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ABSTRACT OF THE THESIS 

 

Functional Analysis of  

Magnetic Resonance Spectroscopy Signals: 

Applications to Major Depression 

 

by 
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University of California, Los Angeles, 2018 

Professor Shantanu Hemachandra Joshi, Co-Chair 

Professor Van Maurice Savage, Co-Chair 

 

Magnetic Resonance Spectroscopy (MRS) is an in-vivo, non-invasive technique to measure 

biochemical metabolite concentrations in the brain. Here, we propose novel tools for processing 

and analysis of MRS data. We apply these tools to classify disease status in major depressive 

disorder (MDD). Our tools enable the manipulation and formatting of MRS data, and allow for 

the application of several machine-learning classifiers used to predict disease status. We test and 

derive several representations of MRS data including the conventional metabolite concentration 

levels, full MRS spectral function data points, elastic functional distances from the mean, and 

principal component analysis (PCA) components of the MRS spectra. We apply a number of 
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different machine learning algorithms including logistic regression, random forest classification, 

and support vector machines (SVMs). The highest performance of all these classifiers resulted 

from the use of random forest classification on full spectral data points with a precision of 0.698 

and a recall of 0.695. This predictive approach to disease status classification can be used to 

allow possible depression cases to be caught early on as well as for confirmation of diagnosis. 
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CHAPTER 1 

 

Introduction 

 

Major depressive disorder (MDD) is a prevalent mental disorder impacting the lives of over 350 

million individuals around the world.1 MDD is the fourth leading cause of disability worldwide 

and takes over one million lives due to suicide each year, yet due to the number of different 

symptoms that are associated with depression, it is often difficult to diagnose.1,2,3 Factors that 

contribute to the development of MDD include genetics, hormones, brain chemistry, and life 

experiences, which helps explain why diagnosis indicators significantly differ depending on the 

individual studied.3 Initial diagnosis of Major Depressive Disorder involves a distinct mood 

change often associated with inability to sleep, withdrawal from society, appetite loss, and/or 

suicidal thoughts.4,5  

 

Following diagnosis, standard antidepressant medication and psychotherapy are often 

administered. For those patients resistant to standard approaches after two or more treatment 

trials, electroconvulsive therapy (ECT) is a highly effective treatment option. While the exact 

biological mechanism of the therapy is largely unknown, there are several symptomatic 

manifestations including change in transcriptional factors, metabolite concentrations, and gene 
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expression throughout ECT.6 With an average remission rate of 87%, electroconvulsive therapy 

is the most effective and widely studied treatment for resistant patients.7,8 ECT involves the use 

of anesthesia and muscle relaxants while simultaneously sending small electric currents to the 

brain through strategically placed probes.9,10 The electric current induces a small seizure which 

alters the chemistry of the brain and can be observed through the acquisition of Magnetic 

Resonance Spectroscopy (MRS) signals.8 

 

Magnetic Resonance Spectroscopy provides a non-invasive diagnostic tool to track biochemical 

changes in the brain.11 Proton MRS (1H-MRS) utilizes signals from hydrogen protons to 

determine the concentrations of a number of different brain metabolites including N-acetyl 

aspartate (NAA), Myo-inositol (Ins), Creatine (Cr), and glutamate (Glu).11,12 In comparison to 

Magnetic Resonance Imaging (MRI), which utilizes the protons in water molecules to generate 

the major signals, 1H-MRS captures excitations of protons attached to molecules other than 

water.2 1H-MRS excites the small and highest concentrated molecules, which explains why we 

are only able to measure key metabolites such as NAA, Ins, Cr, and Glu.13 This common 

spectroscopic strategy involves acquisition of a signal from a single region of the brain through 

single voxel spectroscopy. In this methodology, a small volume (30 x 18 x 12 mm) of the brain 

known as an aggregate voxel is specified prior to MRS acquisition and results in the output of a 

Free Induction Decay (FID) signal. There are a number of different voxels each associated with 

different regions of the brain. The left hippocampus, right hippocampus, dorsal cingulate, and 

subgenual cingulate regions are the four voxels that we were interested in studying due to their 

crucial roles in emotion and mood. For the purpose of this study, we focused solely on the left 
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hippocampus voxel.2 The FID signal is analyzed either in the time domain or the spectral domain 

using a wide variety of techniques including TARQUIN, jMRUI, and VeSPA.14,15,16,17  

 

TARQUIN analyzes spectroscopic data in the time-domain using a non-linear fitting model. It 

utilizes a basis set constructed from metabolite signals, macromolecules, and lipids while 

calculating amplitudes with a non-negative least squares projection.14 Another software package 

often used is jMRUI, a Java graphical user interface software that also allows time-domain 

analysis of MRS signals.15 This package performs removal of residual water, signal-to-noise 

enhancement, and uses a variety of fitting algorithms to quantify metabolites including the 

Hankel Lanczos Squares Singular Values Decomposition (HLSVD), Hankel Lanczos Total Least 

Squares (HLTLS), and the Linear Prediction Singular Value Decomposition (LPSVD). VeSPA is 

a graphical user interface offering a number of tools for MRS data analysis.16,17 VeSPA is 

capable of handling high dimensional data and optimizing data acquisition sequences for spectral 

analysis. Additionally, VeSPA allows for the exploration of MRS data acquisition and improve 

MRS data processing Siemens scanners.  

