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Abstract 

August 23, 1962 

An analysis i s  made of the energetic, molecular, mxromolecu la r  and 

organizational steps which appear to be essential for the development of 

a living cell  from a nonliving origin. Accepting the current  view of the 

primitive atmosphere of the earth, experimental demonstration for the 

formation of the fundamental molecules of living organisms (amino acids, 

fatty acids, purines and pyrimadines) under the influence of available 

energy sources (ultraviok light, ionishg radiation and electric discharge) 

is presented. 

The combination of these small units and the polymers via the univer- 

sal  dehydration condensation reaction under the influence of py rophosphate 

o r  carbon- to-nitrogen multiple bonds i s  experimentally provided. These 

macromolecules a r e  shown to assume specific configuratione resulting 

from intrinsic factors in their structure, and mechanisms for information 

transfer and energy transfer  by virtue of these ordered structures a r e  

described. The aggregation of bifunctional molecules a t  interfaces to 

give ordered membranous structures is indicated a s  the possible source 

for the cell  wall enclo5ures, thus completing the prebiotic phase. 
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Since this sequence of events on a molecular level may be expected to 

occur whenever and wherever the initial conditions ar i se ,  we a r e  led to 

e xpect the appearance of life of this type elsewhere in the universe. Some 

of the evidence that i s  presently a t  hand regarding such extraterrestr ial  

l ife i s  presented, and the promise of more definitive information, a t  least  

about the solar system, seems to be forthcoming. 

Tok published in the AIBS Bulletin 

Ib Presented a t  meeting of American Institute of Biological Sciences, 
Corvallis, Oregon, August 28, 1962. 

** The preparation of this paper was sponsored by the U. S. Atomic 
Energy Commission. 



COMMUNICATION: FROM MOLECULES TO MARS 

M elvin Calvin 

* * 
Department of Chemistry and Lawrence Radiation Laboratory 

University of California, Berkeley 4, California 

INTRODUCTION 

Zve r  s ince man  became consciods of himself i t  seems he has been 

concerned with wonder a t  his own natdre.  In fact ,  the degree to which 

he has left evidence of this concern is frequently taken a s  a measure  of 

his p rogress  toward hurnanhood. Very e a r l y  in his speculations about 

h i s  own nature,  he recognized that he was a member  of a large c lass  of 

objects on the surface of the ear th  which were called "living1' a s  dis-  

tinguished f rom those which were not. 

Very soon, a s  a c o r o l l ~ r y  o r  exrcnsion of his concern for this own 

nature,  he therefore  becama interested in the nature of llfe and living 

things themselves .  In the course of hishis tory,  b o ~ h  ancient and modern, 

he produced an enormous var ie ty  of notions about both the nature of life 

and his relation to i t .  But it has only been in the las t  century since the 

dominant success  of D <rwinian thought that man has been in a position 

t o  begin to devise patterns of ~hought  within the framework of what we 

** The  preparat ion of this  paper was sponsored by the U.S.  Atomic 
Energy Commiesion. 



call rational science today. In fact, i t  hae only been in the lae t  two 

or  three decades. that both the biochemical and bi: phyeical, as well 

as chemical and physical and astronomical,  knowledge has reached the 

level that has enabled him to escape the requirement f o r  use of such 

t e rms  a s  "fields", "gradients", and "eeeences" and replace them with the 

more  severely and accurately defined t e r m s  of chemical reaction, t rans-  

formations, molecules and their interactions, crystals ,  and molecular 

fi lms, about whose nature w e  need not gue 8s. 

This expanded part icular  knowledge about the atomic and molecular 

constituents of which living things a r e  constructed, together with an in- 

c reased  understanding of the way in which these molecules (used in the 

most  general sense)  interact  with each other,  that is,  communicate with 

each other so a s  to  cooperate in the production of what w e  now recognize 
a t  l e a s t  

as  living organisms,  has h a 4  two very interesting resul ts ,  among 

others.  l'he f i r s t  of these has been to stimulate scientists to create  

hypothetical schemes leading irom the primeval nonliving ear th  to the 

1-7 
present day and, consequently, induce them to devise experimental 

areas in  their laborator ies  for testing some of these echemes a t  various 

points at  which they might be amenable to experimental laboratory 

tests .  i'he degree of succcss  of a variety of these experiments has ,  

in  turn,  modified the original constructs,  and even led to new experi-  

ments ,  both in biology and in chemistry,  parlicularly the la t ter .  



Up until now, dl our knowledge about tho nature of tho extra- 

te r res t r ia l  universe has been baaed entiroly upon tho infonnrtioa that b a  

bean carr ied to us b y  tlectromagnetic radiation (until  rscontly only 

visible light, now we may add radiofrequency waves) from elrowhero. 

However, we a r e  about to begin (or ,  in fact, have already begun) an ex- 

ploration of the space beyond the reachea of the earth ' r  atmoephere and 

will soon be exploring not only our own satellite, the Moon, but our two 

nearest  planetary neighbors, Venus and Mars .  Hers we will be able to 

get direct first-hand information not only about the nature of th t  materialo 

of which these objects a r e  constructed, but a lso  about the possible exie- 

tence on their surface either of matter  which we woulg be willing to call 

living, o r  of matter  which might have ultimately given riee to living 

things, o r  be the residue of living things. This will add immeasurably 

not only to our intellectural horizons but directly to the knowledge of 

the nature of the te r res t r ia l  organisms as  well. We a re  even beginning 

t o  discuss seriously and make a f e w  small attempts at communications with 

extraterrestr ial  organisms who might have not only our minimal power 

of understanding but perhaps even powers ia r  beyond those which w e  

know. 
11 

It therefore seems appropriate to say a f e w  words both about the 

present state of our knowledge of chemical evolution on the earth and the 

generation of molecular communitiee which give r ise to terrestrial o r -  

g a n i s m ~ ,  a s  well a s  what little we know of the existence of correspond- 

ing organiams eleewhere. 



TERRESTRIAL CKEMICAL EVOLUTION 

What Ie a Living System'! 

In any discuseion of such a broad, all-encompassing subject ao 

this we a r e  always faced with the problem of trying to define the mater la l  

eye lam to which w e  a r e  willing to attribute the adjective "living." P e r -  

sonally, I feel that this has  a cer tain degree of subjective arbi t rar ineeo 

about i t ,  since there  a r e  those who would be willing to allow the use of 

this t e rm for sys tems which would not be acceptable to others.  I'hie 

peculiar character is t ic  of the problem immediately allows us to recognize 

that the qualit ies,  o r  properties,  which we require  of a mater ial  system 

a r e  of the nature of a continuous aggregation in t ime along which no sharp  

line of demarcation need necessar i ly  exist .  Rather than t ry  to define that 

par t icular  concatenation of properties of a molecular system which 

might be acceptable to everyone a s  living, I would ratherlecognize 

the difficulty of satisfying everyone, and simply take two of the qualities 

which everyone will agree  a r e  cer tainly basic attributes of a living 

system and t r y  to descr ibe the sequence of events which might have 

produced them from nonliving origins. 

'l'hese two proczsses  which I think mosl, if not a l l  of us ,  would 

agree  upon a s  being perquisites of present-day living systems a r e  

(1)  their ability to t ransfar  and t rans torm energy in a directed way 

and ( 2 )  their ability to remember  how to do this, once having learned 



it, and to t ransfer  o r  communicate that information to another eystem 

like itself which it can construct.  Here w* have, then, two of the princi- 

pal problems of the biologist trying to underetand a living organism in 

molecularr te rme.  These a r e ,  restated: (1) The t ranefer  and t rane-  

formation of energy and (2)  the communication and transformation of 

information. In the l a r g e r  sense, I suppose, the second ability includes 

the f i r s t .  The genetic information contains not only the directions fo r  

the construction of new organisms but for their function as well, and 

i t  i s  rhis function which i s  largely a mat te r  of energSfransfer and 

transformation. 

