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Summary:

Marine bacteria and archaea play key roles in global biogeochemistry. To improve our 

understanding of this complex microbiome, we employed single cell genomics and a randomized, 

hypothesis-agnostic cell selection strategy to recover 12,715 partial genomes from the tropical and 

subtropical euphotic ocean. A substantial fraction of known prokaryoplankton coding potential 

was recovered from a single, 0.4 mL ocean sample, which indicates that genomic information 

disperses effectively across the globe. Yet, we found each genome to be unique, implying limited 

clonality within prokaryoplankton populations. Light harvesting and secondary metabolite 

biosynthetic pathways were numerous across lineages, highlighting the value of single cell 

genomics to advance the identification of ecological roles and biotechnology potential of 

uncultured microbial groups. This genome collection enabled functional annotation and genus-
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level taxonomic assignments for >80% of individual metagenome reads from the tropical and 

subtropical surface ocean, thus offering a model to improve reference genome databases for 

complex microbiomes.

Graphical Abstract

Blurb:

The analysis of single cell genomics of marine microorganisms reveals a very high degree of 

uniqueness between individual cells, implying limited clonality within populations and establishes 

that a large fraction of global genetic diversity can be recovered from a single sample, suggesting 

effective global dispersal or prokaryoplankton.

Keywords

Genomics; reference database; microbial ecology; plankton; oceanography; omics; single cell 
genomics; biogeography; biodiversity; bioprospecting

Introduction

Unicellular, microbial life has been playing a central role in global biogeochemical 

processes, ecosystem functioning, and the health of multicellular organisms since its 

emergence >3.5 Gy ago (Falkowski et al., 2008). Traditional, pure culture-based 
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microbiology techniques cannot represent the staggering degree of microbial diversity that 

fills every imaginable life-sustaining niche in the biosphere (Locey and Lennon, 2016; 

Rappé and Giovannoni, 2003). Thus, studies of natural microbiomes increasingly rely on 

cultivation-independent tools, in particular the comparative sequence analyses of DNA, 

RNA and protein that are bulk-extracted from the environment (Handelsman, 2004; 

Sunagawa et al., 2015). The taxonomic and functional annotation of such metagenomic, 

metatranscriptomic and metaproteomic data (collectively referred to as “meta-omics”) 

depends heavily on the availability of suitable reference genomes. Unfortunately, recent 

studies found that existing reference genomes represent only 5% and 0.4% of gene clusters 

in human gut (Li et al., 2014) and marine (Sunagawa et al., 2015) metagenomes, 

respectively. The fraction of individual metagenomic reads that can be recruited on reference 

genomes ranges from <10% in the ocean to <1% in soils when using a ≥95% average 

nucleotide identity (ANI) threshold (Nayfach et al., 2016), where ANI in the range of 

94-96% is commonly used as an operational delineator of microbial species (Ciufo et al., 

2018; Konstantinidis and Tiedje, 2005; Konstantinidis et al., 2006). The paucity of adequate 

reference genomes remains a major limiting factor in our ability to fully interpret the 

majority of meta-omics data from most microbiomes.

Novel analytical approaches are being continuously developed to enhance the interpretation 

of meta-omics data. Improved computational tools for de novo assembly and binning of 

metagenomic reads into discernable units have revealed the coding potential of many deep 

lineages of Bacteria and Archaea from increasingly complex microbiomes (Anantharaman et 

al., 2016; Tyson et al., 2004). However, the representation and accuracy of metagenome bins 

deteriorates at family and lower taxonomic levels, resulting in frequent chimerism (Sczyrba 

et al., 2017), likely due to a combination of technical constraints and a high degree of cell-

to-cell genomic diversity within the environment. For example, no medium-to-high quality 

bins could be produced for Candidatus Pelagibacter (SAR11), the most abundant lineage of 

marine planktonic bacteria, from global sets of shotgun metagenomes (Delmont et al., 2018; 

Tully et al., 2018). Furthermore, genomic bins from metagenomes often lack rRNA operons, 

impairing their taxonomic positioning in the context of rRNA-based phylogeny 

(Anantharaman et al., 2016; Delmont et al., 2018; Tyson et al., 2004).

Single cell genomics is an alternative approach for cultivation-independent recovery of 

microbial genomes (Ishoey et al., 2008; Kashtan et al., 2014; Stepanauskas, 2012; Woyke et 

al., 2017). In contrast to metagenome assembly and binning, single cell genomics does not 

rely on the assumption of microbial population clonality and instead produces genomic 

sequences of individual cells. Earlier studies demonstrated that relatively small single cell 

genomics datasets, consisting of tens of partial genomes, can substantially improve the 

recruitment of meta-omics data from the ocean (Swan et al., 2013), soil (Choi et al., 2017) 

and other environments (Garcia et al., 2018; Rinke et al., 2013).

Here we evaluate the capacity of large-scale single cell genomics to represent the genomic 

makeup of a complex, global microbiome, the surface (epipelagic) ocean in tropical and 

subtropical latitudes from 40°S to 40°N. Marine microorganisms are of essential importance 

in geochemical cycling, nutrient remineralization, and climate formation; they comprise one 

of the largest microbiomes on Earth and have been extensively explored by meta-omics 
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approaches (Falkowski et al., 2008; Giovannoni et al., 1990; Rusch et al., 2007; Sunagawa et 

al., 2015; Venter et al., 2004). Using 28 epipelagic samples from the tropical and subtropical 

Atlantic and Pacific oceans, for which complementary metagenomics and targeted single 

cell genomics data have been reported previously (Berube et al., 2018; Biller et al., 2018; 

Hewson et al., 2009; Malmstrom et al., 2012), we generated and sequenced an untargeted 

library of single amplified genomes (SAGs) of planktonic bacteria and archaea - 

prokaryoplankton. This dataset differs from earlier single cell genomics projects in both its 

large scale and randomized, unbiased cell selection strategy, making it suitable for 

quantitative data mining that is agnostic to the original hypotheses of the study. Additionally, 

we employed an improved flow cytometry technique to measure physical sizes of the 

sequenced cells (Stepanauskas et al., 2017), thus adding a new layer of information about 

the analyzed, uncultured microorganisms.

Results

Prokaryoplankton genomic diversity

Of the 20,288 SAGs generated from the 28 environmental samples (Table S1), 12,715 SAGs 

(Table S2) produced >20 kbp genome assemblies with no detectable contamination, 

resulting in a cumulative assembly size of 8.1 Gbp (Table 1). We named this dataset the 

Global Ocean Reference Genomes Tropics, or GORG-Tropics, database. A subset of 6,236 

GORG-Tropics genomes, which we call GORG-BATS248, was obtained from a single, 0.4 

mL seawater sample aliquot from the Bermuda Atlantic Time-series Study (BATS) station in 

the Sargasso Sea to assess the coding potential of prokaryoplankton on local versus global 

scales. On average, we estimate that 38% of each cell’s genome was recovered. The GORG-

Tropics database is over an order of magnitude larger than previously reported microbial 

single cell genomics datasets (Berube et al., 2018; Kashtan et al., 2014; Pachiadaki et al., 

2017; Rinke et al., 2013; Swan et al., 2013). By processing each genome individually, the 

risk of errors in de novo genome assembly and the computational cost were minimized 

relative to metagenome assembly and binning. This study required small sample volumes 

(0.1 to 0.4 mL) and little processing in the field, which could facilitate the automation of 

sample collection in the future.

In order to assess the genome-level diversity of marine prokaryoplankton, we calculated the 

pairwise ANI among the 4,741 GORG-Tropics genomes with ≥50% estimated completion. 

