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Scattering of relativistic electron beams by magnetic field 
errors and beam-induced waves 

Gregory Benford 

Physics Depanment. University of California, Irvine, California 92717 
and 
Physics International, San Leandro, California 94578 
(Received 16 February 1977; accepted for publication 22 July 1977) 

Relativistic electron beams propagating in long plasma columns must be well focused to cause efficient 
plasma heating. Expansion of the beam area due to scattering lowers efficiency. We calculate the beam 
spreading expected from errors in the ambient magnetic field. We then include scattering from both 
electrostatic and· magnetic waves generated by the beam itself. All these effects can be important in 
contemplated experimental regimes. However, it may prove possible to "tune" beam-plasma heating 
processes to avoid significant beam spreading. 

PACS numbers: 52.40.Mj, 52.35.Ra, 52.50.Gj 

I. INTRODUCTION 

Recently, attention has focused on using intense 
relativistic electron beams to heat long columns of 
plasma for fusion applications. 1 The beam and plasma 
would be confined by a solenoidal magnetic field and the 
beam energy deposited through a variety of beam-plasma 
instabilities. 

The efficiency of such a device depends on focusing 
the beam to relatively small diameters (-1 cm). A 
natural question is whether the electron beam launched 
at one end of a long column (-100 m) will spread across 
the magnetic field lines, due to scattering by electric 
and magnetic fields in the plasma. If beam focusing 
erodes significantly as it propagates down the column, 
expensive countermeasures, such as increasing the 
ambient magnetic field, may be necessary. 

This paper calculates the beam scattering from 
(1) errors in the ambient magnetic field,' due to faulty 
positioning of magnets or fringing fields, (2) electro
static beam-driven streaming instabilities, and (3) 
magnetic modes, such as the Alfven waves. Our scat
tering formalism is simpler than the early work of Hall 
and Sturrock, 2 from which a number of astrophysical 
applications have been derived . s-s However, s ince we 
deal'with spatial diffusion transverse to B, rather than 
multiple reflections of particles along B (a process 
leading to a density gradient), the extensively developed 
astrophysical results do not carry over di rectly. For 
the most part, we have derived approximate forms which 
are useful in light of the fact that we never. know in great 
detail the spectrum of either field errors or ·beam-ex
cited waves. 

II . SCATTERING FROM GUIDE-FIELD ERRORS 

We begin with the quasilinear expression for the 
perturbed beam distribution /u due to scattering by 
random elec~ric OE and magnetic OB fields, in terms of 
the equilibrium distribution f 0 (x, p), where q is the. 
particle charge, velocity is v, and momentum is p. The 
beam moves along a guide field B0 , along the z axis. 

ilfo +v• V£ + 1(vxB )· ~f, 
of JO C 0 'iJp 0 

=ct((oE+~xoB)· 0~J:/oE +~x 0B) · 0~/0 dt') . (1) 

Here the integration over t' follows the zero-order 
helical orbits of the beam particles. In Eq. (1), we 
have discarded the "ballistic" propagation forward of 
initial perturbations. Particles begin their orbits at 
time t0 • Then, t - t0 must be small compared to the time 
required to perturb the particles from their zero-orbit 
trajectories, and, in order to simplify Eq. (1) further, 
we must assume the field-error fluctuations, as seen 
by the particles, last a short time compared to t- t0 • 

This means particles diffuse in a stochastic "bath" of 
OB, passing by the field fluctuations quickly compared 
with a diffusive time scale. Obviously, if the field 
errors are systematic and lengthy, they will be highly 
correlated along the particle orbit and this assumption 
will fail . If t » t0 , we can set t0 - - oo in the integral 
and recover the standard (relativistic) quasilinear ex
pression. In general, the fast electron gyromotion will 
contribute terms involving the gyroangle and, using 
cyl indrical coordinates, will yield a sum over Bessel 
functions . The complete form appear s in Eq. (12). How
ever, to clarify matters, for the moment we anticipate 
that in practice we shall not know the fluctuation spec
trum in enough detail to justify retaining such detail in 
the particl e dynamics. Thus, we assume that the zero
order distribution / 0 is a slowly varying function of the 
guiding center orbit, Then we shall estimate how the 
change in particle pitch angles influences cross-field 
diffusion. We write the fluctuation power spectrum as a 
tensor 

(2) 

and take OE =0. Here (1, 2, 3) corresponds to (z, 6, r). 
Then, Eq. (1) becomes 

where 

0 = eB0 /mey. 