Wlolecular Cons~ruct ion 

In any case ,  the rriaterials of which the living organism is con- 

structed a r e  known KO us ( o r  at  l eas t  a good many of   hem a r e ) ,  and one 

of the character is t ics  of these materialt ,  iu the ecsential  requirement 

that they be constituted, a t  least  in parL, of polymeric molecules in order  

that the information storage and t r ans fe r  Le possible. i'he energy t r ans -  

formation as  well seems dependent upon such niacromolecular,  o r  pseudo- 

crystalloidal,  s t ructures .  Lur  evolutionary problem can now be deflned 

in molecular  Lermb a s  the devising oi processes  which will no1 only give 

r i s e  to the simple molecular s t ructural  components of living things and, 

in  addition, LO nlac rorriolecules associated with them, but to their 

functional relationshipa, that i s ,  energy transformation relationships, 

a s  well. 



The ITIOSL common elements of the universe, namely, h m o g e n ,  carbon, 

oxygsn and nitrogen, a r e  a l so  the most  common ones in t e r r e s t r i a l  living 

organisms,  and some relationship between these atoms,  the biologically 

important molccules and the polymers derived f rom them is shown in 

F igure  1. The chemical bonds which must be crea ted  in  order  tomanu- 

facture the simple molecules required for the construction of living 

organisms,  such a s  amino acids,  sugars ,  purine-pyrimidine bases ,  fatty 

and hydroxy acid, and the like,  involve a wide variety of types ( s ee  

F igure  1 and Figure 3 ) .  These include C-H, N-13, 0 -H ,  C-N, C - 0 ,  C -  N, 

C -  0, and perhaps other l e s s  widespread types. The step from the simple 

molecules to the polyrriers appears  to be pr imari ly  of a single type, 

namely, the formation of e i ther  a C - v  o r  C-I< (and possibly a P-0) 

bond with a concomitant loss ,  o r  zliminatiun, oi. a water molecule; 

we  shall  come back to this  remarkably unllorm rdaction la te r .  

The catalytic and energy t ransferr ing functions which today a r e  so 

highly efficient weri: presumably evolved in the same molacules and by 

s imi la r  mechanism from the very  primitive energy t ransfer r ing  and 

catalytic functions oi   ha primeval molecules and ions presant in the 

formation of the ear th  itself. 
12 



ATOM MOLECULE 

H ydrogen Amino 

Carbon Sugar 

0 xygen Base 

N i trogen Acid 

POLYMER 

Acid --, 

Cellulose, Starch ,etc. 

[~ucleic Acid I 
Lipid 

Figure 1. Schematic representation, in chemical terms, of the 
set of transformations which have to be accomplished from the 
atoms to produce the structure of the cell. 



The Time Scale and the Stacting Material 

W e  mut now turn to the question of the starting material that was 

available to ur and the time available to achieve the transformation0 from 

that starting material  into the forms we now recognize. 

The time available since the formation of the ear th  seems to be 

something of the order  of 4 .5  to 5 billion years, and the logarithmic 

chart, w~::A ~omebench marks  on i t ,  is  shown in Figure 2. It i s  in- 

tere*.ting to note that the period marked Chemical Lvolution, p resurn~b ly  

Leginning with the formation of the earth in i t s  present; shape, and the 

period marked Organic dvolution, beginning with the appearance of rnole- 

cular  syetems which w e  would call alive, a r e  shown to overlap in the 

region of 2 billion years ago, roughly halfway through the age of the 

earth.  A n  interesting calculation can be m a d e  conczrning the two 

stages of evolution which might be separated ac such a point. The earliest 

stage of Chemical Evolution leading up to the appearance of the f irs t  mi- 

cellular organisms would thus occupy some 2. 5 billion years .  The 

climb from the prirritive unicellular organisms to the modern mulri- 

cellular organisms required the remaining 2 billion years. 

There i s  now more  reason f o r  thio particular division than was or i -  

ginally a t  hand when it  was made. It now appears that unicellular o r -  

ganisms resembling blue-green algae in form havj been found in 6Lrata 

1 3 , 1 4  
whose age i s  not l e s s  than i .7 billion years. 
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Earliest Vertebrates 
Earliest known Fossils 

(Cambrian) 

Organic Evolution 

Chemical Evolution 

I N  
MILLIONS 

OF YEARS 

Formation of the 
present earth 

I 

5 0 0 0  ? Genesis of the Universe 

GEOLOGIC 
ERA 

Figu re  2 .  Time s ca l e  for to ta l  evolution. 

EVENTS 



An estimate of the complexity of the unicellular system might be 

made in t e rms  of the number of molecules that have to be organized to 

produce one. Roughly this amounts to l o l o  molecules for a cell of 

approximately one mic ro  diameter. Noc all of these molecules are 

different, that is ,  some of these lo1 molecules would be made up of a 

much smaller  number of different varieties.  A similar calculation for 

the next transition from the unicellular level to the intelligent organism 

such as man gives a corresponding number of cells in the whole organism, 

again lo1'. So i t  i s  not surprising that the time requirkd to organize 

10" moleculen into a single cell and the time to organize 1 01° cells 

into a full-fled ged lrrssl should have been rough1.y the same order of 

magnitude. 

The evolution of highly efticient mechanism for the storage and 

transfer  of information (and energy conversion) took place during the 

f i r s t  phase of this evolutionary time sequence and was dependent upon 

the properties inherent in the macrorrlolecules (nucleic acids, proteins) 

which appeared during that period. Similarly, the evolution of effi- 

cient mechanisme for the control and ordered'development of the informa- 

tion contained in the transferred molecules was based upon the propertiea 

of the information transferring system itself, and proba liy took place 

largely during the second period, giving r ise to all the phenomena of 

growth and differentiation of multicellular organisms as w e  know them 



toddy. This requires, of course, that such control mechanisms were al- 

rea ry inherently present, even in the unicellular organisms. 

iVhile we have developed, in the past decade, a more  o r  l e s s  con- 

sistent understanding of the nature of information transfer on a mole- 

cular basis, we a r e  only just beginning to understand the way in which 

that information manifests itself in growth. development and differcntia- 

tion of cells and tissues on a molecular basis. This seeme to be a problem 

of molecular communication of the nucleus of the cell (the information 

storage vault with its environment through the intermediary of the cyto- 

plamic constituents (see Figure 1 7  ). It i s  quite obvious that an 

understanding of the mechanism of this communication problem is  of 

great importance to us for  practical a s  well a s  philosophical reasonra. 

W e  now return to the question of the natuleof the actual organic 

starting materials  f rom which all this was derived. Perhaps the simplest 

way to begin w i l l  be to recognize that the primeval earth had accumulated 

in it ,  o r  on it, the very same organic materials  which a r e  widespread 

throughout the solar system and the galaxy as  well, namely, the very 

simplest compounds of carbon, hydrogen, oxygen and nitrogen. 15,16 

It is presumed that these were largely dominated by hydrogen and, 

therefore, were generally in their most reduced forms. These mater -  

id s  a r e  represented by the molecules in the top row of Figure 3 and 

the molecules with which we have to work a re  thus methane, ammonia, 

water, and a large amount of hydrogen, and perhaps some carbon 

monoxide and carbon dioxide. 
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H 
I 

H 
H-o O=C=O H-6-H H 

I 
'? 

I 
N-H 

H 
H 

Carbon 
k 

Water dioxide Methane Hydrogen Ammonia 

Q 
It 

H Y 9 
H-CIN H-C-OH H - ~ O  HOCH2-C=O CH3-C-OH 

H ~ d r m ~ a n i c  Formic acid Formaldehyde Glycolaldehyde Acetic acid 
acid 

NH2 ""'2 
Succinic ocid Glycine Alanine Aspartic acid 

MU-16089-A 

Figure 3. Primeval and primitive organic molecules. 



