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The fundamental underpinnings of theGibbs adsorption equation (GAE) are enunciated including sundry choices
for the location of the zero-volume dividing surface. Comparison is made to the finite-volume thermodynamic
analyses of Guggenheim and Hansen. Provided that Gibbs phase rule is properly invoked, only invariant surface
properties appear in theGAE. In the framework of invariant surface properties, both the zero-volume (Gibbs) and
the finite-volume (Guggenheim) treatments of the surface phase give identical results for the GAE, confirming
the thermodynamic generality and rigor of the expression.
Application of theGAE ismade to strong andweak electrolytes, to electrified interfaces (Lippmann equation), and
to surface complexation. Usefulness of the GAE inmolecular simulation of interfaces is outlined. Special attention
is paid to the seminal contributions of Fainerman and Miller in applying molecular-thermodynamic interfacial-
layer models toward predicting adsorption behavior at fluid/fluid interfaces. Conversion of adsorption isotherms
into two-dimensional interfacial-tension equations of state via the GAE is highlighted.
Confusion over interpretation of theGibbs adsorption equation arises primarily because of imprecisemeaning for
adsorbed amounts. Once invariant adsorptions are recognized and utilized, the Gibbs adsorption equation yields
identical results for Gibbs zero-volume surface thermodynamics and for Guggenheim finite-volume surface
thermodynamics.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The Gibbs adsorption equation (GAE) stands as one of the corner-
stones of interfacial science [1]. Its strength and elegance are unparalled.
It plays a role in surface-phase equilibria similar to that of the Gibbs–
Duhem equations in bulk-phase equilibria. Essentially all textbooks on
surface and colloid chemistry derive and discuss the expression [2–8].
In spite of rigorous thermodynamic footing, the GAE has been subject
to controversy and to experimental validation [9–17]. The main reason
for continuing discussion [14,18–25] is that Gibbs introduced a “surface
phase” of zero volume considered by many as aphysical. Gibbs recog-
nized that interfaces are regions of space of molecular dimension be-
tween two bulk phases over which densities (energy, entropy, mass,
etc.) vary continuously. The idea of a zero-volume dividing surface
was introduced precisely because the interface thickness far from criti-
cal points is so thin. Nevertheless, objections remain. Both Guggenheim
[26] andHansen [27] introduced surface phases of finite volume leading
to different definitions of surface properties compared to that of Gibbs.
Most, if not all, of the controversy accompanying the Gibbs adsorption
equation, for example, that between Motomura [28] and Good [29]
and that between Aratono et al. [30] and Fainerman and Miller [31],
can be attributed to differences in defining precisely the meaning of
adsorbed amounts.

To clarify and consolidate apparently disparate approaches, we re-
view the GAE adsorption equation from the points of view of Gibbs
[1], Guggenheim [26], and Hansen [27]. The main finding is that all
three approaches give identical results for the meanings of the coeffi-
cients appearing in the GAE, provided that the concept of surface invari-
ants is introduced. A Gibbs invariant quantity is independent of the
location of the zero-volume surface phase (i.e., independent of the
dividing-surface location) while a Guggenheim invariant quantity is in-
dependent of the thickness of the finite-volume surface phase. The ap-
proach of Hansen is that of Guggenheim but with a different choice of
independent variables compared to Gibbs and Guggenheim. Once sur-
face invariants are evaluated in the GAE, all approaches are equivalent.

After introducing surface thermodynamics in the early part of
Section 2, we highlight Guggenheim's approach, followed by that of
Gibbs. We then establish their equivalence. Section 3 deals with use of
surface species versus thermodynamic components. Several applica-
tions of the GAE, including the Lippmann equation for completely polar-
ized interfaces, interfacial-layer models, and surface equations of state,
are presented in Section 4. Section 5 concludes the review. The main
theme is that only surface invariants are experimentally accessible by
macroscopic measurement and, therefore, are thermodynamically
meaningful. In the invariant language, the Gibbs adsorption equation
and the Guggenheim adsorption equation are rigorous and identical.

2. Thermodynamic framework

Consider two equilibrated fluid phases of volumes Vα and Vβ sepa-
rated by a planar interface of area A. Each phase contains c components
that partition between the two phases, and each phase may exchange
heat and work with the surroundings. The first law of thermodynamics
demands that differential changes in internal energy of the entire sys-
temobey the relation dU = Q + WwhereU is the internal energy,
Q is the heat added to the system, W is the work done on the system,
and the symbol denotes a path differential. If, in addition, we consider
reversible heat and work differential exchanges, classical thermody-
namics gives the fundamental relation for the two-phase system

dU ¼ dQrev þ dWrev ¼ TdS−PdV þ dWγ
rev þ

Xc
i¼1

μ idni ð1Þ

where T is the temperature, S is the total system entropy, P the is pres-
sure, V is the total system volume, μi is the chemical potential of compo-
nent i, and ni is the total system moles of component i. We need not
distinguish the temperature and chemical potentials for phases α and
β as they are uniform throughout the system including the interfacial
region. Pressure in Eq. (1) is that corresponding to equilibrium between
phases α and β. If, for example, phases α and β are a single-component
gas and liquid, then P is the vapor pressure. Eq. (1) does not specify the
reversiblework for expansion or contraction of the interface located be-
tween the two phases, dWrev

γ .

2.1. Capillary work

Following others [2,3,5,32], Fig. 1 illustrates a simple system to eval-
uate the reversible capillarywork dWrev

γ . Phases α and β are placed in an
inert rectangular chamber allowing PV work exchange with the envi-
ronment. When the right piston translates an increased distance differ-
ential dx, the two smaller pistons to the left simultaneously compress
the system so as to keep the interface level fixed in the right chamber
(at z = 0). The net result is an expanded interfacial area keeping all
else constant. The normal stress exerted on the right piston is denoted
as PT(z) reflecting the tangential stress profile though the fluid/fluid in-
terface. The total reversible work exchange with the environment is
therefore

dWγ
rev ¼ −wdx

Zþh=2

−h=2

PT zð Þdz−P dVa þ dVb
� �

ð2Þ

wherew and h are thewidth anddepth of the right chamber, andVa and
Vb are the volumes in the left chambers connected to phases α and β.
Since the net result of the pistonmovements is a shift in the system cen-
ter ofmass to the right, volumes are conserved: dVa + dVb + whdx = 0
Accordingly, the reversible work in Fig. 1 is

dWγ
rev ¼ wdx

Zþ∞

−∞

PN−PT zð Þ½ �dz ð3Þ

where the equal bulk pressures in the two phases are labeled as the nor-
mal stress, PN, a constant through the interface, and the limits of the inte-
gral are replaced by infinity since only within molecular distances across
the interface do the normal and tangential stresses differ. The integral in
Eq. (3) is that of Bakker defining interfacial tension [2,3,5,6,8,32,33]

γ ≡
Zþ∞

−∞

PN−PT zð Þ½ �dz ð4Þ

and the product wdx is the differential interface area change, dA. Thus,
Eq. (3) reduces to the desired result

dWγ
rev ¼ γdA: ð5Þ

Reversible work to expand an interface is positive, and vice versa. By
definition, tension is an excess property: namely, the excess stress over
that in the bulk (actually a deficiency of stress that gives rise to the
contractile-skin nature of the interface). Reversible interfacial work
augments PV and mass-exchange work in Eq. (1).

2.2. Interfacial thermodynamics

Substitution of Eq. (5) into Eq. (1) gives the fundamental thermody-
namic relationship for a system of two fluid phases, α and β, separated
by an intervening interfacial phase labeled below as γ

dU ¼ TdS−PdV þ γdAþ
Xc
i¼1

μ idni: ð6Þ



Fig. 1. Schematic of thermodynamic system to calculate interfacial work. The two left and right pistons move so as to maintain a constant level of phase α.

Fig. 2. Schematic of density profiles for alcohol adsorbed at the water/oil interface. Cross
hatched area gives the adsorption of alcohol in the Guggenheim convention.
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Although general, Eq. (6) is not directly helpful since it requires
knowledge of all system properties and does not focus on the interface.
It is customary to subtract the properties of the two bulk phases
encompassing the interface. Because all extensive properties in Eq. (6)
are additive (i.e., U = Uα + Uβ + Uγ, where superscript γ indicates
the interfacial phase), we write Eq. (6) for the two bulk phases
exhibiting no interface and subtract from the total system internal ener-
gy to give

dUγ ¼ TdSγ−PdVγ þ γdAþ
Xc
i¼1

μ idn
γ
i : ð7Þ

The interfacial phase is of uniform temperature and uniform compo-
nent chemical potentials, but otherwise is not yet defined. Definition of
what constitutes the “surface phase” leads to apparent controversy
[34–37].

