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Summary

Maintaining proteostasis is key to resisting stress and to promoting healthy aging. Proteostasis is 

necessary to preserve stem cell function, but little is known about the mechanisms that regulate 

proteostasis during stress in stem cells, and whether disruptions in proteostasis contribute to 

stem cell aging is largely unexplored. We determined that ex vivo cultured mouse and human 

hematopoietic stem cells (HSCs) rapidly increase protein synthesis. This challenge to HSC 

proteostasis was associated with nuclear accumulation of Hsf1, and deletion of Hsf1 impaired 

HSC maintenance ex vivo. Strikingly, supplementing cultures with small molecules that enhance 

Hsf1 activation partially suppressed protein synthesis, rebalanced proteostasis, and supported 

retention of HSC serial reconstituting activity. Although Hsf1 was dispensable for young adult 

HSCs in vivo, Hsf1 deficiency increased protein synthesis and impaired the reconstituting activity 

of middle-aged HSCs. Hsf1 thus promotes proteostasis and the regenerative activity of HSCs in 

response to culture stress and aging.
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eTOC Blurb

Inability to grow HSCs in culture is a major barrier to their expanded use in cell-based therapies. 

Kruta et al. demonstrate that cultured HSCs rapidly increase protein synthesis, which severely 

disrupts proteostasis and impairs their self-renewal. Hsf1 activation promotes HSC fitness and 

proteostasis in culture and during aging in vivo.

Keywords

stem cell; hematopoietic stem cell; stress; proteostasis; Hsf1; heat shock response; protein 
synthesis; translation; aging; hematopoiesis

Introduction

Hematopoietic stem cells (HSCs) regenerate blood and immune cells throughout life. To 

maintain life-long stem cell function and tissue integrity, HSCs depend on specialized stress 

response mechanisms to mitigate replicative (Alvarez et al., 2015; Flach et al., 2014; Xiao 

et al., 2012), metabolic (Gan et al., 2010; Gurumurthy et al., 2010; Karigane et al., 2016; 

Mohrin et al., 2015; Nakada et al., 2010; Takubo et al., 2013; Yu et al., 2013), oxidative 

(Abbas et al., 2010; Ito et al., 2004; Ito et al., 2006; Maryanovich et al., 2015; Tothova et 

al., 2007) and genotoxic stress (Beerman et al., 2014; Milyavsky et al., 2010; Mohrin et al., 

2010; Rossi et al., 2007; Walter et al., 2015; Wang et al., 2012). HSCs may also be subject 

to significant protein stress (Chambers et al., 2007; Chua et al., 2020), and the ability to 
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respond to these acute and chronic stressors is critical to maintaining protein homeostasis 

(proteostasis). However, little is yet known about the factors that regulate proteostasis during 

stress in stem cells (Chua and Signer, 2020).

A primary response to protein stress in the cytoplasm is activation of the heat shock 

response (Akerfelt et al., 2010). The master regulator of this pathway is Heat shock factor 
1 (Hsf1), which encodes a highly conserved transcription factor that promotes proteostasis 

maintenance (Anckar and Sistonen, 2011). At steady state, inactive Hsf1 is localized in 

the cytoplasm where it binds to chaperones (Neef et al., 2014; Shi et al., 1998; Zou 

et al., 1998). Under conditions of protein stress, the chaperones dissociate from Hsf1 to 

bind unfolded/misfolded proteins. This enables Hsf1 to translocate to the nucleus where 

it classically induces transcription of heat shock proteins – molecular chaperones that 

coordinate protein folding, trafficking and degradation to enhance proteostasis and promote 

cell survival (Anckar and Sistonen, 2011; Mendillo et al., 2012).

We previously discovered that young adult HSCs have lower protein synthesis rates than 

other hematopoietic cells (Signer et al., 2014). Low protein synthesis is necessary for adult 

HSC maintenance, as modest increases in protein synthesis disrupt proteostasis and impair 

self-renewal in vivo (Hidalgo San Jose et al., 2020; Magee and Signer, 2021; Signer et al., 

2014; Signer et al., 2016). Here, we report that ex vivo culture rapidly induces a massive 

increase in protein synthesis within mouse and human HSCs that disrupts proteostasis. This 

protein stress induces accumulation of Hsf1 in the nucleus of cultured HSCs, and deletion 

of Hsf1 severely impairs their long-term multilineage reconstituting activity. Supplementing 

cultures with small molecules that enhance Hsf1 activation partially suppresses protein 

synthesis, rebalances proteostasis, and supports sustained ex vivo HSC maintenance. Finally, 

we found that Hsf1 is activated within middle-aged HSCs in vivo where it suppresses protein 

synthesis and promotes long-term multilineage reconstituting activity.

Protein synthesis is elevated within ex vivo cultured HSCs

To initiate our studies, we sought to identify a model to study the regulation of proteostasis 

within HSCs in response to stress. We began by examining the effects of cell culture 

stress on HSCs. To gain an unbiased view of the cell intrinsic changes that occur within 

HSCs in culture, we performed RNA-sequencing on CD150+CD48−Lineage−Sca1+ckit+ 

(CD150+CD48−LSK) HSCs (Kiel et al., 2005) (Fig. S1A,B) that were freshly isolated 

from young adult (2-3-month-old) mice as well as HSCs that were cultured ex vivo for 18 

hours (h) in medium supplemented with Stem Cell Factor (SCF), Thrombopoietin (TPO), 

2-Mercaptoethanol and bovine serum albumin (“basic HSC medium”; Fig. 1A). The 18h 

time point typically precedes the first HSC division in culture (Flach et al., 2014).

The transcripts of 2368 genes were changed by at least 2-fold (Padj<0.05) between freshly 

isolated and 18h-cultured HSCs (Fig. 1B, S1C,D). To sort through these transcriptional 

changes, we performed gene set enrichment analysis (Subramanian et al., 2005) for gene 

ontology terms describing biological processes (Table S1). The “Regulation of Cellular 

Response to Stress” gene set was significantly upregulated in cultured HSCs (Fig. 1C), 

indicating that ex vivo culture induces significant stress on HSCs.
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Strikingly, several of the most upregulated gene sets in cultured HSCs were related to 

protein synthesis, including “Ribosome Biogenesis”, “mRNA Processing”, “Amino Acid 

Metabolic Process”, “Translation Initiation”, “Translation Elongation” and “Translation 

Termination” (Fig. 1D–I). These data raised the possibility that the regulation of protein 

synthesis was particularly disrupted within ex vivo cultured HSCs.

To directly test the effects of ex vivo culture on protein synthesis, we cultured HSCs 

for 4 or 18h and quantified protein synthesis based on O-propargyl-puromycin (OP-Puro) 

incorporation (Hidalgo San Jose and Signer, 2019; Liu et al., 2012; Signer et al., 2014). 

After 4h in culture, HSCs exhibited a 6.7-fold increase in protein synthesis as compared 

to HSCs in vivo (Fig. 1J). After 18h in culture, HSCs synthesized 19.4-fold more protein 

per hour than HSCs in vivo (Fig. 1J). Similarly, human cord blood CD34+ hematopoietic 

stem and progenitor cells (HSPCs) cultured for 18h exhibited a 5.2-fold increase in protein 

synthesis compared to uncultured controls (Fig. 1K). These data indicate that mouse and 

human HSCs rapidly and significantly increase protein synthesis in culture.

Although HSCs in young adult bone marrow are predominantly quiescent (Cheshier et 

al., 1999), elevated protein synthesis within HSCs in culture could not be fully explained 

by increased cell cycle entry. HSCs in vivo can be driven to undergo rapid self-renewing 

divisions by treating mice with cyclophosphamide and granulocyte colony-stimulating factor 

(GCSF) (Morrison et al., 1997). Cycling HSCs in vivo exhibit a ~2-fold increase in protein 

synthesis compared to steady state quiescent HSCs (Fig. 1J) (Signer et al., 2014). HSCs 

cultured ex vivo for 18h thus produce ~10-fold more protein per hour than dividing HSCs in 

vivo (Fig. 1J).

Next, we tested whether large increases in protein synthesis in culture were unique to 

HSCs or could be broadly observed amongst hematopoietic progenitors. We cultured 

common myeloid progenitors (CMPs), granulocyte-macrophage progenitors (GMPs), and 

megakaryocyte-erythroid progenitors (MEPs) (Akashi et al., 2000) for 18h. CMPs and 

GMPs exhibited a ~2-fold increase in protein synthesis in culture as compared to in vivo 

(Fig. 1L). MEPs did not exhibit any significant change in protein synthesis after 18h in 

culture (Fig. 1L). HSCs which typically synthesize ~5-8-fold less protein per hour than 

CMPs, GMPs and MEPs in vivo (Signer et al., 2014), exhibited significantly higher protein 

synthesis than all these progenitor populations after 18h in culture (Fig. 1L). These data 

indicate that HSCs exhibit a particularly large increase in protein synthesis in culture.

The increase in protein synthesis within ex vivo cultured HSCs is particularly notable 

because HSCs in vivo require a highly-regulated protein synthesis rate (Magee and 

Signer, 2021; Signer et al., 2014). Adult HSCs exhibit lower protein synthesis than 

other hematopoietic cells in vivo, and modest increases (~30%) in protein synthesis can 

significantly disrupt proteostasis within HSCs and impair their function (Hidalgo San Jose et 

al., 2020; Signer et al., 2014; Signer et al., 2016).

Proteostasis is maintained partly through balanced protein synthesis and degradation. 