Enerev  Sources 

In o r d e r  for  these molecules to undergo transformations, a source 

of energy mus t  be provided, and he re  we have a wide variety to choose 

from. The sources.of energy and their possible availabilities are shown 

17 
in Table 1. The principal source of energy that could be used by such 

TABLE I-ENERGY AVAILABLE FOR SYNTHESIS OF  ORGANIC 
COMPOUNDS 

Sowcc of Energy Energy 
(in 10" cal/yr) 

1)ecay of K4" in earth's crust a t  present 
1)ecay of K"' in earth's crust 1.3 x 10" years ago 
Decay of I<"' in earth's crust 2.6 x 10" years ago 
U!traviolet light of wavelength below 1500 A 
Ultraviolet light of wavelength below 2000 
L!ltraviolet light of wavelength below 2500 X 
I - i g h t ~ ~ i ~ ~ g  

an  aggrzgation of r r i o l e c u l e ~  secrris to ~e 1l;ht oi  waveleng~h of 2000 A 

o r  shor te r .  3adioactivity in  the earth ' :  crust ,  e l e c t r i c  d i scharges  in 

the atmosphere and cosm-ic radiatio,i a r e  secondary and te r i la ry  sources 

of ene rgy  for  these  t ransforna t ions  as w e l l .  



At this stage in our knowledge of the c h e d c a l  transformations induced 

by such high energy radiations, including ultraviolet, the r e  does not 

appear to be any q a r k e d  systematic difference between the proclucte 

from one type of high energy radiation and those of another, a t  Peast 

among theas. And so we will call  equally upon experiments which have 

been performed with a l l  of these energy sources. 

Initial Transformations 

The earl iest  etxperimenta designed to test the notions here intro- 

duced were done using a high energy alpha particle beam on the cyclotron 

and ware reported in 1951. Here i t  was shown chat carbon dioxidi dia- 

solved in water and irradiated in the presence of ferrous iron and hydro- 

gen could produce a variety of reduced carbon compounds, including for- 

maldehyde and formic acid. 

Since then similar  experiments have been performed with other 

energy sources with the same starting materials  and demonstrating not 

1 U 
only that particles but ultraviolet light and gamma rays19 can produce 

reduced carbon under these conditions.  ladn next major s tep was taken 

when Miller introduced ammonia into these reaction systems, together 

with reduced carbon in the form of methane. Here the energy source 

was electric discharge, and Miller was able to dsmonstrate very clearly 

Y,10 
the appearance of amino acids as  major  products under such conditions. 

2 0 
Ultraviolet light has been used for a s imilar  demonstration. 



The presence of HCN was inferred from the appearancz of anrill:, 

acids in  Mil ler ' s  e a r l y  experiments.  Its quantitative demonatration w d -  

achieved in an  electron bombardment of a s imi la r  mixture of methane, 

2 1 
ammonia, hydrogen.and water. 'The importance of HCN as an ea r ly  

product in these reactions a r i s e s  from the recent  demonstration of 

the formation of adenine when an ammoniacal solution of I3CN i s  allowed 

to stand. 22'23 A variety of other biologically important simple molecules 

haia since been demonstrated to a r i s e  in solutions of ammonium cyanide 

2 4 , 2 5  
under very  mild conditions. Thus we see that the molecules of the 

primeval ear th  shown in the f i r s t  row of Figure 3 can very readily be - -  
and in fact have been --  transformed into the primitive o r ~ a n i c  molecdes 

shown in  the second r o w ,  by any of the energy sources which w e  know to 

have been available. 

Not only can  we gsnerate important biological n~oieculeu,  such as 

amino acids and purine and pyrimidine bases ,  f rom HCN and others of 

these simple molecules by base catalysis,  but the sugare themselves are 

now very  ear i ly  derivable,  again by base catalysis ,  from   he formaldehyde 

generated by the methods just described. I t  has  long been known that 

the t reatmeni  of aqueous forrnaldehyde v~iih l ime o r  limesrone will produce 

a mixture of carbohydrates which has bean given the name formose (f i -  

gure 4). More recently, this reaction has been examined with modern 

analytical tools and the preference for cer tain sugars  and sugar  con- 

figurations has been demonstrated. 26a L7 'That such four-,  f ive-,  six-,  



Figu re  4. Route to ca rbohydra tes  a s  a r e s u l t  of t rea tment  of 
formaldehyde with l i m e  o r  l imestone.  

I * 
F;WH CH20H I CH20H 

C =O * C=O C =o I 
C=O 

LH20H LHOH ~ H O H  ~ H O H  

hI-l20H AHOH ~ H O H  
&+OH AHOH 

A 
C 

I 
CH20H 

-7 \ \ -, 

I' 
K = O  HC=O 

~ H O H  
1 

CHOH 
AHOH AHOH 
LHOH ~ H O H  
&H$H AHOH I 

b 

I, CH20H 



and seven-carbon sugars  may  be generated direct ly  by electron bombardment 

of the methane -ammonia-water -hydrogen system was shown by comparison 

of radioautographs of tha products of such an irradiat ion using c ~ ~ H ~  

with the products of l ime treatment of formaldehyde i s  shown in F igure  

2 1 
5. That a wide variety of other ccrrrmpounds a re  a l so  formed under these 

conditions has been demonstrated and is spectacularly evident in a radio- 

autograph of these products shown in F igure  6. Most of these discrete  

spots  have not yet been identified. The analysis of such a mixture is 

given in  TL)b le  2. A distribution of products resulting from the sparking 

of methane-ammonia-water-hydrogen mixture taken from ~ i l l a r ~ '  i s  

shownin Table 3. 

T A ~ I F  2- II)ESTIFICATION OF C O M P O U N D S  FROM IRRADIATION 
ESI'I'HIBIEST FROM Cl i -LABELED M E T H A N E ,  

AMMONlA, A N D  W A T E R  

Experiment M22 "CH,, XH,,  H1O, PH,  ( N I I , P O , ) x  

Acid fraction 
Basic fraction 

.- - 45.5% 
- - 17.44% separation on Dowex 1 

and L)owex 50 
Nonionic fraction - -- 21.3% 

- 

Lactic acid - - 
- - 

0.45% of total 
0.203% of basic fraction 
0.03470 of total 
0.105~% of basic fraction 
0.01870 of total 
2.21% of acid f r a c t m  
0.99% of total 

Tlic I?LW urihwwn other dominating acids (not  including lactic) accomt ior 2'1% 
a ~ ~ t l  17.8%, res11ectively, of the acid fraction. 
Glycine 

a-Alanine 

Aspartic acid 

- - 0.2% of basic fraction 
- - 0.0370 of total - - 1.07% of basic fraction 
- - 0.18% of total - - 0.2% of basic fraction 
- - 0.03% of total 

The hc*o u ~ ~ k n o w n  (not urea or guanidine) dominating basic compounds (ninhydrin 
positive) account for 20.!)70 and 11.9% of the basic fraction. 



