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Abstract

Aerosol Retrieval Using Remote-sensed Observations

by

Yueqing Wang

Doctor of Philosophy in Statistics

with the Designated Emphasis in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Bin Yu, Chair

Atmospheric aerosols are solid particles and liquid droplets that are usually smaller than the
diameter of a human hair. They can be found drifting in the air in every ecosystem on Earth,
leaving significant impacts on human health and our climate. Understanding the spatial and
temporal distribution of di↵erent atmospheric aerosols, therefore, is an important first step
to decode the complex system of aerosols and further, their e↵ects on public health and
climate.

The development of remote-sensing radiometers provides a powerful tool to monitor the
amount of atmospheric aerosols, as well as their compositions. Radiometers aboard satellites
measure the amount of electromagnetic solar radiation. The amount of atmospheric aerosols
is further quantified by aerosol optical depth (AOD), defined as the amount of solar radiation
that aerosols scatter and absorb in the atmosphere and generally prevent from reaching the
Earth surface. Despite e↵orts to improve remote-sensing instruments and a great demand for
a detailed profile of aerosol spatial distribution, methods needed to provide AOD estimation
at a reasonably fine resolution, are lacking. The quantitative uncertainties in the amount
of aerosols, and especially aerosol compositions, limit the utility of traditional methods for
aerosol retrieval at a fine resolution.

In Chapter 2 and 3 of this thesis, we exploit the use of statistical methods to estimate
aerosol optical depth using remote-sensed radiation. A Bayesian hierarchy proves to be
useful for modeling the complicated interactions among aerosols of di↵erent amount and
compositions over a large spatial area. Based on the hierarchical model, Chapter 2 estimates
and validates aerosol optical depth using Markov chain Monte Carlo methods, while chapter
3 resorts to an optimization-based approach for faster computation. We extend our study
focus from the aerosol amount to the aerosol compositions in Chapter 4.

Chapter 1 briefly reviews the characteristics of atmospheric aerosols, including the di↵er-
ent types of aerosols and their major impacts on human health. We also introduce a major
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remote-sensing instrument, NASA’s Multi-angle Imaging SpectroRadiometer (MISR), which
collects the observations our studies base on. Currently, the MISR operational aerosol re-
trieval algorithm provides estimates of aerosol optical depth at the spatial resolution of 17.6
km.

In Chapter 2, we embed MISR’s operational weighted least squares criterion and its
forward calculations for aerosol optical depth retrievals in a likelihood framework. We further
expand it into a hierarchical Bayesian model to adapt to finer spatial resolution of 4.4 km.
To take advantage of the spatial smoothness of aerosol optical depth, our method borrows
strength from data at neighboring areas by postulating a Gaussian Markov Random Field
prior for aerosol optical depth. Our model considers aerosol optical depth and mixing vectors
of di↵erent types of aerosols as continuous variables. The inference is then carried out
using Metropolis-within-Gibbs sampling methods. Retrieval uncertainties are quantified by
posterior variabilities. We also develop a parallel Markov chain Monte Carlo algorithm to
improve computational e�ciency. We assess our retrieval performance using ground-based
measurements from the AErosol RObotic NETwork (AERONET) and satellite images from
Google Earth. Based on case studies in the greater Beijing area, China, we show that 4.4 km
resolution can improve both the accuracy and coverage of remote-sensed aerosol retrievals,
as well as our understanding of the spatial and seasonal behaviors of aerosols. This is
particularly important during high-AOD events, which often indicate severe air pollution.

Chapter 3 of this thesis continues to improve our statistical aerosol retrievals for better
accuracy and more e�cient computation by switching to an optimization-based approach.
We first establish objective functions for aerosol optical depth and aerosol compositions,
based upon MISR operational weighted least squares criterion and its forward calculations.
Our method also borrows strength from aerosol spatial smoothness by constructing penalty
terms in the objective functions. The penalties correspond to a Gaussian Markov Random
Field prior for aerosol optical depth and a Dirichlet prior for aerosol mixing vectors under
our hierarchical Bayesian scheme; the optimization-based approach corresponds to Bayesian
Maximum a Posteriori (MAP) estimation. Our MAP retrieval algorithm provides compu-
tational e�ciency almost 60 times that of our Bayesian retrieval algorithm presented in
Chapter 2. To represent the increasing heterogeneity of urban aerosol sources, our model
continues to expand the pre-fixed aerosol mixtures used in the MISR operational algorithm
by considering aerosol mixing vectors as continuous variables. Our retrievals are again val-
idated using ground-based AERONET measurements. Case studies in the greater Beijing
and Zhengzhou areas of China reassure that 4.4 km resolution can improve the accuracy and
spatial coverage of remotely-sensed retrievals and enhance our understanding of the spatial
behaviors of aerosols.

