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The Measurement of Light in Natural Waters 

Radiometric Concepts and Optical. Properties 

Rudolph W. Preisendorfer and John E. Tyler 

Soripps In s t i t u t ion of Oceanography, University of California 

La J o l l a , California 

ABSTRACT 

The object of this note is two-fold: (i) To define and 

discuss those recently developed concepts of geometrical radio-

metry which are of greatest use in the experimental study of the 

light field in natural waters, (ii) To present a systematic 

development and discussion of the inherent and apparent optical 

properties of natural waters which are used in modem hydrologi

cal optics. 

The most useful radiometric concept is that of radiance, A 

complete documentation of the light field in a natural hydrosol 

by means of radiance distribution measurements supplies, in prin

ciple, all the radiometric information required to solve every 

practical problem centering on questions of image and flux trans

fer in natural waters. Where the determination of radiance 

distributions is impossible or unfeasible, the use of an alternate 

set of radiometric concepts is proposed. This set consists of 
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four irradiance quantities which require less effort to obtain than 

the radiance distributions. They supply enough information about 

the depth dependence of the light field, its local angular struc

ture and the overall flux transmitting and reflecting properties 

of the medium to allow many practical problems to be solved with 

satisfactory precision, and completeness. 

This basic quartet of irradiances gives rise, by means of 

certain well defined operations, to a set of quantities, each 

of which possesses strikingly regular and reproducible features 

even though each depends in part on the ephemeral submarine light 

field. These regularities allow the quantities to be given the 

status of optical properties and, as such, they considerably 

simplify the classification of the optical structure of natural 

hj'drosols. These apparent optical properties play key roles in 

the engineering solutions of image and flux transfer problems and 

provide powerful empirical checks of theoretical models of the 

light field in natural hydrosols. 
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INTRODUCTION 

In the field of underwater light measurements early initia

tive belongs largely to the biologists, who, with little if 

any help from photometrists devised instrumentation and made 

measurements to discover the main features of the submarine light 

field and to correlate biological activity with the light that 

was measured. 

During the period 1935 to 1945 many types of measurements 

were made in lake and ocean waters. Unfortunately the instruments 

used by different workers varied somewhat in important respects 

and as a result the light measurements cannot be directly inter-

compared. The measurements are of value chiefly to the experi

menter who obtained them, and cannot be used for general mathema

tical or physical applications. 

As a result it has become clear that standardization of 

measuring technique and conformity to radiometric concepts is 

desirable. 

The purpose of this paper is to illustrate some recently 

developed applications of radiometric concepts to light measure

ments in the underwater light field and to define the important 

optical properties of natural waters associated with image and 

flux transmission through water. Only monochromatic light will 

be considered at this time; this will provide the basis for the 
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discussion of heterchromatic light at a later time. The radio

metric terminology used here follows where possible, and 

extends where necessary, the terminology recommended by the 

Committee on Colorimetry (1944a, 1944b). 
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30ME GENERAL OBSERVATIONS OM ' .OEk'^rER LIGHT-MELDS 

Various a spec t s of the submarine ii.tr.ht f i e l d have bt-on 

rioted and desc r ibed in the l i t e r a t u r e . M. Minnaert (1940) 

d e s c r i b e s the " l a r g e d i s c of l i g h t above your hwad" (sometimes 

c a l l e d t h e "manhole") , which i s the untranee p o r t for a l l d i r e c t 

sun and s k y l i g h t reaching a po in t below the s u r f a c e . For f l a t 

calm water , t h i s man-hole i s determined by S n e l l ' s law: 

n sin© = o' bio e ' , a ) 

where f\ and f) are the refractive indices of .iir and water 

respectively, 9 and & are the angles that the ray makes 

with the normal to the air-water surface in air and in water, 

respectively. If the index of refraction of water is taken as 
4 • , 

3 , then when 0 = 90°, sin 9 = .75 and Q = 48.6°, which 

is the angle at which one would expect to see the horizon through 

a flat calm surface from an underwater vantage point. Actually, 

little if any light will get through the interface at this 

specific angle because of the high reflectance predicted by 

o 

F r e s n e l ' s law f o r 0 = 90 . ^s the upward looking l i n e of 

sight, i s swept from 6 = O ° t o 0 = 4 8 . 6 ° , one can observe 

the g radua l , s u c c e s s i v e l y g r e a t e r compression of o b j e c t s toward 

the s k y l i n e . On days when the sur face i s windblown, one can 

http://ii.tr.ht
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observe within and around the manhole, the glitter pattern pro

duced by the sun on the water. This glitter pattern has been 

described for example by Cox and Munk (1954). Beyond the edge 

of the man-hole, at angles 6 greater than 48.6 and less than 

o 
90 , one can see the totally reflected and upside down images 

of fish as they swim by, and the reflected back-scattered light 

welling up from below (Tyler, 1958a). 

If, in horizontally stratified water, the point of obser

vation is moved horizontally, no essential difference in the light 

field will be observed at the new observation point because 

over a substantially infinite extent every area of the surface 

above is being, illuminated by the same sun and sky, and in the 

same way. 

As one descends very slightly from the surface, the manhole, 

which in principle continues to subtend the half angle o = 48.6 , 

loses its relatively sharp edges. If there is a clear sunny sky, 

the sun's image becomes progressively dimmer while scattered light 

quickly fills in the darker areas, especially in relatively turbid 

water, softening the initially high contrast of the manhole, and 

partially replacing the sharply collimated light of the sun with 

a brilliant field of diffuse, less directional light. At these 

very shallow depths the decrease in the sun's share of the light 

seems more than compensated by this spontaneous flood of scattered 

light. Descending further, the amount of diffuse light begins 

to fall off sharply, and the light frem the sun even more quickly. 
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S t i l l lower, at very great depths, the d i rec t influence of the 

sun and sky l igh t seem a l l but l o s t , the diffuse f i e ld appear? 

to s e t t l e down to a fixed angular pat tern whose only change with 

further increase of depth i s an overal l diminuation in brightness 

at an unmistakably exponential r a t e . 
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CONCEPTS USED IN THE MEASUREMENT OF LIGHT 

All the radiometric concepts discussed below, which form 

the scientific basis for the- phenomenological description of 

light, are based on the single physical idea of radiant flux; 

that is, the idea of radiant energy in motion. The basic distinc-

,.. tion between them arises from the appropriate geometrical channel

ing of the collected or emitted radiant flux. 

Radiant Flux 

Radiant flux is the time rate of change of radiant energy. 

The term1,- "time rate" may in general be interpreted two ways: 

The first interpretation is associated with a region of space 

which is producing radiant energy; its time rate of production of 

radiant energy may be described as its radiant flux output. The 

second interpretation conceives of radiant energy per unit time 

crossing a given surface and is described as the radiant flux 

across the surface (in the appropriate direction). The present 

paper will limit itself to the second interpretation. 

It is usually sufficient to have an operational definition 

of radiant flux by means of some instrument which can sense and 

record incident radiant energy. The basic elements of such an 

instrument (depicted schematically in Figure- la) art a small 

flat flux collector of size A, and a recorder. When radiant flux 
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falls on the. collector, the recorder reads a response f-i . 

The radiometrist takes care to make the response R directly 

relatable in some known way to the amount P of radiant flux 

actually incident on A . This means, in particular, thnt he 

tries to make the response R to a given amount of flux P 

independent of the direction of incidence of P . For example, 

if there are two streams of radiant energy on tht collecting sur

face, one incident perpendicularly, say, and the ether at some 

fixed oblique angle, as shown in Figure la, and each stream has 

the same radiant flux P (as determined e.g., by the electro -

magnetic picture of light) then each stream must give rise to 

the; same response 'A.^on' the recorder. When the collecting 

surface satisfies this requirement, it is referred to as a 

Lambert collector. In what follows we- will always assume that 

the radiant flux determinations have been made using a Lambert 

collecting surface. With these remarks in mind, we may write, 

in symbolic form, tht. operational definition of radiant flux: 

where ^ is thf: known response characteristic of the instrument 

which relates R to the incident radiant flux P , and deter

mines the units of p , In practice the recorder is calibrated 

to read p directly. The dimensions of P are: energy per 

unit time. In the m.k.s. system the units of P arc in terms 

of watts. 
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Irradiance and Radiant Emittance 

In our present in te rpre ta t ion of radiant flux as the flow 

of radiant energy across a surface, we consider separately two 

possible di rect ions of flow. I f the surface encloses a region 

of space within which radiant energy i s generated, and t h i s 

energy flows outward across the surface, i t i s useful to specify 

the outward flow across each uni t area of the surface.. The con

cept t ha t supplies such information i s called radiant emittance. 

I t i s defined as the radiant flux emitted per uni t area at a 

given point of the surface, and i s denoted by the symbol W . 

To obtain W operat ional ly, i t suffices in pr inc ip le to place 

the col lect ing surface of the flux-recorder over the area of 

i n t e r e s t on the emitting surface, and to observe the resu l tan t 

reading P . Then, by def in i t ion , 

W = £ • «) 

More sophisticated means of obtaining W are implicit in the 

discussions below. Evidently^, the., dimensions of W are: 

radiant flux per unit area'; and its units: watts per square 

meter. 

To complement the idea of radiant flux away from a surface, 

we have the notion of radiant flux onto a surface; more specifi

cally, the amount of radiant flux incident per unit area at a 
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given point of <•: surface-. The concept used fo r t h i s purpost-

i s c a l l e d i r r a d i a n c e . Dimensionally and u n i t - w i s e , i r r a d i a n c e 

ind r a d i a n t emi t tance may be cons idered i den t i c a l . , but they art'; 

hold concep tua l ly d i s t i n c t i n t h e sense t h a t i r r a d i a n c e r e f e r s 

t o i nc iden t f lux on a s u r f a c e , whi le r a d i a n t emi t tance r e f e r s 

t o f lux emit ted, from -i s u r f a c e . The symbol for i r r ad i ance i s H , 
1 

•end i t s o p e r a t i o n a l d e f i n i t i o n i s : 

• P 
M - - v - • (4) 

/-. 

Radiance 

• In the preceding d iscuss ion of i r r a d i a n c e , t h e energy flow 

uras allowed t o a r r i v e a t . a .poin t of -r> surface- from n i l . d i r c c - . • 

t i o n s wi th in -i hemisphere defined by :••. p lane tangent to the- sur 

face a t the p o i n t . Huite o f t en , t he i n d i v i d u a l amounts of f lux 

••rr iving from each of these d i r e c t i o n s i s of more- importance 

than t h e i r t o t a l . In order to .measure the flow a r r i v i n g from -',, 

. • a r t i c u l a r d i r e c t i o n , some kind of "b l inde r " must be put. on t h e 

Lambert c o l l e c t o r . The b l i n d e r se rves to block off th t incoming 

Plow of ' r ad ian t energy in r-lT but a small s o l i d angle of d i r e c 

t ions ' . / flux c o l l e c t o r with a se t of b l i n d e r s i s schemat ica l ly 

dep ic t ed in Figure l b . This device i s convent ional ly , r e f e r r e d to 

,s :> Gershun tube (or radiance tube) (Gershun, 1939). In p r a c t i c e , -



SIO Ref. 58-69 - 12 -

the col lec t ing area i s c i rcu la r , and the bl inder i s in the form 

of a long narrow cylinder containing baffles whose surfaces 

have been t rea ted with matte black pa in t . The Gershun tube i s 

constructed so tha t the f l a t c i rcu la r col lect ing area at the 

base of the cylinder i s centered on and perpendicular to the axis 

of the cylinder. 