UCRL- 10424 

Figu re  5. Neutra l  f rac t ion  of exper iments  M30 and M31 i n  
compar i son  to "formose" f r o m  formaldehyde and CaO. 
Solvent: ethyl aceta te-pyr idine  -water  10:3:3. 
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F i g u r e  6. Radioautograph of c h r o m a t o g r a m  of nonvolat i le  
r e s i d u e  of e x p e r i m e n t  M 2 2 . 2 1  



5 
'TaLle 3.  Yields in moles  (x10 ) from spark ing  a rnixiure or' CH 

4' 

NH3,  H 2 0  and Hz. 710 rng of carbon w a s  added a s  CH 
4 ' 

Gly-; ~ , n e  6 3 

Glycolic acid 5 6 

Yarcosine 5 

Alanine 3 4 

Lact ic  acid 3 1 

N -Methylalanine 1 

4 -Amino-n-butyric acid 5 

,A-Aminoisobutyric acid 0 .  1 

.-A-Hydroxybutyric acid 5 

f -Alanine 15 

Succinic acid 4 

Aspartic acid 0 .4  

Glutamic acid 0 . 6  

Iminodiacetic acid 5.5 

Iminoacecic-propionic acid 1.  5 

Forrriic acid 233 

Acetic acid i 5 

Propionic acid 13 

Urea 2 .0  

N -WJ ethyl urea  1 .5  

It is thus quite c lear  that any of these high enersy  radiation sources  

operating on the primeval molecules of the ear th 's  surface can and do 

produce the simple organic mater ia l s ,  including many new carbon- 

carbon bonds, f rom which ;he polymeric mater ia l s  may  themselves ulti-  

mate ly  be derived. 'These simple ma te r i a l s  include amino acids, carbo-  

hydrates,  purine-pyrimidine bases ,  fatty acida, hydroxy acids,  alcohols 

and the like. It ie f rom these, now, that we mu st begin LO build both 

the m o r e  selective catalytic agents required for  the m o r e  efiicient energy 

t ransformation a s  well a s  the macromolecules  which help in thie proceeP 

and which a r e  e esential fo r  information storage and communication. 



The evolution of catalytic syeteme, such as the iron porphyrins, has 

7 
bean discussed in some detail eleewhercs. Suffice it  to say that there is 

ample evidence for the gradual selection by autocatalytic mechanisms of 

increasingly more  efficient catalytic eyetems. Notable among those 
- 

is,  of course, the ability of iron in various chemical combinations to 

act  as a catalyat fo r  a wide variety of redox reactions. The evolution 

of the iron porphyrins undoubtedly took place by an autocatalytic responsa 

to the need fo r  such redox catzlyats, particularly resulting from the gen- 

erat ion of hydrogen paroxids, and poseibl y oxygen, by the high energy 

radiation decomposition of water, and the escape of hydrogen. 

Polymerization 

One of the outstanding characteristic a of living organisms has often 

been described a s  the high degree of organization which they show, and 

this particularly in t e r m s  of the specific  macromolecule^ of which they 

a r e  constructed. The formation of all of these macromolecules, specified 

in the polymer column of Figure 1, involves the same reaction, namely, 

the condensation of two simple molecules with the elimination of water 

between them. &'hen such molecules a r e  polyfunctional, that is, have 

two functional ends, they can do this at both ends. It  i s  clear that a 

polymer results. The essential feature of each of these reactions i s  ehown 

in Figure 7. The formation of lipid indicated on Figure 1 but not shown 

on Figure 7 is a simple esterification reaction involving the elimination 
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Figure  7. Dehydration reac t ions  leading to biopolymers.  



of water b e t w ~ e s  a fatty acid ~abrboleyl errad glysesut alcohol group. we 

have already seen how the monsm~sis  rnrhrid@ required for the con- 

struction of thase polymerrs may be f ~ m d  

In recent year@ i t  has been poeefbh to dsmonstrate the direct non- 

waapatlc dshydrstion raaction in all of them eystmno to produce poly- 

m e r s ,  At firot these roactiono ware carr ied out In nonaqueouer media, 

but more recently they have been aucceaeful even in water, and it  is the 

tsargants which are capable: af doing thia which we muet eeek, since these 

are tbe vary reactions which today are functioning in tbe living arganiem. 

The principal agent for  these dehydration reactions in the modern 

organitam ie  the pyrophoaphatf~ linkage (at leaet this i s  the one we lcnqw 

today), generally in the form of adenosine triphoophate. The accumulation 

af palyphosphcaric acid and its derivativae in simple organirma ruch as 

a& p a s t @ '  i s  also v a r y  eugpeetive. Some years ago For was 

able to demanetrate that the formation oi polypaptidea in a mixture of 

molten amipo acide with exceae glutamic acid was enhanced by the 

preeancrr of phoephoric anhpdr ide . 32' J3 More recently, a still milder 

i s t  of condition5 was devised by Schrarnm, which waa able to scconiplieh 

tMr dehydration, using a derivativa of phoephoric anhydride made with 

34 
&ethyl ether,  'This reagent, whose structure i a  as yet nat known, might 

very wel l  be a di- or  tetra-ethyl ester of tetrapdyph~sphatca derived from 

p p5 v'40io)* a s ahown in Figure 8. Schramm has uassd this reagent 



" POLYPHOSHATE ESTER" 

( F i r s t  S tage )  

F i g u r e  8. F o r m a t i o n  and  p o s s i b l e  s t r u c t u r e  of "polyphosphate 
e s t e r .  " 



not only to make polypeptides i rom amino acids but to dehydrate oknple 

monosaccharideti to produce polysaccharides and, finally, to induce a 

oequence of three dehydration reactiona, shown in the bottom of Figure 

7, leading f rom the purine baee, into rugar, all the way to the poly- 

nucleotidse. As yet, the high polymers and the efficient reactiona have 

only been achieved in nonaqueous media such a s  dimethyl fonnamide. 

Still another route to polymers in aqueous salution has recently 

24 
been demonstrated by Markham and his associates for polypeptides. 

Although the polymerization of HCN in an aqueous ammoniacal solution 

ha8 long been known, it  remained for the stimulus of questions such a8 the 

ones we have discussed Lo show not only the presence of purine and 

pyrimidine bases, as well a s  amino acids, i n  such a reaction mixture, 

but still more  recently the demonstration of polypeptides a s  well. 23.24,  35 

That this was indeed a polymerization of preformed amino acids was de- 

monstrated by adding labeled amino acids to the polymerization mixture 

and finding them in the polyrne r s  . 
W s can thus formulate still another dehydration mechanism involv- 

ing the use of HCN as the dehydrating agent which would be analogous to 

the use of the carbodiirnides for the same purpoeo (Tigurc 9).  36 It w i l l  

be interesting to watch the development of our knowledge of modern bio- 

logical systems to see i f  any such dehydration mechanisms as this a r e  

found among them. 



The p r i m i t i v e  o r i g i n  o f  t h e s e  d e h y d r a t i n g  a g e n t s  i s  r e a d i l y  unde r -  

s t o o d .  Vie have  a l r e a d y  s e e n  t h a t  HCN i s  o n e  o f  t h e  p r i n c i p a l  p r o d u c t s  o f  

t h e  i n t e r a c t i o n  o f  h i g h  e n e r g y  r a d i a t i o n  w i t h  t h e  p r i m e v a l  t e r r e s t r i  a1  

a tmosphe re .  I t  i s  a l s o  w e l l  known t h a t  any aqueous  p h o s p h a t e  s o l u t i o n  

which i s  a l l o w e d  t o  d r y  a t  t e m p e r a t u r e s  a p p r o a c h i n g  100' C g i v e s  r i s e  

t o  t h e  f o r m a t i o n  o f  a  p o l y p h o s p h a t e  which i t s e l f  i s  n o t  e x t r e m e l y  r a p i d l y  

h y d r o l y z e d  upon r e d i s s o l v i n g .  I t  i s  t h i s  r e s i : , > ~ . : c c  t o  immed ia t e  h y d r o l y s i s  

w i t h  w a t e r  o f  b o t h  t h e  p y r o p h o s p h a t e  and t h e  c a r b o n - n i t r o g e n  m u l t i p l e  

bond which g i v e s  r i s e  t o  t h e i r  s p e c i f i c  a b i l i t y  t o  c o u p l e  monomers w i t h  

t h e  a b s o r p t i o n  o f  w a t e r .  
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GENERATION OF ORDXR AND N E W  IFJFOfU/lhl'IiiIu' 

Perhaps one of the most  outstanding characteris t ics  of ihe two 

biopolymers with which we a r e  dealing, namely, the proteins and the 

nueleic acids, i s  the fac t  that once having been put together they have in 

their  very structural relationships the intrinsic ability to arrange them- 

aelvee in a highly ordered ar ray .  'This arrangement is completely 

analogous to the crystallization of small molecules out of solution. 

