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Kinetic Theory of Quantum Plasma and Radiation in an
External Magnetic Field~

WILLARD R. CHAPPELLt

Seuthsowiul 3sfrophysk. ul obsemufory, Cambndge, 3fassachlseNs

(Received 1 June 1966)

The random-phase approximation and the Bogoliubov (adiabatic) assumption are used to obtain long-
time expressions for electron and photon operators in the presence of a constant, external magnetic 6eld.
These operators are then used to obtain a kinetic equation describing the approach to equilibrium of the
system. The results include the dynamical screening of the Coulomb interaction and the "dressing" of the
photons, Expressions are also obtained for the density and electric-field autocorrelation functions. The
structure of the asymptotic (i -+ oo) operators is studied, and it is shown that operators can be obtained
that correspond to the creation and annihilation operators for the collective modes of the system.

I. INTRODUCTION
' 'N a previous paper' we obtained coupled kinetic
~ ~ equations for the particle and photon distribution
functions in the case of a homogeneous, isotropic,
multicomponent system of charged particles and radia-
tion with no external fields present. In the present
paper we treat the problem of the quantum electron
gas coupled to the radiation 6eld in the presence of a
uniform (in space and time) external magnetic field.

This problem has been considered previously by
Osborn and Klevans2 3 and by Dreicer. 4 In the work of
Osborn and K.levans' the kinetic equations were ob-
tained by the use of the repeated random-phase
assumption and no many-body sects were included.
However, Klevans' later improved this method by using
a modified scattering method to treat the dispersive
nature of the system. Dreicer4 used a strictly Boltzmann
approach to obtain a relativistic kinetic equation. His
results contain no many-body e6'ects.

The problem of a quantum electron gas with a mag-
netic field, but without taking radiation into account,
was considered by Ron, ' who used Dupree's' technique
to obtain a modified Balescu-Lenard equation.

In this paper we obtain a kinetic equation that in-

cludes the eBects of dynamical screening and the eBects
of the dispersive nature of the plasma. This is accom-
plished by genera, lizing a method developed by %yld
and Fried~ that makes use of the random-phase ap-
proximation (RPA) and the Bogoliubov (adiabatic)
assumption concerning the time behavior of the correla-
tion functions as compared to the time behavior of the

one-particle distribution functions. This is a diferent
method from that used in the previous paper. ' The
present method has the advantage that the "dressing"
of the photons (which is very important in the magnetic
field case) is accomplished. in a very straightforward
manner. On the other hand, we do not include the
effects of electron-photon scattering and doub1e emis-
sion-absorption processes.

The idea of the method is to obtain asymptotic
(1~oo) expressions for various operators. These ex-
pressions are then used to calculate various correlation
functions. %e are also able to calculate two-time corre-
lation functions, and we obtain explicit expressions for
the creation and annihilation operators for the collective
modes. This method has also been applied to the
electron-phonon gas. s

ii. EQUATIONS OF MOTION

Ke consider a system of S electrons in a neutralizing
positive background contained in a volume V to be
interacting with each other and with the radiation Geld.
The uniform magnetic field. is chosen in the s direction
and the coupling to the spins is ignored. Since we will

think of the volume as eventually becoming in6nite, we
will neglect all effects that vanish in this limit. The
particle operators f, (r) and P,t(r) obey the usual anti-
commutation relations

g, (r),li, (r') }=8„,.5(r—r'),

(k.(r)A" (r')) =O

If we work in the Landau gauge, the external 6eld
is represented by the vector potential

As(r) = (O,x8,0),

and the total vector potential is written as

A(r) =As(r)+At(r),

where Ai(r) is the quantized internal vector potential.

8 W. R. Chappell, J. Math. Phys. 7, 1153 ('1966).

152 ii3

*Supported in part by U. S.Air Force Wright Air Development
Division through P. E.C. Research Associates, Boulder, Colorado.

t' Present address: Lawrence Radiation Laboratory, University
of California, Livermore, California.' W. R. Chappell and W. E. Brittin, Phys. Rev. 14tJ', 75 (1966).' R. K. Osborn and K. H. Klevans, Ann. Phys. (N.Y,}15, 105
(1961).

