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Abstract

Background—Brain mapping research in most neuroanatomical laboratories relies on 

conventional processing techniques, which often introduce histological artifacts such as tissue 

tears and tissue loss.

New Method—In this paper we present techniques and algorithms for automatic registration and 

3D reconstruction of conventionally produced mouse brain slices in a standardized atlas space. 

This is achieved first by constructing a virtual 3D mouse brain model from annotated slices of 

Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed model generates ARA-based 

slice images corresponding to the microscopic images of histological brain sections. These image 

pairs are aligned using a geometric approach through contour images. Histological artifacts in the 

microscopic images are detected and removed using Constrained Delaunay Triangulation before 

performing global alignment. Finally, non-linear registration is performed by solving Laplace’s 

equation with Dirichlet boundary conditions.

Results—Our methods provide significant improvements over previously reported registration 

techniques for the tested slices in 3D space, especially on slices with significant histological 

artifacts. Further, as one of the application we count the number of neurons in various anatomical 

regions using a dataset of 51 microscopic slices from a single mouse brain.

Comparison with Existing Method(s)—To the best of our knowledge the presented work is 

the first that automatically registers both clean as well as highly damaged high-resolutions 

histological slices of mouse brain to a 3D annotated reference atlas space.

Conclusions—This work represents a significant contribution to this subfield of neuroscience as 

it provides tools to neuroanatomist for analyzing and processing histological data.

Index Terms

Histological Artifacts; Image Registration; Image Processing; 3D Visualization; Mouse Brain

1 Introduction

Understanding the brain connectome or the wiring diagram of the brain is essential to 

understand how the brain circuits work [48, 29]. However, obtaining the wiring diagram of 
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the human brain is extremely difficult as it is large and contains billions of neurons forming 

complex interconnecting networks. Obtaining the connectome of even a simple roundworm 

such as C. elegan, which consists of only 302 neurons took many years [51]. Only recently, 

with the advances in both computing power and optical imaging techniques, it has now 

become feasible to obtain the connectome of more complex brains. A salient example of this 

is the ongoing efforts in mapping the connections in Drosophila’s brain which has nearly 

100,000 neurons [10]. Over the past decade, neuroscience researchers have started studying 

the mouse brains due to their physiological and genetic similarity to humans, the ease with 

which their genomes can be manipulated, and the ability to train mice to perform 

behavioural tasks relevant to human cognitive processes.

There are two steps in processing mouse brains. The first step comprises of sample 

preparation, imaging, and collection of histological slice data, while the second step consists 

of analyzing this histological data for measurement and quantification of labeled neurons, 

studying gene expression patterns, connectome exploration, etc. In most neuroanatomical 

laboratories, both these steps are largely performed manually [2, 45]. Manual sample 

preparation, although offers great flexibility especially in restaining of slices, slicing at 

arbitrary intervals etc., introduces many slice-specific histological artifacts such as tissue 

tears, folds, and missing regions. The second step, manual analysis of histological slices, is 

tedious, incomplete, and introduces various subjective errors. There is very little advantage 

to do the analysis, measurement, and visualization of histological slices manually.

It is advantageous to allow manual sample preparation, if required, and automate the second 

step, namely the post processing of histological slice data. However, the artifacts introduced 

during manual sample preparation makes many post-processing operations such as 

automatic alignment and 3D reconstruction extremely challenging [52, 1]. Another 

challenge in processing these conventionally produced slices is that a variety of sample 

preparation and staining procedures like In-Situ Hybridization (ISH), histology, etc., result 

in brain slices having different intensity profiles making comparisons with the reference 

atlas images extremely difficult (Fig. 1). In this paper, we present algorithms and techniques 

to address this challenging task of automating the post-processing of mouse brain slices 

including those that are produced by conventional techniques.

In order to understand the wiring diagram of a mouse brain, it is crucial to visualize and 

explore the connectome data in a standardized brain space or a reference atlas. There exists 

many mouse brain reference atlases, each constructed using different procedures [38, 14, 

47]. Among these, the Allen Reference Atlas (ARA) [14] has been widely used in 

neuroanatomy laboratories around the world. ARA is being continuously updated and so far 

it has delineated approximately 738 mouse brain anatomical regions. ARA consists of two 

reference atlases (coronal and saggital reference atlas) created by slicing the mouse brain in 

different directions. The coronal reference atlas consists of 132 sections evenly spaced at 

100 μm whereas the saggital reference altas consists of 21 sections spaced at 200 μm. Each 

of these reference atlases further consists of a stack of Nissl intensity slices and a stack of 

annotated contour slices hand drawn by experts as shown in Figure 1.
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In this paper, we report our techniques and algorithms to register conventionally produced 

microscopic mouse brain slices to a 3D annotated reference atlas space constructed from the 

ARA slices. A registration such as this has numerous advantages. First, it allows transfer of 

annotations from ARA onto the microscopic slices thereby facilitating region based neuron 

counting, analysis of common gene expression patterns etc. Second, inter-subject 

comparisons can be easily performed by registering multiple mouse brains to this 3D 

reference atlas space. Third, it enables virtual reslicing of the 3D reference atlas space 

creating new slices with annotations transferred from the ARA. Fourth, it supports 3D 

visualization and analysis of neuronal projections which often span the entire central 

nervous system providing functional connections between anatomically distant regions.

Construction of an annotated 3D common reference space in which the microscopic slices 

are aligned with the reference atlas can be broadly accomplished using either of the two 

approaches as shown in Figure 2. Since the ARA consists of two reference spaces - the Nissl 

intensity slices and the annotated slices, one approach could be to first perform 3D 

reconstruction of the microscopic intensity slices (Mapping D) and either of the two 

reference spaces (Mapping F or Mapping E) and then perform 3D alignment between the 

two reconstructed 3D models. This is challenging because most previous works for 3D 

volume reconstruction from intensity slices assume the slices to have little or no artifacts 

[20, 24, 35] and hence can handle Mapping F but not Mapping D, especially when the slices 

have histological artifacts. Furthermore, Mapping E is also difficult as annotated ARA slices 

have large interslice distance (100 μm), whereas most previous methods require the inter-

slice distance to be very small (approx 25 μm) to ensure topological correctness [21, 12, 30]. 