2.3. Guggenheim invariants

A conceptually simple definition of the surface “phase” is that of
Guggenheim [26] and later, Hansen [27]. These authors introduce a fi-
nite surface-phase thickness τ encompassing the interfacial region. τ is
sufficiently large that densities in the surrounding α and β phases are
spatially uniform corresponding to bulk densities. All extensive proper-
ties of the system are nowwell defined becauseVγ ≡ Aτ and because ex-
tensive properties are additive: U = Uα + Uβ + Uγ; S = Sα + Sβ +
Sγ; V = Vα + Vβ + Vγ; and ni ¼ nα

i þ n
β

i þ n
γ

i . Note, however, that all
densities including energy, entropy,mole numbers, etc. are not constant
across the interface, but vary strongly in the normal z direction. Surface
phases are inhomogeneous. For example, the moles of component
i adsorbed in the surface phase is defined by

nγ
iτ ≡ Γ iτA ≡

Zþτβ

−τα

ρi zð ÞAdz ð8Þ

where ρi is the molar density of component i, the second subscript τ on
niτ
γ highlights the Guggenheim finite-volume surface phase, τα is the

thickness of the interface into phase α, and τβ is the thickness of the in-
terface into phaseβ based on an arbitrary origin in the interfacial region.
Total interfacial thickness is τ = τα + τβ. Fig. 2 illustrates themeaning
of Eq. (8) for the example case of a small alcohol (e.g., ethanol) distrib-
uted between immiscible oil and water phases. Alcohol partitions pref-
erentially to the interface. According to Guggenheim's convention in
Eq. (8), the cross-hatched area under the alcohol density profile in
Fig. 2 gives the adsorbed surface density, Γiτ. This clearly is not an excess
interfacial property but the actual mass in the interface region between
planes at −τα and +τβ. All surface properties are defined similarly in
terms of density profiles. Let a lower-case letter with an over bar denote
a volume density. Then the surface internal energy and entropy are,
respectively,

Uγ ≡ uγ
τA ¼

Zþτβ

−τα

u zð ÞAdz and Sγ ≡ sγτA ¼
Zþτβ

−τα

s zð ÞAdz: ð9Þ

Remaining extensive surface thermodynamic properties follow by
analogy. It is not possible to establish, in general, the spatial variation
of densities through the inhomogeneous interface using only local ho-
mogeneous properties.

All quantities appearing in the fundamental thermodynamic expres-
sion, Eq. (7), are now well defined. They do, however, depend on the
thicknesses τα and τβ chosen to define the surface phase. Since Eq. (7)
is first-order homogeneous in extensive properties and zero-order ho-
mogeneous in intensive properties T, P, and μi, it may be integrated by
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Euler's theorem, subsequently differentiated, and compared to Eq. (7).
The result after division by interfacial area is

−dγ ¼ sγτdT−τdP þ
Xc
i¼1

Γ iτdμ i: ð10Þ

This deceptively simple result is readily mistaken as the Gibbs ad-
sorption equation. However, it is not the GAE because the coefficients
multiplying the differentials depend on the thickness of the surface
phase and because the system is over specified. Gibbs phase rule after
accounting for a planar, transversely isotropic surface phase reduces
to the classic form for homogeneous bulk systems [2,38,39]. Thus, for
c components and two bulk phases, interfacial tension depends on c
independent intensive variables, whereas Eq. (10) indicates that γ
varies with temperature, pressure, and c chemical potentials or c + 2
variables.

To remove these inconsistencies, the Gibbs–Duhem equations are
written for phases α and β [26]. This leads to three equations in c + 2
unknowns. If the variables of pressure and chemical potential of compo-
nent 1 are eliminated, we recover

−dγ ¼ sγE dT þ
Xc
i¼2

Γ iEdμ i ð11Þ

where the summation over chemical potentials no longer includes com-
ponent 1,

sγE ¼ Δsγτ−ΔΓ1τ
sα−sβ

ρα
1−ρβ

1

 !
ð12Þ

and

Γ iE ¼ ΔΓ iτ−ΔΓ1τ
ρα
i −ρβ

i

ρα
1−ρβ

1

 !
ð13Þ

withΔsγτ ≡s
γ
τ−ταsα−τβsβ andΔΓiτ≡ Γiτ− ταρiα− τβρiβ. The Guggenheim

surface excess entropydensity, sEγ, and component excess adsorption den-
sities, ΓiE in Eq. (11) are defined by Eqs. (12) and (13), respectively. They
are excess properties in contrast to sτ

γ and Γiτ, each of which give the total
entropy and mass in the surface phase defined by Guggenheim. As
discussed later in Section 2.5, the difference excess quantities Δsτγ and
ΔΓiτ in Eqs. (12) and (13) provide the link between Guggenheim and
Gibbs formalisms.

Eq. (11) is now properly posed since it satisfies Gibbs phase rule
with c degrees of freedom. It may be coined the Gibbs adsorption
equation (GAE) or perhaps in this form, the Guggenheim adsorption
equation (GAE). It appears more complicated than its inadequate
progenitor, Eq. (10). The important distinction is that sτγ, τ, and Γiτ in
Eq. (10) depend on the distances τα and τβ, whereas in Eq. (11) the ex-
cess surface entropy and excess adsorption densities are readily shown
independent of the magnitudes of τα and τβ. Implicit in this conclusion
is the restriction that both τα and τβ are large enough to encompass the
entire surface region. With this provision, the excess surface entropy
density (Eq. (12)) and excess adsorption densities (Eq. (13)) are invari-
ant with respect to the thickness of the surface phase. This is a require-
ment of the GAE, since surface tension is measureable and cannot
depend on arbitrary choice of the surface-phase width. sE

γ
and ΓiE are,

therefore, Guggenheim invariants [26]. Given theory for and/or mea-
surement of the entropy andmolar density profiles across the interface,
Eqs. (12) and (13) prescribe how to implement the GAE.

Choices of independent variables other than pressure and the chem-
ical potential of component 1 are possible. For example, Hansen [27]
suggested that the chemical potentials of components 1 and 2 be
eliminated from Eq. (10) using the two bulk Gibbs–Duhem equations.
After some algebra, the result is

−dγ ¼ sγHdT−τHdP þ
Xc
i¼3

Γ iHdμ i ð14Þ

where the summation over chemical potentials no longer involves com-
ponents 1 and 2,

sγH ≡ sγτ−Γ1τ
ρβ
2 s

α−ρα
2 s

β

ρα
1ρ

β
2−ρβ

1ρ
α
2

 !
−Γ2τ

ρα
1 s

β−ρβ
1s

α

ρα
1ρ

β
2−ρβ

1ρ
α
2

 !
; ð15Þ

τH ≡ Γ1τ
ρβ
2−ρα

2

ρα
1ρ

β
2−ρβ

1ρ
α
2

 !
þ Γ2τ

ρα
1−ρβ

1

ρα
1ρ

β
2−ρβ

1ρ
α
2

 !
; ð16Þ

and

Γ iH ≡ Γ iτ−Γ1τ
ρβ
2ρ

α
i −ρα

2ρ
β
i

ρα
1ρ

β
2−ρβ

1ρ
α
2

 !
−Γ2τ

ρα
1ρ

β
i −ρβ

1ρ
α
i

ρα
1ρ

β
2−ρβ

1ρ
α
2

 !
: ð17Þ

Each coefficient in Eq. (14) shown in Eqs. (15)–(17) is independent
of the location of τα and/or τβ and, therefore, is a Guggenheim invariant.
It does not appear possible to set Γ1τ = Γ2τ = 0 in deriving Eq. (14)
from Eq. (10), as enunciated byMotomura [28,34]. The pressure depen-
dence of the interfacial tension at constant temperature and chemical
potentials of component 3 through c is given by τH. This thickness, how-
ever, is not the physical thickness of the interface (i.e., τH ≠ τ) used in
defining the adsorbed amounts in Eq. (8) but rather is defined by
Eq. (16). Hansen [27] argues that his choice of independent variables
is convenient for an interface between an inert gas and a liquid solution
of slightly volatile components. Cahn also adopted the Guggenheim
finite-thickness convention with Hansen's choice of independent vari-
ables [20]. He points out that this particular choice of thermodynamic
variables is useful for equilibrium between condensed phases.

