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Despite the ubiquity of computers leading to a steady increase in global music consump-

tion, computing has yet to fundamentally transform the capacity for non-musicians to engage

with music. The experience of non-musicians—that of passively listening to music—is largely

the same as it was decades prior. In this dissertation, I describe my research which allows

non-musicians and musicians alike to create, respond, modify, or otherwise interact with music

in new ways. Examples include a system which allows non-musicians to improvise on musical

instruments without experience, and a system which automatically choreographs music to provide

an interactive listening and dancing experience.

xx



Common to all of my work is the use of predictive models which allow us to efficiently sift

through musical spaces to identify promising content. The identified content can then be further

curated by humans as part of an interactive musical workflow. To build such predictive models, I

use machine learning which seeks to extract and generalize patterns in human-composed music.

Specifically, I focus on a subfield of machine learning called deep learning, which is capable of

extracting such patterns in high-dimensional music representations including both symbolic and

acoustic formats. My research focuses on both advancing the state of the art in deep learning for

music (and other types of multimedia), and designing interfaces which allow humans to intuitively

benefit from what deep learning systems have discovered about music.
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Introduction
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Chapter 1

Introduction

The primary goal of my research is to build systems which allow people to interact with

music in new ways. By “interact”, I am referring broadly to any type of engagement with music

apart from passive listening, i.e., normal listening experiences for musical recordings. New

interactive systems could allow hitherto passive listeners to actively engage with or manipulate

music they are listening to, or perhaps even create music themselves. In practice, my recent

work has focused on augmenting the creative music capacity of humans by designing interfaces

which allow them to pilot or curate generative music systems trained using machine learning.

For non-musicians, interactive machine learning systems can lower the barrier to entry for music

creation by allowing them to intuitively express their musical ideas. For musicians, such systems

expedite laborious sub-tasks of digital music production (e.g. selecting a sample from a sample

library) by designing interfaces which allow for efficient exploration.

Typical systems for creating music (e.g. musical instruments, sheet music, digital audio

workstations) are complex and require high levels of musical expertise for desirable operation.

Such expertise eludes the vast majority of the population because acquiring it requires substantial

time and financial commitments. Accordingly, the prerequisite capacity and intuition for musical

expression lies dormant in many non-musicians. A goal of my research is to build systems which
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Musical intuition

Musical language

Precise actions

Piano interface

?

High-level

Low-level
Figure 1.1: Piano improvisation is a task hitherto inaccessible by non-musicians despite many
having the potential capacity. This task combines high-level musical intuition with lower-
level planning and mechanical expertise. Could we relax (Chapter 5) or one day circumvent
(dashed line) the intermediate steps which currently prevent non-musicians from expressing
their dormant musical intuition through the piano?

allow for intuitive expression of musical ideas but do not require traditional forms of musical

expertise.

To unpack the obstacles to building such systems, let’s examine the practice of improvising

on the piano. This task can be oversimplified into the following procedure (Figure 1.1). First,

the improviser must mentally formulate their piece using their musical intuition. Then, perhaps

implicitly, these ideas are translated into the discrete “language” of music, i.e., sequences of

rhythms and pitches. Finally, this musical language must be translated into a precise series of

physical actions that the performer inputs into the piano interface in real-time.

Arguably, much of the beauty and higher-level reasoning involved in piano improvisa-

tion resides in the first step of conceiving a piece from one’s musical intuition. However, a

disproportionate amount of the effort involved in learning to play the piano is on building the

lower-level planning and dexterity required to precisely impart those ideas onto the keys. Of

course, years of formal piano instruction also help to shape one’s high-level musical intuition.

But could we possibly decouple the development of these high-level skills from the low-level
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skills required to precisely input musical patterns on particular instruments? Could we create

systems which circumvent these intermediate steps (dashed line Figure 1.1), allowing performers

to translate their musical ideas directly into the piano? Such systems would disentangle musical

intuition from mechanical expertise, providing a means for people to express the former without

learning the latter. Directly translating signals from the brain into the piano remains science

fiction, however later in this dissertation I will discuss a physical interface which achieves this

high-level goal to a degree.

A separate issue with modern music creation systems (e.g. digital audio workstations) is

that many common tasks are extremely laborious. For example, an electronic music producer

might spend large amounts of time scouring endless directories of audio clips in search of the

perfect kick drum sound for her track. She might also spend inordinate amounts of time manually

adjusting the volume and timing of a drum pattern to achieve a desired effect. Can we design

interfaces which allow musicians to quickly explore a trove of reasonable outcomes for such

routine tasks? By transforming laborious manual tasks into efficient exercises in exploration and

curation, such systems would augment the productivity of existing musicians.

All of the systems I have described so far involve making predictions on behalf of humans.

As such, they require predictive models that can make musical decisions similarly to human

experts. In my research, I use machine learning to build such models. Machine learning systems

extract patterns from human-composed music which can then be used to make predictions for new

data and offer state-of-the-art performance for a wide variety of musical prediction tasks. I will

detail systems I built which can synthesize attributes of music in a variety of different contexts,

from simpler tasks like creating expressive dynamics to more complex tasks like generating

waveforms.

Machine learning (ML) systems for music suffer two primary drawbacks. The first is that

the tooling infrastructure for training such systems is highly inaccessible, requiring extensive

programming experience and heavy usage of the command line. Fortunately—with substantial
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effort—it is possible to package models trained in this unfriendly environment into familiar

musical interfaces complete with knobs and faders. The second drawback is that ML systems

are (currently) frail and largely incapable of high-level musical decision making. Luckily, it is

possible through human-computer interfaces to pair the high-level planning abilities of humans

(e.g. writing a chord progression for a song) with the efficiency of ML systems for low-level tasks

(e.g. producing hundreds of reasonable melodies given a chord progression). Hence, a sizable

portion of my research involves building and evaluating interfaces between people and predictive

music systems.

At this point I hope to preemptively address a common criticism of my work. Namely, that

building systems which lower the barrier to entry for music creation will cheapen the experience

of existing musicians. This is not the case as existing musicians will always have the advantage

of stronger musical intuition acquired through years of practice. Hence, musicians will always

have higher capacity for precise creative expression regardless of the musical tooling available.

As we enter the era of artificially intelligent (AI) music systems, I believe strongly that

humans must be kept in the loop. Beyond the aforementioned practical rationale, there are

many other reasons why this is the case. I struggle to envision a future where computers are

writing music for other computers, so human ears will continue to be the intended recipients.

Hence, humans will always be the toughest critic and the only real ground truth for evaluating AI

music systems. Additionally, no matter how compelling the music produced by an AI system is,

ultimately I believe that humans will always have the advantage when it comes to true creativity,

rather than just mimicking that which came before. My vision of AI is that, like electronics before

it, it becomes yet another tool in our musical toolbox allowing for deeper musical expression.
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1.1 Dissertation organization

I begin this dissertation with an extended discussion in Part II of my work on using

machine learning to build generative models of music at both the symbolic and acoustic level.

Chapter 2 provides an explanation of modeling music as a probability distribution, which will

be central to the developments of the rest of the thesis. Chapter 3 will discuss the generation of

discrete musical scores (i.e. symbolic representations of music), and Chapter 4 will discuss the

generation of musical (and other types of) waveforms (i.e. acoustic representations of music).

In Part III, I describe my research on building systems which allow for new musical inter-

actions with a focus on co-creation between humans and generative models of music. Chapter 5

will discuss my work on lowering the barrier to entry for playing musical instruments with ma-

chine learning. Chapter 6 will present a system which allows non-musicians to interact with their

personal music collection through a dance-based video game. Chapter 7 contains information

about other demos I have built which merge traditional music interfaces such as sequencers with

powerful generative models of music. In Part IV, I offer some concluding remarks.
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Part II

Music generation with machine learning
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Chapter 2

Preliminaries

In this chapter I describe methodology that I have developed for building music generation

systems with machine learning. As previously stated, my ultimate goal is to build machine learning

systems which allow humans to interact with music in new ways. However, in this portion of my

dissertation I focus exclusively on the machine learning methodology I have developed towards

this goal, and discuss how humans can benefit from this work in Part III.

Machine learning (ML) systems extract patterns from collections of natural data in order

to make predictions about the natural world. ML is most appropriate for tasks where it would be

difficult to manually program a function to accomplish a particular goal. For example, it would

be appropriate to use ML to recognize chord progressions from recordings of music. However,

it would be less appropriate to use ML to identify a key signature from MIDI data, as a simple

heuristic based on the prevalance of particular pitch classes would suffice.

A particular area of machine learning called deep learning has recently been increasing in

popularity because of its ability to model and make predictions about high-dimensional data [Le-

Cun et al., 2015]. Music is inherently high-dimensional data with rich structure; accordingly, deep

learning is my tool of choice for the predictive tasks I encounter in my research. The goal of deep

learning is to train neural networks—non-linear functions often with millions of parameters—to
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map data from one domain to another. In a typical setting, a neural network is trained to perform

a supervised learning task, e.g. labeling data. To accomplish this, data is passed into the neural

network which returns estimates for the likelihood of particular labels. These estimates are

compared to the real labels, and the error of the estimates is used to improve the parameters of

the neural network, in a process known as backpropagation [Rumelhart et al., 1985].

Unlike in other domains such as image and speech recognition where deep learning

dominates, labeled data is a scarce resource in music. Additionally, the objectives in applying

machine learning to music are often less clear than the objectives of applying machine learning

to e.g. speech recognition. Hence, in my research I also explore unsupervised deep learning

approaches, where the goal is to train neural networks to recognize patterns in unlabeled data. For

example, could we recognize commonalities across the hundreds of four-voice chorales composed

by J.S. Bach? Often, my goal with using unsupervised learning is to generate new music in the

style of the training data, hence I refer to these approaches as generative modeling. Could we

extrapolate the patterns we extracted from Bach’s chorales to generate convincing chorales in his

style?

Because I seek to generate music, the majority of Part II will focus on unsupervised

learning strategies. In Chapter 3, I will discuss methodology for learning to generate music

in the symbolic domain. In Chapter 4, I will discuss music generation in the acoustic domain.

First, I offer an explanation of both musical representations and treating music as a probability

distribution which will inform later methodology.

2.1 Musical representations

Of considerable importance to the development of machine learning methodology for

music is the choice of input representation. Here, input representation refers to how music data is

presented to a neural network. As a coarse taxonomy, music representations can be divided into
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Symbolic
(discrete)

Acoustic
(continuous)

Waveforms

Spectrograms

Sheet music

MIDI

Piano roll
Figure 2.1: Symbolic (left) and acoustic (right) representations of the same piece of music
(Prelude in C major, BWV 846, J. S. Bach). Sheet music is a symbolic format most familiar to
musicians. MIDI stores all of the information about a composition in a compact list of musical
events. Piano roll encodes MIDI information into a time-pitch grid retaining the relationships
between notes. Waveforms (recordings) are a digital representation of a musical pressure wave.
Spectrograms are a time-frequency decomposition of waveforms which resemble how the
human auditory system processes sound that arrives at our ears.
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two categories: symbolic and acoustic (Figure 2.1). Symbolic representations are any strategy

which represents music as discrete data, such that it could straightforwardly be engraved as sheet

music. Common symbolic representations include MIDI and piano roll. Acoustic representations

are any strategy which captures an audio waveform, such that it could be easily be played

out of a loudspeaker. Common acoustic representations include time-domain waveforms and

frequency-domain spectrograms.

The choice between symbolic and acoustic representations is one of many trade-offs.

For example, we might intuitively gravitate towards symbolic music representations for music

generation tasks, because they more compactly represent a composer’s intentions than acoustic

representations. Such a choice has its limitations however, as symbolic music data is far less

common than acoustic music data. Hence, we might seek to generate music by modeling music

in the audio domain, but this makes the task much more complicated because audio waveforms

are high-dimensional and also entangle information about the underlying composition with

information about a particular acoustic performance. Additionally, the choice of representation

has implications for both the tasks that we can investigate and the types of neural networks that

we can use to model the music in our chosen representation. Therefore, an input representation

would be selected to match a particular task and methodology, or vice versa.

2.2 Music as a factorized probability distribution

An assumption that underlies all of the methodological contributions here is that music

can be modeled as a probability distribution, and that any given piece of music can be viewed

as a sample from this distribution. A probability distribution is a function that maps all possible

configurations of sources of randomness (random variables) into a number which specifies how

“likely” that configuration is. Henceforth I will refer to the hypothetical distribution of music as

p(music) : music 7→ [0,1]. Ideally, p(music) assigns equal likelihood to every piece of music, so
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that each of them would be sampled from the distribution with equal likelihood. Whether or not

you agree philosophically with this definition, please consider it a conceit that we will use to

build and understand generative models of music.

In this context, p(music) encapsulates all of the random factors that can affect a time-

varying pressure signal which arrives at a human ear and is described by at least one person in the

world as “music”. A random sample from this distribution is a real-valued, time-varying pressure

signal with unbounded length. Never in my work do I attempt to directly model this probability

distribution. Instead, I “fix” certain random factors to construct regions of this distribution which

I can tractably model. First, I describe an important simplifying assumption.

2.2.1 Discretizing p(music)

An important simplifying assumption I make is that music has been sampled at discrete

points in time and its pressure (amplitude) has been quantized. I will refer to this distribution

as P(music), where the capital letter is used to signify the discrete nature of samples from this

probability distribution (as opposed to the continuous samples of p(music). Hence, a sample from

this distribution mmm ∈ ZN ∼ P(music) is a vector of N (variable-length) samples with quantized

amplitude values in set Z and a sampling frequency fs. A single discrete sample mmm∼ P(music)

represents an infinite number of continuous samples from p(music). However, I make an

assumption that humans would not be able to tell the difference between these infinite continuous

samples given standard configurations of fs and Z (e.g. 44.1kHz, 16-bit audio), and hence the

discrete sample mmm is sufficient to represent them.

2.2.2 Factorizing P(music)

P(music) encapsulates every source of randomness that can affect a digital musical wave-

form. To name a few possible sources: composer, performer, ensemble, instrument, microphone,
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temperature, composer’s mood, length of time the ensemble played for, how much coffee the

drummer had, etc. Hence, we can factorize this distribution by fixing certain random factors and

modeling the remaining ones.

To determine which factorizations are reasonable, we turn to both our knowledge of how

music arises naturally and the data we have available. For example, we know that some types

of music arise from different performers playing the same score. Hence, we might factorize as

P(music) = P(score) ·P(acoustic realization | score). This is a flexible approach that allows us

to independently explore generative methods for music score and music performance. We might

also only have data available for a specific composer, and thus by using their compositions as

training data, we are implicitly modeling P(score | composer = Bach).

We know that an acoustic realization of a score also involves several factors. Hence, we

simplify further to the following factorization

P(music) = P(score) ·P(performance | score) ·P(acoustic | performance). (2.1)

In this factorization, score refers to all of the attributes necessary to engrave a piece of music as

sheet music (Figure 2.1). Performance refers to all of the expressive performance attributes such

as dynamics and rubato which a skilled performer uses when performing a rendition. Finally,

acoustic refers to the acoustic properties that yield a waveform from a performance such as the

timbre of the instruments, the room configuration, and the microphone used.

This factorization is convenient to work with because it allows us to examine each portion

of this generative music “pipeline” independently. We can develop, for example, mix-and-match

various methods of generating scores with methods for generating performances from scores.

Throughout the remainder of Part II, I will discuss methods that pertain to the various com-

ponents of Equation (2.1). In Chapter 3, I will discuss a neural network pipeline modeling

P(score) ·P(performance | score) which pairs with a known deterministic synthesizer represent-
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Figure 2.2: Comparing the pitch class frequencies for specific pieces composed by Bach and
Schönberg.

ing P(acoustic | performance). In Chapter 4, I will discuss attempts at modeling P(music) directly

by training neural networks to generate waveforms. First, I will present a pedagogical oversimpli-

fication of modeling P(score) to show how we can intuitively connect probabilistic tooling to our

understanding of music.

2.3 Simplifying and generating P(score)

To give us a simple playground for relating probabilistic models to our musical knowledge,

let’s strip away an extreme amount of information from musical scores. Namely, we will map

a musical score into a time-ordered list of equal-tempered pitch classes used in that score,

discarding all rhythmic and octave information.1 Hence, “Twinkle Twinkle Little Star” would

map to CCGGAAGFFEEDDC in our simple music representation.

Let’s now construct a simple model of P(score) given our chosen representation. The

unigram distribution is a statistic—implying that it is gathered directly from the data rather than

learned—which models the frequencies of various “tokens” in a language. Here the unigram

distribution amounts to a vector of 12 numbers which represent the proportions with which the

pitch classes appear in the data. In Figure 2.2, we compare the unigram distributions for two very

1Note that we have already made several assumptions here and restricted our modeling to music which is
composed with equal temperament.
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different pieces of equal-tempered piano music under our simple music representation: Prelude in

C Major (BWV 846), Bach (Figure 2.1) and Klavierstücke, Op. 33, Schönberg. Even this simplest

of musical probability distributions can highlight stylistic distinctions: the unigram distribution

of the Bach piece is highly peaked at the 7 pitches of the C major diatonic scale, while that of the

Schönberg piece is mostly flat, reflective of his twelve-tone technique.

To generate musical sequences of N notes from a pitch class unigram distribution, we

could simply sample from the distribution N times. Hence, from our Bach distribution, we would

expect around 20 occurrences of the pitch class G for N = 100. Obviously, this would be a terrible

method for music generation, as our probabilistic model preserves none of the sequential aspects

of music. However, in addition to generation, a probabilistic model of music offers us the ability

to ask questions about the likelihood of particular pieces under that model, which often can be

useful even if a model represents a poor method for generating music.

Let’s examine the likelihood of Twinkle Twinkle Little Star under both of these distribu-

tions. We can do this by factorizing P(score) into the product of likelihoods of its constituent

pitch classes, where pn is the pitch class of the nth note

P(score) = P(p1) ·P(p2) · . . . · (pN). (2.2)

Because these cascading multiplications quickly result in small values, we usually examine

log-likelihoods, which vary monotonically with likelihoods and can hence be used for comparison

logP(score) = logP(p1)+ logP(p2)+ . . .+ log(pN). (2.3)

Under our Bach and Schönberg distributions, the log-likelihoods of Twinkle Twinkle Little Star

are −27.1 and −34.7 respectively. Hence, we say that Twinkle Twinkle Little Star is more likely

under our Bach distribution because −27.1 >−34.7. Intuitively, this means that if we were to

generate music from this distribution by the process described above, we would be more likely
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to arrive at Twinkle Twinkle Little Star by sampling from the Bach distribution than from the

Schönberg distribution.

It is important to note that one reason Twinkle Twinkle Little Star was more likely under

our Bach distribution is because it is in the same key as the Bach Prelude we computed our

distribution from. If we instead asked the question about the same song transposed to Eb major,

the log-likelihoods under our Bach and Schönberg distributions are−46.0 and−34.3 respectively.

Hence, the Eb major version of the piece is more likely under the Schönberg distribution. Upon

closer inspection, we see that the likelihoods assigned by the Schönberg distribution to both

transpositions of the piece were similar: −34.7 for C major and −34.3 for Eb major. This is

because the unigram distribution of the Schönberg piece is close to a uniform distribution over

the 12 pitch classes, where each pitch class would be equally likely (p = 1
12). Under a perfectly

uniform distribution, all transpositions of Twinkle Twinkle Little Star (N = 14) would be assigned

the same log-likelihood: 14log( 1
12) =−34.8.

2.3.1 Preserving sequential aspects of music in P(score)

So far we have only examined distributions which discard all of the temporal context in

musical sequences. These distributions are somewhat useful for comparing the likelihoods of

different pieces but not useful for music generation. Using our same simple music representation,

we now turn to distributions which modify their predictions of subsequent pitch classes given

knowledge of previous ones. Perhaps the simplest such model is a bigram distribution, often

referred to as a Markov chain. In this case, a bigram distribution describes the frequencies of

transitions from one pitch class to the next

P(score) = P(p1) ·P(p2 | p1) · . . . ·P(pN | pN−1). (2.4)
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Figure 2.3: Pitch class transition likelihoods across all of Bach’s Well-Tempered Clavier (BWV
846–893). The transitions reflect our understanding of Bach’s compositional style. For example,
major seconds are the most likely intervals while tritones are the least likely.

Hence, it is a matrix with 12 rows and columns where cell i, j is the likelihood that pitch class j

should come next given that the previous pitch class was i.