 

Most methods initialize the signal by setting a reference metabolite concentration for 

unsuppressed water spectrum. Line shaping is performed assuming a Gaussian or a Lorentzian 

profile to account for spectral broadening and shift. Singular value decomposition (SVD) is then 

used for either filtering water signals or to even quantify metabolites. The SVD step is often 

followed by a least-squares or a non-linear least squares fitting procedure that may or may not be 

followed by corrections of misalignment in the spectrum.18 The last step is metabolite 
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quantitation, which again uses several SVD based techniques such as HLSVD, HLTLS, or non-

linear least squares algorithm such as AMARES.19  

 

After performing metabolite quantitation, researchers typically analyze either absolute metabolite 

concentrations or ratios of concentrations (in reference to NAA or in reference to Cr + PCr) for a 

population. This thesis addresses the analysis of absolute metabolite concentrations while also 

proposing a new approach for analyzing the full spectral function of the MRS signal by 

analyzing its shape. We provide evidence for differences seen in the entire signal function as 

well as changes in individual peaks when comparing depressed patients to healthy controls. Our 

approach also allows us to calculate elastic distances between functions and perform principal 

component analysis for reducing the infinite dimensionality of the spectral functions. Finally, we 

use the individual metabolites, full spectral functions, reduced dimensional functional features 

from Principal Component Analysis (PCA), and elastic MRS spectral distances to draw 

distinction between individuals with depression and healthy controls. We introduce an R package 

mrspecr that encapsulates our MRS function analysis methods in a reproducible manner.  

 

For visualization purposes, the MRS signal is shown as a spectrum of resonance peaks 

corresponding to metabolite concentrations in parts per million (ppm). While there does exist 

age-related and regional variations in the metabolite concentrations, these spikes are usually seen 

in early years of life and mainly reflect myelination patterns.11 Disregarding possible spikes from 

myelination, we are able to match peaks to different core metabolite concentrations. Through the 

analysis of these metabolic peaks, we are able to identify changes to metabolite concentrations 

that help differentiate healthy controls and depressed individuals. We utilize machine-learning 
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prediction to assist with diagnosis confirmation by identifying patients or controls based on 

metabolite concentrations or full signals of each subject. Identifying how possible 

neurometabolite levels associated with ECT treatment response could help with diagnosis and 

tracking of treatment progress, which are highly desirable as we push towards more effective and 

individualized treatment. 

 

This thesis generates novel ideas for representation and analysis of MRS signals with the 

following contributions:  

1. We proposed an idea of matching the shapes of MRS spectral functions rather than using 

metabolite peaks. This is a new idea that has not been studied to our knowledge.  

2. We introduced the notion of an elastic MRS spectral distance as a univariate feature that 

allows for shape analysis and classification based solely on the shape of the signal; the 

concept of utilizing MRS function shape is a novel concept that has not been applied to 

the field of MRS analysis. Further, using dimensionality reduction of full spectral 

functions to extract principal component analysis features allowed us to find key 

indicators for classification.  

3. Finally, we developed and implemented an R package mrspecr to allow other 

researchers to perform similar MRS analysis and preprocessing quickly and effectively.  

 

This thesis is organized as follows. We begin by discussing participant recruitment and the 

process of ECT administration to the patient population that was studied in this research. Then 

we introduce our novel ideas of MRS signal representation and matching. Next, we focus on data 

preprocessing, formatting through the creation of the R package mrspecr, a package created 
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for MRS analysis. We elaborate on results from utilizing several different data sets in machine 

learning classification algorithms through R. Finally, we discuss how these results compare to 

each other and outline other avenues of future research based on this thesis. 
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CHAPTER 2 

 

Methods 

 

2.1 Participant Recruitment and ECT Administration 

Patients for this study were recruited from the University of California, Los Angeles (UCLA) 

Resnick Neuropsychiatric Hospital. Individuals set to receive ECT due to depression had been 

diagnosed by a board of certified psychiatrists (R.E.) through the DSM-IV-Revised criteria as 

well as confirmation from the Mini-International Neuropsychiatric Interview (M.I.N.I.).20,21 In 

order to qualify for this study, patients must have completed two or more standard medication 

trials without response. Of the patients planning on receiving ECT, we excluded those 

individuals with diagnosis of post-traumatic stress disorder, bipolar mania, schizophrenia, 

attention deficit/hyperactivity disorder, and/or any primary anxiety disorders. Additionally, 

patients qualifying for the study must have already experienced at least two major depressive 

episodes. The patients who fit the specifications of this study were then gradually taken off their 

antidepressant medication over a span of two to three days prior to ECT treatment.  
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Of the 107 adult subjects who participated in the study, 46 of the individuals (24 men) were 

patients suffering from MDD based on the DSM-IV diagnosis. The ages of the individuals 

ranged from 20 to 61 years with a mean ± standard deviation (SD) of 39.9 ± 12.1 years. We 

additionally had 61 healthy individuals (23 men) ranging from 20 to 63 years of age. The control 

group was recruited using local advertising and the mean ± standard deviation (SD) of the group 

was 37.7 ± 10.5 years. 

 

Data was collected from patients at three time points, but only the data collected for patients and 

controls at baseline was utilized for analysis and classification. T1 was taken the day prior to the 

initial ECT treatment. The patient was then treated twice in a span of 48 hours before recording 

T2 (Figure 2.1). Following T2 data collection, the patient continued to receive ECT three times a 

week for a four-week period prior to collection of T3 data. The Hamilton Rating Scale for 

Depression (HAMD) test was used at each of the 3 points of data collection for all patients.2,21 

The controls were chosen based on similar age, sex, and geographic similarity to our patients. 

Additional screens were performed using M.I.N.I. to remove those who had past experiences 

with depression, antidepressants, or medical illness.22 We scanned these controls for MRS data 

collection 2 times: the first time at baseline (C1) and an additional scan four weeks later for a 

follow-up (C2). UCLA Institutional Review Board approved this study protocol and all patients 

and controls provided written consent to participate (Figure 2.1). 
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Figure 2.1: ECT Design Study at UCLA: The data collection involved 107 individuals, 46 of 

them being depressed patients undergoing ECT while the remaining 61 were healthy controls 

participating for normalization confirmation. 