(3) 

(4) 

Now we make the important assumption that the power 
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spectrum S0 can be adequately represented by the spec
trum in k,.. This means the field errors perpendicular 
to B0 are distributed in the same manner as those along 
B0 • This assumption vastly simplifies the analysis. To 
see why it may be valid, consider that the most strongly 
affected particles are resonant with some portion of the 
power spectrum, k,.=n/vr. For pitch angle ip, this 
means k 11 r L =tanip, with r L the Larmor radius, vJ./n. 
Diffusion is usually most important for kJ.rL - 1. Thus, 
if tanl/J-1 for the bulk of the distribution, the power 
spectrum in k

11 
can represent that in kJ. reasonably well. 

Thus, we take 

(5) 

If / 0(x, p) is independent of x inside the beam to a good 
approximation, we can neglect the spatial gradients in 
Eq. (3). Writing µ = COSl/J and neglecting any beam den
sity gradients along z, Eq. (3) becomes 

(6) 

The sine term in Eq. (6) will force the k,. integration to 
zero if the coherence length l* of S11 is comparable to the 
distance a particle travels, vµt. We are studying ex
pected field errors which are not correlated over dis
tances exceeding a few rL, so vµt » l*. Then, the sine 
function becomes a o function and we find, after inte
grating over the beam cross section, 

(7) 

This is a diffusion equation for the density which must 
be integrated over µ and v for the beam; all particles 
presumably begin at the same axial position. An average 
scattering time T obtained from Eq. (7) describes a 
diffusion in pitch angle of tl.1/J -1, wherein particles 
steadily rearrange themselves with respect to B0 • They 
step sidewise a distance rL whenever the diffusive 
scattering changes µ appreciably, so that the transverse 
spatial diffusion coefficient DJ. obeys 

DJ."' ri/r. (8) 

Traversing a distance L along z in a time L/vµ, a 
beam particle diffuses. Averaging over the beam 
velocities and pitch angles, the increase in beam area is 

(9) 

We can visualize (S11 (k11==0./µv)) as the fluctuation 
strength ((oB)2

) times a characteristic dimension of the 
field error, le. Then denoting beam radius by a, 

and le represents an average over the field-error 
"spectrum". 
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(10) 

For a 1-cm-radius beam traversing a 100-m system, 
with ( tan2ip) = 1, the beam area doubles when 

((~ ))1:-4x 10-4
• (11) 

Designs for fusion systems use B 0= 50 kG, so errors 
of the order of 1 kG can be tolerated if the average le 
is small, as seems probable. 

A more general treatment, modifying the work of Hall 
and Sturrock, 2 gives 

((tl.x)
2

) Ir/L'£ J ( ) [ 2 2 (kJ.vJ.) -r = 4a2 M-e fo VJ.> V~ dV tan l/Jtln+l Q 

x(s11 (k6 = :~)) +J~(k~J.) (s3,(k.= :~)) • 

(12) 

If the field.error spectrum is well known in kJ. and k., 
one can assign average correlation lengths for each 
direction and carry out the sum. Note that Eq. (12) re
duces to Eq. (9) for S33 = 0 and n=-1, if ~(kJ.rL)="1 . 

Equation (12) is a quite accurate representation of the 
essential physics. The approximations involved in the 
simpler form, Eq. (11), probably make it accurate to 
within a factor of 2. 

We have treated resonant diffusion because, in the. 
context of quasilinear theory, nonresonant diffusion is 
"fake" diffusion, i.e. , memory of initial orbits is not 
lost (Ref. 7). It is possible to generalize quasilinear 
theory by including resonance broadening. 8 However, 
this demands knowledge of the statistical properties of 
the fluctuations, , which, in general, we do not have. 