To create such a distribution, we gather statistics from our corpus about the relative

proportions of such transitions, similarly to how we gathered the statistics for the pitch class

likelihoods for the unigram distribution. Rather than just the first prelude, let’s now examine the

entirety of J.S. Bach’s Well-Tempered Clavier (BWV 846–893), which contains pieces in all 12

key signatures. I display a visualization of the bigram distribution for this corpus in Figure 2.3.

It is easy to relate certain aspects of our knowledge of Bach’s music to this visualization. For

example, transitions along the diagonal correspond to using the same pitch class for two notes in

a row. As we expect, these transitions are less likely than localized transitions such as moving up

or down by a major or minor 2nd. There is noticeably low likelihood assigned to tritone intervals,

which also agrees with our knowledge of Bach’s compositional style.
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Figure 2.4: Trigram, 4-gram, and 5-gram models for Bach’s Well-Tempered Clavier. While
the exponential growth of the model parameters make it difficult to interpret the distributions
visually, we can see that the sparsity of the models (how many n-grams were not present in the
corpus) increases as the context grows (i.e., there is more whitespace in the diagram).

We can further extend our context by adopting a trigram model:

P(score) = P(p1) ·P(p2 | p1) · . . . ·P(pN | pN−2, pN−1), (2.5)

Using one and two more tokens of context, we arrive at 4- and 5-gram distributions respectively.

In Figure 2.4, we show a visualization of these distributions computed on the same corpus as our

bigram distribution. They are difficult to interpret visually, as the number of model parameters

increases exponentially with linear growth of the context. However, they do illustrate an important

limitation of n-gram models: that the proportion of possible sequences of length n that occur in

our dataset becomes smaller (more white space in the visualization) as we increase the size of n.

When we calculated our bigram distribution, all of the 144 possible two-pitch bigrams

occurred at least once in the training data. For our 5-gram distribution however, only 8% of

the possible 5-grams ever occur. We are now faced with an issue when we want to assess the

likelihood for one of the unobserved 5-grams: is this sequence unlikely because Bach would

have never written it, or because he never got around to writing it? This illustrates one

reason why n-gram distributions are insufficient for modeling music. The more we increase n

(and therefore increase our capacity for representing long-term structure), the less information we

can extract from our dataset.
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Figure 2.5: Comparing likelihoods assigned to sequences of five pitch classes by a 5-gram
distribution (left) and a recurrent neural network (right) trained on the same corpus. The
recurrent neural network has learned a smooth parameterization of the distribution that allows
us to estimate reasonable likelihoods for sequences which did not appear in the training data.

2.3.2 Language models for P(score)

In Chapter 3, I discuss the usage of language models for modeling P(score) (in the context

of representations more complex than the simplified one we examine here). A language model

generalizes the n-gram factorization to use all of the previous context in the sequence:

P(score) = P(p1) ·P(p2) · . . . ·P(pN | p1, . . . , pN−1). (2.6)

Due to the sparsity issue described in the previous section, we would be unable to extract

an effective model for this factorization by simply counting the occurrences in our training data

as we did for our n-gram models. Instead, we will use neural networks to parameterize a smooth

version of this distribution, so that we can learn about the likelihood of transitions we have never

seen before. One common way of achieving this is to use recurrent neural networks, which learn

to summarize context up to step N into a continuous vector hhhN using parameters θ. Hence, we are

modeling the following proxy to Equation (2.6):

P(score) =
N

∏
i=1

Pθ(pN | pN−1,hhhN−1). (2.7)

This constructions makes it possible for the same neural network to make predictions for a
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different amounts of past context. In Figure 2.5, we see that this produces predictions for 5-grams

that are much less sparse.

You can hear “music” generated by the n-gram and RNN pitch class models described in

this section in my online supplementary material https://bit.ly/2L1IxYZ .
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Chapter 3

Music generation in the symbolic domain

In this chapter, we extend recent results for symbolic piano music generation [Huang

et al., 2019] to the multi-instrumental setting. Both piano and multi-instrumental music are

polyphonic, where multiple notes may be sounding at any given point in time. However, the

generation of multi-instrumental music presents an additional challenge not present in the piano

domain: handling the intricate interdependencies between multiple instruments. Another obstacle

for the multi-instrumental setting is that there is less data available than for piano, making it more

difficult to train the types of powerful generative models used in [Huang et al., 2019].

Until recently, music generation methods struggled to capture two rudimentary elements of

musical form: long-term structure and repetition. Huang et al. [Huang et al., 2019] demonstrated

that powerful neural network language models, i.e., models which assign likelihoods to sequences

of discrete tokens, could be used to model—and subsequently generate—classical piano music

with long-term structure. To our ears, the piano music generated from their Music Transformer

model represents the most compelling computer-generated music to date. In order to adapt this

method to the multi-instrumental setting we incorporate the semantics of the instruments directly

into our language-like music representation. However, this strategy alone may be insufficient to

generate high-quality multi-instrumental music, as the results of [Huang et al., 2019] also depend
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on access to large quantities of piano music.

To begin to address the data availability problem, we focus on an unusually large

dataset of multi-instrumental music. The Nintendo Entertainment System Music Database

(NES-MDB) [Donahue et al., 2018c] contains 46 hours of chiptunes, music written for the four-

instrument ensemble of the NES (video game system) sound chip. This dataset is appealing for

music generation research not only for its size but also for its structural homogeneity—all of the

music is written for a fixed ensemble. It is, however, smaller than the 172 hours of piano music in

the MAESTRO Dataset [Hawthorne et al., 2019] used to train Music Transformer.

The largest available source of symbolic music data is the Lakh MIDI Dataset [Raffel,

2016] which contains over 9000 hours of music. This dataset is structurally heterogeneous

(different instruments per piece) making it challenging to model directly. However, intuition

suggests that we might be able to benefit from the musical knowledge ingrained in this dataset

to improve our performance on chiptune generation. Accordingly, we propose a procedure to

heuristically map the arbitrary ensembles of music in Lakh MIDI into the four-voice ensemble of

the NES. We then pre-train our generative model on this dataset, and fine-tune it on NES-MDB.

We find that this strategy improves the quantitative performance of our generative model by

10%. Such transfer learning approaches are common practice in state-of-the-art natural language

processing [Devlin et al., 2018, Radford et al., 2019], and here we develop new methodology to

employ these techniques in the music setting.

We refer to the generative model pre-trained on Lakh MIDI and fine-tuned on NES-

MDB as LakhNES. In addition to strong quantitative performance, we also conduct multiple

user studies indicating that LakhNES produces strong qualitative results. LakhNES is capable

of generating chiptunes from scratch, continuing human-composed material, and producing

melodic material corresponding to human-specified rhythms. Sound examples can be found here:

https://bit.ly/2PtQTXK .
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3.1 Related work

Music generation has been an active area of research for decades. Most early work

involved manually encoding musical rules into generative systems or rearranging fragments

of human-composed music; see [Nierhaus, 2009] for an extensive overview. Recent research

has favored machine learning systems which automatically extract patterns from corpora of

human-composed music.

Many early machine learning-based systems focused on modeling simple monophonic

melodies, i.e., music where only one note can be sounding at any given point in time [Todd,

1989, Mozer, 1994, Eck and Schmidhuber, 2002]. More recently, research has focused on

polyphonic generation tasks. Here, most work represents polyphonic music as a piano roll—a

sparse binary matrix of time and pitch—and seeks to generate sequences of individual piano roll

timesteps [Boulanger-Lewandowski et al., 2012, Johnson, 2017, Donahue et al., 2018c] or chunks

of timesteps [Yang et al., 2017]. Other work favors an event-based representation of music, where

the music is flattened into a list of musically-salient events [Simon and Oore, 2017, Mao et al.,

2018, Huang et al., 2019]. None of these methods allow for the generation of multi-instrumental

music, as they provide no mechanism for mapping the generated polyphonic scores to individual

instruments.

Other research focuses on the multi-instrumental setting and seeks to provide systems

which can harmonize with human-composed material [Allan and Williams, 2005, Huang et al.,

2017, Hadjeres and Pachet, 2017, Yan et al., 2018]. Unlike the system we develop here, these

approaches all require complex inference procedures to generate music without human input. A

recent paper [Dong and Yang, 2018] attempts multi-instrumental music generation from scratch,

but their method is limited to generating fixed lengths, unlike our method which can generate

arbitrarily-long sequences. There is also an increasing amount of music generation research that

focuses on generating music in the audio domain [Andreux and Mallat, 2018, Donahue et al.,
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2019a, Dieleman et al., 2018], though this work is largely unrelated to symbolic domain methods.

3.2 Dataset preliminaries

Our NES Music Database (NES-MDB) [Donahue et al., 2018c] consists of approximately

46 hours of music composed for the sound chip on the Nintendo Entertainment System. This

dataset is enticing for research in multi-instrumental music generation because (1) it is an

unusually large corpus of music that was composed for a fixed ensemble, and (2) it is available in

symbolic format.

3.2.1 NES ensemble preliminaries

The ensemble on the NES sound chip has four monophonic instrument voices: two pulse

waveform generators (P1/P2), one triangle waveform generator (TR), and one noise generator

(NO).1 The first three of these instruments are melodic voices: typically, TR plays the bass line

and P1/P2 are interchangeably the melody and harmony. The noise instrument is used to provide

percussion.

The various instruments have a mixture of sound-producing capabilities. For example,

the range of MIDI pitches which P1/P2 can generate is 33–108, while the range of TR extends

an octave lower (21–108). The noise channel can produce 16 different “types” of noise which

correspond to different center frequencies and bandwidths. Each instrument also has a variety

of dynamics and timbral attributes. It is shown in [Donahue et al., 2018c] that these expressive

attributes can be estimated from the score post-hoc, and hence we ignore them in this study to

focus on the problem of modeling composition rather than expressive performance.

Each chiptune in NES-MDB is stored as a MIDI file, and the constituent MIDI events are

quantized at audio rate (44100 ticks per second). Paired with code which synthesizes these MIDI

1There is an additional fifth voice capable of waveform playback that the authors of NES-MDB excluded.
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(a) Blended score (degenerate)

(b) Separated score (melodic voices top, percussive voice bottom)

(c) Expressive score (includes dynamics and timbral changes)

Figure 3.1: Four representations for a segment of Ending Theme from Abadox (1989) by
composer Kiyohiro Sada. The blended score (fig. 3.1a), used in prior polyphonic generation
research, is degenerate when multiple voices play the same note.

files as NES audio, the files contain all of the information needed to synthesize the original 8-bit

waveforms.

3.3 Representations and tasks

Using the terminology of Section 2.2, here we are interested in modeling P(score), and

subsequently modeling P(performance | score) as a pipeline for generating expressive chiptunes.

Samples from the latter are fed into a deterministic synthesizer, (instead of attempting to model

P(acoustic | performance), resulting in samples from a portion of P(music) which are recogniz-

able as chiptunes.

We design a number of different representations which beget several different tasks. I
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describe them all in this section for thoroughness, but I note that the remainder of this chapter

will only focus on two tasks: event-based score generation (Section 3.3.3) and expressive

performance generation (Section 3.3.4).

3.3.1 Blended score representation and task

Much of the prior research on polyphonic music generation [Boulanger-Lewandowski

et al., 2012, Chung et al., 2014, Johnson, 2017] represents music in a blended score representation.

A blended score B is a sparse binary matrix of size N×T , where N is the number of possible note

values, and B[n, t] = 1 if any voice is playing note n at timestep t or 0 otherwise (fig. 3.1a). Often,

N is constrained to the 88 keys on a piano keyboard, and T is determined by some subdivision

of the meter, such as sixteenth notes. When a polpyhonic score sss is represented by B, statistical

models often factorize the distribution as a language model of chords, the columns Bt :

P(sss) = P(B1) ·P(B2 | B1) · . . . ·P(BT | Bt<T ). (3.1)

This representation simplifies the overall task, but it is problematic for music with multiple

instruments (such as the music in NES-MDB). Resultant systems must provide an additional

mechanism for assigning notes of a blended score to instrument voices, or otherwise render the

music on polyphonic instruments such as the piano. Therefore, we mainly explore this task to

compare our methods to prior work.

3.3.2 Separated score representation and task

Given the shortcomings of the blended score, we might prefer models which operate

on a separated score representation (fig. 3.1b). A separated score S is a matrix of size V ×T ,

where V is the number of instrument voices, and S[v, t] = n, the note n played by voice v at

timestep t. In other words, the format encodes a monophonic sequence for each instrument voice.
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Statistical approaches to this representation can explicitly model the relationships between various

instrument voices by

P(sss) =
T

∏
t=1

V

∏
v=1

P(Sv,t | Sv,t̂ 6=t ,Sv̂6=v,∀t̂). (3.2)

This formulation explicitly models the dependencies between Sv,t , voice v at time t, and

every other note in the score. For this reason, Equation (3.2) more closely resembles the process by

which human composers write multi-instrumental music, incorporating temporal and contrapuntal

information. Another benefit is that resultant models can be used to harmonize with existing

musical material, adding voices conditioned on existing ones. However, any non-trivial amount of

temporal context introduces high-dimensional interdependencies, meaning that such a formulation

would be challenging to sample from. As a consequence, solutions are often restricted to only

take past temporal context into account, allowing for simple and efficient ancestral sampling

(though Gibbs sampling can also be used to sample from eq. (3.2) [Hadjeres and Pachet, 2017,

Huang et al., 2017]).

Most existing datasets of multi-instrumental music (the chorales of J.S. Bach being a

notable exception [Allan and Williams, 2005]) have uninhibited polyphony, causing a separated

score representation to be inappropriate. However, the hardware constraints of the NES APU

impose a strict limit on the number of voices, making the format ideal for NES-MDB.

3.3.3 Event-based representation and task

Because no tempo or beat information exists in NES-MDB, for our piano roll representa-

tions we are forced to discretize the time axis to a fixed rate of 24 timesteps per second. This high

rate is necessary for capturing nuanced timing information in the scores but results in much of the

information being redundant across adjacent timesteps. This represents a challenge as long-term

dependencies are a barrier to success for sequence modeling with machine learning.

To circumvent these issues, we design an event-based representation (bottom of Figure 3.2)
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Figure 3.2: A visual comparison between the piano roll representation of the original NES-
MDB paper [Donahue et al., 2018c] (top) and the event representation of this work (bottom).
In the piano roll representation, the majority of information is the same across timesteps. In our
event representation, each timestep encodes a musically-meaningful change.

similar to that used for single-instument music in [Simon and Oore, 2017]. Specifically, we

convert each NES-MDB MIDI file into a time-ordered sequence of events, so that every entry in

the sequence corresponds to a musically-salient occurrence.

To handle the rhythmic information, we add time shift (∆T ) events which represent time

advancing by some discrete number of ticks (each tick is 1
44100 th of a second). To keep the number

of events in our representation tractable, we quantize ∆T events in the real data to fixed gratings.

We embed the multi-instrumental aspect of our problem directly into this representation by using

separate note on/off events for each instrument. Our final representation consists of 631 events, of

which about half encode time-related events and half note-related (Table 3.1). Apart from minor

timing quantization errors, this format is a lossless transformation of the original MIDI score.
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Table 3.1: Schematic for our event-based representation of NES-MDB, reminiscent of the one
used in Performance RNN [Simon and Oore, 2017]. The 631 events in our representation are
distributed among time-shift (∆T ) events (which allow for nuanced timing), and note off/on
events for individual instruments (as in typical MIDI).

Event description Event ID(s)

Start or end of sequence 0
∆T for 1–100 ticks (short) 1–100
∆T for 100–1000 ticks (medium) 101–190
∆T for > 10000 ticks (long) 191–370
P1 Note Off/On 371–447
P2 Note Off/On 448–524
TR Note Off/On 525–613
NO Note Off/On 614–630

3.3.4 Expressive performance generation

Given a piece of a music, a skilled performer will embellish the piece with expressive

characteristics, altering the timing and dynamics to deliver a compelling rendition. While a

few instruments have been augmented to capture this type of information symbolically (e.g. a

Disklavier), it is rarely available for examination in datasets of multi-instrumental music. Because

NES music is comprised of instructions that recreate an exact rendition of each piece, expressive

characteristics controlling the velocity and timbre of each voice are available in NES-MDB. Thus,

each piece can be represented as an expressive score (fig. 3.1c), the union of its separated score

and expressive characteristics.

We consider the task of mapping a separated score (Figure 3.1b) sss onto expressive

characteristics eee. Hence, we would like to model P(eee | ccc). This allows for a convenient pipeline

for music generation where a piece of music is first composed with binary amplitudes and then

mapped to realistic dynamics, as if interpreted by a performer.
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3.4 Methodology

Here we describe our primary methodology which focuses on the event-based task Sec-

tion 3.3.3. To model the event sequences outlined in the last section, we adopt a language

modeling factorization. We factorize the joint probability of a musical sequence consisting of N

events (E1, . . . ,EN) into a product of conditionals:

P(E1) ·P(E2 | E1) · . . . ·P(EN | E1, . . . ,EN−1). (3.3)

This factorization is convenient because it allows for a simple left-to-right algorithm for generating

music: sampling from the distribution estimated by the model at each timestep (conditioned on

previous outputs). The goal of our optimization procedure is to find a model configuration which

maximizes the likelihood of the real event sequences. Motivated by the strong results for piano

music generation from the recent Music Transformer [Huang et al., 2019] approach, we also

adopt a Transformer [Vaswani et al., 2017] architecture.

3.4.1 Transformer architecture

The Transformer [Vaswani et al., 2017] is an attention-based neural network architecture.

In our context, this means that the model has a mechanism which explicitly biases its predictions

based on a subset of musical events that have happened in the past. The model’s design gives it

the ability to learn which subset of past musical events to pay attention to when predicting the

current event. This mechanism may be especially useful for learning patterns of repetition in

music across large gaps of time.

The original Transformer architecture [Vaswani et al., 2017] was an encoder-decoder

model designed for language translation. In this paper, we are only concerned with the decoder

portion of the Transformer. Our work uses a recent extension of Transformer called Transformer-

XL [Dai et al., 2019], which is designed specifically to handle longer sequences. Transformer-XL
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builds upon the Transformer architecture by augmenting it with a recurrence mechanism. The

recurrence mechanism enables Transformer-XL to use information beyond its training segment

by learning how to incorporate recurrent state from previous segments. In contrast, the original

Transformer is only able to alter its predictions based on the current training segment, hence

the available system memory during training is a bottleneck to its ability to learn long-term

dependencies. In order to effectively use its recurrent state, Transformer-XL adopts a sophisticated

position-aware mechanism so the model can generalize to different amounts of recurrent memory

during generation.

The Music Transformer [Huang et al., 2019] is a different Transformer variant that also

attempts to tackle long-range dependencies by using a mechanism which reduces the quadratic

memory cost of attention, enabling training on longer sequences. Although similar in goal to

Transformer-XL, its method is orthogonal and could, in theory, be combined with the recurrent

mechanism of Transformer-XL. For simplicity, we focus on the Transformer-XL architecture as

its recurrence mechanism alone is sufficient to learn long-term dependencies. Additionally, code

to reproduce the Music Transformer method is unavailable.

3.4.2 Pre-training

Transformers are extremely high-dimensional models, and accordingly they can learn

effective strategies for extremely large datasets [Radford et al., 2019]. One barrier to their

application in the music domain is that most symbolic music datasets are either too small or too

structurally heterogeneous. For example, the popular Bach chorales dataset [Hild et al., 1992]

is structurally homogeneous (all chorales have four voices), but small (only 306 chorales). In

contrast, the Lakh MIDI dataset [Raffel, 2016] is enormous (175k songs) but heterogeneous

(varying numbers of instruments per piece). The NES-MDB dataset we use in this work represents

a middle ground (large and structurally-homogenous), but is still substantially smaller than the

MAESTRO dataset [Hawthorne et al., 2019] used to train Music Transformer (46 hours vs. 172
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P1 P2 TR NO

Figure 3.3: Illustration of our mapping heuristic used to enable transfer learning from Lakh
MIDI to NES-MDB. We identify monophonic instruments from the arbitrary ensembles in Lakh
MIDI and randomly assign them to the fixed four-instrument ensemble of NES-MDB.

hours).