Consider a Gershun tube whose associated sol id angle i s Xl/ . 

That i s , each point of the col lect ing surface of area A has 

access to the radiometric environment through a solid angle of 

magnitude XL . Of course there w i l l exis t in any material 

Gershun tube a s l igh t var ia t ion of solid angle opening from point 

to point on the col lec t ing surface. However, i f the r a t io of the 

length of the tube to i t s radius i s 10 to 1 or greater , t h i s 

var ia t ion i s negl igible . We w i l l assume tha t a l l Gershun tubes 

used in the arguments below have t h i s property. Now point the 

Gershun tube in a given direct ion and suppose the reading of the 

flux-recorder i s P . Then the Gershun tube determines a radiance 

N for t h i s pa r t i cu la r d i rec t ion , whose magnitude i s defined 

by the ru l e : 

P 
N ^ A^a ' (5) 
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From Eq. (4) , P/A — H , so that the radiance may .-ilso be 

characterized by the formula: 

-Lit 

In pract ice Gershun tubes are usually designed so that th; 

flux recorder reads N di.rectly, the quant i t i es A and Xl< 

being fixed charac te r i s t i cs of the assembly. From the def in i 

t ion of radiance, Eq. (5) , we see tha t i t has the dimensions: 

radiant flux per uni t area per un i t solid angle. I t s uni ts a re : 

watts per square meter per s teradian. 

In the discussion of irradiance and radiant emittance these 

concepts of radiant flux across a surface were associated with 

par t icu la r d i rect ions of flow. A similar useful d i s t inc t ion 

csn be made with radiance. Consider Figure 2a. Radiant flux 

i s passing perpendicularly across a surface 5 -t point >-*-

on t> . The flow i s constrained within a solid .angle of mag

nitude XL (the solid angle of some Gershun tube.) I f the 

tube were oriented so as to col lect the incoming flux, then an 

irradiance H would be induced on the Gershun tube ' s co l lec t ing 

plate , and the radiance 
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would be reported for t h i s incoming pencil of energy. However, 

t h i s sane bundle of radiant energy could be thought of as 

giving r i se to a radiant emittance W of S at fu . The 

magnitude of the sol id angle in which the emitted flux i s con

strained to flow i s s t i l l XL • Hence the radiance may also 

be characterized by: 

., w N= It-

To distinguish between these two ways of looking at radiance, 

we call the radiance as given in (6), the field radiance, and 

the radiance given in (7) as the surface radiance. Field 

radiance is of greatest use in experimental work in conjunction 

with the use of Gershun tubes, and surface radiance is used to 

2 
greatest advantage in theoretical work. 

Scalar and Spherical Irradiance 

Spherical and scalar irradiance are the last two of the 

major radiometric concepts to be discussed here. Scalar 

irradiance gives a quantitative measure of the total radiant 

flux arriving at a point from all directions about the point. 

Scalar irradiance, in essence, is a measure of the amount of 

radiant energy per unit volume of space at a given point; the 

individual amount coming in from each direction about the point 

is unimportant, only the total is of interest. 
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Scalar irradiance, (as defined in the analytic relations 

section below), can be determined if the field radiance is 

known for all directions around the point of interest. Such a 

determination, however, involves a somewhat tedious numerical 

procedure. A spherical Lambert collector, (Figure lc) provides 

a simple experimental means of obtaining scalar irradiance 

directly. Measurements with a spherical collector systematically 

differ from theoretically computed scalar irradiance values 

by a constant factor of 4. (See section on analytical relations, 

below). All other things being equal, the spherical collector 

readings are less by a factor of 4 than the scalar irradiance 

values. Since this difference is known and invariable, a 

spherical collector can be used to obtain both scalar and spheri

cal irradiance. 

The distinction between scalar and spherical irradiance can 

be stated as follows: scalar irradiance arises naturally in 

theoretical analyses and has a simple analytic definition in 

terms of the angular distribution of field radiance about a point 

in space; spherical irradiance is the associated quantitv mea

sured by a small spherical Lambert collecting surface. 

The operational definition of spherical irradiance is as 

follows: consider a small spherical surface of radius h . 

Let the surface be a Lambert collector (i.e., each tiny area 

on the surface acts like a plane Lambert collector). Let P 
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bo the recorded amount of radiant f lux incident on the sphere. 

Then the spherical irradiance h^n associated with t h i s 

flux i s defined as : 

P 
^ i r ^ 4 ^ * ( B ) 

Evidently the dimensions of spherical irradiance are: radiant 

flux per unit area; its units are: watts per square meter. 
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SOME THEOREMS OF GEOMETRIC AL RADIOMETRY 

In t h i s sec t ion a few key theorems i n geomet r i ca l r a d i o -

metry, w i l l be d i s c u s s e d . The d i s c u s s i o n by no means exhaus ts 

a l l of the theorems of t h i s d i s c i p l i n e , bu t r a t h e r p r e s e n t s 

those theorems which w i l l be of g r e a t e s t use to persons engaged 

in o p t i c a l oceanography. 

Cosine Law 

.Imagine a small arbitrarily shaped plane area of magnitude 

r\ in a uniform stream of radiant energy (Figure 3a). Suppose 

that when the area is broadside to the stream, so that its 

normal makes a zero angle with the direction of the stream, 

the amount of flux across the surface is rCO) . Suppose, 

in general, that when the normal to the area makes an angle B 

with the stream, the amount of flux across the area is P(8) 

We may then ask: what is the relation between R o ) and P(©/ ? 

It seems reasonable that the amount would be directly proportional 

to the projected area A(^) that the surface presents to 

the stream of energy. That is, if the projected area were, for 

example, just one half A , the amount of intercepted flux is 

just one half P(O) , and so on. In general, we then would 

expect that 

PtB) A19) 
- j (9 

P(O) A(O) 
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where, of course, A(O) ~ A • Hence, we may express P ( 9 ) 

as : 

P(e) = P(o) - — • (1 Q) 

So far we have used physical reasoning: no amount of pure mathe

matics could ever give a relation of the kind summarized in 

Eq. (9). Relation (9) is?in the last analysis, an experimental 

fact. However, the next step is purely mathematical: the relation 

between A(B) and A is given by a theorem in geometry 

which states: 

A(©) = A c o s s . ( 1 1 ) 

Hence the answer to the question posed above may be writ ten in 

the form: 

9(6) =" P(O) COS9 . (12) 

The principal cosine law in geometricai\radiometry is the statement 

of the dependence of irradiance on Q . If H O ) is the 

irradiance on the surface of Figure 2a when its normal makes an 

angle Q with the stream of radiant energy, then by definition, 

P(t>) (lo) 
H(e) « -7— ' U 3 ) 
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By subs t i tu t ing the value of P ( 8 ) from Eq. (12) into t h i s 

expression, we have the desired cosine law for i r radiance: 

H(S)=: H(O) COS e (14) 

where, by def in i t ion , 

HO) 
H(C» - A 

(15) 

This cosine relation for irradiance has been derived in detail 

in order to emphasize that it is, in the last analysis, an 

experimental relation, or a relation which incorporates assumptions 

based on experimental fact. 

Cosine Law for Surface Radiance 

In t^is section we will derive a useful alternate expression 

for surface radiance. The derivation will be of particular value 

in the discussion of the volume scattering function in a later 

section. In the preceding section entitled "Radiancej1 the notion 

of surface radiance was introduced by considering a narrow pencil 

of radiation leaving a surface in the direction perpendicular to 

the surface. Of course, pencils of radiation can be emitted from 
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surfaces at arbitral angles O with respect to the surface 

normals. Such a situation is depicted in Figure 2b. 

Consider a small region of area A on the surface Q which 

is emitting an amount P(0) of radiant flux. In particular 

suppose that at each point yp of <$ there is a narrow pencil of 

radiant energy emitted from xx. in the direction of the arrow, 

and that the radiant emittance of the surface into each of these 

directions has some fixed magnitude W ( S ) . Therefore PCS) = 

W O ) A. Let each pencil, which is inclined at an angle Q with 

the normal to the surface, have a solid angle opening of Xlc . 

Now project the area /\ on a plane perpendicular to this common 

direction of the pencils and let the projection have area ACQ) . 

We suppose that A is sufficiently small so that the following 

assumption holds: All the radiant flux that leaves A crosses A(&) 

Then by definition of surface radiance in the direction Q , 

we have: (See Eq. (5)) 

P(©) 
N(6) = A(9)AL 

From the geometric fact summarized in Eq. ( l l ) , t h i s radiance 

expression may then be writ ten in the following equivalent form: 

P(0) 
NO) = T T ; (l6) 

A-^lL cose 

which is the desired cosine law for surface radiance. 
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Furthermore, since 

w(e,.= 22? , 
A 

we may wri te 

W(6) 
N{e) „ . - - — • (17 ) 

It should be noted that no 3uch alternate expressions exist for 

field radiance, since the latter is by definition associated with 

radiant flux which crosses the collecting surface in the direction 

of its normal. There is no need of complicating the notion of 

field radiance by allowing flux to be incident in any other direction 

on the collecting surface. It is this fact that makes the notion 

of field radiance conceptually simpler than surface radiance and of 

key importance in experimental work. For example, all the infor

mation about the structure of the light fields in natural hydrosols 

can be based on the systematic use of field radiance: it is a 

well-defined quantity obtained by direct and systematic use of a 

Gershun tube. 
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The General Relation Between Surface Radiance and Field Radi"nee 

The dual relation between surface radi.'met; and field radiance 

at a point has already been discussed (see section en "Radiance," 

and Figure 2 (a)). However, an experimenter working with a 

Gershun tube in a natural hydrosol is confronted with the following 

question: When the line of sight of a Gershun tube is directed 

through water—'-which scatters and absorbs radiant energy—how doe? 

the field radiance N^. of a surface 5 of radiance |\|0 depend 

on the distance h at which O is viewed? 

This question can be resolved into the following two prob

lems: (i) How much flux is transmitted directly from S to (3 

after suffering possible losses by tb.e actions of scattering and 

absorption? (ii) How much flux is added to the signal arriving 

at G- , which has been contributed by the scattering of ambient 

light into the intervening space between S Rnd Gr ? We 

begin by considering in detail the first of these questions. 

