9 nm average pore size for the loaded silica.
The reduced pore size may be due to the chemical process of
forming the GNPs. Transmission electron microscopy (TEM)
gave an average nanoparticle size of 7.0 ± 1.4 nm. The pink-
ish colour of the loaded sample was attributed to the surface
plasmon resonance of the GNPs, giving clear evidence of their
metallic character.

The samples were loaded into sealed titanium cells. Prior
to the experiment, the cells were heated to 140 ◦C and pumped
for 24 h to remove moisture and oxygen, and then loaded
into a horizontal He gas flow cryostat while under vacuum.
All measurements were taken with the LAMPF spectrometer
on the M20 beamline at TRIUMF in a spin rotated mode,
i.e., with the initial muon spin polarization oriented close
to the vertical direction (x̂) and perpendicular to the beam
direction (ẑ).

Figs. 1(a) and 1(b) (red points) show spectra in pure
SBA-15 in a TF of 6 G at two temperatures. It is evident
that a large fraction of the incoming muons form Mu and,
consequently, the observed signal is a composition of a dia-
magnetic µ+ and Mu component. While long lived Mu is
present at room temperature, there is significant damping at
lower temperatures, e.g., 6 K in Fig. 1(b). The temperature
dependence of the Mu relaxation rate is shown in Fig. 2 for
values below 40 K, obtained by fitting Eq. (1) to the data, with
AMu, Aµ, B, φMu, φµ unconstrained and an exponential relax-
ation Ri(t) = [exp(−λit)] for both RMu and Rµ, where λMu and
λµ are relaxation rates for Mu and diamagnetic µ+. There is a
gentle increase from 0.34 µs−1 at T = 289 K (not shown) to
0.61 µs−1 at T = 25 K, below which λMu rises sharply.

Based on previous studies on fine grained non-porous
silica,21 we interpret the Mu relaxation in the present study
of pure mesoporous SBA-15 as follows: a large fraction of

FIG. 1. Raw spectra in a transverse field of 6 G in pure (red) and gold loaded
(black) SBA-15 at two temperatures. (a) T = 297 K. There is long lived
Mu precession in the pure mesoporous SiO2, while it is heavily damped in
the presence of gold. (b) T = 6 K. Mu relaxation rate and amplitude are
comparable in both samples, indicating a similar Mu formation probability
and that depolarization is dominated by the same process. Note that on the
time scale of this plot, only the Mu oscillations can be observed, while the
diamagnetic µ+ component appears to be static due to its 100 times lower
precession frequency.

Mu thermalizes in the porous regions of the sample on a very
short time scale. At room temperature, the Mu spends most
of the time off the surface and moves freely in these porous
spaces. The small residual TF relaxation is attributed to both
field inhomogeneity and electron spin exchange with unpaired
spins from dangling bonds like –Si–O· that can be produced
at the high temperatures in the preparation process.30 With
decreasing temperature, Mu spends more time on the silica
surface, as the thermal energy becomes comparable to the
binding energy. At very low temperatures, Mu is bound to
the surface and therefore compressed along an axis n perpen-
dicular to the surface. As a result, the hyperfine interaction is
slightly anisotropic. The resulting hyperfine interaction can be
decomposed into an isotropic and an anisotropic part, where
the latter is characterized by the direction n and magnitude
νani.26 This hyperfine anisotropy (HFA) causes both the pre-
cession frequencies and their amplitudes to be dependent on
n, providing an explanation for the Mu TF relaxation. At base

FIG. 2. Mu relaxation rate in a transverse field of 6 G, obtained in pure (red)
and gold-loaded (black) SBA-15.
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temperature, Mu spends essentially all its time on the surface,
changing position infrequently. The signal consists of contri-
butions from Mu with all possible values of n, which causes
damping. With increasing temperature, Mu changes its site
more often and samples over more HFA directions during its
lifetime, causing motional averaging of the HFA effects above
about 25 K.

A numerical simulation based on an anisotropic Mu
Hamiltonian,26 an exponential distribution of surface dwell
times and a random distribution of directions n, yielded good
qualitative agreement with both TF and LF low temperature
data with an estimate of νani ≈ 1.5 MHz. Details will be pub-
lished elsewhere.32 The red line in Figure 1(b) represents a
simulated depolarization curve for the stated νani value.

In contrast to the pure SBA-15, the Mu TF signal in the
gold-loaded SBA-15 is heavily damped at room temperature
(Fig. 1(a), black points). At 6 K, however, both samples show
similar spectra (Fig. 1(b)). The TF Mu relaxation rate λMu

is obtained by a fit equal to the one in the pure SBA-15. At
low temperatures, λMu agrees with the pure SBA-15 values up
to 15 K, above which the fitted values increase dramatically
(Fig. 2, black points).