Eqs. (15)–(17) are consistent with Hansen's definition of surface ex-
cess properties. For example, the excess surface concentration accord-
ing to Hansen [27] is given by

Γ iH ≡
Zþτβ

−τα

ρi zð Þdz−lαρα
i −lβρβ

i ¼ Γ iτ−lαρα
i −lβρβ

i ð18Þ

where the lengths lα and lβ are chosen to make Γ1H = Γ2H = 0 or

lα ¼ Γ1τρ
β
2−Γ2τρ

β
1

ρα
1ρ

β
2−ρβ

1ρ
α
2

 !
and lβ ¼ Γ2τρ

α
1−Γ1τρ

α
2

ρα
1ρ

β
2−ρβ

1ρ
α
2

 !
: ð19Þ

Substitution of Eq. (19) into Eq. (18) directly gives Eq. (17). sH
γ
and τH

are obtained similarly confirming Eqs. (15) and (16). There is no funda-
mental significance to Hansen's definition of surface excess properties
and, specifically, to the thicknesses lα and lβ. These definitions do, how-
ever permit expeditious derivation of Eqs. (14)–(17).

2.4. Gibbs invariants

We start, as above, with Eq. (7) and redefine the meaning of the
extensive variables appearing there following Gibbs [1] and as summa-
rized by others [2,3,5,6,8]. Apparentlymotivated by themolecular thick-
ness of the surface region, the volume of the surface phase is set to zero
meaning that all surface properties are ascribed to a plane. The location
of this plane, defined here as zj, lies within the interfacial region and is
known as the Gibbs dividing surface. Because the volumes of phases α
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and β constitute the entire system volume (i.e., Vγ = 0), the moles of
component i in the surface phase are given by

nγ
ij ≡ Γ ijA ¼

Zþh=2

−h=2

ρi zð ÞAdz−
Zz j

−h=2

ρα
i Adz−

Zþh=2

z j

ρi
βAdz: ð20Þ

The first term on the far right gives the total mass of component i in
the systemwhile the second and third far-right terms reflect themasses
of component i in phases α and β. An additional subscript j appears on
the moles of component i at the surface, nij

γ
, to designate dependence

on the choice of the dividing surface, zj, and to distinguish from the
Guggenheim convention, niτ

γ
in Eq. (8). These two quantities are quite

different. In Eq. (20), no volume is assigned to the adsorbed amounts.
To clarify its meaning, Eq. (20) is re-expressed in the following form

nγ
ij ≡ Γ ijA ¼

Zz j

−h=2

ρi zð Þ−ρi
α� �
Adzþ

Zþh=2

z j

ρi zð Þ−ρi
β

h i
Adz: ð21Þ

The lower and upper limits in the first and second integrals, respec-
tively, may be replaced by infinity because the corresponding inte-
grands approach zero rather near the interface. Using the alcohol/
water/oil system above, Fig. 3 illustrates how the adsorbed surface den-
sity, Γij is calculated according to Gibbs convention. Horizontal lines at
the bulk densities in each phase are extrapolated to the Gibbs dividing
surface at zj indicating zero volume for the surface phase The cross-
hatched area under the alcohol density profile is determined according
to Eq. (21) giving the superficial adsorption density, Γij. The surfacemass
calculated is assigned to the dividing plane. All other surface properties
follow by analogy, such as energy

Uγ
j ≡ Au

γ
j ¼

Zþz j

−h=2

u zð Þ−uα� �
Adzþ

Zþh=2

z j

u zð Þ−uβ
h i

Adz ð22Þ

or entropy

Sγj ≡ As
γ
j ¼

Zþz j

−h=2

s zð Þ−sα
� �

Adzþ
Zþh=2

z j

s zð Þ−sβ
h i

Adz: ð23Þ

All properties in Eq. (7) are nowwell defined, althoughdefined quite
differently than in Guggenheim's convention. We proceed as above by
Fig. 3. Schematic of density profiles for alcohol adsorbed at the water/oil interface. Cross
hatched area gives the adsorption of alcohol in the Gibbs convention.
integrating Eq. (7) in extensive variables, differentiating, and sub-
tracting to yield

−dγ ¼ sγj dT þ
Xc
i¼1

Γ ijdμ i: ð24Þ

This expression is akin to Eq. (10). However, the meanings of the
surface entropy and component adsorptions are surface-excess proper-
ties rather than total quantities. Also pressure does not appear explicitly
(i.e., Vγ = 0). Rather, pressure is a dependent variable implicit in the
chemical potentials. Eq. (24) also is not the GAE. Similar to Eq. (10) in
the Guggenheim convention, Eq. (24) is over specified. Further, sjγ and
Γij depend on the location chosen for the dividing surface and, thus, can-
not reflect measureable properties. Let subscript k represent a second
dividing-surface location, zk. Eqs. (21) and (23) then demonstrate that

sγj ¼ sγk þ zk‐zj

� �
sα‐sβ
� �

and Γ ij ¼ Γ ik þ zk−zj

� �
ρi

α−ρi
β

� �
: ð25Þ

Thus, molecular-size changes in the location of the dividing surface
strongly impact values of the surface properties. To overcome these
two inconsistencies in Eq. (24), we proceed as above and eliminate
the chemical potential of component 1 and pressure from among
Eq. (24) and the Gibbs–Duhem expressions for the two bulk phases.
The result is

−dγ ¼ sγE dT þ
Xc
i¼2

Γ iEdμ i ð26Þ

where

sγE ¼ sγj −Γ1 j
sα−sβ

ρ1
α−ρ1

β

 !
; ð27Þ

and

Γ iE ¼ Γ ij−Γ1 j
ρi

α−ρi
β

ρ1
α−ρ1

β

 !
: ð28Þ

Eqs. (26)–(28) constitute the Gibbs adsorption equation. Excess
properties appear, and each coefficient (defined in Eqs. (27) and (28))
is independent of the location of the dividing surface. Only Gibbs invari-
ants appear in the Gibbs (or Guggenheim) adsorption equation.

In the Gibbs convention, if interfacial tension is considered a function
of temperature, pressure, and c-3 chemical potentials [27], Eqs. (14)–(17)
remain valid but with sτ

γ replaced by sj
γ

and Γiτ replaced by Γij.
Eqs. (14)–(17) provide the basis for neglecting the presence of an inert
atmosphere of air in most aqueous-solution surface-tension measure-
ments [2]. The differential coefficients appearing in this alternate
Gibbsian version of Eq. (14) are independent of the location of the divid-
ing surface and are, therefore, Gibbs invariants.

2.5. Equivalence of Gibbs and Guggenheim

Let τα and τβ in Fig. 2 be redefined as the respective distances into
phasesα andβ from aGibbs dividing surface at zj (i.e., presumed located
within the surface region). From Eq. (8), we express ΔΓiτ as

ΔΓ iτ ≡ Γ iτ−ταρα
i −τβρβ

i ¼
Zz j

− τα−z jð Þ
ρi zð Þ−ρα

i

� �
dzþ

Zτβþz j

z j

ρi zð Þ−ρβ
i

h i
dz ≡ Γ ij:

ð29Þ

Since τα and τβ are large enough to penetrate the bulk of phases α
and β, the lower-most and upper-most integral limits in Eq. (29) are
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replaced by infinity. The integrals in Eq. (29) are then identical to those
in Eq. (21) and correspond to the Gibbs surface excess adsorption of
component i based on a dividing surface at zj or ΔΓiτ = Γij, and, likewise
for component 1:ΔΓ1τ = Γ1j, i.e., the Gibbs surface excess adsorption of
component 1 based on the dividing surface of zj. Thus, Guggenheim in-
variants (independent of surface width) in Eq. (13) are identical to
Gibbs invariants (independent of dividing surface location) in Eq. (28).
The same reasoning holds for the excess surface entropies in Eqs. (12)
and (27). We conclude that Gibbs and Guggenheim conventions give
exactly the same final result for the GAE, as they must. In Gibbs adsorp-
tion equation (Eqs. (11) or (26)) one evaluates the coefficients sE

γ
and ΓiE

either by the proscription of Guggenheim with a finite surface-phase
volume or by the proscription of Gibbs with a zero-volume surface
phase. Equivalency, of course, demands that the coefficients sE

γ
and ΓiE

include all necessary factors in each convention. Hansen's results [27]
in Eqs. (14)–(17) also emerge directly from either the Gibbs or
Guggenheim invariant conventions after adoption of his choice of inde-
pendent variables.