Suppose a Gershun tube Gr (Figure 4a) ts directed at some-

surface 3 , a distance (•• from &• . Suppose further that the 

field of view of the Gershun tube is of sizp X L 0 and that its 

collecting area is of size A 0 . Let Ny be the field radiance 

induced by the flux transmitted directly from S to Gr 

across the distance Jr . At this distance the field of view of 

the Gershun tube determines a region on S whose projected area 
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normal to the l ino of s ight i s designated by /\ y (Figure 4b) . 

Suppose that the f ie ld of view of the tube i s suff ic ient ly small 

so that at a l l points of Af- the surface radiance of 5 i s 

e ssen t ia l ly |\J0
 i n the direct ion of the l ine of s igh t . Further

more, at e ach point of A r l e t N 0 be e s sen t i a l ly uniform over 

the sol id angle \T\j j. subtended by the col lec t ing p la te of 

the Gershun tube. Final ly, l e t J~> be the radiant flux emitted 

by Ay in to the solid angles vQ, > and l e t Ph be tha t part 

of P0 t ransmitted from S to & . Then, we have, by def in i 

t ion , 

P, ~ N,Ao Sho 
(18) 

Po = No Ay s£hy. • 

But now observe the following two facts: . F i r s t , the geometrical 

fact that 

A o J l o - . A n Q ' * - - —p~ > (19) 

and second, the physical fact that 

Ph - T, Po . 
(20) 
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Here ~["y i s the factor (the beam transmittance) which determines 

how much of /~> gets through to ( 3 . I t takes in to account 

the losses suffered by f̂  due to scat ter ing and absorption d l 

along i t s t rave ls from 5 to G . ~]~j. i s ac tua l ly of the form: 

(21) 
_ cxlh 

where OL is the volume attenuation coefficient to be- defined 

in detail below. From statements (18), (19), and (20), we have 

3 
the conclusion: 

By viewing the. preceding arguments in a suitably general 

way, we can immediately solve the socond problem (ii). Consider S 

as the hypothetical surface of a small volume V on the pat.h of 

sight at a distance h-If from (S , where h may take any 

magnitude between O and Y~ (Figure 4c). Furthermore, the 

surface radiance |\|.i, of O is now defined as the radiance generated 

by scattering of ambient flux per unit length of path into the 

direction of & . (The exact nature of [sjjj will be determined 

in the section on the volume scattering function). It follows 

immediately from (22) that the amount of radiance transmitted 

from V to G is: 
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T V - H ' N * c L h ' , (23) 

Clearly, the t o t a l amount of radiance generated in t h i s way and 

received at (j i s obtained by summing the above contributions 

over a l l distances h between Q and V '• i . e . * 

I * - ( T M J u ' (24) < - Tf-r N+ ai-', 

. * 
where N ^ is called the path radiance. Thus the answer to the 

main problem posed in this section is expressed in the following 

formula: 

N>= \nc + N* . U5) 

I t follows that the f i e ld radiance |Njj_ of an object viewed 

along a path of length f generally consis ts of two p a r t s : the 

transmitted surface radiance ~\~y. f\j of the object , and the 

path radiance (Mu which represents the "space l ight" generated 

by scat ter ing in the intervening distance between the object 

and the Gershun tube. 
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As a special case of the above formula, suppose the i n t e r 

vening distance between 3 ''-̂ d Gr were through a void, then 
•J* 
"7s 

of course ~T7 — ( ,:md J\| j. — Q ) so t ha t : 

Thus, the observed field ra^ipneo N/y. i s , in t h i s case-, equal 

to the surface radiance Ho 

The term "f ield radiance" fur the quantity f\)y i s occasionally 

replaced by the more suggestive term apparent radiance. These 

terms are of course to be considered completely synonymous. 

The l a t t e r term i s usually employed when a par t icular object i s 

under view, so that we may speak of the "apparent radiance of 

an object" in the f ie ld of view. In l ike manner, No i s usually 

referred to as the inherent radiance of the object . According 

to (25), then, the apparent radiance t\|(, of an object generally-

con s i s t s of the sum of i t s d i rec t ly transmitted inherent radiance 

(\)0 , and the path radiance associated with the path of s ight . 

Inversc—Squar' Law 

The inverse-square law i s conventionally associated with the 

i rradiance produced by a point source. More exp l i c i t l y , the law 

s ta tes that the i r radiance .n a surface produced by a point 

source var ies inversely as the square of the distance between 

the point and the receiving surface. 
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The customary proofs of the inverse-square lav/ require the 

notion of radiant intensity, that is the radiant flux output 

of a point source. The following discussion, however, considers 

finite sources of radiant flux and handles the- radiometric quan

tities by means of. radiance. This is a more meaningful approach 

since it deals with measurable' quantities. 

Consider a plane area of arbitrary shape (Figure 3b). Let 

the area be of magnitude A • View this "area with a Gershun tube 

.so that the line of sight is perpendicular to the area. (If 

a given area is not normal to the line of sight, let r\ represent, 

its projected area normal to the line of sight.) Suppose that 

at each point"of the area, the surface radiance'is; some fixed-

•Value Ni ' in the direction of the line of sight. If the surface 

•is viewed' through- a void from a distance at which the surface 

completely fills the field of view of the tube, then by the 

-preceding arguments, the field radiance determined by the. Gershun 

tube is also N ;. As the 'distance from the surface is increased, 

there will be a distance, say f , at which the entire surface 

is -just within the field of view of the tube; and for all distances 

greater than Y* , the emitting surface will be contained wholly 

within the field of view. The flux from the surface now arrives 

at the collecting plate of the tube through a. solid angle of 

magnitude, 

n - A 
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which i s not greater than the \iu of the tube. I t i s c lear , 

however, that the f ie ld radiance of each point of the emitting 

surface i s s t i l l N (as would be ver if ied i f a Gershun tube with 

a solid angle suff ic ient ly smaller than vilr were to be used). 

I t follows that the i rradiance on the tube ' s col lect ing surface 

must be 

Hr - NJU -

If these expressions are combined, we have the following 

form of the inverse-square law for i r radiance: 

H > « 
N_A. (26) 

By including the factor ~Jy in the above formula, we can 

describe the transmitted irradiance through a scat ter ing-absorb-

i + 
ing medium. Furthermore, an analogous term to N r can also be 
included when needed. 

In t h i s way the inverse-square law (26) i s defined in terms 

of the d i rec t ly observable quant i t i es Nl , A , and h 

We note in passing that the product NA takes over the role 

of radiant in tens i ty , having the dimensions of radiant flux per 

uni t solid angle; however, the geometric en t i ty with which th i s 

quantity fs|A i s associated i s a surface of f i n i t e area and a rb i 

t ra ry shape. These considerations lead us to a useful operational 
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definition of the term "point source." As the preceding discussion 

shows, the idea of a point source is actually relative to the 

angular opening of the Gershun tube. (Recall that radiometrically 

tood tubes will have length to radius ratios of 10 to 1 or larger; 

see, e.g., (Tyler, 1958c)). Thus a source of radiant flux in 

the radiometric environment of a given Gershun tube may be said 

to be a point source if it can be completely contained within 

the field of view of that tube. It is of interest to observe that 

if we were to indulge in an exact mathematical analysis of the 

accuracy of the above statement of the inverse-square law, we 

would find that the above estimate of H^ differs from the exact 

amount by not more than one per cent of the exact amount. Since 

our approach is purely operational, the preceding form of the 

inverse-square law and the definition of point source are evidently 

the ones that are most natural to adopt in any experimental study 

Of the light field. 

Lambert Collectors and Emitters 

The definition of a Lambert collector given during the dis

cussion of the measurement of radiant flux can be cast into 

several alternate forms. The characterization chosen for discussion 

here is not only applicable to Lambert collectors, but also can 

be turned around, so to speak, and be used to characterize the 

complementary notion of a Lambert emitter. 



SIO Ref. 58-69 - 30 -

F i r s t , as regards the Lambert co l lec tor , consider a plane 

area of a rb i t ra ry shape and of area A . Let the area be 

i r rad ia ted at each point of i t s surface by incoming flux which 

has a field radiance |N in a l l d i rect ions over the incoming 

hemisphere. Then the radiant flux P ( 0 ) incident or: the area 

(see footnote l ) , through a small solid angle \X1/ inclined at 

an angle 9 with the normal, in given by: 

P^e) « NXL- A cose = p(o) cose. (27) 

and the surface, being a Lambert co l lec tor , records a response 

equal to r^iQi , i . e . , the recorder exhibi ts a cosine response 

to such incoming flux. 

Conversely, suppose the area A now-emits (or re f lec t s ) 

radiant flux, and suppose that the t o t a l flux P e .(•©) i s 

emitted (or reflected) in a manner described by (27)-, where the 

flux being observed i s contributed by each point of the surface 

radiat ing through a. fixed small solid angle L Q , , i . e . , Po(&) 

i s of the form: 

Po(8) =- Ho J i r A COS© - Po(0)COSQ (28) 
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A surface which exhibits such a radiation characteristic is called 

a Lambert emitter (or reflector). From this, it follows imme

diately that a Lambert emitter (or reflector) necessarily has a 

uniform surface radiance |\|0 in all directions at each of its 

points. 

Analytical Relations Between the Radiometric Concepts 

The radiometric concepts are gathered together for convenient 

reference in Table 4 at the end of the paper. In this section, 

we wish to analytically tie together the various concepts intro

duced so far. Observe that all the concepts have been defined in 

terms of realizable physical operations. However, the various 

interrelations between the notions are most conveniently brought 

out by using their analytical representations. The concept of 

radiance will be singled out as the most basic as far as mathe

matical operations are concerned. For, from knowledge of |\j , 

all the other radiometric quantities are easily determined. 

Scalar and Spherical Irradiance. The operational procedure for 

obtaining spherical irradiance rv has already been outlined. 