The rapid TF Mu depolarization in the presence of the
gold loaded sample is strong evidence for a chemical reac-
tion of Mu with a GNP, resulting in a diamagnetic µ+ on the
nanoparticle’s surface. At room temperature, the TF Mu pre-
cession signal in pure SBA-15 is long lived, whereas the signal
is heavily damped and has a reduced amplitude in the loaded
sample. At low temperatures, however, the Mu amplitude and
relaxation rate in both samples are comparable, indicating a
similar Mu formation probability. Thus some process involv-
ing the GNPs takes place at higher temperatures and causes
damping of the Mu component. A chemical reaction of Mu
with the GNPs is consistent with this: at high temperatures,
the Mu is highly mobile and reaches the gold efficiently. It
transforms to a diamagnetic µ+ and stops precessing at the Mu
frequency, explaining the damping. At low temperatures, the
Mu is on the silica surfaces and less mobile so that it can-
not reach the GNPs. Thus the TF Mu relaxation rates in both
samples are dominated by HFA in this limit.

The above interpretation is further supported by the field
dependence of the amplitude of the component precessing at
the free muon Larmor frequency and its corresponding phase
φµ. Figure 3 shows both parameters as obtained from a fit of a
TF scan at T = 297 K to Eq. (1) with an exponential relaxation
function. The phase data presented in 3(b) is corrected for
instrumental field dependent shifts in the initial phase with a
calibration curve obtained in the pure SBA-15, where no such
change in the µ+ amplitude was observed.

If a Mu atom reacts to form a diamagnetic µ+ governed by
an exponential reaction rate Λmuch faster than the relaxation
rate λMu, the TF depolarization function STF

Mu(t) for the muons
that start out as Mu at t = 0 can be expressed as

STF
Mu(t) = A Mu

[
e−Λt cos(ω Mut) + TMu→µ(t, B,Λ)], (2)

where TMu→µ(t, B,Λ) accounts for the precession signal of
the reacted diamagnetic muons. Before the Mu react, their
muon spin evolves with a frequency −γMuB with a sense of

FIG. 3. (a) µ+ amplitude Atot
µ and (b) µ+ phase as a function of applied

transverse field in gold-loaded SBA-15 at T = 297 K. Lines represent fits to
Eqs. (5) and (6), respectively.

precession opposite to that of µ+. Once reacted, the then dia-
magnetic muons precess with γµB, however with a phase shift,
acquired while being Mu, compared to the prompt muons, i.e.,
those muons that did not form Mu at t = 0. For a reaction rate
fast compared to the Mu precession frequency, the muon spin
polarization is efficiently transferred to the diamagnetic state.
TMu→µ(t, B,Λ) can be expressed as

TMu→µ(t, B,Λ) =
∫ ∞

0
e−Λt′
Λ cos[γµB(t − t ′) − γMuBt ′]dt ′.

(3)
For times t � Λ−1, the solution of Eq. (3) simplifies

to TMu→µ(t � Λ−1, B,Λ) and represents the time evolution
of the transferred polarization in the diamagnetic state. The
observed signal Sµ(t) at the muon Larmor frequency is the
sum of prompt and transferred muon signal, which can be
described by (compare Refs. 33 and 34)

Sµ(t) = Atot
µ cos[γµBt − Φ], (4)

with the total amplitude Atot
µ , taking into account both contri-

butions,

Atot
µ =

√
A2

Mu + 2AMu Aµ

B2(γMu + γµ)2/Λ2 + 1
+ A2

µ (5)

and a phase shift Φ

Φ = arctan
[ AMuB(γMu + γµ)/Λ

AMu + Aµ(1 + B2(γMu + γµ)2/Λ2)

]
. (6)

The field dependence of the total µ+ amplitude and the
µ+ phase agrees well with this model. The curves in Figs. 3(a)
and 3(b) represent fits to Eqs. (5) and (6). The fit of the ampli-
tudes yields for the prompt amplitude Aµ = 0.107 ± 0.002,
the Mu amplitude AMu = 0.022 ± 0.002, and the reaction rate
Λ = 870±181 µs−1; and the fit of the phase data with Aµ fixed
gave AMu = 0.026 ± 0.003, Λ = 852 ± 137 µs−1, showing
good agreement with each other. Given that a Mu amplitude
of AMu ≈ 0.08 is observed at low temperatures for the loaded
sample, this indicates that about 30% of the Mu reacts on a
time scale fast enough to account for the drop in the total µ+

amplitude shown in Fig. 3(a). A reaction rate of that order does
not allow for any visible Mu signal, as the Mu reacts within
a few nanoseconds. However, it is clear in Fig. 1(a) that such
a slow component is present, suggesting that this reaction is
governed by more than one time scale. That is reasonable since
there is a distribution of distances between initial Mu sites and
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the nearest GNP. To simplify, we suggest a fast rateΛf account-
ing for almost all coherent spin transport in TF geometry and a
slow rate Λs. For example, if Mu emerges from the silica into
a channel with a GNP, it quickly reacts, while Mu that starts
out in a large void without a GNP nearby needs many colli-
sions with the silica surface to reach a channel with gold. The
time spectrum shown in 1(a) is fit accordingly to the following
model (black line):

S(t) = AµRµ(t) cos(ωµt)

+ AMu

[
(xe−Λf t + (1 − x)e−Λst) cos(ω Mut)

+ (1 − x)TMu→µ(t, B,Λs) + xTMu→µ(t, B,Λf )
]
, (7)

where x = 0.3 is the fraction of the fast component as obtained
above and Rµ an exponential function. With Aµ = 0.107, AMu

= 0.08, and Λf = 865 µs−1, this yields a slow reaction rate of
Λs = 12.0 ± 1.7 µs−1.

