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Abstract 
 

 Literature on asymptotic robustness of normal theory (NT) methods outlines 

conditions under which the NT estimator remains asymptotically efficient and the NT test 

statistic retains its chi-square distribution even under nonnormality. These conditions have 

been stated both abstractly and in terms of properties of specific models. This research 

discusses issues associated with extending asymptotic robustness theory to the direct ML 

estimator and associated test statistic when data are missing completely at random (MCAR). 

It is shown that the same abstract robustness condition necessary for robustness to hold with 

complete data is required for incomplete data, while properties of specific models (such as 

mutual independence of the errors and their independence of the factors in a CFA model) no 

longer ensure robustness with incomplete data. The lack of robustness in such a case is 

illustrated both mathematically and empirically via a simulation study. Violation becomes 

more severe when the data are highly nonnormal and when a higher proportion of data is 

missing.   
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On Asymptotic Robustness of NT Methods with Missing Data  

  

 In structural equation modeling (SEM), assumptions are often made about the 

distribution of the data in order to obtain parameter estimates, their standard errors, and a 

global test of model fit. The most common assumption is that the data come from a 

distribution with no excess kurtosis, such as the multivariate normal. If this assumption is 

met, the corresponding normal theory (NT) parameter estimates are asymptotically efficient, 

and the associated NT test statistic is asymptotically chi-square distributed. Because of the 

highly-structured nature of the 4th order moments under multivariate normality, the NT test 

statistic converges to a chi-square variate relatively quickly, so that a chi-square 

approximation works well starting at medium sample sizes (e.g., Bentler & Yuan, 1999).  

However, more often than not, the assumption of no excess kurtosis in the population is not 

true, yet the above method is still utilized because of software limitations, lack of better 

alternatives, or other reasons. In this case, the NT parameter estimates remain consistent but 

are in general no longer asymptotically efficient, and therefore the NT standard errors no 

longer accurately reflect their variability. The NT test statistic is now asymptotically a 

mixture of independent one degree of freedom chi-square variates, with weights depending 

on both the properties of the model and on the kurtosis matrix of the population (Satorra, 

1989; Satorra & Bentler, 1994).  

 One solution is to rescale the NT test statistic by the estimated sum of the mixture 

weights, leading to a statistic whose distribution is better approximated by a chi-square 

variate (Satorra & Bentler, 1994). Correct standard errors for NT parameter estimates can be 

obtained by computing the so called “sandwich” standard errors (Satorra & Bentler, 1994), 

which reflect the greater variability of the NT parameter estimates under nonnormality. This 

approach is a viable option. However, researchers have also identified conditions under 
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which NT parameter estimates remain efficient even under nonnormality and the NT test 

statistic converges to a chi-square variate without any corrections. These conditions have 

been stated in abstract form (e.g., Shapiro, 1986) as well as in terms of properties of specific 

models (see references below). It should be noted that while these conditions ensure the 

estimates remain asymptotically efficient, NT standard errors will in general no longer be 

accurate, except for some parameters (Amemiya, Fuller, & Anderson, 1987; Anderson & 

Amemiya, 1988). Sandwich-type standard errors will still be correct, however. Thus, 

asymptotic robustness of NT methods is primarily of interest because it ensures the correct 

limiting distribution of the NT test statistic. Asymptotic robustness of the NT methods has 

been studied in the context of the factor analytic models and more general LISREL models 

(Amemiya & Anderson, 1990; Browne, 1987; Browne & Shapiro, 1988; Mooijaart & 

Bentler, 1991; Shapiro, 1987), growth curve models (Browne, 1990; Satorra, 2001), multiple-

group mean and covariance structure models (e.g., Satorra, 2001, 2002), and multilevel 

models (Yuan & Bentler, 2005).  It should be noted that the robustness of other statistics can 

also be studied, even if those that are not chi-square distributed (Satorra & Bentler, 1990), but 

NT methods remain the most important practical application in asymptotic robustness 

literature. 

 Nonnormal data is only one of the complications that SEM researchers encounter. 

Missing data is another problem that complicates statistical inference, perhaps equally as 

vexing. Real life data often combine both of these characteristics: they are nonnormal as well 

as incomplete. NT methods have been successfully extended to incomplete data whenever the 

missing mechanism is such that a consistent unstructured estimate of the population 

covariance matrix is available (Yuan & Bentler, 2000). However, their asymptotic robustness 

properties have not been studied. The goal of this paper is to investigate the robustness 

properties of the NT estimators and the NT test statistic when the data are incomplete as well 
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as nonnormal. We focus on covariance structure models and use the factor analytic model as 

our main example.  

This paper is organized as follows. In Section 1, the necessary asymptotic theory and 

abstract conditions ensuring robustness of NT methods with complete data are reviewed. 

Instead of reviewing the mathematics behind the many existing approaches (e.g., Amemiya & 

Anderson, 1990; Browne & Shapiro, 1988; Mooijaart & Bentler, 1991), we adopt the 

framework of Mooijaart and Bentler (1991), which will also be used to study what happens 

with incomplete data. In Section 2, the necessary asymptotic theory for incomplete data is 

reviewed and some additional results are derived. It is then shown that the abstract condition 

required for robustness of NT methods to hold with complete data generalizes fully to 

incomplete data. In Section 3, the connection between complete and incomplete data is 

explored. The following question is asked: if incomplete data were obtained from complete 

data where robustness holds, will robustness hold in the resulting incomplete data 

population? It is shown that the answer is, unfortunately, no. This result implies that 

conditions on specific models that ensure asymptotic robustness with complete data will not 

generalize to incomplete data. This is illustrated in Section 4, where specific conditions for 

robustness under a general factor model are stated, and an example is given to show that 

these conditions do not ensure robustness with incomplete data. The resulting lack of 

robustness is illustrated empirically via a simulation study comparing the performance of the 

NT test statistic with complete and incomplete nonnormal data. Finally, Section 5 contains a 

discussion. We address why the multiple group approach to robustness developed by Satorra 

(e.g., 2001) is not the correct framework to approach the study of robustness with missing 

data, despite the often drawn analogy between multiple group and incomplete data situation. 

Implications of our results for practitioners are also discussed.  
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1. Asymptotic Robustness with Complete Data 

 Let the rows of the n p×  data matrix X  be a random sample of size n  from a 

population with the mean vector ( )µ θ  and a p p×  covariance matrix ( )θΣ , where θ   is a 

1q×  vector of parameters. That is, θ  includes both mean and covariance structure 

parameters. In this paper, only covariance structure models are studied, so that θ  can be 

partitioned as 1( , )θ θ µ′ ′ ′= , where 1( )θΣ = Σ . Define a ( * ) 1p p+ ×  vector ( , )β σ µ′ ′ ′= , 

where vechσ = Σ , the vector of nonreduntant elements of Σ  and * .5 ( 1)p p p= + .  Let 

1 1x X
n

′=  be the vector of sample means, and 1 ( 1 ) ( 1 )S X x X x
n

′ ′ ′= − −  be the sample 

covariance matrix. We obtain β̂ , the normal theory maximum likelihood (ML) estimate 

under the saturated model ( )βΣ , by maximizing: 

1 1

1

( ) ( ) ( log(2 ) log ( ) ( ( )) ( ( )) ' ( )( ( ))
2

n

i
i

nl l p tr S x xβ β π β β µ β β µ β− −

=

= = − Σ − Σ − − Σ −∑ . 