It remains to define scalar irradiance and show the connection 

between these two irradiances. To this end, let Is/Cf^e, <£) 

be the field radiance at point jx arriving from the direction 

(0, <p) where 0 and cp are measured from some fixed reference 
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system (Figure 5) . Then the scalar i r radiance f)(fi) <n-t 

point & i s defined as : 

h(/2) ~ 1 \ H(?-A<P) $&> ) 
(29) 

where 

clxll - s i o e d e d ^ . (30) 

We can obtain an analyt ic expression for b ^ (yfi-) in 

the following way: consider a small spherical Lambert col lec tor 

of radius JT with center at -fl . Then the amount P ( f i > © j<fi) 

of radiant flux intercepted by the spherical surface from a uni t 

solid angle in the direct ion (&,&) i s (using the cosine law) 

P ( ^ ; 0 . ^ ) « M ^ e ^ J cosV d/̂  , (31) 

where the hemisphere of integration is determined by the plane of 

the great circle O which is perpendicular to the direction (8,<^>). 
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The in tegra l i s easy to evaluate because i t simply represents the 

projected area of the hemisphere on the plane of i t s great c i r c l e , 

so tha t 

P c / F , e » = T»-" :N (/•*,©,*!>;. (32) 

The amount Pip) of flux intercepted by the sphere from a l l 

d i rect ions i s : 

( 
p r > ) ^ - j \ P(fiV,<P)d£l ~ •Kt*h(fi). (33) 

0 = c <£=<> 

Finally, the average flux per unit area on the col lec t ing sphere i s , 
4 

by def in i t ion: 

^„<A)= £& - If,,,.,. (34) 

Irradiance and Radiant Emittance. The irradiance H(/ i) produced 

by a d i s t r ibu t ion of f ie ld radiance H{ ?>)$,<&) a t A% on 

a surface i s obtained from Equations (6) and (14): 
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ir/a ST 

H(p )= - J ] N ( p ( e , * ) c o s e o M L . ( 3 5 ) 

6=0 <£ = o 

On the other hand, i f No(pJ®)cr) represents the surface 

radiance at point fx them by (17): 

TT/2 ^TT 

WCyo) = \ ) N l 0 ( / * / e » c o £ e olif lr. (36) 

Radiant Flux. If a surface 5 i s being i r rad ia ted at each 

point AQ, by a certain radiance d i s t r ibu t ion , then we can calcu

la te a t each point p, the irradiance \-\(^) , and i t 

follows that the flux incident on the whole surface S i s : 

P ( S ) « J H O ) oM . (37) 
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Radiant Energy. The radiant energy content U ( R ) of a given 

region R of space R of space is: 

U ( R ^ = j jUL(f>)dV = ~^hc^)d\/. (38) 

R R 

The unit of radiant energy is a joule. 
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PROPERTIES WHICH GOVERN THE TRANSFER OF LIGHT 

Introductory Remarks 

The passage of light through regions containing matter c an 

be studied on several levels: on the microscopic level using 

the tools provided by quantum theory and relativity theory; on 

a band of levels between the microscopic and macroscopic level 

by means of Maxwell's equations, the equations of relativity 

or the quantum theory, or a combination of all three; and finally, 

on a macroscopic level in which the main tools are the radiometric 

concepts and the simple devices used to measure them, namely 

the Gershun tube, flat-plate and spherical collectors. We will 

continue ->ur studies of light by remaining on this macroscopic, 

or phenomenological level. It is on this level that we can 

reach, in the quickest and most natural way, the solution of the 

important problems dealing with the visibility of underwater 

objects, and the solutions of those problems of marine biology 

which require detailed knowledge of the quantity and quality 

of the light field in natural hydrosols. 

By adopting the phenomenological approach, we automatically 

preselect certain macroscopic physical properties of the optical 

medium which govern the passage of light through and within 

the medium. In other words we automatically eliminate to a 
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great degree the need to ce>me to grips with the intricate details 

of the interaction of light with individual atomic systems, nor 

need we determine various electrical or magnetic properties of the 

substance comprising the natural hydrosol before we can make 

meaningful predictions of the passage of light through the hydrosol. 

By adopting the present approach, we necessarily limit ourselves 

to small but finite volumes of matter and to the direct observation 

of how these absorb and scatter the radiant flux through them. 

By a systematic study of the interaction of light with such 

small but finite volumes the experimenter can detect and classify 

the phenomena of absorption and scattering in an exhaustive and 

detailed manner, and subsequently go on to erect a phenomenological 

theory of light whose mathematical framework is just as rigorous 

and internally consistent as those associated with the study of 

light on the alternate descriptive levels mentioned above. 

As the phenomenological classification of the scattering and 

absorbing properties proceeds, we will see that these properties 

can be divided quite naturally into two classes: the class con

sisting of the inherent optical properties of a medium, and the 

class consisting of the apparent optical properties of the medium. 

The former class includes such quantities as the volume attenuation 

function, the volume scattering function, and the absorption 

function. These summarize certain intrinsic physical actions of the 

medium on a given beam of light as the beam passes through the 

medium. This action is generally independent of the orientation 



SIO Ref. 58-69 - 38 -

of the beam, and of the existing lighting conditions within the 

medium. The second class contains such quantities as the 

K -functions, the distribution functions, and the reflectance 

functions. These describe the behavior of light fields as they 

exist at the moment of the experiment: they are properties 

which depend jointly on the inherent properties of the medium 

and the geometrical structure of the light field. 

The apparent optical properties depend in a rather complicated 

way on the inherent properties and a.t the same time are at the 

mercy of highly variable and unpredictable external lighting 

conditions; however, they are worthy of study and classification 

because of the following three facts: First, the gross behavior 

of these properties as determined by actual experiments are 

strikingly regular. While these gross features do indeed depend 

upon external lighting conditions, their observable regularities 

are, as we shall see, amenable to generalizations which apply 

to all real scattering-absorbing media. Secondly, there are 

useful theoretical relationships between the inherent and apparent 

optical properties. These relationships can be deduced from 

the exact equations of radiative transfer theory, independently 

of any further experimental considerations. These relationships 

hold irregardless of the lighting conditions that exist inside 

or outside of the medium. Finally, the use of apparent optical 

properties reduces to a practical level the solution of under

water visibility problems and pertinent problems of marine 



SIO Ref. 58-69 - 39 -

biology. These problems are simplified in the following sense: 

It is possible, by mathematical procedure, to obtain an exact 

determination of the light field throughout an optical medium 

having given only the inherent optical properties and the external 

lighting conditions (i.e., the radiance distributions at the 

boundaries of the medium). However, this is a prohibitively complex 

and lengthy procedure at the present time. By experimentally 

determining the apparent optical properties of real media, we are 

in effect solving on a practical level certain particularly diffi

cult parts of this analytical procedure. 

Inherent Optical Properties 

We will introduce the inherent optical properties by means 

of three hypothetical experiments. Besides drawing out the 

basic nature of the optical properties, these experiments outline 

actual operational procedures for the determination of numerical 

values for these properties. However, the experiments carried 

out below are ideal experiments. They are deliberately not 

complicated by the precautions that must be taken in actual prac

tice in order to avoid the obvious pitfalls accompanying imperfect 

instruments, perturbations of light fields by measuring equipment, 

5 
et cetera. 
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1. Volume Attenuation Coefficient. Consider the experimenta] 

arrangement shown in Figure 6a. The source S has a surface 

radiance ND as measured by the Gershun tube <3 when the 

l a t t e r i s at zero distance from the source. The Gershun tube i s 

now moved away from the source but in such a. way tha t i t always 

looks in to the beam and in the direct ion of the source. Let Nj* 

be the radiance measured by G> when at a distance h from S • 

I f the intervening region between S and <5 were a vacuum, 

then we know from our e a r l i e r discussions that for any distance \r , 

we would have Nj>~ No • But now the intervening region 

i s assumed to be uniformly f i l l e d by the material of some na tura l 

hydrosol and the values of N(- are observed to decrease with 

increasing V" . When we plot the following quanti ty: 

^ ( & ) 

for each Y , we see that the resultant plot over a certain 

range is a straight line with negative slope (depicted schemati

cally in Figure 6b). Let the absolute value of the slope of this 

line be designated by c* . Then, the relation between fv/̂. 

and N 0 in this range is evidentaly of the form: 

_c^h , . 

N h = M 0 e . (39) 
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We perform th i s experiment several times, each time se t t ing " No : v; 

to some new value and observing the resul tan t N(- values over 

the same path. Each time a plot i s made, another l ine with the 

same slope i s obtained. By taking measurements along other paths, 

the same value o£ i s obtained apain. In the terminology defined 
5 

above, we are working in a homogeneous region of the medium. 

In these experiments, we ha.ve taken precautions to measure-

only the l igh t that has come d i rec t ly from the source, and also 

not to take readings at extreme distances so as to stay within 

the region of l i n e a r i t y . 

In order to ful ly understand the meaning of the value of o(_ , 

l e t us wri te (39) in d i f f e r en t i a l form: 

dHv^= - ^ Nh dh (40) 

The f i r s t observation we can make i s that for each increment cl h-

of distance away from S , the corresponding increment CLN|-

of the observed radiance i s negative. This re f lec ts the obser

vation that Mj. decreases with increasing distance from S f 

The second fact we may observe i s that t h i s increment dtf4f i s 

l inear ly proportional to Nj. and to o l h • But since we per

formed the experiments for several values of jsj0 and variously 
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oriented paths, and obtained the same o*- each time, we conclude 

that oC must be some inherent property of the medium independent 

of the amount of flux in the beam and of the beam's orientation. 

Apparently oC has the dimaisions of reciprocal length. Fi-om 

the differential statement, we conclude that o^ gives the attenua

tion per unit length of a beam of unit radiance. The preceding 

statement, Eq. (40), being written in differential form, is a 

statement of the change of tvl̂. over small increments of path 

length. It is quite possible that the value cxL may be found 

to be different at other points of the path and, in general, at 

other points of the medium. In such cases, as noted above 

(footnote 5), we will refer to oi as the volume attenuation function. 

We can make some further observations about ai by return

ing to the original experimental setup. By careful measurement 

of the beam's radiance from regions just outside of the beam 

(Figure 7), we detect radiation of the same wavelength as that 

of the soiree. This stray light can be positively identified as 

coming from the beam. From this we may conclude that the attenua

tion of the beam's radiance is partially due to a scattering of 

some of its flux out of the main direction of travel of the beam. 

A critical examination of the scattered flux would soon reveal 

that scattering alone would not account for the total attenua

tion of the original beam. We conclude therefore that the medium, 

in addition to inducing a loss by scattering, also 'absorbs' 

some of the beam's radiance. Since we have fixed our radiance 
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t ube ' s sens i t iv i ty at one pa r t i cu la r wavelength, and since the 

t o t a l attenuation of the beam's radiance cannot be accounted 

for by scattered flux of the same wavelength in the v i c in i ty of 

the beam, t h i s absorption must manifest i t s e l f by a conversion 

of some of the beam's radiant flux into radiant flux of a 

different (generally longer) wavelength. This conjecture could 

soon be ver if ied by suitably probing the immediate v i c in i ty of 

the beam with Gershun tubes which have been made sensi t ive to 

radiant flux of longer wavelengths. 

Equations (39) and (40) supply the following a l te rna te 

operational def in i t ions of Od : 

(41) 

^ = T 'n ( "No) * 

O^ is apparently the sum of two generally independent terms: 

a term, ̂ L , which refers to that part of the attenuation due 

to scattering of flux from the beam without change in wavelength, 

and a term (X which refers to the conversion, or absorption, of 

some of the flux into flux of different wavelength as that of the 

original beam. Thus, we may write o£ -=> CL-K-^L- . In this way 

we come to the concepts of the total volume scattering function 

and the volume absorption coefficient. 
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2- Volume Scattering Function. In the preceding discussion, 

during the attempt to estimate the amount of radiant flux 

scattered out of the original beam, the experimental arrangement 

shown in Figure 7 was used: The Gershun tube G- was directed 

at a fixed point ^2. in the original beam. The tube was turned 

so that it successively looked at point 2̂- in all directions S 

from the direction of the source S . Thus O was varied 

essentially from 0 to 180°. For each orientation & , G was 

always kept at a small fixed distance h' from 2̂. , and the 

corresponding field radiance |sj £ (0) of the beam was recorded. 