E. H. Klevans, Doctoral thesis, University of Michigan, 1962
(unpublished}.

H. Dreicer, Phys. Fluids 7, 'B5 (1964}.
5 A. Ron) Phys. Rev. 134, A70 (1964).' T. H. Dupree, Phys. Fluids 4, 696 (1961).
r H. W. Wyld, Jr. and B. D. Fried, Ann. Phys. (N.V.) 23, 374

(1963).



WI LLARD R. CHAPPELL

The Hamiltonian for the system is given by

+(2m) —'P dr/, t(r)(—O'V2)P, (r)

The operators c,t and c, are the creation and annihila-
tion operators in the Landau representation and obey
the anticommutation relations

{casrca's' } '4, a'bs, a'r

and

{c„,c, }=O.

1+-
2

2mc

where

drdr' P P,t(r)f, t(r')p(r —r')P, .(r')P, (r)
S,s'

dr g [P,t(r) VP, (r) (Vg,t—(r))P,(r)j A(r)

It is also convenient to expand the quantized vector
potential in a Fourier series as

4m-c')'"
A, (r)=g

l

e" q, .
VP

e2

2mc
pqk, yk )=iMk, k (I—kk),

pqk, qk]=0,
and4(r) =e'/lrl.

The canonical momentum operators p~ are introduced
in the customary manner. The field operators obey the

dr P P t(r)P (r) l A(r) l~ (4) usual commutation relations

The motion of the particles caused by the external
magnetic field can be incorporated by the use of the
eigenfunctions p (r) for the problem of a single electron
in a uniform magnetic field. That is, P (r) is a solution
of the equation

e
-V——Ao(r) P (r)=hE, & (r).2' 4 c

The eigenfunctions P (r) are given by'

hq)
y. (r)=V—rr'e'& '+ )U„l x-

m~, )

Thefunction U„(x) is thenormalized harmonic-oscillator
wave function corresponding to the eigenvalue
X(n+ ', ), wher-e or, =eB/mc. The energy eigenvalues
AE are given by

where I is the unit dyadic, 0 is the zero dyadic, and
k=k/k. We also note that

(12)

In this paper we will neglect the effects of electron-
photon scattering and double emission-absorption proc-
esses thatarise from the

l
A~l' term in the Hamiltonian.

There is a contribution from the
l
A~l' term, however,

that gives a shift in the photon frequencies from
Qk=kc to'

Qk' ——k'c'+(o '

where ~~'=4~We'/mV. The latter contribution will be
retained. The Hamiltonian for this problem can then
be written as

H=P hE.c.,tc.,

hE =h~, (n+ ', )+h'p'/2m, - (7) +2 Z(V"uk+~'qktqk)+k 2 ~ (h)~(&)u( —&)

and p and q are given by

2~S2

t/'i/3 yc(3
'q=—

where

)4n. '~'

2 2 (nl V(&)ln')b. (n,n') q. , (»)
(P k a, a~, s

where
nj. ,g

——0, +1, +2, + ~ ~

We note that E is independent of q.
We can work in terms of the Landau states by writing

the electron operators as

4.(r)=Et-() -, and

QP= k'c'+a)„'

y(h) =4m-e'/h',

b, (nrn') =C~I c~~g r

p(k)= P (nle
—'"'ln')b, (n,n'),

ArA, 8I

(14)

(15)

(16)

(17)

and
P,t(r) =2 y.*(r)c.,t.

( /h e hk i

(nl V(k) ln')=m 'l n e' 'l —V——Ao+ n'
I (18)

ki c 2

The operator p(k) is the Fourier transform of the

tivistic Theory (Pergamon Press, Ltd. , London, 1958). density operator. The Fourier transform of the current
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density operator is given by
(dp2

j (k) = e Q (n I
V (k) I

n') b, (n,n') — Ag,
a, a', e 4mc

where
Ag ——(4m c'V)'12qg. (20)

The simplified form of the last term in Eq. (19) results
from the approxima, tion made on the

I
A I' term in the

Hamiltonian. '
We choose to work in the Heisenberg representation.

