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Extending the Computational Abilities of the Procedural Learning Mechanism in ACT-R  
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Department of Psychology, Carnegie Mellon University 
Pittsburgh, PA 15213, USA 

 
Abstract 

The existing procedural learning mechanism in ACT-R 
(Anderson & Lebiere, 1998) has been successful in explaining 
a wide range of adaptive choice behavior. However, the 
existing mechanism is inherently limited to learning from 
binary feedback (i.e. whether a reward is received or not). It is 
thus difficult to capture choice behavior that is sensitive to 
both the probabilities of receiving a reward and the reward 
magnitudes. By modifying the temporal difference learning 
algorithm (Sutton & Barto, 1998), a new procedural learning 
mechanism is implemented that generalizes and extends the 
computational abilities of the current mechanism. Models 
using the new mechanism were fit to three sets of human data 
collected from experiments of probability learning and 
decision making tasks. The new procedural learning 
mechanism fit the data at least as well as the existing 
mechanism, and is able to fit data that are problematic for the 
existing mechanism. This paper also shows how the principle 
of reinforcement learning can be implemented in a production 
system like ACT-R. 

Introduction 
Human choice behavior is often studied under various 
probability learning situations. In a typical probability 
learning situation, participants are asked to select one of the 
many options available, and feedback on whether the choice 
is correct or not is given after the selection. There are 
usually two main manipulations in a probability learning 
task: (1) the probabilities for each of the options being 
correct, and (2) the magnitudes of reward (usually 
monetary) received when the correct option is selected. One 
robust result is that people tend to choose the options a 
proportion of time equal to their probabilities of being 
correct – a phenomenon often called “probability matching” 
(e.g. Friedman et al., 1964). However, when the reward 
magnitudes are varied, the observed choice probabilities are 
sometimes larger or smaller than the outcome probabilities 
(e.g. Myers, Fort, Katz, & Suydam, 1963). These studies 
show consistently that people are sensitive to both outcome 
probabilities and reward magnitudes in making choices. 

One limitation of the current ACT-R procedural learning 
mechanism (Lovett, 1998) is that it requires a pre-
specification of correct and incorrect responses. Besides, 
feedback received is limited to a binary function (i.e. 
whether a reward is received or not). Apparently, a simple 
binary function may not be sufficient to represent the 
feedback from the environment. For example, imagine a 
situation in which there are several possible treatments for a 
particular disease and a physician has to choose a treatment 
that has the highest expected effectiveness. One may have to 
evaluate the effectiveness of each treatment through case-

by-case feedback. For example, consider the case where the 
probabilities of effectiveness of three treatments 1, 2, and 3 
are as shown in Figure 1. Since the effectiveness of each 
treatment follows a continuous distribution, a simple binary 
feedback function is obviously insufficient to represent the 
information received from the feedback. 
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Figure 1. Probability of effectiveness of three treatments. 

Another motivation for extending the current mechanism 
comes from recent findings of the functional role of 
dopaminergic signals in basal ganglia during procedural 
learning.  Research shows that learning is driven by the 
deviation between the expected and actual reward (Schultz 
et al., 1995; Schultz, Dayan, & Montague, 1997). In other 
words, the reward magnitude is often processed as a scalar 
quantity – depending on whether the magnitude of the 
actual reward is higher or lower than expected, a positive or 
negative reinforcement signal is generated respectively. The 
pre-specification of correct and incorrect responses is 
therefore inconsistent with the current understanding of the 
procedural learning mechanism in basal ganglia. 

The ACT-R 5.0 architecture 
Figure 2 shows the basic architecture of the ACT-R 5.0 
system. The core of the system is a set of production rules 
that represents procedural memory. Production rules 
coordinate actions in each of the separate modules. The 
modules communicate to each other through its buffer, 
which holds information necessary for the interaction 
between the system and the external world. Anderson, Qin, 
Sohn, Stenger, and Carter (2003) showed that the activity in 
these buffers match well to the activities in certain cortical 
areas (see Figure 2). The basal ganglia are hypothesized to 
implement production rules in ACT-R, which match and act 
on patterns of activity in the buffers. This is consistent with 
a typical ACT-R cycle in which production rules are 
matched to the pattern of activity in the buffers, a 
production is selected and fired, and the contents in the 
buffers updated. In ACT-R, when there is more than one 
production matching the pattern of buffer activity, the 
system selects a production based on a conflict resolution 
mechanism. The basis of the conflict resolution mechanism 
is the computation of expected utility, which captures the 
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effectiveness and efficiency of the production in 
accomplishing the goals of the system.  
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Figure 2. The ACT-R 5.0 architecture. 