The length i(S) of the path of sight through the beam 

for that particular orientation was also noted. From this 

information, the flux scattered out of the beam over each unit of 

path length can easily be computed. We now go through the details 

of this computation because they lead us directly to (a) the 

volume scattering function <J~ , (b) the path function N ^ , 

(c) the (volume) total scattering coefficient A, , and 

(d) a simple derivation of the basic equation of transfer for 

radiance. 

(a) The volume scattering function. 

Assume Y is small, so that the surface radiance of 

the small segment of the beam under view by <S is essentially 

the recorded field radiance N ^ ( 9 ) . Let A(0) be 

the projected area that the observed element of volume presents 

to the line of sight of &• . Then by (16), the flux per unit 
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solid angle emitted by the volume in the direction of Qj is 

clearly: 

N*(0) A(9) . 

But the volume of the observed element of beam can be represented 

by 

so that the flux in a unit solid angle in the direction of cS 

emitted by a unit volume of the medium at ji, is evidently: 

N?(e) ACQ) ^ M*(s) 

A(B)i(e) ~~ M*>) 

Let the cross-sectional area of the beam be designated by A 

Then the quantity 

A N*(e) 
ZLB) 

has the following simple interpretation: it is first of all the 

amount of.flux per unit solid angle scattered in the direction 

of CS J and secondly, it is scattered by an element of volume 

of the medium which has cross section A and unit length in 

the direction of the beam. Thus the integral 

(42) 
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J4lt He) 

over all solid angles about /&, evidently gives the total flux 

scattered out of the beam per unit length of travel of the beam 

through the medium. 

While (43) is useful in practical estimates of the ra.te of 

loss of radiant flux from the beam through the mechanism of 

scattering, it also contains the germ of the idea of the volume 

scattering function. To see this, we first note that the total 

flux of the beam across the area A is 

^J^^a,A ; 

where \XL-i. i s the sol id angle subtense of the source a t 

point /fl and Mf. i s the radiance of the beam at lr . There

fore, i f we divide (43) by t h i s quanti ty, the r e s u l t , 

has the following in te rpre ta t ion : i t i s the t o t a l amount of 

radiance lost by scat ter ing per unit length of t r ave l of a beam 

of uni t radiance. 

file:///XL-i
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We now may inquire about the d i rec t iona l d is t r ibut ion of the 

scattered f lux. From (44) we see that t h i s d is t r ibut ion i s 

governed by 

When t h i s operation on the observable quant i t ies Nj- , S\s ,-

N J L ( 9 ' and £(.&) i s examined in d e t a i l , we uncover 

the following sot of experimental f ac t s : 

(i) 0~(©) is found to be independent of the amount 

of irradiation Nh iTl |-

(ii) 0~(8) is independent of the magnitude of JCLB) 

(iii) If 8^,1-' d. "-nd M 0 are all held fixed 

and G is swung around the beam, CT(8) remains 

fixed, 

(iv) 0~(©) is independent of the absolute orientation of 

S and G about 4L (medium is isotropic). 

These four experimental findings form the basis for the 

conclusion that CT(8) is an inherent optical property of the 

medium. Clearly, on the basis of (i)^ <T(B) does not depend 

on the absolute amount of irradiation on the element of volume 

of the medium. Furthermore, on the basis of (ii), the relative 

amount of flux observed to be scattered at a given angle Q 
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by a small i r rad ia ted volume does not depend on the length of the 

path of sight through thcit small volume. Final ly, according 

to ( i i i ) and (jy), G~[d) does not depend on the spa t i a l or ientat ion 

of the plane formed by the i r r ad ia t ing beam and the di rect ion of 

observation of the i r rad ia ted volume. The function Q~ , which 

depends only on Q (in a homogeneous medium) i s called the 

volume scat ter ing function. I t s operational defini t ion i s given 

by (45), or by the equivalent form 

(46) 

where 

N*(e) 
N * {S j (47) 

to) ; 

i s a quanti ty independent of the length J? (8 ) (fact ( i i ) ) . (\f 

and -£ls refer to the radiance: and solid rjigle subtense (a t 

the point A ) of the i r rad ia t ing source. The dimensions of 0~ 

are: per unit length per unit solid angle. Both the unit of 

length and solid angle are in the direction cf observation of the 

i r radia ted volume. 
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'•'''* ''af-iv' 
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(b) The path function Ny•?••••••'. 

N ^ C B I as defined ...in (47), i-s in terpreted as 

follows: i t is. the radiance per uni t length. in the direction of 

• the l ine of s ight , generated..by the- scattered ..light, of the. beam. 

N ^ i s ca l led , tha ,pa th function.. I t plays an-important 

<"*-i^i5'' role- in the general theory' of radia t ive t ransfer 'and i n the 

^ X . •»•::, j.-: solution o f ' v i s i b i l i t y problems. By (46)" we'may wri te 

t\u(e)= <r(9) NxCL. 
(.48) 

I t i s easy ~to-generalize..this fomula to the following, form: 

(49) 

•.:here -thr—pcint J2 • i s liow'"being i r rad ia ted by flux from a l l 

directions-about y2. . An example of the calculat ion of N^(i2L)B)<£f) 

In r e a l media is- given in (Preisendorfer 1956). (T£/a;0>^;©JV')is 

the value of the volume scat ter ing function a t point <>fZ~ for 

l ight incident in the direction (B,<£'Jand scattered off in the 

direct ion (6,4>) . ( 0 ^ ) and(8,^ 'Jare measured with respect to some 
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fixed reference frame (in the derivation (.©,<£) was taken as 

(0 O) rod (Tifi'jO/P] 6', 4>') was conveniently abbreviated to 

( T ( 0 ) ) • This generalized form N ^ C f ^ S , ^ ) has the same 

general in terpre ta t ion as N,k(b) above, but now the radiance 

per unit length in the di rect ion of observation i s generated by 

l igh t scattered into the l ine of sight from a l l d i rec t ions about 

the point jl . By property (iv)I cr(p;e,4>;8j<£')f°r any pai r (&,4>)} (&;&') 

i s known from the determination of QYe) at point Q̂- j as 

defined in (46). 

c. The volume total scattering coefficient. 

From the above arguments we now have an explicit 

expression for the term, ^ , which arose in the discussion of 

the volume attenuation coefficient oC . For t h i s term i s 

evidently none other than that given in (44) which, by (45) , 

may be written 

^ L = f (T(e)dva = 2TT f Q-(9)S\f)ed6. ( 5 0 ) 

The second expression follows from facts (iii) "md (iv). This 

is the volume total scattering coefficient . In non homogeneous 

media, it may change from point to point, but in any event, ^ 

does not depend on the direction of the irradiating beam (facts 

(iii) and (iv)). Closely related to A, "re the (volume) forward 



SIO Ref. 58-69 - 51 -

scat ter ing .and (volume) backward scattering coefficients f 

and D defined by the following formulas: 

ir/2 

J = 2TV \ <r(Q) s m e d e , 
(51) 

b « ^TT \ crce) sine d e ; 
(52) 

so that 

^L = f + t . (53) 

As in the case of „4, , both -f and b may. vary with 

posi t ion, but they do not in any event depend on the d i rec t ion 

of the i r r ad ia t ing beam. 

d. Equation of t ransfer . 

From the preceding in te rpre ta t ions of o£ and /N/^ 

i t i s easy to verify that the equation of t ransfer for f i e ld radiance 

(or surface radiance) ty'j. in a source-free medium i s expressible 

as: 
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<* N, + N^ . (54) 

The f i r s t tern on the r ight gives the space rate of loss of Ajj 

by attenuation; the second term gives the space r."te- of gain 

of Mj, by sca t t e r ing . I t i s of i n t e r e s t to point out that 

Eq. (25) i s the formal solution of Eq. (54). 

3 . The Volume Absorption Coefficient. During the discussion 

.jf the volume attenuation coefficient oc we found tha t c* 

summarizes two d i s t i nc t types of action by the medium on the bean: 

absorption and sca t t e r ing . The preceding discussion of the volume-

scat ter ing function resulted in an expl ic i t formula for -<ft} (50). 

Thus from (53) we may obtain (X by subtract ion: 

O. = oC - A.. (55) 

There exists another way of obtaining O- . This method requires 

no previous knowledge of oi or ^&, . It is exact, and completely 

general. Furthermore, it is particularly simple to use in 

natural hydrosols. This is the method wuich makes use of the 

divergence relation of the light field (Preisendorfer 1957"-) -"Jid 
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yie lds the equation: 

dz 
— at2)bc2-). (56) 

To understand the physical significance of the terms occurring 

in (56), consider the experimental arrangement in Figure 8. 

H(2)-<~) i s the net upwelling irradiance measured at depth j? 

i . e . , ri(i^) - hU>+)-HCZ>-) . Here H(*, + ) i s the 

irradiance at depth £ on a f l a t p la te co l lec tor which receives 

the upward moving f lux. H ( 7 , - ) i s the irradiance at depth 

£ due to downward moving flux. b ( £ ) i s the scalar 

i r radiance at depth Z , and a ( 2 ) i s the value of the 

volume absorption function at depth 2 . According to (56), 

to obtain CLli) one performs the following operation: 

CLU) « J~ ^Ulll (57) 
h(z) d z 

on the measurable quantities l-Kî ,-*-) and h(£) . If the 

medium is homogeneous (footnote 5) then (57) will automatically 

yield the value of the volume absorption coefficient. In the 

determination of a(Z) by this method, it is clear that in 

order to evaluate the derivative of TiV 2 , -*- ) t measure

ments of H<2,-»0 cand M(2,-) must be made in some interval 

of depths about the depth ? 
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The volume absorption coefficient is an inherent optical 

property of the medium. While this fact may be somewhat difficult 

to establish from (57), it is readily seen to be true by (55), 

since we have already shown in detail that both c<- and AL, are 

inherent optical properties. The dimension of O. as that of CJC 

and ^ L , is reciprocal length. This can be established by 

inspection of either (55) or (57). 

Apparent Optical Properties 

The apparent optical properties of natural waters consists at 

present of a set of seven quantities whose numerical values 

depend on the angular structure of the light field as well as 

on the physical composition of the water. 