Hence, the equation of motion for any operator 0 is
given by ikO= [0,H]. The equations of motion for the
operators A& and b, (n, n') are given by

O'Ag
+14'Ag ——47rec P (nl V(—k)ln')

Bt2 a, a', e

(I —kk) b, (n,n'), (21)
and

Bb, (n,n')

the quantum electron gas. ' It has been recently applied
to the electron-phonon gas.

The RPA equation is obtained from Eq. (22) by
making the following approximations':

and
b, (p,n')Ak~ Bp„ f.,A~,

b. (P,n')p(k) ~ be, f-"t(k)

where

z

~.(n,n') 2 [(e/c)(n'IV(k) ln) A~
hU

+4(k)(n'le'"'ln) p(k)], (25)

The RPA is equivalent to a truncation of the hierarchy
of equations for the correlation functions, the neglect
of close encounters, and the neglect of exchange terms. ' ~

The resulting equation for b, (n,n') is

Bb, (n,n')
= —i'0 (n,n') b, (n,n')

~s(nsn )= fa's fas ~ (26)

= —iQ(n, n')b, (n,n') — Q [(Pl V(k) In)b, (P,n')
hcV»

—( 'I v(k) Ip)b. (,p)] A,

Q(n, n')=E —E . (23)

From Eq. (22) we can obtain the exact equation of
motion (neglecting electron-photon sca, ttering and
double emission absorption) for the one-particle dis-

tribution function
f-= (c-'c-)

Z

+ 2 Z e(k)[( le '"'IP)*b.(P, ')
AV p —(n'Ie'"'I p)b.(,p)]t (k), (22)

where

The next assumption of importance is the Bogoliubov
(adiabatic) assumption. We presuppose that by the
time the correlation functions have assumed their long-
time (of the order of the relaxation time) form, the
one-particle distribution function has not changed ap-
preciably. Thus, we calculate the asymptotic (t~~)
expressions for the correlation functions by assuming

f , is const'ant in time.
Thus in Eq. (25) we consider A, (n, n') to be inde-

pendent of time. Consequently, Eqs. (21) and (25) are
simply the Maxwell and linearized Vlasov equations
for the operator b, (n, n') These .equations are coupled,
linear equations. We solve them by introducing the
one-sided Fourier transformation

We will assume in this paper that f, is independent of
the quantum number q.

The equation of motion for f„is given by

0(a&) = e'"0(t)dt,
0

0(t) = (2s.) ' e '"0(&a)d~,

(27)

Bf, 2e
2 1m[(nl V(k) ln') (b. (n,n')A. )]

Bt ficV

+ E 4(k) ~m[(nle'"'ln')(b. (nn')t (k))] (24)
PgU a', m

In order to obtain a kinetic equation we need to find
long-time expressions for the correlation functions that
appear on the right-hand side of Eq. (24). We will

accomplish this by using the RPA to linearize Eq. (22)
and then by solving the resulting equations for the
operators b, (n,n'), p(k), and Az by using Laplace trans-
forms. We then obtain asymptotic (t s~) expressions
for the operators. These asymptotic operators can then
be used to calculate the desired correlation functions.
This technique was first used by Wyld and Fried for

where Imago&0. With the use of the above transforma-
tion, we obtain from Eqs. (21) and (25)

8Ag(0)—((v' QI,2) Ag (—o)) =iso Ag (0)+

+4s.ec Q (nl V(—k) ln') (I kk)b, (n,n', s—)), (28)
a,a, e/

and
—i[co—0(n,n')]b, (n,n', &o) =b, (n,n', 0)

Z

~.(n,n') 2 [(%)(n'I V(k) ln) A~(~)
kkV

+4 (k) (n'I e'"'In)t (k,~)] (29)

"D.Bohm and D. Pines, Phys. Rev. 92, 609 (:1953).
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It is convenient to solve these equations for the
quantity

ik RO

E&, ((u) = ——y(k)p(k, (v)+—
A&, (&a) .

The above operator, except for a term involving the
initial value of the transformed vector potential, is the
transform of the electric 6eld.