Most ANI values were <80%, indicating that few of the prokaryoplankton cells were closely 

related (Fig. 1A). Only ~9,500 (0.08%) of the >11 million genome pairs were found to 

belong to the same, nominal “species”, as defined by the >96% ANI cutoff that was recently 

adopted by the National Center of Biotechnology Information (NCBI) (Ciufo et al., 2018). 

This highlights a disconnect between the current, nominal definitions of microbial species 

on the one hand and the natural, yet poorly understood patterns of genomic variability and 

microevolution in marine prokaryoplankton and other microbiomes.

None of the genomes were identical to each other at the nucleotide level. Only 121 genome 

pairs (0.001%), 119 of which came from GORG-BATS248, had an ANI >99.9%. In these 

121 pairs, the rate of nucleotide substitutions exceeded the rate of methodological errors 

(Stepanauskas et al., 2017) by an order of magnitude, and the ratio of their non-synonymous 
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versus synonymous substitutions averaged ~0.1, which is indicative of purifying selection 

and cannot be explained by sequencing or assembly errors. These 121 genome pairs also 

contained non-syntenic regions that encompassed entire operons and putative prophages 

(Fig. 1B). We found the same regions with ≥80% nucleotide identity in multiple other SAGs 

of the corresponding lineages SAR11 surface group 1 (e.g. AG-913-O18) and S25-593 (e.g. 

AG-457-K09), but not in other microbial groups, which provides further support for 

biological origins of these non-syntenic regions rather than methodological artifacts. This 

vast microdiversity across all lineages of marine prokaryoplankton expands on the prior 

studies of Prochlorococcus, the most abundant phototroph in the ocean (Kashtan et al., 2014, 

2017), as well as other studies of large genome libraries (Good et al., 2017; Shapiro et al., 

2012; Wolf et al., 2016). Such genomic variability, which includes both point mutations and 

gene content variation, likely plays a major role in the collective functioning of complex 

microbiomes, their compositional dynamics in time and space, and resilience to 

environmental change.

A recent survey of all prokaryote genomes in NCBI databases identified a pronounced 

discontinuity between >95% ANI values found within named, nominal species and <83% 

ANI values found in interspecies comparisons, which was interpreted as an indication of 

evolutionary forces sustaining biological species-like cohorts of Bacteria and Archaea (Jain 

et al., 2018). We found no evidence for such discontinuity in GORG-Tropics (Fig. 1A). This 

may indicate different patterns of microbial diversification in the ocean as compared to other 

environments. Alternatively, the elevated frequency of ANI >95% among genomes currently 

held in NCBI may reflect non-random genome sampling, with an overrepresentation of a 

small number of medically relevant lineages that were selected for sequencing based on the 

current, nominal species definitions and isolation techniques. The randomized cell selection 

approach used in our study offers an unbiased view of the genomic composition and 

evolutionary dynamics of the analyzed microbiomes.

Representation of global prokaryoplankton by GORG-Tropics

We recruited individual reads of 119 publicly available metagenomes from the tropical and 

subtropical epipelagic (Table S3) using a 95% nucleotide identity threshold to gauge how 

much of global prokaryoplankton diversity is represented in GORG-Tropics. This recruited 

6.3-72.6% (mean=40.0%) of metagenome reads, indicating that GORG-Tropics contains a 

substantial fraction of the global prokaryoplankton coding potential at the nominal species 

resolution (Fig. 2A). An average of 58% recruitment could be achieved by relaxing the 

nucleotide identity threshold, demonstrating that inter-study comparisons require uniform 

methods (Fig. 2B). We observed strong metagenome fragment recruitment in the Indian 

Ocean despite using only samples from the Atlantic and Pacific to generate GORG-Tropics 

(Fig. 2C). Metagenome recruitment was substantially lower, averaging 11%, in temperate 

and polar waters (Fig. S1). These patterns are consistent with prior reports of water 

temperature and latitude being the primary drivers of the global distribution of marine 

planktonic bacteria, archaea and protists, and support the hypothesis that microbes can be 

dispersed longitudinally over long distances (Seeleuthner et al., 2018; Sunagawa et al., 2015; 

Swan et al., 2013).
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GORG-Tropics substantially improved the recruitment of prokaryoplankton metagenomes as 

compared to other available reference genome databases, including the recently published 

genomes of 3,726 marine prokaryotes (Klemetsen et al., 2018) and the complete sets of 

metagenome assembly bins produced from either exclusively marine metagenomes 

(Delmont et al., 2018; Tully et al., 2018) or all public metagenomes from diverse 

environments (Parks et al., 2017) (Fig. 2A). Even GORG-BATS248, which consists of SAGs 

generated from a single, 0.4 mL water sample, outperformed metagenome bins that were 

produced from the global set of metagenome reads that was used in recruitment. This 

indicates that a substantial fraction of the global coding potential of marine 

prokaryoplankton resides in each tiny parcel of ocean water, due to effective mixing on a 

global scale. The observed improvement of prokaryoplankton representation by GORG-

Tropics likely depends on the ability of single cell genomics to recover variable genome 

regions in non-clonal populations. This corroborates our finding that close relatives are rare 

among randomly sampled cells (Fig. 1A).

Next, we analyzed how well GORG-Tropics represents the global pool of prokaryoplankton 

coding sequences (CDS), which was recently estimated to comprise approximately 40 

million clusters, based on the TARA Oceans shotgun metagenomics data (Sunagawa et al., 

2015). The co-clustering of CDS from GORG-Tropics genomes and TARA Oceans tropical 

and subtropical metagenomes produced ~35 million clusters. About 1 million of these 

clusters, comprising 29% of all CDS, were shared between GORG and TARA, including 

>99.9% of clusters containing >1,000 CDS (Fig. 3A). Thus, GORG-Tropics offers genomic 

context to the majority of abundant CDS clusters encoded by surface ocean 

prokaryoplankton in the tropics and subtropics.

Notably, 97% of all clusters had <10 CDS, while 12% of GORG-Tropics CDS and 24% of 

TARA CDS were singletons, consistent with the prevalence of rare genes in microorganisms 

from other environments (Wolf et al., 2016). We found that 56% of GORG-Tropics 

singletons were also present in the TARA dataset, indicating that they are not artifacts of 

techniques employed in single cell genomics (GORG) or shotgun metagenomics (TARA). 

Rare genes were not enriched in eukaryotic or viral sequences (Table S4), implying that 

most of them do not originate from phage infections or contaminants from Eukarya. While 

the overall length of CDS peaked at 200 amino acids (aa), singleton length exhibited a 

bimodal distribution, with local maxima at around 50 aa and 200 aa length (Fig. 3B). 

Examining GORG CDS specifically, we found no major differences in functional 

composition between the annotated singletons and clusters (Fig. 3C). However, singletons 

were enriched in hypothetical proteins (Fig. 3B). On average, the hypothetical CDS were 

shorter than CDS for which functional annotations could be obtained in both singletons and 

clusters (Fig. 3D). Annotated singletons were not enriched in short CDS, providing no 

evidence for incomplete or degrading genes of known function to comprise a major part of 

rare genes in prokaryoplankton, although difficulties in annotating degraded genes may play 

a role. The distinct peak in abundance at 50 aa among unannotated singletons suggests that 

rare prokaryoplankton CDS may be enriched in short sequences of unknown function.
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Lineage-resolved genome features of marine prokaryoplankton

Complete or near-complete 16S rRNA gene sequences were recovered from 5,536 GORG-

Tropics SAGs, enabling their taxonomic assignment to 20 phyla, 31 classes, 43 orders, 55 

families, 49 genera and 1 species of Bacteria and Archaea. The general taxonomic 

composition of GORG-Tropics is consistent with prior explorations of marine 

prokaryoplankton using 16S rRNA surveys and shotgun metagenomics (DeLong et al., 

2006; Giovannoni et al., 1990), with the predominance of Proteobacteria, Bacteroidetes and 

Cyanobacteria phyla, and with more than one third of the cells belonging to the lineage 

SAR11 Surface 1 (Fig. 4, Table S5). Our results also highlight the numeric abundance of 

lineages such as AEGEAN-169 (4.8% of prokaryoplankton in the analyzed samples) that 

have received limited attention so far (Reintjes et al., 2019). Importantly, many complete and 

near-complete 16S rRNA genes from SAGs could not be assigned to SILVA database’s 

taxonomic ranks: classes (1.2%), orders (2.3%), families (11%), genera (72%), and species 

(99.98%). This demonstrates that a large fraction of marine prokaryoplankton remains 

taxonomically uncharted.