However, in the case of the polymers it  does not involve a precipita- 

tion from ~o lu t ion  but eimply an arrangement in a very highly ordered 

a r r a y  of the long polymeric chain in which the individual units stand in a 

very specific and pseudocrystalline a r r a y  with respect to each other. In 

the case of the polypeptide this a r r a y  tends to be a helical one which is  

stabilized, a t  least  in part ,  by the formation of hydrogen bonds between the 

amide hydrogen and the amide carbonyl several peptide residues removed. 37 

This structure i s  shown in Figure 10, and the demonstration that this 

s tructure i s  spontaneously formed may be made in a variety of ways. One 

such demonstration may be done with a, synthetic polymer whose micro-  

s tructure i s  completely known, namely, polyglutamic acid. Here  it is 

aaey to show that when the carboxyl groups at the ends Q% the s i  

represented in Figure 10 by R1, R2, ecc., are all ionized by adjusting 

the pH to something above 7, the electrostatic repulsion of the 

ends is sufficient to overcome the organizing force of the helix, and the 
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Figu re  13. Pro t e in  s t r uc tu r e .  



helix ie destroyed. When the side chain carboxyls a re  neutralized, a t  

pHte below 5, the helix can reform, and these two states a r e  reflected 

in a variety of properties,  among them the absorption spectrum (Figure 

1 1). 38 When the helix i s  formed. the paptide linkages interact with 

each other, giving r i se  to decrease of absorbance and splitting into two 

bands, which show very clearly in the curve below pH 5. 

A similar  molecular crystallization phenomenon occurs in the 

polynucleotides and may be demonstrated again by a wide variety of 

methods, of which I will here only use one, namely, the change in ab-  

sorption spectrum when the polymer i s  ordered, a s  opposed to when it  i s  

disordered. Here the transition between order  and disorder is also 

reversible and has been achieved by a change in temperatures (Figure 

12). The curve at 9 9 . 4 O ~  shows the absorption primarily of the purine- 

pyrimidine bases when there i s  relatively little interaction between them, 

a s  would be the case in the bases alone. When the temperature i s  lowered, 

the helical configuration i s  reformed, and the absorption decrease i s  

shown by the absorption at 2 2 . 8 ' ~ .  'I'his decrease in absorption upon 

assuming the helical configuration, due to the interaction of the bases 

with each other lying in parallel planes, i s  known a s  hyperchromism and 

has recently been used as  a measure of the degree of order  in a particular 

eample. The polynucleotide system, however, han in it not only the ten- 

dency for  intrinsic order  in the form of the helix, but because of the 

nature of the bases and the geometry of their hydrogen bonds, intsr-  
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Figure  11. Absorption spectrum of polyglutamic acid in both 
helical and random coil forms.  



Random Coil 

( t = 99.4 OCj 

SPECTRUM OF NATl VE 
CALF THYMUS DNA uno 

Figure  12. Hyperchromism on nucleic acid. 



dction between them gives r i s e  to a specificity in rhe p z i r i r ~ ~ ,  "1 L,L-  

bases as shown in Figura 13 in which thymine pairs  with i i~enine  and 

cytosine pa i rs  with guanine. 'This base pairing ~pec i f ic i ry ,  together 

with the interactions responsible ior the helical structure, give r i s e  

to the principle of complemenrary base s t rands of nucleic acid upon w h i c h  

the whole s t ruc ture  of bioreplication i s  based. 3 Y *  40 Thus in F i  y r e  14 

the strand on the left  induces the formation of the complementary 

s t rand,  on the right, which, in turn, gives r i se  to the original strand. 

This type of molecular  communication can thus account for  the reproduction 

of molecules belonging to the same c lass ,  such a s  chromosome duplica- 

tion involves. This influence of a par t icular  base sequence on i ts  own 

replication has long since been demonstrated in the requirement of the 

enzymatic synthesis of deoxyribonucleic acid (DNA). *' for  the pro- 

eence of a p r i m e r  D N A  molecule which not only provides the information 

required for the synthesis of the new sequence but a l so  catalyzes i t .  

A s imi l a r  relationship has been demonstrated fo r  ribonucleic 

acid (RNA) replication on a D N A  template (messenger  RNA) .  
4L,43 

In fact,  the catalytic and information control of the polymerization of  

bases  to produce a polynucleotide has even been demonstrated in the 

nonenzymatic polymerization of uridine phosphate in the presence of 

polyadenylic acid; this i s  shown in F igure 15. 34 Here, again, I think 

i t  i e  easy  to see how primitive catalytic and information 

t ransfer  sys tems on a molecular level may be evolved by a process  
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Figu re  13. Molecular  drawing of components of DNA. 
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F i g u r e  14. B a s e  p a i r i n g  f o r  DNA repl ica t ion  a n d  RNA t e m p l a t e  
format ion .  



\ 

S c h r a m m  e t  a l . ,  1962 

Figure 15. Polymerization of uridine monophosphate in the p re -  
sence (A)  and in the absence (B),  of polyadenylic acid. (The 
decrease  of f r ee  uridine monophosphate was measured ch ro -  
matographically). 
Abcissa: Time (hours)  
Ordinate: 70 f r e e  uridine monophosphate ( r e fe r red  to the 

amount of s tar t ing mater ial) .  



of molecular  scleccion, just a s  we! have s u g g e s t e a  i ts  u c c s r r ~ n c a  i ~ :  ... 

energy t ransfer  catalytic systems.  

The question of the relationship between the linear sequences ai 

bases in a nucleic acid and the l inear  sequenca of amino acids in thz 

protein, as shown in F igure  16, i s  s t i l l  with us .  Ilowever, a great  

deal of progress  has been made  toward rhe elucidation of that molecular 

14,45,46 
communication problem in receni  months.  A sequence of evsr;:, 

as i t  now seems to take place i s  i l lustrated in Figure ii' 

by the reaction sequences from 1 to 1 I .  The essential. recognition fiiep 

which involves the c ros s  -over between tne two types of polymers is 

Step 6 in which the active amino acid is hung on one of the specific 

t ranr fer  RNA1s, having a different and specific - - presumably three 

base - -  sequence corresponding to aach  amino acid, as  shown in 

Group 8 of Figure 17. All the remaining cornrnunication steps involve 

base pairing of either DNA o r  RNA. 

vv'e a r e  only just now beginning to understand the mechanisms by 

which the nuclear DNA which gives r i s e  to the messenger  RNA (Step 2, 

RNA template, Figure 17) i s  controlled. This control mechanism is 

diagramatically represented in the upper left hand corner  of Figure 17, 

47,48 
according to the theories  of Jacob and Munod. 'The essential  feature 

here  i s  the mechanism provided for the interaction of mater ials  f rom 

outside the cell  with the genetic apparatus  in the nucleus via inducer o r  
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co-represror  acting with tho repreeoor oubotance which appears in  the 

cytoplasm. Preournably it i s  through ruch mochmismo a e  this that the 

f i r s t  and obvioue external effects  of what appear to be genetically con- 

trolled processes may be found. It may be that the thalidomids effect 

on tho growth and differentiation of human embryos a s  well a s  the morls 

longmtanding problema such o r  drug addiction and the long t e rm effects of 

imecticidee will ultimate1 y be understood in theae termn. 