We obtain θ̂ ,  the normal theory ML estimate under the structured model ( )θΣ , by 

maximizing: 

1 1

1

( ) ( ) ( log(2 ) log ( ) ( ( )) ( ( )) ' ( )( ( ))
2

n

i
i

nl l p tr S x xθ θ π θ θ µ θ θ µ θ− −

=

= = − Σ − Σ − − Σ −∑ .  

 Let s vechS=  be the vector of nonredundant elements of S . With complete data, the 

estimator β̂  has a simple form: ˆ ( , )s xβ ′ ′ ′= . The likelihood ratio test statistic for testing the 

hypothesis ( )θΣ = Σ  against the hypothesis ( )βΣ = Σ  is given by ˆ ˆ2( ( ) ( ))MLT l lθ β= − −  or 

equivalently ˆ ˆˆ ( , ( ))ML ML MLT nF nF β β θ= = , where ˆ ˆ( , ( ))MLF β β θ  is the minimum of 

1 1 1ˆ( , ( )) ( ( )) log ( ) ( ( )) ( )( ( ))ML n nF tr S S x x pβ β θ θ θ µ θ θ µ θ− − −′= Σ − Σ + − Σ − − . Thus, θ̂  can 

equivalently be defined as the minimizer with respect to θ  of the discrepancy function MLF . 



  Robustness with Missing Data 7 

7 

Following Browne (1984), a scalar valued function ( , )F a b  is called a discrepancy function if 

it has the following three properties: ( , ) 0F a b ≥  for all a ,b ; ( , ) 0F a b =  if and only if a b= ; 

and F  is twice continuously differentiable in a  and b . However, the definition of θ̂  and MLT  

via the likelihood equations makes the extension to missing data more straight-forward.  

 In the asymptotic robustness literature, robustness of GLS (generalized least squares) 

discrepancy functions is usually studied (e.g., Browne, 1987; Mooijaart & Bentler, 1991).  A 

GLS discrepancy function has the form ˆ ˆˆ( ( )) ( ( ))GLSF Vβ β θ β β θ′= − −  for some positive 

definite matrix V̂ , possibly random. A discrepancy function not of this form, such as MLF , 

can be shown to asymptotically have the same minimizer, and the same minimum, as an 

appropriately chosen GLS discrepancy function (Browne, 1974; Shapiro, 1985). Let 0θ  be 

the true parameter value, and let 0 0( )β β θ= . Shapiro (1985) showed that under mild 

regularity conditions which ensure that 0
ˆ

p

β β→ , the minimizer (and the minimum) of any 

discrepancy function F  and the minimizer (and the minimum) of 

ˆ ˆˆ( ( )) ( ( ))GLSF Vβ β θ β β θ′= − − , where V̂  is any consistent estimate of 

0

2

0
1 1 ( )( )
2 2

FV F
β

ββ
β β

∂
= =

′∂ ∂
 are asymptotically equivalent. It follows that the respective test 

statistics, ˆnF  and ĜLSnF , are asymptotically equivalent. Thus, to study asymptotic properties 

of the ML estimator and test statistic, it is sufficient to study asymptotic properties of the 

appropriately chosen GLS estimator and test statistic. In particular, MLF  has the following 

Hessian matrix: 
1 1

0
1

1 ( ) 01 ( ) 2
2 0

p p
ML

D D
F β

− −

−

⎛ ⎞′ Σ ⊗Σ⎜ ⎟=
⎜ ⎟

Σ⎝ ⎠

,  where pD  is the duplication 
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matrix1 of Magnus and Neudecker (1999), and the blocks correspond to the 

partitioning ( , )β σ µ′ ′ ′= . From this result, we have the asymptotic equivalence of the ML 

approach and, for example, a GLS approach that sets 
1 1

1

1 ( ) 0ˆ 2
0

p pD S S D
V

S

− −

−

⎛ ⎞′ ⊗⎜ ⎟=
⎜ ⎟
⎝ ⎠

 . All 

approaches asymptotically equivalent to the ML approach will be referred to as NT.   

We also need the notion of a correctly specified discrepancy function. The central 

limit theorem allows us to assume that 0
ˆ( ) (0, )n Nβ β− → Γ  for some positive definite 

matrix Γ . The discrepancy function F  is said to be correctly specified if 1
0

1 ( )
2

F β−Γ =  

(Browne, 1984). In other words, the discrepancy function F  is correctly specified if the 

minimizer θ̂  of F  and the minimum value ˆˆ ( )F F θ=  are asymptotically equivalent to the 

minimizer and the minimum of a GLS function with the weight matrix V̂  such that 1ˆ
p

V −→Γ .  

For a correctly specified discrepancy function, θ̂  is asymptotically efficient, with 

1 1
0

ˆ( ) (0, ( ) )n Nθ θ − −′− → ∆ Γ ∆  where 
0

( )

θ

β θ
θ

∂
∆ =

′∂
, and the test statistic ˆnF  is 

asymptotically chi-square distributed with *p p q+ −  degrees of freedom.  

The discrepancy function can be correctly specified in two ways. Some true 

assumptions can be made about Γ  and the discrepancy function can be chosen in accordance 

with those assumptions. For example, if the data are normal, and we correctly assume that 

0
ˆ( ) (0, )Nn Nβ β− → Γ  where 2 ( ) 0

0
p p

N
D D+ +⎛ ⎞′Σ⊗ΣΓ = ⎜ ⎟⎜ ⎟Σ⎝ ⎠

, any discrepancy function F  

such that 1
0

1 ( )
2 NF β −= Γ  is correctly specified. This includes the ML and GLS approaches 

discussed above. As an alternative, estimation can be carried out without making any 
                                                 
1 pD  is such that pvecA D vechA=  for any symmetric p p×  matrix A , and pD+  is its Moore-Penrose inverse. 
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distributional assumptions and using a completely or partially unstructured estimate of 1−Γ . 