Despite a 19.4-fold increase in protein synthesis, cultured HSCs exhibited no significant 

change in proteasome activity as compared to freshly isolated HSCs (Fig. 1M). Given 
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this discrepancy between protein synthesis and degradation activity, we used UbG76V-GFP 
reporter mice (Lindsten et al., 2003) to test if proteostasis becomes unbalanced within 

cultured HSCs (Fig. 1N). UbG76V-GFP mice ubiquitously express GFP that is fused to a 

constitutively active degradation signal. GFP transcripts can be detected, but no fluorescence 

is detected because GFP is rapidly degraded by the proteasome. We previously established 

that increased protein synthesis and/or accumulation of misfolded/unfolded proteins could 

overwhelm proteasome capacity and unbalance proteostasis within HSCs in vivo, which 

is marked by accumulation of GFP (Hidalgo San Jose et al., 2020). UbG76V-GFP HSCs 

cultured for 18h exhibited more than 10-fold accumulation of GFP as compared to HSCs 

in vivo (Fig. 1O). Thus, ex vivo culture severely increases protein synthesis and unbalances 

proteostasis within HSCs at a magnitude that cannot be tolerated in vivo.

Hsf1 promotes ex vivo HSC maintenance

Ex vivo cultured HSCs exhibited significant upregulation of the “Response to Heat” gene 

set as compared to fresh HSCs (Fig. 2A), suggesting that they may activate the heat shock 

response. The heat shock response is a central cellular response to protein stress in the 

cytoplasm (Akerfelt et al., 2010), and is controlled by the transcription factor Hsf1 (Anckar 

and Sistonen, 2011). At steady state, inactive Hsf1 is sequestered in the cytoplasm through 

interactions with chaperones, including Hsp90 and TRiC (Neef et al., 2014; Shi et al., 1998; 

Zou et al., 1998) (Fig. 2B), which are highly expressed by HSCs (Fig. 2D). Under conditions 

of protein stress, the chaperones bind unfolded/misfolded proteins (Fig. 2C), enabling Hsf1 

to translocate to the nucleus where it promotes a transcriptional response aimed at restoring 

proteostasis and promoting cell survival (Anckar and Sistonen, 2011; Mendillo et al., 2012) 

(Fig. 2C).

Hsf1 is highly expressed by young adult HSCs in vivo (Fig. 2D), but the protein is largely 

absent from the nucleus (Fig. 2E), suggesting that it is likely inactive as a transcription 

factor at steady state. In contrast, we observed a significant accumulation of Hsf1 within 

the nucleus of ex vivo cultured young adult mouse HSCs (Fig. 2E,F) and human cord blood 

CD34+ HSPCs (Fig. 2G,H). The accumulation of Hsf1 in the nucleus of cultured HSCs 

could not be explained by increased gene expression, as the abundance of Hsf1 mRNA was 

similar between fresh and cultured HSCs (Fig. 2I). These data suggest that protein stress in 

culture led to nuclear Hsf1 accumulation in HSCs.

We thus tested whether Hsf1 influences ex vivo HSC maintenance. To do this, we 

conditionally deleted Hsf1 from hematopoietic cells by treating 6-week-old Hsf1fl/fl;Mx1­
Cre+ (Hsf1-deficient) or control Hsf1fl/fl mice with polyinosine:polycytidine (pIpC). 

We confirmed that Hsf1 was deleted from >95% of HSCs (not shown). Seven days 

after pIpC administration, when HSCs returned to steady state (Essers et al., 2009), 

CD150+CD48−LSK HSCs were sorted from the bone marrow of Hsf1-deficient and control 

mice into 96-well plates at a density of 10 cells/well, and cultured in basic HSC medium 

for 10 days (d) without any medium change or passaging (Fig. 2J). After 10d in culture, 

both Hsf1-deficient and control HSCs expanded into ~25,000 cells (Fig. 2K), and we 

competitively transplanted the complete cellular contents of each well together with 2×105 

fresh wild-type congenic bone marrow cells into irradiated mice. Overall, cultured Hsf1­
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deficient HSCs exhibited a severe loss of reconstituting activity as compared to controls 

(Fig. 2L–P). Only 8/30 (27%) recipients of cultured Hsf1-deficient HSCs exhibited long­

term multilineage reconstitution as compared to 23/36 (64%) recipients of cultured control 

HSCs (Fig. 2Q).

Defects in cultured Hsf1-deficient HSCs do not reflect a requirement for Hsf1 within young 

adult HSCs in vivo. 2-month-old Hsf1-deficient mice had normal bone marrow cellularity 

(Fig. S2A), and the frequencies of HSCs and progenitors were unchanged compared to 

controls (Fig. S2B–F). To test whether Hsf1 is necessary to regulate HSC function in 

young adult mice, we competitively transplanted 10 freshly isolated Hsf1-deficient or 

control HSCs with 2×105 congenic bone marrow cells into irradiated mice. After 16 weeks, 

3×106 bone marrow cells from primary recipients were serially transplanted into irradiated 

mice (Fig. S2G). Overall, long-term hematopoietic reconstitution from Hsf1-deficient HSCs 

that were freshly isolated from 2-month-old mice was statistically indistinguishable from 

controls in both primary and secondary recipients (Fig. S2H–J). Hsf1-deficiency also did 

not significantly affect HSPC homing to the bone marrow (Fig. S2K). Consistent with a 

previous report (Kourtis et al., 2018), these data indicate that Hsf1-deficiency does not 

influence the maintenance, reconstituting activity or self-renewal of young adult HSCs in 

vivo. Hsf1 thus promotes the maintenance of young adult HSCs ex vivo but not in vivo.

17-AAG and HSF1A enhance the serial reconstituting activity of ex vivo 

cultured HSCs

Since Hsf1 promotes ex vivo HSC maintenance, we wondered if further increasing Hsf1 

activity could improve ex vivo HSC growth. Small molecule inhibitors of Hsp90 or TRiC 

can prevent their association with Hsf1 and induce Hsf1 nuclear translocation (Fig. 3A) 

(Neef et al., 2014; Neef et al., 2010; Schulte and Neckers, 1998). We determined that this 

activity is operative within mouse and human HSCs, as culturing HSCs in the presence of 

the Hsp90 inhibitor Tanespimycin (17-N-allylamino-17-demethoxygeldanamycin, 17-AAG) 

or the TRiC inhibitor HSF1 Activator (HSF1A) significantly enhanced nuclear accumulation 

of Hsf1 after 18h or 10d of culture (Fig. 3B–F, S3A–C).

Next, we tested if 17-AAG or HSF1A could enhance the reconstituting activity of cultured 

HSCs. HSCs were sorted from 2-3-month-old mice into 96-well plates (10/well) containing 

basic HSC medium supplemented with either 17-AAG, HSF1A or vehicle (DMSO) (Fig. 

3G). Over the 10d culture period, HSCs in all culture conditions proliferated extensively, 

and expanded into ~1.5–2×104 cells (Fig. S4A). After 10d, the cellular contents of each well 

were competitively transplanted with 2×105 fresh congenic bone marrow cells into irradiated 

mice.

17-AAG and HSF1A consistently enhanced the long-term multilineage reconstituting 

activity of cultured HSCs, although the differences did not always reach the threshold of 

statistical significance (Fig. 3H–L, S3D–H). Recipients of HSCs cultured with 17-AAG and 

HSF1A also exhibited a trend toward increased engraftment of donor-derived hematopoietic 

cells and HSCs in the bone marrow 16 weeks after transplant (Fig. S3O–S).
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Since retention of serial long-term multilineage reconstituting potential is the critical barrier 

for ex vivo HSC culturing protocols (Purton and Scadden, 2007), we performed secondary 

transplants. Strikingly, HSCs cultured with either 17-AAG or HSF1A gave significantly 

more reconstitution in the peripheral blood and bone marrow of secondary recipients than 

controls (Fig. 3M–R, S3I–N, S3T–W). Overall, 31/37 (85%) and 22/33 (67%) secondary 

recipients of HSCs cultured with 17-AAG and HSF1A, respectively, exhibited long-term 

multilineage reconstitution as compared to just 11/32 (34%) recipients of HSCs cultured 

with DMSO (Fig. 3R, S3N). These data demonstrate that 17-AAG and HSF1A significantly 

enhance the serial long-term multilineage reconstituting activity of ex vivo cultured HSCs.

HSCs cultured with 17-AAG and HSF1A are functionally similar to fresh 

HSCs

The increased serial reconstituting activity of HSCs cultured with 17-AAG and HSF1A 

raised the question of whether this reflected HSC expansion or improved maintenance. To 

test this, we quantified CD150+CD48−LSK cells present after 10d of culture. The number 

of CD150+CD48−LSK cells was increased from 10 (day 0) to ~400–800 at day 10, but 

there was no significant difference between 17-AAG, HSF1A or control cultures (Fig. 

S4B). The frequencies of CD48+LSK multipotent progenitors, Lineage−ckit+Sca1− myeloid 

progenitors, Lineage− progenitors and Lineage+ cells in 10d cultures were also similar 

amongst all conditions (Fig. S4C–F). Human CD34+ cells also expanded similarly in all 

culture conditions from 2000 to ~25,000 over the 10d culture (Fig. S4G,H).