 

ECT was performed in combination with paralysis using 1mg/kg of succinylcholine and 

anesthesia using 1mg/kg of methohexital. Clinical response was recorded using the HAMD-17, 

allowing us to determine MRS marker association.  

 

2.2 Data Acquisition 

Using the Siemens 3 T Allegra system with and without water suppression (128/1 averages) we 

were able to acquire single-voxel point resolved spectroscopy sequences.17 Repetition time was 

2200 ms, echo time was 30 ms, and spectral width was 2000 Hz, 1024 samples. Using a 

volumetric navigator in real time, we were able to correct any motion or B0 noise. With the 

Siemens 3 T Allegra system, we were also able to acquire motion-correlated multi-echo 

MPRAGE images. For these images, the conditions used included echo times of 1.74, 3.6, 5.46, 

and 7.32 ms. The repetition and inversion time for the MPRAGE images were set to 2530 ms 

and 1260 ms, respectively. Additionally, the images were captured at 192 different sagittal slices 

Goal 2: ECT Study Design at UCLA 

46 
Patients 
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~4 weeks 
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T1 T3 T2 

C1 
 

C2 
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at a flip angle of 7°, a field of view of 256 x 256 mm, and a resolution of 1.3 x 1.0 x 1.0 mm3. 

These images were then resliced to position the 1H-MRS in the left and right hippocampus as 

well as the midsagittal dorsal anterior cingulate (dACC) and sub-genual anterior cingulate 

(sgACC).  

 

After utilizing Siemens 3 T Allegra System for the spectroscopy, we next processed the data.21 

Upon receiving these signals, data preprocessing was necessary to improve signal-to-noise ratio 

and eliminate overall interference from patient movement throughout the test. For each MRS 

signal, a Gauss-Seidel iterative update scheme was utilized for denoising.23 Denoising allowed 

for cleaner and overall smoother signals to remove as much noise as possible prior to inputting 

the data into our machine-learning framework.  

 

After denoising was complete, LCModel software was utilized to compute water-referenced 

metabolite concentrations.24,25 LCModel additionally performs fitting procedures, which involve 

a singular value decomposition followed by metabolite fitting using regression.24 We can 

visualize the output of LCModel in a plot across different chemical shifts (Figure 2.2). To 

minimize noise in the data, we select the subjects whose metabolites show a noise standard 

deviation of less than 20%.  
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Figure 2.2: Example of an output from LCModel. The left-hand side shows the LCModel 

generated spectrum for the dorsal cingulate voxel. The right-hand side lists the metabolite 

concentrations (measured in ppm) and their corresponding standard deviations. 

 

2.3 Functional Shape Analysis of MRS Signals  
 
In this section, we outline our new approach for analyzing the full spectrum using a functional 

approach. We used a previously proposed functional shape representation approach and adapt it 

for representing MRS signals here. 26,27,28,29 Given that many magnetic resonance analyses have 

low detection of parameters below our threshold of significance, we perform a shape based 

alignment of these signals through elastic functional registration.26 The elastic time series 

approach allows us to construct a template of the shape for optimal temporal alignment. Utilizing 

square root velocity field (SRVF) parameterization, we are able to define a time course signal 

/ifs/faculty/narr/schizo/DEPRESSION/NEW_MRS_ANALYSES_TVENUILLI/DE_157_01/DORCING/denoised_gauss
Data of: UCLA Ahmanson-Lovelace Brain Mapping Center, Los Angeles

LCModel (Version 6.3-1H) Copyright: S.W. Provencher.          Ref.: Magn. Reson. Med. 30:672-679 (1993). 16-March-2017  13:12

Chemical Shift (ppm)
  4.0     3.8     3.6     3.4     3.2     3.0     2.8     2.6     2.4     2.2     2.0     1.8     1.6     1.4     1.2     1.0     0.80    0.60    0.40          

  0
.0

12
0

  0
.1

9

   Conc.  %SD /Cr+PCr  Metabolite
   0.139 208% 3.5E-02 Ala
   0.999  41%   0.255 Asp
   2.456  13%   0.627 Cr
   1.463  23%   0.373 PCr
   1.458  21%   0.372 GABA
   0.626  35%   0.160 Glc
   2.892  14%   0.738 Gln
   5.018   7%   1.280 Glu
   1.177   3%   0.300 GPC
   0.000 999%   0.000 PCh
   3.804   4%   0.971 Ins
   0.810  39%   0.207 Lac
   3.318   6%   0.847 NAA
   1.262  19%   0.322 NAAG
3.94E-02 107% 1.0E-02 Scyllo
   0.286  75% 7.3E-02 Tau
   0.274  65% 7.0E-02 -CrCH2
   1.116  14%   0.285 Gua
   1.177   3%   0.300 GPC+PCh
   4.580   4%   1.169 NAA+NAAG
   3.919   3%   1.000 Cr+PCr
   7.910   5%   2.018 Glu+Gln

   1.384  59%   0.353 Lip13a
   0.000 999%   0.000 Lip13b
   0.344  99% 8.8E-02 Lip09
   3.227  13%   0.823 MM09
   0.192 115% 4.9E-02 Lip20
   4.511  16%   1.151 MM20
   0.961  41%   0.245 MM12
   4.096  17%   1.045 MM14
   2.217  18%   0.566 MM17
   1.384  59%   0.353 Lip13a+Lip13b
   6.441  12%   1.643 MM14+Lip13a+L
   3.571   8%   0.911 MM09+Lip09
   4.703  15%   1.200 MM20+Lip20

DIAGNOSTICS
   2 info’s    RFALSI  4
  Doing Water-Scaling

MISCELLANEOUS OUTPUT
 FWHM = 0.056 ppm    S/N =  17
 Data shift = 0.024 ppm
 Ph:   8 deg       1.4 deg/ppm

INPUT CHANGES
 deltat= 5.000e-04
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! ∶ ! ≡ 0,1 →  ℝ by a square-root velocity field map q given by q : [0,1] à ! ∶ 0,1 ⟶

 ℝ, ! ! = !(!)
|! ! | . In this case, ! ! = !"