For example, in the ADF (asymptotically distribution free) approach,  

1

1ˆ ( )( )
n

i i
i

z z z z
n =

′Γ = − −∑ , where ( , ( ) )i i i iz x vech x x′ ′ ′ ′=  and ix  is the ith  row of X . This 

unstructured estimate has the property that ˆ
p

Γ→Γ  as long as the distribution of the data has 

finite fourth-order moments (Browne, 1984). The ADF estimator obtained by minimizing 

1ˆ ˆˆ( ( )) ( ( ))ADFF β β θ β β θ−′= − Γ −  is asymptotically efficient within the class of estimators 

based on β̂ , and the associated test statistic ˆ
ADFnF  is chi-square distributed. Despite its 

appealing asymptotic properties, this method has been found to perform extremely poorly 

unless the sample size is very large (Curran, West, & Finch, 1996; Hu, Bentler, & Kano, 

1992), and the first approach of making restrictive assumptions about Γ  is often resorted to 

in practice. More often than not, these assumptions are not true, and the first approach leads 

to the use of a discrepancy function that is not correctly specified. The literature on 

asymptotic robustness shows that there exist conditions under which the discrepancy function 

MLF  is misspecified yet  θ̂  is still asymptotically efficient and ˆ
MLnF  is still chi-square 

distributed (e.g., Browne, 1987; Mooijart & Bentler, 1991; Satorra & Bentler, 1990; Shapiro, 

1987). Because these are also the properties of the ADF estimator, the usual approach to 

demonstrating asymptotic robustness of a certain estimator and test statistic is to show that 

under these conditions they are asymptotically equivalent to the ADF estimator and test 

statistic.  

 We now define 1C V −= Γ − . Following Mooijaart and Bentler (1991), we say that Γ  

satisfies the robustness condition if there exists a symmetric q q× matrix D  such that 

1 'V D−Γ = + ∆ ∆ , which implies that 'C D= ∆ ∆ . The robustness condition can be equivalently 

written as 1 1 1'V D− − −= Γ +Γ ∆ ∆ Γ , for some other symmetric matrix D  (e.g., Mooijaart & 
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Bentler, 1991). If this condition is satisfied, the estimator θ̂  obtained by minimizing 

ˆ ˆˆ( ( )) ( ( ))F Vβ β θ β β θ′= − −  for any ˆ
p

V V→  is asymptotically efficient, and the associated 

test statistic ˆnF  is asymptotically chi-square distributed. The proof relies on the following 

property of GLS discrepancy functions. The functions 1
ˆ ˆ( ( )) ( ( ))F Vβ β θ β β θ′= − −  and 

2
ˆ ˆ( ( )) ( ' )( ( ))F V V D Vβ β θ β β θ′= − + ∆ ∆ − , where D  is any symmetric matrix such that 

'V V D V+ ∆ ∆  is positive definite, have the same minimizer and the same minimum (Browne, 

1987; Mooijaart & Bentler, 1991; Rao & Mitra, 1971). For NT methods, the robustness 

condition is given by 'N DΓ = Γ + ∆ ∆ . Whenever this equality holds, the NT estimator is 

asymptotically equivalent to the ADF estimator and thus is asymptotically efficient within the 

class of estimators based on β̂ .  Furthermore, the NT test statistic is asymptotically 

equivalent to the ADF test statistic, and thus is asymptotically chi-square distributed 

regardless of the distribution of the data.  

 We now only concern ourselves with the robustness of NT methods, and redefine 

NC = Γ −Γ . With complete data, we can partition 21

21

⎛ ⎞′Γ ΓΓ = ⎜ ⎟⎜ ⎟Γ Σ⎝ ⎠
, and correspondingly 

21

21 0
CC

⎛ ⎞′Γ= ⎜ ⎟⎜ ⎟Γ⎝ ⎠
, where 2 ( )p pC D D+ +′= Γ − Σ⊗Σ  contains population fourth-order cumulants 

and 21Γ  contains population third-order cumulants. We also assume the mean structure is 

saturated. This allows us to partition 
0

0 I
⎛ ⎞∆

∆ = ⎜ ⎟
⎝ ⎠

 and correspondingly 11 21

21 22

D DD
D D

⎛ ⎞′
= ⎜ ⎟⎜ ⎟
⎝ ⎠

. For 

the equation C D ′= ∆ ∆  to hold for some D , it must be that 22 0D = , 11C D ′= ∆ ∆ , and 

21 21D ′Γ = ∆ . Robustness properties of NT methods were originally studied in the context of 

covariance structures, and hence in most sources the robustness condition is stated in terms of 
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the conditions on fourth-order moments only; that is, 11C D ′= ∆ ∆  (e.g., Browne, 1987; 

Mooijaart &  Bentler, 1991). However, when the mean structure is saturated, whether 

estimation is based on σ  or on β  is irrelevant because the corresponding estimates of 

covariance structure parameters are the same (for GLS discrepancy functions) or 

asymptotically equivalent (for the ML discrepancy function), even when the data are 

nonnormal. Thus, considering the structure of C  alone is sufficient. The fact that C  is the 

matrix of fourth-order cumulants of the observed variables has been used to investigate what 

types of data and models would lead to asymptotic robustness of NT methods with complete 

data. Unfortunately, in the incomplete data case, the elements of C  will no longer have an 

easy interpretation. The incomplete data case is now discussed in detail.    

 

2. Asymptotic Robustness with Incomplete Data 

With incomplete data, the n p×  data matrix X  now has empty cells and thus its rows 

no longer constitute an i.i.d. sample. Rather they can be viewed as drawn from a jp -variate 

distribution jF  with probability jq , where 1,..., 2 1pj = − . In other words, j  enumerates the 

missing data patterns. For simplicity, let 1j =  be the index of the complete data pattern, so 

that 1p p= . Then, the following restriction needs to be imposed on the distributions jF : for 

each j , the mean jµ  and the covariance matrix jΣ  must be the appropriate submatrices of 

1µ µ=  and 1Σ = Σ . Another way to think about this is to view the rows of X  as drawn from 

a mixture distribution where the components have different dimensions. As with complete 

data, we now assume that ( )µ µ θ= , ( )θΣ = Σ , θ   is a 1q×  vector of parameters, 

vechσ = Σ , and ( , )β σ µ′ ′ ′= .  
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We obtain β̂  by maximizing the normal theory saturated log-likelihood: 

1

1 1

1( ) ( ) ( log(2 ) log ( ) ( ( )) ' ( )( ( )))
2

n n

i i i i i i i i
i i

l l p x xβ β π β µ β β µ β−

= =

= = − Σ − − Σ −∑ ∑ ,  where ip  is 

the dimension of ix , ( )i iE x µ= , and cov( )i ix = Σ . This estimator is analogous to x  and S  

for complete data. We obtain θ̂  by maximizing the normal theory structured log-likelihood: 

1

1 1

1( ) ( ) ( log(2 ) log ( ) ( ( )) ' ( )( ( )))
2

n n

i i i i i i i i
i i

l l p x xθ θ π θ µ θ θ µ θ−

= =

= = − Σ − − Σ −∑ ∑  . This estimator 

is called direct, raw, or full-information maximum likelihood estimator. As before, the 

likelihood ratio test statistic is given by ,
ˆ ˆ2( ( ) ( ))ML incT l lθ β= − − . By analogy with the 

complete data case, we can also define θ̂  as the minimizer of a “discrepancy function” 

1 1 1
,

1

1 ˆ ˆ ˆ ˆ(log | ( ) ( ) | ( ( )) ' ( )( ( )) ( ( )) ' ( )( ( )))
n

ML inc i i i i i i i i i i i i
i

F x x x x
n

θ β µ θ θ µ θ µ β β µ β− − −

=

= Σ Σ + − Σ − − − Σ −∑ , 

so that , , ,
ˆˆ ( )ML inc ML inc ML incT nF nF θ= = . Strictly speaking, however, this function does not meet 

the definition of a discrepancy function because it also depends on the individual ix ’s.  