Since the CD150+CD48−LSK phenotype may not reliably mark HSCs ex vivo (Zhang 

and Lodish, 2005), we quantified functional HSCs in 17-AAG supplemented cultures by 

performing a limiting dilution assay (Hu and Smyth, 2009). Based on a previous report, 

cultures initiated with 10 CD150+CD48−LSK cells contain ~4.7 long-term repopulating 

units (Kiel et al., 2005). After 10d of culture, we detected an average of 6 repopulating units 

per well (Fig. S4I). These data indicate that 17-AAG on its own does not support significant 

HSC expansion, but rather supports HSC maintenance for at least 10d under conditions that 

are permissive for extensive proliferation and differentiation.

To further examine the effectiveness of 17-AAG and HSF1A on HSC fitness, we tested how 

well cultured HSCs function as compared to freshly isolated HSCs. To do this, additional 

cohorts of mice were transplanted with 10 freshly isolated HSCs together with 2×105 

congenic bone marrow cells (Fig. 4A). HSCs cultured with 17-AAG gave significantly 

higher levels of reconstitution than freshly isolated HSCs (Fig. 4B–F). HSCs cultured 

with HSF1A also gave modestly higher reconstitution than fresh HSCs, but the effect was 

less significant than with 17-AAG (Fig. S4J–N). Remarkably, HSCs cultured with either 

17-AAG or HSF1A also gave similar levels of long-term multilineage reconstitution in 

secondary transplants as compared to fresh HSCs (Fig. 4G–K, S4O–S). These data indicate 

that 17-AAG and HSF1A support sustained ex vivo maintenance of HSCs capable of robust 

long-term multilineage reconstituting activity through multiple rounds of transplantation at 

levels equivalent to or greater than freshly isolated HSCs.
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Effects of 17-AAG and HSF1A on ex vivo cultured HSCs largely require Hsf1

Although 17-AAG and HSF1A have distinct primary targets (Neef et al., 2010; Schulte 

and Neckers, 1998), they both increase nuclear expression of Hsf1 (Fig. 3B–F, S3B,C) and 

enhance the reconstituting activity of cultured HSCs (Fig. 3H–R, S3D–N). Together with our 

finding that Hsf1 promotes ex vivo HSC maintenance (Fig. 2L), these data strongly suggest 

that 17-AAG and HSF1A promote ex vivo HSC maintenance by enhancing Hsf1 activity. 

To directly test this, we examined the effects of 17-AAG and HSF1A on the reconstituting 

activity of cultured Hsf1-deficient HSCs.

HSCs were sorted from 2-month-old Hsf1-deficient and control mice (10/well) and 

cultured for 10d in basic HSC medium with either 17-AAG, HSF1A or DMSO. After 

10d, the cellular contents of each well were competitively transplanted with 2×105 fresh 

congenic bone marrow cells into irradiated mice (Fig. 5A). Hsf1-deficient HSCs cultured 

in the presence of either 17-AAG or HSF1A gave much lower levels of hematopoietic 

reconstitution than control HSCs cultured under the same conditions (Fig. 5B, S5A). 

Furthermore, neither 17-AAG nor HSF1A had any effect on the reconstituting activity of 

Hsf1-deficient HSCs (Fig. 5C–F, S5B–E). These data demonstrate that the positive effect of 

17-AAG and HSF1A on ex vivo HSC maintenance is dependent on the presence of Hsf1.

Since 17-AAG is an Hsp90 inhibitor that could have pleiotropic effects on HSCs, we 

sought to determine to what extent its transcriptional effects were mediated by Hsf1. We 

performed RNA-sequencing on wild-type and Hsf1-deficient HSCs cultured for 4h in basic 

HSC medium with 17-AAG or DMSO (Fig. 6A,B, S6A). RNA-sequencing at the 4h time 

point gave us the best opportunity to identify some of the earliest and primary transcriptional 

effects of 17-AAG on cultured HSCs.

Differential gene expression analysis revealed 17 protein coding genes whose expression 

was significantly increased (≥1.5-fold; Padj<0.05) within wild-type HSCs cultured with 

17-AAG as compared to controls (Table S2). Eight (47%) out of those genes have previously 

been reported to be regulated by Hsf1 (Kovacs et al., 2019). In contrast to wild-type 

HSCs, 17-AAG only increased the expression of 4 protein coding genes within cultured 

Hsf1-deficient HSCs (Table S2), and only 1/4 (Basp1) was amongst the 17 genes whose 

expression was significantly increased by 17-AAG in wild-type cells. These data indicate 

that many of the early transcriptional effects of 17-AAG on cultured HSCs depend upon 

Hsf1.

Hsf1 and 17-AAG promote proteostasis maintenance within ex vivo cultured 

HSCs

To gain additional insight into the role of Hsf1 on ex vivo HSC maintenance, we sought 

to identify genes whose expression was upregulated in association with Hsf1 activation. 

Transcripts of 55 protein coding genes were significantly increased (≥1.5-fold; Padj<0.05) in 

cultured (4h) wild-type as compared to Hsf1-deficient HSCs (Fig. 6C, Table S3). 28 (51%) 

of these genes have previously been reported to be regulated by Hsf1 (Kovacs et al., 2019), 
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suggesting that Hsf1 has both established and previously undescribed transcriptional targets 

in HSCs.

Next, we determined that 7 of these prospective Hsf1 target genes exhibited further 

increased expression (≥1.1-fold) within wild-type cultured HSCs when 17-AAG was added 

to the culture (Fig. 6D). Four of these genes have previously been reported to be Hsf1 

targets (Kovacs et al., 2019), and two - Hspa1a and Tgm2 - are well established regulators of 

proteostasis that have not been characterized in HSCs. Hspa1a encodes a chaperone protein 

that is not typically expressed by young adult HSCs or bone marrow cells in vivo (Fig. 

S6B), and thus may have an unappreciated role in proteostasis regulation in HSCs under 

stress. Tgm2 is preferentially expressed by young adult HSCs as compared to bone marrow 

cells (Fig. S6C), and has previously been reported to enhance Hsf1 activity by promoting 

its trimerization (Rossin et al., 2018). These data identify early transcriptional targets of 

Hsf1 whose expression is further increased by 17-AAG that could contribute to proteostasis 

maintenance within cultured HSCs.

To directly investigate the effects of Hsf1 and 17-AAG on HSC proteostasis, we assessed 

protein synthesis in wild-type and Hsf1-deficient HSCs cultured for 4h with 17-AAG 

or DMSO. Hsf1-deficient HSCs exhibited a modest, but significant increase in protein 

synthesis compared to controls (Fig. 6E). Furthermore, 17-AAG significantly reduced 

protein synthesis within cultured wild-type HSCs (Fig. 6E). However, 17-AAG also reduced 

protein synthesis within Hsf1-deficient HSCs, but protein synthesis was still significantly 

higher than in 17-AAG treated wild-type cells (Fig. 6E). Notably, 17-AAG and HSF1A 

continued to suppress protein synthesis within HSCs after 18h ex vivo, but had no effect on 

protein synthesis at this time point within Hsf1-deficient HSCs (Fig. S6D–G). These data 

indicate that Hsf1 suppresses protein synthesis within cultured HSCs, and that 17-AAG can 

further suppress protein synthesis partially through enhanced Hsf1 activation.

We also examined if Hsf1 and 17-AAG could promote rebalancing of proteostasis 

within cultured UbG76V-GFP HSCs. After 18h in culture, Hsf1-deficient UbG76V-GFP 
HSCs (UbG76V-GFP;Hsf1fl/fl;Mx1-Cre+) exhibited significantly more GFP positivity as 

compared to UbG76V-GFP controls (Fig. 6F). Furthermore, 17-AAG significantly reduced 

the frequency of GFP positive HSCs in culture (Fig. 6F). These data indicate that Hsf1 and 

17-AAG promote the rebalancing of proteostasis within cultured HSCs.

Polyvinyl alcohol (PVA) was recently identified as a supplement that promotes ex vivo HSC 

expansion (Wilkinson et al., 2019). HSCs cultured for 18h with PVA exhibited reduced 

protein synthesis compared to BSA controls (Fig. S6H–J). Taken together with our 17-AAG 

and HSF1A experiments, these data suggest that interventions that promote ex vivo HSC 

growth are associated with a suppression of protein synthesis.

Hsf1-deficiency increases protein synthesis and impairs HSC function in 

vivo during aging

Next, we wondered whether Hsf1 could also regulate HSC function and proteostasis under 

conditions of protein stress in vivo. Loss of proteostasis is one of the hallmarks of aging 

Kruta et al. Page 9

Cell Stem Cell. Author manuscript; available in PMC 2022 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Lopez-Otin et al., 2013), and is disrupted within some long-lived cell types such as neurons 

(Hipp et al., 2019; Kundra et al., 2017; Taylor and Dillin, 2011). Old adult HSCs express 

elevated levels of some heat shock proteins (Chambers et al., 2007), raising the possibility 

that aging HSCs experience protein stress in vivo. However, little is yet known about the 

factors that regulate proteostasis during HSC aging.

We assessed nuclear expression of Hsf1 within HSCs isolated from 3- and 22-month-old 

mice. In contrast to HSCs from 3-month-old mice, we observed substantial Hsf1 expression 

in the nucleus of HSCs from 22-month-old mice (Fig. 7A). Further, we determined that the 

accumulation of nuclear Hsf1 was already evident within HSCs isolated from 12-month-old 

mice (Fig. 7B). In agreement with these data, of the 55 genes that exhibited increased 

expression associated with Hsf1 activation ex vivo (Table S3), 38 (69%) tend to exhibit 

increased expression in old as compared to young adult HSCs (Young et al., 2021). These 

data indicate that Hsf1 is activated in middle-aged and old adult HSCs, and suggest that 

proteostasis is challenged within HSCs during aging.