We hypothesize that we can improve the performance of our model on our NES music

generation task by leveraging the musical information in the larger Lakh MIDI dataset. To test

this, we propose a two-step procedure. First, we map each structurally-heterogeneous Lakh MIDI

file into one which can be performed by our NES ensemble. Then, we pre-train a Transformer

on this dataset, and fine-tune this pre-trained model on the NES-MDB dataset. Such transfer

learning procedures are common methodology in other areas of machine learning [Pan and Yang,

2010], but remain hitherto unexplored in music generation research. One possible reason for the

lack of investigation into this strategy is that mapping music from one domain to another requires

careful consideration of musical invariants, and hence is less straightforward than analogous

methodology for other tasks (e.g. language). We consider this transfer learning protocol to be a

primary methodological contribution of this work.

Mapping Lakh MIDI to the NES ensemble

Here we describe our protocol for mapping Lakh MIDI data into a score suitable for

the four monophonic instruments of the NES ensemble. For a given example from Lakh MIDI,

we first identify all of its monophonic melodic instruments (skipping the example if it has no

such instruments). Then, we filter out instruments which fall outside of the range of MIDI
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notes that the NES ensemble is capable of producing (Section 3.2.1). We randomly assign these

instruments to the three melodic instruments of the NES (P1/P2/TR) (Figure 3.3). Because there

are a variable number of instruments in each Lakh MIDI example, there are potentially many

possible assignments. Hence, we output multiple examples for each input Lakh MIDI example,

up to a maximum of 16 per input.

In addition to this strategy for melodic instruments, we also design a strategy for mapping

percussive instruments in Lakh into the percussive noise instrument of the NES ensemble. We first

identify percussive instruments in each Lakh MIDI example. Then, each individual percussive

voice (e.g. snare drum, hi-hat) is randomly assigned to a noise “type” (1–16), emulating how the

noise instrument is used by human composers to encode syncopated rhythms.

From the 175k MIDI files in Lakh MIDI, our mapping procedure produces 775k examples

suitable for performance by the NES ensemble. It is straightforward to imagine similar mapping

procedures for other ensembles (e.g. string quartet, vocal choir), and thus it is possible that music

generation research in other domains could reuse this procedure to enable transfer learning.

3.5 Event-based score generation experiments

We first conduct an experiment to train Transformer-XL [Dai et al., 2019] on our event

representation (Section 3.3.3) of NES-MDB. We train the model on excerpts from the training

data of 512 events; each excerpt represents around 9 seconds of music on average. Because of the

recurrent attention mechanism in Transformer-XL, the model effectively has access to twice this

length in its history.

We use the smaller configuration of Transformer-XL which has 12 attention layers each

with 8 heads (full details of our model can be found in our code which will be released upon

publication). The learning rate 2e−4 used to train this model on text was found to be too high for

our musical application, so we lowered it to 2e−5. Training was stopped when the performance
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of the model on the validation data stopped improving. We trained the model using four NVIDIA

Titan X GPUs with minibatches of size 30, and it reached its early stopping criteria in less than a

day. Pre-trained models will be released upon publication.

3.5.1 Data augmentation and pre-training

To improve the performance of our model further, we employed standard music data

augmentation methods as well as ones which we developed specifically for the multi-instrumental

setting:

1. (Standard) Transpose melodic voices by a random number of semitones between −6 and 5

(inclusive).

2. (Standard) Adjust the speed of the piece by a random percentage between ±5%.

3. Half of the time, remove a random number of instruments from the ensemble (leaving at

least one).

4. Half of the time, shuffle the score-to-instrument alignment for the melodic instruments only

(e.g. TR performs P2’s part).

Finally, we experimented with pre-training our model on the Lakh MIDI dataset mapped

to the NES ensemble (Section 3.4.2). To conduct this experiment, we first split the Lakh data into

training and validation subsets. We then trained the model for a week on the training set (with

data augmentation) and monitored performance on the validation set. Because of the extreme

size of the dataset, the model only completed four epochs of training. Even after a week, the

model was underfitting the training data (validation performance was still improving). We then

fine-tuned this pre-trained model on the NES-MDB training data, again performing early stopping

based on the validation performance. Both our pre-training and fine-tuning experiments use the

same hyperparameters outlined in the previous section.
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3.5.2 Baselines

We also measure the performance of competitive baselines on our event-based represen-

tation of NES-MDB. Our simplest baselines consist of n-gram models, i.e., statistics gathered

directly from the training data of how often certain length-n sequences appear. Specifically, we

build unigram (1-gram) and 5-gram models, using backoff for the latter to provide a likelihood

for 5-grams which are not present in the training data. We also compare to an LSTM [Hochreiter

and Schmidhuber, 1997] recurrent neural network, which is a popular model for music generation.

Our LSTM is configured so that it has approximately the same number of parameters as our

Transformer-XL model.

3.5.3 Quantitative analysis

Table 3.2: Quantitative performance of various models trained on the event-based representation
(631 event types) of NES-MDB. Params indicates the number of parameters of each model.
Epochs is the number of data epochs the model observed before early stopping based on the
validation data. Test PPL represents the perplexity of the model on the test data, i.e., the
exponentiation of its average negative log-likelihood on the test data. A lower perplexity
indicates that the model better fits this unseen data.

Model Params Epochs Test PPL

Random 0 0 631.00
Unigram 631 1 198.14
5-gram 9M 1 37.25
LSTM [Hochreiter and Schmidhuber, 1997] 40M 18 14.11
+Data augmentation 35 12.64

Transformer-XL [Dai et al., 2019] 41M 76 3.50
+Data augmentation 350 2.74
+Pre-train (LakhNES) 250 2.46

We report the perplexity (PPL) of each model on the test set in Table 3.2. Perplexity

is calculated by first averaging the negative log-likelihood of each model across the test data,

then exponentiating the average, i.e., e
1
N ∑

N
i=1− logqi , where qi is the likelihood assigned by a given

model to the i-th event. A lower perplexity on the test set indicates that a model is a good fit for
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unseen data, and hence increases our confidence in its ability to generate new music.

We find that Transformer-XL dramatically outperforms both the n-gram and LSTM

baselines on the NES-MDB event-based task (PPL of 3.5 vs. 37.2 and 14.1 respectively). Data

augmentation improves the performance of both the LSTM and Transformer-XL (by 10% and

22% respectively), and also increases the number of epochs the models observe before overfitting.

We observe that LakhNES (Transformer-XL pre-trained on Lakh MIDI and fine-tuned on NES-

MDB with augmentation), achieves 10% better performance than training with data augmentation

alone.

We also conduct an experiment to measure the performance effect of using different

amounts of Lakh MIDI pre-training before fine-tuning on NES-MDB. Specifically, we measure

the performance on the NES-MDB fine-tuning task after 1, 2, and 4 epochs of Lakh MIDI

pre-training. We plot the test PPL of each model after fine-tuning in Figure 3.5. The results agree

with our expectation that increasing the amount of pre-training improves the fine-tuned model’s

performance, though with diminishing returns.

3.6 Expressive performance generation experiments

The expressive performance task consists of learning a mapping from a separated score

to suitable expressive characteristics. Each timestep of a separated score in NES-MDB has note

information (random variable N) for the four instrument voices. An expressive score additionally

has velocity (V ) and timbre (T ) information for P1, P2, and NO but not TR. We can express

the distribution of performance characteristics given the composition as P(V, T | N). Some

of our proposed solutions factorize this further into a conditional autoregressive formulation

∏
T
t=1 P(Vt ,Tt | N,Vt̂<t ,Tt̂<t), where the model has explicit knowledge of its decisions for velocity

and timbre at earlier timesteps.

Unlike for separated composition, there are no well-established baselines for multi-
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Table 3.3: Results for expressive performance experiments evaluated at points of interest (POI).
Results are broken down by expression category (e.g. VNO is noise velocity, TP1 is pulse 1
timbre) and aggregated at POIs and globally (All).

Negative log-likelihood
Single voice Aggregate

Model VP1 VP2 VNO TP1 TP2 POI All

Random 2.77 2.77 2.77 1.39 1.39 11.09 11.09
Unigram 2.87 2.89 3.04 1.35 1.33 11.47 9.65
Bigram 2.82 2.85 2.78 4.27 4.27 17.00 4.57
MultiReg Note 2.74 2.72 2.23 1.27 1.18 10.13 8.49
MultiReg Note+Auto 2.58 2.56 2.04 2.90 2.48 12.56 4.32
LSTM Note 2.68 2.63 2.09 1.32 1.21 9.94 8.28
LSTM Note+Auto 1.93 1.89 1.99 2.23 1.89 9.93 3.42

instrumental expressive performance, and thus we design several approaches. For the autoregres-

sive formulation, our most-sophisticated model (fig. 3.4) uses a bidirectional LSTM to process the

separated score, and a forward-directional LSTM for the autoregressive expressive characteristics.

The representations from the composition and autoregressive modules are merged and processed

by an additional dense layer before projecting to six softmaxes, one for each of VP1, VP2, VNO,

TP1, TP2, and TNO. We compare this model (LSTM Note+Auto) to a version which removes the

autoregressive module and only sees the separated score (LSTM Note).

We also measure performance of simple multinomial regression baselines. The non-

autoregressive baseline (MultiReg Note) maps the concatenation of NP1, NP2, NTR, and NNO

directly to the six categorical outputs representing velocity and timbre (no temporal context). An

autoregressive version of this model (MultiReg Note+Auto) takes additional inputs consisting of

the previous timestep for the six velocity and timbre categories. Additionally, we show results

for simple baselines (per-category unigram and bigram distributions) which do not consider N.

Because the noise timbre field TNO is so rarely used (less than 0.2% of all timesteps), we exclude

it from our quantitative evaluation. Results are shown in table 3.3.

Similarly to the musical notes in the separated composition task, the high rate of NES-
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Figure 3.4: LSTM Note+Auto expressive performance model that observes both the score and
its prior output.

MDB results in substantial redundancy across timesteps. Averaged across all velocity and timbre

categories, any of these categories at a given timestep has a 74% chance of having the same value

as the previous timestep.

The performance of the LSTM Note model is comparable to that of the LSTM Note+Auto

model at POIs, however the global performance of the LSTM Note+Auto model is substantially

better. Intuitively, this suggests that the score is useful for knowing when to change, while the

past velocity and timbre values are useful for knowing what value to output next. Interestingly,

the MultiReg Note model has better performance at POIs than the MultiReg Note+Auto model.

The latter overfit more quickly which may explain its inferior performance despite the fact that it

sees strictly more information than the note-only model.
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3.7 User study

Here we perform a user study using our most promising score generation models from Sec-

tion 3.5. While perplexity is a useful quantitative metric for model comparison, it is not necessarily

correlated with human judgements. Since we ultimately seek models which produce music that is

convincing to humans, we conduct two user studies on Amazon Mechanical Turk to compare

the performance of various models. In both of our user studies we compare four models: (1)

5-gram model, (2) LSTM trained with data augmentation, (3) Transformer-XL trained with data

augmentation, and (4) LakhNES (Transformer-XL pre-trained on Lakh MIDI and fine-tuned on

NES-MDB). Random examples from all of our methods can be heard at the bottom of our sound

examples page: https://bit.ly/2PtQTXK .

3.7.1 Turing test

This study seeks to determine the ability of humans to distinguish between real (human-

composed) and fake (computer-generated) chiptunes in a “Turing test” setting. We present human

judges with pairs of examples where one example is real and the other fake, and ask them to

identify the real example between the two.

We first amass a collection of 5-second audio clips from all of our methods and from

the real data. Then, we create pairs of examples where one example is real and the other fake

(randomly chosen from our four methods). Given that Mechanical Turk studies are notoriously

noisy, we also create control pairs where the fake data comes from a random model (i.e. we

generate “music” by selecting events uniformly at random—row 1 in Table 3.2).

We ask human judges to annotate 800 batches each consisting of 10 randomly-ordered

pairs, where fake data in 2 of the pairs came from the control set and fake data in 8 of the pairs

came from our four methods. For their judgments to be included in our results, workers were

required to complete at least 3 batches and achieve 100% accuracy on the 6 control examples in
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Figure 3.5: Measuring the performance improvement when doubling the amount of Lakh
MIDI pre-training before fine-tuning Transformer-XL on NES-MDB. Each datapoint represents
the result of a fine-tuning run starting from 0, 1, 2, or 4 epochs of Lakh MIDI pre-training.
Additional amounts of pre-training appear to improve performance, though with diminishing
returns.

those batches—a worker answering randomly would only be included 1.6% of the time. After

filtering, each method was evaluated around 180 times. We report accuracy in Figure 3.6.

In this setting, a lower accuracy indicates that a given model’s results sound more human-

like, because they were incorrectly identified as human-composed more often. An ideal generative

model would achieve 50% accuracy (although it is possible in theory to generate music which

sounds “more human” than human-composed music). We find that LakhNES (Transformer-XL

with pre-training) was mistakenly identified as human more often than both our 5-gram model

(p < .0001) and our LSTM (p = .07). It also outperformed the Transformer-XL model without

pre-training, but with low confidence (p = .32).

Overall, these results suggest that there is still a sizable gap between human-composed

and computer-generated chiptunes. We suspect that results would be even less favorable for the

generative methods if clips longer than 5 seconds were used. Subjectively speaking, we feel that
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Figure 3.6: Human accuracy at distinguishing computer-generated examples from human-
composed ones (error bars are standard error). Users were presented with pairs of clips (one
human, one computer) and tasked with identifying which was composed by a human. Random
examples are used as a control and we filtered annotators with accuracy less than 1 on those
pairs. A lower accuracy is better as it indicates that the annotators confused a particular model
with the real data more often.

the melodies and harmonies produced by LakhNES are promisingly human, but its inability to

maintain rhythmic consistency is often a dead giveaway in a Turing test. We suspect that our

model could be improved by using a beat-based event representation, however the current model

can be bootstrapped with human-specified rhythmic material to “fix” its rhythmic consistency

issues (Section 3.8).

3.7.2 Preference test

In addition to our Turing test, we also conduct a preference-based user study, given that

human-ness is not necessarily a predictor of general preference. We present human judges with

pairs of examples from two different methods, and ask them which of the two they “prefer”.

Here we construct pairs of 10-second clips from two different (randomly-chosen) methods.

As in our Turing test, we construct randomly-ordered batches consisting of 10 pairs. In each
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Figure 3.7: Proportion of comparisons where humans preferred an example from each model
over an example from another random model (error bars are standard error). Users were
presented with pairs of clips from different methods and asked which they preferred. Pairs of
random data and human-composed clips are used as a control and we filtered annotators who
preferred random. A higher ratio is better as it indicates that the annotators preferred results
from that method more often than another.

batch, 8 of the pairs are created by sampling two methods without replacement from a set of five

(four computer-generated and the real data), while 2 pairs always compare randomly-generated

clips to real data (control). We ask human judges to assign preference to these batches, filtering

out workers who even once indicated that they preferred random examples to real data. After

filtering, each of the five methods was involved in around 400 comparisons in total. We report the

ratio of “wins” for each method in Figure 3.7, i.e. the proportion of times a method was preferred

over any of the other four.

We find that LakhNES outperforms all other generative methods, though is preferred

significantly less often than the real data. Human judges preferred chiptunes generated by

LakhNES over the real data in 26% of comparisons (vs. only 10% of the time for the LSTM). We

find this to be a promising indicator of Transformer’s potential on this task.
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3.8 Pairing LakhNES with humans

In addition to generating chiptunes from scratch, LakhNES can be used for a number of

tasks to assist human composers. For example, LakhNES can be “primed” on human-composed

material and then asked to continue the material, providing a method for composers to quickly

expand on their ideas. Composers can also provide fixed rhythmic material and use LakhNES

to generate the rest of the score. We explore these use cases in our sound examples: https:

//bit.ly/2PtQTXK . When generating all of our sound examples (besides those in our user study),

we found that limiting the entropy of the model by using a sampling temperature of .95 and top-k

sampling [Fan et al., 2018] with k = 32 improved results qualitatively.

3.9 Conclusion

In this chapter we presented LakhNES, a method for learning to generate multi-instrumental

music. We developed an event-based representation suitable for multi-instrumental music. Train-

ing powerful language models on this representation results in compelling multi-instrumental

music generation. We show that we can further improve results both quantitatively and quali-

tatively by pre-training on a cross-domain dataset. This cross-domain pre-training procedure

could be useful for overcoming data limitations for other musical domains. LakhNES can be used

to both generate chiptunes from scratch and collaborate with human composers in a number of

different ways.
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Chapter 4

Music generation in the acoustic domain

Synthesizing audio for specific domains has many practical applications in creative sound

design for music and film. Musicians and Foley artists scour large databases of sound effects to

find particular audio recordings suitable for specific scenarios. This strategy is painstaking and

may result in a negative outcome if the ideal sound effect does not exist in the library. A better

approach might allow a sound artist to explore a compact latent space of audio, taking broad steps

to find the types of sounds they are looking for (e.g. footsteps) and making small adjustments to

latent variables to fine-tune (e.g. a large boot lands on a gravel path). However, audio signals have

high temporal resolution, and strategies that learn such a representation must perform effectively

in high dimensions.

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] are one such unsu-

pervised strategy for mapping low-dimensional latent vectors to high-dimensional data. The

potential advantages of GAN-based approaches to audio synthesis are numerous. Firstly, GANs

could be useful for data augmentation [Shrivastava et al., 2017] in data-hungry speech recognition

systems. Secondly, GANs could enable rapid and straightforward sampling of large amounts of

audio. Furthermore, while the usefulness of generating static images with GANs is arguable,

there are many applications (e.g. Foley) for which generating sound effects is immediately useful.
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But despite their increasing fidelity at synthesizing images [Radford et al., 2016, Berthelot et al.,

2017, Karras et al., 2018], GANs have yet to be demonstrated capable of synthesizing audio in an

unsupervised setting.

A naı̈ve solution for applying image-generating GANs to audio would be to operate

them on image-like spectrograms, i.e., time-frequency representations of audio. This practice of

bootstrapping image recognition algorithms for audio tasks is commonplace in the discriminative

setting [Hershey et al., 2017]. In the generative setting however, this approach is problematic as

the most perceptually-informed spectrograms are non-invertible, and hence cannot be listened to

without lossy estimations [Griffin and Lim, 1984] or learned inversion models [Shen et al., 2018].

Recent work [van den Oord et al., 2016, Mehri et al., 2017] has shown that neural networks

can be trained with autoregression to operate on raw audio. Such approaches are attractive as they

dispense with engineered feature representations. However, unlike with GANs, the autoregressive

setting results in slow generation as output audio samples must be fed back into the model one at

a time.

In this work, we investigate both waveform and spectrogram strategies for generating

one-second slices of audio with GANs.1 For our spectrogram approach (SpecGAN), we first

design a spectrogram representation that allows for approximate inversion, and bootstrap the

two-dimensional deep convolutional GAN (DCGAN) method [Radford et al., 2016] to operate on

these spectrograms. In WaveGAN, our waveform approach, we flatten the DCGAN architecture to

operate in one dimension, resulting in a model with the same number of parameters and numerical

operations as its two-dimensional analog. With WaveGAN, we provide both a starting point for

practical audio synthesis with GANs and a recipe for modifying other image generation methods

to operate on waveforms.

We primarily envisage our method being applied to the generation of short sound effects

1Sound examples: https://chrisdonahue.com/wavegan examples
Drum demo: https://chrisdonahue.com/wavegan
Generation with pre-trained models: https://bit.ly/2G8NWpi
Training code: https://github.com/chrisdonahue/wavegan
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suitable for use in music and film. For example, we trained a WaveGAN on drums, resulting in

a procedural drum machine designed to assist electronic musicians (demo https://chrisdonahue.

com/wavegan). However, human evaluation for such domain-specific tasks would require expert

listeners. Therefore, we also consider a speech benchmark, facilitating straightforward assessment

by human annotators. Specifically, we explore a task where success can easily be judged by any

English speaker: generating examples of spoken digits “zero” through “nine”.

Though our evaluation focuses on a speech generation task, we note that it is not our goal

to develop a text-to-speech synthesizer. Instead, our investigation concerns whether unsupervised

strategies can learn global structure (e.g. words in speech data) implicit in high-dimensional audio

signals without conditioning. Our experiments on speech demonstrate that both WaveGAN and

SpecGAN can generate spoken digits that are intelligible to humans. On criteria of sound quality

and speaker diversity, human judges indicate a preference for the audio generated by WaveGAN

compared to that from SpecGAN.