 Before we proceed, we need to address the consistency of the estimator β̂ . This 

property comes largely for free with complete data (e.g., Shapiro, 1985) but is no longer 

trivial with incomplete data. In the missing data literature, the following well-known 

classification of missing data mechanisms is often employed (e.g., Little & Rubin, 2002). 

Data are said to be missing completely at random (MCAR) if the missingness mechanism is 

independent of both the observed and the missing values of X ; that is, if 

( | , ) ( )obs misf M X X f M= , where f  describes the distribution of M , the indicator matrix of 

missingness, and obsX  and misX  represent the observed and the missing part of the data 

matrix X , respectively. Data are said to be missing at random (MAR) if the missingness 

mechanism depends on the observed values but not on the missing values of X ; that is, if 
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( | , ) ( | )obs mis obsf M X X f M X= . Otherwise, data are said to be not missing at random 

(NMAR). When data are MCAR, β̂  is consistent (Rubin, 1987; Little & Rubin, 2002). When 

data are MAR and normally distributed, β̂  is still consistent (Rubin, 1987; Little & Rubin, 

2002). When data are MAR and nonnormally distributed, it is usually said that consistency of 

β̂  cannot be established (e.g., Laird, 1988; Rotnitzky & Wypij, 1994; Yuan & Bentler, 

2000), although recently Yuan (2005) argued that β̂  remains consistent under MAR 

mechanism even with nonnormal data. With NMAR data, consistency of β̂  or any estimate 

that does not take the missing mechanism into account cannot be guaranteed. Our working 

assumption in this article is that data are MCAR, because in addition to consistency of β̂  we 

also require that it have a known asymptotic covariance matrix, as defined below.    

 Even though the standard central limit theorem no longer applies, alternate methods 

allow us to assume that 0
ˆ( ) (0, )incn Nβ β− → Γ  for some positive definite matrix incΓ  

(Yuan & Bentler, 2000). If all jF ’s are normal, we write instead 0 ,
ˆ( ) (0, )N incn Nβ β− → Γ . 

The information matrix for the parameters of the saturated model, 1
,N incI −= Γ , now has a more 

general definition appropriate for incomplete data. Yuan and Bentler (2000) showed that, 

when the missing mechanism is MCAR,  
1 1

1
,

1 1

1 ( ) 01 2lim
0

n
i i i i

N inc n i
i i i

I
n

κ κ

τ τ

− −
−

→∞
= −

⎛ ⎞′ Σ ⊗Σ⎜ ⎟= Γ = ⎜ ⎟
⎜ ⎟′Σ⎝ ⎠

∑ , 

where 
i

i i
i p

vech vecDκ
σ σ

∂ Σ ∂ Σ
= =

′ ′∂ ∂
 and i

i
µτ
µ
∂

=
′∂
.2  This formula reflects a well-known fact 

that the information obtained from independent observations is additive. Unfortunately it also 

makes clear that ,N incΓ , the inverse of this information matrix, no longer has a nice form, and 

                                                 
2 The following identity  relates these 0-1 matrices: ( )i i i pDκ τ τ= ⊗   
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we can anticipate that incΓ  will not either. When data are MAR, the matrix 1
,N incI −= Γ  can no 

longer be guaranteed to be longer block-diagonal (Kenward & Molenberghs, 1998), and 

furthermore its upper block containing information about the variability of covariance 

estimates depends on the particular missing mechanism (Yuan, 2005). For this reason, we 

restrict our attention to MCAR data.  

For incomplete data, the information matrix for saturated parameters 1
,N inc

−Γ  can be 

defined as 1
, 0

1lim ( )N inc n
l

n
β−

→∞
Γ = − , where 

2 ( )( ) ll ββ
β β

∂
=

′∂ ∂
, and hence 1

,
ˆlim ( ( ))N inc n

n l β −

→∞
Γ = . The 

matrix incΓ  can be defined as , ,inc N inc N incBΓ = Γ Γ , where 
1

1 ˆ ˆlim ( ) ( )
n

i in i
B l l

n
β β

→∞
=

′= ∑  (Arminger 

& Sobel, 1990; Yuan & Bentler, 2000). With complete data, this result can be verified by 

working with the saturated log-likelihood. With incomplete data, this triple product 

expression may be the only way to obtain an equation for the matrix incΓ . An explicit form 

for B  with incomplete data is 

1 1 1 1

1 1 1 1 1
21

1 ( ) ( ) ( )1 4lim
1 ( )
2

i i i i i i i in

n i
i i i i i i i i i i

sym
B

n

κ κ κ κ

τ τ κ κ τ τ

− − − −

→∞
= − − − −

⎛ ⎞′ ′Σ ⊗Σ Γ Σ ⊗Σ⎜ ⎟
= ⎜ ⎟

⎜ ⎟′ ′ ′Σ Γ Σ ⊗Σ Σ⎜ ⎟
⎝ ⎠

∑ . 

An outline of proof is given in Appendix I.  

The cumbersome limit notation can be avoided by grouping the population by missing 

patterns. With p  variables, there are at most 2 1pk = −  missing data patterns. As before, let 

jq  be the probability that a randomly chosen case in the population has the pattern j , where 

1,...,j k= . We do not have to assume that every pattern exists in the population, and many 

jq ’s can be zero. In the sample, the obvious estimate of each jq  is ˆ j
j

n
q

n
= , where jn  is the 

number of cases exhibiting pattern j . This notation allows us to rewrite   
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1 1

11
,

1

1

1 ( ) 0
2

0

k

j j j j j
j

N inc k

j j j j
j

q

q

κ κ

τ τ

− −

=−

−

=

⎛ ⎞′ Σ ⊗Σ⎜ ⎟
⎜ ⎟Γ =
⎜ ⎟′Σ⎜ ⎟
⎝ ⎠

∑

∑
                                                               (1) 

1 1 1 1

1

1 1 1 1
21

1 1

1 ( ) ( ) ( )
4

1 ( )
2

k

j j j j j j j j j
j

k k

j j j j j j j j j j j j
j j

q sym
B

q q

κ κ κ κ

τ τ κ κ τ τ

− − − −

=

− − − −

= =

⎛ ⎞′ ′Σ ⊗Σ Γ Σ ⊗Σ⎜ ⎟
⎜ ⎟=
⎜ ⎟′ ′ ′Σ Γ Σ ⊗Σ Σ⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑ ∑
                                   (2) 

We can obtain an explicit expression for incΓ  by computing , ,inc N inc N incBΓ = Γ Γ  using (1) and 

(2).  