Next, we tested whether Hsf1 influences hematopoiesis, protein synthesis and HSC function 

in middle-aged Hsf1fl/fl;Mx1-Cre+ mice. Similar to 3-month-old mice (Fig. S2B–F), 10­

month-old Hsf1-deficient mice did not exhibit any significant changes in the frequency 

of HSCs or restricted progenitors as compared to age-matched controls (Fig. S7A–D). 

However, Hsf1-deficiency significantly increased protein synthesis within HSCs in 12­

month-old mice (Fig. 7C, S7E). Hsf1 thus likely contributes to enabling aging HSCs to 

maintain low protein synthesis and proteostasis in vivo.

To test HSC function, we performed competitive bone marrow transplants. Consistent 

with our HSC transplants (Fig. S2H,I), recipients of 3-month-old Hsf1-deficient bone 

marrow cells had similar levels of reconstitution as controls in both primary and secondary 

transplants (Fig. 7D–M). However, primary recipients of 12-month-old Hsf1-deficient bone 

marrow cells showed a significant reduction in donor-derived cells in the blood over 

time as compared to age-matched controls (Fig. 7N–R). These data indicate that Hsf1­

deficiency impairs HSC function during aging, and by middle age, Hsf1 is activated within 

HSCs where it contributes to attenuating protein synthesis and promoting their long-term 

multilineage reconstituting activity.

Discussion

It has historically been difficult to grow HSCs ex vivo (Kumar and Geiger, 2017). Even 

limited ex vivo growth typically leads to a loss of self-renewal activity and long-term 

multilineage differentiation potential (Bowman and Zon, 2009). This is a significant clinical 

problem because a sufficient source of HSCs is lacking for many patients that could 

benefit from HSC transplants (Copelan, 2006), and transplanting larger numbers of HSPCs 

increases the likelihood and speed of successful engraftment (Crane et al., 2017). In 

addition, the inability to grow HSCs ex vivo can limit the development and implementation 

of HSC gene correction therapies that are potentially curative for diverse genetic blood 

diseases (Naldini, 2015). Despite recent technical advances in HSC culturing protocols 

(Boitano et al., 2010; Calvanese et al., 2019; Eliasson et al., 2010; Fares et al., 2014; 
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Guo et al., 2018; Huang et al., 2012; Liu et al., 2015; Luchsinger et al., 2019; Mantel 

et al., 2015; Miharada et al., 2014; Wilkinson et al., 2019), we still have an incomplete 

understanding of why ex vivo growth impairs HSC self-renewal and engraftment. Our 

study indicates that ex vivo culture significantly increases protein synthesis within HSCs, 

and this disruption in proteostasis contributes to impaired HSC self-renewal and function. 

Activation of Hsf1 enables HSCs to better cope with culture induced protein stress and 

preserves their long-term multilineage reconstituting activity. 17-AAG and HSF1A mediated 

super-activation of Hsf1, and enhanced the maintenance of proteostasis and HSC fitness in 

culture. Similar to these findings with the heat shock response, activation of the unfolded 

protein response in either the endoplasmic reticulum or mitochondria can also promote HSC 

function in response to specific stressors (Mohrin et al., 2015; van Galen et al., 2018), but 

the role of these pathways in regulating ex vivo HSC growth has yet to be fully uncovered. 

Looking forward, identifying mechanisms and conditions that better support proteostasis 

maintenance could reveal new and improved approaches to grow, manipulate and expand 

HSCs ex vivo.

While Hsf1 is typically absent from the nucleus of young adult HSCs, it accumulates within 

the nucleus of HSCs during aging, suggesting that aging HSCs experience protein stress. 

The precise nature and origin of this stress remains largely unknown. Aged HSCs exhibit 

well-characterized features of aging, including accumulation of DNA damage (Beerman 

et al., 2014), telomere shortening (Allsopp et al., 2001), altered gene expression (Flach et 

al., 2014; Janzen et al., 2006; Sun et al., 2014), mitochondrial dysfunction (Mansell et al., 

2021), increased reactive oxygen species (ROS) (Ito et al., 2006), and autophagy defects 

(Ho et al., 2017). Increased DNA damage in aged HSCs could lead to the production of 

altered transcripts that are translated into truncated or erroneous proteins susceptible to 

misfolding. ROS can oxidize proteins making them prone to unfolding (Ray et al., 2012). 

Aging HSCs exhibit increased transcription of ribosomal proteins and hypomethylation of 

rRNA, which could influence translation (Flach et al., 2014; Sun et al., 2014). Defects 

in autophagy can impair the degradation of misfolded proteins (Ciechanover and Kwon, 

2015). Changes in the aging microenvironment, such as increased inflammation or altered 

growth factor production, may also influence HSC proteostasis (Pietras, 2017; Young et al., 

2021). Moving forward, it is crucial to examine how these age-related changes influence 

HSC proteostasis, and to uncover additional mechanisms utilized by HSCs to cope with 

age-related protein stress. By doing so, there is a potential opportunity to reveal molecular 

strategies to manipulate proteostasis to enhance HSC fitness, improve tissue function and 

delay/prevent the onset of hematological diseases in older adults.

Limitations of the Study

Although heat shock can suppress protein synthesis (Lindquist, 1981), this typically occurs 

as a secondary effect that is independent of Hsf1 (Li et al., 2017). Our study revealed a more 

direct role for Hsf1 in suppressing protein synthesis within HSCs. However, the mechanism 

downstream of Hsf1 that contributes to suppressing translation remains to be uncovered.

In addition to its canonical role regulating the heat shock response, other context specific 

functions of Hsf1 have been reported, including metabolic reprogramming (Mendillo et al., 
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2012) and changes to cytoskeletal integrity (Baird et al., 2014). In addition to proteostasis 

regulators, Hsf1 and 17-AAG induce gene expression changes that reflect non-canonical 

as well as undescribed functions of Hsf1. Intriguingly, one apparent target of Hsf1 

within cultured HSCs is Mllt3, which has recently been shown to promote ex vivo HSC 

maintenance (Calvanese et al., 2019). Hsf1 may thus exert pleiotropic effects to promote 

maintenance of cultured HSCs that remain to be fully unraveled in future studies.

Similar to mouse HSCs, human cord blood HSPCs also experience significant protein 

stress in culture, marked by increased protein synthesis and nuclear accumulation of HSF1. 

17-AAG and HSF1A enhance nuclear accumulation of HSF1 within human HSPCs, but 

whether they also enhance their engraftment remains to be determined. The effects of 

enhanced HSF1 activity as well as other interventions targeting the proteostasis network 

should be evaluated for their efficacy on human HSC function, but need to be combined 

with optimization of culture conditions. To maximize the likelihood of positively impacting 

human health, future studies on proteostasis in human HSCs should include systematic 

multiplexed analysis of medium composition, cytokine concentration, small molecule 

supplements, oxygen tension, culture duration and timing of cell passaging. Comprehensive 

optimization studies of this nature fall outside the scope of this study, but will be an exciting 

area of future investigation.

STAR METHODS

LEAD CONTACT

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Dr. Robert Signer (rsigner@ucsd.edu).

MATERIALS AVAILABILITY

This study did not generate new unique reagents.

DATA AND CODE AVAILABILITY

RNA-sequencing data have been deposited at GEO and are publicly available (GSE179415). 

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—Mx1-Cre (Kuhn et al., 1995), Hsf1fl (Le Masson et al., 2011) and UbG76V-GFP 
(Lindsten et al., 2003) mice have been described previously. Mice were all backcrossed for 

at least ten generations onto a C57BL background. C57BL6/J (CD45.2) and C57BL6.SJL 

(CD45.1) mice were used in transplantation experiments. Both male and female mice were 

used in all studies. Mice used in these studies were between 6 weeks and 22 months of age. 

For aging experiments, young adult mice were 2–3 months, middle-aged mice were 7–12 

months and old mice were 22 months old. All mice were housed in the vivarium at the 

UC San Diego Moores Cancer Center. All protocols were approved by the UC San Diego 

Institutional Animal Care and Use Committee.
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Cell isolation—Mouse bone marrow cells were isolated by flushing the long bones 

(femurs and tibias) or by crushing the long bones, vertebrae and pelvic bones with a 

mortar and pestle in Ca2+- and Mg2+- free Hank’s buffered salt solution (HBSS; Corning) 

supplemented with 2% (v/v) heat-inactivated bovine serum (Gibco). Human cord blood 

derived CD34+ HSPCs were purchased from AllCells. Cell number and viability were 

assessed with a hemocytometer based on trypan blue exclusion.

METHOD DETAILS

pIpC treatment—Expression of Mx1-Cre was induced by six intraperitoneal injections of 

10mg polyinosinicpolycytidylic acid (pIpC; GE Healthcare) administered every other day, 

beginning at approximately 6–8 weeks of age.