4.1 GAN Preliminaries

GANs learn mappings from low-dimensional latent vectors zzz ∈ Z, i.i.d. samples from

known prior PZ , to points in the space of natural data X . In their original formulation [Goodfellow

et al., 2014], a generator G : Z 7→ X is pitted against a discriminator D : X 7→ [0,1] in a two-player

minimax game. G is trained to minimize the following value function, while D is trained to

maximize it:

V (D,G) = Exxx∼PX [logD(xxx)]+Ezzz∼PZ [log(1−D(G(zzz)))]. (4.1)

In other words, D is trained to determine if an example is real or fake, and G is trained to

fool the discriminator into thinking its output is real. Goodfellow et al. [2014] demonstrate that

their proposed training algorithm for Equation 4.1 equates to minimizing the Jensen-Shannon

divergence between PX , the data distribution, and PG, the implicit distribution of the generator
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when zzz∼ PZ . In this original formulation, GANs are notoriously difficult to train, and prone to

catastrophic failure cases. Instead of Jensen-Shannon divergence, Arjovsky et al. [2017] suggest

minimizing the smoother Wasserstein-1 distance between generated and data distributions

W (PX ,PG) = sup
‖ f‖L≤1

Ex∼PX [ f (x)]−Ex∼PG [ f (x)] (4.2)

where ‖ f‖L ≤ 1 : X 7→ R is the family of functions that are 1-Lipschitz.

To minimize Wasserstein distance, they suggest a GAN training algorithm (WGAN),

similar to that of Goodfellow et al. [2014], for the following value function:

VWGAN(Dw,G) = Exxx∼PX [Dw(xxx)]−Ezzz∼PZ [Dw(G(zzz))]. (4.3)

With this formulation, Dw : X 7→ R is not trained to identify examples as real or fake, but

instead is trained as a function that assists in computing the Wasserstein distance. Arjovsky et al.

[2017] suggest weight clipping as a means of enforcing that Dw is 1-Lipschitz. As an alternative

strategy, Gulrajani et al. [2017] replace weight clipping with a gradient penalty (WGAN-GP) that

also enforces the constraint. They demonstrate that their WGAN-GP strategy can successfully

train a variety of model configurations where other GAN losses fail.

4.2 WaveGAN

We motivate our design choices for WaveGAN by first highlighting the different types of

structure found in audio versus images.

4.2.1 Intrinsic differences between audio and images

One way to illustrate the differences between audio and images is by examining the axes

along which these types of data vary most substantially, i.e. by principal component analysis.
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Figure 4.1: First eight principal components for 5x5 patches from natural images (left) versus
those of length-25 audio slices from speech (right). Periodic patterns are unusual in natural
images but a fundamental structure in audio.

In Figure 4.1, we show the first eight principal components for patches from natural images

and slices from speech. While the principal components of images generally capture intensity,

gradient, and edge characteristics, those from audio form a periodic basis that decompose the

audio into constituent frequency bands. In general, natural audio signals are more likely to exhibit

periodicity than natural images.

As a consequence, correlations across large windows are commonplace in audio. For

example, in a waveform sampled at 16kHz, a 440Hz sinusoid (the musical note A4) takes over

36 samples to complete a single cycle. This suggests that filters with larger receptive fields

are needed to process raw audio. This same intuition motivated van den Oord et al. [2016] in

their design of WaveNet, which uses dilated convolutions to exponentially increase the model’s

effective receptive field with linear increase in layer depth.

4.2.2 WaveGAN architecture

We base our WaveGAN architecture off of DCGAN [Radford et al., 2016] which popular-

ized usage of GANs for image synthesis. The DCGAN generator uses the transposed convolution

operation (Figure 4.2) to iteratively upsample low-resolution feature maps into a high-resolution

image. Motivated by our above discussion, we modify this transposed convolution operation to

49



WaveGANDCGAN

Figure 4.2: Depiction of the transposed convolution operation for the first layers of the DC-
GAN [Radford et al., 2016] (left) and WaveGAN (right) generators. DCGAN uses small (5x5),
two-dimensional filters while WaveGAN uses longer (length-25), one-dimensional filters and a
larger upsampling factor. Both strategies have the same number of parameters and numerical
operations.

widen its receptive field. Specifically, we use longer one-dimensional filters of length 25 instead

of two-dimensional filters of size 5x5, and we upsample by a factor of 4 instead of 2 at each

layer (Figure 4.2). We modify the discriminator in a similar way, using length-25 filters in one

dimension and increasing stride from 2 to 4. These changes result in WaveGAN having the same

number of parameters, numerical operations, and output dimensionality as DCGAN.

Because DCGAN outputs 64x64 pixel images — equivalent to just 4096 audio samples

— we add one additional layer to the model resulting in 16384 samples, slightly more than

one second of audio at 16 kHz. This length is already sufficient for certain sound domains

(e.g. sound effects, voice commands), and future work adapting megapixel image generation

techniques [Karras et al., 2018] could expand the output length to more than a minute. We

requantize the real data from its 16-bit integer representation (linear pulse code modulation) to

32-bit floating point, and our generator similarly outputs floating point waveforms. A complete

description of our model is in [Donahue et al., 2019a].

In summary, we outline our modifications to the DCGAN [Radford et al., 2016] method

which result in WaveGAN. This straightforward recipe already produces reasonable audio, and

further contributions outlined below and in Appendix 4.3 serve to refine results.

1. Flatten 2D convolutions into 1D (e.g. 5x5 2D convolution becomes length-25 1D).
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2. Increase the stride factor for all convolutions (e.g. stride 2x2 becomes stride 4).

3. Remove batch normalization from the generator and discriminator.

4. Train using the WGAN-GP [Gulrajani et al., 2017] strategy.

4.3 Understanding and mitigating artifacts in generated au-

dio

Generative models that upsample by transposed convolution are known to produce charac-

teristic “checkerboard” artifacts in images [Odena et al., 2016], artifacts with particular spatial

periodicities. The discriminator of image-generating GANs can learn to reject images with these

artifacts because they are uncommon in real data (as discussed in Section 4.2.1). However, in

the audio domain, the discriminator might not have such luxury as these artifacts correspond to

frequencies which might rightfully appear in the real data.

While checkerboard artifacts are an annoyance in image generation, they can be devastat-

ing to audio generation results. While our eye may perceive these types of periodic distortions as

an intrusive texture, our ear perceives them as an abrasive tone. To characterize these artifacts in

WaveGAN, we measure its impulse response by randomly initializing it 1000 times and passing

unit impulses to its first convolutional layer. In Figure 4.3, we plot the average of these responses

in the frequency domain. The response has sharp peaks at linear multiples of the sample rates

of each convolutional layer (250Hz, 1kHz, 4kHz, etc.). This is in agreement with our informal

observation of results from WaveGAN, which often have a pitched noise close to the musical note

B (247 × 2nHz).

Below, we will discuss strategies we designed to mitigate these artifacts in WaveGAN.
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Figure 4.3: (Top): Average impulse response for 1000 random initializations of the WaveGAN
generator. (Bottom): Response of learned post-processing filters for speech and bird vocaliza-
tions. Post-processing filters reject frequencies corresponding to noise byproducts created by
the generative procedure (top). The filter for speech boosts signal in prominent speech bands,
while the filter for bird vocalizations (which are more uniformly-distributed in frequency) simply
reduces noise presence.

4.3.1 Learned post-processing filters

We experiment with adding a post-processing filter to the generator, giving WaveGAN a

simple mechanism to filter out undesirable frequencies created by the generative process. This

filter has a long window (512 samples) allowing it to represent intricate transfer functions, and the

weights of the filter are learned as part of the generator’s parameters. In Figure 4.3, we compare

the post-processing filters that WaveGAN learns for human speech and bird vocalizations. The

filters boost signal in regions of the frequency spectrum that are most prominent in the real data
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Figure 4.4: Depiction of the upsampling strategy used by transposed convolution (zero insertion)
and other strategies which mitigate aliasing: nearest neighbor, linear and cubic interpolation.

domain, and introduce notches at bands that are artifacts of the generative procedure as discussed

in the previous section.

4.3.2 Upsampling procedure

Transposed convolution upsamples signals by inserting zeros in between samples and

applying a learned filterbank. This operation introduces aliased frequencies, copies of pre-existing

frequencies shifted by multiples of the new Nyquist rate, into the upsampled signal. While aliased

frequencies are usually seen as undesirable artifacts of a bad upsampling procedure, in the

generative setting their existence may be crucial for producing fine-grained details in the output.

We experiment with three other upsampling strategies in WaveGAN: nearest-neighbor,

linear and cubic interpolation, all of which attenuate aliased frequencies. In Figure 4.4, we com-

pare these strategies visually. While nearest neighbor upsampling resulted in similar audio output

to transposed convolution, linear and cubic interpolation strategies resulted in qualitatively poor

audio output (sound examples: https://chrisdonahue.com/wavegan examples). We hypothesize

that the aliased frequencies produced by upsampling convolutions may be more critical to audio

generation than image generation.
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Phase shuffle n=1

-1 0 +1

Figure 4.5: At each layer of the WaveGAN discriminator, the phase shuffle operation perturbs
the phase of each feature map by Uniform ∼ [−n,n] samples, filling in the missing samples
(dashed outlines) by reflection. Here we depict all possible outcomes for a layer with four
feature maps (n = 1).

4.3.3 Phase shuffle

Generative image models that upsample by transposed convolution (such as DCGAN)

are known to produce characteristic “checkerboard” artifacts in images [Odena et al., 2016].

Periodic patterns are less common in images (Section 4.2.1), and thus the discriminator can learn

to reject images that contain them. For audio, analogous artifacts are perceived as pitched noise

which may overlap with frequencies commonplace in the real data, making the discriminator’s

objective more challenging. However, the artifact frequencies will always occur at a particular

phase, allowing the discriminator to learn a trivial policy to reject generated examples. This may

inhibit the overall optimization problem.

To prevent the discriminator from learning such a solution, we propose the phase shuffle

operation with hyperparameter n. Phase shuffle randomly perturbs the phase of each layer’s

activations by −n to n samples before input to the next layer (Figure 4.5). We apply phase shuffle

only to the discriminator, as the latent vector already provides the generator a mechanism to
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manipulate the phase of a resultant waveform. Intuitively speaking, phase shuffle makes the

discriminator’s job more challenging by requiring invariance to the phase of the input waveform.

4.4 SpecGAN: Generating semi-invertible spectrograms

While a minority of recent research in discriminative audio classification tasks has used

raw audio input [Sainath et al., 2015, Lee et al., 2017], most of these approaches operate on

spectrogram representations of audio. A generative model may also benefit from operating in

such a time-frequency space. However, commonly-used representations in the discriminative

setting are uninvertible.

With SpecGAN, our frequency-domain audio generation model, we design a spectrogram

representation that is both well-suited to GANs designed for image generation and can be

approximately inverted. Additionally, to facilitate direct comparison, our representation is

designed to use the same dimensionality per unit of time as WaveGAN (16384 samples yield a

128x128 spectrogram).

To process audio into suitable spectrograms, we first perform the short-time Fourier

transform with 16ms windows and 8ms stride, resulting in 128 frequency bins2 linearly spaced

from 0 to 8kHz. We take the magnitude of the resultant spectra and scale amplitude values loga-

rithmically to better-align with human perception. We then normalize each frequency bin to have

zero mean and unit variance. This type of preprocessing is commonplace in audio classification,

but produce spectrograms with unbounded values—a departure from image representations. We

therefore clip the spectra to 3 standard deviations and rescale to [−1, 1]. Through an informal

listening test, we determined that this clipping strategy did not produce an audible difference

during inversion.

Once our dataset has been processed into this format, we operate the DCGAN [Radford

2The FFT for this window size actually produces 129 frequency bins. We discard the top (Nyquist) bin from each
example for training. During resynthesis, we replace it with the dataset’s mean for that bin.
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Figure 4.6: Top: Random samples from each of the five datasets used in this study, illustrating
the wide variety of spectral characteristics. Middle: Random samples generated by WaveGAN
for each domain. WaveGAN operates in the time domain but results are displayed here in the
frequency domain for visual comparison. Bottom: Random samples generated by SpecGAN
for each domain.

et al., 2016] algorithm on the resultant spectra. To render the resultant generated spectrograms as

waveforms, we first invert the steps of spectrogram preprocessing described above, resulting in

linear-amplitude magnitude spectra. We then employ the iterative Griffin-Lim algorithm [Griffin

and Lim, 1984] with 16 iterations to estimate phase and produce 16384 audio samples.

4.5 Experimental protocol

To facilitate human evaluation, our experimentation focuses on the Speech Commands

Dataset [Warden, 2018]. This dataset consists of many speakers recording individual words in

uncontrolled recording conditions. We explore a subset consisting of the spoken digits “zero”

through “nine” and refer to this subset as the Speech Commands Zero Through Nine (SC09)

dataset. While this dataset is intentionally reminiscent of the popular MNIST dataset of written
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digits, we note that examples from SC09 are much higher dimensional (R16000) than examples

from MNIST (R28×28=784).

These ten words encompass many phonemes and two consist of multiple syllables. Each

recording is one second in length, and we do not attempt to align the words in time. There are 1850

utterances of each word in the training set, resulting in 5.3 hours of speech. The heterogeneity of

alignments, speakers, and recording conditions make this a challenging dataset for generative

modeling.

Our baseline configuration for WaveGAN excludes phase shuffle. We compare this to the

performance of WaveGAN with phase shuffle (n ∈ {2,4}) and a variant of WaveGAN which uses

nearest-neighbor upsampling rather than transposed convolution [Odena et al., 2016]. Hoping to

reduce noisy artifacts, we also experiment with adding a wide (length-512) post-processing filter

to the output of the generator and learning its parameters with the rest of the generator variables

(details in Appendix 4.3.1). We use the WGAN-GP [Gulrajani et al., 2017] algorithm for all

experiments, finding it to produce reasonable results where others [Radford et al., 2016, Mao

et al., 2017, Arjovsky et al., 2017] failed. We compare the performance of these configurations to

that of SpecGAN.

We also perform experiments on four other datasets with different characteristics (Fig-

ure 4.6):

1. Drum sound effects (0.7 hours): Drum samples for kicks, snares, toms, and cymbals

2. Bird vocalizations (12.2 hours): In-the-wild recordings of many species [Boesman, 2018]

3. Piano (0.3 hours): Professional performer playing a variety of Bach compositions

4. Large vocab speech (TIMIT) (2.4 hours): Multiple speakers, clean [Garofolo et al., 1993]

We train our networks using batches of size 64 on a single NVIDIA P100 GPU. During

our quantitative evaluation of SC09 (discussed below), our WaveGAN networks converge by
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their early stopping criteria (inception score) within four days (200k iterations, around 3500

epochs), and produce speech-like audio within the first hour of training. Our SpecGAN networks

converge more quickly, within two days (around 1750 epochs). On the other four datasets, we

train WaveGAN for 200k iterations representing nearly 1500 epochs for the largest dataset. Unlike

with autoregressive methods [van den Oord et al., 2016, Mehri et al., 2017], generation with

WaveGAN is fully parallel and can produce an hour of audio in less than two seconds. We list all

hyperparameters in [Donahue et al., 2019a].

4.6 Evaluation methodology

Evaluation of generative models is a fraught topic. Theis et al. [2016] demonstrate

that quantitative measures of sample quality are poorly correlated with each other and human

judgement. Accordingly, we use several quantitative evaluation metrics for hyperparameter

validation and discussion, and also evaluate our most promising models with human judges.

4.6.1 Inception score

Salimans et al. [2016] propose the inception score, which uses a pre-trained Inception

classifier [Szegedy et al., 2016] to measure both the diversity and semantic discriminability of

generated images, finding that the measure correlates well with human judgement.

Given model scores P(yyy | xxx) with marginal P(yyy), the inception score is defined as

exp(ExxxDKL(P(yyy | xxx)||P(yyy))), and is estimated over a large number of samples (e.g. 50k). For

n classes, this measure ranges from 1 to n, and is maximized when the model is completely

confident about each prediction and predicts each label equally often. We will use this measure

as our primary quantitative evaluation method and early stopping criteria.

To measure inception score, we train an audio classifier on SC09. Our classifier first

computes a short-time Fourier transform of the input audio with 64ms windows and 8ms stride.
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This representation is projected to 128 frequency bins equally spaced on the Mel scale [Stevens

et al., 1937] from 40Hz to 7800Hz. Amplitudes are scaled logarithmically and normalized so that

each bin has zero mean and unit variance. We process this perceptually-informed representation

with four layers of convolution and pooling, projecting the result to a softmax layer with 10

classes. We perform early stopping on the minimum negative log-likelihood of the validation

set; the resultant model achieves 93% accuracy on the test set. Because this classifier observes

spectrograms, our spectrogram-generating models may have a representational advantage over

our waveform-generating models.

4.6.2 Nearest neighbor comparisons

Inception score has two trivial failure cases in which a poor generative model can achieve

a high score. Firstly, a generative model that outputs a single example of each class with uniform

probability will be assigned a high score. Secondly, a generative model that overfits the training

data will achieve a high score simply by outputting examples on which the classifier was trained.

We use two indicators metrics to determine if a high inception score has been caused by

either of these two undesirable cases. Our first indicator, |D|self, measures the average Euclidean

distance of a set of 1k examples to their nearest neighbor within the set (other than itself). A

higher |D|self indicates higher diversity amongst samples. Because measuring Euclidean distance

in time-domain audio poorly represents human perception, we evaluate distances in the same

frequency-domain representation as our classifier from Section 4.6.1.

Our second indicator, |D|train, measures the average Euclidean distance of 1k examples to

their nearest neighbor in the real training data. If the generative model simply produces examples

from the training set, this measure will be 0. We report |D|train and |D|self relative to those of the

test set.
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4.6.3 Qualitative human judgements

While inception score is a useful metric for hyperparameter validation, our ultimate goal

is to produce examples that are intelligible to humans. To this end, we measure the ability of

human annotators on Amazon Mechanical Turk to label the generated audio. Using our best

WaveGAN and SpecGAN models as measured by inception score, we generate random examples

until we have 300 for each digit (as labeled by our classifier from Section 4.6.1)—3000 total. In

batches of ten random examples, we ask annotators to label which digit they perceive in each

example, and compute their accuracy with respect to the classifier’s labels (random accuracy

would be 10%). After each batch, annotators assign subjective values of 1–5 for criteria of sound

quality, ease of intelligibility, and speaker diversity. We report accuracy (n = 3000) and mean

opinion scores (n = 300) in Table 4.1.

4.7 Results and discussion

Results for our evaluation appear in Table 4.1. We also evaluate our metrics on the

real training data, the real test data, and a version of SC09 generated by a parametric speech

synthesizer [Buchner, 2017]. We also compare to SampleRNN [Mehri et al., 2017] and two public

implementations of WaveNet [van den Oord et al., 2016], but neither method produced competitive

results (details in [Donahue et al., 2019a]), and we excluded them from further evaluation. These

autoregressive models have not previously been examined on small-vocabulary speech data, and

their success at generating full words has only been demonstrated when conditioning on rich

linguistic features. Sound examples for all experiments can be found at https://chrisdonahue.com/

wavegan examples.

While the maximum inception score for SC09 is 10, any score higher than the test set

score of 8 should be seen as evidence that a generative model has overfit. Our best WaveGAN

model uses phase shuffle with n = 2 and achieves an inception score of 4.7. To compare the
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Table 4.1: Quantitative and qualitative (human study) results for SC09 experiments comparing
real and generated data. A higher inception score suggests that semantic modes of the real data
distribution have been captured. |D|self indicates the intra-dataset diversity relative to that of the
real test data. |D|train indicates the distance between the dataset and the training set relative to
that of the test data; a low value indicates a generative model that is overfit to the training data.
Acc. is the overall accuracy of humans on the task of labeling class-balanced digits (random
chance is 0.1). Sound quality, ease of intelligibility and speaker diversity are mean opinion
scores (1-5); higher is better.