Over 40 distinct, previously defined prokaryoplankton lineages were represented by at least 

10 members in GORG-Tropics (Figs. 4-5, Table S5). Many of these lineages have no or few 

cultured representatives and no previously published genomes. Our data indicate that most 

of the prevalent lineages have small genomes (1-2 Mbp), low G+C content (29-35%), and 

small cell diameters (0.2-0.5 μm) (Figs. 4, S2). These findings are consistent with previous 

reports of genome streamlining and small cell sizes of the cultured isolates of SAR11, the 

most abundant lineage of marine prokaryoplankton (Giovannoni, 2017). However, some 

lineages did not conform to this predominant pattern. For example, Arctic 97B-4 

(Verrucomicrobia), OM60 (Gammaproteobacteria), KI89 (Gammaproteobacteria), 

E01-9C-26 (Gammaproteobacteria), and the Roseobacter cluster (Alphaproteobacteria) 

exhibited average genome sizes >3 Mbp, G+C content >45% and cell diameters >0.4 μm. 

This indicates specialized ecological niches and divergent adaptations among lineages with 

streamlined and non-streamlined genomes.

There was a positive correlation between cell size and genome size among the 

prokaryoplankton lineages (Fig. 4A), which is in agreement with prior reports that examined 

non-marine environments and used different methods (Sorensen et al., 2019). This may be 

caused by both variables being constrained by selective pressures toward streamlining in the 

pelagic environment (Giovannoni et al., 2014). Prochlorococcus and unclassified 

Synechococcaceae cyanobacteria formed some of the most pronounced outliers in the 

relationship between cell size and genome size, as they have small genomes (1.65±0.12 and 

1.64±0.13 Mbp) despite comparatively large diameters (0.55±0.20 and 0.70±0.23 μm), 

which may be required to accommodate the photosynthetic machinery. On the opposite end 

of the spectrum, Verrucomicrobia lineage Arctic 97B-4 and Alphaproteobacteria lineage 

Roseobacter had similar or smaller cell size estimates than Prochlorococcus while 

possessing >4 Mbp genomes, with their larger genomes likely reflecting elevated metabolic 

versatility.

The number of CDS clusters encoded by specific lineages (pangenome size) correlated 

positively with the number of SAGs in a lineage, indicating that we have not exhausted 
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pangenomes of any of these lineages (Fig. 4B). The largest pangenome (~100,000 clusters) 

was recovered from the most abundant lineage SAR11 Surface 1, despite their individual 

genome size averaging only 1.3 Mbp (Table S5). However, lineages containing larger 

genomes tended to have a greater slope in the pangenome size relative to each new genome 

added to the analysis (Fig. 4B-C). Most of the rare clusters are lineage-specific, displaying 

narrow phylogenetic distributions, and most of the genes in large pangenomes are rare 

(Table S5). Remarkably, we observed no signs of exhausting the pangenome pools of these 

lineages, with an average of ~45 new clusters added with each new SAG sequenced in 

lineages represented by >200 SAGs (Fig. 4C-D).

Coding potential for carbon and nitrogen fixation

Microbial fixation of C and N into reduced, biologically accessible forms is essential to the 

productivity of marine ecosystems. By screening GORG-Tropics for key genetic markers, 

we identified the presence of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) 

form I genes, indicative of CO2 fixation via the Calvin-Benson-Bassham cycle, in 

Cyanobacteria and in several lineages of Proteobacteria (Fig 5, Fig S3, Table S5). We 

identified RuBisCO form IC/D, the thiosulfate-induced cytochrome soxAX, and 

bacteriochlorophyll genes in the Alphaproteobacteria lineage Ca. Luxescamonaceae, 

confirming the recent findings by Graham et al. (2018). This suggests that Ca. 
Luxescamonaceae may be capable of anoxygenic photosynthesis using reduced sulfur 

compounds as electron donors, in contrast to the well-documented process of anoxygenic 

phototrophy that does not result in net CO2 fixation (discussed below). The composition of 

GORG-Tropics SAGs implies that Ca. Luxescamonaceae comprise ~1.1% of 

prokaryoplankton in tropical and subtropical epipelagic samples (Fig. S2, Table S5) and are 

an order of magnitude more abundant than initially proposed (Graham et al., 2018). 

Additionally, both RuBisCO and bacteriochlorophyll genes were detected in two Parahaliaea 
(Gammaproteobacteria) SAGs. The discovery of two potential photolithotrophic lineages, 

one of which is rather abundant, is unexpected because anoxygenic photosynthesis is 

thought to rely on reduced sulfur compounds, which are found in low concentrations in 

oxygenated ocean (Ksionzek et al., 2016). Further studies will be required to confirm and 

quantify the genomics-predicted involvement of Ca. Luxescamonaceae and Parahaliaea in 

anoxygenic photosynthesis.

The presence of genes for sulfur oxidation and RuBisCO indicated the potential for 

chemoautotrophy in lineages SAR324, Litoricola and ZD405 (Table S5). This is consistent 

with previous observations that sulfur oxidation-based chemoautotrophy is prevalent in the 

oxygenated ocean below the epipelagic region (Swan et al., 2011). Intriguingly, SAR11, 

which constitute a major fraction of marine prokaryoplankton, require reduced sulfur 

compounds for heterotrophic growth (Tripp et al., 2008). Collectively, this indicates a 

greater role for reduced sulfur in the biogeochemistry of oxygenated ocean than is currently 

assumed, potentially operating through cryptic cycles similar to those in hypoxic zones 

(Canfield et al., 2010).

Photoheterotrophic light harvesting via rhodopsin and bacteriochlorophyll, which does not 

involve net carbon fixation, is utilized by aquatic microorganisms as a supplementary source 
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of energy (Béjà et al., 2000; Koblížek, 2015; Pinhassi et al., 2016). We found rhodopsin 

genes in 58% of all SAGs. Considering the 38% average genome recovery in GORG-Tropics 

SAGs (Table 1), this finding suggests that most prokaryoplankton cells in the analyzed 

samples had the potential for photoheterotrophy. Among lineages with >10 SAGs, these 

genes were only absent from Nitrosopumilales (Thaumarchaeota), Arctic97B-4 

(Verrucomicrobia) and Cyanobacteria. Furthermore, bacteriochlorophyll and type-II 

photochemical reaction centers, but not CO2 fixation pathways, were identified in 

Roseobacter (Alphaproteobacteria), OM60 (NOR5) (Gammaproteobacteria) and some rare 

lineages (Table S5). This reinforces the prevalence of non-photosynthetic harvesting of solar 

energy in prokaryoplankton, which was recently suggested to absorb a similar amount of 

solar energy as chlorophyll-a-based phototrophy (Gómez-Consarnau et al., 2019).