Gibbs outlined a particularly convenient methodology to set the lo-
cation of the dividing surface [1]. Many surface-active components are
dilute in a solvent. In Figs. 2 and 3, water is typically chosen as the sol-
vent, but the hydrocarbon component serves aswell. Gibbs set the loca-
tion of the dividing surface at z1 defined such that the surface excess
adsorption of solvent, usually numbered as component 1, is zero rela-
tive to z1. Thus in Eq. (21), Γ11 = 0 where the first subscript denotes
component 1 and the second subscript indicates a dividing surface at
z1. With Gibbs formalism, the surface excess entropy and surface excess
mass densities in Eqs. (26) and (27) become sE

γ
= s1

γ
and ΓiE = Γi1, and

their calculation is simplified. The Gibbs adsorption equation in its clas-
sic form emerges as

−dγ ¼ sγ1dT þ
Xc
i¼2

Γ i1dμ i ð30Þ

s1
γ
and Γi1 remain Gibbs invariants as elucidated by Eqs. (27) and (28)

sγ1 ¼ sγj −Γ1 j
sα−sβ

ρ1
α−ρ1

β

 !
and Γ i1 ¼ Γ ij−Γ1 j

ρi
α−ρi

β

ρ1
α−ρ1

β

 !
: ð31Þ

Thus, the coefficients in theGAE of Eq. (30) have two interpretations.
First, they are Gibbsian surface excesses with respect to a dividing sur-
face chosen to give zero solvent excess adsorption. Second, from
Eq. (31), s1

γ and Γi1 are Gibbsian surface excesses with respect to a divid-
ing surface located at any zj. The first implementation is economic.

Gibbs (or Guggenheim) adsorption equation for inhomogeneous
surface phases is rigorous and is of the same authority as is the Gibbs–
Duhem equation for bulk homogeneous phases. There is no question
of thermodynamic validity. Provided invariants are correctly evaluated,
whatever convention is used to define the surface phase gives the same
final result. There is no distinction in the GAE between the Guggenheim
finite-volume surface phase and the zero-volume Gibbs surface phase.

2.6. Other Gibbs invariants

Guggenheim and Adams [35] noted that Gibbs dividing surfaces are
possible other than the convention of zero adsorption of component 1.
These authors suggested a family of dividing surfaces set at the location
zα by the definition

Xc
i¼1

αiΓ iα ¼ 0 ð32Þ

where the coefficients αi are constants characterizing the particular
choice of the dividing surface. The choice of zero adsorption of compo-
nent 1 corresponds to αi = 0 for i ≥ 2. If, for example, αi is fixed as the
partialmolar volume of component i in phase α orvαi , then the Gibbs di-
viding surface at zv is determined by the relation

Xc
i¼1

vαi Γ iv ¼ 0: ð33Þ

Hansen utilized this particular convention under the assumption
that partial molar volumes of all components are equal in both α and
β phases [27]. Substitution of Eq. (33) into the expression for the
Gibbs invariant adsorption of component i in Eq. (28) gives

Γ iE ¼ Γ iv þ
Xc
i¼2

vαi
vα1

Γ iv

" #
ρα
i −ρβ

i

� �
ρα
1−ρβ

1

� � : ð34Þ

Guggenheim and Adams [35] present several other choices for αi

that expose subcases of Eq. (34). The meaning of Eq. (34) is that the lo-
cation of the Gibbs dividing surface, zv, is set from the (presumed
known) component density profiles through the interface according to
Eq. (33). Gibbs excess adsorption, Γiv, relative to this dividing surface
is calculated following Eq. (21) and substituted into Eq. (28) (which is
valid for any choice of Gibbs dividing surface). The resulting Gibbs in-
variant adsorption ΓiE is then identical to that based on the dividing sur-
face, z1, of zero adsorption of component 1 (see Eq. (31)). The same
conclusion can be made for the remaining choices of αi suggested by
Guggenheim and Adams and indeed for any other choice of dividing-
surface location. Only invariants appear in the GAE. If density profiles
are available either from theory or experiment, there seems little advan-
tage in choosing a dividing surface other than that suggested by Gibbs.

If the adsorbed amounts appearing in Eq. (32) are evaluated accord-
ing to Guggenheim (i.e., from Eq. (8)), then an interface thickness of τv
emerges. Using this thickness and knowledge of the component density
profiles, adsorptions Γ iτv are established and substituted into the
Guggenheim invariant adsorption in Eq. (13). The result is Eq. (33)
with Γiv replaced byΓ iτv. Thus, Eq. (32)may be viewed not only as defin-
ing various Gibbs dividing surfaces, but equivalently as establishing var-
ious interface thicknesses in the Guggenheim finite-surface-volume
convention. This exercise again proves the equivalence of the Gibbs
and Guggenheim approaches.

Some 30 years following Guggenheim and Adams, Lucassen-
Reynders and van den Temple [36] and Joos [37] proposed a Gibbs di-
viding surface based on interfacial partial molar areas ωi [2]

Xc
i¼1

ωiΓ iω ¼ 1 ð35Þ

where Γiω is Gibbs excess adsorption of component i based on a dividing
surface defined by Eq. (35). Lucassen-Reynders [36,40–44] and Joos
[37,45,46] differ slightly in application of Eq. (35) depending on how
surface partial-molar areas vary with interface composition. The stated
advantage for this particular dividing-surface location is that excess ad-
sorptions of all components, including solvent-component 1, are nonze-
ro and positive. Accordingly, interfacial mole or area fractions may be
defined. Such definitions are not possible with Gibbs' choice of the di-
viding surface Γ11 = 0 Although appealing for modeling efforts, interfa-
cial mole or area fractions are strictly not thermodynamic because they
vary with choice of dividing-surface location. As with Guggenheim and
Adams collection of dividing surfaces, those based on Eq. (35) obey the
GAE when invariant excess adsorptions are calculated

Γ iE ¼ Γ iω−
1
ω1

−
Xc
j¼2

ωi

ω1
Γ iω

2
4

3
5 ρα

i −ρβ
i

� �
ρα
1−ρβ

1

� � : ð36Þ
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Similar to Guggenheim and Adams dividing surfaces [35], the Gibbs
adsorptions, Γiω in Eq. (36), can be replaced by ones calculated according
to Guggenheim finite-volume interphase, Γ iτω . Eq. (35) then defines yet
another the thickness of the interphase: τω. The invariant-component
adsorption value in Eq. (36) is unchanged by using this convention to
evaluate Γiω.

Buff [47] andMelrose [48] point out yet other choices for the location
of the Gibbs dividing surface including: uj

γ = 0 and sj
γ = 0. These

choices have not found application to planar fluid/fluid interfaces
since interest is primarily in understanding the relation between inter-
facial tension and adsorbed amounts at constant temperature. However,
application of the Gibbs adsorption equation to non-isothermal systems
speaks against referring to it as the Gibbs adsorption isotherm.

If theory is available for component density profiles through a fluid/
fluid interface, the benefit of dividing surfaces different from that
suggested by Gibbs (i.e., Γ11 = 0) is minimal. However, if simplified
molecular-thermodynamic models are sought, the Lucassen-Reynders–
Joos framework in Eq. (35) may be useful.

3. Components versus species

Analogous to bulk thermodynamic analyses, theGAEdoes not recog-
nizemolecular species. Inmany applications, however, consideration of
molecular speciation is paramount. Fortunately, this topic is well cov-
ered in the literature [23,49–51].Wegive three examples. The basic pro-
cedure is to write Eq. (24) for all molecular species and then to impose
chemical-reaction equilibria, electroneutrality, if pertinent, and bulk-
phase Gibbs–Duhem relations.