We solve these equations by first solving Eq. (29) for
the operator p(k, co) in terms of b, (a,a', 0) and E&,(o&),

using the fact that we assumed f, to be independent of
the quantum number q and the fact that'

Z(el e"'la')(a'l V(—k) la) "&&.,

P(ale"'la')(a'le-*"la) ~B»,

and Eqs. (AS) and (A7). We then obtain from Eq. (29)
an expression for the operator

Z (al V(—k) la')f. (a,a',~)
a, a', 8

in terms of b, (a,a',0), and E&, (co) by using the fact that

P(el V(l) l
a')(a'l V(—k) l a) ~ h&,&„(32)

and Eq. (A7). This expression we substitute into Eq.
(28), wlllcll glvcs Rll equation fol E&,{rd) ill te1111s of the
initial values of the operators and E&, (co). We finally
obtain the result

i BA&,(0)-
Y(k,(o) E&,((o)= —c—'

A&, (0)+-
M

It is also related to the dielectric tensor e(k, ru) by the
relation'

Y(k,co) = e(k,a&)—
k'c'

(1—kk) .
03

Since we have limited ourselves to the stable case
where all of the poles arising from Y(k,co) ' lie in the
lower half of the ~ plane, we will assume that the corre-
sponding contributions represent transients that can be
ignored. In the unstable case, of course, all of these
poles cannot be ignored. Consequently, the remaining
singularities are those arising from the simple poles at
co=0(a,a'), which are easily integrated to give the
asymptotic expression for K~

E&,(t) —i g Q(a,a')-'Y+[k, n(a, a'}]-'
G, tx, 8I

The quantity Y(k,cv) plays an analogous role to that
played by the dielectric function in the electron gas. '
That is, the zeros of the determinant of Y correspond
to the propagating modes in the system. These coBec-
tive modes consist of photons, plasmons, and various
mixtures of transverse and longitudinal waves. The type
of mode possible depends upon the magnitude of k and
its orientation with respect to the magnetic field. %e
will not be concerned here with the actual details of
these modes. %e assume that the system is stable, i.e.,
f ls sllcll 'tllat Rll modes dccRy 111 tlInc.

We note that Y(k,a&) is rela, ted to the conductivity
tensor e(k, a&) by the relation"

k'c'
Y(k,a&) =1— (I—kk) —4~~ 'a(k ~). (34)

6)

(ale-'"'la')b, (a,a', 0)
+ke-14(k) g

a, e&,s &g—g(a,a')

(1—kk) (al V(—k) la')b, (a,a',0)
+4sw& '

e,a', 8 co—D(a,a')

k'c'
Y(k,~)= ll 1—

l

— (1—kk)
sP) aP

~ (al V(—k) la')b. (a,a', 0)e-'"& "&' (36)

Y~(k,cu) = Y(k, a)+i&t) . (37)

The quantity g is the positive infinitesimal. %e will
suppress the subscript + henceforth. In order to obtain

(33) Eq. (36) we have used Eq. (A1) to combine terms.
We can also obtain long-time expressions for p(k, t)

and A1(t). With the use of Eq. (30), we 6nd

fÃCOy
2

//gpss Q, A

(al V(—k) la')(a'l V(k) la)tI&„(a,a')

a)—Q(a,a')

p(k, t) k P Y[k,Q(a,a')j—' (el V(—k) la')

XQ( a')-ab, ( &, 0a)ae
'"& "&', (38)

III. ASYMPTOTIC OPERATORS

Since we are interested in the asymptotic (t +~)—
behavior of the electric field, we must obtain the inverse
Fourier transform and then let f become large. This
necessitates the study of the singularities in'the eo plane.
In particular, singularities can arise in two ways.
There are the simple poles associated with the factors
[ra —&(a,a')j ', and the determinant of Y(k,co) can
have zeros as a function of co.

~ (al V(—k) la')b, (a,a', 0)e '"& "&'. (39)

Another expression of interest is (he Fourier transform
of the transverse current operator

jr (k,t) = (1—kk) j(k, t) . (40)

'I J.J. Quinn and S. Rodriguez, Phys. Rev. 128, 2487 (|.962).