Alternatively, to avoid topological issues during reconstruction, 3D surface reconstruction of 

different regions of the brain has to be performed which may later be converted to volume 

representation. Another possible approach for construction of the annotated 3D common 

reference space could be to first perform 2D alignment between microscopic slices and 

either of the two reference spaces (Mapping A or Mapping C) followed by 3D 

reconstruction of any of the three reference spaces (This is possible since Mapping B 

between the Nissl intensity slices and the annotated atlas slices is already known). The 

problem with this approach is that microscopic slices produced from conventional 

techniques are riddled with histological artifacts making this inter-stack registration problem 

extremely difficult. Further, intensity based registration approaches (Mapping A) require the 

microscopic slices to have a similar intensity profile as the Nissl intensity slices, a 

requirement that is very difficult to satisfy. Hence, we propose to register the microscopic 

image stack to an annotated 3D reference space (Mapping D) in two steps (blue): Mapping 
C: 2D registration of microscopic slices with the annotated atlas slices, and Mapping E: 3D 

surface reconstruction from annotated slices of ARA.

The manuscript is organized as follows. In Section 2 we discuss prior works related to key 

concepts in the paper - 3D surface reconstruction, image registration and histological 

artifacts detection. We provide technical details about the experimental methods and the 

algorithms for construction of annotated 3D common reference space in Section 3. In 

Section 4 we give implementation details and provide both qualitative and quantitative 

comparisons with previous state of the art techniques. In Section 5 we show one of the many 

possible applications of our pipeline - neuron counting in anatomical regions. And finally, in 
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Section 6 and 7 we summarize our contributions and discuss the strengths and weaknesses of 

our methods, keeping in mind the neuroscience community.

2 Related Works

In this section we discuss the previous works that are most closely related to our proposed 

approach.

3D Surface Reconstruction of Mouse Brain

Building a surface from curve networks (multiple or nested curves) on parallel slices and 

guaranteeing a valid geometry (manifold with no self-intersections) and correct topology 

(same topology as the original object) is a non-trivial problem [21]. Although there have 

been several works in this direction, most of them have the user check the validity of 

geometry and topology of the structure and make appropriate changes.

Ju et al. [21] reconstructed the mouse brain with 17 anatomical regions using 350 pre-

aligned coronal histology slices having a small inter-slice distance of 25 μm. They proposed 

a projection based approach, where contours on parallel slices are projected onto a common 

plane, after-which a volume graph is constructed using the intersections of these projections 

before triangulating the surface. A similar strategy in [30] projects the contours onto the 

medial axis followed by mesh refinement to obtain a smooth reconstruction. This method 

can also handle curve networks on non-parallel contours and shows the reconstruction of the 

mouse brain with 10 anatomical regions from 14 non-parallel contours. A drawback with 

both these projection-based approaches is that the reconstruction heavily depends on the 

configuration of the cross-sectional planes and the inter-slice distance: if during projection, 

there is no intersection between the contours of the same region from two adjacent slices, 

that region would be disconnected in the final reconstruction. Hence, the topology of a 

region varies greatly by changing the input configuration of slices. Zou et al. [54] later 

introduced a method through which the user can control the topology of the final 

reconstruction by using an additional 3D intensity volume as input. Another common 

approach is to first create a volume - voxelize the contours on each plane and stack them 

together [50, 25]. This is usually followed by iso-surface extraction. Although the surfaces 

generated are geometrically correct, since it depends on regular voxel grids, the surfaces 

generated only approximate (and not interpolate) the original contours.

Our problem of reconstruction of the mouse brain from ARA slices differs from the above 

approaches in two aspects. First, the ARA contains 132 coronal annotated slices which are 

not pre-aligned. Hence, before performing any reconstruction, all 132 slices need to be 

aligned such that the overall shape and size of individual regions are preserved. Second, as 

the inter-slice distance between ARA is large (100 μm), contours of same regions across 

neighbouring slices have large displacement making projection based approaches 

challenging.

Image Registration

Image registration essentially consists of placing two images or volume datasets, acquired 

using the same or different imaging modalities, into a common coordinate system such that 
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all the relevant features are aligned. There is a huge body of work on registration of medical 

images and the readers are referred to [32] for a detailed categorization. Here we briefly 

discuss one classification most relevant to our approach. Registration can broadly be 

classified as intra-stack (registration among slices within a stack) or inter-stack (registration 

among slices in between two stacks). Further, within each of them there exists both feature 
based and intensity based registration techniques.

Intra-stack registration of mouse brain slices using either features [17, 53, 42] or intensity 

[35, 53] typically assume little distortion between consecutive slices and hence either use a 

rigid, affine, or similarity transform to get a global smooth 3D alignment. Ju et al. [20] 

proposed an intensity based method called warp-filtering which models the 2D deformations 

by decomposing them into two 1D deformations, one for each horizontal and vertical 

directions. To handle slices with small artifacts like air bubbles and tissue folds, they average 

pixels corresponding to the artifacts from neighbouring slices. Although such pixel 

averaging might achieve a smooth 3D volume, it is inadequate for accurate intra-stack 

alignment. Kovacevic et al. [24] used existing intensity based methods to align low 

resolution MRI images of nine mouse brains to create a variational atlas - an atlas which 

encodes the variation of different anatomical regions as deformation field.

Inter-stack registration between atlas and microscope slice images using intensity based 

approaches require the intensity profiles of both the microscope and atlas slice images to be 

same. This either constrains the experimental setup to perform same staining as the atlas or 

compels the neuroanatomist to create an intermediate atlas (either an average image [25], 

blockface photographs [13], manual synthetic intermediate atlas [49] or MRI images [31]) to 

aid in registration. Ng et al. [34] proposed a technique for In-Situ Hybridization (ISH) to 

Nissl registration without using any intermediate atlas but using a region based deformable 

registration through warping of both Nissl reference and annotated atlas slices using high 

resolution B-spline grid. On the other hand feature based approaches for inter-stack 
registration require extraction of reliable features from microscope images followed by 

alignment. Ali et al. [3] aligned only the outermost contour features (obtained by manual 

thresholding) using inflection points and area invariant descriptors by assuming a global 

affine transformation. Carson et al. [9] proposed a sub-division mesh based atlas to semi-

automatically align ISH slices to the atlas. During this procedure, they first manually 

construct the sub-division mesh for 11 saggital slices from Valverde atlas [47]. This mesh is 

then later fitted onto saggital ISH slices using a combination of statistical shape model, 

anatomical landmarks, and region boundaries. The corresponding landmarks used during 

this fitting process were detected a priori via a classification method which computes 

features from regions arranged manually for individual landmarks. This model-to-image 

alignment was later improved by Le et al. [26] using a Markov random field framework 

along with mutual information to compute the optimal location of control points for an 

accurate alignment.