3.1. Aqueous strong electrolyte

Fig. 4 graphs surface tension against air for three strong aqueous
electrolytes at ambient temperature. Measured surface tension rises as
the concentration of salt increases, a feature opposite to that of most
aqueous solutes, such as alcohol at the air/water or oil/water interface
in Fig. 2. To understand this behavior, recognition must be given to
salt dissociation in the aqueous solution. Consider a strong electrolyte
solution consisting of dissociated K+ ions Cl− ions, andwater in equilib-
rium with air (taken as inert). For illustration, water consists of H2O
Fig. 4. Air/water surface-tension isotherms for several strong 1:1 aqueous salts at ambient
temperature. Lines guide the eye.
Data are from the Handbook of Chemistry and Physics [52].
molecules, and H+ and OH− ions at pH = 7. From Eq. (24) at constant
temperature, we have that

−dγ ¼ ΓKþd~μKþ þ ΓCl−d~μCl− þ ΓHþd~μHþ þ ΓOH−d~μOH− þ ΓH2OdμH2O
constant T

ð37Þ

where an over tilde is written above the chemical potential of each
charged species to emphasize the electrochemical potential that de-
pends on the charged state of the system [53]. For convenience, we
drop the subscript designating the particular choice of dividing surface,
although each species adsorption is understood as defined by the Gibbs
convention. Reaction equilibria demand that

μKCl ¼ ~μKþ þ ~μCl− and μH2O
¼ ~μHþ þ ~μOH− : ð38Þ

Since salt and water are the constituent thermodynamic compo-
nents and since the overall system is electrically neutral, ΓKþ ¼ ΓCl− ≡
ΓKCl and ΓHþ ¼ ΓOH− . Substitution of these results and Eq. (38) into
Eq. (37) gives

−dγ ¼ ΓKCldμKCl þ ΓHþ þ ΓH2O

� �
dμH2O

≡ ΓKCldμKCl

þ Γ1dμ1 constant T: ð39Þ

Adsorption of component 1 is defined byΓ1 ≡ ΓHþ þ ΓH2O. Here again,
Eq. (39) is over specified. We relieve the inconsistency by invoking
Gibbs–Duhem in the aqueous phase

xKCldμKCl þ xHþ þ xH2O

� �
dμH2O

¼ xKCldμKCl þ x1dμ1 constant T ; P ð40Þ

and by eliminating the chemical potential of water (component 1) to
yield

−dγ ¼ ΓKCl−Γ1
xKCl
x1

� �
dμKCl ≡ ΓKCl1dμKCl constant T; P: ð41Þ

Thus, the classic formof theGAE emergeswith the surface excess ad-
sorption of salt defined relative to a zero-solvent surface-excess divid-
ing surface. At neutral pH, the concentrations of hydronium and
hydroxide ions are low making their surface concentrations minimal
compared to that of the salt. Likewise, distinction between adsorption
of molecular water species and component water is immaterial.

Eq. (41) and Fig. 4 reveal that surface excess adsorption of salt anions
and cations is equal and negative at the air/water interface. Although
the concentration profiles of each may differ, both give a net negative
and equal surface-excess adsorption. Onsager and Samaras [54] first
quantified this phenomenon. The aqueous electrolyte solution was
treated as point ions dissolved in a dielectric continuum. Ions are re-
pelled from the gas (inert)/water interface by image charges located
in the lower permittivity gas phase. For symmetric electrolytes, calculat-
ed concentration profiles are identical for each ion; they are lower near
the interface than in the bulk solution and increase toward the bulk
solution. Themodel of Onsager and Samaras confirms theunderlying te-
nets of the GAE, as all theoriesmust. However, the treatment of Onsager
and Samaras applies only to dilute electrolyte solutions (i.e., within the
Debye–Hückel approximation), distinguishes salts by valence only (in
opposition to Fig. 4), and ignores possible nascent charge at the air/
water interface [55].

3.2. Completely polarized interface

Much of our understanding of the diffuse electrical double layer
comes from measurements of interfacial tension at the mercury/
aqueous electrolyte interface versus applied voltage [53,56,57]. This in-
terface is unique in that fluidity of the liquid metal allows direct mea-
surement of interfacial tension under ambient conditions and in that
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application of a voltage difference does not pass current. This second
feature allows the interface to maintain a uniform surface charge pro-
vided that a range of applied voltages is chosen where no electrode re-
actions occur (e.g., no hydrogen or oxygen evolution). Fig. 5 illustrates
the electrochemical cell of a so-called Lippmann capillary electrometer
[53,56,57]. Liquid Hg is in contact with an aqueous KCl solution of
known concentration. An applied voltage difference, E, charges the
mercury/aqueous electrolyte interface and is detected relative to a
reversible silver/silver chloride electrode by a high-impedance elec-
trometer. The ability to set the interfacial charge adds an additional
thermodynamic degree of freedom to the system. Interface charging al-
ters the interfacial tension measured in Fig. 5 by axisymmetric-drop-
shape analysis. Not shown in Fig. 5 are the counter electrode that applies
the desired voltage and the salt bridge that protects the mercury/water
interface from unwanted electrode-reaction products (e.g., Ag+ ions)
[53].

Assume that the aqueous electrolyte consists of the species: K+ and
Cl− ions, H+ and OH− ions at pH = 7, and H2O molecules. Electrons
exist only at the liquid metal/water interface. Upon dropping the sub-
script j denoting the location of the dividing surface, Eq. (24) reads at
constant temperature [53,58]

−dγ ¼ ΓHgdμHg þ Γe−d~μ e− þ ΓKþd~μKþ þ ΓCl−d~μCl−

constant TþΓHþd~μHþ þ ΓOH−d~μOH− þ ΓH2OdμH2O
:

ð42Þ

Species originating from each phase may adsorb at the interface. In
addition, Eqs. (38) and (40) hold, ΓHþ ¼ ΓOH− , and the Gibbs–Duhem
equation for the pure mercury phase applies (i.e., dμHg = 0 at constant
T and P) giving

−dγ ¼ ΓKþ−
xKCl
x1

Γ1

� 	
dμKCl þ Γe−d~μ e− þ ΓCl−−ΓKþð Þd~μ Cl− constant T ; P:

ð43Þ

Electroneutrality of the interface (i.e., ∑ ziΓi = 0) demands that
ΓKþ−ΓCl−−Γe− ¼ 0. We recognize that the interface charge on the
metal is given byqm ≡−FΓe− where F is Faraday's constant. Substitution
of these expressions into Eq. (43) reveals that

−dγ ¼ ΓKþ1dμKCl þ
qm
F

d~μCl−−d~μ e−ð Þ constant T ; P ð44Þ

where ΓKþ1 ¼ ΓCl−1−qm=Fð Þ is the surface-excess adsorption of cation
relative to the adsorption of water as defined in Eq. (43). To simplify
the term d~μ Cl−−d~μ e−ð Þ, we represent the cell electrical circuit as

Pt Ag AgCl KCl=H2O Hg Pt:jjjjj ð45Þ
Fig. 5. Schematic of a Lippmann capillary electrometer. Interfacial tension and applied
voltage are measured.
Following Newman and Thomas-Alyea [53], the cell voltage differ-
ence is

FE ¼ μAg−μAgCl þ ~μCl−−~μ e− : ð46Þ

Since the silver and silver-chloride phases are pure, differentiation
of Eq. (46) at constant temperature and pressure specifies that FdE ¼
d~μCl−−d~μ e− . Accordingly, Eq. (44) reduces to the desired result

−dγ ¼ ΓKþ1dμKCl þ qmdE constant T; P: ð47Þ

This is the celebrated Lippmann equation [53,56–59]. Each coeffi-
cient of the differentials in the Lippmann equation is a Gibbs invariant
as is the surface charge. From Eq. (25), Γe− is a Gibbs invariant because
free electrons do not exist in the bulkmercury and aqueous phases [53].
Thus, the Lippmann equation is the GAE for a completely polarizable
fluid/fluid interface. Eq. (47) permits evaluation of the surface-excess
adsorption of cations

ΓKþ1 ¼ −
∂γ

∂μKCl

� 	
E

constant T; P ð48Þ

and the interface charge

qm ¼ −
∂γ
∂E

� 	
μKCl

constant T; P: ð49Þ

Since ΓCl−1 ¼ ΓKþ1 þ qm=F, surface charge, adsorption of cations, and
adsorption of anions are all known from the capillary electrometer as
functions of applied potential difference and aqueous salt composition.
Considerable effort has been expended along these lines [53,56–59]. Es-
sentially all experimental knowledge about the structure of the electri-
cal double layer (or triple layer) originates from the Lippmann capillary
electrometer.