The asymptotic expression for this operator is obtained (38) and (39) into Eq. (25) and, then solve the resulting
by use of Eq. (28). We obtain equation subject to the self-consistency conditions that

jr(k, t) e(i —kk) g LQ'(n, n') —b'c'j
tX~(X yS

p(k, t) = Q b, (n,n', t),
O, C ~1

xQ(, ')-'YLk, Q(, ')3-'(
I V(-»I ')

jr(k, t)=e(l —kk) Q (nl V(—k) Ia')b. (n,n', t)
e,a', 8

The expressions for p(k, t) and A), (t) can now be used
to obtain the asymptotic expression for the operator
b. (n,n, t). We substitute the expressions given by Eqs. The result of this calculation is

COy

A), (t). (43)
%re

52M@

b, (n,e', t) b, (n,n', 0)e '"( ")'— h, (a,a') P (n'I V(k) In)

Yl k,Q(P,P')j—'
{i-kk) 2. . . , . (PI V(-k) le')b, (PÃ,0)e-"«e')'

e,e ."Q'(p, p') LQ(p,p') —Q(n,n')+t~]

Y-'Lk, Q {P,P')]
+b- (n'Ie" In)k P (PI V(—k) IP')b, (P,P',0)e-'«e&') . (44)

ee "Q{tt,~')LQ(tt, e')-Q( )+ ~j

We can now calculate asymptotic (t -+~ ) expressions
for all of the correlation functions of interest. Before
we proceed to the calculation of the kinetic equation,
it is convenient and interesting to consider certain auto-
correlation functions. With the use of Eqs. (36) and
(38), we obtain for the density autocorrelation function
and the electric-6eld autocorrelation functions the
expl esslons

= 2 lk Yl k,Q(n,n')1-'(nl V(-k)ln')I'
n, a, tt

XQ(au')-'f {I—f ~ )e-'"( ")('-") (45)

(E),(t)E ), (t') )
Q-'(u, a')YLk,Q(n, n')g ' (n I V(—k) I

a')
Cq(X )8

XY*[kQ(ne')j '(nlV( —k)la')*

(I f, )e
—i (n(,)a') (i r') (46)—

In obtaining these expressions, we have used the identity

(b.(n n' 0)b"(PP 0)}=~-.e ~- .eb ."f-*(&—f-")
+~, ~e.ef fe"+g- {na"P&P'8) (4&)

The quantity g„.{n,a'; P,P',0) is the initial two-particle
correlation function that will be neglected.

If the propagation vector k is parallel to the external
magnetic 6eld, it is easy to show that

(p(kt)p( —«')&= E I( le "'I )Dl.kQ( )3 'I'

)(f (I f, )e
—iQ(n, u') (i—v) (48)

where D(k, s&) is the longitudinal dielectric constant

mes„' I(nle-'"'In')I'6 (nn')
D(k,cv) = I+ (49)

ANk' ~.~'.~ (e—Q(n, (t')

Equation (48) is the result obtained by Ron, ' who
neglected the transverse 6eMS.

IV. KINETIC EQUATION

In order to obtain a kinetic equation ere must obtain
asymptotic expressions for. the correlation functions
(b, (n, n', t)A), (t)) and (b, (n, n', t)p(k, t)). This is done by
use of the expressions for p(k, t), A), (t), and b, (a,a', t)
given by Eqs. (38), (39), and (44), respectively, and by
the use of Kq. (47). Again, we neglect the effect of
initial correlations, which are assumed to be taken out
by phase mixing. After some combining of terms and
the use of the identity given in Eq. (AI), we obtain

8f, 8me'
ZI ( I V(-k)l ') YLk,Q( ')1-'("IV(k)l )Q( ')-'f-{l-f-.)