We perform feature based inter-stack non-linear registration between mouse brain 
microscopic slices and their corresponding annotated ARA slices. We assume no 

prealignment of slices. Unlike earlier approaches, our method can handle slices that may 

have histological artifacts (tears, tissue loss and deformations), very common in 
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conventionally produced slices. Using our edge detection algorithm, we align both outer and 

inner contours for an accurate alignment. Aligning only the outer contours and propagating 

deformations inside does not achieve exact interior alignment. Since our method does not 

use intensity for registration, we do not need to create any intermediate atlas and our 

proposed method can align microscopic slices from different imaging modalities and 

staining procedures to ARA. Furthermore, since we directly use the annotated atlas slices, 

we only need to perform warping once, unlike previous intensity based techniques which 

first compute the deformation using Nissl atlas slices and then perform warping of the 

annotated atlas slices.

Although serial two-photo tomography (STPT) produces artifact-free, well-aligned, high-

resolution 3D datasets that makes the registration process much easier [27, 41, 25], 

conventional techniques to process the brain, although may produce deformed and damaged 

brain slices, continues to be the protocol of choice in many laboratories around the world 

because of the flexibility it provides for post slicing analysis including staining. We present 

methods to automatically handle even such damaged slice images during our registration.

Damage Region Detection

Most previous methods which try to automatically detect slices with artifacts look for 

unexpected differences between a specified slice and its neighbouring slices [22, 40, 20]. In 

other words, artifacts in an isolated slice cannot be detected or corrected. Further, such a 

method also requires slices to be close enough and the adjacent slice to be devoid of any 

artifacts, such that the difference between slices will imply the artifact. This limitation 

sometimes restricts the neuroanatomists who may want slices only from specific regions of 

the brain or want to slice the brain at larger intervals. There have also been efforts to not 

only identify but correct these artifacts. Kindle et al. [22] proposed a semi-automatic method 

where they manually identify small tissue tears and fill them by warping neighboring regions 

around the tear. This approach only works well when the tear is small, horizontal, and 

smooth. Further, one needs to be careful about obtaining undesirable warping effects while 

fixing these tears, especially when they are as severe as the ones shown in Figure 8.

While the above techniques aim to detect and correct slices which have artifacts, many 

researchers try to overcome them. They use methods such as cryosectioning of the frozen 

mouse brain [11, 27, 9], where they embed the brain in gel like compounds making it much 

easier to slice tissues into thin sections without tears or significant deformations. Another 

method quite popular is the introduction of quality control checks [27, 52], where highly 

damaged slices are manually removed from the registration pipeline. A major problem with 

this approach is that if enough of such slices are removed, there may not be sufficient 

information left to register and reconstruct the 3D brain model. Further, to aid in registration 

of such highly damaged slices, manual landmarks are often placed [11] or even manual 

initial registration is performed [49, 43]. All the above measures which mitigate the 2D 

slice-specific artifacts and help its registration, in addition to being time consuming, are 

expensive and require a lot of experimental planning. Although, slicing thicker sections may 

be a plausible solution to avoid tissue tears [6], it constrains the subsequent staining and 
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imaging procedures. One needs to ensure that the slicing thickness is in accordance with the 

penetration depth of the stain and depth of focus of the light microscope used.

Our automatic method to detect damaged regions (histological artifacts) only requires the 

slice in question as input and does not use any information from the neighbouring slices. 

Furthermore, since we perform a feature based registration, we simply remove the features 

present in these damaged regions and hence avoid the need to correct these artifacts which 

might introduce undesirable warping effects.

3 Methods

Our goal is to register mouse brain microscopic slices, sliced in any arbitrary direction and 

interval, to a standardized annotated 3D mouse brain model. Hence, we first reconstruct the 

3D model using annotated atlas slices from ARA. This virtual 3D mouse brain model can 

then be sliced at the same orientation and interval as the microscopic slices, corresponding 

slices be registered with each other, and thus an annotated 3D common reference space is 

constructed where the annotations and 3D reconstruction can be easily transferred to the 

mouse brain as shown in Figure 3.

3.1 Surface Reconstruction of Mouse Brain Atlas

We perform surface reconstruction of the mouse brain from 132 parallel coronal annotated 

atlas slices of ARA. Although each annotated slice is delineated into numerous regions, we 

only use and reconstruct 20 major anatomical regions in the mouse brain1. These regions 

were chosen based on the hierarchical structure of the mouse brain tree provided by the 

Allen Brain Institute. Each of the 20 regions were reconstructed individually, smoothened, 

and intersections were semi-automatically resolved. Hence, the input to our surface 

reconstruction algorithm is 132 parallel coronal annotated atlas slices and the output is a 3D 

reconstructed mesh of 20 anatomical regions. We now describe the various challenges 

during the surface reconstruction procedure and solutions to address them.

3.1.1 Challenges in Surface Reconstruction

Relative shape scale preserving alignment: The annotated slices from ARA maps are not 

aligned. Using such unaligned slices will introduce ripples in the 3D reconstructed brain 

model. Hence, our first step is to align all 132 coronal slices together while preserving the 

relative shape and size of individual regions between and within slices. Aligning the centers 

of the annotated slices preserves the relative shape and size, but does not guarantee smooth 

reconstruction as shown from the ripples in the top inset figure. Aligning the contours (from 

both internal and external regions) guarantees smoothness of the 3D reconstructed shape, but 

does not preserve relative shape and size between slices and regions. The shape of the brain 

is lost as shown in the bottom inset figure.

1See Table 2 for the full list
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Since we want to preserve the relative shape and scale of all regions during alignment, we 

first align the centers of all the slices and then remove all those slices which are not aligned 

with the help of the subject expert. Using the remaining aligned slices, we then reconstruct 

the mouse brain surface via BPA (ball-pivoting algorithm) [7] as it connects neighbouring 

contours without introducing new vertices. Once the reconstruction is performed, we insert 

those unaligned slices which were earlier removed and compute the intersection of their 

plane with the surface of the reconstructed mouse brain. Using the intersection values, we 

compute the required scale which is necessary to align each unaligned slice. We uniformly-
scale the unaligned slices such that the profile of all 132 slices is smooth when stacked on 

top of each other. The inset figure shows the profile of the top contour (red) and bottom 

contour (blue) of the mouse brain before (top) and after alignment (bottom).
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Surface Reconstruction & Resolving Self-Intersection: Once all the slices are aligned, we 

perform surface reconstruction to generate a 3D virtual mouse brain model. Annotated slices 

from ARA have large inter-slice distance making the use of previous projection based 