When comparing our aerosol retrievals to the extensive ground-based measurements col-
lected in Baltimore, Maryland, we encountered greater uncertainties of aerosol compositions.
It is a result from both the complex terrain structures of Baltimore and its various aerosol
emission sources. Chapter 4, as result, extends the flexibility of our previous aerosol re-
trievals by incorporating a complete set of the eight commonly observed types of aerosols.
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The consequential rise in model complexity is met by a warm-start Markov chain Monte
Carlo sampling scheme. We first design two Markov sub-chains, each representing an aerosol
mixture containing only four types of the commonly observed aerosols. Combining the sam-
ples generated by these two sub-chains, we propose an initialization for the Markov chain
that contains all eight types of commonly observed aerosols. Partial information on the in-
teractions of di↵erent types of aerosols from the samples generated by the sub-chains proves
to be useful in choosing a more e�cient initial point for the complete Markov chain. Faster
computation is achieved without compromising the retrieval accuracy nor the spatial reso-
lution of the estimated aerosol optical depth. In the end, through case studies of aerosol
retrievals for the Baltimore area, we explore the potentials of remote-sensed retrievals in
improving our understanding of aerosol compositions.
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Chapter 1

Introduction

The goal of this first chapter is to provide a brief background on atmospheric aerosols
and their impacts on human health.

1.1 Aerosols and Their Compositions

Atmospheric aerosols float between anywhere from the Earth’s stratosphere to the surface
and vary widely in size, shape and chemical compositions. Aerosols can further clump
together to form even more complex mixtures of a larger variety. Commonly observed
aerosols can be grouped into major categories according to their chemical compositions,
including sulfates, organic carbon, black carbon, nitrates, mineral dust and sea salt [3].
Among them, sulfates from volcanic ash, sea salt and dust are three most common types.

Approximately 90 percent of atmospheric aerosols are generated by natural processes.
Examples of such natural origins include volcanoes ejecting ash, sulfur dioxide and other
gases, forest fires releasing burned organic carbon, certain microalgae in the ocean producing
a sulfurous gas, as well as sandstorms carrying mineral dust from deserts into the atmosphere.

The remaining 10 percent of aerosols are generated by anthropogenic activities. Despite
the small overall proportion of man-made aerosols, they can dominate the atmosphere above
urban and industrial regions, as we will see in several case studies throughout this thesis.
Examples of anthropogenic origins include fossil fuel combustion generating large amount
of sulfate aerosols, biomass burning producing smoke of organic carbon and black carbon,
automobiles and power plants creating sulfates, nitrates, black carbon and other particles.

1.2 Aerosols Impacts on Human Health

Atmospheric aerosols can significantly a↵ect human health and life expectancy [29]. When
inhaled, aerosols can penetrate cell membranes, then migrate and seriously damage human
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respiratory, cardiovascular systems [28] and the brain [24]. Short-term impacts include: irri-
tation to eyes, nose and throat; upper respiratory infections including pneumonia and bron-
chitis; and stroke or death from cardiovascular causes. Continual exposure to hazardous
aerosols can aggravate or complicate medical conditions in the elderly[4]; aerosols from silica
and diesel can lead to diseases including silicosis and black lung. Aerosols with an aero-
dynamic diameter less than 2.5 µm, such as black carbon, can severely reduce ground-level
visibility. Understanding public health concerns, therefore, can largely benefit from an infor-
mative profile of aerosols’ optical properties, especially in urban areas with dense population
and complex anthropogenic aerosol sources. In fact, e↵orts to broaden spatial coverage and
measures of aerosol characteristics in order to assist public health studies are emphasized by
NOAA, NASA and EPA [34].

Profiling spatial distribution of aerosols at fine resolution is thus critical for air quality
and public health studies, especially in urban areas with complex anthropogenic aerosol
sources discussed in the previous section.