The Next Level of Organization 

Just as the ordered a r r a y  observed in the structura of the polymer 

waa dependent upon the monomers of which it  i s  made and their a r range-  

ment, so the order  in which polymere may themselves be organized is 

built right into the structure of the polyrnero. Here, however, we a r e  

on l e s s  clearly defined chemical and structural grounds and much more  hoa 

yot to ba done before we will understand i ts  detailed mechanismm. However, 

that such fa the case i s  amply demonstrable. F o r  example, a eolution 

of protein molecules made from collagen can be reprecipitated by eimply 

adjueting the medium to produca large aggregates of these molecules 

oarily visible in an electron microscope which have a structure indis- 

tinguishable from the original cullagan fibrils (Figure 18). Similar 

ltcrystallization" phenomena may be obtrerved with other shaped moleculrs 

on a somewhat higher level; for example, the crystallization of virumes, 

both of the rod and epherical type. 
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FILAMENTS OF COLLAGEN, a protein which is usually found acid. This  elertron micrograph, which enlarges the filamen~z 75.000 
in long fibrils. were dispersed by placing them in  dilute acetic times, was made  by Jerome Gross of the Harvard Medical School. 

FIBRILS O F  COLLAGEN formed spontaneously out  of filaments chloride was added to the dilute nvetir arid. TIlrrc long fihrils are 
surh 08lhose ehown a hove when 1 per cent of sodium identical in  appearance with thosc of col l ; i~en brlore dirprrsion. 

F igure 18. Structure of collagen. Top: fi laments of collagen, 
a protein which i s  usually found in long fibrils,  were d is -  
persed  by placing them in  dilute acet ic  acid. This e lectron 
micrograph, which enlarges the fi laments 75,000 times, 
was made by J. Gross  of the Harvard Medical School. Bot- 
tom: Fibr i l s  of collagen formed spontaneously out of f i l -  
aments  such a s  those shown above when 1% of sodium 
chloride was added tothe dilute acet ic  acid. These long 
f ibr i ls  a r e  identical in appearance with those of collagen 
before dispersion. 



Something resembling this crystall ization of sphzrical v i rusas  

appears  to show in the visible s t ruc tures  which can be seen in :he plant 

4 9 
chloroplaste (Figure 19). Here  i s  a viaible ordered  a r r a y  of par t ic les ,  

each about 200 A in: diameter .  Whether this s t ructure can be reconsti-  

tuted from the separated particles remaina yet to be demonstrated. 

The relationship between the energy converting apparatus which the 

plants uee to tranraform light energy and the energy convercing apparatus 

which both plants and animals  m e  f o r  converting chemical energy i s  

c lear ly  ehown in Figure 20 in which a r e  shown both the chloroplasts 

and the mitochondria in a single plant c d l .  That the cwo s t ruc tures  a r e  

functionally related, a s  well as s t ructural ly  related, seems c l ea r .  5 0 

Both involve very s imi l a r  elac tron transpor:: systems,  such as the cyto- 

chromes,  flavins and quinones as  well a s  their associated proteins. 

More  recently sti l l  another molecule in this e l 3 c ~ r o n  rransport chain 

has been demonstratsci in  h;lostridiunl bacteria b y  Carnahan and his 

5 1 
associates  which seams  to be very clear ly related, if not identical, 

to the phoiopyridine nuclsoiide reductase which has been isolated from 

chloroplasts by San 13ietrc. some years ago. 52 This l a t te r  molecule 

was, according to San Pie t ro ,  the one responsible for the t ransfer  of the 

initialiy photoexciced e l sc r ron  to pyridine nccleotide, and i t s  demonstration 

in  nonphotosynthetic organisms associated with hydrogen evolurion and 

absorption i s  just another  link in the chain recognizing the very  close 

s t ruc tura l ,  functional and evolutionary relation between the nonphoto- 
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Figure 19. Electron micrograph of "quantasomes" 5 3  from 
spinach chloroplasts. 



Tobacco chloroplasts showing quantasomes in section 

Weier ,  1962 

Figure  20. Electron micrograph of Elodea chloroplasts, 
showing mictochondria (Buvat). 



synthetic and the photosynthetic organisms,  but on the molecular 

level.  A laboratory demonstration of the coupling of these two mols-  

cular  systems (hydrogen and pyridine nucieotide reactions) buch as 

exists naturally i n  some organisms ( ~ c e n e d s s r n u s ) ~ ~  has been published 

recently by Arnon and co-workers.  
5 5 

I hus  we have in our  molecular evolution very nearly reeched the 

morphological and anatomical level with which evolutionary studieb have 

long been concarnad. It it; no1 diffic-dt to see  ihat the molecular selection 

processes which we h a m  called upon to develop both the energy t ransfer  

and Information t ransfer  systems on ~ h t :  molecular level a r e  completely 

analogous co the ue l ec~ ion  syotenlb that have been used on the much 

higher level of s t ruc ture ,  and, m o r e  recently of biochemical function 

to demonstrate the nature of the svulu~icrnary proce3s under  he p re s su re  

of natural selection. 

The Cell Membrane 

fi e cannot very  well ~ e r m i n a t e  the discussion of chemical and 

biological evolution without saying a few words relating the aa r l i e r  pro-  

ce s ses  to the development of the cel lular  s t ructure itself. The principal 

requirement  would seem to be some  mechanism for the appearance of a 

cel lular  membrane  to encase al l  the biological apparatus which we have 

dicscussed, and much more  besides.  F o r  this we must  call  upon the 

same kinds of spontaneous self-ordering molecular systems that we have 

used for  the energy and information t ransferr ing processes  ear l ie r .  



However, the development of our  knowledge of such membrane sys tems,  

both in physical-chemical t e rms  a s  well a s  in biological te rms ,  i s  much 

m o r e  rudimentary than we would like to have it. 

I t  i s ,  nevertheless ,  = l raady  possible to demonstrate the same 

kind of ordering processes  that have occurred for theother two functions. 

The molecules involved here,  however, a r e  not water soluble mater ia l s  

but ra ther  water insoluble mater ia l s ,  o r  molecules,  which have only one 

se p e n t  wate P soluble, the other segment being hydrophobic and more  

likely to interact  w i ~ h  a s imi la r  hydrophobic iragmeni than with water. 

Thie type of s t ruc tura l  feature i s  typical of the biologically widespread 

lipids which we now know to be important in the s t ructure of biological 

membranes .  

It has  long been known that such bifunctional molecules form m e m -  

branous l aye r s  spontaneously a t  the water-air  interface - -  for example, 

fatty acids,  soaps, and the like. rha t  such mater ia l s  may  form double 

l aye r  membranes  between water and a lipid l aye r  has also been established. 

I would like to introduce here an example of this spontaneous membrane,  

o r  double membrane ,  formation, a case with which I happen to he per- 

 ona ally interested,  namely, the case  of chlorophyll i tself .  H e r e  the 

hydrophilic porphyrin head is attached to a hydrophobic, o r  lipophilic, 

phytol tail, and the two together have the essential  element of s t ructure 

which we mentioned ea r l i e r .  In fact,  if they a r e  spread out either at  a 

water-air  interface o r  a water -oil interface they spontaneously take up 

a n  ordered  a r r a y  which might be thought of a s  a two-dimensional c rys ta l  



latt ice in the same sense that the protein o r  nucleic acid helix might be 

called a one-dimensional crystal .  'This was demonstrated by the change 

in  absorption spectrum shown in F igure  21. 56 The molecule in  a solvent 

has a noticeably different  spectrum f rom the m o l a c d e  formed in a l aye r  

at  a water -a i r  interface o r  a water-oil interface. It is interesting to 

nore that the spectrum of these chlorophyll lwers a t  e i ther  a water-air  

o r  water-oil interface i s  very nearly the same as  the spectrum of chloro- 

phyll in the quantasorrie s and larnellae shown in F iyurss  19 and 20, suggast- 

ing that here  the chlorophyll is s imilar ly arrayed. 