The apparent optical properties can be obtained from four 

basic measurements. These measurements take the form of two 

pairs of irradiance quantities: one pair consists of ordinary 

irradiances, the other of scalar irradiances. In each of these 

pairs, one member is assigned to upwelling flux, the other to down-

welling flux. The reason that there are precisely four such 

quantities stems from our conceptual decomposition of the flow of 

radiant energy in any natural hydrosol. (stratified or not) into 

two streams: an upward flowing stream and a downward flowing 

6 
stream across each horizontal plane in the medium. 
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The four basic irradiances are: 

(58) 

H(?|-H and H(?j—J are the upwelling (•+-) and down welling (—) 

irradiance, respectively. They are induced by the up and down-

welling flux streams at depth ^ • These quantities may be 

obtained from field radiance measurements, or they may be measured 

by flat Lambert collectors exposed to the appropriate hemis

pheres (Figure 8). In like manner, h<2)-+-) and \l (!>—) 

are the upwelling (t~) and downwelling (—) scalar irradiances. 

and refer to up and downwelling flux, respectively, at depth '2-. 

They may be obtained from field radiance measurements. Alter

natively, spherical Lambert collectors may be used to measure 

these quantities. A possible experimental arrangement is shown 

in Figure 9. Observe that the collectors are complete spheres 

in each case. The sphere that measures \\(.2i —) , for example, 

should be shielded from the upwelling flux by some device which at 

the same time impedes as little as possible the interchange of 

flux across the horizontal plane at depth z? . In analogy to 

our earlier discussion of the relation between h and ta^ir, 

we can show that the downwelling spherical irradiance h^-n-(£>-) 

actually measured by the shielded sphere shown schematically in 

Figure 9a is related to ^(2.-) by: 



SIO Ref. 5 8 - 6 9 

IW*.-> = f he?,-) . 

Similarly, the upwelling spherical i r radiance } 1 4 i r ( ? (-+-> 

measured by the other shielded sphere shown schematically in 

Figure 9b, i s re la ted to h(2>-t-) by: 

l ^ ( 2 > + ) = -k k(£»-*"> 

The connection between ĥ -jr ,r,nd the spherical irradianc 

defined above, assuming ideal shielding, is straightforward: 

Furtheimore 

Kf?) = f ) (^ - ) •+- h(?,+•). 
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1. The Reflectance Functions. The reflectance functions 

are defined by: 

Rt« , - ) « rrr.—- ' 

R6?, + > 
1-1(2,-) <fc> 

• # 

The physical in terpre ta t ion of R ( 2 j - ) i s straightforward: 

i t represents the ra t io of the upwelling irradiance a t depth Z 

to the downwelling irradiance at depth .? , so that )<!(£) ~") 

may be thought of as the reflectance, with respect to the down

welling flux, of a hypothetical plane surface at depth a? in 

the medium. For completeness, we have included the reflectance 

Ki'ZjH-) for the upwelling stream. However, t h i s i s simply 

the reciprocal of R ( ? , — ) . In ac tua l i ty , R ( Z } —) depends 

on the scat ter ing proper t ies of the en t i re medium above and below 

th i s l eve l . I t wi l l also depend in par t on the reflectance pro

per t i es of the upper and lower boundaries of the medium i f these 

are within sight of the flux co l lec to rs . R ( Z > ~ ) i s not an 

inherent property of the medium, for experiments and theory show 

in general that for a given medium and a "%ven depth in that 

medium, the value RCf , — ) changes vrith the external l igh t ing 

conditIons. 

Definition (63) i s completely general: i t applies to any 

medium, be i t deep or shallow, i r rad ia ted by the sun in a clear 
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sky or by any type of overcast. Because of this generality, 

very little can be said about exactly how the values of R;(j?>—) 

should depend on depth. Ho pat statement can be made which asserts 

that R^!?)~) should always increase with depth, or that it 

should always decrease with depth, or that it should go through 

maxima or minira at certain depths, remain constant with depth, 

and so on. 

Respite this unwillingness of RlZ>—) to have its 

characteristics typed in very fine detail, there are certain gross 

characteristics which make it an indispensable tool in engineering 

calculations: in optically deep homogeneous hydrosols, Rfi?,-) 

varies very little with depth. Wear the surface of these media, 

it shows relatively high variability vdth depth which depends 

on the state of the surface and incident lighting patterns, 

but soon settles down and approaches a constant value independent 

of depth. |3(?,-) thereby takes on the status of an apparent 

optical property of the medium. Furthermore, in media that have 

no self-luminous organises, R(?, — "̂  behaves as any respect

able reflectance should: it is never greater than 1. In fact, 

in most natural hydrosols the values of RC?j-) are usually 

found to be somewhere in the neighborhood of 0.02, give or take 

0.01. In media containing self-luminous organisms distributed 

throughout some layer, it is quite possible, however, for the 

values of fZ(?j~) to approach 1 as this layer is approached, 

and even become greater than 1 just before it enters the layer. 
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Some examples of R(£,-) are given in Table 1. 

While the problem of the fine detail of the depth dependence 

of k?(Z,-) is mainly of academic interest, we note that there 

is no dearth of theoretical approaches to this interesting problem. 

One model of the light field uhich is particularly useful in the 

study of this problem is the so-called two-D theory (Preisendorfer 

1957b). This model is particularly simple to use, and is still 

sufficiently detailed to supply a multitude of examples of the 

depth dependence of \<tZ)~) : it supplies cases in which 

r\(i)~) can increase or decrease over preselected depth ranges. 

In all cases, however, the model states that there is some value 

koo which k(2;-i approaches asymptotically with depth in 

optically infinitely deep media. This asymptotic value depends 

in a calculable way on both the inherent optical properties of 

the medium and on the limiting lighting conditions. Further 

remarks on the behavior of R(2>-) at great depths are 

made in the closing section of this paper. 

2. The Distribution Functions. A particularly simple 

means of characterizing the depth dependence of the shape of 

radiance distributions, \dthout resorting to an actual measure

ment of the radiance over all directions at each depth, is given 

by the distribution functions: 

(64) 

file:///dthout
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It is easily seen from the definitions of h and H that if 

the shape of the r?diance distribution changes with depth, then 

D(?>—) and D(l}-t) will change with depth; and conversely, 

if the values of the distribution functions vary with depth, 

the radiance distributions must be changing shape with depth. It 

is clear from the definitions that D(J?J-) gives an index of 

the shape of the radiance distribution in the upper hernisphere 

(i.e., for the downwelling flux), and D(Z>-t-) does a 

similar iob of characterizing the shape of the radiance distribu

tion in the lo\-/er hemisphere (i.e., for the upwelling flux). 

Detailed experimental studies of the light field in Lake 

Pend Oreille show that both D ( 2 ,+-) and 0(2,-) exhibit 

relatively little change vdth depth (Tyler,1958a). Furthermore, 

this independence of depth is found whether the external lighting 

conditions are sunny or overcast. Under either of these condi

tions, the values 0(2,-) hovered very closely in the neigh

borhood of 1.3, vrhile the values D(Z,+) clustered around 2.7. 

Examples of 0(l)~) and 0(1,+-) are given in Table 1. 

It appears at present that these values should be typical of the 

values that one may find in many natural hydrosols. 
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Of course, as in the case of 12(2,-) , the quantities 

D(2>-' and D(2)
4") will obstinateljr refuse to have any 

sweeping generalizations made about the fine structure of their 

depth dependence. However, as in the case of (3. ( Z , — ) , 

simple theoretical tools exist which can be directed toward such 

nroblems if the need ever arises to discuss depth dependence in 

detail (Preisendorfer 1957c). Furthermore, the ultimate depth 

dependence of D(£,-) and D(2j-H in deep media is 

quite regular and predictable (see closing section). 

The observed constancy of the distribution functions \idth 

depth has important practical consequences. In homogeneous media 

exhibiting this type of behavior a few well-selected measurements 

of the inherent optical properties together with radiance distri

butions near the surface would suffice as the basis for an 

estimate of the quantity and quality of the light field for all 

depths in the medium. Such estimates could be made by means of 

the two-D model (Preisendorfer 1957b) or the simple radiance 

model (Freisendorfer 1957c). 

In addition to characterizing the depth dependence of the 

angular structure of radiance distributions, D(«?,-) and D(H,-»-) 

play indispensable roles in the equations of applied radiative 

transfer theory, particularly in those equations which link the 

inherent and apparent optical properties of a medium. These roles 

will be illustrated as a matter of course in the discussions below. 

file:///idth
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3. The Iv-Functions. The reflectance function gives a 

running account of the relative magnitudes of the irradiance of 

each stream of radiant flux. In this section we now discuss the 

quantities which characterize the individual depth dependence of the 

up and downwelling irradiances and of the scalar irradiance. These 

are called the K -functions. The motivations for the definitions 

of these functions are supplied by both theoretical and experi

mental precedent extending back over at least fifty years of 

applied radiative transfer theory. 

The theoretical motivation for the |< -functions for irra

diance and scalar irradiance defined below stems from an attempt 

to increase the usefulness of the Schuster equations for the 

two-flow analysis of the light field. The detailed development 

of this anproach and its practical applications recently have been 

completed (Preisendorfer 1958a). 

The experimental motivation for the K-functions rests in 

early empirical relations of the kind: 

-r T --** (65) 
1 ? - J-o e ; 

which simultaneously were to characterize the depth dependence 

of .I? and define its depth-rate of decay, K . In the above 
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re la t ion X i took many forms: in some studies i t was downwelling 

i r radiance , in others i t was a scalar i r radiance- l ike quantity; 

in s t i l l others , i t s exact nature was not quite c l ea r . Therefore, 

there was no universal agreement as to what radiometric quantity 

i t should represent. As a r e su l t , there was no agreement as to 

what i t rea l ly measured. A plot of I , on semi-log paper with 

depth as abscissa yielded — )< as the slope of the s t re ight l i n e . 

K could thus be defined operationally as : 

K = ~^h X, 
(66) 

It suffices to observe here that these early theoretical 

and experimental approaches to characterize a f<̂  -like optical 

property of natural hydrosols were inadequate to the subsequent 

needs for precision and completeness in modern hydrological optics. 

In current basic research X 7 is replaced by the three pre

cisely defined irradiances )-(( £ — ) , H ( ^ j " 0 , and h ( Z ) . 

Furthermore, it has become necessary to distinguish not only 

between the magnitudes J-j^-), M ( £} -*-) , and h ( ^ ) , but 

also their logarithmic rate of change with depth. Careful measure

ments (Table l) show that their logarithmic rates of change are 

generally different, and the difference far exceeds the range of 

experimental error. In general, semi-log plots of f-j (2, — ) 

H(^)"?~) , fmd h(-?) also exhibit noticeable 
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departures from l i n e a r i t y , especial ly in near-surface regions, 

th is fac t , of course, i s part of the folklore of the study of 

hydrological opt ics which has been extant for many years , but t h i s 

non-l inear i ty has been considered more of an annoyance than a 

source of enlightening information. In pa r t i cu l a r t h i s non-

l inea r i ty made i t impossible to define a single unambiguous K , 

of the kind appearing in (66) which otherwise could be used to 

help c lass i fy the opt ica l propert ies of the medium. 