3.3. Surface complexation

Some surface-active species complex at the interface to form surface
aggregates [31,60–64]. Consider a solute–solvent mixture where the
solute forms equilibrium complexes at the fluid/fluid interface accord-
ing to

gA1⇄Ag for g ¼ 2;…; gmax ð50Þ

where species of subscript 1 represents the solute monomer that forms
surface aggregates of size g. The aggregates exist only at the interface
and do not exchange with the surrounding bulk phases. In this section,
it is convenient to represent the solvent as component 0. Following
Eq. (24), all species at the interface are accounted for

−dγ ¼ Γ0 jdμ0 þ Γ1 jdμ1 þ
Xgmax

g¼2

Γgjdμ
γ
g constant T ð51Þ

where again the subscript j indicates a Gibbs excess adsorption with re-
spect to a dividing surface at zj, and the chemical potentials of the sur-
face aggregates are labeled with a superscript to emphasize that these
species are confined to the interface. The Gibbs–Duhem equations in-
volving only species zero and one are written for phases α and β, com-
bined to eliminate pressure, and substituted into Eq. (51)

−dγ ¼ Γ1 j−Γ0 j
ρα
1−ρβ

1

ρα
0−ρβ

0

 !" #
dμ1 þ

Xgmax

g¼2

Γgjdμ
γ
g constant T ð52Þ

where theGibbs invariant adsorption, Γ1E, formonomer species now ap-
pears in the first term on the right. Reaction equilibrium among the
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surface complexes demands that gμ1 − μgγ = 0. Accordingly, Eq. (52)
simplifies to the final expression

−dγ ¼ Γ1E þ
Xgmax

g¼2

Γgj

" #
dμ1 constant T: ð53Þ

Eq. (53) appears incomplete because adsorption of the surface com-
plexes, Γgj, apparently depends on the location of the dividing surface.
Since the surface complexes exist only at the interface (i.e., ρgα =
ρgβ = 0), however, Eq. (25) or (28) reveals that Γgj is a Gibbs invariant
similar to that for an insoluble-surfactant monolayer (see also
Section 3.2 for electrons at the mercury/water interface). Thus,
Eq. (53) is the rigorous GAE for surface-aggregate formation. Because
excess adsorptions in Eq. (53) are Gibbs invariants, Eqs. (13) and (28)
confirm that they are also Guggenheim invariants. Thus, Gibbs excess
adsorptions may be replaced in Eq. (53) by corresponding Guggenheim
adsorbed amounts with no change in results.

4. Applications of GAE

The Gibbs (Guggenheim) adsorption equation is indispensable for
understanding adsorption behavior at fluid/fluid interfaces. We cite
three applications: theory concordance, interconversion of interfacial
tension and adsorption, and thermodynamic consistency. Proposed the-
ories for adsorption and/or tension must obey the GAE. This exercise
provides a physical test of the theory and, in the case of molecular sim-
ulation, validation of the simulation. Next, given experiment or theory
for the interfacial-tension isotherm, the corresponding adsorption iso-
therm can be established, and vice versa. For example, a proposed ad-
sorption isotherm can be transformed into a surface equation of state
using the GAE. Finally, mixture-adsorption data and theory must be
thermodynamically consistent with the GAE. In all cases, it is the invari-
ant adsorptions in Eqs. (13) or (28) that must be utilized in the GAE.
Each of these applications is illustrated below.

4.1. Theory concordance

4.1.1. Molecular thermodynamics
A number of simple molecular-based models are available that treat

the fluid/fluid interface as a separate phase of given composition
[2,65–68], especially for aqueous surfactants [69–75]. We illustrate
from the extensive studies of Fainerman and Miller [31,60–64,76–96].
These authors adopt the Butler ormonolayer equation for the interfacial
region [2,97]

μ i ¼ μγo
i þ RT ln f γi θi þ γωi ð54Þ

where μiγo is component i standard state at the interface, θi is the area-
fraction composition of component i in the interfacial layer, and fi

γ is
the interfacial activity coefficient of component i. The interfacial-layer
approximation described in Eq. (54) is a pleasing analogy to that of
bulk phases. However, it does not account for or recognize density pro-
files through the interface. Indeed, composition profiles vary strongly
through the interface (see Fig. 2). Thus, the exact meanings of the
surface-layer composition and activity coefficient are extra thermody-
namic. Adoption of the Butler interfacial-layer model also bypasses the
GAE in calculating interfacial tension from expressions for adsorption
isotherms.

Fainerman and Miller adopt the Lucassen-Reynders–Joos conven-
tion in Eq. (35) for the Gibbs dividing surface so that θi ¼ ωiΓ iω . With
the Lucassen-Reynders–Joos dividing surface, all components are
present at the interface including, for example, solvents water and oil
for liquid/liquid interfaces. Equality of the chemical potentials in
Eq. (54) with those in the corresponding bulk phases specifies both the
interphase composition and the interfacial tension. Many embodiments
of this approach have been put forward including aqueous surfactant
mixtures, both ideal and nonideal with respect to surface interaction
and size dissimilarity, surfactants that aggregate at the surface and/or
change orientation and conformation, proteins, mixtures of proteins
and surfactants, ionic surfactants, and the effect of oil at oil/water inter-
faces, all with considerable predictive power [31,60–64,76–96].

By way of example, consider a nonvolatile solvent/inert-gas inter-
face with a single dissolved nonvolatile surface-active component.
Solvent (water) is component 1 and the surface-active solute is compo-
nent 2. Let the partial molar areas of both components be identical and
equal to ω. The bulk solution is dilute and ideal; the surface phase is
ideal in the dilute Henry limit. Equating chemical potentials of compo-
nents 1 and 2 from Eq. (54) to their bulk counterparts gives [78]

θ2 ¼ K2x2
1þ K2−1ð Þx2

ð55Þ

where x2 is the mole fraction of solute in the bulk solution and

K2 ≡ exp − μγo
2 −μαo

2 −μγo
1 þ μαo

1


 �� �
=RT�: ð56Þ

Superscripts o on the chemical potentials indicate standard state. K2

is the equilibrium constant for solute adsorption characterized by the
difference in standard Gibbs free energies of adsorption of the solvent
and solute in an exchange process at the interface. In the limit of strong
solute adsorption (i.e., K2 N 1), Eq. (55) is that of Langmuir. Interfacial
tension also follows from the two chemical-potential equalities

γo−γð Þω=RT ≡ πω=RT ¼ ln 1þ K2−1ð Þx2½ � constant T; P ð57Þ

where the symbol π denotes the spreading pressure. Eq. (57) corre-
sponds to the classic Langmuir–Szyszkowski relation [2].

Nowhere in the Lucassen-Reynders/Joos/Fainerman/Miller frame-
work is the Gibbs adsorption equation utilized. Nevertheless, it must
be obeyed by physically correct models. To assess agreement with the
GAE, the solute invariant adsorption in Eq. (28) is first established
from Eq. (55)

Γ2E ≡ Γ21 ¼ Γ2ω−Γ1ωx2 ¼ K2−1ð Þx2 þ x22
ω 1þ K2−1ð Þx2½ � �

K2−1ð Þx2
ω 1þ K2−1ð Þx2½ � ð58Þ

where the term 0(x22) is neglected in the far-right expression.When the
free energies of the adsorption-exchange process sum to zero in
Eq. (56), the solute Gibbs invariant adsorption in Eq. (58) is also zero,
a pleasing result since only invariant adsorptions have thermodynamic
significance.

To verify obedience with the GAE, surface tension in Eq. (57) is dif-
ferentiated with respect to dμ2 = RTd ln x2. The far-right form of
Eq. (58) is confirmed. This resultmeans that for this case, the GAE is sat-
isfied in dilute solution and for strong solute adsorption. The small error
in disobedience to the GAE likely arises because Eq. (54) is apparently
not rigorous. All molecular-thermodynamic models must be validated
against the GAE.

Probably the least-involved theory explicitly accounting for molar
density profiles and, hence, for local mole-fraction profiles is that of
Cahn and Hilliard [98], also coined gradient or square-gradient theory
[5]. Because species concentrations vary through the interface, there
are positive penalty terms in the free-energy density that are propor-
tional to the square of the local density gradients with scaling coeffi-
cients, Cij, known as influence parameters. At equilibrium, the local
chemical potential is everywhere constant and equal to

μ i ¼ μH
i ρ˜ i zð Þ
 !