reconstruction approaches [21, 30] difficult as they would not guarantee topological 

correctness for all the regions. A single anatomical region could be disconnected into 

multiple regions as there may not be any intersection between its contours from adjacent 

slices (top inset figure). To avoid these topological errors, we first automatically separate all 

anatomical regions in each annotated slice image based on their RGB color. We then 

reconstruct each region separately using Delanay triangulation [8], thereby forcing regions 

with contours that have large displacements to form a single connected component (bottom 

inset figure). We later merge all the individual reconstructed regions to obtain the final mesh.
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Although the final reconstructed mesh has correct topology, it may not have a valid 

geometry. As we reconstruct regions individually without any constraints from neighbouring 

regions, there may be intersection between two adjacent 3D reconstructed regions. Its well 

known in the literature that resolving such intersections (detection and correction) with 

minumum change to the intersecting regions is extremely challenging to automate as it 

depends a lot on the topology of the intersecting parts. Hence, we adopt a semi-automatic 

approach where we compute the intersecting triangles between the regions and remove those 

intersecting triangles along with any disconnected components which are small in size. The 

gaps thus created are then filled using an approach similar to [5]. This is followed by a 

surface fairing algorithm [46], which does not shrink the mesh. This results in the 3D model 

of the mouse brain where the 3D structure of each region is reconstructed, annotated, smooth 

and free from intersections. The reconstructed mesh for each region is a manifold for the 

ease of applying further geometry processing algorithms. Such manifolds are achieved, if 

required, by duplicating vertices and triangles of the shared boundary between two adjacent 

regions. Although the reconstruction process is labor intensive, this is a one time operation 

and we have released the final 3D reconstructed brain model for public use.

3.2 Registration of Annotated and Microscopic Slices

Before we perform registration of the microscopic slices, we first need to compute their 

corresponding annotated atlas slices. We achieve this by slicing the reconstructed mouse 

brain model using the same slicing direction and slicing interval used to slice the actual 

mouse brain. This is important because the ARA is a 2D atlas with slices at very specific 

intervals and slicing angles, allowing for only an approximated (closest possible match) atlas 

slice to a given microscopic slice.

Hence, given a stack of microscopic slice images, using our Mesh-Slicer interface (please 

see supplementary document) we first slice the 3D virtual mouse brain model at the same 
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slicing angle and slicing interval to generate annotated atlas slice images (AI) corresponding 

to each individual microscopic slice image (MI). Given these matching slices, the rest of the 

paper explains the procedure to register one MI to one AI.

3.2.1 Feature Extraction—The first step in our registration pipeline involves extracting 

features. For this we extract the dominant edges or contours from both AI and MI and also 

compute the orientated bounding boxes (OBB) [15] around these dominant edges. Both 

these features are later used for accurate alignment.

We first create an atlas-edge image (AEI) by extracting the edges from AI. In order to 

compute the microscopic-edge image (MEI) from MI, whose edges correspond to edges in 

AEI, we propose a novel dominant edge detection (DED) algorithm that is a variant of the 

Canny edge detector. The DED algorithm automatically computes the threshold for 

hysteresis as described in Algorithm 1. Ostu’s method used in Canny edge detector, requires 

the input image to have a bimodal distribution as it computes the threshold for hysteresis by 

maximizing the inter-class variance [37]. The MI generally do not display a clean biomodal 

distribution (Fig. 5) and hence the threshold value computed by Ostu’s method is not stable - 

a lot of spurious edges are added with small errors in the threshold value. In comparison, our 

DED algorithm uses the idea of persistence of edges from the histogram of the gradient 

magnitude. We compute the threshold by finding a stable region or interval on the histogram 

of gradient magnitude. The intuition behind our algorithm is to compute a threshold value 

which not only suppresses weak edges, but also introduces fewer spurious edges when small 

errors are present. Our threshold computation algorithm performs better than the standard 

Otsu’s method as it removes small weak edges (Fig. 5) which potentially could lead to 

wrong correspondences during putative matching.

Algorithm 1 computes threshold K from MI. After removing noise and computing the 

histogram of gradient magnitude, we find the first consecutive k bins, where the number of 

points remain stable within a fixed threshold s. Intuitively, for strong edges, the number of 

points in the nearby bins will not fluctuate much as compared to weak edges providing a 

large stable range. To compute the threshold (K) we then take the mean of the gradient 

magnitude values of these k bins. Lowering these values, lowers the threshold thereby 

introducing weak or spurious edges. Hence, these parameters control how clean the MEI is, 

which in turn affects the correspondences and alignment.

Algorithm 1

Edge threshold (K) computation for input MI

1 Smooth MI with isometric median filter of size wm and Gaussian filter with standard deviation σg and 
size wg.

2 Compute the histogram of the gradient magnitude.

3

The number of bins b in the histogram is computed using Scott’s rule [44], b = 3.49σsN
− 1

3  where 

σs=standard deviation of the N gradient magnitude values.

4 Compute first k bins such that the difference of number of points in adjacent bins of the k bins lie within a 
fixed threshold s.
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5 return K= Mean of gradient magnitude value corresponding to k bins.

Using both the microscopic and atlas edge image, we now compute their OBB. However, 

computation of OBB using principal component analysis (PCA) will fail when used on 

highly damaged MI slices (Fig. 6) because the spurious edge points produced in damaged 

areas of the tissue images bias the PCA. This is one of the reasons why other edge based 

registration algorithms could not handle serious tissue damage artifacts. We address this 

challenge in two steps. First, we approximate the bounding box using convex hull which 

eliminates the effect of internal tissue damage artifacts. Then we uniformly sample the 

convex hull to eliminate the sample bias effect in PCA computation. Computing OBB from 

AEI is straightforward as it does not contain any histological artifacts.

3.2.2 Detection of Damaged Regions—Before computing corresponding points 

between MEI and AEI, and using those to further align the two images, it is important to 

first accurately identify and remove points in the damaged regions. The presence of edges 

due to the damage regions misleads and corrupts the correspondences (Fig. 7), resulting in 

bad registration.

Our algorithm to detect damage regions in mouse brain slices is motivated by two key 

observations. First, contours of most damaged regions have long exterior medial axis 

creating deep concavities into the tissue (Fig. 6). It is quite rare that the tear happens in the 

interior of the tissue directly without affecting the boundary of the tissue. Second, the 

damage region exhibits vertical asymmetry between the left and the right regions of the 

mouse brain. It is also very rare that the same type and shape of tear or missing region 

happens on both sides of the brain tissue slice.