We found no evidence for N2 fixation pathways in any of the analyzed SAGs, including 17 

members of the Planctomycetes phylum. This stands in contrast to a recent report of 

planktonic Planctomycetes being involved in nitrogen fixation (Delmont et al., 2018) and 

suggests that the capacity for nitrogen fixation among free-living prokaryoplankton in the 

oxygenated epipelagic waters of the tropical and subtropical ocean is rare, as might be 

expected from the high demand for energy and Fe and the sensitivity to O2 of this process. 

In agreement with the established role of Thaumarchaeota in ammonium oxidation (Francis 

et al., 2005; Könneke et al., 2005; Wuchter et al., 2006), we found ammonia monooxygenase 

genes in Nitrosopumilales (Table S5). No SAGs contained the genes required for 

commamox, the complete oxidation of ammonia to nitrate (Daims et al., 2015), suggesting 

that commamox is likely not significant in the euphotic, oxygenated, tropical ocean. 

Similarly, no SAGs were found to contain nitrite oxidoreductase, in agreement with previous 

studies reporting that nitrite oxidizing bacteria are scarce in the euphotic ocean, since they 

are outcompeted by phytoplankton (Smith et al., 2014; Zakem et al., 2018).

Respiratory nitrate reductase (narG) and nitrous oxide reductase (norZ), indicative of 

denitrification, were found in a small number of SAGs. narG was detected in genomes 

belonging to Alphaproteobacterial lineage Roseobacter and Gammaproteobacteria lineages 

SAR92 and ZD405, while nosZ was recovered in Bacteroidetes lineages Marinoscillum, 

NS2b, NS4, NS5 and NS9. All but one of the genomes encoding denitrification genes 

originated from a single, oxygen-depleted sample in the East Tropical South Pacific (Table 

S1) suggesting a localized distribution. Cosmopolitan lineages likely adapt to local low 

oxygen conditions by acquiring genes that enable the use of alternative electron acceptors, as 

shown recently for SAR11 (Tsementzi et al., 2016). These findings highlight the utility of 

large-scale, randomized single cell genomics to identify the potential of specific microbial 

lineages to contribute to biogeochemically important processes.

Lineage-resolved biosynthetic gene clusters

Secondary metabolites are important in microbial ecology and are utilized by humans as 

sources of antibiotics, anti-cancer drugs and other therapeutic compounds (Fenical and 

Jensen, 2006; Gerwick and Moore, 2012). To date, secondary metabolites in bacteria 

associated with marine sediments, corals, tunicates, and sponges have received the most 

attention, while studies of prokaryoplankton have been limited in phylogenetic scope, and 
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primarily focused on cultivated isolates (Fenical and Jensen, 2006; Gerwick and Moore, 

2012). In an effort to bridge this knowledge gap, we applied the genome mining tool 

antiSMASH (Blin et al., 2017) on the GORG-Tropics dataset. This uncovered, in a 

quantitative and phylogenetically resolved manner, a remarkably diverse suite of predicted 

gene clusters for the biosynthesis of terpenes, bacteriocins, polyketides, arylpolyenes, 

phosphonates, lassopeptides, microcins, ectoines, non-ribosomal peptides, N-Acyl 

homoserine lactones and other secondary metabolites (Fig. 5, Table S5).

Although Actinobacteria from soils and marine sediments have served as the primary 

microbial source of bioactive compounds in biotechnology (Rigali et al., 2018), we found 

that the two most abundant Actinobacteria lineages in marine prokaryoplankton are among 

the most deplete in biosynthetic gene clusters (Fig. 5, Table S5). Only terpene synthesis 

clusters were found in the Sva0996 lineage, while no recognizable biosynthetic clusters were 

found in Actinomarina. This is consistent with the genome sizes of Actinomarina and 

Sva0996 being some of the smallest among prokaryoplankton lineages (Figs. 4 and S2, 

Table S5), although we cannot exclude the possibility that some secondary metabolite 

clusters escaped detection. Interestingly, some of the uncultured lineages, such as SAR324 

(Deltaproteobacteria), Arctic97B-4 (Verrucomicrobia) and Marinamargulisbacteria 

(Margulisbacteria) encoded among the most diverse sets of biosynthetic clusters, which 

suggests potential targets for future studies.

Terpene clusters were found in most prokaryoplankton lineages (Fig. 5, Table S5), in 

agreement with a recent report identifying them in many bacterial genomes in public 

databases (Yamada et al., 2015). Of particular relevance in terms of therapeutic potential was 

the observed diversity of polyketide synthase genes (PKSs), constituting markers of one of 

the major classes of natural products (Helfrich et al., 2019; Hertweck, 2009). Many of the 

Type I PKS systems shared >80% identity with known PKS-type polyunsaturated fatty acid 

(PUFA) synthases, which have commercial markets for both prescription drug and 

nutraceutical applications (Calder, 2015). Several Type I PKS pathways contained conserved 

4’-phosphopantetheinyltransferases (PPTases), particularly those from the Sfp superfamily 

specific for secondary metabolism (Beld et al., 2014). An interesting example of a modular 

type I PKS cluster was found in SAG AG-912-B08, where the presence of trans-

acyltransferase (AT) domains suggested the potential biosynthesis of macrolides, a class of 

natural products well known for therapeutic utility (Karpiński, 2019) but with unknown 

function in the oceans. The GORG-Tropics SAGs also contained multiple hybrid, non-

ribosomal peptide synthase (NRPS)-Type I PKS and trans-AT PKS systems, natural product 

classes that have demonstrated utility as antibiotics and chemotherapeutics (Amoutzias et 

al., 2016; Helfrich et al., 2019; Hertweck, 2009). Several of the NRPS pathways, e.g. in the 

Bacteroidetes SAG AG-313-C05, displayed biosynthetic elements for siderophores, small 

molecule iron chelators secreted to scavenge growth-limiting metals (Hider and Kong, 

2010). This is just a small selection of the thousands of biosynthetic gene clusters identified 

in the GORG-Tropics SAGs.

The observed abundance and diversity of biosynthetic clusters in marine prokaryoplankton is 

surprising, considering their generally small genomes (Figs. 4 and S2, Table S5) and dilute 

environment, where intercellular communication and warfare may be less effective than in 
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biofilms and other, more crowded settings. Thus, consideration should be given to the 

potential for the products of these biosynthetic clusters to play yet unknown, intracellular 

and intercellular roles. The general patterns highlight how large-scale single cell genomics 

enables a methodical exploration of biosynthetic capabilities of uncultured microorganisms. 

Our findings may facilitate the generation of new hypotheses leading to novel insights into 

the roles of secondary metabolites in microbial interactions in nature as well as translate 

practical applications for biotechnological and medicinal applications. Cultivation-

independent research tools are becoming essential in studies of chemical ecology and 

bioprospecting (Gerwick and Moore, 2012; Harvey et al., 2015). In contrast to meta-omics, 

single cell genomics recovers complex biosynthetic clusters from an individual cell, which 

may improve the characterization of variable regions of these clusters, ensure the 

compatibility of co-dependent genes and help selecting suitable heterologous expression 

systems as well as aid in the design of more effective methods for laboratory culturing.

GORG-Tropics as a reference database for prokaryoplankton meta-omics

To improve the utility of this dataset, we created a computational pipeline - the GORG 

Classifier - which facilitates interpretation of meta-omics data using the GORG-Tropics 

SAGs as a reference. This tool integrates GORG-Tropics into Kaiju (Menzel et al., 2016) to 

produce taxonomic and functional annotations of shotgun metagenomes, metatranscriptomes 

and metaproteome peptide sequences. Evaluation of the performance of the GORG 

Classifier was conducted by analyzing pre-annotated, mock metagenomes of 

prokaryoplankton from the tropical versus temperate epipelagic ocean. Mock metagenomes 

were produced by generating new, randomized SAG datasets separate from GORG-Tropics, 

and then computationally shredding them to imitate Illumina shotgun reads. These mock 

metagenomes were analyzed with the GORG Classifier, with either GORG-Tropics or the 

NCBI non-redundant database (nr) serving as a reference database. The taxonomic and 

functional assignments obtained were compared to the values expected from the source SAG 

annotations.