The approach to robustness reviewed in the previous section applies to GLS function. 

To extend it to ,ML incF , we must first show that the minimizer θ̂  of ,ML incF  is asymptotically 

equivalent to the minimizer of a quadratic form ,
ˆ ˆˆ( ( )) ( ( ))GLS incF Vβ β θ β β θ′= − −  for some 

matrix 1
,

ˆ
N incV −→ Γ . This is shown in Appendix II (see also Yuan & Bentler, 2000). It is also 

shown that ,
ˆ
ML incnF  and  ,ĜLS incnF  are asymptotically equivalent. Also let 

1
,

ˆ ˆˆ( ( )) ( ( ))ADF inc incF β β θ β β θ−′= − Γ −  be the ADF discrepancy function for incomplete data. By 

the argument in the previous section, when the robustness condition ,inc N inc D ′Γ = Γ + ∆ ∆  

holds for some symmetric q q×  matrix D , the minimizers (and the minima) of ,ML incF  and of  

,ADF incF  are asymptotically equivalent. That is, the direct ML estimator θ̂  is asymptotically 

efficient within the class of estimators based on β̂ , and the direct ML test statistic ,ML incT  is 

asymptotically a chi-square variate with *p q−  degrees of freedom. As with complete data, 

we can define ,inc N incC −= Γ Γ  and write the robustness condition in the alternative form 

C D ′= ∆ ∆ . Further, as with complete data, when the mean structure is saturated the 

robustness condition simplifies to 11C D ′= ∆ ∆ , where all the matrices are defined as before.  
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3. From Complete Data to Incomplete Data? 

So far, we have shown that the same abstract robustness condition must be met for 

complete and incomplete data to ensure asymptotic robustness of the NT estimator and 

associated test statistic. However, the abstract condition C D ′= ∆ ∆  is useless in practice 

unless some way exists of verifying whether it holds. With complete data, researchers have 

identified sets of conditions for different models under which this condition holds. As 

referenced in the introduction, many different types of models have been studied, including 

CFA models, LISREL models, growth curve models, multiple group models, and multilevel 

models. One approach, therefore, would be to try to develop similar results for incomplete 

data. However, as we shall see, this may not  be possible. Instead, we address the following 

question: If we know that the robustness condition is satisfied for a particular complete data 

population and a particular model, will it still be satisfied for incomplete data obtained from 

this population by employing an MCAR missing mechanism? This question is equivalent to 

the following question: if, in the incomplete data population, the robustness condition holds 

separately for each missing data pattern, does it hold for the overall incomplete data 

population? Unfortunately, the answer seems to be no.  

To see this, it is convenient to rewrite the condition ,inc N inc D ′Γ = Γ + ∆ ∆  in the 

equivalent form  

1 1 1
, , ,N inc N inc N incB D− − −′= Γ + Γ ∆ ∆ Γ                   (3)  

The matrix B  was defined in (2). This form of the robustness condition avoids the inversion 

of the information matrix 1
,N inc

−Γ  given in (1). Assuming saturated mean structure, the 

condition in (3) becomes:    
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1 1 1 1
11

1 11
,

1 1 1
21

1 1

1 ( ) ( ) ( )
4

1 ( ) 0
2

k k

j j j j j j j j j j
j j

N inc k k

j j j j j j j j j
j j

q D q sym
B

q D q

κ κ κ κ

τ τ κ κ

− − − −

= =−

− − −

= =

⎛ ⎞′ ′′Σ ⊗Σ ∆ ∆ Σ ⊗Σ⎜ ⎟
⎜ ⎟= Γ +
⎜ ⎟′ ′′Σ ∆ Σ ⊗Σ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
     (4) 

When (4) holds for some 11 21

21 0
D DD
D

⎛ ⎞′
= ⎜ ⎟⎜ ⎟
⎝ ⎠

, the robustness condition holds in the incomplete 

data population.  

 Now, let us assume instead that robustness holds for each missing pattern, to see what 

this implies about the structure of the overall matrix B . Note that the expression in (2) does 

not involve the individual matrices ,21

,21

j j
j

j j

⎛ ⎞′Γ Γ
Γ = ⎜ ⎟

⎜ ⎟Γ Σ⎝ ⎠
. These matrices can be reinserted by 

noting the following relationships between the components of the complete data matrix Γ  

and the components of matrices for individual patterns: 
j jj p j j pD Dκ κ+ +′ ′Γ = Γ  and 

21, 21 jj j j pDτ κ +′ ′Γ = Γ . However, this is not necessary, because as these relationships imply, the 

condition *
N D ′Γ = Γ + ∆ ∆  for some q q×  symmetric matrix *D  is equivalent to the condition 

*
,j N j j jD ′Γ = Γ + ∆ ∆  for every j , where 

0

0
jp j

j

i

D κ

τ

+⎛ ⎞∆
∆ = ⎜ ⎟⎜ ⎟

⎝ ⎠
.  Equivalently, the derivative 

matrix for each pattern can be defined as the *( )i ip p q+ ×  matrix3 
( )j

j

β θ
θ

∂
∆ =

′∂
, in general no 

longer full rank, where ˆ
jβ  be the unstructured ML estimate of jβ  based on jn  observations 

in pattern j . Thus, saying that robustness holds for each pattern is equivalent to saying that it 

holds in the complete data population, and the same matrix *D  works for all patterns.  

                                                 
3 Technically speaking, this matrix should be *( )i i ip p q+ × , where iq  is the length of the subset of θ  that 

structures the variables in a given pattern., and *D  for a particular pattern reduced accordingly. However, as 
defined, j∆  has columns of zeros corresponding to first and second order moments of variables missing from 

the pattern, and the corresponding rows and columns of *D  are irrelevant for that particular pattern.  
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 Using the assumption that robustness holds in the compete data population, and with a 

little algebra, it can be shown that the structure of B  is given by   

1 1 * 1 1
11

11
,

1 * 1 1
21

1

1 ( ) ( ) ( )
4

1 ( ) 0
2 j

k

j j j j j j j j j
j

N inc k

j j j j j j j
j

q D sym
B

q D

κ κ κ κ

τ τ κ κ

− − − −

=−

− − −

=

⎛ ⎞′ ′ ′Σ ⊗Σ ∆ ∆ Σ ⊗Σ⎜ ⎟
⎜ ⎟= Γ +
⎜ ⎟′ ′ ′Σ ∆ Σ ⊗Σ⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
     (5) 

It is clear that if B  has the structure given by (5) for some symmetric matrix *D  (which is 

true when robustness holds separately for each pattern, or equivalently when it holds for 

complete data), it does not follow in general that B  can be written in the form given by (4) 

for some other symmetric matrix D  (which is true when robustness holds for the incomplete 

data population obtained from compete data).  