Quantitative Qualitative (human judges)

Experiment Inception score |D|self |D|train Acc. Quality Ease Diversity

Real (train) 9.18±0.04 1.1 0.0
Real (test) 8.01±0.24 1.0 1.0 0.95 3.9±0.8 3.9±1.1 3.5±1.0
Parametric 5.02±0.06 0.7 1.1

WaveGAN 4.12±0.03 1.4 2.0
+ Phase shuffle n = 2 4.67±0.01 0.8 2.3 0.58 2.3±0.9 2.8±0.9 3.2±0.9
+ Phase shuffle n = 4 4.54±0.03 1.0 2.3
+ Nearest neighbor 3.77±0.02 1.8 2.6
+ Post-processing 3.92±0.03 1.4 2.9
+ Dropout 3.93±0.03 1.0 2.6

SpecGAN 6.03±0.04 1.1 1.4 0.66 1.9±0.8 2.8±0.9 2.6±1.0
+ Phase shuffle n = 1 3.71±0.03 0.8 1.6

effect of phase shuffle to other common regularizers, we also tried using 50% dropout in the

discriminator’s activations, which resulted in a lower score. Phase shuffle decreased the inception

score of SpecGAN, possibly because the operation has an exaggerated effect when applied to the

compact temporal axis of spectrograms.

Most experiments produced |D|self (diversity) values higher than that of the test data, and

all experiments produced |D|train (distance from training data) values higher than that of the test

data. While these measures indicate that our generative models produce examples with statistics

that deviate from those of the real data, neither metric indicates that the models achieve high

inception scores by the trivial solutions outlined in Section 4.6.2.

Compared to examples from WaveGAN, examples from SpecGAN achieve higher incep-

tion score (6.0 vs. 4.7) and are labeled more accurately by humans (66% vs. 58%). However,

on subjective criteria of sound quality and speaker diversity, humans indicate a preference for
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examples from WaveGAN. It appears that SpecGAN might better capture the variance in the

underlying data compared to WaveGAN, but its success is compromised by sound quality issues

when its spectrograms are inverted to audio. It is possible that the poor qualitative ratings for ex-

amples from SpecGAN are primarily caused by the lossy Griffin-Lim inversion [Griffin and Lim,

1984] and not the generative procedure itself. We see promise in both waveform and spectrogram

audio generation with GANs; our study does not suggest a decisive winner. For a more thorough

investigation of spectrogram generation methods, we point to follow-up work [Engel et al., 2019].

Finally, we train WaveGAN and SpecGAN models on the four other domains listed in

Section 4.5. Somewhat surprisingly, we find that the frequency-domain spectra produced by

WaveGAN (a time-domain method) are visually more consistent with the training data (e.g. in

terms of sharpness) than those produced by SpecGAN (Figure 4.6). For drum sound effects,

WaveGAN captures semantic modes such as kick and snare drums. On bird vocalizations,

WaveGAN generates a variety of distinct bird sounds. On piano, WaveGAN produces musically-

consonant motifs that, as with the training data, represent a variety of key signatures and rhythmic

patterns. For TIMIT, a large-vocabulary speech dataset with many speakers, WaveGAN produces

speech-like babbling similar to results from unconditional autoregressive models [van den Oord

et al., 2016].

4.8 Related work

Much of the work within generative modeling of audio is within the context of text-to-

speech. Text-to-speech systems are primarily either concatenative or parametric. In concate-

native systems, audio is generated by sequencing small, prerecorded portions of speech from

a phonetically-indexed dictionary [Moulines and Charpentier, 1990, Hunt and Black, 1996].

Parametric systems map text to salient parameters of speech, which are then synthesized by a

vocoder [Dudley, 1939]; see [Zen et al., 2009] for a comprehensive review. Some of these systems
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use learning-based approaches such as a hidden Markov models [Yoshimura, 2002, Tokuda et al.,

2013], and separately-trained neural networks pipelines [Ling et al., 2015] to estimate speech

parameters.

Recently, several researchers have investigated parametric speech synthesis with end-

to-end neural network approaches that learn to produce vocoder features directly from text or

phonetic embeddings [Gibiansky et al., 2017, Ping et al., 2018, Sotelo et al., 2017, Wang et al.,

2017, Shen et al., 2018]. These vocoder features are synthesized to raw audio using off-the-shelf

methods such as WORLD [Morise et al., 2016] and Griffin-Lim [Griffin and Lim, 1984], or

trained neural vocoders [Sotelo et al., 2017, Shen et al., 2018, Ping et al., 2018]. All of these

methods are supervised: they are trained to map linguistic features to audio outputs.

Several approaches have explored unsupervised generation of raw audio. van den Oord

et al. [2016] propose WaveNet, a convolutional model which learns to predict raw audio samples

by autoregressive modeling. WaveNets conditioned on rich linguistic features have widely been

deployed in text-to-speech systems, though they have not been demonstrated capable of generating

cohesive words in the unconditional setting. Engel et al. [2017] pose WaveNet as an autoencoder

to generate musical instrument sounds. Chung et al. [2014], Mehri et al. [2017] both train

recurrent autoregressive models which learn to predict raw audio samples. While autoregressive

methods generally produce higher audio fidelity than WaveGAN, synthesis with WaveGAN is

orders of magnitude faster.

The application of GANs [Goodfellow et al., 2014] to audio has so far been limited to

supervised learning problems in combination with traditional loss functions. Pascual et al. [2017]

apply GANs to raw audio speech enhancement. Their encoder-decoder approach combines the

GAN objective with an L2 loss. Fan et al. [2017], Michelsanti and Tan [2017], Donahue et al.

[2018a] all use GANs in combination with unstructured losses to map spectrograms in one domain

to spectrograms in another. Chen et al. [2017] use GANs to map musical performance images

into spectrograms.
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4.9 Improving SpecGAN with adversarial vocoding

Generating natural-sounding speech from text is a well-studied problem with numerous

potential applications. While past approaches were built on extensive engineering knowledge

in the areas of linguistics and speech processing (see [Zen et al., 2009] for a review), recent

approaches adopt neural network strategies which learn from data to map linguistic representations

into audio waveforms [Arik et al., 2017, Gibiansky et al., 2017, Ping et al., 2018, Wang et al.,

2017, Shen et al., 2018]. Of these recent systems, the best performing [Ping et al., 2018,

Shen et al., 2018] are both comprised of two functional mechanisms which (1) map language

into perceptually-informed spectrogram representations (i.e., time-frequency decompositions of

audio with logarithmic scaling of both frequency and amplitude), and (2) vocode the resultant

spectrograms into listenable waveforms. In such two-step TTS systems, using perceptually-

informed spectrograms as intermediaries is observed to have empirical benefits over using

representations which are simpler to convert to audio [Ping et al., 2018]. Hence, vocoding is

central to the success of state-of-the-art TTS systems, and is the focus of this work.

The need for vocoding arises from the non-invertibility of perceptually-informed spectro-

grams. These compact representations exclude much of the information in an audio waveform,

and thus require a predictive model to fill in the missing information needed to synthesize

natural-sounding audio. Notably, standard spectrogram representations discard phase information

resulting from the short-time Fourier transform (STFT), and additionally compress the linearly-

scaled frequency axis of the STFT magnitude spectrogram into a logarithmically-scaled one.

This gives rise to two corresponding vocoding subproblems: the well-known problem of phase

estimation, and the less-investigated problem of magnitude estimation.

Vocoding methodology in state-of-the-art TTS systems [Ping et al., 2018, Shen et al., 2018]

endeavors to address the joint of these two subproblems, i.e., to transform perceptually-informed

spectrograms directly into waveforms. Specifically, both systems use WaveNet [van den Oord
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et al., 2016] conditioned on spectrograms. This approach is problematic as it necessitates running

WaveNet once per individual audio sample (e.g. 22050 times per second), bottlenecking the

overall TTS system as the language-to-spectrogram mechanisms are comparatively fast.3 Given

that joint solutions currently necessitate such computational overhead, it may be methodologically

advantageous to combine solutions to the individual subproblems.

Before endeavoring to develop individual solutions to magnitude and phase estimation,

we first wished to discover which (if any) of the two represented a greater obstacle to vocoding.

To answer this, we conducted a user study examining the effect that common heuristics for

each subproblem have on the perceived naturalness of vocoded speech (Table 4.2).4 Our study

demonstrated that combining an ideal solution to either magnitude or phase estimation with

a heuristic for the other results in high-quality speech. Hence, we can focus our research

efforts on either subproblem, in the hopes of developing methods which are more computationally

efficient than existing end-to-end strategies.

In this paper, we seek to address the magnitude estimation subproblem, which is well-

suited for modern deep learning methodology. We propose a learning-based method which

uses Generative Adversarial Networks [Goodfellow et al., 2014] to learn a stochastic mapping

from perceptually-informed spectrograms into simple magnitude spectrograms. We combine

this magnitude estimation method with a modern phase estimation heuristic, referring to this

method as adversarial vocoding. We show that adversarial vocoding can be used to expedite

TTS synthesis and additionally improves upon the state-of-the-art in unsupervised generation of

individual words of speech.

3In our empirical experimentation with open-source codebases, the autoregressive vocoding phase was over 1500
times slower on average than the language to spectrogram phase.

4Sound examples: https://chrisdonahue.com/advoc examples
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4.9.1 Summary of contributions

• We measure the perceived effect of inverting the primary sources of compression in audio

features. We observe that coupling solutions to either compression source with a heuristic

for the other result in high-quality speech.

• For both real spectrograms and synthetic ones from TTS systems, we demonstrate that our

proposed vocoding method yields significantly higher mean opinion scores than a heuristic

baseline and faster speeds than state-of-the-art vocoding methods.

• We show that our method can effectively vocode highly-compressed (13:1) audio feature

representations.

• We show that our method improves the state of the art in unsupervised synthesis of

individual words of speech.

4.10 Audio feature preliminaries

The typical process of transforming waveforms into perceptually-informed spectrograms

involves several cascading stages. Here, we describe spectrogram methodology common to two

state-of-the-art TTS systems [Ping et al., 2018, Shen et al., 2018]. A visual representation is

shown in Figure 4.7.

Extraction The initial stage consists of decomposing waveforms into time and frequency

using the STFT. Then, the phase information is discarded from the complex STFT coefficients

leaving only the linear-amplitude magnitude spectrogram. The linearly-spaced frequency bins

of the resultant spectrogram are then compressed to fewer bins which are equally-spaced on a

logarithmic scale (usually the mel scale [Stevens et al., 1937]). Finally, amplitudes of the resultant

spectrogram are made logarithmic to conform to human loudness perception, then optionally

clipped and normalized.
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Original STFT Drop phase Log freq Log amp

Feature extraction

Inv. STFT Est. phase Est. mag Lin. amp Features

Inversion (vocoding)

Figure 4.7: Depiction of stages in common audio feature extraction pipelines and corresponding
inversion. The two obstacles to vocoding are (1) estimating linear-frequency magnitude spectra
from log-frequency mel spectra (outlined in green dashed line), and (2) estimating phase
information from magnitude spectra (outlined in blue dotted line). We focus on magnitude
estimation in this paper, observing that coupling an ideal solution to this subproblem with a
phase estimation heuristic can produce high-quality speech (Table 4.2).

Inversion To heuristically invert this procedure (vocode), the inverse of each cascading

step is applied in reverse. First, logarithmic amplitudes are converted to linear ones. Then, an

appropriate magnitude spectrogram is estimated from the mel spectrogram. Finally, appropriate

phase information is estimated from the magnitude spectrogram, and the inverse STFT is used to

render audio.

Unless otherwise specified, throughout this paper we operate on waveforms sampled

at 22050Hz using an STFT with a window size of 1024 and a hop size of 256. We compress

magnitude spectrograms to 80 bins (melBins = 80) equally spaced along the mel scale from

125Hz to 7600Hz. We apply log amplitude scaling and normalize resultant mel spectrograms

to have 120dB dynamic range. Precisely recreating this representation [McFee et al., 2019] is
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simple in our codebase.5

4.11 Measuring the effect of magnitude and phase estimation

on speech naturalness

The audio feature extraction pipelines outlined in Section 4.10 have two sources of

compression: the discarding of phase information and compression of magnitude information.

Conventional wisdom suggests that the primary obstacle to inverting such features is phase

estimation. However, to the best of our knowledge, a systematic evaluation of the individual

contributions of magnitude and phase estimation on perceived naturalness of vocoded speech has

never been conducted.

To perform such an evaluation, we mix and match methods for estimating both STFT

magnitudes and phases from log-amplitude mel spectrograms. A common heuristic for magnitude

estimation is to project the mel-scale spectrogram onto the pseudoinverse of the mel basis

which was originally used to generate it. As a phase estimation baseline, state-of-the-art TTS

research [Ping et al., 2018, Shen et al., 2018] compares to the iterative Griffin-Lim [Griffin and

Lim, 1984] strategy with 60 iterations. We additionally consider the more-recent Local Weighted

Sums (LWS) [Le Roux et al., 2010] strategy which, on our CPU, is about six times faster than

60 iterations of Griffin-Lim. As a proxy for an ideal solution to either subproblem, we also use

magnitude and phase information extracted from real data.

We show human judges the same waveform vocoded by six different magnitude and phase

estimation combinations (inducing a comparison) and ask them to rate the naturalness of each on

a subjective 1 to 5 scale (full user study methodology outlined in Section 4.13.1). Mean opinion

scores are shown in Table 4.2, and we encourage readers to listen to our sound examples linked

from the footnote on the first page to help contextualize.

5Code: https://github.com/paarthneekhara/advoc
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Table 4.2: Ablating the effect of heuristics for magnitude and phase estimation on mean opinion
score (MOS) of speech naturalness with 95% confidence intervals. Bolded entries show that
coupling an ideal solution to either subproblem (real data used as a proxy) with a good heuristic
for the other yields speech with only 2–9% lower MOS than real speech (p < 0.05).

Magnitude est. method Phase est. method MOS

Ideal (real magnitudes) Ideal (real phases) 4.30±0.06
Ideal (real magnitudes) Griffin-Lim w/ 60 iters 3.70±0.07
Ideal (real magnitudes) Local Weighted Sums 4.09±0.06
Mel pseudoinverse Ideal (real phases) 4.04±0.06
Mel pseudoinverse Griffin-Lim w/ 60 iters 2.48±0.09
Mel pseudoinverse Local Weighted Sums 2.51±0.09

From these results, we conclude that an ideal solution to either magnitude or phase

estimation can be coupled with a good heuristic for the other to produce high-quality speech.

While the ground truth speech is still significantly more natural than that of ideal+heuristic

strategies, the MOS for these methods are only 2-9% worse than the ground truth (p < 0.05).

Of these two problems, we choose to focus on building strategies for the magnitude estimation

problem, as it is well-suited to modern deep learning methodology (outlined in Section 4.12).

As a secondary conclusion, we observe that—for our speech data—using LWS for phase

estimation from real spectrograms yields significantly higher MOS than using Griffin-Lim. Given

that it is faster and yields significantly more natural speech, we recommend that all TTS research

use LWS as a phase estimation baseline instead of Griffin-Lim. Henceforth, all of our experiments

that require phase estimation use LWS.

4.12 Adversarial vocoding

Our goal is to invert a mel spectrogram feature representation into a time domain waveform

representation. In the previous section, we demonstrated the potential of the magnitude estimation

subproblem for achieving this goal in combination with the LWS phase estimation heuristic. A

common heuristic for magnitude estimation is performed by multiplying the mel spectrogram with
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the approximate inverse of the mel transformation matrix. Since the mel spectrogram is a lossy

compression of the magnitude spectrogram, a simple linear transformation is an oversimplification

of the magnitude estimation problem.

In order to perform more accurate magnitude estimation, we formulate it as a generative

modeling problem and propose a Generative Adversarial Network (GAN) [Goodfellow et al.,

2014] based solution. GANs are generative models which seek to learn latent structure in the

distribution of data. They do this by mapping samples zzz from a uniform or gaussian distribution

pZ to samples yyy from another distribution Y , G : zzz→ yyy [Goodfellow et al., 2014]. For our purpose,

we use a variation of GAN called conditional GAN [Mirza and Osindero, 2014] to model the

conditional probability distribution of magnitude spectrograms given a mel spectrogram. The

pix2pix method [Isola et al., 2017] demonstrates that this conditioning information can be a

structurally-rich image, extending GANs to learn stochastic mappings from one image domain

(spectrogram domain in our case) to another. We adapt the pix2pix approach for our task.

The conditional GAN objective to generate appropriate magnitude spectrograms yyy given

mel spectrograms xxx is:

LcGAN(G,D) =Exxx,yyy[logD(xxx,yyy)]+

Exxx,zzz[log(1−D(xxx,G(xxx,zzz))], (4.4)

where the generator G tries to minimize this objective against an adversary D that tries to maximize

it. i.e G∗ = argminG maxD LcGAN(G,D). In such a conditional GAN setting, the generator tries

to “fool” the discriminator by generating realistic magnitude spectrograms that correspond to

the conditioning mel spectrogram. Previous works [Isola et al., 2017, Pascual et al., 2017] have

shown that it is beneficial to add a secondary component to the generator loss in order to minimize

the L1 distance between the generated output G(xxx,zzz) and the target yyy. This way, the adversarial

component encourages the generator to generate more realistic results, while the L1 objective
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ensures the generated output is close to the target.

LL1(G) = Exxx,yyy,zzz[||yyy−G(xxx,zzz)||1]. (4.5)

Our final objective therefore becomes:

G∗ = argmin
G

max
D

LcGAN(G,D)+λLL1(G). (4.6)

Here, λ is a hyperparameter which determines the trade-off between the L1 loss and

adversarial loss.

4.12.1 Network architecture

Figure 4.8 shows the high level training setup for adversarial inversion of the mel spectro-

gram representation into the magnitude spectrogram.

Generator The generator network G takes as input the linear-amplitude mel spectrogram

representation x of shape (n,melBins) and generates a magnitude spectrogram of shape (n,513).

The generator first estimates the magnitude spectrorgram through a fixed (non trainable) linear

projection of the mel spectrogram using the approximate inverse of the mel transformation

matrix. The estimated magnitude spectrogram goes through a convolution based encoder-decoder

architecture with skip connections as in pix2pix [Isola et al., 2017]. Past works [Mathieu et al.,

2015, Isola et al., 2017] have noted that generators similar to our own empirically learn to ignore

latent codes leading to deterministic models. We adopt the same policy of using dropout at both

training and test time to force the model to be stochastic (as our task is not a one-to-one mapping).

Additionally, we also train a smaller generator (Advoc - small) with fewer convolutional layers

and fewer convolutional channels. We omit the specifics of our architecture for brevity, however
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Figure 4.8: Adversarial Vocoder Model: The generator performs an image-to-image translation
from the estimated magnitude spectrogram to the actual magnitude spectrogram guided by an
adversarial loss from the discriminator and the L1 distance between the generated and actual
magnitude spectrogram
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we point to our codebase (link in footnote of previous page) for precise model implementations.

Discriminator Previous works have found that training generators similar to our own

using just an L1 or L2 loss produces images with reasonable global structure (spatial relationships

preserved) but poor local structure (blurry) [Pathak et al., 2016, Zhang et al., 2016]. As in [Isola

et al., 2017], we combine an L1 loss with a discriminator which operates on patches (subregions)

of a spectrogram to help improve the “sharpness” of the output. Our discriminator takes as input

the estimated spectrogram and either the generated or real magnitude spectrogram. Thus, in order

to satisfy the discriminator, the generator needs to produce magnitude spectrograms that both

correspond to the mel spectrogram and look realistic.

To complete our adversarial vocoding pipeline, we combine generated magnitude spectro-

grams with LWS-estimated phase spectrograms and use the inverse STFT to synthesize audio.

4.13 Experiments

We focus our primary empirical study on the publicly available LJ Speech dataset [Ito,

2017], which is popularly used in TTS research [Prenger et al., 2018, Yamamoto., 2018]. The

dataset contains 13k short audio clips (24 hours) of a single speaker reading from non-fiction

books.

Audio is processed using the feature extraction process described in Section 4.10. We

train three models for melBins ∈ {20,40,80} to study the feasibility of our technique for varying

levels of mel compression. Each of the models is trained for 100,000 mini-batch iterations using

a batch size of 8 which corresponds to 12 hours of wall clock training time using a NVIDIA

1080Ti GPU. We set the regularization parameter λ = 10 and use the Adam optimizer [Kingma

and Ba, 2015] (α = 0.0002).
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4.13.1 Vocoding LJ Speech mel spectrograms

In this study we are concerned with vocoding both real mel spectrograms extracted

from the LJ Speech dataset and mel spectrograms generated by a language-to-spectrogram

model [Shen et al., 2018] trained on LJ Speech. We compare both our large (AdVoc) and

small (AdVoc-small) adversarial vocoder models to the mel pseudoinverse magnitude estimation

heuristic combined with LWS (Pseudoinverse), a WaveNet vocoder [Shen et al., 2018], and the

recent WaveGlow [Prenger et al., 2018] method. We cannot directly compare to the Parallel

WaveNet approach because it is an end-to-end TTS method rather than a vocoder [van den Oord

et al., 2017a].