Flow cytometry and cell sorting—For flow cytometric analysis and isolation of 

specific hematopoietic mouse progenitors, cells were incubated with combinations of 

antibodies to the following cell-surface markers, conjugated to FITC, PE, PerCP-Cy5.5, 

APC, PE-Cy7, eFluor 660, Alexa Fluor 700, APC-eFluor 780 or biotin (clones are given in 

brackets in the following list): CD3ε (17A2), CD4 (GK1.5), CD5 (53-7.3), CD8α (53-6.7), 

CD11b (M1/70), CD16/32 (FcγRII/III; 93), CD34 (RAM34), CD41 (MWReg30), CD43 

(R2/60), CD45.1 (A20), CD45.2 (104), CD45R (B220; RA3-6B2), CD48 (HM48-1), CD71 

(R17217), CD117 (cKit; 2B8), CD127 (IL7Rα; A7R34), CD150 (TC15-12F12.2), Ter119 

(TER-119), Sca-1 (D7, E13-161.7), Gr-1 (RB6-8C5) and IgM (II/41). For isolation of 

HSCs and MPPs, Lineage markers included CD3, CD5, CD8, B220, Gr-1 and Ter119. For 

isolation of mouse CMPs, GMPs and MEPs, these Lineage markers were supplemented with 

additional antibodies against CD4 and CD11b. Biotinylated antibodies were visualized by 

incubation with PE-Cy7 conjugated streptavidin. For analysis of human cord blood derived 

stem and progenitor cells the APC conjugated anti human CD34 (4H11) was used. All 

reagents were acquired from eBiosciences, or BioLegend. All incubations were for 30–90 

min on ice.

Mouse HSCs, CD34+CD16/32lowCD127−Lineage−Sca-1−c-kit+ CMPs (Akashi et al., 

2000), CD34+CD16/32highCD127−Lineage−Sca-1−c-kit+ GMPs (Akashi et al., 2000), and 

CD34−CD16/32−/lowCD127−Lineage−Sca-1−c-kit+ MEPs (Akashi et al., 2000) were pre­

enriched by selecting c-kit+ cells using paramagnetic microbeads and an autoMACS 

magnetic separator (Miltenyi Biotec) before sorting. Non-viable cells were excluded from 

sorts and analyses using 4’,6-diamidino-2-phenylindole (DAPI).

Data acquisition and cell sorting were performed on a FACSAria II, LSR II or FACSCanto 

flow cytometer (BD Biosciences). Data were analyzed by FlowJo (BD) software.

Ex vivo HSC cultures—CD150+CD48−LSK HSCs were sorted from the bone marrow 

of young adult mice directly into 96-well v-bottom plates at a density of 10 cells/well 

containing freshly made basic HSC culture medium (Prime-XV Mouse Hematopoietic Cell 

Medium (Prototype; Irvine Scientific) with SCF (50ng/ml; PeproTech), TPO (50ng/ml; 

PeproTech), 2-Mercaptoethanol (50μM; Sigma) and bovine serum albumin (BSA; 0.1%; 

Sigma). When specified, basic HSC medium was supplemented with 17-AAG (5nM; 
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SelleckChem) or HSF1A (8μM, Axon MedChem) in 0.02% DMSO (Sigma). As a control, 

basic HSC medium was supplemented with 0.02% DMSO.

Human cord blood derived CD34+ HSPCs were cultured in StemSpan (STEMCELL 

Technologies) with SCF (50ng/ml), Fms-related tyrosine kinase 3 ligand (Flt3-l, 100ng/ml), 

TPO (100ng/ml; all from PeproTech), 2-Mercaptoethanol (50μM) and BSA (0.1%). HSPC 

numbers and viability were assessed with a hemocytometer based on trypan blue (Corning) 

exclusion immediately after thawing. HSPCs were plated into a round-bottom 96-well plate 

at a density of 2000 cells/well.

Cells were grown in standard cell culture conditions (37°C in 5% CO2 and air and constant 

humidity) without any medium change or passaging. After 10d, the entire contents of each 

individual well were collected and transferred into separate 1.5ml tubes. Wells were also 

washed 1–2 times to ensure recouping the maximum number of cells. Cells were washed, 

centrifuged and the supernatant was discarded. Cells were resuspended with 2×105 freshly 

isolated congenic bone marrow cells (unless described otherwise) prior to transplantation.

For assessing the effect of PVA on protein synthesis, HSCs were cultured in 

F12 medium (Life Technologies) with SCF (10ng/ml), TPO (100ng/ml), Insulin­

Transferrin-Selenium-Ethanolamine (ITSX; 1%; Life Technologies), HEPES (10mM; Life 

Technologies), penicillin/streptomycin/glutamine (1%; Sigma), 2-Mercaptoethanol (50μM) 

and supplemented with BSA (0.1%) or PVA (0.1%; Sigma) (Wilkinson et al., 2019).

Transplantation assays—Adult recipient mice were administered a minimum lethal 

dose of radiation using a Mark I Cesium source irradiator (J.L. Sheperd) to deliver two 

doses of 550 rad (1,100 rad in total) at least 4h apart. Cells were injected into the retro­

orbital venous sinus of anaesthetized recipients. For fresh HSC transplants, 10 freshly 

isolated donor CD150+CD48−LSK HSCs and 2×105 recipient-type bone marrow cells were 

transplanted. For bone marrow transplants, 5×105 unfractionated donor bone marrow cells 

were transplanted with 5×105 recipient-type bone marrow cells. Blood was obtained from 

the tail veins of recipient mice every 4 weeks for at least 16 weeks after transplantation. Red 

blood cells were lysed with ammonium chloride potassium buffer. The remaining cells were 

stained with antibodies against CD45.2, CD45.1, CD45R (B220), CD11b, CD3 and Gr-1 to 

assess donor-cell engraftment.

For secondary transplants, 3×106 bone marrow cells collected from primary recipients were 

transplanted non-competitively into irradiated recipient mice. Primary recipients used for 

secondary transplantation had long-term multilineage reconstitution by donor cells and 

median levels of donor-cell reconstitution for the treatments from which they originated. 

Mice that died over the course of transplantation experiments were omitted from the 

analyses. Transplanted mice were administered drinking water with Baytril (250mg/l) for 

the first 4 weeks post-transplant. Mice were considered long-term multilineage reconstituted 

if they exhibited >0.5% donor derived peripheral blood B-, T- and myeloid cells 16 weeks 

post-transplant.
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For homing experiments, 3×105 LSK cells were transplanted into irradiated recipients. 

Donor-derived cells were quantified in the bone marrow 24h later.

Limiting dilution assay—For limiting dilution assays, 100, 250, 500, 1000, 3000, 

5000 and 10000 cultured cells were aliquoted and transplanted into irradiated recipient 

mice, together with 2×105 recipient-type bone-marrow cells. Limiting dilution analysis was 

performed using ELDASoftware (Hu and Smyth, 2009). Mice were considered long-term 

multilineage reconstituted if they exhibited >0.5% donor derived peripheral blood B-, T- and 

myeloid cells 12 weeks post-transplant.

Colony forming assays—Colony forming units were assessed by plating 5×104 

unfractionated bone marrow cells in a 3cm petri dish containing methylcellulose culture 

medium (M3434; STEMCELL Technologies). Cells were grown in standard cell culture 

conditions (37°C in 5% CO2 and air and constant humidity) in humidification dishes. 

Colonies were counted after 14 days.

Immunostaining—For analysis of Hsf1, freshly isolated or cultured HSCs were fixed 

in 4% paraformaldehyde in PBS for 20 minutes at room temperature. Cells were washed 

once with PBS then permeabilized with PBS supplemented with 0.1% Triton X-100 

(Calbiochem), 0.03% Tween 20 (Sigma) and 1% BSA for 15 minutes at room temperature. 

Cells were washed three times with PBS supplemented with 0.03% Tween 20. Cells were 

blocked with PBS supplemented with 1% BSA and 0.03% Tween 20 for 60 minutes at 

room temperature. Samples were incubated with anti-Hsf1 antibody (Cell Signaling, Rabbit 

polyclonal (4356), dilution 1:500) overnight at 4°C. Cells were washed three times and 

incubated with Alexa 488 conjugated anti-Rabbit secondary antibody (A21206; 1:500) 

for 60 minutes at room temperature. Cells were washed five times with PBS. Before the 

last wash, nuclei were stained with DAPI for 5 minutes at room temperature. Cells were 

transferred onto microscope slides and mounted with Vectashield (Vector Laboratories). 

Images of samples were acquired with a Keyence Microscope and fluorescence intensity 

was quantified using ImageJ.

Measurement of protein synthesis and proteasome activity—For in vivo analysis, 

OP-Puro (Medchem Source; 50 mg/kg body mass; pH 6.4–6.6 in PBS) was injected 

intraperitoneally. One hour later mice were euthanized. Bone marrow was collected, and 

4×106 cells were stained with combinations of antibodies against cell-surface markers 

as described above. After washing, cells were fixed in 0.5 ml of 1% paraformaldehyde 

(Affymetrix) in PBS for 10–15 min on ice. Cells were washed in PBS, then permeabilized 

in 200 ml PBS supplemented with 3% (v/v) fetal bovine serum (Life Technologies) 

and 0.1% (m/v) saponin (Sigma) for 5 min at room temperature (20–25°C). The azide­

alkyne cycloaddition was performed using the Click-iT Cell Reaction Buffer Kit (Life 

Technologies) and azide conjugated to Alexa Fluor 555 (Life Technologies) at 5 mM final 

concentration. After the 30-min reaction, the cells were washed twice in PBS supplemented 

with 3% fetal bovine serum and 0.1% saponin, then resuspended in PBS supplemented with 

DAPI (4 mg/ml final concentration) and analyzed by flow cytometry (Hidalgo San Jose and 

Signer, 2019).
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For in vitro analysis, OP-Puro was added to cultured cells at a final concentration of 50 μM 

for 1 hour. Cells were then collected, washed, fixed and permeabilized prior to performing 

the azide-alkyne cycloaddition as described above. In some experiments, relative rates of 

protein synthesis were calculated by normalizing OP-Puro signals in specific populations to 

unfractionated bone marrow after subtracting background.