We found that the GORG-Tropics database substantially improved the sensitivity and 

accuracy of both taxonomic and functional assignments of the tropical epipelagic mock 

metagenome reads (Fig. 6A). The accuracy of taxonomic assignments was improved at all 

levels, with lower taxonomic levels showing the greatest improvement. For example, 

GORG-Tropics enabled correct genus-level classification of 83% reads while keeping the 

error rate at <0.1%, as compared to only 28% reads accurately classified with the NCBI nr 

database. The functional assignments showed an even more dramatic improvement, where 

GORG-Tropics enabled accurate annotation of 86% reads, as compared to only 0.15% reads 

being correctly annotated with Prokka (Seemann, 2014). This workflow enables both 

functional and taxonomic annotation of individual, short reads without the computationally 

expensive and error-prone assembly and binning steps, while retaining the quantitative 

aspect of raw read data. The annotation improvements offered by GORG-Tropics were 

limited to mock metagenomes from the tropical and subtropical epipelagic ocean and did not 

extend into temperate regions, where erroneous taxonomic assignments were prevalent with 

both nr and GORG-Tropics databases (Fig. 6B). This is consistent with the global patterns of 

metagenome fragment recruitment in this study (Fig. 2) and earlier findings of 
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prokaryoplankton differing among tropical, temperate and polar regions, as well as the deep 

ocean (DeLong et al., 2006; Mende et al., 2017; Swan et al., 2011, 2013).

Discussion

Our expansive, randomized single cell genomics approach enabled quantitative analyses of 

the distribution of hereditary material in prokaryoplankton of tropical and subtropical 

epipelagic ecosystem, a complex microbiome that plays a key role in global biogeochemical 

cycles, in unprecedented detail. We found all 12,715 sequenced cells to be genomically 

unique and a large fraction of them taxonomically uncharted. We also observed a substantial 

portion of the global prokaryoplankton pangenome in a single, 0.4 mL ocean water sample. 

These findings provide a new perspective on the genomic complexity and organization of 

microbiomes in nature. In particular, each cell’s genomic uniqueness offers possible 

explanations for the large pangenomes of marine microbial lineages and challenges in their 

separation into metagenome bins.

The approach we employed here enabled the first methodical, lineage-resolved survey of 

gene clusters involved in energy, nitrogen and secondary metabolisms. This confirmed an 

earlier finding of the genomic potential for aerobic anoxygenic photosynthesis in Ca. 
Luxescamonaceae, and showed that this lineage of Alphaproteobacteria is substantially more 

abundant than previously thought. The abundance and diversity of the identified biosynthetic 

clusters suggested an importance of secondary metabolites in the dilute environment of free-

living prokaryoplankton and offered a bioprospecting roadmap for biotechnology 

applications.

Utilized as a reference database, GORG-Tropics enabled accurate assignment of both 

taxonomy and predicted functions to the majority of individual metagenome reads from the 

tropical and subtropical epipelagic, which was not possible before. We expect the GORG-

Tropics to serve as a useful resource for marine microbiology. We also propose that 

randomized single cell genomics should serve as a new, instrumental approach for studies of 

soil, plant, mammalian and other microbiomes in order to fill our major knowledge gaps 

about these important microbial players in the functioning of diverse ecosystems and 

macroorganisms, as well as in climate change and other global processes (Cavicchioli et al., 

2019).

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources, reagents, and scripts should be directed to 

and will be fulfilled by the Lead Contact, Ramunas Stepanauskas, 

(rstepanauskas@bigelow.org).

This study did not generate new unique reagents.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Field sample collection—Aquatic samples were collected using Niskin bottles from the 

epipelagic zone at 20 tropical and subtropical locations in the Pacific and Atlantic oceans 

(Fig. 2A; Table S1). 1-2 mL aliquots of raw seawater were transferred to sterile cryovials, 

amended with 10% (final concentration) glycerol for cryoprotection, flash-frozen in liquid 

nitrogen, and stored at −80°C.

METHOD DETAILS

Single amplified genome (SAG) data generation—The generation, sequencing, de 
novo assembly, annotation and quality control of SAGs were performed at the Bigelow 

Laboratory for Ocean Sciences’ Single Cell Genomics Center (scgc.bigelow.org). First, we 

utilized SAGs generated in an earlier study (Berube et al., 2018), where one 384-well 

microplate of SAGs was generated from 24 field samples (Table S1). Additional SAGs were 

generated from four samples collected during the cruise BULA (Table S1), one microplate 

per sample. The cryopreserved seawater samples were thawed and pre-filtered through a 40 

μm mesh size cell strainer (Becton Dickinson). In order to discriminate heterotrophic 

bacteria and extracellular particles, seawater samples were incubated with the SYTO-9 DNA 

stain (5 μM final concentration; Thermo Fisher Scientific) for 10-60 min, after which the 

particle green fluorescence (proxy for nucleic acid content), light forward scatter (proxy for 

size), and the ratio of green versus red fluorescence (for improved discrimination of cells 

from detrital particles) were used to define the sort gate. Fluorescence-activated cell sorting 

(FACS), cell diameter determination, cells lysis and whole genome amplification with 

WGA-X were performed as previously described (Stepanauskas et al., 2017).

To gain a deeper understanding of prokaryoplankton coding potential within a single sample, 

37 additional microplates of SAGs were generated from a single cryovial of sample 

BATS248. Twenty of these plates were generated by cell sorting based on the SYTO-9 stain 

as above, but the sort gate was inclusive of particles with fluorescence spectra typical to 

Synechococcus. Ten of the additional BATS248 microplates were produced after cell 

labeling with an alternative probe RedoxSensor Green (1 μM final concentration for 20-40 

minutes at room temperature; Thermo Fisher Scientific), which targets viable cells 

(Stepanauskas et al., 2017). The final seven supplementary microplates of BATS248 were 

generated by sorting particles that fell below the typical prokaryote sort gate on the SYTO-9 

fluorescence axis. For all but five prokaryoplankton lineages there was no statistically 

significant difference in the relative abundance among SAGs generated with SYTO-9 and 

RedoxSensor Green probes (Welsh two sample t-test, p>0.5; Fig. S5). However, to avoid 

potential methodological biases, only SAGs that were generated with the SYTO-9 stain and 

the typical prokaryoplankton sort gate were used in the quantitative analyses of 

prokaryoplankton lineages. All 37 supplementary BATS248 SAG plates and all four plates 

of equatorial SAGs from the BULA expedition were generated with an extended spectrum of 

index FACS size calibration (Stepanauskas et al., 2017), which included a Pelagibacter 
ubique calibration culture, allowing us to accurately size prokaryote cells in the range of 

0.2-2.0 μm.
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Sequencing and de novo assembly of SAGs—All SAGs were subject to Low 

Coverage Sequencing (LoCoS) (Stepanauskas et al., 2017), after which 150 SAGs with 

lowest Cp values from each plate were selected for deeper, post-LoCoS sequencing. While 

LoCoS generated a variable number of 2×150bp reads per SAG, with an average of ~300k, 

the post-LoCoS sequencing produced >2M reads for each selected SAG. The goal of this 

selection and sequencing strategy was to dedicate a deeper, post-LoCoS sequencing effort to 

a taxonomically unbiased set of SAGs with the highest potential for good genome recovery, 

based on the previously observed negative correlation between WGA-X Cp and subsequent 

genome recovery (Stepanauskas et al., 2017). We found no significant taxonomic differences 

between SAGs with high and low WGA-X Cp values, providing indications that this strategy 

does not introduce compositional biases during this selection process (X2-test, p>0.05; Fig. 