We randomly select 100 examples from the holdout dataset of LJ Speech and convert

them to mel spectrograms. We also synthesize mel spectrograms for each transcript of these same

examples using the language-to-spectrogram module from Tacotron 2 [Shen et al., 2018]. We

vocode both the real and synthetic spectrograms to audio using the five methods outlined in the

previous paragraph. Audio from each method can be found in our sound examples (footnote of

first page).

To gauge the relative quality of our methods against others, we conduct two mean opinion

score (comparative) studies with human judges on Amazon Mechanical Turk. In the first user

study, we show each judge a randomly-ordered batch of six versions of the same utterance: the

original utterance and the spectrogram of that utterance vocoded by the five aforementioned

methods. In the second user study, we show each judge a batch consisting of the real utterance

and five vocodings of a synthetic spectrogram with the same transcript. Judges are asked to rate

the naturalness of each on a subjective 1–5 scale with 1 point increments. Each batch is reviewed

by 8 different reviewers resulting in 800 evaluations of each strategy. We display mean opinion

scores in Table 4.2. We also include the speed of each method (relative to real time) as measured

on GPU, and the sizes of each model’s parameters in megabytes.

Our results demonstrate that—for both real and synthetic spectrograms—our adversarial
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Table 4.3: Comparison of vocoding methods on mel spectrograms with 80 bins. We display
comparative mean opinion scores from two separate user studies for vocoding spectrograms
extracted from real speech (MOS-Real) and spectrograms generated by a state-of-the-art TTS
method (MOS-TTS) with 95% confidence intervals. × RT denotes the speed up over real time;
higher is faster. MB denotes the size of each model in megabytes.

Source MOS-Real MOS-TTS × RT MB

Real data 4.16±0.06 4.28±0.07 1.000
Pseudoinverse 2.91±0.10 2.12±0.09 8.836 0.2
WaveNet [van den Oord et al., 2016] 3.98±0.07 3.87±0.07 0.003 95.0
WaveGlow [Prenger et al., 2018] 4.09±0.06 3.89±0.07 1.229 334.7
AdVoc 3.78±0.07 2.91±0.08 3.111 207.7
AdVoc-small 3.68±0.07 3.09±0.07 3.437 16.0

Table 4.4: Comparison of heuristic and adversarial vocoding of spectrograms with different lev-
els of mel compression. Adversarial vocoding can vocode highly compressed mel spectrograms
with relatively less drop in speech naturalness as compared to a heuristic.

Source melBins MOS

Real data 4.05±0.07
Pseudoinverse 20 2.68±0.10
Pseudoinverse 40 2.84±0.10
Pseudoinverse 80 3.25±0.09
AdVoc 20 3.75±0.07
AdVoc 40 3.79±0.07
AdVoc 80 3.86±0.07

magnitude estimation technique (AdVoc) significantly outperforms magnitude estimation using

the psuedoinverse of the mel basis. Our method is more than 1000× faster than the autoregressive

WaveNet vocoder and 2.5× faster than WaveGlow vocoder.

Additionally, we train our models to perform magnitude estimation on representations

with higher compression. Specifically, we train our model to vocode mel spectrograms with 20,

40 and 80 bins. We compare our adversarial magnitude estimation method against magnitude

estimation using the pseudoinverse of the mel basis. We conduct a comparative user study using

the same methodology as previously outlined. Our results in Table 4.4 demonstrate that our model

can vocode highly compressed mel spectrogram representations with relatively little drop in the
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Table 4.5: Combining our adversarial vocoding approach with GAN-generated mel spectro-
grams outperforms our prior work in unsupervised generation of individual words by all metrics.

Quantitative Qualitative

Source Inception score Acc. MOS

Real data 8.01±0.24 0.95 3.9±0.15
WaveGAN [Donahue et al., 2019a] 4.67±0.01 0.58 2.3±0.18
SpecGAN [Donahue et al., 2019a] + Griffin-Lim 6.03±0.04 0.66 1.9±0.17
MelSpecGAN + AdVoc 6.63±0.03 0.71 3.4±0.20

perceived audio quality as compared to the psuedoinversion baseline (audio examples in footnote

of first page).

4.13.2 Unsupervised audio synthesis

In this section we are concerned with the unsupervised generation of speech (as opposed

to supervised generation in the case of TTS). We focus on the SC09 digit generation task proposed

in our previous work [Donahue et al., 2019a], where the goal is to learn to generate examples

of spoken digits “zero” through “nine” without labels. We first train a GAN to generate mel

spectrograms of spoken digits (MelSpecGAN), then train an adversarial vocoder to generate

audio conditioned on those spectrograms. Using a pretrained digit classifier, we calculate an

Inception score [Salimans et al., 2016] for our approach, finding it to outperform our previous

state-of-the-art results by 9%. We also calculate an “accuracy” by comparing human labelings to

classifier labels for our generated digits, and also solicit subjective speech quality ratings from

listeners, finding that our adversarial vocoding-based method outperforms our previous results

(Table 4.5).
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4.14 Conclusion

We presented WaveGAN, the first application of GANs to unsupervised audio generation.

WaveGAN is fully parallelizable and can generate hours of audio in only a few seconds. In its

current form, WaveGAN can be used for creative sound design in multimedia production. In our

future work we plan to extend WaveGAN to operate on variable-length audio and also explore a

variety of label conditioning strategies. By providing a template for modifying image generation

models to operate on audio, we hope that this work catalyzes future investigation of GANs for

audio synthesis.

We have additionally shown that we can improve upon the results of WaveGAN by

instead generating perceptually-informed spectrograms and training a GAN to help vocode these

spectrograms to audio. We first demonstrated that solutions to either the magnitude or phase

estimation subproblems within common vocoding pipelines can result in high-quality speech.

Then we demonstrated a learning-based method for magnitude estimation which significantly

improves upon popular heuristics for this task. In addition to representing the state of the art in

unsupervised synthesis of small-vocabulary speech, we demonstrate that our method can integrate

with an existing TTS pipeline to provide comparatively fast waveform synthesis.

4.15 Acknowledgements

I would like to thank Bo Li for helpful discussions about this work, and also Peter

Boesman and Colin Raffel for providing training data. This research was supported by the UC

San Diego Chancellors Research Excellence Scholarship program, the Unity Global Graduate

Fellowship program, and the UC San Diego Department of Computer Science. GPUs used for

this work were provided by the HPC @ UC program and donations from NVIDIA.

Chapter 4 contains material found in the following two papers. (1) Adversarial audio

synthesis. 2018. McAuley, Julian; Puckette, Miller [Donahue et al., 2019a]. International Confer-

77



ence on Learning Representations 2019. (2) Expediting TTS synthesis with adversarial vocoding.

2019. Neekhara, Paarth; Puckette, Miller; Dubnov, Shlomo; McAuley, Julian [Neekhara et al.,

2019]. Currently under review for publication. The dissertation/thesis author was the primary

investigator and author of these papers.

78



Part III

New musical interactions
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In Part II, I discussed machine learning strategies for building generative models of music

at both the symbolic and acoustic level. Here I discuss how to use these and other machine

learning models for music to enable new musical interactions. In Chapter 5, I present Piano

Genie, a system which grants a degree of piano improvisation literacy to non-musicians. Piano

Genie pairs the ideas from Chapter 3 with a simple and intuitive interface allowing non-musicians

to improvise music in real time. I also describe Dance Dance Convolution, a system which can

benefit musicians and non-musicians alike by automatically generating choreographies for a

music-based video game called Dance Dance Revolution (Chapter 6). Dance Dance Convolution

enhances the experience of players of the game by allowing them to dance to their personal

music library. Finally, I discuss other interfaces I have built that use generative models to enable

interactive synthesis of music and other types of multimedia (Chapter 7).
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Chapter 5

Piano Genie

5.1 Introduction

While most people have an innate sense of and appreciation for music, comparatively

few are able to participate meaningfully in its creation. A non-musician could endeavor to

achieve proficiency on an instrument, but the time and financial requirements may be prohibitive.

Alternatively, a non-musician could operate a system which automatically generates complete

songs at the push of a button, but this would remove any sense of ownership over the result.

We seek to sidestep these obstacles by designing an intelligent interface which takes high-level

specifications provided by a human and maps them to plausible musical performances.

The practice of “air guitar” offers hope that non-musicians can provide such specifica-

tions [Godøy et al., 2005]—performers strum fictitious strings with rhythmical coherence and

even move their hands up and down an imaginary fretboard in correspondence with melodic

contours, i.e. rising and falling movement in the melody. This suggests a pair of attributes which

may function as an effective communication protocol between non-musicians and generative

music systems: 1) rhythm, and 2) melodic contours. In addition to air guitar, rhythm games

such as Guitar Hero [Harmonix, 2005] also make use of these two attributes. However, both
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Figure 5.1: Using Piano Genie to improvise on a Disklavier (motorized piano) via MIDI.

experiences only allow for the imitation of experts and provide no mechanism for the creation of

music.

In this work, we present Piano Genie, an intelligent controller allowing non-musicians to

improvise on the piano while retaining ownership over the result (Figure 5.1). In our web demo,

a participant improvises on eight buttons, and their input is translated into a piano performance

by a neural network running in the browser in real-time.1 Piano Genie has similar performance

mechanics to those of a real piano: pressing a button will trigger a note that sounds until the

button is released. Multiple buttons can be pressed simultaneously to achieve polyphony. The

mapping between buttons and pitch is non-deterministic, but the performer can control the overall

form by pressing higher buttons to play higher notes and lower buttons to player lower notes.

Because we lack examples of people performing on “miniature pianos”, we adopt an

unsupervised strategy for learning the mappings. Specifically, we use the autoencoder setup,

1Web Demo: https://piano-genie.glitch.me, Video: https://youtu.be/YRb0XAnUpIk,
Training Code: https://bit.ly/2Vv78Gx, Inference Code: https://bit.ly/2QolPrb
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Figure 5.2: Piano Genie consists of a discrete sequential autoencoder. A bidirectional RNN
encodes discrete piano sequences (88 keys) into smaller discrete latent variables (8 “buttons”).
The unidirectional decoder is trained to map the latents back to piano sequences. During
inference, the encoder is replaced by a human improvising on buttons.

where an encoder learns to map 88-key piano sequences to 8-button sequences, and a decoder

learns to map the button sequences back to piano music (Figure 5.2). The system is trained

end-to-end to minimize reconstruction error. At performance time, we replace the encoder’s

output with a user’s button presses, evaluating the decoder in real time.
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5.2 Related Work

Perception of melodic contour is a skill acquired in infancy [Trehub et al., 1984]. This

perception is important for musical memory and is somewhat invariant to transposition and

changes in intervals [Dowling, 1978, Huron, 1996]. The act of sound tracing—moving one’s

hands in the air while listening to music—has been studied in music information retrieval [Parsons,

1975, Godøy and Jensenius, 2009, Nymoen et al., 2011, Kelkar and Jensenius, 2017, Lartilot,

2018]. It has been suggested that the relationship between sound tracings and pitch is non-

linear [Eitan et al., 2014, Kelkar et al., 2018]. Like Piano Genie, some systems use user-provided

contours to compose music [Roy et al., 2014, Kitahara et al., 2017], though these systems generate

complete songs rather than allowing for real-time improvisation. An early game by Harmonix

called The Axe [Harmonix, 1998] allowed users to improvise in real time by manipulating contours

which indexed pre-programmed melodies.

There is extensive prior work [Lee et al., 1992, Bevilacqua et al., 2005, Fiebrink et al.,

2009, Gillian and Knapp, 2011] on supervised learning of mappings from different control

modalities to musical gestures. These approaches require users to provide a training set of control

gestures and associated labels. There has been less work on unsupervised approaches, where

gestures are automatically extracted from arbitrary performances. Scurto and Fiebrink [Scurto

and Fiebrink, 2016] describe an approach to a “grab-and-play” paradigm, where gestures are

extracted from a performance on an arbitrary control surface, and mapped to inputs for another.

Our approach differs in that the controller is fixed and integrated into our training methodology,

and we require no example performances on the controller.

5.3 Methods

We wish to learn a mapping from sequences yyy ∈ [0,8)n, i.e. amateur performances of n

presses on eight buttons, to sequences xxx ∈ [0,88)n, i.e. professional performances on an 88-key
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Figure 5.3: Comparison of the quantization scheme for two autoencoder strategies with discrete
latent spaces. The VQ-VAE (left) learns the positions of k centroids in a d-dimensional em-
bedding space (in this figure k = 8,d = 2, in our experiments k = 8,d = 4). An encoder output
vector (grey circle) is quantized to its nearest centroid (yellow circle) before decoding. Our
IQAE strategy (right) quantizes a scalar encoder output (grey) to its nearest neighbor (yellow)
among k = 8 centroids evenly spaced between −1 and 1.

piano. To preserve a one-to-one mapping between buttons pressed and notes played, we assume

that both yyy and xxx are monophonic sequences.2 Given that we lack examples of yyy, we propose

using the autoencoder framework on examples xxx. Specifically, we learn a deterministic mapping

enc(xxx) : [0,88)n 7→ [0,8)n, and a stochastic inverse mapping Pdec(xxx|enc(xxx)).

We use LSTM recurrent neural networks (RNNs) [Hochreiter and Schmidhuber, 1997]

for both the encoder and the decoder. For each input piano note, the encoder outputs a real-

valued scalar, forming a sequence encs(xxx) ∈ Rn. To discretize this into enc(xxx) we quantize it

to k = 8 buckets equally spaced between −1 and 1 (Figure 5.3), and use the straight-through

estimator [Bengio et al., 2013] to bypass this non-differentiable operation in the backwards

pass. We refer to this contribution as the integer-quantized autoencoder (IQAE); it is inspired

by two papers from the image compression literature that also use autoencoders with discrete

2This does not prevent our method from working on polyphonic piano music; we just consider each key press to
be a separate event.
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bottlenecks [Ballé et al., 2017, Theis et al., 2017]. We train this system end-to-end to minimize:

L = Lrecons +Lmargin +Lcontour (5.1)

Lrecons =−Σ logPdec(xxx|enc(xxx))

Lmargin = Σmax(|encs(xxx)|−1,0)2

Lcontour = Σmax(1−∆xxx∆encs(xxx),0)2

Together, Lrecons and Lmargin constitute our proposed IQAE objective. The former term

minimizes reconstruction loss of the decoder (as is typical of autoencoders). To agree with our

discretization strategy, the latter term discourages the encoder from producing values outside

of [−1,1]. We also contribute a musically motivated regularization strategy which gives the

model an awareness of melodic contour. By comparing the finite differences (musical intervals in

semitones) of the input ∆xxx to the finite differences of the real-valued encoder output ∆encs(xxx),

the Lcontour term encourages the encoder to produce “button contours” that match the shape of the

input melodic contours.

5.4 Experiments and Analysis

We train our model on the Piano-e-Competition data [Hawthorne et al., 2019], which

contains around 1400 performances by skilled pianists. We flatten each polyphonic performance

into a single sequence of notes ordered by start time, breaking ties by listing the notes of a

chord in ascending pitch order. We split the data into training, validation and testing subsets

using an 8 : 1 : 1 ratio. To keep the latency low at inference time, we use relatively small RNNs

consisting of two layers with 128 units each. We use a bidirectional RNN for the encoder, and a

unidirectional RNN for the decoder since it will be evaluated in real time. Our training examples
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Table 5.1: Quantitative results comparing an RNN language model, the VQ-VAE (k = 8,d = 4),
and our proposed IQAE model (k = 8) with and without contour regularization. ∆T adds time
shift features to model. PPL is perplexity: eLrecons . CVR is contour violation ratio: the proportion
of timesteps where the sign of the melodic interval 6= that of the button interval. Gold is the
mean squared error in button space between the encoder outputs for familiar melodies and
manually-created gold standard button sequences for those melodies. Lower is better for all
metrics.

Configuration PPL CVR Gold

Language model 15.44
+∆T 11.13

VQ-VAE [van den Oord et al., 2017b] 3.31 .360 9.69
+∆T 2.82 .465 9.15

IQAE 3.60 .371 5.90
+Lcontour 3.53 .002 1.70
+Lcontour +∆T 3.16 .004 1.61

consist of 128-note subsequences randomly transposed between [−6,6) semitones. We perform

early stopping based on the reconstruction error on the validation set.

As a baseline, we consider an LSTM “language model”—equivalent to the decoder portion

of our IQAE without button inputs—trained to simply predict the next note given previous notes.

This is a challenging sequence modeling task, among other reasons because the monophonic

sequences will frequently jump between the left and the right hand. To allow the network to factor

in timing into its predictions, we add in a ∆T feature to the input, representing the amount of time

since the previous note quantized into 32 buckets evenly spaced between 0 and 1 second. This

language model baseline is not unlike our previous work on Performance RNN [Simon and Oore,

2017], though in that work our goal was to predict not only notes but also timing information and

dynamics (here, timing is provided and dynamics are ignored).

We also compare to the VQ-VAE strategy [van den Oord et al., 2017b], an existing discrete

autoencoder approach. The VQ-VAE strategy discretizes based on proximity to learned centroids

within an embedding vector space (Figure 5.3) as opposed to the fixed scalar centroids in our

IQAE (Figure 5.3). Accordingly, it is not possible to apply the same contour regularization
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strategy to the VQ-VAE, and the meaning of the mapping between the buttons and the resultant

notes is less interpretable.

5.4.1 Analysis

To evaluate our models, we calculate two metrics on the test set: 1) the perplexity (PPL)

of the model eLrecons , and 2) the ratio of contour violations (CVR), i.e. the proportion of timesteps

where the sign of the button interval disagrees with the sign of the note interval. We also manually

create “gold standard” button sequences for eight familiar melodies (e.g. Frère Jacques), and

measure the mean squared error in button space between these gold standard button sequences

and the output of the encoder for those melodies (Gold). We report these metrics for all models in

Table 5.1.

As expected, all of the autoencoder models outperformed the language model in terms of

reconstruction perplexity. The VQ-VAE models achieved better reconstruction costs than their

IQAE counterparts, but produced non-intuitive button sequences as measured by comparison to

gold standards. In Figure 5.4, we show a qualitative comparison between the button sequences

learned for a particular input by the VQ-VAE and our IQAE with contour regularization. The

sequences learned by our contour-regularized IQAE model are visually more similar to the input.

Interestingly, the IQAE model regularized with the Lcontour penalty had better reconstruc-

tion than its unregularized counterpart. It is possible that the contour penalty is making the

decoder’s job easier by limiting the space of mappings that the encoder can learn. The Lcontour

penalty was effective at aligning the button contours with melodic contours; the encoder violates

the melodic contour at less than 1% of timesteps. The ∆T features improved reconstruction for

all models.
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Figure 5.4: Qualitative comparison of the 8-button encodings for a given melody (top) by the
VQ-VAE (middle) and our IQAE with Lcontour (bottom). Horizontal is note index. The encoding
learned by the IQAE echoes the contour of the musical input.
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Figure 5.5: A user engages with the Piano Genie web interface during our user study.

Table 5.2: Results for a small (n = 8) user study for Piano Genie. Partipicants were given up
to three minutes to improvise on three possible mappings between eight buttons and an 88-key
piano: 1) (G-maj) the eight buttons are mapped to a G-major scale, 2 (language model) all
buttons trigger our baseline language model, 3 (Piano Genie) our proposed method. (Time)
is the average amount of time in seconds that users improvised with a mapping. (Per., Mus.,
Con.) are the respective averages users expressed for enjoyment of performance experience,
enjoyment of music, and level of control.

Mapping Time (s) Per. Mus. Con.

G-maj scale 92.6 3.125 3.250 4.625
Language model 127.9 3.750 3.125 1.750
Piano Genie 144.1 4.375 3.125 3.125
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5.5 User Study

While our above analysis is useful as a sanity check, it offers limited intuition about how

Piano Genie behaves in the hands of users. Accordingly, we designed a user study to compare

three mappings between eight buttons and a piano:

1. (G-maj) the eight buttons are deterministically mapped to a G major scale

2. (language model) pressing any button triggers a prediction by our baseline musical language

model

3. (Piano Genie) our IQAE model with contour regularization

Our reason for including the G-maj baseline is to gauge the performance experience of a mapping

where a user has deterministic control but has to depend upon their own musical knowledge to

produce patterns of interest. Our motivation for comparing Piano Genie to the language model is

to determine how the performance experience is altered by including melodic control control in

addition to rhythm.