!"  corresponds to the time course velocity while ! !  

corresponds to the magnitude.27,28,29 Given the absolute continuity of !, the SRVF transformation 

allows the mapping ! to be square integrable with the set of SRVFs given by the Hilbert space 

!!( 0,1 ,ℝ). We are then able to recover the time domain fMRI signal using ! ! = ! 0 +

 !(τ!
! ) ! τ !!. At time t = 0 we presume !(0) = 0 and the SRVF mapping is invertible up to 

the given !(0). To get the unit length constraint on this ! function we can take !
| ! | and which 

ensures !  will lie on a Hilbert sphere !! ,where !! ≡  {!  ∈ !!  ! ! , ! ! ℝ!!"
!
! =

1, ! ! : 0,1 → ℝ!}.26 

 

Time reparameterization allows us to better align the response shapes with the conditions by 

shifting the signals to match peaks and troughs more closely. Representing the time 

reparameterization function with diffeomorphic function ! ∶ ! → ! such that ! > 0 ∀!,  we can 

alter the time reparameterization using a composite ! ∘  !. In the case of the SRVF space, we use 

! ∙  ! =  !∘ ! !

!∘ ! !
 = (! ∘  !) ! . We next compute an unbiased optimal template of the 

functional response, ultimately using the geometry of the time course representation space 

through the space of the ! functions. More specifically, we assume elastic form of the tangent 

space Riemannian metric !! !!  as !!, !! =  !!!!!"!
! .  The closed form solution for 

geodesics between !! and !! has a geometry described by !! !!; ! = cos !"#!!! !!, !! !! +

sin !"#!!! !!, !! !. In this case, t ∈ [0,1] and v ∈ !!!(!) is described using ! = !2−

!!, !! !!.  The geodesic distance between these 2 shapes !! and !!  on !!  is calculated as 
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! !!, !! =  !! ,!!!
! !" which we are then able to use in calculating the optimal temporal 

alignment as (! = !"#$%!!∈!!(!!, !! ∙ !) Using gradient descent and dynamic programming, 

we are able to achieve the temporal alignment for two time course signals. Calculating the 

template for unbiased within-condition time series, we can align all time courses to the mean to 

achieve temporal alignment.  
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CHAPTER 3 

 

An R Package for MRS Preprocessing: mrspecr  

 

3.1 Overview 

Here we introduce a new R package mrspecr that we developed specifically for MRS analysis 

and signal processing. The R package contains a number of data input-output and statistical tools 

to help extract necessary data from the output of an MRS test after being sent through LCModel. 

The processed FID signal through LCModel produces several output files containing information 

on metabolite concentrations, noise standard deviations, full FID spectra, and other diagnostic 

measures generated during the LCModel analysis.  

 

Our package includes functions to read MRS Digital Imaging and Communications in Medicine 

(DICOM) acquisitions, denoise the FID signals, extract coordinates and metabolites, and align 

the MRS signals (Figure 3.1). Each of these features ultimately automates the preprocessing of 

batch subject folders by parsing the text files for the data that we need for feature matrices that 

are inputted into a machine learning classifier.  
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Figure 3.1: The function read_siemens_dicom takes in a DICOM image and reads it to produce 

the FID signal envelope of time versus intensity as shown. This FID signal in the time domain is 

then transformed to the MRS spectra in the frequency domain using the LCModel software. 

 

3.2 Extracting Coordinates and Metabolites 

The file output by LCModel contains processed data to be extracted. Since these files mainly are 

stored in an unstructured format, we implemented a text parser to extract the desired signal and 

metabolite information. The coordinate text file contains information regarding each of the x and 

y axes data coordinates that are needed to reconstruct the signal from LCModel. For all subjects, 

the x coordinates of this axis will be a constant set of 480 data points representing chemical shift 
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in ppm. For each of these ppm values 1 to 480, we have corresponding amplitude or peak. These 

480 y values for our group of patients and controls are the values that we are interested in pulling 

into a matrix as these values can be used to differentiate patients versus controls. We parse 

through these text files for not only the coordinates of the function but the metabolite peaks as 

well. 

 

Metabolite concentrations correspond to the peaks in the plot from LCModel. These values can 

be found in a comma separated value (csv) file that must be parsed for the concentration levels 

along with their standard deviations. Looking at these metabolite concentration levels is what we 

have seen in previous studies as a measure to possibly differentiate between patients and controls, 

which is why these values are of interest.30,31 In order to extract these concentration levels, we 

must parse for each metabolite name and pull the corresponding concentrations into a data frame 

in R. The coordinate y values and metabolite concentrations are the foundation for our analysis 

as they provide the critical data for classifying patients versus controls. 

 

3.3 Batch Alignment 

Once we have extracted the desired coordinate data using the coordinate function in mrspecr, 

certain preprocessing steps must be performed to eliminate interference and noise from the MRS 

imaging tests. During MRS acquisition, patient movement and other artifacts may cause signal 

shifts and peaks to vary in ppm. Because we are aware of the metabolite peaks occurring at the 

same time points (ppm), we can utilize functional alignment to structure and straighten our data 

based off a mean function of all the signals.  



	 17	

The align function is built into the R package fdasrvf, a package built to perform alignment 

and PCA for single and multidimensional functions.32 This package implements geometric 

methods for shape matching of curves and functions. 28,29 These capabilities utilize the square-

root velocity framework and provide elastic analysis opportunity.26 The functional data analysis 

is based off of separation between phase and amplitude of the signal to preserve the structure of 

the observed data.33 We utilize the commonality of phase to a shift the signal and better align the 

amplitude for analysis. 

