UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Identifying the structure of hypotheses that guide search during development

Permalink

https://escholarship.org/uc/item/7zs6w9db

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 40(0)

Authors

Markant, Doug Jones, Angela Pachur, Thorsten et al.

Publication Date

2018

Identifying the structure of hypotheses that guide search during development

Doug Markant

University of North Carolina at Charlotte, Charlotte, North Carolina, United States

Angela Jones

Max Planck Institute for Human Development, Berlin, Germany

Thorsten Pachur

Max Planck Institute for Human Development, Berlin, Germany

Alison Gopnik

University of California at Berkeley, Berkeley, California, United States

Azzurra Ruggeri

Max Planck Institute for Human Development, Berlin, Germany

Abstract

People use hypothesis-driven search to learn about novel concepts, favoring information sources that reduce uncertainty across a set of hypotheses about a target concept. We used childrens information search to investigate their reliance on two types of hypothesis spaces: exemplar-based representations or a hierarchical hypothesis space based on cue abstraction. Five- to seven-year-olds learned to rank monsters according to a hierarchical decision rule involving two cues (shape and color). Children generated evidence by selecting pairs of monsters and observing which one ranked higher; they were then tested on whether they learned the decision rule and correct ranking. A comparison of exemplar-based and cuebased Bayesian models revealed that all children made search decisions predicted by the exemplar-based model, but older children could use collected evidence to infer the underlying hierarchical structure. These results suggest a dissociation between the representations used to drive search and to make inferences from evidence during development.