Eight participants were given up to three minutes to improvise with each mapping (Fig-

ure 5.5). The length of time they spent on each mapping was recorded as an implicit feedback

signal. Participants reported a wide range of experience with piano performance: three had

“no experience”, half had “some experience”, and one had “substantial experience”. After each

mapping, participants were asked to what extent they agreed with the following statements:

A. “I enjoyed the experience of performing this instrument”

B. “I enjoyed the music that was produced while I played”

C. “I was able to control the music that was produced”

This survey was conducted on a five-level Likert scale [Likert, 1932] and we convert the responses

to a 1-5 numerical scale in order to compare averages (Table 5.2).
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When asked about their enjoyment of the performance experience, all eight users preferred

Piano Genie to G-maj, while seven preferred Piano Genie to the language model. Five out of

eight users enjoyed the music produced by Piano Genie more than that produced by G-maj. As

expected, no participants said that Piano Genie gave them more control than the G-maj scale.

However, all eight said that Piano Genie gave them more control than the language model.

Though our user study was too limited in scope to make meaningful statistical claims,

informally speaking the participants were quite enthusiastic about Piano Genie in comparison

to the other mappings. One participant said “there were some times when [Piano Genie] felt

like it was reading my mind”. Another participant said “how you can cover the entire keyboard

with only 8 buttons is pretty cool.” One mentioned that the generative component helped them

overcome stage fright; they could blame Piano Genie for perceived errors and take credit for

perceived successes. Several participants cited their inability to produce the same notes when

playing the same button pattern as a potential drawback; enabling these patterns of repetition is a

promising avenue for future work. The participants with less piano experience said they would

have liked some more instruction about types of gestures to perform.

5.6 Web demo details

We built a web demo (polished demo: https://piano-genie.glitch.me; earlier version with

all models from this paper: https://bit.ly/2FaMeI4) for Piano Genie to allow us to both improvise

with our models and conduct our user study. Our web demo uses TENSORFLOW.JS3 to run our

separately-trained neural networks in the browser in real-time. When a user presses a button, we

pass this value into our trained decoder and run a forward pass producing a vector of 88 logits

representing the piano keys. We divide the logits by a temperature parameter before normalizing

them to a probability distribution with a softmax. If the temperature is 0, sampling from this

3https://js.tensorflow.org
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distribution is equivalent to argmax. Informally, we found a temperature of 0.25 to yield a

satisfying experience.

For the models that use the ∆T features, we have to wait until the user presses a key to run

a forward pass of the neural network. For the models that do not use these features, we can run the

computation for all 8 possible buttons in advance. This allows us to both reduce the latency and

display a helpful visualization of the possible model outputs contingent upon the user pressing

any of the buttons (only available in our earlier demo https://bit.ly/2FaMeI4).

To build an interface for Piano Genie that would be more inviting than a computer

keyboard, we 3D-printed enclosures for eight arcade buttons which communicate with the

computer via USB (Figure 5.1).4 Due to technical limitations of our USB microcontroller, we

ended up building two boxes with four buttons instead of one with eight. This resulted in multiple

unintended but interesting control modalities. Several users rearranged the boxes from a straight

line to different 2D configurations. Another user—a flutist—picked up the controllers and held

them to their mouth. A pair of users each took a box and improvised a duet.

5.7 Conclusion

We have proposed Piano Genie, an intelligent controller which grants non-musicians

a degree of piano improvisation literacy. Piano Genie has an immediacy not shared by other

work in this space; sound is produced the moment a player interacts with our system rather than

requiring laborious configuration. Additionally, the player is kept in the improvisational loop as

they respond to the generative procedure in real-time. We believe that the autoencoder framework

is a promising approach for learning mappings between complex interfaces and simpler ones, and

hope that this work encourages future investigation of this space.

4https://learn.adafruit.com/arcade-button-control-box/overview
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Chapter 6

Dance Dance Convolution

6.1 Introduction

Dance Dance Revolution (DDR) is a rhythm-based video game with millions of players

worldwide [Hoysniemi, 2006]. Players perform steps atop a dance platform, following prompts

from an on-screen step chart to step on the platform’s buttons at specific, musically salient points

in time. A player’s score depends upon both hitting the correct buttons and hitting them at the

correct time. Step charts vary in difficulty with harder charts containing more steps and more

complex sequences. The dance pad contains up, down, left, and right arrows, each of which can

be in one of four states: on, off, hold, or release. Because the four arrows can be activated or

released independently, there are 256 possible step combinations at any instant.
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Figure 6.1: Proposed learning to choreograph pipeline for four seconds of the song Knife Party
feat. Mistajam - Sleaze. The pipeline ingests audio features (Bottom) and produces a playable
DDR choreography (Top) corresponding to the audio.
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Step charts exhibit rich structure and complex semantics to ensure that step sequences are

both challenging and enjoyable. Charts tend to mirror musical structure: particular sequences of

steps correspond to different motifs (Figure 6.2), and entire passages may reappear as sections of

the song are repeated. Moreover, chart authors strive to avoid patterns that would compel a player

to face away from the screen.

The DDR community uses simulators, such as the open-source StepMania, that allow fans

to create and play their own charts. A number of prolific authors produce and disseminate packs

of charts, bundling metadata with relevant recordings. Typically, for each song, packs contain

one chart for each of five difficulty levels.

Despite the game’s popularity, players have some reasonable complaints: For one, packs

are limited to songs with favorable licenses, meaning players may be unable to dance to their

favorite songs. Even when charts are available, players may tire of repeatedly performing the

same charts. Although players can produce their own charts, the process is painstaking and

requires significant expertise.

In this paper, we seek to automate the process of step chart generation so that players

can dance to a wider variety of charts on any song of their choosing. We introduce the task of

learning to choreograph, in which we learn to generate step charts from raw audio. Although this

task has previously been approached via ad-hoc methods, we are the first to cast it as a learning

task in which we seek to mimic the semantics of human-generated charts. We break the problem

into two subtasks: First, step placement consists of identifying a set of timestamps in the song

at which to place steps. This process can be conditioned on a player-specified difficulty level.

Second, step selection consists of choosing which steps to place at each timestamp. Running

these two steps in sequence yields a playable step chart. This process is depicted in Figure 6.1.

Progress on learning to choreograph may also lead to advances in music information

retrieval (MIR). Our step placement task, for example, closely resembles onset detection, a well-

studied MIR problem. The goal of onset detection is to identify the times of all musically salient
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Figure 6.2: A four-beat measure of a typical chart and its rhythm depicted in musical notation.
Red: quarter notes, Blue: eighth notes, Yellow: sixteenth notes, (A): jump step, (B): freeze step

events, such as melody notes or drum strikes. While not every onset in our data corresponds

to a DDR step, every DDR step corresponds to an onset. In addition to marking steps, DDR

packs specify a metronome click track for each song. For songs with changing tempos, the exact

location of each change and the new tempo are annotated. This click data could help to spur

algorithmic innovation for beat tracking and tempo detection.

Unfortunately, MIR research is stymied by the difficulty of accessing large, well-annotated

datasets. Songs are often subject to copyright issues, and thus must be gathered by each researcher

independently. Collating audio with separately-distributed metadata is nontrivial and error-prone

owing to the multiple available versions of many songs. Researchers often must manually align

their version of a song to the metadata. In contrast, our dataset is publicly available, standardized

and contains meticulously-annotated labels as well as the relevant recordings.

We believe that DDR charts represent an abundant and under-recognized source of

annotated data for MIR research. StepMania Online, a popular repository of DDR data, distributes

over 350Gb of packs with annotations for more than 100k songs. In addition to introducing a

novel task and methodology, we contribute two large public datasets, which we consider to be of
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notably high quality and consistency.1 Each dataset is a collection of recordings and step charts.

One contains charts by a single author and the other by multiple authors.

For both prediction stages of learning to choreograph, we demonstrate the superior

performance of neural networks over strong alternatives. Our best model for step placement

jointly learns a convolutional neural network (CNN) representation and a recurrent neural network

(RNN), which integrates information across consecutive time slices. This method outperforms

CNNs alone, multilayer perceptrons (MLPs), and linear models.

Our best-performing system for step selection consists of a conditional LSTM generative

model. As auxiliary information, the model takes beat phase, a number representing the fraction

of a beat at which a step occurs. Additionally, the best models receive the time difference

(measured in beats) since the last and until the next step. This model selects steps that are more

consistent with expert authors than the best n-gram and fixed-window models, as measured by

perplexity and per-token accuracy.

6.1.1 Contributions

In short, our paper offers the following contributions:

• We define learning to choreograph, a new task with real-world usefulness and strong

connections to fundamental problems in MIR.

• We introduce two large, curated datasets for benchmarking DDR choreography algorithms.

They represent an under-recognized source of music annotations.

• We introduce an effective pipeline for learning to choreograph with deep neural networks.2

1https://github.com/chrisdonahue/ddc
2Demonstration showing human choreography alongside our method: https://youtu.be/yUc3O237p9M
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Figure 6.3: Five seconds of choreography by difficulty level for the song KOAN Sound - The
Edge from the Fraxtil training set.

6.2 Data

Basic statistics of our two datasets are shown in Table 6.1. The first dataset contains 90

songs choreographed by a single prolific author who works under the name Fraxtil. This dataset

contains five charts per song corresponding to increasing difficulty levels. We find that while

these charts overlap significantly, the lower difficulty charts are not strict subsets of the higher

difficulty charts (Figure 6.3). The second dataset is a larger, multi-author collection called In The

Groove (ITG); this dataset contains 133 songs with one chart per difficulty, except for 13 songs

that lack charts for the highest difficulty. Both datasets contain electronic music with constant

tempo and a strong beat, characteristic of music favored by the DDR community.

Note that while the total number of songs is relatively small, when considering all charts

across all songs the datasets contain around 35 hours of annotations and 350,000 steps. The

two datasets have similar vocabulary sizes (81 and 88 distinct step combinations, respectively).

Around 84% of the steps in both datasets consist of a single, instantaneous arrow.
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Table 6.1: Dataset statistics

Dataset Fraxtil ITG

Num authors 1 8
Num packs 3 2
Num songs 90 (3.1 hrs) 133 (3.9 hrs)
Num charts 450 (15.3 hrs) 652 (19.0 hrs)
Steps/sec 3.135 2.584
Vocab size 81 88

Step charts contain several invariances, for example interchanging all instances of left and

right results in an equally plausible sequence of steps. To augment the amount of data available

for training, we generate four instances of each chart, by mirroring left/right, up/down (or both).

Doing so considerably improves performance in practice.

In addition to encoded audio, packs consist of metadata including a song’s title, artist, a

list of time-stamped tempo changes, and a time offset to align the recording to the tempos. They

also contain information such as the chart difficulties and the name of the choreographer. Finally,

the metadata contains a full list of steps, marking the measure and beat of each. To make this data

easier to work with, we convert it to a canonical form consisting of (beat, time, step) tuples.

The charts in both datasets echo high-level rhythmic structure in the music. An increase in

difficulty corresponds to increasing propensity for steps to appear at finer rhythmic subdivisions.

Beginner charts tend to contain only quarter notes and eighth notes. Higher-difficulty charts

reflect more complex rhythmic details in the music, featuring higher densities of eighth and

sixteenth note steps (8th, 16th) as well as triplet patterns (12th, 24th) (Figure 6.4).

6.3 Problem Definition

A step can occur in up to 192 different locations (subdivisions) within each measure.

However, measures contain roughly 6 steps on average. This level of sparsity makes it difficult

to uncover patterns across long sequences of (mostly empty) frames via a single end-to-end
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Figure 6.4: Number of steps per rhythmic subdivision by difficulty in the Fraxtil dataset.

sequential model. So, to make automatic DDR choreography tractable, we decompose it into two

subtasks: step placement and step selection.

In step placement, our goal is to decide at what precise times to place steps. A step

placement algorithm ingests raw audio features and outputs timestamps corresponding to steps. In

addition to the audio signal, we provide step placement algorithms with a one-hot representation

of the intended difficulty rating for the chart.

Step selection involves taking a discretized list of step times computed during step

placement and mapping each of these to a DDR step. Our approach to this problem involves

modeling the probability distribution P(mn|m1, . . . ,mn−1) where mn is the nth step in the sequence.

Some steps require that the player hit two or more arrows at once, a jump; or hold on one arrow

for some duration, a freeze (Figure 6.2).
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6.4 Methods

We now describe our specific solutions to the step placement and selection problems.

Our basic pipeline works as follows: (1) extract an audio feature representation; (2) feed this

representation into a step placement algorithm, which estimates probabilities that a ground truth

step lies within that frame; (3) use a peak-picking process on this sequence of probabilities

to identify the precise timestamps at which to place steps; and finally (4) given a sequence of

timestamps, use a step selection algorithm to choose which steps to place at each time.

6.4.1 Audio Representation

Music files arrive as lossy encodings at 44.1kHz. We decode the audio files into stereo

PCM audio and average the two channels to produce a monophonic representation. We then

compute a multiple-timescale short-time Fourier transform (STFT) using window lengths of

23ms, 46ms, and 93ms and a stride of 10ms. Shorter window sizes preserve low-level features

such as pitch and timbre while larger window sizes provide more context for high-level features

such as melody and rhythm [Hamel et al., 2012].

Using the ESSENTIA library [Bogdanov et al., 2013], we reduce the dimensionality of

the STFT magnitude spectra to 80 frequency bands by applying a Mel-scale [Stevens et al., 1937]

filterbank. We scale the filter outputs logarithmically to better represent human perception of

loudness. Finally, we prepend and append seven frames of past and future context respectively to

each frame.

For fixed-width methods, the final audio representation is a 15× 80× 3 tensor. These

correspond to the temporal width of 15 representing 150ms of audio context, 80 frequency bands,

and 3 different window lengths. To better condition the data for learning, we normalize each

frequency band to zero mean and unit variance. Our approach to acoustic feature representation

closely follows the work of Schlüter and Böck [2014], who develop similar representations to
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Figure 6.5: C-LSTM model used for step placement

perform onset detection with CNNs.

6.4.2 Step Placement

We consider several models to address the step placement task. Each model’s output

consists of a single sigmoid unit which estimates the probability that a step is placed. For all

models, we augment the audio features with a one-hot representation of difficulty.

Following state-of-the-art work on onset detection Schlüter and Böck [2014], we adopt

a convolutional neural network (CNN) architecture. This model consists of two convolutional

layers followed by two fully connected layers. Our first convolutional layer has 10 filter kernels

that are 7-wide in time and 3-wide in frequency. The second layer has 20 filter kernels that are

3-wide in time and 3-wide in frequency. We apply 1D max-pooling after each convolutional layer,

104



only in the frequency dimension, with a width and stride of 3. Both convolutional layers use

rectified linear units (ReLU) [Glorot et al., 2011]. Following the convolutional layers, we add

two fully connected layers with rectifier activation functions and 256 and 128 nodes, respectively.

To improve upon the CNN, we propose a C-LSTM model, combining a convolutional

encoding with an RNN that integrates information across longer windows of time. To encode the

raw audio at each time step, we first apply two convolutional layers (of the same shape as the

CNN) across the full unrolling length. The output of the second convolutional layer is a 3D tensor,

which we flatten along the channel and frequency axes (preserving the temporal dimension). The

flattened features at each time step then become the inputs to a two-layer RNN.

The C-LSTM contains long short-term memory (LSTM) units [Hochreiter and Schmid-

huber, 1997] with forget gates [Gers and Schmidhuber, 2000]. The LSTM consists of 2 layers

with 200 nodes each. Following the LSTM layers, we apply two fully connected ReLU layers of

dimension 256 and 128. This architecture is depicted in Figure 6.5. We train this model using

100 unrollings for backpropagation through time.

A chart’s intended difficulty influences decisions both about how many steps to place and

where to place them. For low-difficulty charts, the average number of steps per second is less

than one. In contrast, the highest-difficulty charts exceed seven steps per second. We trained all

models both with and without conditioning on difficulty, and found the inclusion of this feature

to be informative. We concatenate difficulty features to the flattened output of the CNN before

feeding the vector to the fully connected (or LSTM) layers (Figure 6.5).3 We initialize weight

matrices following the scheme of Glorot and Bengio [2010].

Training Methodology We minimize binary cross-entropy with mini-batch stochastic gradient

descent. For all models we train with batches of size 256, scaling down gradients when their l2

norm exceeds 5. We apply 50% dropout following each LSTM and fully connected layer. For

3For LogReg and MLP, we add difficulty to input layer.
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LSTM layers, we apply dropout in the input to output but not temporal directions, following

best practices from [Zaremba et al., 2014, Lipton et al., 2016, Dai and Le, 2015]. Although the

problem exhibits pronounced class imbalance (97% negatives), we achieved better results training

on imbalanced data than with re-balancing schemes. We exclude all examples before the first step

in the chart or after the last step as charts typically do not span the entire duration of the song.

For recurrent neural networks, the target at each frame is the ground truth value corre-

sponding to that frame. We calculate updates using backpropagation through time with 100

steps of unrolling, equal to one second of audio or two beats on a typical track (120 BPM). We

train all networks with early-stopping determined by the area under the precision-recall curve on

validation data. All models satisfy this criteria within 12 hours of training on a single machine

with an NVIDIA Tesla K40m GPU.

6.4.3 Peak Picking

Following standard practice for onset detection, we convert sequences of step probabilities

into a discrete set of chosen placements via a peak-picking process. First we run our step

placement algorithm over an entire song to assign the probabilities of a step occurring within

each 10ms frame.4 We then convolve this sequence of predicted probabilities with a Hamming

window, smoothing the predictions and suppressing double-peaks from occurring within a short

distance. Finally, we apply a constant threshold to choose which peaks are high enough (Figure

6.6). Because the number of peaks varies according to chart difficulty, we choose a different

threshold per difficulty level. We consider predicted placements to be true positives if they lie

within a ±20ms window of a ground truth.

4In DDR, scores depend on the accuracy of a player’s step timing. The highest scores require that a step is
performed within 22.5ms of its appointed time; this suggests that a reasonable algorithm should place steps with an
even finer level of granularity.
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Figure 6.6: One second of peak picking. Green: Ground truth region (A): true positive, (B):
false positive, (C): false negative, (D): two peaks smoothed to one by Hamming window, (E):
misaligned peak accepted as true positive by ±20ms tolerance

6.4.4 Step Selection

We treat the step selection task as a sequence generation problem. Our approach follows

related work in language modeling where RNNs are well-known to produce coherent text that

captures long-range relationships [Mikolov et al., 2010, Sutskever et al., 2011, Sundermeyer et al.,

2012].

Our LSTM model passes over the ground truth step placements and predicts the next token

given the previous sequence of tokens. The output is a softmax distribution over the 256 possible

steps. As input, we use a more compact bag-of-arrows representation containing 16 features (4

per arrow) to depict the previous step. For each arrow, the 4 corresponding features represent the

states on, off, hold, and release. We found the bag-of-arrows to give equivalent performance to
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Figure 6.7: LSTM model used for step selection

the one-hot representation while requiring fewer parameters. We add an additional feature that

functions as a start token to denote the first step of a chart. For this task, we use an LSTM with 2

layers of 128 cells each.

Finally, we provide additional musical context to the step selection models by conditioning

on rhythmic features (Figure 6.7). To inform models of the non-uniform spacing of the step

placements, we consider the following three features: (1) ∆-time adds two features representing

the time since the previous step and the time until the next step; (2) ∆-beat adds two features

representing the number of beats since the previous and until the next step; (3) beat phase adds

four features representing which 16th note subdivision of the beat the current step most closely

aligns to.

Training Methodology For all neural network models, we learn parameters by minimizing

cross-entropy. We train with mini-batches of size 64, and scale gradients using the same scheme

as for step placement. We use 50% dropout during training for both the MLP and RNN models in

the same fashion as for step placement. We use 64 steps of unrolling, representing an average
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Table 6.2: Results for step placement experiments

Model Dataset PPL AUC F-scorec F-scorem

LogReg Fraxtil 1.205 0.601 0.609 0.667
MLP Fraxtil 1.097 0.659 0.665 0.726
CNN Fraxtil 1.082 0.671 0.678 0.750
C-LSTM Fraxtil 1.070 0.682 0.681 0.756

LogReg ITG 1.123 0.599 0.634 0.652
MLP ITG 1.090 0.637 0.671 0.704
CNN ITG 1.083 0.677 0.689 0.719
C-LSTM ITG 1.072 0.680 0.697 0.721

of 100 seconds for the easiest charts and 9 seconds for the hardest. We apply early-stopping

determined by average per-step cross entropy on validation data. All models satisfy this criteria

within 6 hours of training on a single machine with an NVIDIA Tesla K40m GPU.