Proteasome activity was assessed using the Proteasome-Glo chymotrypsin-like cell based 

assay (Promega) as previously described (Hidalgo San Jose et al., 2020). GFP expression in 

UBG76V-GFP was analyzed by flow cytometry before or after ex vivo culture.

RNA-sequencing—For RNA-sequencing analysis, total RNA was extracted from ~3000 

freshly isolated or cultured HSCs using the RNeasy Plus Micro Kit (Qiagen). Illumina 

mRNA libraries were prepared using the SMARTseq2 protocol (Picelli et al., 2014). 2.6μl 

of total RNA was used in the SMARTSeq2 protocol (70pg to 1.62ng). 18 cycles of PCR 

were performed for the cDNA preamplification step and 12 cycles were performed for the 

tagmentation library preparation. The resulting libraries were pooled and deep sequenced 

in two lanes on the Illumina HiSeq 2500 in high output mode using single-end reads with 

lengths of 50 nucleotides (25–35M reads per condition; Fig. 1) or on the Illumina NovaSeq 

using paired-end reads with both forward and reverse read lengths of 50 nucleotides (60–

100M reads per condition; Fig. 6). The reads that passed Illumina filters were filtered for 

reads aligning to tRNA, rRNA, adapter sequences, and spike-in controls. The reads were 

then aligned to the mm10 reference genome using TopHat (v 1.4.1) (Trapnell et al., 2009) 

(Fig. 1) or GRCm38 reference genome using STAR (v2.6.1) (Dobin et al., 2013) (Fig. 6). 

DUST scores were calculated with PRINSEQ Lite (v 0.20.3) (Schmieder and Edwards, 

2011) and low-complexity reads (DUST > 4) were removed from the BAM files. The 

alignment results were parsed via the SAMtools (Li et al., 2009) to generate SAM files. 

Read counts to each genomic feature were obtained with the htseq-count program (v 0.7.1) 

(Anders et al., 2015) using the “union” option (Fig. 1) or the featureCounts program (v 

1.6.5) (Liao et al., 2014) using the default options along with a minimum quality cut off 

(Phred > 10; Fig. 6). After removing absent features (zero counts in all samples), the 

raw counts were then imported to Bioconductor package DESeq2 (v 1.24.0) (Love et al., 

2014) to identify differentially expressed genes among samples. P-values for differential 

expression are calculated using the Wald test for differences between the base means of two 

conditions. These P-values are then adjusted for multiple test correction using Benjamini 

Hochberg algorithm. We considered genes differentially expressed between two groups 

of samples when the DESeq2 analysis resulted in an adjusted P-value of <0.05 and the 

difference in gene expression was at least 2-fold (Fig. 1) or 1.5-fold (Fig. 6).

Previously published RNA-sequencing data for young and old HSCs (Young et al., 2021) 

were compared to the 55 significantly upregulated genes that were associated with Hsf1 

activation (Table S3). Gene counts produced by RSEM were obtained from GEO and 

then imported to Bioconductor package DESeq2 (v1.30.1) (Love et al., 2014) to identify 

differentially expressed genes among samples. A binomial assignment of upregulated or 

downregulated was made without any threshold cutoffs.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Group data are represented by mean ± standard deviation (SD) or standard error of the mean 

(SEM), as specified in figure legends. To test statistical significance between two samples, 

two-tailed Student’s t-tests were typically used. We also used Student’s t-tests, rather than 

an ANOVA to compare both 17-AAG and HSF1A to DMSO, based on our pre-established 

hypothesis about the independent nature of these treatments (i.e. the null hypothesis was 

that 17-AAG = DMSO or HSF1A = DMSO). In most cases where the Student’s t-tests were 

statistically significant, the ANOVA was also statistically significant. Statistical significance 

comparing overall numbers of mice with long-term multilineage reconstitution was assessed 

by a Fisher’s exact test. The specific type of test used for each figure panel is described in 

the figure legends.

For normalized data, means were calculated and statistical tests were performed using 

log10-transformed data and then means were back-transformed to prevent data skewing. 

No randomization or blinding was used in any experiments. The only mice excluded from 

any experiment were those that died after transplantation. Transplantation experiments were 

excluded when >50% of mice died.

In the case of measurements in which variation among experiments tends to be low (for 

example, HSC frequency) we generally examined 3 to 6 mice. In the case of measurements 

in which variation among experiments tends to be higher (for example, reconstitution 

assays) we examined larger numbers of mice (>10). We performed multiple independent 

experiments with multiple biological replicates to ensure the reproducibility of our findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Ex vivo cultured HSCs rapidly and massively increase protein synthesis

• Hsf1 is activated in culture to promote ex vivo HSC maintenance and 

proteostasis

• Small molecule activators of Hsf1 enhance HSC maintenance and fitness in 

culture

• Hsf1 is activated in aging HSCs in vivo to promote proteostasis and fitness
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Figure 1. Ex vivo cultured HSCs exhibit increased protein synthesis.
(A) Strategy to compare gene expression in fresh and cultured HSCs. (B) Heat map showing 

differentially expressed transcripts (≥2-fold change; Padj<0.05) between fresh and cultured 

(18h) HSCs (n=3). (C-I) Gene set enrichment analysis demonstrating elevated expression 

of gene sets related to (C) cellular response to stress and (D–I) protein synthesis in 

cultured compared to fresh HSCs. (J) Protein synthesis in steady state, cycling (G1) and 

dividing (S/G2/M) HSCs in vivo, and cultured HSCs (4h and 18h). OP-Puro incorporation 

is normalized to bone marrow cells from identical conditions (n=10 mice for in vivo and 

n=3 for ex vivo; Cy + GCSF data reanalyzed from (Signer et al., 2014)). (K) Relative 

protein synthesis in fresh and cultured (18h) human cord blood CD34+ cells (n=6 wells, 

2 experiments). (L) Relative protein synthesis in bone marrow cells (BM), HSCs, CMPs, 

GMPs and MEPs in vivo and after 18h in culture (n=3). (M) Relative proteasome activity in 

fresh and cultured (18h) CD48−LSK cells (n=7–8/condition in 2 experiments). (N) Strategy 

to examine proteostasis imbalance within cultured UbG76V-GFP HSCs. (O) Frequency of 

GFP+ HSCs in vivo or after culture (18h) of UbG76V-GFP HSCs. Data in J-O represent mean 

± SD. Significance in J-O was assessed using a t-test (*P<0.05; **P<0.01; ***P<0.001). In 

L, xxxP<0.001 relative to HSCs in vivo and ###P<0.001 relative to HSCs ex vivo.
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Figure 2. Hsf1 promotes ex vivo HSC maintenance.
(A) Gene set enrichment plot demonstrating elevated expression of the “Response to Heat” 

gene set in cultured relative to fresh HSCs. (B,C) Diagram showing that at steady state 

(B), Hsf1 is sequestered in the cytoplasm via binding to chaperones, but under conditions 

of protein stress (C) chaperones bind unfolded proteins allowing Hsf1 to translocate to the 

nucleus, where it drives transcription of heat shock proteins (HSPs). (D) Hsf1, Hsp90aa1 
(Hsp90) and Tcp1 (TRiC) expression in HSCs and bone marrow cells (n=3; from dataset 

in (Signer et al., 2016)). (E,G) Representative immunofluorescence staining examining Hsf1 

expression in fresh and 18h cultured (E) mouse HSCs and (G) human cord blood CD34+ 

cells. Negative control is staining in the absence of primary antibody. (F,H) Quantification 

of nuclear Hsf1 expression in fresh and 18h cultured (F) mouse HSCs (n=17–21 cells/

condition in 2–3 experiments; MFI = mean fluorescence intensity) and (H) human cord 

blood CD34+ cells (n=45–48 cells/condition in 2 experiments). (I) Hsf1 expression in fresh 

and cultured (18h) mouse HSCs (n=3). (J) Strategy to compare the long-term reconstituting 

activity of cultured Hsf1fl/fl (WT) and Hsf1fl/fl;Mx1-Cre+ (Hsf1−/−) HSCs. (K) Number of 

cells/well from 10d culture of 10 WT and Hsf1−/− HSCs (n=12–13 wells/genotype in 2 

experiments). (L) Donor cell engraftment when 10 WT or Hsf1−/− HSCs were cultured 

for 10d and transplanted with 2×105 recipient-type bone marrow cells into irradiated mice. 

Total hematopoietic, B-, T- and myeloid cell engraftment are shown (n=6–7 donors, 30–36 
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recipients/genotype). (M-P) Long-term (16-week) donor (M) hematopoietic, (N) B-, (O) 

T- and (P) myeloid cell engraftment in the peripheral blood of individual recipients in 

L. (Q) Frequency of recipients in (L–P) that exhibited long-term (16-week) multilineage 

reconstitution (LTMR). Data represent mean ± SD (D, F, H, I) or SEM (K-P). Significance 

was assessed using a t-test (D, F, H, I, K-P) or a Fisher’s exact test (Q) (*P<0.05; **P<0.01).
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Figure 3. 17-AAG enhances the serial reconstituting activity of ex vivo cultured HSCs
(A) Diagram showing that 17-AAG and HSF1A can promote Hsf1 nuclear localization by 

inhibiting its interaction with Hsp90 and TRiC. (B,E) Representative immunofluorescence 

staining examining Hsf1 expression in (B) mouse HSCs or (E) human cord blood CD34+ 

cells cultured for 18h in basic HSC medium supplemented with DMSO or 17-AAG. 