The current viev\rs in hydrological optics are such that the 

departures from l i n e a r i t y by semi-log plots of '\-\(Z)—) , \\LZ,+ ) 

and \')CZ.) are a source of extremely useful ins igh t into the 

i n t r i ca t e s t ructure of l igh t f ie lds in na tura l hydrosols. Far 

from being ignored, these departures from l i n e a r i t y should be 

welcomed as harbingers of new and deeper understanding. The loga

rithmic slopes of the H(Z,~.) , H( 2>+) , and h(£) p lo ts 

are defined in general as follows: 

(67) 

K(2,±) --••• -

41(2) -
\-)(i) dz-
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Some Relations Betx/een Inherent and Apparent Optical Properties 

're continue our present discussion of optical properties 

of natural hydrosols by exhibiting a few general relations 

between the inherent and apparent optical properties discussed 

above. These relations have been found helpful in collating the 

data of basic experimental research and have provided, in some 

instances, deeper insight into the whys and hows of the fine struc

ture of the depth dependence of the apparent optical properties. 

The derivations of these relations need not concern us here. These 

detrils, and. some further relations may be found elseivhere 

(Preisendorfer 1958a). 

The most important of these connecting relations is the 

following: 

RlZ,--) - f (69) 
k ( z , + ) -*- a (2,-*-) 

whe re 

(70) 

a.(?,±\= DC2,±) a-<2> • 
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Thus (69) l inks together the « -functions for i r radiance , the 

R -functions and the D -functions, i . e . , the main apparent 

opt ica l proper t ies , with the inherent opt ica l property CX . 

There also are available the follovdng useful inequa l i t i e s : 

a(2,~) < KiZ,-) ^ < * ( 2 ; - ) 

or equivalently: 

S i ' i l a r l y , 

u. 

or eouivalently: 

(71) 

(72) 

aC2, + ) ^ - X(Z,+) S ^ ( 2 , t ) (73) 

r w ; ^ _ £LL±} ^ ; * ( * ) , (74) 



LIO .>f. 5-"- - 69 - 67 -

whe re 

(75) 
,X(Z, t ) = D C ? , ± ) c ( 2 ) , 

The right-hand sides of a l l these inequa l i t i es hold without 

qual i f ica t ion . However, the left-hand side of (7l) holds when

ever G<$ \<CZ)+) . The left-hand side of (73) holds 

whenever K( Z, - ) <• O . While our treatment of the down

welling and upwelling streams has been del iberate ly kept symmetrical 

whenever possible , nature takes a hand in the matter a t t h i s point 

and c lear ly shows a preference to the downwelling stream in the 

following sense: the condition O ^ K( 2,-f-) almost always 

holds, so tha t the inequa l i t i es of (71) for downwelling stream 

almost always hold. However, the condition \< (2,—) ^ 0 almost 

never holds, so that the l e f t side of (73) for the upwelling 

stream almost never holds. The condition )< ( 2,—)-^. Q means 

that the downwelling stream i s constant or growing with increasing 

depth, a s i tua t ion which occurs, i f at a l l , only in regions of 

very shallow depths in the hydrosol, or in regions where there are 

self-luminous sources d i s t r ibu ted throughout some layer . 

Some further inequa l i t i es which are helpful in checking 

experimentally obtained opt ica l propert ies and which aid in the 
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understanding of the mutual in teract ions between the up and down

welling streams of radiant flux are: 

K ( 2 ) + ; R ( f , - ) ^ . K ( i 7 j ~ ) 7 ( 7 6 ) 

or equivalently 

dH(z>~) ^ cfH(Zj-i-) ( 7 ? ) 

dZ " d? 

These re la t ions hold for a r b i t r a r i l y s t r a t i f i e d source-free media. 

The same i s t rue for: 

d (<(.?>-) - - - R«,->{W) -«*,+>]. m 

The quant i t ies a ( 2 , ± ) ; ^(£,t.) defined in (70) 

and (75) are hybrid opt ical proper t ies : they are the resu l t of 

simple combinations of the inherent and apparent opt ica l propert ies , 

Eq. (70) gives the volume absorption function for each stream, 

and (75) 'dves the volume attenuation function for each stream. 
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These quan t i t i e s by def in i t ion do not f a l l d i rec t ly into e i the r 

the inherent or apparent c l a s s . 

To round out and complete the p ic ture of the hybrid opt ica l 

p roper t ies , we mention the (volume) forward scat ter ing functions: 

f ( Z , ± ) , (79) 

the (volume) backward scattering functions: 

b < 2 , ± ) , 

and the (volume) t o t a l sca t te r ing functions: 

(80) 

^CZ,±) , 
(81) 

for each stream. Detailed def in i t ions and discussions of these 

quan t i t i e s may be found in the references (Preisendorfer 1957b). 

The hybrid op t ica l proper t ies play important roles in the exact 

theore t ica l discussions of the two-flow analysis of the l i gh t 

f i e l d s . They also are of use in co l la t ing experimental data on 

inherent and apparent opt ical p roper t i e s . Examples of such uses 

may be found in the references (Preisendorfer 1958a). 
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The Behavior of the Apparent Optical Properties at Great Depths 

I t was emphasized repeatedly during the. introduction and 

discussion of the apparent op t ica l propert ies that they exhibit cer

tain useful, regular behavior pa t t e rns . One of the most s t r ik ing 

of these pa t te rns occurs at great depths in op t ica l ly deep na tura l 

waters. We br ie f ly summarize here some of the more important of 

these f a c t s . Proofs of these r e m i t s , t h e i r h i s t o r i ca l background, 

and p rac t i ca l consequences are given elsewhere. (Preisendorfer 1958b, 

1958c, 1958d). 

For s implici ty, we consider an i n f i n i t e l y deep source-free 

homogeneous natura l hydrosol. In ac tua l i ty the r e su l t s ci ted 

below hold in a l l na tura l hydrosols in which the ra t io 0 " / x 

becomes independent of depth with increasing depth. 

In analogy to |<(2,-f-) , k(Z}—) , and Jl(Z) , we can 

define one more « -function. This i s associated \*ith radiance 

N ( Z , e , < £ ) : 

I t can be shown tha t 

( i ) J < ( 2 ) approaches a l imi t a s , j? —T" CO . Let t h i s 

l imi t be denoted by jka, • 

d* (82) 
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In symbol; 

/Koo ^ i i m ^ ^ A<U) . (83) 

I t can be shown that JJCj does not exceed OC . In symbols: 

( i i) For each fixed (B,<£) , | < (2 , e , ^ ) approaches 

a Limit as £ - * co , and this limit is independent of 

(&)<£) - This common limit for a l l directions (9, 4>) is 

Jfl . In symbols: 

^ 1 ? _ ^ , ^ \<L2, 9,i>) = J L 00 

for a l l (0 ,<£) 

n ( i i i ) ^ ( Z , — ) •ind )< (.? ^-H ) a;pmnoh l i m i t s as 

and these l i m i t s are equal to 9) in ^v-Vii«-

(iv) The di st.ribution functions- D(^j-f-) and DfZ>~^ 

approach a limit as '-7 —^ Q_-> . Let t.h«3o livi:tr= be denoted 

b7 D(+) and D ( - ) . In symbols: 

"00 



vA. 

(84) 

(v) The. r e f l e c t a n c e funct ion k ' ( f-; ~ ) approaches •• 

l i m i t as y •—?-o-> . Let t h i s l i m i t be denoted by • |< r
a , '. 

In synbols : ;' 

T<j? - l n . i £ _ • £ , ' R ( " 2 , - ) . 

Then i t fol lows from (69) t h a t 

Rco ~ ~~ * (85.) 

4\w + DO-) 

We.'conclude with a few observations: Property (i) shows 

that the depth ..dependence of the amount of light (more precisely, 

radiant density, or scalar irradiance) in a natural hydrosol 

eventually becomes exactly exponential in behavior. The value 

Jiaj is uniquely determined by 0"" and cU. „ Property (ii) 

states that the radiance distribution eventually assumes.a fixed' 

angular structure'(the asymptotic radiance distribution) at great 

depths. This limiting angular structure is readily found in 
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principle; it is independent of the externa], lighting conditions, 

r:r.d depends only on the an^ul-ir structure of (J- . Property 

(iv) is an equivalent assertion to (ii), but now phrased in 

terms of the distribution functions. The quantities D C"W 

and 0(.~) are readily obtained from the limiting form of the 

radiance distribution functions. Properties (iii) and (i) show 

that the logarithmic derivatives of irradiance and scalar 

irradiance eventually coincide as depth increases indefinitely. 

It may easily be shown that the logarithm!~. derivatives of 

bC2,-t-) and h(2j-) also approach sR.ca as ? ~><^ 

(Of course, then so do the logarithmic derivatives of h^-^ , 

and h w ( ' ? , ± ) approach .Jfe^ as Z --> <& ). Finally, 

property (v) statrs that f^*^-) approaches a fixed value 

as x —•*? «J , and this value is characterized in terms of 

'>to> , D(A) > m& C*- } as shown in (85). 
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FOOTNOTES 

Footnote 1. In radiometric discussions requiring extreme care 

with respect to dimensions, it is sometimes necessary 

to make an explicit distinction between outward and inwa/d 

types of radiant flux. In such events, it is customary 

to use ra for outflowing flux and p- for inflowing 

flux, so that W — P,j'A and H - K/A become 

symbolically distinct. 

Footnote 2. For example, in radiative transfer theory, just 

as in fluid dynamics and neutron transport theory, the 

equations are most easily formulated by adopting a Lagran-

gian approach: the investigator follows in imagination the 

flow of material in its natural path through space, and 

tallies up its gains and losses all along the path. This 

tally takes the form of a continuity equation; in the case 

of radiative transfer theory, it is the equation of transfer 

for radiance in which the surface radiance (7) is most 

conveniently used . 

Footnote 3. For complete generality, wc must also take into 

account the possibility that the index of refraction of the 

medium differs at S <incl at G . This situation is 

encountered, for example, when the line of sight has one 

end in air and the other in water. To this end, suppose 
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that the index of refraction at. S is r;D , and at <S 

is fif~ . Then the appropriate form of (22) is Nh —-

--i.O\r/f)<^) ~]\ Ho 17 retains i t s interpre

tation as the transmittance for the path. I ts general 

form is 77 -- &3cp\-(j&~^") diJj wMCh reduces to (.21) 

if c< is a constant over the path. 

v'ootnote 4. The relation between scalar irradiance and radiant 

density u. (no. of joules of radiant energy per unit 

volume) i s : n — ITU where V" is the speed of light 

in meters per second. 

Footnote 5« A preliminary word about notation and terminology 

at this point would be desirable. The present discussion if 

concerned with the phenomena of scattering and absorption 

in optical media, specifically natural hydro sols. The 

mathematical concepts that handle these ideas are: the 

volume scattering function (JT , the volume absorption 

function Q. , and the volume attenuation function oL . 