China, one of the most aerosol-laden countries, harbors fast-developing cities such as
Beijing, which produce heavy layers of complex mixtures of aerosols. Anthropogenic defor-
estation in northern China leads to more frequent and severe sandstorms, which carry dust
from the deserts in the north to other parts of China and even Japan. Given these concerns
and the author’s Chinese background, it is only natural to start with cities in China as
locations in our case studies of Chapter 2 and 3.

1.3 Focus of Our Studies

The main goal of our studies is to provide a profile of spatial distribution of aerosol optical
depth at resolution fine enough to facilitate research on aerosols and their impact on urban
public health. Such research is especially important in highly-populated urban areas with
increasingly heterogeneous aerosol sources. Using the top-of-atmosphere radiances observed
by NASA’s Multi-angle Imaging SpectroRadiometer (MISR) aboard Terra satellite, the cur-
rent MISR operational algorithm retrieves aerosol optical depth at 17.6 km resolution. Our
work refines the retrieval resolution to 4.4 km to better support urban public health studies
while also improving retrieval accuracy and spatial coverage.

In general, there are two types of remote-sensed aerosol retrieval algorithms: over-land
and over-ocean. In this thesis, we restrict to aerosol retrievals over land.
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Chapter 2

A Hierarchical Bayesian Approach
for Aerosol Retrieval Using MISR
Data

2.1 Motivation

There are two approaches to measure the spatial distribution of aerosols: through ground-
based measurements or remote-sensed radiance imageries. Both quantify the amount of
aerosols by spectral Aerosol Optical Depth (AOD), defined as the negative logarithm of the
fraction of radiation (sunlight) not scattered or absorbed by aerosols on a path in the Earth’s
atmosphere1. Another major property of aerosols, aerosol single scattering albedo (SSA)2,
can also be estimated based on reflected solar radiation field measurements obtained from
downward looking remote-sensing radiometers [20].

AOD at di↵erent spectral bands can be viewed as known functions of AOD at the green
band using the Angström power law[23]. For notational simplicity, this thesis refers to AOD
at the green band. With either ground or remote-sensing approach, the spatial and temporal
variabilities of aerosols require continual observations and computationally e�cient analyses.

The AErosol RObotic NETwork (AERONET)[14] provides a data archive of local AOD
values using a network of automatic sun photometers (Figure 2.1, left panel) located at more
than 400 stations on the Earth’s surface. It measures AOD from every half hour to every two
hours, with uncertainties < ±0.01 at wavelengths > 440 nm[15]. AERONET measurements
are widely accepted as a gold standard to validate AOD estimates based on other data
sources. The sparse and heterogeneous locations of AERONET stations, however, make it
di�cult to directly use their measurements to study the spatial behaviors of aerosols.

1For example, an AOD value of 2.5 corresponds to 92% of radiation scattered or absorbed.
2SSA is defined as the ratio of scattered radiation to total extinct radiation (scattered and absorbed).
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Figure 2.1: AERONET sun photometer at Avignon, France (left) and MISR cameras (right).

Remote-sensing radiometers o↵er a better spatial coverage by retrieving AOD from ra-
diance imageries over the Earth’s entire surface, such as the Multi-angle Imaging Spectro-
Radiometer (MISR) aboard the NASA Earth Observing System Terra satellite (Figure 2.1,
right panel). MISR views the day-lit Earth atmosphere almost simultaneously at nine angles
along its track. On the observed imagery, the spacing between centers of each pixel is 275
m in the red band, and 1.1 km for the blue, green and near-infrared bands [7]. This unique
design of multiple viewing angles renders an enhanced sensitivity to aerosol scattering, as
well as an advantage in identifying near-source aerosol plume height [25][19]. MISR outputs
four-spectral imageries at 1.1 km resolution for the blue, green, near-infrared bands, and at
275 m for the red band. Based on these imageries, MISR then produces AOD retrievals at
17.6 km resolution.

To quantitatively represent aerosol types, the MISR operational retrieval algorithm cate-
gorizes aerosol particles according to their properties such as characteristic radius and SSA.
Each category, that is, each individual aerosol component, has a single type given by the
refractive indices and a single particle size distribution. The resulting 21 individual aerosol
components are used to define aerosol mixtures. To simplify remote-sensing retrieval, MISR
considers only 74 aerosol mixtures, each defined by a set of two or three aerosol components
and their mixing vector, indicating the relevant abundance of each component. For example,
a dusty continental aerosol mixture can be represented by 80% of component “Sulfate mode
1”, 10% of component “Mineral dust accumulation 2” and 10% of component “Mineral dust
coarse”.