Algorithm 2 computes points PD in the damaged regions in MEI. Using the vertices V and 

edges E of the outermost contour of MEI, we first construct a Constrained Delaunay 

Triangulation (CDT). All edges of E are a part of this triangulation as shown in red in Figure 

6(iii). By computing the winding number of a point inside the triangle, we then remove all 

the triangles lying inside the contour (winding number = 0) and retain only the exterior 

Delanuay triangles [18]. In order to obtain reliable Voronoi vertices and edges that can be 

used in computations downstream, we further clean the remaining exterior triangles by 

removing all “skinny” triangles – any triangle whose circumcenter does not lie within the 

triangle. From the remaining vertices V and edges E of the Delaunay triangles, we represent 

the exterior medial axis as the sequence of Voronoi edges that do not intersect the edge set E 
[4]. Since this would create many small medial axes as shown in Figure 6(iv), we threshold 

them (remove edge sequence < α) and retain only those medial axes corresponding to deep 

concavities. The vertices of the Delaunay triangles corresponding to the retained medial axis 

Voronoi vertices (V′) serve as candidates for the damaged regions as shown in Fig 6(v). 

There may be important features of the brain that may also have long medial axis, but these 

features are also symmetric on both sides of the brain. Hence, as the final step of our 

algorithm, we check whether the damage region candidate edge points are symmetric 

between the left and right half of the mouse brain: the points in the candidate damaged 
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regions are reflected along the vertical axis of the OBB (computed in Section 3.2.1) and for 

every reflected point, a small 3×3 neighbourhood region is checked for vertices in the 

original data set with similar normal vectors. If no such points are found, then it is declared 

that there is no symmetry, the points in the identified region are classified as damaged area 

points and removed from MEI (Fig. 6(vi)).

Algorithm 2

Detection of points PD in the damaged regions in input MEI.

INPUT: Vertices V & Edges E from outermost contour of MEI and α.

OUTPUT: Points PD in the damaged regions of MEI

1 Construct a CDT using E & V.

2 Remove all the triangles inside the polygon formed by E. Also remove all the sliver triangles whose 
circumcenter does not lie inside their triangle.

3 Using the remaining E & V, construct the dual Voronoi diagram.

4 Compute all the Voronoi edge sequences ≥ α and let the triangle vertices V corresponding to the 
remaining Voronoi vertices be V′.

5 Check for vertical symmetry ∀ v ∈ V′ and remove symmetric vertices from V′.

6 return PD ⇐ V′ which are asymmetric.

3.2.3 Non-Linear Registration—To accurately align the microscopic image with its 

corresponding annotated atlas image, we first perform global affine alignment using ICP 

followed by local non-linear alignment by solving Laplace’s equation with Dirichlet 

boundary conditions.

Global Alignment using ICP: Before performing global alignment, we first resolve the 

rotation component between the two images as accurately as possible. This is achieved by 

computing the relative translation, scaling, and rotation required to align the OBB of both 

AEI and MEI.

As both MEI and AEI are now coarsely aligned, we assume that the rotation component is 

resolved and only the translation and scaling components needs correction. Hence, for 

corresponding points on the edge curves of AEI and MEI, we can assume that the normal 

vectors would be almost the same. We compute the normal vectors of the points in AEI and 

the remaining points (after removing the damaged regions) in MEI using moving least 

squares [28] as it smoothly interpolates the normal vectors, diminishing the effect of noise, 

sharp features and topological foldings. Using these normal vectors, we then search for 

corresponding points between AEI and MEI within a small angle threshold. We may find 

multiple points (xa, ya) in the AEI in a small neighborhood Ω corresponding to a single point 

(x, y) in MEI. We assign weighted average of these multiple matches in AEI based on its 

Euclidean distance (dma) from the point in MEI, as the target position (x′, y′) to which (x, y) 

should finally be moved:
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(x′, y′) =
∑i = 1

n wi(xai
, yai

)

∑i = 1
n wi

∀(xa, ya) ∈ Ω (1)

where

w =
100, if dma = 0

1/dma, otherwise

To exclude incorrect matches, we check if points in the neighborhood of a point in MEI are 

matched to the points in the same neighborhood in AEI. Using these robust 

correspondences, the affine transformation matrix T is computed using linear least square 

formulation that would take the points in MEI (x, y) as close as possible to their 

corresponding matching points in AEI (x′, y′) as described below.

Let Z be c × 3 matrix where c is the number of correspondences in MEI whose target 

coordinates in the AEI are x′ and y′. Then T, the global affine transformation matrix can be 

computed by solving the linear equations, ZT1 = bx and ZT2 = by where,

Z =

x1 y1 1

x2 y2 1

. . .

. . .
xc yc 1

bx =

x1′

x2′

.

.
xc′

by =

y1′

y2′

.

.
yc′

and T1 and T2 the rows of T.

The global transformation thus computed may have non-uniform scaling, shear, and possibly 

a minor rotation adjustment component too. So, this transformation would change the 

normal vector of the points in MEI, which would lead to a slightly different set of matching 

points from AEI in the subsequent iteration, and potentially a different transformation matrix 

that would take MEI points further close to their new matches. Since we also use the 

distance of AEI points from the MEI (in the aligned images) for pruning the matching set of 

points, this iterative closest point optimization will converge. We progressively use tighter 

normal vector angle deviation and smaller distance thresholds in subsequent iterations for 

quicker convergence.

Local Alignment using Laplacian: After global affine transformation, we compute the 

final list of corresponding points between MEI and AEI that are spatially 1
40  of image-

height pixels apart, and deviate no more than 1 degree in their normal vectors. Given such 

tight correspondences, the next step is to register these points with each other using non-

linear alignment technique.
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Let points in MEI, PM, whose corresponding points in AEI, PA, be given. This image 

warping function, ϕ(x, y), posed as the solution to Laplace’s equation, should take each 

point in PM to its corresponding point in PA. For points in PM, this function is given as 

Dirichlet boundary condition:

ϕ(s, t) = (Bx(s, t), By(s, t)) where (s, t) ∈ PM (2)

where B is the displacement vector between the corresponding points. Other pixels are 

distorted as little as possible by this warping function:

ϕ(s, t) = 0 ∀(s, t) ∉ PM (3)

The smoothness in warping is achieved by the following Laplace’s equations:

∇ϕx =
d2ϕx

dx2 +
d2ϕx

dy2 = 0 ∇ϕy =
d2ϕy

dx2 +
d2ϕy

dy2 = 0 (4)

By approximating the second derivative at nodal point (x, y) (derived from Taylor series), 

the finite difference approximation of Laplace’s equation for interior regions can be 

expressed as a homogeneous system of linear equations of form

ϕ(x, y) = 1
4(ϕ(x + 1, y) + ϕ(x − 1, y) + ϕ(x, y + 1) + ϕ(x, y − 1) = 0 (5)

Combining the above equations and representing it in matrix notation gives Aϕx
= Cx and 

Aϕy
= Cy where A is a m × m matrix and m is the number of pixels in MI. The row vectors 

of A takes the coefficients of terms in Equation 5 except for the rows corresponding to MEI 

points in which case, it represents the Dirichlet boundary condition. The vector Cx and Cy 

are zero everywhere except for the rows corresponding to MEI points in which case it is Bx 

and By respectively. Note that A is a sparse matrix allowing for efficient computation of the 

solution of ϕ that minimizes the residual, ║C − Aϕ║.