6.5 Experiments

For both the Fraxtil and ITG datasets we apply 80%, 10%, 10% splits for training,

validation, and test data, respectively. Because of correlation between charts for the same song of

varying difficulty, we ensure that all charts for a particular song are grouped together in the same

split.

6.5.1 Step Placement

We evaluate the performance of our step placement methods against baselines via the

methodology outlined below.

Baselines To establish reasonable baselines for step placement, we first report the results of a

logistic regressor (LogReg) trained on flattened audio features. We also report the performance of

an MLP. Our MLP architecture contains two fully-connected layers of size 256 and 128, with
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Table 6.3: Results for step selection experiments

Model Dataset PPL Accuracy

KN5 Fraxtil 3.681 0.528
MLP5 Fraxtil 3.744 0.543
MLP5 + ∆-time Fraxtil 3.495 0.553
MLP5 + ∆-beat + beat phase Fraxtil 3.428 0.557
LSTM5 Fraxtil 3.583 0.558
LSTM5 + ∆-time Fraxtil 3.188 0.584
LSTM5 + ∆-beat + beat phase Fraxtil 3.185 0.581
LSTM64 Fraxtil 3.352 0.578
LSTM64 + ∆-time Fraxtil 3.107 0.606
LSTM64 + ∆-beat + beat phase Fraxtil 3.011 0.613

KN5 ITG 5.847 0.356
MLP5 ITG 5.312 0.376
MLP5 + ∆-time ITG 4.792 0.402
MLP5 + ∆-beat + beat phase ITG 4.786 0.401
LSTM5 ITG 5.040 0.407
LSTM5 + ∆-time ITG 4.412 0.439
LSTM5 + ∆-beat + beat phase ITG 4.447 0.441
LSTM64 ITG 4.780 0.426
LSTM64 + ∆-time ITG 4.284 0.454
LSTM64 + ∆-beat + beat phase ITG 4.342 0.444

rectifier nonlinearity applied to each layer. We apply dropout with probability 50% after each

fully-connected layer during training. We model our CNN baseline on the method of Schlüter

and Böck [2014], a state-of-the-art algorithm for onset detection.

Metrics We report each model’s perplexity (PPL) averaged across each frame in each chart in

the test data. Using the sparse step placements, we calculate the average per-chart area under the

precision-recall curve (AUC). We average the best per-chart F-scores and report this value as

F-scorec. We calculate the micro F-score across all charts and report this value as F-scorem.

In Table 6.2, we list the results of our experiments for step placement. For ITG, models

were conditioned on not just difficulty but also a one-hot representation of chart author. For both

datasets, the C-LSTM model performs the best by all evaluation metrics. Our models achieve
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significantly higher F-scores for harder difficulty step charts. On the Fraxtil dataset, the C-LSTM

achieves an F-scorec of 0.844 for the hardest difficulty charts but only 0.389 for the lowest

difficulty. The difficult charts contribute more to F-scorem calculations because they have more

ground truth positives. We discuss these results further in Section 6.6.

6.5.2 Step Selection

Baselines For step selection, we compare the performance of the conditional LSTM to an n-

gram model. Note that perplexity can be unbounded when a test set token is assigned probability

0 by the generative model. To protect the n-gram models against unbounded loss on previously

unseen n-grams, we use modified Kneser-Ney smoothing [Chen and Goodman, 1998], following

best practices in language modeling [Mikolov et al., 2010, Sutskever et al., 2011]. Specifically,

we train a smoothed 5-gram model with backoff (KN5) as implemented in Stolcke [2002].

Following the work of Bengio et al. [2003] we also compare against a fixed-window

5-gram MLP which takes 4 bag-of-arrows-encoded steps as input and predicts the next step. The

MLP contains two fully-connected layers with 256 and 128 nodes and 50% dropout after each

layer during training. As with the LSTM, we train the MLP both with and without access to side

features. In addition to the LSTM with 64 steps of unrolling, we train an LSTM with 5 steps of

unrolling. These baselines show that the LSTM learns complex, long-range dependencies. They

also demonstrate the discriminative information conferred by the ∆-time, ∆-beat, and beat phase

features.

Metrics We report the average per-step perplexity, averaging scores calculated separately on

each chart. We also report a per-token accuracy. We calculate accuracy by comparing the ground-

truth step to the argmax over a model’s predictive distribution given the previous sequence of

ground-truth tokens. For a given chart, the per token accuracy is averaged across time steps. We

produce final numbers by averaging scores across charts.
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In Table 6.3 we present results for the step selection task. For the Fraxtil dataset, the best

performing model was the LSTM conditioned on both ∆-beat and beat phase, while for ITG it

was the LSTM conditioned on ∆-time. While conditioning on rhythm features was generally

beneficial, the benefits of various features were not strictly additive. Representing ∆-beat and

∆-time as real numbers outperformed bucketed representations.

Additionally, we explored the possibility of incorporating more comprehensive representa-

tions of the audio into the step selection model. We considered a variety of representations, such

as conditioning on CNN features learned from the step placement task. We also experimented

with jointly learning a CNN audio encoder. In all cases, these approaches led to rapid overfitting

and never approached the performance of the conditional LSTM generative model; perhaps a

much larger dataset could support these approaches. Finally, we tried conditioning the step

selection models on both difficulty and chart author but found these models to overfit quickly.

6.6 Discussion

Our experiments establish the feasibility of using machine learning to automatically

generate high-quality DDR charts from raw audio. Our performance evaluations on both subtasks

demonstrate the advantage of deep neural networks over classical approaches. For step placement,

the best performing model is an LSTM with CNN encoder, an approach which has been used for

speech recognition [Amodei et al., 2015], but, to our knowledge, never for music-related tasks.

We noticed that by all metrics, our models perform better on higher-difficulty charts. Likely, this

owes to the comparative class imbalance of the lower difficulty charts.

The superior performance of LSTMs over fixed-window approaches on step selection

suggests both that DDR charts exhibit long range dependencies and that recurrent neural networks

can exploit this complex structure. In addition to reporting quantitative results, we visualize the

step selection model’s next-step predictions. Here, we give the entire ground truth sequence as
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Figure 6.8: Top: A real step chart from the Fraxtil dataset on the song Anamanaguchi -
Mess. Middle: One-step lookahead predictions for the LSTM model, given Fraxtil’s choreog-
raphy as input. The model predicts the next step with high accuracy (errors in red). Bottom:
Choreography generated by conditional LSTM model.

input but show the predicted next step at each time. We also visualize a generated choreography,

where each sampled output from the LSTM is fed in as the subsequent input (Figure 6.8). We note

the high accuracy of the model’s predictions and qualitative similarity of the generated sequence

to Fraxtil’s choreography.

For step selection, we notice that modeling the Fraxtil dataset choreography appears to

be easy compared to the multi-author ITG dataset. We believe this owes to the distinctiveness

of author styles. Because we have so many step charts for Fraxtil, the network is able to closely

mimic his patterns. While the ITG dataset contains multiple charts per author, none are so prolific

as Fraxtil.

We released a public demo5 using our most promising models as measured by our

quantitative evaluation. Players upload an audio file, select a difficulty rating and receive a step

5http://deepx.ucsd.edu/ddc
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chart for use in the StepMania DDR simulator. Our demo produces a step chart for a 3 minute

song in about 5 seconds using an NVIDIA Tesla K40c GPU. At time of writing, 220 players have

produced 1370 step charts with the demo. We also solicited feedback, on a scale of 1-5, for player

“satisfaction” with the demo results. The 22 respondents reported an average satisfaction of 3.87.

A promising direction for future work is to make the selection algorithm audio-aware. We

know qualitatively that elements in the ground truth choreography tend to coincide with specific

musical events: jumps are used to emphasize accents in a rhythm; freezes are used to transition

from regions of high rhythmic intensity to more ambient sections.

DDR choreography might also benefit from an end-to-end approach, in which a model

simultaneously places steps and selects them. The primary obstacle here is data sparsity at any

sufficiently high feature rate. At 100Hz, about 97% of labels are null. So in 100 time-steps of

unrolling, an RNN might only encounter 3 ground truth steps.

We demonstrate that step selection methods are improved by incorporating ∆-beat and

beat phase features, however our current pipeline does not produce this information. In lieu of

manual tempo input, we are restricted to using ∆-time features when executing our pipeline on

unseen recordings. If we trained a model to detect beat phase, we would be able to use these

features for step selection.

6.7 Related Work

Several academic papers address DDR. These include anthropological studies [Hoysniemi,

2006, Behrenshausen, 2007] and two papers that describe approaches to automated choreography.

The first, called Dancing Monkeys, uses rule-based methods for both step placement and step

selection [O’Keeffe, 2003]. The second employs genetic algorithms for step selection, optimizing

an ad-hoc fitness function [Nogaj, 2005]. Neither establishes reproducible evaluation methodology

or learns the semantics of steps from data.
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Our step placement task closely resembles the classic problem of musical onset detection

[Bello et al., 2005, Dixon, 2006]. Several onset detection papers investigate modern deep

learning methodology. Eyben et al. [2010] employ bidirectional LSTMs (BLSTMs) for onset

detection; Marchi et al. [2014] improve upon this work, developing a rich multi-resolution feature

representation; Schlüter and Böck [2014] demonstrate a CNN-based approach (against which

we compare) that performs competitively with the prior BLSTM work. Neural networks are

widely used on a range of other MIR tasks, including musical chord detection [Humphrey and

Bello, 2012, Boulanger-Lewandowski et al., 2013a] and boundary detection [Ullrich et al., 2014],

another transient audio phenomenon.

Our step selection problem resembles the classic natural language processing task of

statistical language modeling. Classical methods, which we consider, include n-gram distributions

[Chen and Goodman, 1998, Rosenfeld, 2000]. Bengio et al. [2003] demonstrate an approach

to language modeling using neural networks with fixed-length context. More recently, RNNs

have demonstrated superior performance to fixed-window approaches [Mikolov et al., 2010,

Sundermeyer et al., 2012, Sutskever et al., 2011]. LSTMs are also capable of modeling language

at the character level [Karpathy et al., 2015, Kim et al., 2016]. While a thorough explanation of

modern RNNs exceeds the scope of this paper, we point to two comprehensive reviews of the

literature [Lipton et al., 2015, Greff et al., 2016]. Several papers investigate neural networks for

single-note melody generation [Bharucha and Todd, 1989, Eck, 2002, Chu et al., 2016, Hadjeres

and Pachet, 2017] and polyphonic melody generation [Boulanger-Lewandowski et al., 2012].

Learning to choreograph requires predicting both the timing and the type of events in

relation to a piece of music. In that respect, our task is similar to audio sequence transduction

tasks, such as musical transcription and speech recognition. RNNs currently yield state-of-the-art

performance for musical transcription [Böck and Schedl, 2012, Boulanger-Lewandowski et al.,

2013b, Sigtia et al., 2016]. RNNs are widely used for speech recognition [Graves and Jaitly,

2014, Graves et al., 2006, 2013, Sainath et al., 2015], and the state-of-the-art method [Amodei
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et al., 2015] combines convolutional and recurrent networks. While our work is methodologically

similar, it differs from the above in that we consider an entirely different application.

6.8 Conclusions

By combining insights from musical onset detection and statistical language modeling,

we have designed and evaluated a number of deep learning methods for learning to choreograph.

We have introduced standardized datasets and reproducible evaluation methodology in the hope

of encouraging wider investigation into this and related problems. We emphasize that the sheer

volume of available step charts presents a rare opportunity for MIR: access to large amounts

of high-quality annotated data. This data could help to spur innovation for several MIR tasks,

including onset detection, beat tracking, and tempo detection.
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Chapter 7

Other interactive systems

In this chapter, I discuss other interactive systems I have built which allow humans to

pilot and curate neural network generative models. These systems merge aspects of traditional

computer music interfaces (e.g. sequencers) with powerful generative models. In Section 7.1, I

discuss a demo which uses my WaveGAN generative model (Chapter 4) to produce a procedural

drum machine. In Section 7.2, I discuss Neural Loops, a factorized approach to modeling

P(music) which combines three different neural network generative models to procedurally

create four-bar musical loops. In Section 7.3, I discuss an interface I built for my research on

decomposing the latent spaces of neural network generative models in semantically-meaningful

ways.

7.1 DrumGAN

I built a demo interface allowing musicians to explore our WaveGAN audio generative

model (Chapter 4) trained on drum one-shot clips (DrumGAN) (link: https://chrisdonahue.com/

wavegan). It pairs a traditional 16-step drum sequencer with our DrumGAN synthesis method,

allowing musicians to independently manipulate both the symbolic and acoustic parts of a drum

loop. It also allows the user to download the sounds generated by WaveGAN for use in another
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Figure 7.1: Interface for a demo of DrumGAN, which combines a WaveGAN generative model
of drum one-shots with a traditional step sequencer.
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digital audio workstation. This tool requires some amount of musical expertise as it tasks users

with manually creating symbolic drum patterns. In Section 7.2 we describe a similar demo which

incorporates a model capable of automatically generating these patterns.

7.2 Neural Loops

Neural Loops (Figure 7.2, video demonstration https://youtu.be/7A jur5ncHI) is an in-

teractive system for creating four-bar musical loops using machine learning. It was created in

collaboration with Vibert Thio. Neural Loops uses a factorized approach to modeling P(music)

(Section 2.2). Specifically, it combines the MusicVAE method [Roberts et al., 2018] to generate

four-bar trio scores with my work on generating drum one-shots (WaveGAN) [Donahue et al.,

2019a] and tonal instrument timbres (GANSynth) [Engel et al., 2019].

Because we focus on a subset of P(music) which encapsulates four-bar trios performed by

an ensemble consisting of a melody, bass line, and drum kit, I will instead refer to the distribution

as P(loop). The factorization we explore here is

P(loop) = P(score) ·P(melody timbre) ·P(bass timbre) ·P(drumkit timbre). (7.1)

Intuitively, this means that we have independent control over the trio score, the tonal instrument

(melody/bass) timbres, and the percussive timbres (Figure 7.3). One assumption we are making

in Equation (7.1) are that the instrument timbres are statistically independent of the score and

vice versa, e.g. P(melody timbre | score) = P(melody timbre).

In Figure 7.2, I show the interface we built for Neural Loops. The interface consists

of a combination of traditional musical interface controls like volume and tempo faders, and

“smart” buttons which resample from the factorized distribution of Equation (7.1). Using the

smart buttons, the user can independently modify the individual instrument timbres (melody, bass,

or any of 9 drum kit sounds) and individual instrument scores.
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Figure 7.2: The interface for Neural Loops, which combines multiple neural network generative
models with a traditional musical sequencer to produce an interactive tool for exploring four-bar
musical trios.
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GANSynthMusicVAE WaveGAN

Musical sequencer

Figure 7.3: Schematic diagram for Neural Loops illustrating the generative models used as part
of a factorized approach at modeling four-bar musical waveforms.

While Neural Loops is—for now—more a proof of concept than fully-fledged tool, I see

it as a first step towards a predictive digital audio workstation (DAW). Such a DAW could allow

human pilots to explore a continuum between full automation (creating a complete track at the

press of a button), and no automation (reminiscent of current DAW workflows). The point along

this continuum which a user finds to be the most productive would be a function of both their

musical experience level and intentions. Such tools would allow non-musicians to create music

and also modify the workflow of expert musicians to enhance their productivity.

7.3 Semantically-decomposed GANs

I built an interface to accompany my work on semantically decomposing the latent spaces

of generative adversarial networks [Donahue et al., 2018b]. The goal of this work was to factorize

the distribution of multimedia into the parts corresponding to some semantically-salient attribute,

and the parts corresponding to everything except that attribute, which we call contingent aspects.
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Figure 7.4: The factorized latent spaces of semantically-decomposed generative adversarial
networks allow for independent manipulation of salient and contingent aspects of multimedia
such as face portraits and visual artworks.
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For example, we factorized the distribution of face portraits into a portion pertaining to the identity

of the subject depicted, and a portion pertaining to all of the contingent factors of a face portrait

that can vary besides identity (e.g. lighting, angle). We also attempted to factorize the distribution

of visual art into portions corresponding to style and the contingent, where we loosely represent

style as the identity of an individual artist.

The methodological details can be found in [Donahue et al., 2018b], but here I want to

discuss the interactive interfaces we built for these two case studies (Figure 7.4). Both allow

the user to independently manipulate the salient attribute (identity for faces and style for visual

art) and the other contingent aspects (left portion of each interface). They also allow the user

to interpolate between these attributes (right portion of each interface). While these examples

focus on non-musical types of multimedia, they further help to exemplify a common thread of all

of my research in generative modeling. Namely, that factorized probabilistic models allow for

convenient interfaces that allow humans to intervene and benefit from the generation procedure

of the model. This is almost always more useful than interfaces which generate infinite amounts

of content at the push of a single button.
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Part IV

Conclusion
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Chapter 8

Conclusion

In this dissertation I have described my research which enables new types of musical

interactions by using predictive and generative machine learning models. My work has advanced

the state-of-the-art in unsupervised generative modeling of both multi-instrumental symbolic

music and audio waveforms. Additionally, I have built numerous interfaces which allow users to

benefit from what these predictive models have learned about human-composed music. Perhaps

most illustrative of my goal of lowering the barrier to entry for music creation is my work on

Piano Genie (Chapter 5, demo: https://piano-genie.glitch.me), which grants non-musicians a

degree of piano improvisation literacy.

As I continue my research into enabling these new types of musical interactions, I

emphasize both the practical and philosophical importance of building systems which are primarily

human-driven. Researchers in music generation have conceived many different quantitative

evaluation metrics by which to compare our systems, but ultimately the only true metric is the

degree of engagement and enjoyment our systems bring to humans. Hence, it is important that we

continue to design systems with human users in mind, allowing artificial intelligence to become

yet another tool in the toolbox for human musicians—much like electronics before it.
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Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei Efros. Context

133



encoders: Feature learning by inpainting. In CVPR, 2016.

Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan Arik, Ajay Kannan, Sharan Narang, Jonathan
Raiman, and John Miller. Deep Voice 3: Scaling text-to-speech with convolutional sequence
learning. In ICLR, 2018.

Ryan Prenger, Rafael Valle, and Bryan Catanzaro. WaveGlow: A flow-based generative network
for speech synthesis. In ICASSP, 2018.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. In ICLR, 2016.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. Technical report, OpenAI, 2019.

Colin Raffel. Learning-based methods for comparing sequences, with applications to audio-to-
midi alignment and matching. PhD thesis, Columbia University, 2016.

Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. A hierarchical
latent vector model for learning long-term structure in music. In ICML, 2018.

Ronald Rosenfeld. Two decades of statistical language modeling: Where do we go from here?
Proceedings of the IEEE, 2000.

Udit Roy, Tejaswinee Kelkar, and Bipin Indurkhya. TrAP: An interactive system to generate valid
raga phrases from sound-tracings. In NIME, 2014.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations
by error propagation. Technical report, UC San Diego Institute for Cognitive Science, 1985.

Tara N Sainath, Ron J Weiss, Andrew Senior, Kevin W Wilson, and Oriol Vinyals. Learning the
speech front-end with raw waveform CLDNNs. In INTERSPEECH, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs. In NIPS, 2016.
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Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. In ICLR, 2016.

Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image compression
with compressive autoencoders. In ICLR, 2017.

Peter M Todd. A connectionist approach to algorithmic composition. Computer Music Journal,
1989.

Keiichi Tokuda, Yoshihiko Nankaku, Tomoki Toda, Heiga Zen, Junichi Yamagishi, and Keiichiro
Oura. Speech synthesis based on hidden Markov models. Proceedings of the IEEE, 2013.

Sandra E Trehub, Dale Bull, and Leigh A Thorpe. Infants’ perception of melodies: The role of
melodic contour. Child development, 1984.

Karen Ullrich, Jan Schlüter, and Thomas Grill. Boundary detection in music structure analysis
using convolutional neural networks. In ISMIR, 2014.

135
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