Also, nonresonant contributions are largest for very 
short fluctuations (k » n/ µv) (because short fluctuations 
are sensed as quick "collisions", whereas long fluctu
ations are adiabatic in the particle frame, and thus 
yield no diffusion. ) For systems with magnets spaced 
at intervals exceeding 10 cm, 9 the errors will probably 
be 10 cm or longer, whereas the resonant >...=211µv/U 
-1 cm for y =10, B == 50 kG, µ-0.5, and V"'C· Thus, 
there should be very little S,,(k»U/µv), and non
resonant scattering will be unimportant for this 
application. 

Ill. SCATTERING FROM BEAM-INDUCED WAVES 
A. Electrostatic modes 

Resonant scattering of a beam occurs most easily 
when the beam itself produces waves in the background 
plasma which are very nearly resonant with the beam 
velocity; i.e. , those which corresi)ond to space-charge 
oscillations on the beam. 

An obvious candidate for such a wave is the familiar 
streaming instability. The electrostatic instability is 
usually dominant over the electromagnetic form, 10 and 
Eq. (12) can be modified easily to include electrostatic 
wave scattering by adding to S11 a term (c/ µv)2Sf» where 

sf1 (k) = J dry (oE.(x)~E.(x +77)) exp(ik• 77). (13) 

and a similar form for S33• Then a nonlinear theory 
(for example, Ref. 10) for the saturated value of the 
electric fields and their spectral range can be µsed to 
calculate the diffusion, as in the previous discussion. 
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B. Magnetic modes 

Since the beam-heated plasma is "high beta" in the 
sense of having plasma pressure comparable to mag
netic field pressure, there ma.y be significant magnetic 
waves present to scatter the beam, In particular, waves 
transverse to B, are most effective because they exert 
a steady decelerating force in the particle rest frame. 
If the transverse wave magnetic field OB exerts a con
stant force parallel to B0 through the Lorentz force 
v J. x OB, the pitch angle of the resonant electrons 
scatters during the correlation time 1 during which the 
field and particl e are in resonance. 

Low-frequency modes transverse to B0 are Alfven 
type when11 

k 11c « 2w,1 «y!i, (14) 

where w,, is the ion plasma frequency. They are helicon 
type when 

2w,,1 « k
11
«y!i. 

Alfven waves obey 

w =k11v" !! k.B(411n1m 1)·
1 t 2

, (15) 

and helicons have w =y!l(k
11
c/ w"")2. For resonance with 

the _beam, we require n=(k.v.-w}/n. However, for a 
hydrogen plasma, w =k11v" -2103k_<<!l for systems of 
interest, so k. =nn/ v

11
• Now y » 1 ensures yn » k

11
c, 

but w,,!k.c-1, so the waves are in the region of the 
dispersion relation between simple Alfven waves and 
helicon modes. For simplicity, we consider the Alfven 
region. We take a system of interest to have y::: 10, 
B 0 =50kG, µ=0.5-1.0, V"'C, andn,, <G 1016 cm·s. 

To excite Alfven waves requires12 

(v"/vµ}<my/M, (16) 

where vA is the Alfven velocity and Mis the ion mass. 
For gross confinement, the beam must be stable against 
filamentation,13 which requires 

(Jy}112<10-sn, 

where J is current density in Al cm2 and B is the field 
in kG. The 50-kG field satisfies this condition. Equa
tion (16) may be written, taking µ ==0. 5 and the average 
atomic number of ions as 4, 

5 n, y 103 
• 3' 3 < 1()16 cm·3 10 B ' 

so for our contemplated system of interest, this condi
tion is · satisfied by a factor of 6. These waves can be 
excited either by the beam current itself or by back
ground plasma electrons which are counterdrifting to 
carry a return current. However, the plasma electrons 
will generally not drift faster than v "' and we neglect 
instability due to them. Thus, we turn to solely beam
generated turbulence. 