To adapt to the environment, the system must learn from 
the consequences of its actions so that when the same 
conditions are met in the future, a better choice of 
productions can be made. Procedural learning updates the 
expected utility of a production from the consequences of 
firing the production, and the dopamine systems in basal 
ganglia are believed to be involved in the learning process. 
Specifically, procedural learning appears to be coded by 
dopaminergic signals from the ventral tegmental area (VTA) 
and substatntia nigra to the striatum in basal ganglia 
(Schultz, et al., 1995; Schultz, et al., 1997), and different 
patterns are either reinforced or penalized according to the 
dopaminergic signals. Previous studies (Ljungberg, 
Apicella, & Schultz, 1992; Mirenowicz, Schultz, 1994) 
show that the activation of dopamine neurons depends 
entirely on the difference between the predicted and actual 
rewards. Once an unpredicted reward is perceived, response 
in dopamine neurons is transferred to the earlier reward-
predicting stimulus. Inversely, when a predicted reward fails 
to occur, dopamine neurons are depressed in their activity at 
exactly the time when the reward would have occurred 
(Schultz, Apicella, Ljungberg, 1993). It therefore appears 
that dopamine signals do not simply report the occurrence of 
rewards. Rather, outputs from dopamine neurons appear to 
code for a deviation or error between the actual reward 
received and predictions or expectations of the reward. In 
other words, dopamine neurons seem to be feature detectors 
of the “goodness” of environmental events relative to the 
learned expectations about those events. 

The current procedural learning mechanism 
During each cycle of ACT-R, productions that match the 
contents of the buffer will be put into a conflict set. The 
productions in the conflict set are ordered in terms of their 
expected utility and ACT-R considers them according to 
that ordering. The expected utility of a production is defined 
as E = PG-C, where P is the estimated probability that the 
goal will be achieved if that production is chosen, G is the 
value of the goal, and C is the estimated cost of achieving 
the goal if that production is chosen (see Table 1). 

Procedural learning updates the value of P and C according 
to the following equations: 

failuressuccesses
effortsC

failuressuccesses
successesP

+
=

+
=                 , where 

successes and failures are the number of times the 
production has succeeded or failed to accomplish the current 
goal respectively (i.e. a reward or penalty), and efforts is the 
total amount of time taken over all past uses of the 
production rule, successful or failed. These quantities start 
out with initial values that are updated with experience.  For 
example, if for production n the initial successes equals 1, 
failures equals 1, and efforts equals 0.5, when a pre-
specified success is encountered 0.1 second after k has fired, 
P will change from 0.5 to 0.67 (=2/(2+1)), C will change 
from 0.25 to 0.2 (=(0.5+0.1)/(2+1)). If G equals 20, then the 
expected utility (E=PG-C) will increase from 9.75 
(=0.5*20-0.25) to 13.13 (=0.67*20-0.2). The successful 
experience has thus acted as a reward and reinforced 
production n by increasing its expected utility, and as a 
consequence, n will be more likely to be selected in the 
future..  

Table 1. A list of free parameters and their definitions. 

Parameters Definition (Old mechanism) 
G Value of the goal (measured in seconds) 
successes/ 
failures 

Initial number of times the production has led 
to a success/failure state before the model 
starts 

efforts Total amount of time taken over all past uses 
of the production, successful or failed. 

Parameters Definition (New mechanism) 
rn The actual reward received 
K The discount factor (0 < K ≤ 1). Future 

rewards are discounted by 1/(1+KD), where D 
is the time between the firing of the current 
and the next production. 

a The learning rate. 
Dn+1 The time between the consecutive firing of 

production n and n+1 
 
Although the existing mechanism was able to match to 

human choice behavior, there are aspects in which the 
mechanism can be improved. First, in the existing 
mechanism, learning of P requires pre-specification of 
successful or failure states and the expected utility will 
increase or decrease respectively when the state is reached. 
The use of success and failure states may not be sufficient in 
situations where a continuous feedback function is required. 
From a practical perspective, pre-specification of success 
and failure states could be difficult especially in complex 
tasks, in which some states are often considered “more 
successful” than others. One way to improve the current 
mechanism is to learn from a scalar reward value. Being 
able to assign a scalar reward value to a production 
therefore allows more flexible pre-specification of the 
reward structure of the environment and allows the model to 
adapt to the environment accordingly. Second, the existing 
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procedural learning mechanism will change the expected 
utilities of productions only when the actual outcome is 
experienced, which requires keeping track of the whole 
sequence of previous productions that leads to the outcome. 
This could be computationally expensive especially when 
the number of productions is large. It is therefore desirable 
to have a mechanism that learns from local information 
before the outcomes are known.   