 

Extracting and accounting for the amplitude variability in batch subject cases involves utilization 

of the coordinate matrix to vertically and horizontally shift data to more closely follow the mean 

(Figure 3.2). The batch alignment function returns a list including the original functions for all 

subjects along with the mean, the aligned functions, and a number of additional features 

associated with PCA. The batch alignment function also contains plotting capabilities, which 

allow a comparison between the original functions and the aligned functions. The aligned 

functions are more closely correlated to the actual peaks where metabolite concentrations are 

known to occur, removing variation where possible (Figure 3.2). We are able to see how the 

mean computed for the aligned functions differs from the standard Euclidean mean when 

plotting the two along the same time axis (Figure 3.3). 
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Figure 3.2: Plotting the original functions (top) and the aligned functions (bottom) for all 59 

subjects, we are able to visualize 3 main areas of the curve in which alignments is helping 

smooth and eliminate noise. Each of the three areas of interest is boxed in a unique color in both 

the original and aligned plots. 
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Figure 3.3: Comparing the plot of the mean for all original functions (blue) to the mean of all 

aligned functions for the 59 subjects (green) we are able to see the shift in the aligned mean. 

There are a number of reasons for alignment but two of the most important reasons are noise and 

peak alignment. 

 

3.4 Data Matrices of MRS Features 

After extracting the relevant functional and metabolite information from output datasets from 

LCModel, we are now ready to formulate this information into feature matrices for classification. 

There are multiple different data sets that we are looking at to use to independently classify 

patients versus controls. The input data that must go into the classification matrix function for 

coordinates is the classification vector indicating patient or control, the subject ID, and the 
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matrix of all coordinates for the given set of subjects. In the case of the metabolite matrix 

function, we must input the classification vector and the subject ID again, but instead of the 

coordinates we feed in the metabolite matrix. Additional matrices that are formed include the 

distance matrix and the PCA matrix. Each of these two matrices has the outputted feature of 

distance or PCA components along with the classification vector. In any case, the classification 

of each subject is binary, 1 being a depressed patient and 0 corresponding to a healthy control. 

 

  



	 21	

 

 

 

CHAPTER 4 

 

Results 

4.1 Feature Selection 

The voxel of interest was narrowed down to the Left Hippocampus due to its significant volume 

differences between MDD patients and healthy controls.22 For each voxel, LCModel estimated 

35 metabolite concentrations. Using our previous findings, we selected 4 metabolites that 

exhibited most significant patterns of change throughout ECT. These metabolites include N-

acetyl aspartate (NAA), Creatine (Cre), Myo-inositol (Ins), and glutamate (Glu).22 

 

4.2 Subject Selection  

Using the subset of data from the feature selection, we next cleaned the data to ensure that the 

input data into our machine learning classifier was accurate and contained minimal outlier 

subjects. In order to do so, the standard deviations associated with each metabolite were 

compared per subject to an upper bound of 20%. We removed 48 subjects through this 

processing and were able to narrow the data set to 59 total subjects. Of these 59 subjects, 27 were 

identified as patients with depression and the remaining 32 subjects were healthy controls. Given 
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that this data was selected based on the metabolite concentrations, we needed to pull the selected 

data for these subjects for each of the classification matrices. Using these restrictions, we re-

selected the coordinates according to the 59 subjects for the full function matrix. We additionally 

used these coordinates to calculate distances between patients and controls to the mean and for 

PCA. Given the filtering of the data, the demographics of the new data set may contain slight 

differences from the original 107 subjects. 

 

4.3 Classification Overview 

After the pre-processing, denoising, and filtering of these signals, we then moved to the 

prediction of diagnosis classification as patients or controls based on each of these feature 

matrices using a number of different machine learning classifiers. We used a combination of 

scikit-learn in Python and Weka to verify the machine learning model results we built in R.34,35 

From the LCModel output data, we generated four different derived data sets to train a model 

that aimed to predict whether the individual is an MDD patient (depressed) or a control (healthy). 

A number of different classifiers were tested on each of these data sets including random forest, 

logistic regression, and support vector machines (SVMs) based on precision, recall, and accuracy 

metrics. For each of these classifiers, we were solely testing its ability to predict the diagnosis of 

an individual through binary classification. The logistic regression and SVM models utilize the 

caret package in R while the random forest model utilizes the randomForest package in 

R.36,37 To train and test the models, we used repeated 10-fold cross validation to evaluate the 

performance of these models. This involves splitting the dataset of 59 subjects into 10 sets. We 

choose 9 of these sets to train on and then test on the remaining 10th dataset, iterating through 

each of the random permutations of training and testing until all 10 sets were tested. Cross 
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validation provides a more robust performance evaluation metric than a single split validation. 

Due to the fairly balanced classes of diagnosis for depressed patients and healthy controls, 

accuracy was a good metric for performance. We ran these tests over 300 iterations, recording 

the accuracy and computing the mean after the 300 iterations to calculate the balanced accuracy. 

These results were reported in the form of a histogram and boxplot of the balanced accuracy 

among all iterations. In addition, we also collected the confusion matrix for the model and 

plotted threshold ROC curves for each data set showing true positives vs. false positives for 

patient classification at different threshold values. After running each of these classifiers using 

10-fold cross validation, we were able compare model performance for each data set. 