C. Alfven-wave growth rate 

We consider a relativistic electron beam with beam 
frequency 

(17) 
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and distribution function / 0(p, µ}. A general form for the 
growth rate has been given by Lerche5 for applications 
to cosmic rays; we adapt to our case and find the growth 
rate 

y-::: ~ ?t ~ f "' r '211p2dp sinµ dµ 
o Jo 

Xpo [fp~ ?.b, + afo ) (1 - µz}l o(pµ - eB,) (18) V c a p aµ 'j kc ' 

w~ere µ = p.f p. We expect the beam distribution / 0 
will have a wide distribution in µ and will be peaked in 
momentum Pat P0 =myvb. The integral in Y1r will then 
give a fa.ctor no smaller than p/ Ap, where Ap is a 
width of the distribution in momentum space. We can 
then estimate 

~!~ ~ 2& 
Y1r- 8 !l c Ap' 

This is independent of nb, and y and yields for our 
parameters 

(19} 

(20} 

so with B0 = 105 G, Pol Ap-1 and growth times -3 nsec 
result. These waves will be excited throughout the 
plasma column and are convected at phase velocity v"' 
not c, so they are virtually stationary in the beam frame 
After - 30 nsec, they should reach large amplitude and 
begin to resonantly scatter the beam. However, to 
make a useful calculation, we must estimate the satura
ted magnetic fields of the waves, for use in Eq. (12). 

D. Nonlinear saturation of Alfven waves 

Alfven waves will grow to an amplitude which is 
limited by their coupling to other lower-frequency modes 
such as the ion acoustic. The ion-acoustic spectrum 
may also be excited for a time by return-current in
stabilities. However, electron heating and nonlinear 
effects may stabilize the ion sound waves by the time 
the slower-growing Alfven modes rise to large ampli
tudes. We shall assume this in order to simplify the 
calculation. 4 Energy balance is expressed by Sagdeev 
and Galeev as 7 

XN.N,,.- sgn(w,,w,,. )N,,N0 )o(w,, -w .... - w 0 )01r ,1t + q, 

(21) 

where the initial Alfven wave k decays into another 
Alfven mode k' and an ion sound wave q is given by 
w = qc,, with c, the sound speed. w"N" is the energy 
density in the kth mode, both mechanical (kinetic) and 
electromagnetic, 

The transition probabilities v,,, 11 ,o are given by the 
usual< time-dependent perturbation expressions. 11 

U c, -v.u w.::.w11 , and w, =w ... 2c/vA=qc,, then 

2 

j V1r,11QI ., w,w.'w0 /pmc~=2w~/p,,.v"cs, 
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where pis the plasma mass density, nlJ, with M 
being the ion mass. The above expression is valid for 
plane-polarized Alfven waves; for circularly polarized 
modes, another anumerical factor of the order of unity 
enters. The sum over k and k', using the 6 function, 
results in a factor v-;,1 • 

If the ion-acoustic modes are linearly stable, because 
the drift velocity of the plasma electrons is less the c, 
(as we expect if some electron heating has occurred), 
we can approximate Nq::O. Then, 

dN 41r I 12 Tt ,,._ vA N,.N,._1 v,.,,._1 ' (24) 

where 

(25) 

However, most of the energy transfer of this process 
goes into Alfven waves of lower k; so to find N,/{,._11 we 
perform a Taylor expansion, 

N,ll,.-1 I v,.,,._l,,, z(a~ N,ll,.-1 I vk,.--l) i-o· (26) 

The rate of energy loss can be expressed as a dissipa
tive frequency wd, 

~=- wdN-", 

(27) 

where 

oak N,.N,..1Iv.-,11-1I2 = aN,.N,.-1Iv.-,,.., 12. 
If N,. -const in the region of interest (k=nil/ c), then 

a"' 3. We can write 

2 

w4 ::16n loB,./B0 I aw (28) 

near the resonance. Stabilization occurs when 

(29) 

or 

((~)2):::: (128a)-1(!!ft r v; !; . (30) 

For a=3, B=100 kG, 

(31) 