Still m o r e  recently a much more  complex membrane Etructure has 

been reconaituted from lipids of biological origin and shown not only to 

have a 60 A double layered s t ruc ture  but t o  have alectr ic  and selective 

57 
functionality as well. I think that work of this s o r t  will eventually 

demonstrate unequivocally that the membranc s t rac ture  results from the 

character is t ics  c;f the nlolecqdec. of which thl: xxzmbrans is  constituted. 

i ' ie musr leave 3; this poin; our discussion of chemical and biolo- 

gical evolution on che surface of the earth, having a r r ived  at the enclosing 

of the ane rgy transforming and information communicating apparatus 

within a cell wall. ~ d c  have, it would a p p e a r ,  generated the essent ial  

elements for che developmaat oi multicallular organisms a s  well, and the 

sequence of events beginning not much iur ther  beylind this  is actually 

recorded in the fossil  record.  
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Figure 21. F i lm spec t r a  of chlorophyll a t  water-air  interface, 
and solution spectrum. 



EXTRATERRESTRIAL L I F K  

It  appears to m e  that the information we now have available regard- 

ing the nature of molecular evolution which leads up to something which i a  

unequivocally acceptable todl of us a s  a living organism i s  such a s  to 

impress  one with the notion that such a sequence, a t  least  in i ts  ear l ie r  

stages, results from the concatenation of molecules and energy sources, 

temperature and environment with it8 variation, which the primitive 

earth provided, and i t  i s  not a. unique accident. If this be the case, 

we can surmise that given a corresponding set  of molecules, temperature 

and environment anywhere d s e  in the universe, a similar sequence of 

events might have been expected to occur. 58 This does not imply that 

the multicellular end-products that we know today would be identical 

elsewhere, since the evolutinnary process on the surface of the earth is 

far  from having tried all  the possible multiceLlular combinations ima- 

ginable. The time has simply not been available for this at the rate it 

can be done. This is  not t rue for  the simple atomic and molecular cc-nbin- 

ations of the ear l ie r  phases, the exploration of which took place at a 

much higher rate. However, the general pattern of transformation in 

the early phases would be similar ,  and in the l a t e r  phases analogous, 

to those taking place on the earth, and we have only to answer the 

question: Are there s imilar  environments elsewhere T' 



Life Zlsewhere in the Solar  System 

'There a r e  iwo kinds of d i rec t  information that we have today about 

such possibilities in  o u r  own so lar  system. These come to us  in the form 

of electromagnetic -radiations,  that i s ,  light, both visible, infrared and 

possibly radio waves, and in  the form of the meteori tes  which we presume 

have their  origin in the asteroid belt between M a r s  and Jupiter.  

The information that  i s  available to us  from our direct  observations 

with visible and inf ra red  light seems to suggest quite unequivocally that 

the Moon, having no: a tmosphere,  i s  not l ikely to have on it living organ- 

i s m s  of the type w e  know. This i s  not to say  that the Moon has not acted 

a s  a cold storage repository of both molecules and fragments which may 

have been biological, which i t  has captured in i t s  long sweep through space 

59,60 
accompanying the ear th.  Such ma te r i a l s  captured by the ea r th  it- 

self would have been long since metamorphosed by the life on it, but may  

very well be in their primitive condition on the surface of the Moon. 

Our next nea re s t  planetary neighbors, however, have somewhat bet ter  

prospects .  Venus in the smal le r  orbit  near  the sun i s  definitely warmer ,  

but it does have an atmosphere and i s  very  nearly the same size a s  the 

ear th.  Its a tmosphere seems to be occupied, a t  l eas t  a t  its higher 

level, by a cloud impenetrable to visible light. We, therefore,  cannot s e e  

the actual solid surface of che  plane^. I shall  not t ry  to review here  the 

evidence for the nature of the Cytherean atmosphere.  A perusal of 

6 1 
various reviews on the subject leaves the impression that we do not 

really know what the quality of that atmoephere i s  in an  unequivocal 

fashion and we a m  thus not severely l imited in our conclusions. 



'The opiical data that a r e  available to us  about the surface of h l a r s  

are somawhat m o r e  extensive. Here i t  has  been long since recognized 

that there i s  a seasonal variation in the visibl? color of various pa r t s  of 

the suriace of the planet. There is a polar white cap which advances and 

recedes  with the season, and with i t  there  a r e  changes a t  lower lati tudes 

involving advance and recession of a dark  a r e a  approximately bordering 

the polar white cap and a light a r e a  beyond it .  l'he dark  a rea  i s  often 

called grean and the light a r e a  red, although this i s  more  a subjective 

phenomena that a spectroscopic one. 

Recently the astronomer Sinton has examined the light and da rk  

a r e a s  with the infrared spectromeier  on the 200-inch telescope, and 

has seen a l a r g e r  absorption in the 3 .  3 u region in the dark  a rea  of the 

planet than in the light a r e a . 6 z  l h i s  he has interpreted to mean that 

the dark  a r e a  does indeed contain 6-'W linkages, since the 3 .  5 u region 

i . e . ,  near  3 0 0  crn-l ,  corresponds approximately t o  C - W  absorption. 

If  this i s  indeed trile and if the i n - l n s i ~ y  oi ~ h z s e  C- r i  components of 

rhe infrared absorption (reflection) do indeed vary  with the seasons as 

do the visible changes, then Sinton's observatlnns rrii:,ht very w z l l  bz t r : ~  

best evidence we have fo r  the exiseence of or3a:lic lifc a s  u c  know i, un 

6 3 
the surface of M a r s .  Salisbury has even gone s o  far as  to sugges: it;. 

moat  probable nature to be a broad lzafed  plant. L iowever ,  we zre vzry 

limited in  our ability to get such inforrr~atisn from the ear th 's  u r i a c t .  

The resolving power of the  r e l e s c u ~ e s  w i ~ h  respect  to the eobraphy'ol 

M a r s  is l imited when the light has to  go through an infrared apectron-ie~ , r  

as wall. 



'The identification of the IR binds with C-H frequencies leaves 

much to be desired, and the identification of the polar white cap as a snow 

cap has also been recently called into question. It has been suggested 

that the white cap-is  not frozen water a t  all  but may very well be frozen 

6 4 
N204 instead. Casting even more  uncertainty is  the fact that some of 

the 3.5 u abeorption seems to correspond fairly closely with one of the 

6 5 
NOZ abaorptione, but there i s  not enough of it. Further than this, 

i f  there were a large amount of PdCi in the atmosphere of Mars with a small 

amounts of NOZB the blue-green (or dark) color might very well be due 

to tha condensation of small amounts of N203 whose infrared spectrum ie 

not yet precisely known. Beyond this, we have observed that a variety 

of inorganic carbonates give reflections in this same 3.5 u region. 6 6 

W e  are thus left with a high degree of uncertainty about the possible 

exietence of carbon-based life on Mars.  

However, we  need not remain in this ignorance for very long. 

Many of u s  will undoubtedly have unequivocal answerB to the questions 
nearest celestial 

we have raised about all three of ourbeighbors -- Mars,  Venus and 

the Moon -- certainly within the next decade and possibly much sooner, 

in view of what has happened in the last  year and particularly in the 

last  month. We will certainly have orbiting tslescopes which will not be 

hampered by the content and fluctuation of the earth's atmosphere, and 

we will  thua be able to have a very close look a t  the optical propertiee, 

particularly of Mare,  in regions which a r e  today inaccess jble to ue. 



Vie can a l so  expect very soon to kmw sorneLhirlt of  he p o s b i l ~ l e  

existence of organic mater ial  capturcd on the surface of tha Bioon, and 

of i t s  nature. \be will probably  no^ have to wait for  a man  to land on the 

surface of the Moon to know the answer to rhis question, since it can be 

instrumented; i t  i s  being instrumented in our country and very  likely 

elsewhere a s  well. Various types of detecting devices for  organic ma t t e r  

and i t s  charac te r  will be landed on the surface oi  the h o o n ,  and will 

te lemeter  the i r  findings back to us. Short1 y af ter  that we will undoubtedly 

have men e i ther  bringing us  back pieces of the Moon o r  a t  l eas t  telling 

us of what i t  i s  made. k s imi la r  sequence of observations will take place 

with respect  to Venus and M a r s .  However, the time scale will presum- 

ably be somewhat longer. 