The aforementioned algorithm is used to align each of the slices in the given microscopic 

stack to their corresponding annotated atlas slices. Using these registered microscopic slices 

and the reconstructed mouse brain, we create an annotated 3D common reference space 

which allows us to transfer 3D structure and annotations from the mouse brain model to the 

microscopic stack.

3.3 Specimen Preparation and Data Acquisition

All animal-related experiments were conducted in Dr. Xu‘s laboratory according to National 

Institutes of Health guidelines for animal care and use and were approved by the 
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Institutional Animal Care and Use Committee of the University of California, Irvine. 

Animals were group housed in standard conditions with a 12-h light-dark cycle (lights on at 

6:30 a.m., lights off at 6:30 p.m.). Mice used in the experiments were 8-12 weeks old. Please 

see [45, 36] for detailed experimental procedures. For histological processing, the mice were 

transcardially perfused with 4 % paraformaldehyde; their brains were sectioned coronally in 

30 μm thickness on a freezing microtome. Brain slices were counter-stained with 10 μM 

DAPI, then mounted and cover-slipped. A whole series of brain slices were imaged using the 

Automated Slide Scanning and Analysis software (Metamorph, Inc.) in a high-capacity 

computer coupled with a fluorescent BX61 Olympus microscope through a 10X objective 

and a high-sensitive Hamamatsu CCD camera. Image stitching, overlaying were completed 

by using Meta-morph imaging and analysis tools.

4 Implementation & Results

Implementation

The complete algorithm to align a single mouse brain microscopic slice which may have 

histological artifacts to its corresponding annotated atlas slice from ARA, takes about 1 

minute with our unoptimized MATLAB implementation on an Intel Core i5 CPU with 8GB 

RAM. To compute MEI from MI, we first smoothened the MI using an isometric median 

filter with wm=20 and Gaussian filter with wg=12 and σg=2. After which, the threshold for 

hysteresis was computed using s = 12, for which k = 5. From the MEI, the damage region 

detection was performed with an α value of 50 to remove all the small medial axis’s. The 

edges lying in the damaged regions were removed before performing global affine alignment 

using ICP with normal vectors as features. We progressively used tighter normal vector 

angle deviation thresholds (10°, 8°, 6°, 4°) and smaller distance threshold 1
10 , 1

20 , 1
40 , 1

80  of 

image-height in each iteration for quicker convergence.

Results

We evaluate our registration pipeline on 200 coronal mouse brain microscopic slices (5000 × 

8000 pixels) with a resolution of 0.6μm per pixel. To test the robustness of our method, these 

images were taken from different datasets spanning different regions of the brain. Of these, 

60 slices were from STPT2 (with no major artifacts) and the rest 140 produced from 

conventional processing techniques [45, 36] with many artifacts. From these 140 slices, 52 

slices had histological artifacts (45 slices with single, and 7 slices with multiple artifacts) 

such as tissue tears and missing regions, which were produced either during serial sectioning 

of the mouse brain tissue or during manual mounting of the thin slices on the glass slides.

Our registration results for all 200 slices (Fig. 8 & 9) were found qualitatively quite accurate 

by the subject experts. We also perform quantitative evaluation and comparison of our 

method with a similar end-to-end intensity based registration method that uses mutual 

information as its similarity metric. We chose mutual information because it is the most 

commonly used and popular metric for such inter-stack registration problems (Microscope 

to Atlas) [39, 34, 33]. We implemented the above method in Elastix [23], an ITK based 

2Publically available from the Allen Brain Atlas Project
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modular framework, where we first started with precomputed optimized parameters (from 

Elastix) and later modified them for the best overall performance. We used Advanced Mattes 

mutual information to register the DAPI stained microscope images with the Nissl intensity 

images from ARA maps by performing an affine registration followed by an elastic cubic B-
spline based transformation using a multi-resolution approach. An adaptive stochastic 

gradient descent optimizer with the final B-spline grid spacing of 18 pixel was used to 

ensure matching of local structures. We compared the root-mean-squared error (RMSE), the 

median error (MEE) and the maximal error (MAE) of 20 corresponding points which were 

manually picked and distributed uniformly in MI and AI pair. This comparison was done 

only for 140 slices from conventional processing techniques as there were no corresponding 

Nissl images for slices from STPT, hence they could not be registered with the Nissl 

intensity images from ARA maps. Although damage identification is done automatically, in 

order to collect statistics on results and for comparison with other methods, damaged slices 

were manually identified by subject experts, separated from clean slices, and separate 

comparisons were done on those slices.

There are two stages (affine & non-linear) to the pipeline and the two registration methods 

have different algorithms to realize each of these stages. While our method uses features to 

align both slices, registration performed by Elastix was done using Mutual Information - an 

intensity based similarity metric. The results in Table 1 are reported after each of the two 

stages. We found that during affine registration of damaged slices (52 slices), our proposed 

method gives lower registration errors (in terms of average RMSE & MAE) as compared to 

the intensity based method. For clean slices (88 slices) both performed equally well. After 

the non-linear registration, even in clean slices, we performed slightly better than intensity 

based method in all statistical measurements as we are using Laplace equations. Laplace 

equations, like thin plate spline (TPS) or B-spline also minimizes the total curvature. The 

addition of point correspondences as Dirichlet boundary conditions further constrains the 

interpolation of the displacement functions for an accurate MI to AI alignment.

Apart from registration, we also qualitatively validated our 3D reconstructed mouse brain 

model by subject experts. An accurate surface reconstruction of 20 major anatomical regions 

chosen from the Allen Brain Atlas project was performed from 132 parallel coronal 

annotated slices as shown in Figure 4. Our 3D mouse brain model is smooth with no 

intersections and each anatomical region is a manifold mesh.