This implies that very monoenergetic beams (Diop« p0 ) 

are more effectively scattered by their self- generated 
waves than "hot" beams, since they produce a stronger 
spectrum. This will be so as long as the growth rate, 
Eq. (19), is not so small that the Alfven waves never 
reach saturation in a beam pulse time. Equation (31) 
can be used in the general formalism of Eq. (12), 
though Eq. (31) is not precise enough to justify doing a 
detailed sum and integration. Using Eq. (31) in our 
more approximate form, Eq. (10), we find for L = 1<>5 
cm. , 

((ax)2

)- Po Jr 
a ap 40' 

(32) 
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where l~ is the average length over which beam parti
cles and the beam- generated fields are correlated. A 
crude estimate of this is 

(33) 

since the wave-particle phase relation depends on the 
"sharpness" of w- k.v.-nn, and w «k.v •. Assuming 
Di-k, = 0, i.e., a single standing wave in the plasma 
column, 

l* _ 2nv, _ 21T (vµ)2 
_ 2n 1 

c - k,av. - nU a(vµ) - nU ti.(l/vµ) • 
(34) 

From Eq. (32), estimating Di-p=p0Di-µ where aµ is the 
spread in µ , and using B 0 = 1 O' G again, 

(35) 

so only if aµ< 0. 1µ is the wave scattering significant. 
However, only more detailed study of the nonlinear es
timates made here will provide an estimate reliable to 
better than an order of magnitude. For example, if the 
ion-acoustic sp.ectrum is active because of return- cur
rent instabilities, ((oB.- I B0)

2
) may be larger. In this 

case, estimates of saturated field amplitudes have been 
given12 and can be substituted in our formalism, Eq. 
(10) or (12), directly. 

IV. CONCLUSIONS 

We have found that expansion of a relativistic electron 
beam may come from several sources of field fluctua
tions. The errors in the ambient field B0 may scatter 
quite effectively; Eq. (10) gives an approximate form, 
and Eq. (12) gives a more general result. 

Scattering by beam- induced instabilities poses a 
larger number of unknowns, since we must first know 
the nonlinear saturated spectrum of waves. Modification 
of Eq. (12) for electrostatic modes is simple [see Eq. 
(13)], and some existing electrostatic wave theories10 

may give reliable results for the fields . 

Magnetic modes, however, can be as effective as the 
electrostatic waves, particularly in the cases where 
plasma pressure is comparable to ambient magnetic 
field pressure . We have studied the scattering from 
beam-driven Alfven modes, attempting an approximate 
treatment of the nonlinear saturation of these waves by 
mode coupling to ion-acoustic waves. Our crude esti
mates, summarized in Eq. (32), suggest that scattering 
from beam-induced modes may not be as significant as 
scattering from errors in the ambient field. Calculations 
for particular regimes of int~rest may yield somewhat 
different estimates, however. 

Fusion systems using intense electron beams cannot 
tolerate very much spreading of the beam, since thermo
nuclear ignition is the paramount problem. Thus, 
spreading of the heated cylinder reduces effective-
ness so much tha~ a doubling of the beam radius (i.e., 
decrease of maximum attainable temperature by a 
factor of 4) is probably the tolerable upper limit on 
beam diffusion. (This is deduced from Refs. 1 and 9. ) 

Equation (35) is cause for optimism. It shows that a 
reasonably "hot" beam, with significant spread in pitch 
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angles µ., does not produce a magnetic field spectrum 
large enough to yield significant beam diffusion. 

Equations (11) and (12) suggest that, if field errors 
on a scale less than 1 cm can be avoided, no large 
diffusion occurs. 

However, there remain two sources of fluctuations 
which depend on precisely how beam-plasma heating 
proceeds: (i) scattering by electrostatic waves [Eq. (13)] 
and (ii) scattering by ion waves caused by return current 
flow, as remarked below Eq. (35). Given a particular 
heating scheme, these sources of fluctuations can be 
tailored for maximum efficiency, including beam diffu
sion. Thus, the outlook for rapid heating by electron 
beams is rather favorable. 
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