 

4.4 Classification using Metabolites Concentrations 

Using the data extracted from LCModel and guided by previous studies, a straightforward idea 

for classification was to use the metabolite concentrations as features.22 Using the metabolites 

NAA, Cr, Ins, and Glu as selected above as well as the 59 subjects, which were selected based on 

standard deviation limits, we tested a number of machine learning algorithms; each of these 

metabolites is a single feature in the classification matrix. The highest performing algorithm on 

this data was logistic regression with a precision of 0.599 and recall of 0.600 (Table 4.1). The 

Receiver Operating Characteristic (ROC) of the logistic regression performance was 0.583 

(Figure 4.1). This metabolite classifier tells us that of the 27 depressed patients, 15 of them were 

correctly classified as depressed from our model. Additionally, of the 32 healthy controls, 21 of 

these were correctly classified as healthy.  
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The overall accuracy of this model was calculated through balanced accuracy (Figure 4.2A). We 

see that our model successfully predicts 15 of the actual 27 patients correctly given the patient 

recall of 0.555, but fails to predict 12/27 of the patients as depressed. The accuracy from our 

confusion matrix here is 0.600, which is similar to the average value of 0.601 we were able to 

compute in R using the balanced accuracy model (Figure 4.2B). For this data set, random forest 

classification performed the most poorly with a precision of 0.556 and recall of 0.555.  

 

Table 4.1: Summary of the results from logistic regression for classification. Using the 

metabolite concentrations as features, we find that logistic regression has the strongest results out 

of all the different classifiers tested with a precision of 0.599 and a recall of 0.600. 

 

 

True Positive Rate False Positive Rate Precision Recall F-Measure ROC Area

Patient 0.536 0.344 0.577 0.536 0.556 0.583
Control 0.656 0.464 0.618 0.656 0.636 0.583

Weighted Average 0.600 0.408 0.599 0.600 0.599 0.583
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Figure 4.1: Logistic regression ROC Curve for metabolite concentrations plots true positives to 

false positives.  

ROC Curve: Logistic Regression on Metabolite Concentrations
Fa

ls
e 

Po
si

tiv
es

True Positives

10  0.5 

1

0  

0.5 



	 26	

 

Figure 4.2: A: Histogram and boxplot for classification accuracy for logistic regression. 

Balanced accuracy was estimated to be 0.601. B: The logistic regression confusion matrix shows 

the predictions of the model compared to the actual classification of individuals.  

 

4.5 Classification using Full Spectral Functions 

Next, we wanted to explore if the full spectral function, as a classification feature would improve 

classification accuracy. By default, LCModel discretizes the spectral function into 480 samples. 

Thus, we have 480 different discrete features representing a single data point or subject. The 

underlying thought process behind using every feature was that there could be significant areas 

of the function that vary greatly between patients and controls but may not correspond to one of 

the metabolite peaks used in the metabolite classification. We tested each of the classification 

algorithms with this data to compare performance and found different results than what we had 
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seen in the original case of metabolite peaks. This time, the highest performance was obtained 

using random forest classification; this model gave us a precision of 0.698 and a recall of 0.695 

(Table 4.2). From these results we generated a confusion matrix and an ROC curve to visualize 

the performance of our classifier (Figure 4.3 and 4.4). 

 

Table 4.2: Summary of the results from random forest classification. Using the full spectral 

functions as features, we find that the random forest model has the strongest results out of all the 

different classifiers tested with a precision of 0.698 and a recall of 0.695. 

 

 

True Positive Rate False Positive Rate Precision Recall F-Measure ROC Area

Patient 0.556 0.188 0.714 0.556 0.625 0.730
Control 0.813 0.444 0.684 0.813 0.743 0.730

Weighted Average 0.695 0.327 0.698 0.695 0.689 0.730
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Figure 4.3: A: Random forest classification shows a balanced accuracy of 0.695 in the 

histogram and boxplot of the accuracy. B: The random forest classification confusion matrix 

shows the predictions of the model compared to the actual classification of individuals with a 

high true positive and low false positive. 
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Figure 4.4: Random forest ROC Curve for full spectral functions showing the comparison of 

true positives to false positives at different threshold values along the x-y axis. A prediction 

model that performs as unbiased chance would be visualized as a linear plot of y=x meaning that 

the numbers closer to the top left corner of the graph denote better performing models. 

 

We note that the function classification results originate from the same subjects (N=59) used in 

the metabolite classification experiment. The results table allows us to see the breakdown of how 

patients and controls are performing in our predictive model (Table 4.2). Looking at the controls, 

our model correctly predicts control subjects as healthy 81.3% of the time. Additionally, the 

ROC curve allows us to see the high performance of this model along different thresholds with 

an ROC value of 0.730 (Figure 4.4). Only 6 controls were incorrectly classified as patients, 

which is far lower than the 11 controls that were classified as patients in our previous model. The 
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balanced accuracy of 0.695 reflects the results seen in the confusion matrix given that the 

balanced accuracy computes a mean over 300 iterations of this random forest model (Figure 4.3). 

 

4.6 Elastic Shape Distances Between Spectral Functions 

Following the full functional classification, we began to discuss the possibility of using the shape 

distance of the MRS spectral function with respect to a standard template as a feature in 

classification. The framework described in Section 2.3 allows us to compute an intrinsic (only 

depending upon the geometry of the shape space) mean shape of all the spectra using elastic 

matching.26,27,28 This yields a single univariate (scalar) measure for each subject. We expect that 

the distances of the elastic shape to the population mean should be different when comparing 

patients and controls given that the metabolite concentrations are different in each of the two. 

Thus we hypothesize that if we were to compute elastic distances for each subject and compare 

that distance to the mean to get a baseline distance, these values could distinguish patients from 

controls. We used the R package fdasrvf to compute elastic distances between pairs of 

functions.28 First we computed the mean function after aligning individual spectra from all 

patients and controls. This mean function served as the template for the whole population. We 

then computed elastic distances from each subject’s spectral function to the template. These 

elastic distances were used as the feature for that subject entry in the data matrix. In doing so, our 

feature matrix shrunk significantly from the previous data used from containing 480 features to 

now just 1 single feature. 