5 Application: Neuron Counting

As one of the application of our registration, we performed region based neuron counting in 

51 microscopic slices from a single mouse brain dataset. After the alignment of all the MI to 

their corresponding AI slices, we transferred annotations from the AI onto the MI. We then 

performed segmentation of neurons in the registered MI slices followed by counting the 

number of neurons in all the 20 annotated regions. Figure 11 shows the segmented neurons 

inside the reconstructed virtual mouse brain model. (please see supplementary video for 3D 

visualization)
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The mouse brain used for neuron counting was a CR-Cre; Ai9 mouse brain in which 

calretinin-expressing neurons were genetically labeled with red fluorescent tdTomato 

proteins. Hence only the red channel of microscopic image was used to segment the neurons. 

As the red channel was saturated, we observed that a single threshold of 255 to segment the 

neurons gave reasonable results (Fig 10). To remove any noise which might be introduced, 

pixel clusters which were small in size (less than 5 pixels) were discarded. The remaining 

clusters represented the segmented neuronal cell bodies. Although most clusters contained 

single neurons, there were some clusters with multiple neuronal cell bodies. Hence, to 

resolve any ambiguity during counting of neurons for such clusters, we first computed the 

area of all the clusters and their median value was used to approximate the size of the 

neuronal cell body. We then took the ratio of the size of each cluster and the size of the 

neuronal cell body computed earlier and rounded it to the next nearest integer. The location 

of the neuronal cell body was represented by the centroid of the clusters. Using the 

annotations from ARA maps, location of each cluster and the number of neurons in each 

cluster, we then computed the number of neurons in all the 20 different anatomical regions 

for all the 51 registered microscopic slices (Table 2).

6 Discussion

Histological analysis is still the gold-standard for the accurate description of neuroanatomy 

and for tissue characterization of the mouse brain. Since our goal is to assist in creating a 

database by bringing together all microscopic slices from different histological preparations 

to a common anatomical framework (like ARA maps) and also gather various statistics 

about neuron densities in different regions and axonal projections of the mouse brain, it is 

vital that we achieve an accurate and robust registration.

Generality

In this work, we propose a novel feature based non-linear registration pipeline for automatic 

and robust alignment of high-resolution mouse brain microscopic slice images even with 

histological artifacts (tissue loss, tears, and deformation) to annotated atlas slice images 

from Allen Reference Atlas. We do this by aligning both the outer and inner contours of the 

microscopic and the annotated atlas slice images. These contour images are generated using 

our novel edge detection algorithm, which has been shown to be robust to noise through 

extensive testing on 200 microscopic slices. As our method does not use the Nissl intensity 

slices of the atlas, we can register generic and typical cases of those microscopic slices that 

have a different intensity profile from that of the atlas, without using any intermediate atlas. 

This is significant as our approach gives the freedom to register microscopic slices from 

many sample preparation techniques and protocols, using a variety of imaging modality and 

of any scale with the ARA maps and bring them to a common anatomical reference 

framework. Another advantage of our method is that it can handle slice-specific histological 

artifacts such as tissue tears and tissue loss, which are very common in slices produced from 

conventional techniques. Both these benefits allow our algorithm to align more brain 

datasets with diverse profiles to ARA maps for more thorough and extensive connectome 

studies.
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Area/Volume analysis

Although previous approaches [9, 33] map the atlas slices onto the microscopic slices, we 

mapped the microscopic slices onto the atlas slices for the ease of 3D visualization and 

neuron cell counting. During the mapping, obviously, area or volume of the input slices are 

changed. Once the mapping is done, regions can be demarcated in the original microscope 

slice. Inverting the mapping will take the region boundaries to the original tissue space, 

allowing for accurate area/volume measurements to detect abnormal growth of each region. 

Further after mapping, just like other approaches, we can store any image data (neurons, 

pixel intensity or other features) into the database for subsequent querying and analysis.

Scalability

Our robust damage detection algorithm can not only automatically detect slices which have 

artifacts, but also accurately locate the damaged regions in a slice without using any 

information from neighbouring slices. This makes our algorithm easily scalable to handle 

very large datasets without imposing any restrictions to the conventional neuroanatomical 

procedures. Further, our method can successfully detect multiple artifacts that may be 

present in the microscopic slices (see supplementary document). This enables and facilitates 

extremely thin sectioning of the mouse brain tissue, which is necessary for an accurate 3D 

mouse brain reconstruction.

Advantages of 3D virtual mouse brain model

During our work, we also performed surface reconstruction from annotated slices of ARA 

which have large inter-slice distance to generate a smooth 3D virtual mouse brain model 

with correct topology and no intersections. We reconstructed 20 major anatomical regions, 

where each region is a mani-fold. The final high-resolution mouse brain mesh model 

comprises of approximately 307K vertices and 615K faces. Such models, apart from 

assisting in visualizing the spatial location and orientation of the microscopic slices (Fig 3) 

and neurons (Fig 11), have several other advantages. First, since the Allen Reference Atlas 

consists only of 2D slices at specific orientations and slicing intervals, a 3D virtual mouse 

brain model enables virtual slicing at any angle with arbitrary slicing intervals (can be 

accomplished using our Mesh-Slicer user-interface). This ensures that there is always a 

corresponding annotated atlas slice for any given microscopic slice. Second, such models 

play a vital role in studying the connectome or the wiring diagram of the mouse brain [29], 

computing the density and distribution of neurons [16] and analyzing the common gene 

expression patterns [33, 9]. Last, having a surface model like this, which is free from 

intersections, could be used as a precursor for building 3D sub-divisional based atlas [19] for 

faster multi-resolution querying. Although the current virtual mouse brain model has 20 

regions, we are in the process of reconstructing close to 160 distinct anatomical regions.

7 Limitations and Future Work

Despite our registration algorithm being robust to tissue tears and tissue loss, there are still 

some extreme histological artifacts that are difficult to handle even with our algorithm. For 

example, tears that result in multiple component of tissues cannot be handled by our method. 

Such tissues are very difficult to mount since multiple components have to be accurately 
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placed in their original positions onto the glass slide. In such cases, although our algorithm 

can detect multiple components, it cannot process such slices any further. Our algorithm also 

does not handle folding of the tissue or overlap of the adjacent tissue regions. For such 

artifacts a more complicated or semi-automatic approach might be helpful. Another extreme 

deformation present usually in the bottom (posterior) slices is the relative displacement of 

left and right lobes of the mouse brain tissue. For such slices, a combination of our method 

and a sub-region (block) registration might be more helpful [13]. Further, there might be 

some microscopic slices which do not have prominent features inside the tissue region, 

making our feature based registration technique ineffective. For such slices, a combination 

of our feature based and intensity based registration approaches could be used to accurately 

align both the interior and exterior regions of the microscopic slice.