Negative control is staining in the absence of primary antibody. (C,D) Quantification of Hsf1 

expression in HSCs cultured for (C) 18h or (D) 10d in basic HSC medium supplemented 

with DMSO or 17-AAG (n=17–109 cells/condition in 3–4 experiments). (F) Quantification 

of nuclear HSF1 expression in human cord blood CD34+ cells cultured for 18h in basic 

medium supplemented with DMSO or 17-AAG (n=23–48 cells/condition in 2 experiments). 

(G) Strategy to compare the effect of 17-AAG and HSF1A on serial reconstituting activity 

of cultured HSCs. (H) Donor cell engraftment when 10 HSCs were cultured for 10d in basic 

HSC medium supplemented with DMSO or 17-AAG and transplanted with 2×105 recipient­

type bone marrow cells into irradiated mice. Total hematopoietic, B-, T- and myeloid 

cell engraftment are shown (n=6–8 donors, 29–39 recipients/condition). (I-L) Long-term 

donor (I) hematopoietic, (J) B-, (K) T- and (L) myeloid cell engraftment in the peripheral 

blood of individual mice from transplants in H. (M) Donor cell engraftment after serial 

transplantation of 3×106 bone marrow cells from primary recipients in H-L into secondary 

recipients. Total hematopoietic, B-, T- and myeloid cell engraftment are shown (n=7–10 
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donors, 32–37 recipients/condition). (N-Q) Long-term donor (N) hematopoietic, (O) B-, 

(P) T- and (Q) myeloid cell engraftment in the peripheral blood of individual recipient 

mice from transplants in M. (R) Frequency of secondary recipients in (M-R) that exhibited 

long-term multilineage reconstitution (LTMR). Data represent mean ± SD (C, D, F) or SEM 

(H-Q). Significance was assessed using a t-test (C, D, F, H-Q) or a Fisher’s exact test (R) 

(*P<0.05; **P<0.01, ***P<0.001 relative to DMSO).
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Figure 4. 17-AAG promotes ex vivo maintenance of HSC fitness.
(A) Strategy to compare the serial reconstituting activity of fresh and cultured (17-AAG) 

HSCs. (B) Donor cell engraftment when 10 fresh or cultured (10d with 17-AAG) HSCs 

were transplanted with 2×105 recipient-type bone marrow cells into irradiated mice. Total 

hematopoietic, B-, T- and myeloid cell engraftment are shown (n=8–10 donors, 31–39 

recipients/condition). (C-F) Long-term donor (C) hematopoietic, (D) B-, (E) T- and (F) 

myeloid cell engraftment in the peripheral blood of recipient mice from transplants in B 

(for 17-AAG these are the same mice as shown in Fig. 3E–I). (G) Donor cell engraftment 

after serial transplantation of 3×106 bone marrow cells from primary recipients in C-G 

into secondary recipients. Total hematopoietic, B-, T- and myeloid cell engraftment are 

shown (n=7–10 donors, 31–37 total recipients/condition). (H-K) Long-term donor (H) 

hematopoietic, (I) B-, (J) T- and (K) myeloid cell engraftment in the peripheral blood of 

individual mice from transplants in F (for 17-AAG these are the same mice as shown in Fig. 

3H–R). Data in B-K represent mean ± SEM. Significance was assessed using a t-test (B-K) 

(*P<0.05; **P<0.01; ***P<0.001).
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Figure 5. 17-AAG promotes ex vivo HSC maintenance in an Hsf1 dependent manner.
(A) Strategy to test if 17-AAG and HSF1A promote maintenance of cultured HSCs 

in an Hsf1 dependent manner. (B) Donor cell engraftment when 10 Hsf1fl/fl (WT) 

or Hsf1fl/fl;Mx1-Cre+ (Hsf1−/−) HSCs were cultured for 10d in basic HSC medium 

supplemented with DMSO or 17-AAG and transplanted with 2×105 recipient-type 

bone marrow cells into irradiated mice. Total hematopoietic, B-, T- and myeloid cell 

engraftment are shown (n=4 donors, 16–18 recipients/condition). (C-F) Long-term donor 

(C) hematopoietic, (D) B-, (E) T- and (F) myeloid cell engraftment in the peripheral blood 

of individual recipient mice from transplants in panel B. Data represent mean ± SEM (B-F). 

Significance was assessed using a t-test (*P<0.05; **P<0.01, ***P<0.001).
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Figure 6. Hsf1 and 17-AAG induce transcriptional changes and promote proteostasis 
maintenance in ex vivo cultured HSCs.
(A) Strategy to compare gene expression profiles in Hsf1fl/fl (WT) and Hsf1fl/fl;Mx1-Cre+ 

(Hsf1−/−) HSCs cultured for 4h in the presence or absence of 17-AAG. (B) Heat map 

showing differentially expressed transcripts (≥1.5-fold change; Padj<0.05) between WT 

and Hsf1−/− HSCs cultured for 4h with 17-AAG or DMSO (n=2). (C) Volcano plot 

showing differentially expressed transcripts in cultured (4h) WT and Hsf1−/− HSCs. Genes 

significantly upregulated in WT HSCs are shown in blue and in Hsf1−/− HSCs are shown 

in red. (D) Heat map showing the subset of genes whose expression is significantly 

upregulated (≥1.5-fold change; Padj<0.05) in WT as compared to Hsf1−/− cultured HSCs 

and that exhibit further increased expression (≥1.1-fold) in WT HSCs cultured with 17­

AAG. (E) Protein synthesis in WT and Hsf1−/− CD48−LSK cells cultured for 4h in 

basic HSC medium supplemented with DMSO or 17-AAG (n=5–6/genotype/condition). 

(F) Relative frequency of GFP+ HSCs after culture (18h) of UbG76V-GFP (DMSO and 

17-AAG) and Hsf1−/−;UbG76V-GFP HSCs (n=4–5/condition). Data represent mean ± SD 

(E,F). Significance was assessed using a t-test (E,F; *P<0.05; **P<0.01, ***P<0.001).
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Figure 7. Hsf1 deficiency impairs HSC function during aging.
(A,B) Representative immunofluorescence staining examining Hsf1 expression in fresh 

CD48-LSK cells from 3-month-, (A) 22-month- and (B) 12-month-old mice. (C) Relative 

protein synthesis in HSCs in 3-month- and 11–12-month-old Hsf1fl/fl (WT) or Hsf1fl/fl;Mx1-

Cre+ (Hsf1−/−) mice in vivo (n=3–8 mice/genotype/age). (D) Donor cell engraftment when 

5×105 2-month-old old WT or Hsf1−/− bone marrow cells were transplanted with 5×105 

recipient-type bone marrow cells into irradiated mice. Total hematopoietic, B-, T- and 

myeloid cell engraftment are shown (n=3 donors, 15 recipients/condition). (E-H) Long-term 

donor (E) hematopoietic, (F) B-, (G) T- and (H) myeloid cell engraftment in the peripheral 

blood of individual mice from transplants in D. (I) Donor cell engraftment after serial 

transplantation of 3×106 bone marrow cells from primary recipients in D into secondary 

recipients. Total hematopoietic, B-, T- and myeloid cell engraftment are shown (n=2 

donors,10 recipients/condition). (J-M) Long-term donor (J) hematopoietic, (K) B-, (L) T- 

and (M) myeloid cell engraftment in the peripheral blood of individual recipient mice from 

transplants in I. (N) Donor cell engraftment when 5×105 10–12-month-old WT or Hsf1−/− 

bone marrow cells were transplanted with 5×105 recipient-type bone marrow cells into 

irradiated mice. Total hematopoietic, B-, T- and myeloid cell engraftment are shown (n=2–4 

donors, 10–18 recipients/condition). (O-R) Long-term (24-week) donor (O) hematopoietic, 

(P) B-, (Q) T- and (R) myeloid cell engraftment in the blood of individual mice from 
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transplants in N. Data represent mean ± SD (C) or ± SEM (D–R). Significance was assessed 

using a t-test (*P<0.05; **P<0.01, ***P<0.001).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

APC Anti-mouse CD3ε (17A2) BioLegend Cat #100236; RRID:AB_2561456

FITC Anti-mouse CD3ε (17A2) BioLegend Cat #100204; RRID:AB_312661

PE Anti-mouse CD3ε (17A2) BioLegend Cat #100206; RRID:AB_312663

APC Anti-mouse CD4 (GK1.5) BioLegend Cat #100412; RRID:AB_312697

FITC Anti-mouse CD4 (GK1.5) BioLegend Cat #100406; RRID:AB_312691

PE Anti-mouse CD4 (GK1.5) BioLegend Cat #100408; RRID:AB_312693

APC Anti-mouse CD5 (53-7.3) BioLegend Cat #100626; RRID:AB_2563929

FITC Anti-mouse CD5 (53-7.3) BioLegend Cat #100606; RRID:AB_312735

PE Anti-mouse CD5 (53-7.3) BioLegend Cat #100608; RRID:AB_312737

APC Anti-mouse CD8α (53-6.7) eBioscience Cat #17-0081-82; RRID:AB_469335

FITC Anti-mouse CD8α (53-6.7) eBioscience Cat #11-0081-85; RRID:AB_464916

PE Anti-mouse CD8α (53-6.7) eBioscience Cat #12-0081-83; RRID:AB_465531

APC Anti-mouse CD11b (M1/70) eBioscience Cat #17-0112-82; RRID:AB_469343

APC efluor780 Anti-mouse CD11b (M1/70) eBioscience Cat #47-0112-82; RRID:AB_1603093