The new procedural learning mechanism 
In the artificial intelligence community, algorithms have 
been developed to allow agents to learn in different 
environments (Sutton & Barto, 1998). One established 
algorithm is the Temporal Difference (TD) algorithm, which 
was originally inspired by behavioral data on how animals 
learn prediction (Sutton & Barto, 1981). Research showed 
that the TD algorithm is well suited to explain the functional 
role of dopaminergic signals (e.g. Houk, et al., 1995; 
Holroyd & Coles, 2002, O’Reilly, 2003). The TD algorithm 
is designed to learn to estimate future rewards based on 
experience, and has a built-in credit assignment mechanism 
that reinforces the predicting stimuli.  

In its simplest form, the new mechanism can be 
represented as U’(n) = U(n) + aTD(n), where U’(n) is the 
updated value of the expected utility U(n) of production n 
after an ACT-R cycle, a is the learning rate, and TD(n) is 
the temporal difference error. TD(n) calculates the 
difference between the actual and expected rewards, i.e. 
TD(n) = R(n) – U(n). The basic learning mechanism is 
therefore similar to the learning rule of Rescola and Wagner 
(1972) (e.g. see Sutton & Barto, 1981). The measure of 
future rewards has to take into account long-term as well as 
short-term consequences. It is plausible to weigh immediate 
primary reinforcement more strongly than delayed primary 
reinforcement. We chose to use the hyperbolic function to 
discount delayed reinforcement (the justification of using 
the hyperbolic function is beyond the scope of this paper, 
but see Lowenstein & Prelec, 1991; Mazur, 2001). A good 
estimate of the total future rewards is therefore R(n) ≈ rn + 
U(n+1)/(1+KDn+1), where rn is the immediate reward 
received for production n, U(n+1) is the expected utility of 
the production that fires after production n, K is the discount 
parameter, and Dn+1 is the time lag between the times when 
production n and production n+1 fire. To implement the 
mechanism in ACT-R, the basic algorithm has to be 
modified to take both the reward and cost into account and 
translate them into a single dimension1 – i.e. the 
reinforcement will be the difference between the reward and 
cost (i.e. the net reward). In other words, the estimate 
becomes R(n) ≈ rn – Cn + U(n+1)/(1+KDn+1), where Cn is the 
cost of firing production n. Putting the estimate of R(n) back 
to the equation for U’(n), we have:  
 

                                                           
1 ACT-R takes the agnostic economist’s position of simply 
assuming these map onto some internal values without deeply 
inquiring why. 

U’(n) = U(n) + a[rn – Cn + U(n+1)/(1+KDn+1) - U(n)]         
 

One can see that when the estimate is perfectly accurate, 
TD(n) = 0, or U(n) = rn – Cn + U(n+1) /(1+KDn+1) and 
learning will stop. The value of TD(n) can therefore be 
considered the prediction error (as encoded by dopaminergic 
signals), and the mechanism learns by reducing this 
prediction error. It can easily be seen that once a primary 
reward is received, the expected utility of the productions 
that lead to the reward will be credited with a discounted 
reward, and discounting is heavier the farther away the 
production is from the reward.  

The new mechanism updates the expected utility based on 
the difference between the predicted and actual net reward. 
There are two main differences between the new and 
existing mechanisms. In the new mechanism, the reward is a 
scalar quantity, and the amount of change is determined by 
the difference between the predicted and actual reward, 
which is consistent with the functional role of dopaminergic 
signals. This characteristic allows the new mechanism to 
extend its learning capabilities beyond a binary function as 
in the existing mechanism. Second, in the existing 
mechanism, learning requires keeping track of a long 
sequence of productions that lead to the reward. However, 
in the new mechanism, only the expected utility of the next 
production is required. The reinforcement signal will 
eventually propagate back to the productions that lead to the 
reward. 