S6). SAG paired-end libraries were created with Nextera XT kits (Illumina), sequenced with 

a NextSeq 500 (Illumina) and de novo assembled using a workflow utilizing SPAdes 

(Bankevich et al., 2012), as previously described (Stepanauskas et al., 2017). The quality of 

the sequencing reads was assessed using FastQC and the quality of the assembled genomes 

was assessed using checkM (Parks et al., 2015) and tetramer frequency analysis (Woyke et 

al., 2009). This workflow was previously evaluated for assembly errors using three bacterial 

benchmark cultures with diverse genome complexity and %GC, indicating no non-target and 

undefined bases in the assemblies and average frequencies of mis-assemblies, indels and 

mismatches per 100 kbp being 1.5, 3.0 and 5.0 (Stepanauskas et al., 2017).

Although the single cell genomes in this data set were screened for contamination 

introduced during cell sorting and DNA amplification, users should be aware that these 

screening procedures may not completely eliminate the potential for multiple genomes being 

present in the same assembly. Some SAGs, for example, may be derived from cells infected 

with a bacteriophage (i.e. virocells) and thus contain both host and virus genomes. Other 

single cells may contain multiple genomes due to a close physical association between two 

cells that resulted in co-sorting and co-amplification of DNA.

Taxonomic and functional annotation of SAG assemblies—16S rRNA gene 

regions longer than 500 bp were identified using local alignments provided by BLAST 

against CREST's (Lanzén et al., 2012) curated SILVA reference database SILVAMod v128 

and taxonomic assignments were based on a reimplementation of CREST's last common 

ancestor algorithm. The taxonomic assignments were used to group SAGs into lineages. 

Lineage clustering was performed by grouping SAGs with the same SILVA affiliation and 

the name of lineages correspond to their name of lowest rank in SILVA. In this manuscript, 

we report lineages that have 10 or more representatives, with the exception of SAR202, 

Marinamargulisbacteria and NKB19. The latter lineages have fewer than 10 representatives. 

Marinamargulisbacteria were initially annotated as ML635J-21 Cyanobacteria 

(k__Bacteria;p__Cyanobacteria;c__ML635J-21;o__?;f__?;g__?;s__?) and NKB19 did not 

receive taxonomic annotation below Superkingdom level 

(k__Bacteria;p__?;c__?;o__?;f__?;g__?;s__?). For these two lineages, near full-length 16S 

rRNA gene sequences were aligned using the SINA aligner (Pruesse et al., 2012) with a 

curated Bacterial domain 16S rRNA gene phylogeny clustered at an operational taxonomic 

unit (OTU) threshold of ≥85% nucleotide identity. Maximum-likelihood (ML) phylogenies 
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were created with MEGA 6.0 (Tamura et al., 2013) using the General Time Reversible 

(GTR) Model, with Gamma distribution with invariable sites (G+I), and 95% partial deletion 

for 100 replicate bootstraps. If the SAG 16S rRNA gene sequence had ≥85% nucleotide 

identity to an unclassified 16S rRNA gene sequence in the database, and phylogenetically 

clustered with those sequences (i.e. shared a monophyletic node), it was classified as the 

corresponding candidate phylum.

For Unclassified Rhodobacteraceae, a phylogenetic approach to refine the taxonomy was 

also applied. The ≥1,300 bp 16S rRNA gene sequences of the 84 SAGs that were initially 

annotated as “Rhodobacteraceae Unclassified” by CREST were combined with 222 cultured 

representatives of various Alphaproteobacteria families, aligned using SINA (Pruesse et al., 

2012), and used to construct a ML tree with RAxML (Stamatakis, 2014). 16S rRNA gene 

sequences of Unclassified Rhodobacteraceae SAGs that were shorter than 1,300 bp were 

then placed in the RAxML tree. The initially Unclassified Rhodobacteraceae SAGs formed 

two distinct, bootstrap-supported clades (bootstrap value >90). Metabolic gene content and 

whole genome trees verified that one of the clades was the recently described Ca. 
Luxescamonaceae. For the concatenated protein tree, 13 SAGs with 17 other 

Alphaproteobacteria genomes that were obtained from the NCBI, including 4 MAGs 

identified as Ca. Luxescamonaceae by Graham et al. (2018) were used for phylogeny. The 

GToTree phylogenomic workflow (Lee, 2019) was utilized to determine phylogeny of these 

genomes using a HMM set of 117 single copy gene targets for Alphaproteobacteria. 

Genomes containing at least half of the total single copy gene targets were kept for further 

analysis and downstream phylogenetic placement. A ML phylogenetic tree based on the 

final concatenated SCG sets was generated using FastTree version 2.1.10 (Price et al., 2009) 

with the default parameters (Fig. S4). Table S2 contains the SILVA taxonomy and the 

refined lineage assignment of each SAG.

Functional annotation was first performed using Prokka (Seemann, 2014) with default 

Swiss-Prot databases supplied by the software. Prokka was run a second time with a custom 

protein annotation database built from compiling Swiss-Prot (Bateman et al., 2017) entries 

for Archaea and Bacteria. The output of Prokka and the secondary annotation were joined 

into a single, tab-delimited table with headers identifying the origin of the assignment. 

Biosynthetic pathways were identified using AntiSMASH 4.0 (Blin et al., 2017), with 

KnownClusterBlast, ActiveSiteFinder and SubClusterBlast options.

To generate a RuBisCO tree, all RuBisCO sequences from the GORG-Tropics SAGs, 10 

sequences of marine MAGs, and sequences from 72 cultured representatives (Fig. S3) were 

aligned with ClustalW (Thompson et al., 1994). The RuBisCO tree was constructed with 

MEGA X (Kumar et al., 2018) using the ML and the Le Gascuel 2008 model (Le and 

Gascuel, 2008). Initial tree(s) for the heuristic search were obtained automatically by 

applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated 

using a JTT model and then selecting the topology with superior log likelihood value. A 

discrete Gamma distribution was used to model evolutionary rate differences among sites (6 

categories (+G, parameter = 1.4194)). The rate variation model allowed for some sites to be 

evolutionarily invariable ([+I], 1.27% sites). The tree is drawn to scale, with branch lengths 
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measured in the number of substitutions per site. This analysis involved 317 amino acid 

sequences. All positions with less than 75% site coverage were eliminated.

All unique bacterial 16S sequences from GORG-Tropics were aligned by SINA (Pruesse et 

al., 2012) and a ML tree with the Kimura 2-parameter model (Kimura, 1980) was 

constructed using MEGA X (Kumar et al., 2018). Initial tree(s) for the heuristic search were 

obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of 

pairwise distances estimated using the Maximum Composite Likelihood approach, and then 

selecting the topology with the superior log likelihood value. A discrete Gamma distribution 

was used to model evolutionary rate differences among sites (4 categories (+G, parameter = 

0.6966)). The rate variation model allowed for some sites to be evolutionarily invariable 

([+I], 18.34% sites). The tree is drawn to scale, with branch lengths measured as the number 

of substitutions per site. This analysis involved 2,898 nucleotide sequences. All positions 

with less than 75% site coverage were eliminated.