FITC Anti-mouse CD11b (M1/70) eBioscience Cat #12-0112-83; RRID:AB_2734870

PE Anti-mouse CD11b (M1/70) eBioscience Cat #11-0112-85; RRID:AB_464936

PE/Cy7 Anti-mouse CD16/32 (FcγRII/III; 93) BioLegend Cat #101318; RRID:AB_2104156

PerCP/Cy5.5 Anti-mouse CD16/32 (FcγRII/III; 93) BioLegend Cat #101324; RRID:AB_1877267

Biotin Anti-mouse CD34 (RAM34) eBioscience Cat #13-0341-85; RRID:AB_466426

eFluor660 Anti-mouse CD34 (RAM34) eBioscience Cat #50-0341-82; RRID:AB_10596826

Alexa Fluor 700 Anti-mouse CD34 (RAM34) eBioscience Cat #56-0341-82; RRID:AB_493998

FITC Anti-mouse CD34 (RAM34) eBioscience Cat #11-0341-85; RRID:AB_465022

APC Anti-mouse CD41 (MWReg30) Biolegend Cat #133913; RRID:AB_11126751

FITC Anti-mouse CD43 (R2/60) eBioscience Cat #11-0431-85; RRID:AB_465041

PE Anti-mouse CD43 (R2/60) eBioscience Cat #12-0431-83; RRID:AB_465660

APC eFluor 780 Anti-mouse CD45.1 (A20) eBioscience Cat #47-0453-82; RRID:AB_1582228

Alexa Fluor 700 Anti-mouse CD45.2 (104) BioLegend Cat #109822; RRID:AB_493731

FITC Anti-mouse CD45.2 (104) BioLegend Cat #109806; RRID:AB_313443

APC Anti-mouse CD45R (B220) (RA3-6B2) eBioscience Cat #17-0452-83; RRID:AB_469396

FITC Anti-mouse CD45R (B220) (RA3-6B2) eBioscience Cat #11-0452-85; RRID:AB_465055

PE Anti-mouse CD45R (B220) (RA3-6B2) eBioscience Cat #12-0452-85; RRID:AB_465673

PerCP-Cyanine5 Anti-mouse CD45R (B220) (RA3-6B2) eBioscience Cat #45-0452-82; RRID:AB_1107006

APC Anti-mouse CD48 (HM48-1) BioLegend Cat #103412; RRID:AB_571997

FITC Anti-mouse CD48 (HM48-1) BioLegend Cat #103404; RRID:AB_313019

PE Anti-mouse CD48 (HM48-1) BioLegend Cat #103406; RRID:AB_313021

PE/Cy7 Anti-mouse CD48 (HM48-1) BioLegend Cat #103424; RRID:AB_2075049
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REAGENT or RESOURCE SOURCE IDENTIFIER

FITC Anti-mouse CD71 (R17217) eBioscience Cat #11-0711-85; RRID:AB_465125

APC Anti-mouse CD117 (cKit) (2B8) eBioscience Cat #17-1171-83; RRID:AB_469431

APC eFluor 780 Anti-mouse CD117 (cKit) (2B8) eBioscience Cat #47-1171-82; RRID:AB_1272177

PE-Cyanine7 Anti-mouse CD117 (cKit) (2B8) eBioscience Cat #25-1171-82; RRID:AB_469644

PE Anti-mouse CD127 (IL7Rα; A7R34) BioLegend Cat #135010; RRID:AB_1937251

APC Anti-mouse CD150 (TC15-12F12.2) BioLegend Cat #115910; RRID:AB_493460

PE Anti-mouse CD150 (TC15-12F12.2) BioLegend Cat #115904; RRID:AB_313683

PE-Cyanine7 Anti-mouse CD150 (TC15-12F12.2) BioLegend Cat #115914; RRID:AB_439797

APC Anti-mouse Ter119 (TER-119) Biolegend Cat #116212; RRID:AB_313713

FITC Anti-mouse Ter119 (TER-119) Biolegend Cat #116206; RRID:AB_313709

PE Ter119 (TER-119) Biolegend Cat #116208; RRID:AB_313709

APC Anti-mouse Sca-1 (D7, E13-161.7)\ eBioscience Cat #17-5981-82; RRID:AB_469487

Alexa Fluor 700 Anti-mouse Sca-1 (D7, E13-161.7) eBioscience Cat #56-5981-82; RRID:AB_657836

FITC Anti-mouse Sca-1 (D7, E13-161.7) eBioscience Cat #11-5981-85; RRID:AB_465334

PerCp-Cyanine5.5 Anti-mouse Sca-1 (D7, E13-161.7) eBioscience Cat #45-5981-82; RRID:AB_914372

APC Anti-mouse Gr-1 (RB6-8C5) BioLegend Cat #108412; RRID:AB_313377

FITC Anti-mouse Gr-1 (RB6-8C5) BioLegend Cat #108406; RRID:AB_313371

PE Anti-mouse Gr-1 (RB6-8C5) BioLegend Cat #108408; RRID:AB_313373

PE/Cy7 Anti-mouse Gr-1 (RB6-8C5) BioLegend Cat #108416; RRID:AB_312663

APC Anti-mouse IgM (II/41) eBioscience Cat #17-5790-82; RRID:AB_469458

PE Anti-mouse IgM (II/41) eBioscience Cat #12-5790-83; RRID:AB_465941

Streptavidin-PECy7 BioLegend Cat #405206; RRID:AB_2892630

APC Anti-human CD34 (581) BD Cat #555824; RRID:AB_398614

anti-Hsf1 Rabbit polyclonal Cell Signaling Cat #4356S; RRID:AB_2120258

Alexa 488 conjugated anti-Rabbit A21206, Invitrogen Cat #A-21206; RRID:AB_2535792

Chemicals, Peptides, and Recombinant Proteins

PIPC GE Healthcare Biosciences Corp Cat #27473201

Anti-mouse CD117 microbeads Miltenyi Cat #130-091-224

OP-Puro Medchem Source Custom Synthesized

2-mercaptoethanol Sigma Cat #M3148

StemSpan StemCell Technologies Cat #09650

Human SCF PeproTech Cat #300-07

Human Fms-related tyrosine kinase 3 ligand Flt3-l PeproTech Cat #300-19

Human TPO PeproTech Cat #300-18

Trypan Blue Corning Cat #25-900-CI

F-12 medium Life Technologies Cat #21041025

Insulin-Transferrin-Selenium-Ethanolamine (ITS-X) Life Technologies Cat #51500056

HEPES Life Technologies Cat #15630106

Penicillin/streptomycin/glutamine Life Technologies Cat #10378016
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REAGENT or RESOURCE SOURCE IDENTIFIER

Polyvinyl Alcohol (PVA) Sigma Cat #501784760

Hank’s buffered salt solution (HBSS) Corning Cat #MT21022CV

Heat-inactivated bovine serum Gibco Cat #26170043

Prime-XV Prototype; Irvine Scientific Cat #91206

Mouse SCF PeproTech Cat #250-03

Mouse TPO PeproTech Cat #315-14

17-AAG SelleckChem Cat #S1141

HSF1A Axon MedChem Cat #1890

DMSO Sigma Cat #D2650

Baytril Covetrus Cat #37713

Ammonium chloride potassium buffer

Methylcellulose culture medium M3434 STEMCELL Technologies Cat #03434

Paraformaldehyde Affymetrix Cat #19943

PBS Corning Cat #MT21040CV

Tween 20 Sigma Cat #P9416

4’,6-diamidino-2-phenylindole (DAPI) Life Technologies Cat #62247

Vectashield Vector Laboratories Cat #H-1000

Saponin Sigma Cat #47036

Fetal Bovine Serum Life Technologies Cat #16000044

G-CSF Zarxio, PFS McKesson Medical-Surgical Inc. Cat #1113496

Cyclophosphamide McKesson Medical-Surgical Inc. Cat #952047

Critical Commercial Assays

Click-iT Cell Reaction Buffer Kit Life Technologies Cat #C10269

Alexa Fluor 555-conjugated azide Life Technologies Cat #A20012

Proteasome-Glo chymotrypsin-like cell based assay Promega Cat #G8660

RNeasy Plus Micro Kit Qiagen Cat #74034

Deposited Data

RNA-sequencing data GEO GSE179415

Experimental Models: Cell Lines/Primary Cells

Cord blood derived CD34+ cells All Cells N/A

Experimental Models: Organisms/Strains

Mouse: B6: C57BL/6J The Jackson Laboratory Cat #000664; 
RRID:IMSR_JAX:000664

Mouse: B6SJL: B6.SJL The Jackson Laboratory Cat #002014; 
RRID:IMSR_JAX:002014

Mouse: UbG76V-GFP The Jackson Laboratory Cat #008111; 
RRID:IMSR_JAX:008111

Mouse: Hsf1fl Le Masson et al, 2011 N/A

Software and Algorithms

FlowJo FlowJo, LLC N/A

FACSDiva BD Bioscience N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Prism 8 GraphPad N/A

ImageJ NIH N/A

Image Lab 6.0.1 Bio-Rad N/A

TopHat 1.4.1 JHU CCB N/A

STAR 2.6.1 N/A N/A

PRINSEQ Lite 0.20.3 N/A N/A

Htseq-count 0.7.1 N/A N/A

featureCounts 1.6.5 N/A N/A

Bioconductor package DESeq2 1.24.0 Bioconductor N/A

Matplotlib J.D Hunter, 2007 N/A

ELDASoftware Hu and Smyth, 2009 N/A

Keyence Microscope Software Keyence N/A
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