Testing the new mechanism 
The goal of this paper is to show the limitations of the 
existing mechanism and how the new mechanism is able to 
extend the learning capabilities of ACT-R.  However, owing 
to space limitation, we are unable to show all properties of 
mechanism. For example, none of the data sets in this paper 
was sensitive to the discount parameter K, so we fixed it at 
1.0 and just varied the value of rn to fit the data2. The 
learning rate a was also fixed at 0.1. We first used the new 
mechanism to fit two data sets from the probability learning 
tasks by Friedman et al. (1964) and Myers et al. (1963). 
Since these two sets of data were also modeled well by the 
existing mechanism (Lovett, 1998), we were able to 
compare the results of the two mechanisms and show that 
the use of TD error to drive the learning process is at least as 
effective as the existing mechanism. Finally, we used the 
new mechanism to fit the data from a decision making task 
studied by Busemeyer and Myung (1992), which we believe 
were problematic for the existing mechanism.  

Probability matching behavior 
In Friedman et al., participants completed more than 1,000 
choice trials over the course of three days. For each trial, a 
signal light was illuminated, participants pressed one of the 
two buttons, and then one of the two outcome lights was 

                                                           
2 Since the delay D is a constant for all data sets, it can be shown 
that the parameter K is absorbed into the value or rn.  
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illuminated. Task instructions encouraged participants to try 
to guess the correct outcome for each trial. The study 
extended the standard probability learning paradigm by 
changing the two buttons’ success probabilities across 48-
trial blocks during the experiment. Specifically, for the odd-
numbered blocks 1-17, the probabilities of success of the 
buttons (p and 1-p) were 0.5. For the even-numbered blocks 
2-16, p took on the values from 0.1, to 0.9 in a random 
order. We focus on the analysis of the even-numbered 
blocks, as they show how people adapted to the outcomes 
with experience. 

Table 2. Observed and predicted choice proportions from 
the experiment by Friedman et al. (1964). Predicted scores 
are in parentheses. Each block has 12 trials. 

 Probabilities 
P Block 1 Block 2 Block 3 Block 4 

0.1 0.34 (0.37) 0.23 (0.24) 0.18 (0.17) 0.15 (0.13) 
0.2 0.37 (0.41) 0.26 (0.26) 0.29 (0.23) 0.31 (0.23) 
0.3 0.49 (0.49) 0.41 (0.41) 0.44 (0.34) 0.35 (0.33) 
0.4 0.46 (0.53) 0.44 (0.50) 0.38 (0.43) 0.38 (0.38) 
0.6 0.56 (0.59) 0.51 (0.59) 0.52 (0.55) 0.52 (0.57) 
0.7 0.50 (0.56) 0.53 (0.64) 0.58 (0.72) 0.62 (0.75) 
0.8 0.50 (0.51) 0.76 (0.71) 0.74 (0.77) 0.73 (0.78) 
0.9 0.66 (0.62) 0.78 (0.79) 0.78 (0.81) 0.79 (0.81) 
 
Table 2 shows the observed and predicted proportion of 

choices in the experiment by Friedman et al. Participants in 
general exhibited probability matching behavior. Across the 
four 12-trial subblock, participants chose the correct buttons 
in roughly 50% of the trials in the first block and 
approached the corresponding p values in each block. The 
predicted proportions were generated by the model, which 
had two critical productions, Choose-Right-Button and 
Choose-Left-Button, and the expected utilities of these 
productions were learned according to the new mechanism. 
The exact sequence of outcomes as reported in Friedman et 
al. was presented to the model. A reward of 3 is obtained 
when the correct button was chosen (i.e. rn=3). The initial 
expected utilities of the two productions were set to 0. The 
fit was good, R2 = 0.97, MSE = 0.003, which was similar to 
the model based on existing procedural learning mechanism. 
We conclude that the new mechanism can represent the 
learning mechanism at least as well as the existing 
mechanism with the same number of free parameters.   

Overmatching behavior  
Myers et al. performed another probability learning 
experiment, but they also varied the amount of monetary 
reward that participants would receive for each correct 
response. Participants would either receive no reward or 
penalty, ±1¢, or ±10¢ for each correct and incorrect 
responses. The probabilities that one of the alternatives was 
correct were p=0.6, p=0.7, and p=0.8. Table 3 shows the 
choice proportions for the participants in each of the 
conditions. When there was no reward, participants seemed 
to be exhibiting probability matching behavior. However, 

when there was a monetary reward, participants seemed to 
be “overmatching”. From the data, it also appears that the 
higher the reward, the more the choice proportion exceeds 
the matching probability. 