As one of the application of our registration pipeline, although we performed 2D 

segmentation of neuronal cell bodies by thresholding on image intensity, this could be vastly 

improved using more sophisticated approaches such as neural networks along with shape 

based classifiers or even performing 3D segmentation using active contours. Another 

possible future research direction could be to automatically compute the slicing angle of a 

microscopic slice in the virtual 3D mouse brain model. This would enable to register those 

microscopic slices for which the slicing angle is not known.

Neural circuit mapping based on conventionally processed brain sections is riddled with 

histological artifacts and also is the most common form of data used in almost all 

neuroanatomical laboratories. Registration, analysis and visualization that we propose for 

such data, opens up endless possibilities of new research directions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. We propose a end-to-end modular pipeline for processing mouse brain slices.

2. Our pipeline registers and visualizes mouse brain slices in a standardized 3D 

atlas space.

3. Our method accepts both clean and damaged (with artifacts) histological 

slices.

4. It also handles slices generated at arbitrary orientations and uneven slicing 

intervals.

5. Our pipeline supports neural circuit mapping research based on 

conventionally produced slices.
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Fig. 1. Example Images illustrating the challenges in histological alignment
(i) Conventionally produced microscopic slice image with histological artifacts. (ii) 

Corresponding Nissl intensity slice and (iii) annotated atlas slice from Allen Reference 

Atlas. There exists no straight forward intensity relationship between the microscopic slice 

and the Nissl intensity slice.
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Fig. 2. Construction of annotated 3D common reference space
This can be accomplished through 3D reconstruction and alignment of Microscopic slices 

(D) and either Annotated atlas slices (E), or Nissl intensity slices (F). Another approach 

could be 2D registration of Microscopic slices with either the Nissl intensity slices (A) or the 

Annotated atlas slices (C) followed by 3D reconstruction of any one of the three spaces. 

Note that mapping B between Nissl intensity and annotated atlas slices can be deduced from 

ARA maps.
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Fig. 3. Illustration of our system pipeline
We first reconstruct a 3D virtual mouse brain model from 132 coronal annotated slices from 

Allen Reference Atlas. This 3D model is then virtually resliced in the same direction and 

slicing interval that was used to slice the actual mouse brain so that each microscopic slice 

image has a corresponding annotated atlas slice image. These image pairs are then aligned 

using feature extraction, damage region detection and non-linear registration. Using the 

registered microscopic slices and the virtual mouse brain model, we can now perform 3D 

volume reconstruction of the original mouse brain. We can also transfer annotations from the 

reconstructed model onto any virtually resliced slice. Such applications provide tools to 

assist neuroanatomist in studying mouse brains.
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Fig. 4. Result of our surface reconstruction
Surface reconstruction of 20 major anatomical regions of the mouse brain where each 3D 

region is a smooth manifold mesh with correct topology and no intersections within or 

between regions. (please zoom in for details)
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Fig. 5. Edge detection on a microscope image
The histogram of the microscope images do not display a clean bimodal distrbution causing 

Ostu’s method to generate noisy edge images (left). In comparison, our method uses the 

histogram of the gradient magnitude to generate cleaner edge images (right). (please zoom 

in for details)
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Fig. 6. Overview of our damaged region detection algorithm
(i). Dominant edges (MEI) extracted from the mouse brain microscopic slice image on the 

left. (ii). Outermost contour of MEI, which serves as the input to our algorithm. (iii). 

Constrained Delaunay Triangulation of vertices V & edges E using the outermost contour of 

MEI. (iv). Exterior Voronoi vertices (magenta) and edges (brown). (v). Three candidate 

damage regions whose medial axis (Voronoi edge sequence) length was above α. (vi) 

Candidate damaged regions vertically reflected about OBB and checked for symmetry. 

Points corresponding to only the 2nd candidate area were classified as damage region points 

as they were not vertically symmetric. Whereas points corresponding to other two regions 

represent features of the brain. (please zoom in for details)
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Fig. 7. Correspondences used during MI-AI alignment
Dense correspondences before (left) and after (right) outlier removal (damage region + 

incorrect correspondences) between MEI (bottom) and its corresponding AEI (top). 

Correspondences are shown using similarly colored curve segments. Note the damaged 

regions in MEI are incorrectly matched to features in AEI (left). These incorrect matches are 

removed using our damage detection algorithm (right).
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Fig. 8. Comparison of registration results on damaged slices
First row shows damaged coronal mouse brain slices produced from conventional 

histological techniques. Second row shows results from our registration algorithm on the 

these slices with the corresponding atlas overlayed in white. Third row shows results from 

affine + non-linear B-spline registration using Elastix [23]. A few sample locations of 

incorrect registration in the third row are shown using yellow arrows and marked regions. 

See supplementary document for more examples. (please zoom in for details)

Agarwal et al. Page 32

J Neurosci Methods. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. Registration results on clean slices
The first row shows coronal slices from STPT while the second row shows results from our 

registration algorithm with the corresponding atlas overlayed in white. (please zoom in for 

details)
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Fig. 10. Neuron segmentation on microscope image
Neuron segmentation was performed on a microscopic slice image where the segmented 

neuronal cell bodies (red) are surrounded by white contour. (please zoom in for details)
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Fig. 11. 3D visualization of Neurons
Segmented neuronal cell bodies from 51 microscopic slices of a mouse brain are colored by 

their anatomical region (see Table 2 for color coding) and visualized inside the 3D virtual 

mouse brain model. (please zoom in for details)
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TABLE 2

Number of neurons in 20 different anatomical regions from 51 registered microscopic slices. To distinguish 

anatomical regions they are colored using distinct RGB colors.

Anatomical Region # of Neurons Anatomical Region # of Neurons

Isocortex 50267 Olfactory areas 6045

Striatum-like amygdalar nuclei 1862 Nucleus accumbens 1668

Cortical subplate 1386 Hypothalamus 1829

Hippocampal region 618 Olfactory tubercle 444

Retrohippocampal region 315 Caudoputamen 228

Lateral septal complex 170 Thalamus 76

Epithalamus 22 Fundus of striatum 32

Midbrain 16 Pallidum 0

Pons 0 Medulla 0

Cerebellar nuclei 0 Cerebellar cortex 0
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