Metagenomic fragment recruitment—We calculated the percentage of read fragments 

recruited from 119 publically available marine metagenomes (Table S3; Fig. 2A) from 

epipelagic tropical and subtropical oceanic regions against seven genomic databases: (I) 

GORG-Tropics vl (current study), (II) GORG-BATS248 (current study), (III) All 98 marine 

isolates and SAGs sequenced before 2013 (Swan et al., 2013); (IV) 957 nonredundant 

metagenome assembled genomes (MAGs) from TARA Oceans (Delmont et al., 2018); (V) 

2,631 nonredundant good quality (completion≥50% and contamination ≤10%) MAGs from 

TARA Oceans (Tully et al., 2018); (VI) 7,903 MAGs from all NCBI metagenomes (Parks et 

al., 2017); and (VII) all 3,726 marine prokaryotic genomes in MarDB database (Klemetsen 

et al., 2018). The methodological details of the recruitment are reported in detail previously 

(Pachiadaki et al., 2017). In brief, paired metagenomic reads were joined using flash version 

1.2.11 with the following parameters: -x 0.05 -m 20 -M 150 (Magoč and Salzberg, 2011). 

Successfully joined metagenomic reads were subsampled to 106 reads using seqtk and were 

aligned to a concatenated file containing all genomes from each of the aforementioned 

databases using bwa mem with the default parameters (Li et al., 2009). Read alignment files 

were filtered using samtools (Li et al., 2009) and pysam to identify reads aligning at 95% 

percent identity over a minimum alignment length of 100 nt. Results were visualized using 

the ggplot2 package in R. For the visualization of the biogeographical distribution of the 

metagenomic recruitment, the R packages maps and mapdata were used. The percent of 

reads aligned against the GORG-Tropics database at various percent identity thresholds 

(100, 98, 95, 92, 90, 88, 85, 80 and 70) was also calculated.

Gene clustering—All coding sequences (CDS) from TARA Oceans tropical and 

subtropical epipelagic samples (Sunagawa et al., 2015) were downloaded from EMBL and 

translated into amino acid sequences (92,128,162 sequences). GORG-Tropics protein 

sequences (8,589,814 sequences) were called using prodigal with the ‘-p meta’ flag to mimic 

protein calling used for metagenomic samples (Hyatt et al., 2010). TARA and GORG 

proteins were then combined and clustered using the lindclust clustering method (80% 

identity threshold and 80 kmers) within the MMseqs2 software package (Steinegger and 

Soding, 2017). Clustering parameters were selected to reflect the stringent parameters used 
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for previously reported cluster analyses for TARA microbial metagenomic data (Sunagawa 

et al., 2015). We attempted to replicate previous clustering methods exactly, but ran into 

computational resource limitations and instead found MMseqs2 to be a more efficient 

clustering tool. The amino acid length for singletons and cluster seed sequences from 

clusters with >10 members were used to generate Figure 3B using seaborn and matplotlib 

python packages for plotting.

For functional examination of singleton sequences and clusters from GORG-Tropics, and for 

lineage-specific pangenome analyses, all translated CDS from GORG-Tropics SAGs called 

by Prokka and functionally annotated as described above were combined and clustered once 

again, using the lindclust clustering method (80% identity threshold and 80 kmers) within 

the MMseqs2 software package.

To draw rarefaction curves (Fig. 3C) for each lineage, CDS were randomly sampled from 

the MMseqs2 output tsv file and determined to be either a member of a previously sampled 

cluster, or a new cluster. This was repeated until all CDS from each lineage were sampled. 

Results were plotted as the number of sequences sampled versus the number of clusters 

accumulated for each lineage using the matplotlib python plotting library. To calculate the 

number of clusters added per genome (Fig. 3D), rarefaction curves were drawn similarly to 

3C, except that sequences were sampled per randomly selected SAG. A linear regression 

was calculated for the last 10 selected SAGs per lineage against the number of accumulated 

clusters added per SAG, and the calculated slope was recorded as the rate of CDS clusters 

added per genome. This was repeated 10 times per lineage, to account for variability in 

genome completeness among randomly sampled SAGs. The average rate of CDS clusters 

added per genome was used for plotting and reporting.

Average nucleotide identity (ANI) and synteny analyses—Paiwise ANI was 

calculated for all GORG-Tropics SAGs with greater than 50% completeness using fastANI 

with default parameters (Jain et al., 2018). ANI distributions were plotted using seaborn and 

matplotlib python packages. Synonymous and non-synonymous mutations were assessed by 

conducting all against all BLASTP searches between pairs of SAGs that shared ≥99% ANI 

using a 95% sequence identity cut-off. Selected sequence pairs were aligned using Clustal 

Omega (Sievers et al., 2011) with default parameters. Using the PAL2NAL tool (Suyama et 

al., 2006), the nucleotide sequences that correspond with each of the aligned protein 

sequence pairs were converted into codon alignments. The resulting codon alignment pairs 

were used to estimate synonymous and non-synonymous substitution ratios using the YN00 

program from PAML4.8 with an implementation of the Yang and Nielsen 2000 method 

(Yang, 2007; Yang and Nielsen, 2000).

GORG-Tropics database for Kaiju—The annotated assemblies of SAGs from which the 

16S rRNA gene was recovered were compiled into a GORG-Tropics reference database for 

implementation in Kaiju, a computational tool for meta-omics read annotation (Menzel et 

al., 2016). The database consists of contigs (GORG_v1.fasta), gene sequences 

(GORG_v1_<taxonomy>.faa), Kaiju indexes based on NCBI taxonomy 

(GORG_v1_NCBI.fmi) and SILVAmod taxonomy (GORG_v1_CREST.fmi), and a text 

reference file linking contig, gene, gene coordinates, and functional annotations to gene 
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sequence headers (GORG_v1.tsv). The link between gene sequence references and the Kaiju 

indexes allows both taxonomic and functional annotation. Annotation of DNA or amino acid 

sequences is performed using Kaiju against GORG's index (-m 11 -e 3). Using Kaiju's 

supplemental method addTaxonNames, the taxonomic lineage can be added based on the 

selected index. Names (names.dmp) and nodes (nodes.dmp) definitions per taxonomy are 

required by Kaiju and each are supplied. Using the GORG tabular annotation data, Kaiju hits 

are mapped to their respective annotated SAG assembly, from which complete functional 

annotations are retrieved, including enzyme commission number, gene identifiers, and gene 

product descriptions.

Evaluation of GORG-based metagenome annotation—We employed mock 

metagenome datasets to evaluate classifications based on the GORG reference database. 

New libraries of prokaryoplankton SAGs were generated, LoCoS-sequenced and annotated 

from one tropical epipelagic and one temperate epipelagic sample (Table S1), two 384-well 

microplates per sample, following the same procedures as described above. For this purpose, 

the tropical epipelagic water sample was collected from 80 m depth in the central Atlantic 

Ocean (22°48’36.0” N, 46°03’37.8” W) on October 14, 2017, during the AT39-01 North 

Pond CORKs research cruise. The temperate epipelagic sample was collected from 1 m 

depth in the Gulf of Maine (43°5'37.72" N, 69°34'41.25" W) on April 12, 2017. In both 

cases, one microplate of SAGs was generated by sorting cells in a typical prokaryote gate 

using the SYTO-9 stain, and one microplate of SAGs was generated using the RedoxSensor 

Green probe, as described above. This resulted in 211 tropical and 124 temperate SAGs from 

which the 16S rRNA genes were retrieved. The 16S-containing assemblies were 

taxonomically and functionally annotated in the same way as GORG-Tropics SAGs and then 

computationally shredded into 150-280 basepair shreds using the bbtools script 

randomreads.sh, resulting in approximately 23 and 7 million mock metagenome reads from 

each of the environments, corresponding to >20x coverage. The script’s default parameter 

“adderrors=t” introduced substitution errors in the obtained mock metagenomic reads that 

are typical to the Illumina sequencing technology. The reads were analyzed with Kaiju with 

GORG-Tropics as its underlying database, and the obtained taxonomic and functional 

assignments were compared to the expected values, based on the source SAG annotations.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was determined through t-test or X2-test as reported in the method 

detail section. All computational and statistical analyses were conducted using the 

aforementioned referenced open source software tools.