Table 3. Observed and predicted choice proportions from 
the experiment by Myers et al. (1963). Predicted scores are 
in parentheses. 

Reward Probabilities 
(cents) p = 0.6 p = 0.7 p = 0.8 

0  0.624 (0.612) 0.753 (0.750) 0.869 (0.829) 
1  0.653 (0.676) 0.871 (0.834) 0.925 (0.938) 

10  0.714 (0.711) 0.866 (0.836) 0.951 (0.944) 
 
Since the task is basically the same as in Friedman et al., 

we used the same model to fit the data. We used the same 
set of parameters to fit the data in the no reward conditions 
(i.e. reward = 3). We chose the reward parameters 
(reward=±4.97 and ±5.7 for the ±1¢ and ±10¢ conditions 
respectively3) in the reward conditions to maximize the fit, 
and obtained R2  of 0.98 and MSE of 0.0008, which is 
similar to the fit obtained by the existing procedural 
learning mechanism. However, we had only two free 
parameters in this model, compared to three free parameters 
in the model reported in Lovett (1998). In addition, the new 
mechanism provides a more natural interpretation of the 
overmatching behavior – when the reward was large, 
learning increases the expected utilities of the successful 
productions to higher values (since the deviation was 
larger). As a consequence, the model exhibited 
overmatching behavior. On the other hand, Lovett (1998) 
manipulated the architectural parameter G to fit the data, 
which seems awkward, as G is not supposed to be directly 
under strategic control. 

Learning from normally distributed rewards 
Busemeyer and Myung (1992) conducted an experiment in 
which participants were told to select one of the three 
treatment strategies for patients suffering from a common 
set of symptom patterns. Feedback on the effectiveness 
produced by the treatment was given after each selection. 
For the sake of convenience, the treatment with the highest 
expected effectiveness is called Treatment 3, and the next 
less effective treatment is called Treatment 2, and so on (see 
Figure 1). The effectiveness produced by each treatment 
was normally distributed with equal standard deviation, but 
the mean payoffs are different (as explained below). 
Participants had to evaluate each treatment based on trial-
by-trial feedback. Participants were told to maximize the 
sum of the treatment effects over training and they were 
paid 4¢ per point. The means of the normal distributions are 
m-d, m and m+d for Treatment 1, 2, and 3 respectively. The 
two independent variables were mean difference (d) (i.e. the 

                                                           
3 Since the reward values used in the model reflect subjective 
values, they do not necessarily follow a linear relationship with the 
external reward values.  
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separation of the distributions in Figure 1) and standard 
deviation (s) (which affects the amount of overlap in Figure 
1). The exact values of d and s are shown in Table 4. Each 
participant was given 9 blocks (50 trials per block) of 
training in each condition. The model received the same 
amount of training as the participants. 

From Table 4, we can see that as the mean difference 
increased, the observed choice proportions of the optimal 
treatment increased. As the standard deviation increased, the 
observed choice proportions of the best treatment decreased 
except when the mean difference was 3.0. The results 
showed that participants adapted their choice by learning the 
expected effectiveness of treatments. The results also 
showed that the more distinguishable the distributions were 
(larger mean difference or smaller standard deviation), the 
more likely the participants would choose the best 
treatment.   

Table 4. Observed and predicted choice proportions of the 
optimal treatment from the experiment by Busemeyer & 
Myung (1992). Predicted scores are in parentheses. 

Standard Mean difference (d) 
deviation (s) 2.0 2.5 3.0 

3.0 0.69 (0.74) 0.84 (0.79) 0.85 (0.84) 
4.5 0.69 (0.72) 0.72 (0.76) 0.84 (0.80) 
6.0 0.65 (0.68) 0.63 (0.69) 0.86 (0.83) 

 
To model the data, we built three productions that chose 

each of the treatments. The initial expected utility of each 
production was set to 0. For each trial, the rewards obtained 
by the model were simulated by drawing a sample from the 
normal distribution that represents the effectiveness of the 
treatment chosen by the model. The value of r was chosen to 
be 1.76 to best fit the data. We obtained a fit of R2=0.94, 
RMSE=0.007. The good fit to the data show that the new 
learning mechanism was able to build up the expected 
effectiveness of the treatments from trial-by-trial feedback, 
and was able to exhibit similar sensitivity to the differences 
of the distributions as participants. Since the effectiveness 
was sampled from a normal distribution, it is difficult to 
pre-specify which treatment was successful. It is therefore 
difficult to use the existing learning mechanism to model 
these data. In the new mechanism, however, whenever the 
actual reward was higher than the expected utility of the 
production, the production will be reinforced; otherwise the 
production will be penalized. With the same amount of 
experience (50 trials), the expected utilities of the 
production were able to reflect the actual expected 
effectiveness of the treatments. 