 

We now utilize the distance as a sole feature in classification and find that the classifier 

performance rankings are stronger than those seen in the metabolite classification case. The 
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highest performing model when using distance as the feature was logistic regression. Logistic 

regression performed with a precision of 0.666 and a recall of 0.661 while having an ROC of 

0.669 (Figure 4.5b and 4.6).  

 

Figure 4.5: A: Balanced accuracy for the elastic function distance feature is shown to be 0.646 

along with the histogram and boxplot of the accuracy as shown. B: The logistic regression 

confusion matrix shows the predictions of the model compared to the actual classification of 

individuals with a high true positive and low false positive as we saw in the random forest of full 

functions. Our model correctly predicts 13/27 of patients correctly but fails to predict 14/27 of 

the patients as depressed. 
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Figure 4.6: Logistic regression ROC Curve for elastic distances showing the comparison of true 

positives to false positives. 

 

The performance of this model was unexpected given that we decreased the number of features 

from 480 to just one single feature but testing these results over 300 iterations allows us verify 

our results. The balanced mean accuracy for this logistic regression model falls at 0.646 (Figure 

4.5a). We found the random forest model to be the lowest performer with a precision of 0.522 

and a recall of 0.488 (Table 4.3). Comparing these results to the rest of the results from 

classification, we see that this was the lowest precision, recall, and accuracy set of results 

between all data sets that were inputs into the classification algorithms thus far. It is interesting 

to see how random forest performs strongly with full spectral functions (480 data points) while 

performing poorly with a single feature of elastic distance. 
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Table 4.3: Summary of the results from logistic regression for classification. Using the elastic 

distance as a univariate feature, we find that logistic regression has the strongest results out of all 

the different classifiers tested with a precision of 0.666 and a recall of 0.661. 

 

 

4.7 Principal Component Analysis  

After utilizing metabolites, full functions, and distances, we compared the results. Looking at the 

results allowed for the exploration of new possibilities for manipulating the data according to 

where our models were performing best. The full spectral data matrix had the highest 

performance compared to metabolites and distances. Because the metabolites represent a very 

small subset of the full function matrix, we began to investigate if there were certain important 

features involved in the full function classification that were the key driving factors in 

performance. We utilized PCA with the full functions at different number of features to find an 

optimum set of features that explained the highest variance in the set.  

 

Comparing the results for PCA with 3 features, 10 features, and 20 features, we found that 10 

features had the highest performance of the three. It was interesting to see which models 

performed well in each of the different cases; we ultimately found that the highest performance 

came from PCA with 10 features using support vector machines (SVMs) at an ROC value of 

0.643 (Figure 4.7). The precision of this model was 0.645 and the recall was 0.644, which are not 

True Positive Rate False Positive Rate Precision Recall F-Measure ROC Area

Patient 0.481 0.188 0.684 0.481 0.565 0.669
Control 0.813 0.519 0.650 0.813 0.722 0.669

Weighted Average 0.661 0.367 0.666 0.661 0.650 0.669
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the strongest performers overall but still were stronger results than the 4 metabolites used 

initially (Table 4.1 and Table 4.4). In this model, we see that the number of controls classified as 

patients and patients classified as controls are relatively equal (Figure 4.8b). These result patterns 

are comparable to what was seen in the metabolite classification case. Additionally, the balanced 

accuracy of this model is 0.657, which is comparable to the results seen in the confusion matrix 

with an accuracy of 0.644 (Figure 4.8a). 

 

Figure 4.7: SVM ROC Curve for principal component features showing the comparison of true 

positives to false positives. 
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Table 4.4: Summary of the results from SVMs for classification. Using PCA to extract 

components as features, we find that SVMs has the strongest results out of all the different 

classifiers tested with a precision of 0.645 and a recall of 0.644. 

 

 

 

Figure 4.8: A: Balanced accuracy for PCA features of the spectral functions is obtained as 0.657 

along with the histogram and boxplot of the accuracy as shown. B: The SVM confusion matrix 

shows the predictions of the model compared to the actual classification of individuals with a 

lower performance than the results seen in the random forest of full functions. Our model 

True Positive Rate False Positive Rate Precision Recall F-Measure ROC Area

Patient 0.630 0.344 0.607 0.630 0.618 0.643
Control 0.656 0.370 0.677 0.656 0.667 0.643

Weighted Average 0.644 0.358 0.645 0.644 0.644 0.643
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correctly predicts 17/27 of patients correctly, which is higher than the previous models but also 

fails to predict 10/27 of the patients as depressed.  
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CHAPTER 5 

 

Discussion 

5.1 R Package 

We have utilized and created novel tools to analyze and preprocess magnetic resonance 

spectroscopy signals. Specifically, we have developed an R package known as mrspecr that 

can take in LCModel output data and perform data formatting and processing. The denoising and 

batch alignment functions allow the data to be manipulated and provide a cleaner format of the 

data. The coordinate and metabolite extraction functions allow the data necessary for 

classification to be extracted through file text parsing. Lastly, the classification matrices can be 

formulated using this mrspecr package to allow for machine learning classification on the 

terms of classifying whether a subject is a depressed patient or a healthy control. As of now, this 

package specifically has been designed to work with data outputted from LCModel, meaning that 

each voxel has a corresponding folder with text files containing coordinate data points, 

metabolite concentrations, and signal to noise ratios that are utilized as inputs to the functions 

contained in mrspecr. 
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5.2 Machine Learning and Classification  

After testing a number of different classification algorithms utilizing scikit-learn, R, and Weka, 

we found that a single classification model did not work on all types of features. Results 

diverged depending upon the different types of models used; more specifically, some features 

that biologically made sense (metabolite concentrations), and that have showed statistical effects 

when comparing patients and controls, did not perform as strongly as expected. We see that our 

strongest performing model according to balanced accuracy is the random forest classification 

using full spectral functions as features (Table 5.1). 