Meteorite Observations 

In the meantime, we have another source of information about the 

construction of our neighbors in the so la r  system. If we accept the 

cu r r en t  apparent notion that the origin of the meteori tes  l i es  somewhere 

in  our  solar  sys tem (presumably in the asteroid belt), then a chemical 

examination of their constitution provides us with some information con- 

cerning what such bodies must  be constructed of. Aside from their  in- 

organic conetituknts , which a r e  chemically not greatly different f rom 

t e r r e s t r i a l  m a t t e r  (althoug mineralogically and physically they a r e ) ,  a 

cer ta in  number of such meteor i tes  contain organic mat te r .  Thi8 has been 

known for over  one hundred yearer. However, i t  ie only in recent years  

that the examination of that organic mater ia l  has been possible on the 



micro scale and with precision and detail that has allowed new concluviuns 

to be drawn a s  to their origin. 

Some years ago we examined the organic constituents of one 

recently fallen meteorite (Murray, 19 5O), and came to the ccnclueion 

that i t  not only contained hydrocarbons (at leas t  up to C12), which were 

purely incidental to our search, but also ultraviolet-absorbing material  

which resembled heterocyclic bases going into the construction of nucleic 

67 
acids. These we interpreted to be representing some of the organic 

compounds of the primitive solar  system upon which chemical evolution 

operated. 

More recently a more  detailed examination of the nature of the 

hydrocarbons in meteorites has been made in the m a s s  spectrometer .  
68 

These seem to have an alternation in hydrocarbon size a s  well as a 

dominance of the C fragments which suggested their origin in lipids 
2 1 

and steroids. If indeed these materials  come in with the meteorites 

from ext ra ter res t r ia l  sources and do not have their origin on the earth, 

that would be very good evidence for the existence of primitive organisms 

elsewhere. 

A further,  more spectacular conclusion has been drawn from a 

microecopic examination of a number of meteorites,  particularly 

Orgueil and Mokoia. 
69,70 

Part icles  of various specific and apparently 

nonrandom shapes have been claimed a s  being the fossil remains of 

ext ra ter res t r ia l  microorganisms. 'This result has been disputed and the 

reeults variously interpreted. We have had a look at some of the ground 



up bits of Orgueil and have seen many m o r e  o r  l e s s  regular stri lctures,  

one of which i s  shown in F igure  2 2 .  1 feel that we must  r e se rve  judgment 

as to the nature of these particles71 as wall as to their  origin. 7 2 

Perhaps  in  the next decade we will not have to depend upon these 

randpm and accidental messengers  from outer  space but will be able to 

go and collect samples,  if not at  will a t  l eas t  with some effort ,  and thus 

have a m o r e  likely chance to a r r ive  at  an unequivocal answer to this 

important question. 

Life in  Other Galactic Systems 

On the scale of the ent i re  universe we can explore the possibility 

of the existence of life only statistically.  Accepting the cu r r en t  mos t  

popular theories  of the origin of the s t a r s  and the planets around them 

in t e rms  of a gravitationally condensing cloud of molecules (HZ, CH4, 

H 0,  NH3) and dust (the heavier elements in various combinations), one 
2 

cankaake the statistical asser t ion  thai: planetary systems a r e  widespread 

throughout the universe.  One can even go beyond this and a s se r r  that 

there  will be a finite probability of many o i  these ex t r a t e r r e s t r i a l  systems 

containing earth-like planets in  those essential  aspects  for the evolution 

of life, that i s ,  temperature,  s ize,  and molecular environment. 
7 3 

Thus we a r e  led to the conclusion that there mus t  exisc elsewhere in 

the universe not one but many t e r r e s t r i a l  type planets upon which, we 

therefore conclude, will have evolved living systems of a kind that w e  

would recognize as such. Given the t ime scale  of 5 to 10 billion ycari;, 
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Figure  22. E lec t ron  micrograph  of ground up par t ic les  f r o m  
Orgueil  meteor i te .  



i t  i s  c l e a r  that some of these living communicies may have existed much 

longer  than the one on the earth,  and, therefore,  one might expect that 

mu1 ticellular organisms having had m o r e  time may have progrer; s ed 

f a r  beyond the systems that we know here.  Of course,  there will be 

many which have not existed a s  long, as well, but i t  i s  the former  which 

intrigue8 our imagination more  profoundly. 

The kind of intelligence we can recognize a s  man  has existed on the 
a 

sur face  of the e a r t h  forjvery short period in these t e r m s ,  and we there-  

fore  might expect that in te rms  of the ability to communicate, some of 

these other  planetary systems may be inhabited by organisms far  m o r e  

skillful and knowledgeable chan we. This  kind of reasoning has already 

led to an  attempt to l is ten with our  own newly acquired radiotelescopes 

7 4  11 
for  messages  from silch organisms. r h i s  has,  as yet, been frui t less .  

Howeva; a bit of careful and controlled imagination as to how we might 

achieve such concact has led one of our  r a d i o a ~ t r o n o r n e r s ~ ~  to invent 

a possible message  which might have a r r ived  from outside the solar  

sys tem,  and I give i t  to you for your own deciphering. 



Frank Drake 
National Redio hatronwy Observatory 
Green Dank, West Virginia 
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T h i s  r e p o r t  was  p r e p a r e d  a s  a n  a c c o u n t  o f  G o v e r n m e n t  
s p o n s o r e d  w o r k .  N e i t h e r  t h e  U n i t e d  S t a t e s ,  n o r  t.he Com- 
m i s s i o n ,  n o r  a n y  p e r s o n  a c t i n g  on h e h a l  f o f  t h e  C o m m i s s i o n :  

A .  Makes a n y  w a r r a n t y  o r  r e p r e s e n t a t i o n ,  e x p r e s s e d  o r  
imp1 i e d ,  w i t h  r e s p e c t  t o  t h e  a c c u r a c y ,  c o m p l e t , e n e s s ,  
o r  u s e f u l n e s s  o f  t h e  i n f o r m a t i o n  c o n t a i n e d  i n    his 
r e p o r t ,  o r  t h a t  t h e  u s e  o f  a n y  i n f o r m a t i o n ,  a p p a -  
r a t u s ,  m e t h o d ,  o r  p r o c e s s  d i s c l o s e d  i n  t h i s  r e p o r t  
may n o t  i n f r i n g e  p r i v a t e l y  owned r i g h t s ;  o r  

B .  Assumes a n y  l i a b i l i t i e s  w i t h  r e s p e c t  t o  t h e  u s e  o f ,  
o r  f o r  d a m a g e s  r e s u l t i n g  f r o m  t h e  u s e  o f  a n y  i n f o r -  
m a t i o n ,  a p p a r a t u s ,  m e t h o d ,  o r  p r o c e s s  d i s c l o s e d  i n  
t h i s  r e p o r t .  

A s  u s e d  i n  t h e  a b o v e ,  " p e r s o n  a c t i n g  o n  b e h a l f  o f  t h e  
C o m m i s s i o n "  i n c l u d e s  a n y  e m p l o y e e  o r  c o n t r a c t o r  o f  t h e  Corn- 
m i s s i o n ,  o r  e m p l o y e e  o f  s u c h  c o n t r a c t o r ,  t o  t h e  e x t e n t  t h a t  
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t o ,  a n y  i n f o r m a t i o n  p u r s u a n t  t o  h i s  e m p l o y m e n t  o r  c o n t r a c t  
w i t h  t h e  C o m m i s s i o n ,  o r  h i s  e m p l o y m e n t  w i t h  s u c h  c o n t r a c t o r .  