8f AV

tÃM~ fe (&-fe")
~.(n,n') 2 l(n'I V(k) ln) YLk,Q()P 0')j (ttl V(—k) IP')I', , , (5o)

Mt Q (tt,t ')LQ(tt, ~')-Q(.,")+'~3
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The above expression can be further simplified by using the fact that

(al V(—k) la') Y*(»~) '(a'I V(k) la)=(al V(—k) la') Y*(k~) 'L(a'I V(k) la) Y(k~) ' Y(k~)] (5&)

We then 6nd that

1
ImL(nl V(—k) ln') Y*(k,a) '(n'I V(k) ln)]=—(nl V( k—) ln') Y*(k,&o)

'
2i

((n'I V(k) la) Y '(k,~) K(k,~)—Y'(k,~)]), (52)

where Y (k,&u) is the Hermitian conjugate of Y(k,~). With the use of the formula

we obtain
X—ig

1
=~—+i~b(r),

X
(53)

1 %81M &—~(k,co)—Yt(k,a))]=— Q (al V(—k) ln')(n'I V(k) In)A, (n,n')bl co—Q(n, n')].
2i ÃA~'

(54)

If Eq. (54) is substituted into Eq. (50), we obtain for the kinetic equation

8f, 2s-@Pa»2
Zl(n'I V(k)la) YLk Q(aa')] '(O'I V(—k) IP)l'Q(nn') 'Lf "f~ "(&—f .)(~—f~")

8t O'S'
f-*fp"(—& f-")(~ —fp" )]bL—~-+&p E- &—s ]. —

It is quite simple to show that the above equation leads
to an H theorem. The form of Eq. (55) is similar to the
form of the quantum-mechanical Balescu-Lenard
equation.

We then assume D(k, ar) ' to be dominated by its
plasmon poles and write"

D(k,cv) = (2/~, ) (~ ~„+iy„),—
—(2/COg) ((4+6)k+1'rp), (d — Mk

(57)

"H. Suhl and N. R. Werthamer, Phys. Rev. 122, 359 (1961}."G. Cirmi, in Lectlres iw Theoretical Physics, edited bv W. E.

V. QUASIPHOTONS AND PLASMONS

The zeros of the determinant of Y(kp&) correspond
to the collective modes in the system. Several authors
have obtained approximate expressions for the opera-
tors corresponding to the collective modes for various
systems. """The presence of the quantity Y(k,&o)

'
in the asymptotic expressions for Eq(t), p~(t), and Ak(t)

I Eqs. (36), (38), (39)]suggests that collective operators
can be obtained by considering the contributions from
the collective poles in detLY(k, co) '].

We will exhibit the results of this procedure for a few
special cases that are easy to calculate.

We begin by considering the case where k is parallel
to the external field. It is then easy to show that

p(k, t)= P (nle '"'Ia')DLk, Q(na')] '

Xb ( a' n)e0—*'"& "&' (56)

sM fat
COIt;

p, (k, t) =—P
&,n, s Q(a n ) Q)gj+$ ry

(a I
e-'~'In')b, (n,a', 0) . (59)

Q(n, n')+~I, +iy~

We can then define a plasmon annihilation operator
Bg as

(a I
e-'"'I a')b, (n,n' 0)e-*'"&'

& (~)= Z, . (60)
Q(n, n') —a p+zyg

The normalizing factor nj, is determined by the require-
ment that

L&.,&"]ap~= &,

where L, ]apg means that we calculate the commuta-
tor within the RPA. We obtain

aI, (mes 'cop/——Nhk')'I', (62)

Brittin (University of Colorado Press, Boulder, Colorado, 1965},
Vol. VII C, p. 269.

'4 R. K. Nesbet, J. Math. Phys. 6, 621 (1965}.
"W. R. Chappell, %. E. Brittin, and S. J. Glass, Nuovo

Cimento 38, 1186 (1965}.
"H. W. Wyld, Jr. and D. Pines, Phys. Rev. 127, 1851 (1962}.

where A&I, is the plasmon frequency and

y~= (&o~/2) ImD(k, orq) .