DATA AND CODE AVAILABILITY

GORG database genomes are available at NCBI under bioproject ID PRJEB33281 and at 

Open Science Framework under DOI 10.17605/OSF.IO/PCWJ9. Mock metagenomes are 

also available at Open Science Framework under DOI 10.17605/OSF.IO/PCWJ9. As 

previously reported (Berube et al., 2018), ancillary physical, chemical, and biological data 

associated with the data set can be accessed from C-MORE (http://hahana.soest.hawaii.edu/

cmoreDS/), HOT (http://hahana.soest.hawaii.edu/hot/hot-dogs/), BATS (http://
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bats.bios.edu/), GEOTRACES (http://www.geotraces.org/), and SCOPE (http://

scope.soest.hawaii.edu/data/) using the sample metadata available in Table S1.

ADDITIONAL RESOURCES

This study did not generate additional resources.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

1. Each drop of seawater contains much of the global prokaryoplankton 

pangenome.

2. Individual cells’ genomic uniqueness limits separation into metagenome bins.

3. Methodical survey highlights lineage-resolved energy and secondary 

metabolism.

4. Randomized sampling of individual genomes offers a new model to study 

microbiomes.
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Figure 1. 
Genomic diversity among GORG-Tropics SAGs. (A) Pairwise Average Nucleotide Identity 

(ANI) of SAGs with estimated completeness of ≥50%. The inset is an enlarged region of 

85-100% ANI. (B) Examples of gene content differences among SAGs with ANI >99.9%. 

Red bars indicate tRNA genes. Sequence coverage depth is provided for the aligned regions 

and ranges from 6 to >7,000.
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Figure 2. 
Recruitment of reads from tropical and subtropical epipelagic metagenomes. (A) Fraction of 

reads recruited from each of the 119 public metagenomes against the following genome 

databases: (I) GORG-Tropics (current study), (II) GORG-BATS248 (current study), (III) all 

98 marine isolates and SAGs sequenced by 2012 (Swan et al., 2013); (IV) 957 non-

redundant metagenome bins from TARA Oceans (Delmont et al., 2018); (V) 2,631 non-

redundant bins from TARA Oceans with estimated ≥50% completion and ≤10% 

contamination (Tully et al., 2018); (VI) 7,903 bins generated from all NCBI metagenomes 

(Parks et al., 2017); and (VII) all 3,726 marine prokaryotic genomes in the MarDB database 

(Klemetsen et al., 2018). Thresholds of ≥95% nucleotide identity and 100 bp alignment 

length were used in these analyses. (B) Fraction of reads recruited from each of the 119 

public metagenomes against GORG-Tropics using various nucleotide identity thresholds and 

a minimum of 100 bp alignment length. (C) Geographic distribution of recruitment against 

GORG-Tropics at nucleotide identity ≥95%. Circle centers correspond to metagenome 

collection location. Geographic coordinates can be found in Table S1.
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Figure 3. 
General patterns in coding sequence (CDS) clusters. (A) CDS clusters shared between the 

GORG-Tropics and TARA Oceans datasets, as a function of cluster size. (B) Normalized 

density histogram of protein sequence length in clusters with >10 CDS (green, n = 

1,035,323) and singletons (blue, n = 22,263,710). Clustering was performed on combined 

GORG and TARA CDS. (C) Correlation of the counts of sequences with three levels of EC 

annotation in clustered CDS from GORG-Tropics in clusters containing >10 members 

compared to corresponding annotations within GORG-Tropics singleton sequences. (D) 

Predicted protein size distributions for annotated and unannotated gene clusters from 

GORG-Tropics containing >10 sequences compared to GORG-Tropics singletons. 

Displayed values represent means for the last 10 SAGs sampled in each lineage.
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Figure 4. 
General characteristics of prokaryoplankton lineages represented by ≥10 SAGs in GORG-

Tropics. Phyla Marinamargulisbacteria, NBK19 and Chloroflexi were also included as 

individual lineages, although they contained <10 SAGs. (A) Relationships among average 

cell diameter, average genome size and average G+C content. (B) Relationships among SAG 

count, pangenome size, and average genome size. (C) Accumulation of gene clusters in 

prokaryoplankton lineages as a function of genes added. Included are lineages with >100k 

genes in GORG-Tropics. (D) Number of new gene clusters per each new SAG added to the 

database. Displayed are means for last 10 SAGs sampled for each lineage.
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Figure 5. 
Lineage-resolved genomic potential for RuBisCO, bacteriochlorophyll and secondary 

metabolites in the context of the 16S rRNA gene phylogeny. The phylogenetic tree was 

constructed using MEGA X (Kumar et al., 2018). Secondary metabolite gene clusters were 

predicted with antiSMASH 4.2.0 (Blin et al., 2017). Pie charts indicate relative abundances 

of metabolite clusters among genomes with at least one cluster within each lineage. The type 

of biosynthetic system is provided by color-coding and reflects a binning of antiSMASH 

biosynthetic gene cluster types in parentheses: Terpenes (terpene); Bacteriocins (bacteriocin 

and bacteriocin-terpene); Polyketides (T1pks, T1pks-nrps, T1pks-PUFA, T1pks-PUFA-

otherks, T1pks-otherks, T3pks, phosphonate-T3pks-terpene, otherks-butyrolactone-nrps, 

transatpks, and otherks); Arylpolyenes (arylpolyene); Phosphonates (phosphonate and 

phosphonate-terpene); Ecotines (ectoine); Lassopeptide (lassopeptide); Microcin (microcin); 

Non-ribosomal peptides (nrps, bacteriocin-nrps and lantipeptide-nrps); N-Acyl homoserine 

lactones (hserlactone); and Other metabolites (acyl amino acids, ladderane, lantipeptide, 

nucleoside, PUFA, resorcinol, siderophore, and other). Expanded analyses of secondary 

metabolite biosynthetic potential are provided in Tables S2 and S5.
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Figure 6. 
Fraction of independently derived mock metagenome reads with correct and incorrect 

taxonomy and function assignments using GenBank nr versus GORG-Tropics databases. 

Kaiju (Menzel et al., 2016) was used for all taxonomy assignments and for the assignment of 

functions based on the GORG-Tropics database. Prokka (Seemann, 2014) was used for the 

functional annotation of GORG-Tropics and mock metagenome reads.
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Table 1.

Overview of the GORG-Tropics database. GORG-BATS248 is a subset of GORG-Tropics and originates from 

a single sample from the Sargasso Sea.

Metric GORG-Tropics GORG-BATS248

Field samples 28 1

Sample volume analyzed, mL 3.1 0.4

SAGs sequenced 20,288 11,729

SAG assemblies ≥20 kbp 12,715 6,236

SAG assemblies ≥50% completion 4,741 2,533

SAG assemblies ≥80% completion 1,040 637

SAGs with 16S rRNA recovery 5,536 2,442

Cumulative assembly, Mbp 8,122 4,094

Average genome recovery, % 38 39

Phyla of Bacteria and Archaea 20 12

Classes of Bacteria and Archaea 31 16

Orders of Bacteria and Archaea 43 23

Families of Bacteria and Archaea 55 33

Genera of Bacteria and Archaea 49 26
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