−
Xc
j¼1

Cij
d2ρ j zð Þ
dz2

constant T ð59Þ
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where the chemical potential of component i consists of a local homoge-
neous term μiH and inhomogeneous terms involving how strongly den-
sity variation of each component influences the uniform chemical
potential. Although not necessary, influence parameters in the formula-
tion of Eq. (59) are taken as constants. ρi zð Þ denotes an array consisting
of all density profiles. Eq. (59) requires information on the local homo-
geneous chemical potential, typically obtained from a bulk-phase equa-
tion of state (EOS). For example, for van der Waals EOS, the local
homogeneous chemical potential is given by [5,99]

μH
i zð Þ ¼ μo

i Tð Þ þ RT ln
ρiRT
1−ρbð Þ

þ RTρbi
1−ρbð Þ−2RT

Xc
j¼1

ρ j
ffiffiffiffiffiffiffiffiffi
aia j

p
constant T ð60Þ

where ai and bi are the van derWaals EOS interaction and finite-size pa-

rameters, respectively, ρ ¼ ∑
c

i¼1
ρi , bρ ¼ ∑

c

i¼1
ρibi , and μio is the standard

chemical potential for an ideal gas at 1 bar and temperature T. Units of
ρiRT in Eq. (60) are in bar, and a geometric mixing rule specifies aij. As
in the Butler model of Eq. (54), chemical potentials in Eq. (59) are
equated to their bulk-phase counterparts. Resulting coupled, nonlinear
ordinary differential equations are evaluated numerically with bound-
ary conditions of compositions equal to those in the bulkα and β phases
at τα and τβ, respectively. Bulk-phase equilibrium compositions are
predetermined by equating pressures and chemical potentials in
Eq. (60) for each component to those in the homogeneous α and β
phases (i.e., Eq. (59) but with dρi/dz = 0). Once density profiles are
established, interfacial tension follows from the expression [5]

γ ¼
Zþτβ

−τα

Xc
i; j

Cij
dρi

dz
dρ j

dz
dz: ð61Þ

Fig. 6 displays calculated density profiles across the water (compo-
nent 1)/heptane (component 2) interface at 298 K and 1 atm with a
1

Fig. 6.Molar density profiles for water (1), heptane (2), and a prototypical alcohol (3) at
298 K and 1 atm with 10 mol% aqueous alcohol predicted from gradient theory and
van der Waals EOS. ij interaction parameters follow a geometric mixing rule: aij ¼ ffiffiffiffiffiffiffiffiffi

aia j
p

and Cij ¼
ffiffiffiffiffiffiffiffiffiffi
CiC j

p
.

After [5] with permission.
prototypical alcohol, such as pentanol (component 3), present in the
aqueous phase at 10 mol% [5,100]. van der Waals constants are obtain-
ed from critical-point data for the pure components; influence parame-
ters for the pure components are obtained from surface-tension data,
andCij ¼ Cji ¼

ffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
. The abscissa origin in Fig. 6 is chosen convenient-

ly. As expected, water and oil densities vary steeply through the inter-
face, whereas pentanol displays surface activity due to molecular
amphiphilicity. Interestingly, the oil density profile exhibits a shallow
maximum because of increased oil solubility in the presence of the
surface-active alcohol, an observation not anticipated in Fig. 2. Agree-
ment with experimental interfacial tension for the system in Fig. 6 is
qualitative depending strongly on the particular choice of influence pa-
rameters [100]. Gradient theory is oversimplified in that the molecular
orientation is not accounted for.

As with the Butler-based interfacial-layer models, gradient theory
does not make use of the GAE when predicting interfacial tension.
Nonetheless, as with all molecular-thermodynamic interfacial models,
it is incumbent upon practitioners to establish concordance with rigor-
ous thermodynamics [16,17,101]. Accordingly, several authors have
confirmed obedience of gradient theories to the GAE [102–104]. In par-
ticular, Widom [102] established that provided the gradient-correction
term in Eq. (59) depends at most on ρi zð Þ, consistency is guaranteed.
If, however, other dependencies arise, then gradient theory must be
corrected to provide agreement.

4.1.2. Molecular simulation
Molecular simulation gives information not only on density profiles

but also on surface molecular architecture. Because of attention paid to
theGAE,we illustrate the results of Howes andRadke [105] on Lennard–
Jones (LJ) surfactants [106–112] at the liquid/vapor interface. In
the Monte-Carlo simulations of Howes and Radke, nonionic block-
copolymer amphiphilic surfactants consisting of a solvophilic head
and a solvophobic tail with m head monomers and n tail monomers,
HmTn, adsorb to the liquid/vapor interface of a monomeric LJ solvent.
Fig. 7 shows simulated density profiles, ρ2(z), at a reduced temperature
of 0.9 for the surfactant H4T4 including the center-of-mass profile com-
pared to the center-of-mass profiles for the heads and tails. An insert
gives the simulated density profile for the LJ solvent, ρ1(z). Clearly,
adsorbed surfactant tails penetrate into the vapor phase due to strong
dislike for the solvent while surfactant heads prefer the liquid phase.

Howes and Radke [105] establish theGibbs plane of zero-solvent ad-
sorption, z1, as shownby the vertical dashed line in the insert. Surfactant
adsorption with respect to this dividing surface, Γ21(=Γ2E), is then cal-
culated from the surfactant center-of-mass profile according to
Eq. (21). Results are shown as points in Fig. 8 for three surfactants:
H4T4, H4T5, and H4T6. All units are expressed in terms of the LJ solvent
intermolecular-energy well depth, ε, and collision diameter, σ. Typical
Langmuir adsorption-isotherm shapes emerge. As the tail length of
the surfactant increases, both the initial isotherm slope and the maxi-
mum adsorption increase. The reason why maximum coverage in-
creases with increasing tail length is that surfactant orientation trends
toward perpendicular, surfactant penetrates toward the vapor phase,
and tail moiety stretches, all permitting increased adsorption. Lines in
Fig. 8 are best fit to the Langmuir isotherm in Eq. (58) with good
agreement.

Fig. 9 displays as points independent-simulated interfacial tensions
for increasing bulk concentrations of the three block-copolymer surfac-
tants [105]. At higher concentrations, the tensions level off for all three
surfactants. Simulations at these higher concentrations reveal surfactant
aggregates in the bulk solution [105]. Therefore, following common
practice [6], a critical aggregation concentration, CAC, is defined by
the intersection of the horizontal constant-tension line and the tension
isotherm at lower surfactant bulk concentrations. Lines in Fig. 9 below
the CAC are not fit, but are calculated from the GAE using the Langmuir
isotherm and the fit parameters from the adsorption simulations in
Fig. 8. Agreement between predicted lines, obeying the Langmuir–



Fig. 7. Center-of-mass density profiles for H4T6 surfactant at a bulk concentration of 0.41 CAC (1.2 ± 0.2 × 10−4 molecules/σ3). Triangles outline the head-group center-of-mass density
profile, diamonds outline the surfactant center-of-mass density profile, and squares outline the tail-group center-of-mass density profile. Vertical dashed lines represent the zero-
adsorbed-solvent Gibbs dividing surface, z1. An inset shows the solvent density profile, ρ1. Zero on the z-axis corresponds to the center of the simulation film.
From [105] with permission.
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Szyszkowski equation [Eq. (57)], and the simulated tensions indicates
consistency with the GAE. This exercise does not provide a test of the
GAE since it is thermodynamic and rigorous. Rather, the comparison
in Fig. 9 indicates that the simulations are consistent with sufficient sys-
tem size and run time to establish equilibrium. In this situation, the GAE
provides a test of the simulations.