 Let us compare (4) and (5) in more detail. Because we are assuming a saturated mean 

structure, it is sufficient to consider the * *p p×  upper submatrices of equations (4) and (5). 

Let 1 1( )j j j j jT κ κ− −′= Σ ⊗Σ . For robustness to hold for the entire incomplete data population, 

we must find a matrix 11D  such that 11
*
11

1 11

k k

j j j j j j
j j

k

j
j

T T T D TD q qq
= ==

′∆ ∆′∆ ∆ =∑ ∑∑ . Such a matrix 

only exists when the vector *
11

1
( () )j j

k

j
j

T vecDq T
=

⊗ ∆⊗∆∑  can be expressed as a linear 

combination of the columns of the matrix 
1 1

( ) ( )( )
k k

j j j j
j j

q T q T
= =

⊗ ∆⊗∆∑ ∑ . This is not possible, 

in general. One rather useless exception is if 0j tκ κ′ =  for all j t≠ , which implies that each 

variable is observed in only one pattern. In this case, the double summation on the right-hand 

side of (4) becomes a single summation, leading to (5).    

Specific conditions developed to ensure robustness for complete data will no longer 

ensure robustness if the data become incomplete. Of course, 1 1
,N inc N

− −Γ → Γ  and 1 1
inc
− −Γ →Γ  as 

the proportion of complete cases approaches 1, so that the extent to which robustness is 
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violated when the data are no longer complete will depend on the proportion of missing data. 

Additional factors, such as the extent of nonnormality of the data, may also exert an 

influence. Some examples are given in the next section.  

 

4. Illustrations 

Example 1  

We first illustrate how robustness is violated when going from complete data to incomplete 

data on a very simple example.4  Let 1x  and 2x  be mutually independent random variables 

with fourth-order cumulants equal to 1 and the covariance matrix 11

22

0
0
σ

σ
⎛ ⎞

Σ = ⎜ ⎟
⎝ ⎠

. The 

saturated estimate of the covariance matrix will contain three nonredundant elements, and 

therefore this model has one degree of freedom. We do not care about the means and omit the 

“tilda” notation from all the matrices for convenience. The derivative matrix for this model is 

1 0
0 0
0 1

vech
θ

⎛ ⎞
∂ Σ ⎜ ⎟∆ = = ⎜ ⎟′∂ ⎜ ⎟

⎝ ⎠

, where 11 22( , )θ σ σ ′= .We have 

2
11

2 2 11 22
2
22

2 0 0
2 ( ) 0 0

0 0 2
N D D

σ
σ σ

σ

+ +

⎛ ⎞
⎜ ⎟′Γ = Σ⊗Σ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

, and the cumulants matrix is 

1 0 0
0 0 0
0 0 1

NC
⎛ ⎞
⎜ ⎟= Γ −Γ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 , because the variables are mutually independent. This gives us Γ  

in the complete data population. Robustness condition C D ′= ∆ ∆  holds with 2D I= .    

We now create incomplete data by deleting the value of 2x  from every other row of 

the data. This process generates MCAR data with two patterns, and the probabilities of each 

                                                 
4 I would like to thank Bob Jennrich for suggesting this example.  
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pattern are 1 2 .5q q= = . In pattern 1, all the matrices are defined as for complete data. In 

pattern 2, 2
2, 11 11 112( ) 2N σ σ σΓ = ⊗ =  and 2

2 112 1σΓ = + . For the resulting incomplete data, we 

have:  

( ) 1
1 1 1 1

, 1 1 1 1 1 2 2 2
1 .5 ( ) .5 ( )
2inc N κ κ κ κ

−
− − − −′ ′Γ = Σ ⊗Σ + Σ ⊗Σ

12 2
11 11

, 11 22
2
22

1/ 2 0 0 1/ 2 0 0
0 0 0 0 1/ 0
0 0 0 0 0 1/ 2

inc N

σ σ
σ σ

σ

−
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

Γ = +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

2
11

, 11 22
2
22

0 0
0 0
0 0 2

inc N

σ
σ σ

σ

⎛ ⎞
⎜ ⎟

Γ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

        (6) 

Similarly,  

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

1 (.5 ( ) ( ) .5 ( ) ( ) )
4

B κ κ κ κ κ κ κ κ− − − − − − − −′ ′ ′ ′= Σ ⊗Σ Γ Σ ⊗Σ + Σ ⊗Σ Γ Σ ⊗Σ  

2
11

4
11

11 22
2
22

4
2

(2 1) 0 0
4

0 1/ 2 0
(2 1)0 0

8

B

σ
σ

σ σ

σ
σ

⎛ ⎞+
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟

+⎜ ⎟
⎜ ⎟
⎝ ⎠

       (7) 

Using (6) and (7) in , ,inc inc N inc NBΓ = Γ Γ , we obtain  

2
11

11 22
2
22

(2 1) 0 0
4
0 / 2 0

(2 1)0 0
8

inc

σ

σ σ
σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

+

Γ =
+

       (8) 

Using (6) and (8) in ,inc inc NC = Γ −Γ , we obtain 
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2
11

11 22

2
22

1 2 0 0
4

0 0
2

1 20 0
4

C

σ

σ σ

σ

⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎜ ⎟= −⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Clearly, robustness condition is not satisfied for this matrix because it has rank 3, whereas ∆  

has rank 2. For completeness, we write out 

11
11

22
22

1 0 0 0
0 1 0 0

0 0 0 0 0
0 0 0 1

0 1 0 0

d
d

D C
d

d

⎛ ⎞ ⎛ ⎞
⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟′∆ ∆ = = ≠⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 for any 11 22,d d .  

 

Example 2  

We focus on the standard CFA model as our second example. The violation of robustness 

when going from complete data from incomplete data will be illustrated empirically as well 

as mathematically. The CFA model is usually stated as x µ ξ ζ= + Λ + , where x  is a 1p×  

vector of observed variables, ξ  is an 1m×  vector of latent factors, ζ  is a 1p×  vector of 

errors, µ  is a 1p×  vector of constants, and Λ  is a p m×  matrix of factor loadings. We 

assume that ( ) 0E ξ =  and ( ) 0E ζ = , so that ( )E x µ= . We also assume that ( ) 0E ξζ ′ =  and 

( ) 0i jE ζ ζ =  for all i j≠ , so that ′Σ = ΛΦΛ +Ψ , where ( )E ξξ ′ = Φ , ( )E ζζ ′ = Ψ  (a diagonal 

matrix), and ( )E xx µµ′ ′− = Σ . The asymptotic robustness of the NT methods under the CFA 

model has been studied extensively (Amemiya & Anderson, 1990; Anderson & Amemiya, 

1988; Browne & Shapiro, 1988; Mooijart & Bentler, 1991; Satorra & Bentler, 1990). It has 

been shown that the robustness condition is satisfied in this case when all of the following 

conditions hold (assuming complete data):  

i. The variables ξ  are independent of the variables ζ ; 
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ii. The variables ζ  are mutually independent (or, if a block of them forms a dependent 

set, the variables in this block have no excess kurtosis and are independent of the 

variables not in the block, and the covariances of the variables within the block must 

be freely estimated); 

iii. All elements of Φ  are freely estimated (or, if some elements of Φ  are fixed to zero, 

the corresponding factors must be independent). 