Complementary information can be obtained by apply-
ing a longitudinal magnetic field (LF), i.e., along the initial
polarization direction. Fig. 4(a) (red points) shows a room tem-
perature spectrum in a longitudinal field of 10 G obtained in
pure SBA-15. Again the signal is comprised of µ+ and Mu
components. All of the observed relaxation is attributed to the
Mu component, which is fit to an exponential decay, consistent
with spin exchange with the paramagnetic centers noted ear-
lier. A full temperature dependence shows the Mu relaxation
rate λMu scatters around a constant value at high temperatures
before it drops sharply below 30 K. This decrease at low T is
consistent with relaxation from dynamic HFA. At base tem-
perature, Mu is assumed to be static. For values of νani of a
few MHz or lower, HFA has essentially no effect on the polar-
ization, which agrees with the near zero relaxation rate. With
increasing temperature, Mu changes sites and experiences a
different n, causing damping. Above 30 K, the observed relax-
ation is most likely due to spin exchange with unpaired spins
on the silica surface.

Since it is known that heat treatment of mesoporous silica
can introduce paramagnetic impurities,30,35 one might expect a
higher relaxation caused by spin-exchange in the gold-loaded
sample. Yet, compared to the pure SBA-15, less relaxation is
observed in a LF of 10 G in the loaded sample (Fig. 4(a), black
points). Thus the increased damping in TF (compare Fig. 1(a))

FIG. 4. Raw spectra in a LF of 10 G in pure (red) and gold-loaded (black)
SBA-15 at (a) room temperature and (b) 50 K. There is less relaxation in
the loaded sample, which strongly indicates a reaction to a weakly relaxing
diamagnetic state on the gold surface.

is not due to enhanced HFA or spin exchange in the loaded
sample, as both would result in more, not less, LF relaxation.
On the contrary, the lower LF relaxation rate strongly supports
the model of a chemical reaction: unlike in the pure SBA-15,
where the highly mobile Mu is depolarized by spin exchange,
it reacts on a fast time scale to form a weakly relaxing dia-
magnetic muon state on the gold surface. Even in the presence
of the gold, there is a small fast front end, which we attribute
to a small fraction of Mu spin exchanging on their way to the
GNPs. Note that unlike in TF geometry, where the external
field causes muon precession and therefore limits the avail-
able time window where a reaction that coherently transfers
spin to the GNP can occur, no such induced depolarization
happens in the presence of a longitudinal field. Consequently,
the reacted muons on the gold surface have a high degree of
spin polarization and act as a highly sensitive probe for any
weak surface magnetism. Fig. 4(b) shows LF spectra in 10 G
in both samples at 50 K. In the presence of the GNPs, little
or no relaxation from the reacted muons is observed. The fit
indicates that the spin relaxation on the GNP surface cannot be
any bigger than about 0.05 µs−1. This implies any electronic
moments must be fluctuating rapidly as expected from a Pauli
paramagnet.

Although there are many conflicting reports of magnetism
in GNPs of all different sizes, our result is reasonable con-
sidering the particles are relatively large, uncapped, and well
separated. In particular the magnetism seen with other meth-
ods12 peaks at much smaller sizes on the order of 2 nm where
the Fermi wave vector (kF = 1.2 nm−1) is close to the inverse
diameter. Also the magnetism is strongly affected by capping13

and our samples have no capping. Of course on general grounds
those GNPs with an odd number of atoms (valence electrons)
must have at least one Bohr magneton. Thus we expect 1/2
Bohr magneton per nanoparticle on average since there is an
equal amount of even and odd particles.

In conclusion, we have observed chemisorption of Mu
onto the surfaces of 7 nm gold nanoparticles embedded in
mesoporous SBA-15. The chemical reaction occurs on two
very different time scales and leads to a final µ+ state on the
metal surface which is spin polarized. Although the positive
muon is well known as a sensitive probe of magnetism in
bulk matter and thin films, the current results represent the
first observation of a µSR signal on a metallic NP surface or
any metal surface. As such the method is sensitive to quasi
static magnetic moments on surfaces which are only a few
nuclear magnetons. The observed muon spin relaxation is very
weak for 7 nm uncapped GNPs which is consistent with weak
Pauli paramagnetism. However it should be possible to extend
this work to other metal NPs where the magnetism is much
stronger. For example, recent work on 13 atom Pt clusters
shows a rich variety of magnetic effects that depend on the
level of hydrogen loading.36 Finally, Mu is widely known in
quantum chemistry as a way to test first principles calculations
and in particular quantum mass effects in H-atom reactivity.37

The present study has established a route to extend Mu chem-
istry to metal surfaces. Furthermore, the observed reaction
of Mu could allow the study of Mu reactions with surface
adsorbed reactants on GNPs and other metallic NPs, thereby
complimenting earlier work on the study of the muoniated
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cyclohexadienyl radical on a fine grained silica-supported Pd
catalyst.38
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