Not all interfacial molecular simulations are evaluated carefully for
conformance to the GAE. Starting in 2000, Jungwirth and Tobias report-
ed important simulations of aqueous sodium-halide salts adsorbing at
the water liquid/vapor interface [113–117]. The important feature of
these simulations is implementation of polarizable intermolecular
force fields in which interaction between ions and atoms in water de-
pends on local environment. Fig. 10 shows density profiles for the oxy-
gen atom in water, sodium cation, and iodide anion. As in Fig. 7, a
Fig. 8. Gibbs excess adsorption isotherms for three surfactants. Points represent simulation da
Langmuir-isotherm fit to Eq. (58): a dotted line for the H4T6 simulation, a solid line for the H4T
From [105] with permission.
vertical dashed line locates the Gibbs dividing surface of zero surface-
excess water adsorption. The surprising feature of Fig. 10 is the positive
adsorption of both sodium ions and iodide ions at the water/gas inter-
face. Jungwirth et al. explain this observation as asymmetric polariza-
tion of larger anions by water near the interface, although the exact
mechanisms remain in debate [118]. Smaller halide anions do not dem-
onstrate positive accumulation near the interface. Likewise, simple fixed
intermolecular potentials also do not capture this effect [119]. Using
surface harmonic generation, Sakally and colleagues provide experi-
mental verification of polarizable anion accumulation near the water/
air interface [120–123].

Jungwirth and Tobias report simulated surface tensions of the aque-
ous sodium-halide electrolytes larger than that of pure water [114].
Based on the arguments presented in Section 3.1, strong-electrolyte
ta: triangles for the H4T6, squares for the H4T5, and diamonds for the H4T4. Lines represent
5 simulation, and a dashed line for the H4T4 simulation.



Fig. 9. Surface-tension isotherms for three surfactants. Points represent simulation data: triangles for the H4T6, squares for the H4T5, and diamonds for the H4T4. Lines represent the
Langmuir–Szyszkowski isotherm in Eq. (57): a dotted line for the H4T6 simulation, a solid line for the H4T5 simulation, and a dashed line for the H4T4 simulation. Horizontal lines begin
at the critical aggregation concentration (CAC).
From [105] with permission.
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surface tensions larger than that of the solvent arise because of equal
and negative surface-excess adsorption for both salt ions: ΓNaþ1 ¼ Γ I−1b

0. The simulations of Jungwirth and Tobias in Fig. 10 do not satisfy these
criteria leading them and others [124] to question the classic ion-
repulsion interpretation of the GAE for large halide anions as “too sim-
plistic”. However, the GAE does not recognize molecules. This feature
is both a strength and a weakness. The GAE is valid independent of mo-
lecular structure, but conversely it gives no information on molecular
density profiles or surface molecular architecture.

A likely resolution of the results in Fig. 10 [117,120,124,125] is that
the particular simulations of Jungwirth and Tobias [115] were not car-
ried out in large enough systems to capture the entire density profiles.
Close examination of Fig. 10 shows that the two salt ions do not attain
bulk concentration away from the interface and that electroneutrality
of the interfacial region is not precisely achieved. The GAE provides a
tool to assess molecular simulations, not vice versa.
Fig. 10. Simulated density profiles at ambient temperature relative to bulk liquid density
for aqueous sodium iodide and oxygen atoms in water at the liquid/vapor interface. Bulk
salt concentration is 1.2 M. A vertical dashed line approximates the Gibbs dividing surface
for zero solvent adsorption.
After [115] with permission.
4.2. Interchanging tension and adsorption

The Gibbs adsorption equation is a tool to convert adsorption iso-
therms to tension isotherms and vice versa. For example, substitution
of the invariant adsorption isotherm in Eq. (58) for a single, ideal dilute,
nonvolatile solute at a solvent/inert-gas interface into the GAE followed
by integration gives the Langmuir–Szyszkowski tension isotherm in
Eq. (57). Likewise, substitution of Eq. (57) into the GAE followed by dif-
ferentiation gives the Langmuir solute invariant adsorption isotherm in
Eq. (58).

It is instructive to rewrite the Langmuir–Szyszkowski expression in
the following form

πa21
RT

¼ a21
ω

ln 1− ω=a21ð Þ½ �−1 ð62Þ

where a21 ≡ Γ21−1 is themolar area occupied by component 2 at the inter-
face. In the limit of small coverage of solute 2, Eq. (62) reduces to the ex-
pression for an ideal two-dimensional equation of state: πa21/
RT = 1. Thus, the Langmuir–Szyszkowski relation for surface ten-
sion may be viewed as a two-dimensional, noninteracting solute of
finite size residing at the interface. Many analogies to other two-
dimensional equations of state can be drawn [126]. For example, a
two-dimensional van der Waals tension isotherm is given by

π þ α=a221
� �

a21−ωð Þ ¼ RT ð63Þ

where α is a two-dimensional interaction parameter. The corre-
sponding adsorption isotherm is given by

K2−1ð Þx2 ¼ ωΓ21
1þωΓ21ð Þ exp

ωΓ21
1þωΓ21ð Þ−

2αΓ21
RT

� �
ð64Þ

which is an extended Langmuir equation accounting for both finite size
and surface lateral interaction. Note that the Gibbs invariant adsorption
Γ21 appears in the van derWaals tension isotherm. Accordingly, adsorbed
amounts can also be defined in the Guggenheim framework, provided
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that the Guggenheim invariant adsorption for solute 2 (i.e., Eq. (13)) is
utilized in Eq. (64). Extension of two-dimensional equations of state to
mixed-solute adsorption is straightforward by analogy to bulk equations
of state withmixing rules for the EOS parameters [94]. Because the inter-
facial region is inhomogeneous on a molecular scale, two-dimensional
equations of state are not literal. Caution must be taken in attributing
physical meaning to the parameters appearing in the particular 2-D
EOS chosen.

4.3. Thermodynamic consistency

Because Gibbs adsorption equation is an exact differential, cross dif-
ferentials must be equal. Thus, Eq. (30) demands that

∂Γ i1
∂μ j

 !
T;μ i≠1; j

¼ ∂Γ j1

∂μ i

 !
T;μ j≠1;i

constant T: ð65Þ

OnlyGibbs (orGuggenheim) invariant adsorptions appear in Eq. (65).
Mixture adsorption data or theorymust satisfy Eq. (65). Otherwise, those
data or theories are thermodynamically inconsistent. For example, exten-
sion of the Fainerman–Miller Langmuirmodel in Eq. (58) to an equal-size
multicomponent solute mixture adsorbing at a liquid/gas interface reads

Γ iE ≡ Γ i1 ¼ Ki−1ð Þxi

ω 1þ
Xc
j¼2

K j−1
� �

xj

2
4

3
5
: ð66Þ

This model satisfies thermodynamic consistency. Likewise, the so-
called ideal adsorbed solution (IAS) mixture model is thermodynami-
cally consistent because it utilizes the GAE in the calculation framework
[127–130]. Many simple models do not obey thermodynamic consis-
tency including that of Langmuir with unequal-sized adsorbates [131].
Because only simple models can be evaluated analytically according to
Eq. (65) [132], most mixture theories are not evaluated for thermody-
namic consistency.

5. Conclusions

The Gibbs adsorption equation is indispensable for understanding
equilibrium adsorption behavior at fluid/fluid interfaces. It provides a
benchmark for molecular-thermodynamic models andmolecular simu-
lation. It provides a tool to convert between adsorption theories and
tension isotherms and vice versa. It provides a means for assessing
thermodynamic consistency of mixture adsorption data and theory. In
spite of the fundamental thermodynamic origin and rigor of the GAE,
implementation is fraught with confusion primarily over the physical
meaning of a zero-volume surface phase. This led others, primarily
Guggenheim and Hansen, to reformulate Gibbs thermodynamic analy-
sis for a finite-thickness surface phase. By paying careful attention to
the phase rule, however, we show that both Gibbs and Guggenheim ap-
proaches give identical results. Itmakes nodifference in theGAEwheth-
er adsorption is gauged by a zero-volume surface excess in the Gibbsian
sense with various choices of dividing surface or the actual amount of
material in a finite-volume surface phase as in the Guggenheim frame-
work. However, equivalence is achieved if and only if excess invariant
quantities appear in the GAE that are independent of the location of
the Gibbs dividing surface or are independent of the interfacial thick-
ness in Guggenheim's treatment.

Application of the GAE to electrified fluid/fluid interfaces, interfaces
with surface aggregation, interfaces of strong and weak electrolytes,
etc. is straightforward provided that all equilibrium restrictions are
accounted for including the Gibbs–Duhem relations in the bounding
bulk phases. Both molecular simulation and molecular-thermodynamic
models must conform to the GAE. Conformance is an important screen
that should always be applied.

Most of the confusion of the GAE originates with differences in the
exact meaning of the surface excess properties under debate. Provided
that invariant surface properties are correctly employed, the GAE is gen-
eral and rigorous.
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