 

Table 5.1: Balanced accuracies of top performing models for each feature set. We see that using 

random forest classification on full spectral function data points yields the strongest performance. 

 

 

Based on previous literature, we expected that the logistic regression model using the metabolite 

peaks as features would yield the strongest performance. In testing a number of different 

classification models on these features, we did not obtain good performance. At a precision of 

0.599 and a recall of 0.600, this model was not performing significantly better than a random 

guess. Likewise, random forest had even less robust results, performing with an average 

precision of 0.556 and a recall of 0.555 These two classifiers may have better performance upon 

Data Set: Metabolites Distance PCA Functions

Classifier: Logistic Logistic SVM Random Forest

Balanced Accuracy: 0.601 0.646 0.657 0.695
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future exploration of metabolite concentrations to find the optimal subset of features for input but 

compared to the other results we have, this did not yield strong results.  

 

Overall, the random forest classification model applied to full spectral data points yielded 

superior performance, achieving a precision rate upwards of 0.698 with cross validation. We note 

that the idea of using full functions for classification has not been proposed before. The recall 

rate of this prediction model was also strong with a value of 0.695. The analysis of the ROC 

curve for this model allowed us to measure performance along different values for a threshold, 

and demonstrates the strong predictive capabilities of this model early on (Figure 4.4). We 

expect a strong prediction curve will follow the top left corner of the plot closely as this would 

signify minimum false positives and maximum true positives over time with respect to the 

threshold.  

 

We saw that the confusion matrix points out specific limitations in our model in which we can 

improve upon, specifically in prediction of false controls. Our model predicts 12 of our 59 

subjects as controls when these individuals are actually depressed patients (Figure 4.3). This is 

the main source of concern because we want to minimize the number of individuals who are not 

being diagnosed as depressed when they truly do need treatment. The more patients going 

untreated equates to a larger percent of the population suffering from MDD; this is highly 

undesirable given the fact that false diagnosis is what we are trying to avoid with these analyses. 

On the other hand, we only have 6/59 subjects being classified as patients when they are truly 

healthy controls. This is a small fraction of the population and raises less concern given that this 

predictive model is meant to assist diagnosis, not replace it. In a model where we desire to 
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properly diagnose individuals, these results would support majority of diagnoses from mental 

status examinations and would allow doctors to more confidently diagnose and treat patients 

with MDD. 

 

Our elastic shape distance approach to classification performed much stronger than initially 

expected. This is because the shape distance compresses the full function into a single univariate 

measure and achieves drastic feature reduction. The underlying idea behind the distance 

calculation was to incorporate the distances between shapes functions for classification. To our 

knowledge, this idea has not been applied in the context of MRS classification even across any 

disease modality. Using the fdasrvf elastic distance calculation for each subject, we 

determined a baseline distance difference by comparing the mean function to each of the elastic 

distances. Using this curve metric for classification, the model performed second to the full 

function metabolites. These results may have been due to the differences seen in the patient 

curves when compared to controls. We know that the curves differ because the metabolite 

concentrations are different, but what we were most interested in seeing is if the distance 

calculations could outperform the model that involved every single data point as a feature in 

classification. Using SVMs, the distance matrix performed with a precision of 0.645 and a recall 

of 0.644 (Figure 4.5).  

 

The final feature set used for classification was principal component analysis (PCA). We 

expected PCA to outperform the metabolites because rather than choosing the metabolites for 

classification on our own, we let the PCA choose the top 3, 10 and 20 features that best 

explained the variance of the data. The PCA with 10 features performed best and the PCA with 3 
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features performed worst. The reason for poor performance with just 3 features could be 

explained due to these 3 features not being able to differentiate patients and controls enough to 

successfully predict new subjects.  

 

Overall, the strongest performance came from random forest classification using the entire 480 

data points as features in our classification. Our experiments generated valuable data that 

suggests innovative approaches and opportunities to grow and expand this line of research 

(functional analysis of MR spectroscopy) to produce stronger results with more meaningful 

biological implications. 
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CHAPTER 6 

 

Future Directions and Conclusion 

6.1 Future Directions 

An improvement to incorporate in the future would allow for different formats of MRS data to 

run through mrspecr for increased flexibility and utilization. Given this expanded application, 

more researchers would be provided with the tools to format and process MRS data for machine 

learning analysis. 

 

On the topic of expanding the algorithms used, there are many avenues for altering or expanding 

on current practice models. One idea is to tweak random forest to incorporate the elastic 

distances calculated as one of the bifurcating factors. We already have the algorithm to calculate 

the elastic distance so utilizing this information in the random forest may boost performance. 

Another option would be to integrate these models by using the distance as a feature in 

combination with multiple other features. Combining the distance feature with features from 

other data sets such as the PCA components as well as core metabolite concentrations could 

allow for the classification algorithms to integrate this data together and discover distinguishing 

factors that may not have been clear from using each of the features independently. 
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With the estimation of PCA features, a future topic of interest would involve mapping those PCA 

features back to the original LCModel signal. To do this, each feature would need to be 

decomposed into the eigenvector components and combined with the data from all voxels to 

utilize metabolite data at a hierarchical scale. This overlay of different levels of data would allow 

us to see which features from PCA, if any, correspond to a metabolite peak from our metabolite 

classification matrix. Performing this analysis could allow us to find new metabolites that may 

be of significant importance and would allow us to reevaluate our choices for the original 

metabolites (NAA, Cr, Ins, and Glu) in our classification. 

 

6.2 Concluding Summary 

In summary, the presented work has showcased the development and utility of the designed R 

package in processing MRS signals. Additionally, classification models were used on this data to 

identify key driving features or the signal. In the future, these techniques and algorithms can 

ultimately assist in the tracking of treatment progress throughout electroconvulsive therapy as 

well as the diagnosis of patients who may be at risk of MDD. 
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