Summary 
We have fit a new procedural learning mechanism of ACT-
R to three separate sets of data with all parameters held 
constant except the reward magnitudes the models received 
after each trial. In the first two cases, the new mechanism 
did at least as well as the existing mechanism in capturing 
the observed choice proportions in different settings. In the 

last case, we showed that the new mechanism fits data that 
are problematic for the existing mechanism. The new 
mechanism learned to probability match the true 
probabilities of outcomes by reducing the difference 
between the expected and actual reward. As the difference 
diminished, the change in the prediction decreased. When 
the reward was large, learning increases the expected 
utilities of the successful productions to higher values (since 
the deviation was larger). As a consequence, the chance of 
selecting the option that had the higher probability of being 
correct increased – i.e. the model exhibited overmatching 
behavior.  

Although the first two sets of data can be modeled by the 
existing learning mechanism, the new mechanism provided 
a more natural explanation to the results. In the final set of 
data, we showed how the new mechanism generalizes and 
extends the computational abilities of the existing 
mechanism. The mechanism was able to learn the expected 
effectiveness of each treatment based on trial-by-trial 
feedback, without the need to pre-specify whether the 
productions had led to successful or failure states.  

Discussion 
We have presented a new procedural learning mechanism in 
ACT-R. The use of the deviation between the expected and 
actual reward values in the new learning mechanism is 
consistent with the current understanding of the functional 
role of VTA dopamine neurons in basal ganglia. We showed 
that the new mechanism generalizes and extends the 
computational abilities of the existing procedural learning 
mechanism. Specifically, the new mechanism is not limited 
to learning from binary feedback functions. Rather, the new 
mechanism is able learn from continuous reward functions 
with similar sensitivity to the variations in the reward 
distributions. The current paper also showed how the 
reinforcement learning mechanism observed in basal 
ganglia can be implemented in production systems such as 
ACT-R. 

In practice, the current mechanism allows the use of a 
scalar reward parameter without the need to pre-specify 
success or failure states in a task. This pre-specification 
could be difficult especially in complex tasks in which a 
state could sometimes be good or bad depending on one’s 
experience with the task, as experience may change one’s 
expectation of different states. In addition, although the 
existing mechanism can adapt to different magnitudes of 
reward, the change of the architectural parameter G (in 
E=PG-C) to fit the data may not be easy in complex tasks 
that has many subgoals, especially when some subgoals 
may be considered “more successful” than the others.  

Owing to space limitations, we are not able to show all 
properties of the mechanism. In fact, we have only tested 
the mechanism in single-choice tasks, which did not depend 
critically on the credit assignment mechanism. The 
discounting of future rewards therefore did not affect 
performance of the models in all three tasks that we have 
presented. However, we believe the discounting mechanism 
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is more plausible than the existing mechanism, in which 
immediate and future rewards are weighted equally.   

In all three data sets, the model had the same amount of 
experiences as the participants and reached the same level of 
asymptotic performance. In the first data set, we also 
showed that the performance of the model in each of the 
four subblocks matched the participants well, suggesting 
that the learning rate of the mechanism is comparable to that 
of the participants. However, it is possible that the 
reinforcement learning mechanism could be slow for more 
complex tasks. It could be problematic, for example, when a 
primary reward is received after a long sequence production 
firings. Since only one production is updated during each 
ACT-R cycle, the primary reward may take several cycles to 
propagate back to the production where the critical decision 
is made. It is not clear how people learn in such situations.  
It is possible that they rely on direct instruction to point out 
such contingencies rather than counting on a automatic 
learning mechanism.  It does not seem that the mechanisms 
behind the dopamine reward system are capable of spanning 
unbounded lengths of time in a way that would lead to rapid 
convergence. 
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