First of al l , the word "volume" is used to distinguish 

these quantities from their "mass" counterparts in astro-

physical optics in which the passage of light i s princi

pally through gaseous rather than incompressible liquid 

media. Furthermore, the word "attenuation" is understood 

to denote the effects of the simultaneous action of 

scattering and absorption. Finally, the word "function" 

is used to point up the fact that the quantities C\ , and <x 
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are functions in the mathematical sense: to each point of 

the optical medium they assign a rea l number which—with 

the appropriate units—has the physical significance 

described in de t a i l below. I f <X , CJL , and <j~ are-

independent of position in the medium, then the medium i s 

said to be homogeneous, and to point up t h i s fact throughout 

a discussion which employs O- and oC , we w i l l refer to 

these as the volume absorption coefficient and volume 

attenuation coeff icient , respectively.. The quanti ty cj~ 

wi l l always be referred to as a function, because i t 

depends in general not only on position in the medium but on 

two given d i rec t ions . In the i n t e r e s t s of s implici ty a l l 

subsequent discussions wi l l deal with homogeneous media. 

Footnote 6. We observe that the decomposition of the flow of 

radiant energy in a natural hydrosol need not be into up 

and downwelling flows: the two flows could conceivably 

be thought of as occurring across any a r b i t r a r i l y oriented 

plane. Furthermore, i t i s quite possible to consider decom

posi t ions into more than two flows. However, the essen

t i a l l y p lane-para l le l geometric structure of a l l natural 

hydrosols and t h e i r almost unanimous propensity toward 

horizontal s t r a t i f i c a t i on of physical propert ies assigns 

a par t icu lar ly high u t i l i t y to the adopted tvNro-flow 

decomposition. 
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Footnote 7. This function i s independent of depth in homogeneous 

media (for def in i t ion , see footnote 6) . 

Footnote 8. This function is gpnerally dependent on depth, even 

in homogeneous media (cf. Tabic Z, and apr;rooriate defining 

equations). 
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TABLE 1 

EXAMPLES OF THE VALUES OF DC 2 , 1 > , '<< Z., T) , O.U ) , fc(£,-j 

(Meters) ° ^ J " ^ D(Z,-h) K ( / , - ) K l f , + ) O.C4) R ( £ • , - ) 

4.24 1.247 2.704 0.0215 

7-33 0.129 0.126 
10.42 1.288 2.727 0.153 0.150 0.11$ 0.0184 

13.50 0.178 0.174 

16.58 1.291 2.778 0.174 0.172 0.118 0.02G4 

22.77 0.171 0.170 

28.96 1.JJ13 i .781 C.169 0.169 0.11? 0.0227 

35.13 0.167 0.167 

a . 30 i . j l D / .757 0.165 0.165 OAil 0.023 5 

47.50 0.162 0.163 

53-71 i . jC? >.1& 0.158 0.158 0.112 0..0234 

59.90 0.154 0.154 

Explanation of Table 1 ; Depths and u n i t s a re in terms of m e t e r s . Data 

i s a s soc i a t ed with a wavelength of 480 mu arid was der ived from radiance 

information summarized in (Ty l e r , 1958a). The o p t i c a l medium (Lake P^nd 

O r e i l l e , Idaho) was found t o be e s s e n t i a l l y homogeneous, t h e volume 

a t t e n u a t i o n c o e f f i c i e n t being Cx = 0 .402/meter . The sky was c l e a r and 

o 
sunny with the sun a t about 40 from the z e n i t h . The v a l u e s Cli.Il wr.rf-. 

obtained by means of (57) 

http://Cli.Il
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TABLE 2 

HIERARCHY OF OPTICAL. PROPERTIES IN HYDEOLCGICAL OPTICS 

INHERENT O P T I C A L PROPERTIES A P P A R E N T O P T I C A L PROPERTIES 

Hlite}4>) 

f(2) 

-4 . (2) 

b(i) 

U U , ± ) 

<*(*) cr(2;e^;.6'>') aX't) R(2,2r) OCh^ 

h6£;±) 

J 

K(2}i:) Jk.ll) 

MYSRJD OPTICAL PROPERTIES 

Ud^) OL ( 2 , f ) 

T(.z,r) bcz.±) 

>4t£,±) 

http://Jk.ll
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TABLE 3 

INDEX OF SPECIAL CONCEPTS USED IN HYDROLOGICAI OPTICS 

SYMBOL DESCRIPTION OF CONCEPT DEFINING EQUATIONS 

K-i£ y ,o6) Radiance at depth .? in (5) 
direction (6j<£) 

M \.i,,B,P) Path function at depth .? in (49) 
'F ' direction (&,<£) 

* j P a t h radiance of path of length (24) 
N h (2,«j<p; j- , with initial point at 

depth £ , direction {B,£>) 

\i(2,±) 'Jpwelling (4) and downwelling (-) (18) 
irradiance at depth 2 

L / 2 + •) Upwelling (+•) and downwelling (—) 
' scalar irradiance at depth 2 

1, +, Upwelling (-<-) and downwelling (-) (59), (60) 
'4-jTA = --i spherical irradiance at depth 2 

-r î» e rfj) B e a m t r a nsmittance of path of (21) 
'' ( "" '7 ; length y with initial point at 

depth 2 , direction (9,j->) 

ex'(2) Value of volume attenuation function (41)*" 
at depth 2J, 

G-(2;B,d-.e',ct'') Value of volume scattering function (46), (49) 
at depth 2 7 for incident flux in 
direction (.©^Vj,and scattered flux 
in direction (e,^- )7 

fc?) (Volume) forward scattering .-: (51) *' 
function at depth Z„7 

1. . _ , (Volume) backward scattering function (52) * 
uiJt> at depth ?7 

Jl{2) (Volume) total scattering function (53) "' 
at depth {?/ 

* Refer to footnote 5. 
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SYMBOL DESCRIPTION OF CONCEPT DEFINING EQUATIONS 

n >->•) Volume absorp t ion funct ion a t (57) 
' " " depth ? 7 

fc(% •+•) Ref lec tance a t depth Z fo r upwell ing (63) 
; (+")> downwelling ( - ) flux.8 

Ret, Limit of £ ( . £ , - ) as ? —•»- oo (35) 

£X2 -t) Distribution function for upwelling 
( +-), downwelling ( - ) flux at 
depth j?,8 (64) 

D(±) Limit of D(Z>-£) as g -=• oo (84) 

« ( « ; ±) K - func t ion fo r upwell ing (-*-), 
downwelling (--) i r r a d i a n c e a t 
depth 2.8 (67) 

xRf?) K - f u n c t i o n for s c a l a r i r r a d i a n c e 

a t depth if (68) 

JJlK Limit of . 4 ( H ) as Z —> co (g 3 ) 

, ,_, .j. >. Volume a t t e n u a t i o n funct ion for (70) 
°" ' """ upwell ing ( + - ) , downwelling ( - ) f l u x a t 

d e p t h Z * 
fr 2 •£) (Volume) forward s c a t t e r i n g funct ion (79) 

' f o r ;upwelling (-+-), downwelling (—) 
f lux a t depth Z.8 

lo(2 -) (Volume) backward s c a t t e r i n g funct ion (80) 
for upwell ing (-+-), downwelling (—) 
f lux a t depth zf 

^ iy +\ (Volume) t o t a l s c a t t e r i n g funct ion (81) 
; ~ for upwell ing (-+-)> downwelling (—) 

f l u x a t depth £ ° 

C\ (?,"+:) Volume absorp t ion funct ion for (70) 
upwell ing ( + • ) , downwelling (—) f lux 
a t depth ^ 8 

* Refer to footnote 5-
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T/iBLE 4 

BASIC RADIOMETRIC CONCEPTS 

1 

! NAME ! BASIC SYMBOL 

• j — _ 

f 
j m . k . s . UNITS 
I 

1 

DEFINITION 

Radiant Flux i p 
j 

-j — — . 

j wat t 
i 

Basic | 

j Radiant Emittance 
i 
i ... 

1 
W ! watt/m 

i 
i 

W = P 0 / A 

I I r r a d i a n c e ! H ! 2 
i watt/m 
i 

i 

H = Pf/A 

Radiance 

! (F i e ld ) 

(Surface) 
N 

i 

j 
i 
t 

watt / (m2 x s to radian ) 
Kj-Po/AaL= ~^-

j J c a l a r I r r a d i a n c e h watt/m4. U~\ Ncfii 

Spher ical 
I r r a d i a n c e :' Krr 

/ 2 
watt/m 

I'M IT - 4~*° 

Radiant 

Densi ty 
i 

U. jou le /n r 
i 

i 
i 

Radiant, 
! Energy 

i ! 
Li 

1 

wat t sec -: j ou le 

" i 
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FIGURE; LEGENDS 

Figure la 

Figure lb 

Figure lc 

Schematic diagrams of radiant flux, meter, Gershun 
tube, and spherical irradiance meter. 

Figure 2a Illustrating conceptual duality of irradiance H 
and radiant emittance V\/ 

Figure 2b Derivation of cosine law for surface radiance. 

Figure 3a Derivation of the cosine law for irradiance. 

Figure 3b Derivation of the inverse square law for irradiance. 

Figure 4a 

Figure 4b 

Figure 4c 

Derivation of the relation between surface radiance 
and field radiance. 

Derivation of the formula for path radiance. 

Figure 5 Derivation of the relation between scalar irradiance 
and spherical irradiance. 

Figure 6a Experimental arrangement for the determination of 
volume attenuation function c*£ 

Figure 6b Hypothetical plot of experimental results for 
determination of oC • 

Figure 7 Experimental arrangement for the determination of the 
volume scattering function (J~ 

Figure 8 The experimental determination of the volume 
absorption function O- . 

Figure 9a Schematic diagrams for instruments to measure up-
and downwelling spherical irradiance. 

15 October 1958 
RWP:deg 
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(a )Radiant Flux Meter 

nP 
I N C I D E N T FLUX 

P 

(b) Gershun Tube 

(c) Spherica 
I rradiance 
Meter INCIDENT 

FLUX 

A = 47 r r 2 

RECORDER 

P = <I>R 

h ^ \ RECORDER , J 4 7 r N 

= _£_ 
47T A 

Figure 1 
Preisendorfer and 
Tyler 
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I R R A D I A N C E E M I T T A N C E 

( b ) =c> 

Figure 2 

Preisendorfer and Tyler 
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(a) 

(b) 

Figure 3 

Preisendorfer ana Tyler 
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/normal to sphere 

(0,<£ 

Figure 5 

Preisendorfer and Tyler 
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(a) 

(b) 
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\ ^ Slope = - a 

\ -i-

< > 

r 

Range of linearity 

Figure' 6 
Preisendorfer and Tyler 
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