Because the CFA model does not structure the means, skewness of any of the variables 

involved will have no effect on robustness. We also note that any model that can be 

equivalently parameterized as a model satisfying these conditions will satisfy the robustness 

condition. For example, it is common to fix the variance of a factor to 1, which contradicts 

condition (iii); however, there exists an equivalent factor model where one of the loadings is 

fixed to 1 instead.   

We consider a very small factor model as an example. This model has 1 factor and 

three indicators, with all the factor loadings fixed to 1. Conditions (i)-(iii) above do not 

prohibit restrictions on the elements of Λ . Because the means are unstructured we again drop 

the “tilda” notation on all the relevant matrices for simplicity. This model implies the 

following system of equations:  

1 1

2 2

3 3

1
1
1

x
x
x

ζ
ξ ζ

ζ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

           (9) 

and the following covariance structure:  

 

11 11 11

21 11

31 11

22 11 22

32 11

33 11 33

σ φ ψ
σ φ
σ φ
σ φ ψ
σ φ
σ φ ψ

+⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

=⎜ ⎟ ⎜ ⎟
+⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

           (10)  
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The vector of model parameters is 11 11 22 33( , , , )θ φ ψ ψ ψ ′= . In this example, * 6p = , 4q = , and 

hence 2df = . The derivative matrix is given by  

1 1 0 0
1 0 0 0
1 0 0 0( )
1 0 1 0
1 0 0 0
1 0 0 1

σ θ
θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟∂

∆ = = ⎜ ⎟′∂ ⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

                    (11) 

The matrix 2 ( )N p pD D+ +′Γ = Σ⊗Σ  is given by:  

2
11

2
11 21 11 22 21

2 2
11 31 11 32 31 21 33 31

2 2
21 21 22 21 32 22

2
21 31 21 32 31 22 21 32 31 32 22 32 22 33 32

2 2 2
31 31 32 31 33 32 32 33 33

2
2
2

2 2 2 2
2 2

2 2 2 2 2 2

N

σ
σ σ σ σ σ
σ σ σ σ σ σ σ σ
σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

+
+ +

Γ =

+ + +

   

Defining 1 1 2 2 3 3( ) ( ) ( )a b c
abc E x x xµ µ µ µ= − − − , the matrix Γ  is given by: 

2
400 11

2
310 12 11 220 12

2
301 13 11 211 13 12 203 13

2
220 22 11 130 12 121 22 13 040 22

2
211 23 11 121 23 12 112 23 13 031 23 22 022 23

202 33 11 103 13 103 33 13 022 22 3

22

33

µ σ
µ σ σ µ σ
µ σ σ µ σ σ µ σ
µ σ σ µ σ σ µ σ σ µ σ
µ σ σ µ σ σ µ σ σ µ σ σ µ σ
µ σ σ µ σ σ µ σ σ µ σ σ

−
− −
− − −

Γ =
− − − −
− − − − −
− − − − 2

3 013 33 23 004 33µ σ σ µ σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠− −

  

 We now make the assumption that 1 2 3{ , , , }ξ ε ε ε  is a mutually independent set 

(assumption (i) above). Then, the matrix NC = Γ −Γ  can be written in the form:  

1

2

3

N

k

C
k

k

k
k k
k k k
k k k k
k k k k k
k k k k k k

ξ

ξ ξ

ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

+

= Γ − Γ =
+

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

     (12) 
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where 4 2 2
1 1( () 3 )E Ekξ ξ ξ= −  and 4 2 2( () 3 )i i iE Ek ε ε= − . That is, the matrix of cumulants of the 

observed variables can be written in terms of cumulants of the latent variables because the 

latent variables are mutually independent (Browne, 1987; Mooijaart and Bentler, 1991). 

When this is the case, the matrix  

1*

2

3

0 0 0
0 0 0
0 0 0
0 0 0

k
k

D
k

k

ξ⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

          (13) 

satisfies the equation  *C D= ∆ ∆ , where ∆  and C  are given by (11) and (12). We have 

shown that robustness holds for this small model under assumptions (i)-(iii).  

 Now assume that the population is a mixture of two patterns: 25% of the cases have 

all three variables observed, and 75% of the cases have only the first two variables observed. 

That is, any randomly drawn vector from this population has .25 probability of being from 

model given by (9) and (10), and a .75 probability of being from the model 

1 1

2 2

1
1

x
x

ζ
ξ

ζ
⎛ ⎞ ⎛ ⎞⎛ ⎞

= +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 with covariance structure 
11 11 11

21 11

22 11 22

σ φ ψ
σ φ
σ φ ψ

+⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

. Combining the two 

patterns into one population, we obtain ( ) 1
, 1 2

1 .25 .75
2inc N T T −Γ = + , where 

1 1( )j j j j jT κ κ− −′= Σ ⊗Σ . It is clear that ,inc NΓ  no longer has a simple expression in terms of the 

elements of Σ , even in this small example. The complication in general arises from the fact 

that the elements of 1
j
−Σ  are very complicated functions of elements of Σ . We also obtain 

1 1 2 2
1 ( 3 )

16
B T T T T= Γ + Γ . We consider the robustness condition in the equivalent form given 

by (3). We have that 1 * *
, 1 1 2 2

1 (1
16

3 )inc N T D T DB T T− ′ ′−Γ = ∆ ∆ + ∆ ∆  whereas 
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1 1
, , 1 2 1 22

1 ( 3 ) ( 3 )
16inc N inc ND T T D T T− −Γ ∆ ∆Γ = + ∆ ∆ + , and a solution for D  exists only if the vector 

*
1 1 2 2( 3 )( )T T T T vecD⊗ + ⊗ ∆⊗∆  is in the column space of the matrix 

1 2 1 2
1 (( 3 ) ( 3 ))( )

16
T T T T+ ⊗ + ∆⊗∆ , which is not the case in general. Specific cases can be 

entertained by choosing numerical values for Σ  and Γ .  

 Thus, the fact that conditions (i)-(iii) hold for each pattern does not ensure robustness 

for the incomplete data in this CFA example. There may well exist other conditions that 

ensure that robustness condition holds, but determining what they are is no longer a straight-

forward task. With incomplete data, we may not be able to convert the abstract robustness 

condition into properties of specific models.  