We have assumed that y~/co~((1.
We then obtain for the collective part of p(k, i) the

expression
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where we have used the approximation

=zr8 (Gd td k) .
(~—&1) +Pk

(63)

commutation relations

[A kl)A k'1]RPA 0
p

[AklyAk'1 ]RPA bk, k' ~

(71)

X Vii[k,Q(n, n')] 'b, (n,n', 0)e—'"l "". (67)

If we approximate V, l ', as shown in Eq. (65), we obtain

v»= —e(~/~. 'V)'" 2 e» (nl V(—k) ln')
u, rx', s

e
—iozIct e'cepjc t

Xb, (n,n', 0)
Q(n, n ) 07k+z'rk—Q(n, n )+cok+z'rk

(68)

In the case of a free field the relation between q»
and the creation and annihilation operators is

The form obtained here for the plasmon operator is
similar to that obtained by other authors for the quan-
tum electron gas, and for the electron-phonon gas." '
The usual way of introducing these collective mode
operators involves mak. ing a guess of their general form.
In the procedure used here, the collective operators
appear in a natural manner as the contributions arising
from the resonances corresponding to the collective
modes.

We can also obtain operators corresponding to trans-
verse photons. For simplicity, we consider those wave
vectors such that k,«k&. In this case there is one
transverse direction that is uncoupled to the other
directions. "I.et us call this the ) =1 polarization and
denote its direction by the unit vector e». We then have

[Y(k,~)
—']1,——&,1(k,~)—'. (64)

Furthermore, if the transverse mode is long-lived, yk/leak

&&1, we have for kc))co~

Viz�

(k,(0)= (2/Mk) (01 Mk+z'rk) — (0 zek

(65)= —(2/CV ) (10+(a +Zonk), 10= —10k

where

7I SlM~2

vk= — —& e» (nl V(—k) ln') e» (n'I V(k) ln)
2EL)I, a, np, s

Xa, (n,n')b[(o, —Q(n,n')]. (66)

Let us consider the asymptotic operator

e» qk ———(4zr/V)'"e P ekl'(nl V( k)In)Q(nn)
rx, cK, SI

zzkl
——(eP""k—1)

—'. (73)

We can obtain an explicit expression for the con-
tribution of these photons to the kinetic equation given
by Eq. (55). The sum over the wave vector is first
broken into a part such that k,&&k& plus the remainder.
We then separate out that part due to the e~~ direction.
We have for this part the expression

af f2zrzzz 10& )
IE Z

at, „„(fPE' t - pp',
x 2 l(n'I v(k) ln)'»I'l(p'I v(—k) I

p). ekll
ak

k.«ky

XQ(n, n') 'I F11[k,Q(n, n')]I '

x[f. ,fp, (1—f.,)(1—fp")
—f..fp" (1—f-")(1—fp ")]

Xb[E.+&p &. &p ]. (74)— —

With the use of Eq. (65) we can write

7l COIs ZIMk )
I vll(k &) I

a(10 ~k)+ lb(~+101) ~ (75)
4Vk&

If we use the above expression in Eq. (56), the ex-

pression for zzkl given in Eq. (72), and the following
expression for 1+zzkl

mme„ 2

1+zzki ——(A kiA ki') =
2AyI, S~p

x 2 le» (p'I v(k)lp)l'fp (1—fp")

The average number of dressed photons with mo-
mentum k is given by [with the use of Eq. (63)]

Nkl (A kl A kl)

gfÃM p
2

2 I
e» (n'I V(k) ln) I'f-"(1—f-)

2AS+tleMIs rx ~x

X5[a k
—Q (n,n')]. (72)

If the electrons are described by the Fermi-Dirac dis-
tribution, then

P, P', S
ski = (k/2kc)' '(akl+tz kl') . (69) xbi, —Q(p,p')], (76)

ÃN'GO@
2

P P I
ekl' (n I

v(k) I n) I

Bt pi, hÃOrp2

X{Lf-"(1—f-) (1+~-»)—f-(1—f-")I»)
Xb[(o,—Q(n, n')]+ [f., (1—f;.) (1+zzki)

—f-"(1—f-)zz-»]b[~k+Q(n n')]l (77)

rx 1 rx ) s

b, (, ',0)e'""

(ok —Q(n, n')+iyk

With the use of the RPA and Eq. (63) we obtain the

Thus we define the dressed photon or quasiphoton we obtain
annihilation operator as

Akl=e(2zr/kv~k)'" p ekl'(n'I v(l) ln')



The above equation has a familiar form. It simply
dcscr1bcs tile rate of cllallgc 111 f, as being duc to
simple absorption-emission processes. The effective
transition rate for such a process involving a dressed
pllotoll wltll nlollMIltunl Ak ls

~CO@
I CI,I.(n'I v(k) in) I'B(oro—E;+E.). (78)

This differs from the "Golden Rule" answer by having
kc replaced by so~.

It is clear that the same procedure can be used for
more complicated collective modes. Clearly, we can
never obtain terms that describe the scattering of
photons by electrons since we neglected the Ao terms
in this paper.

VL CONCLUSION

In this paper we have considered a quantum electron
gas including radiation in the presence of a uniform
magnetic 6eld. With the use of the RPA and the
Bogoliubov (adiabatic) assumption we were able to
obtain long-time expressions for certain electron and
6eld operators. These expressions were then used to
CRlcUlRtc Rutocorrclatlon functions Rnd to obtain R

kinetic equation. The kinetic equation has the form of
a generalized Balescu-Lenard equation. In the time
required for this kinetic equation to become valid the
photons have become dressed by the electrons, and the
photon densities are functionals of the electron dis-
tribution function. This is similar to the results of
Rostoker, Aamodt, and Eldridge. '~

The asymptotic operators contain the inverse of the
matrix that characterizes the collective modes of the
system. If the resonances corresponding to the collective
modes are very sharp, these operators can be separated
into a part due to the collective modes and a part due
to the individual particie motion (a similar breakup has
been discussed by Carmi"). It is then possible to de6ne
the creation and annihilation operators for the collective
modes. This has been done for two special cases that
give rise to a longitudinal mode corresponding to the
plasmons and a transverse mode corresponding to the
dressed photon.

ACKNOWLEDGMENT

The author wishes to thank Professor Wesley E.
Brittin for many helpful discussions.

APPENDIK

1 l'I e
ao= -V—-Ao i,

2«N i c ) '

A'k'

+ (ni e'"'ln')(n'i e-'"'in) jQ(nn') = . (A2)

If we use Eq. (A1) we then obtain

2 [(nle *"'ln')k (n'I ~(k) ln)

PPk'—(n'I e '"'ln) k (n I V(k) ln')3=

The use of Eq. (A1) results in the following relation:

(nle "'ln')k (n'I ~(k) ln)~ (nn')

a«a «8 or Q(n, n'—)

i (ni e-'"'in') I'4, (n,n')
(A4)

or —Q(n, n')

With the use of Eqs. (A1) and (A3) we can show that

k (nl V(—k)in )k '(n'I V(k)ln)h, (n, n')

a,a', e or —Q(n, n')

I( l.-" I
')I ~.( ') ~ivf

=or' P — + . (AS)
N, n~, r or Q(n,n')— tg

If we use the explicit form for the wave functions
trrr (x) [Eq. (6)], it is easy to show that

( l'I e ) 8
i NPq -V--Ao ««PIf I

=AP—.
i c

(A6)

We can then use the above equation and Eqs. (A1)
and (A6) to show that

k (nl ~(k)in')(n'I 7(—k) ln)~. (nn')

a„a', a or —Q(n, n')

(nle'"'ln')(n'I V(—k) in)h, (n,n')

one obtains the relation

Q(n,n')(nle"'ln') = —k (nl ~(k) ln') (A1)

If we use the identity
k'k'

[e-r'rr ~ r [eirr r + ]]—
we obtain

n e—*"'* 0.' 0.' e'"' 0.

The purpose of this Appendix is to list some interest-
1ng and Useful identities. From the ldcntlty

or —Q(n, n')a,a «8t

IIIEk
(A7)

l«k (l«e r«k)[e'"' &o]= ——e'"'I -v —-&o+—I,«1«ki c 2 I Some of the mathematical properties of the matrix
element (nie'"'in'), including the classical limit, are

(N.Y.) 31, 243 (1965). listed in Ref. j.1.