 To empirically illustrate the influence of missing data on the performance of the ML 

test statistic as applied to this small model, a simulation study was run in EQS 6.1 (Bentler, 

2005). The errors and factors were specified to have zero univariate skewness and varying 

degrees of univariate kurtosis (0, 10, or 20). EQS uses Fleishman’s power method 

(Fleishman, 1978; Vale & Maurelli, 1983) to create the desired univariate characteristics. An 

additional condition where the latent variables were specified to have univariate skewness of 

3 and univariate kurtosis of 20 was added to illustrate that skewness does not affect 

robustness for this model. The resulting univariate kurtosis range and average multivariate 

kurtosis for the observed variables in the four conditions are given in Table 1. Incomplete 

data were generated from complete data for each nonnormality condition by performing 

random deletion of a certain percent of observations (0%, 10%, 15%, or 30%). With three 

variables, this mechanism can result in up to 7 possible missing data patterns. The sample 

size was set to 1000, which was thought to be high enough to study asymptotic properties of 

the NT statistic, given the small size of the model. Five hundred replications of each 

condition were run. The acceptance rates of the ML test statistic are given in Table 1.  
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It is clear from Table 1 that the ML test statistic is robust with complete data, no 

matter the degree of nonnormality, but it is no longer robust when the data become 

incomplete. The degree to which the statistic’s performance deviates from expected is a 

function of both the percent of observations missing and also of the degree of nonnormality 

of the data. For example, when 10% of the observations are missing and nonnormality is 

moderate, the ML test statistic rejects 8% of all models instead of the expected 5%--a 

deviation that can be argued is not very serious. At the other extreme, when 30% of the 

observations are missing and nonnormality is high, the ML test statistic rejects 21% of all 

correct models, which is not acceptable performance. Thus, this simulation illustrates that 

models for which robustness has been shown to hold for incomplete data can no longer be 

assumed to generate robust NT statistics when the data are incomplete, but the extent to 

which missing data is a problem can vary.  

 

5. Discussion 

Literature on the asymptotic robustness of NT methods has demonstrated that NT 

estimators and test statistics often remain robust to nonnormality for many common structural 

equation models. For example, in the standard one-factor model, one need only assume that 

the errors are mutually independent and are independent of the latent factor to ensure 

robustness. Such an assumption is not at all unreasonable from the point of view of theory, as 

errors are often conceptualized as random noise. That this popular model is robust to 

nonnormality under these minimal assumptions is useful information when software that can 

do other types of estimation is not available. In this paper it was shown, however, that the 

conditions ensuring robustness for complete data do not generalize to incomplete data.  

If proportion of missing data is small and nonnormality is not severe, the extent to 

which robustness is violated can be ignored. But, as simulation results show, with increasing 
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proportion of missing data and high nonnormality of the variables, the behavior of the NT 

statistic deviates from expected by a significant amount. Because missing data is ubiquitous 

in the social sciences, this finding presents problems for asymptotic robustness theory. At 

worst, it may be that the theory is best left as a curious theoretical development that has no 

place in SEM practice. At best, researchers are encouraged not to trust NT test statistics when 

their data are severely nonnormal and the proportion of missing data is high (at or higher than 

15% in this study), even if they have made reasonable assumptions of independence such as 

those stated above. Better options exist for dealing with nonnormality when the data are 

incomplete, such as Yuan-Bentler scaled chi-square (Yuan & Bentler, 2000). Recently 

developed F statistics (Bentler & Yuan 1999b; Yuan & Bentler, 1998a) are especially 

appropriate for smaller sample sizes; however, their incomplete data versions have not been 

studied empirically, although they are available in EQS 6.1. 

However, the abstract condition C D ′= ∆ ∆  still ensures robustness for both complete 

and incomplete data. It may be possible to empirically evaluate whether this condition holds 

by using sample estimates of the matrices involved. If so, an empirical test of asymptotic 

robustness regardless of the type of data and model may be possible. This line of research 

will be further pursued.  

An analogy is often drawn between modeling with incomplete data and modeling with 

multiple groups, because incomplete data can be conceptualized as arising from a multiple 

group population where constraints on all common parameters are imposed across groups. 

Asymptotic robustness with multiple groups has been investigated (e.g., Satorra, 2001, 2002). 

It is therefore reasonable to ask whether these results can be used to draw conclusions about 

robustness with incomplete data. However, there are important differences between these two 

modeling scenarios. With multiple groups, the overall test statistic tests the proposed model 

and the equality constraints across groups against the null model where neither the model nor 
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the constraints are assumed to hold. With incomplete data, the test statistic tests the proposed 

model with equality constraints imposed on all covariance matrices (here, groups are missing 

data patterns) against the null model under which the model is not assumed to hold but the 

constraints still hold. In other words, the equality constraints are tested in the multiple group 

situation, but they are not tested in the incomplete data situation. The equality constraints on 

parameters such as factor variances and covariances have been shown to lead to violation of 

robustness in the multiple group situation (Satorra, 2001), but these results have no bearing 

on what happens with the NT test statistic with incomplete data. As an example, suppose the 

data are incomplete, with two missing patterns, and we fit a one-factor model with three 

indicators. This model is saturated, and hence robustness holds trivially even with incomplete 

data. But viewed as a two-group model with all parameters constrained across groups, we 

now have a model with 6 degrees of freedom, and because factor variances are constrained to 

equal across groups, the resulting test statistic will not be robust, according to Satorra (2001). 

The correct analogy would be between the multiple group approach and a test statistic for 

incomplete data that combines a test of model fit with the test of the MCAR assumption (e.g., 

Kim & Bentler, 2002, and references therein). 
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Appendix II 
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 From (A5) and (A6) it follows that  
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For the ML test statistic, we need the following expansions: 
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From (A2) and (A7), we have that θ̂  and θ  are asymptotically equivalent. From (A4) and 

(A12), we have that GLST  and MLT  are asymptotically equivalent.   
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Table 1. Acceptance Rates of the ML test statistic. Cells in italics represent conditions of 
interest.  

   *Unnormalized estimate is given to yield a sample size independent measure   

Factor 
& Errors 

Univariate 
Kurtosis 
Range 

Multivariate 
Kurtosis* 

0% 
Missing 

10% 
Missing 

15% 
Missing 

30% 
Missing 

Skew 0;  
Kurt 0 

  473/500 
(94.8%) 

480/500 
(96.0%) 

477/500 
(95.4%) 

471/500 
(94.2%) 

Skew 0;  
Kurt 10 

About 2-6 About 18 468/500 
(93.6%) 

460/500 
(92.0%) 

458/500 
(91.6%) 

426/500 
(85.2%) 

Skew 0;  
Kurt 20 

About 5-11 About 24 471/500 
(94.2%) 

442/500 
(88.4%) 

436/500 
(87.2%) 

395/500 
(79.0%) 

Skew 3;  
Kurt 20 

About 5-11 About 36 474/500 
(94.8%) 

439/500 
(87.8%) 

437/500 
(87.4%) 

397/500 
(79.4%) 