In general, an aerosol mixture can now be identified by a notion of composition: a
collection of M component aerosols and their mixing vector relative to these M components.
Elements of the M -dimensional mixing vector sum up to 1, indicating mixing percentages
of the M components. Based on the 74 MISR-prefixed mixtures and a discrete grid of
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AOD values, forward radiative transfer (RT) calculations simulate radiances in the 36 MISR
channels (9 viewing angles ⇥ 4 spectral bands). The results are stored in the Simulated MISR
Ancillary Radiative Transfer (SMART) dataset. The MISR operational retrieval algorithm
then compares the simulated radiances to the MISR observed radiances. A weighted least
squares criterion is used to determine whether the simulated radiances provide good fits to the
data, i.e., whether “successful” retrievals have been achieved. The averages of AOD values
associated with successful retrievals are MISR retrieval outputs. They have been validated by
ground measurements such as the AErosol RObotic NETwork (AERONET)[18][26], as well
as by MISR field instruments and airplane campaigns[8]. Moreover, MISR retrieved AOD
values have been shown to be informative in studies on wildfire smoke[17], mineral dust[21],
and climate changing aerosols[32]; remote-sensed AOD estimates are used in conjunction
with ground measurements for operational PM2.5 air quality forecasting [9][34].

MISR’s ability to capture aerosol-related information makes it well suited to assist studies
on aerosols’ impact on public health. However, the heterogeneity of urban aerosols within
an area of 17.6 ⇥ 17.6 km2, the spatial resolution of MISR AOD retrievals makes finer
resolution desirable. For example, San Francisco is represented by less than half of a MISR
pixel. Yet the residents of San Francisco are exposed to varying levels of air pollution. Case
studies in Delhi show that 5-km AOD has a significantly higher association with health-
related particulate matters than AOD of rougher resolution [22]. As a result, we use 4.4
km as our retrieval resolution, also to be compatible with the MISR observations at 1.1
km. Also, observational studies indicate that tropospheric aerosol burden has increased at
mid-latitudes and in the Arctic, probably due to anthropogenic activities[27][31]. Retrieval
algorithms using pre-fixed aerosol mixtures are therefore limited. That is, when none of the
74 MISR aerosol mixtures prove to be good fits to the observations, no AOD retrievals are
achieved. For example, 15.4% of the MISR missing retrievals for the greater Beijing area on
March 15, 2009, was due to lack of fitting aerosol mixtures among the 74 MISR mixtures.
This suggests that more varieties beyond the 74 pre-fixed aerosol compositions are to be
considered in order to capture aerosols’ growing heterogeneity.

Finer-resolution retrievals with greater varieties of aerosol compositions lead to a larger
number of parameters to estimate. This is possible if we take advantage of AOD’s spatial
smoothness and reduce the 21 component aerosols to a smaller subset, say four, chosen
according to current knowledge of the study region’s aerosol conditions. This choice of
incorporating four component aerosols is adequate for areas like Beijing which have relatively
homogeneous spatial characteristics. Later, however, it proves to be insu�cient for areas of
a more complex terrain structure and we accordingly work to expand the model in Chapter
4.

In particular, a hierarchical Bayesian model is proposed to retrieve AOD values and
mixing vectors based on MISR observations at 4.4 km resolution. We adopt a likelihood
framework based on MISR’s weighted least squares and construct the Bayesian hierarchy
to incorporate AOD’s spatial smoothness using a Gaussian Markov Random Field (GMRF)
prior. The movement and dispersion of air particles in the atmosphere justify the spatial
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smoothness of AOD from a physical viewpoint. To flexibly describe various aerosol condi-
tions, our model regards AOD values and mixing vectors as continuous parameters. This
expands the set of possible compositions beyond the 74 pre-fixed choices of MISR. We show
how this enriched variety is necessary to retrieve heterogeneous urban aerosols.

Throughout this thesis, our study takes a MISR Block3 as a data unit to balance the
coverage of a greater metropolitan area and computational cost.

The posterior inference of AOD and mixing vectors is carried out using Markov Chain
Monte Carlo (MCMC) sampling methods, particularly Metropolis-within-Gibbs. Such sam-
pling methods allow us to quantify the retrieval uncertainties by posterior variabilities. The
algorithm, however, is computationally intense. We develop a parallel MCMC algorithm by
partitioning a MISR Block into smaller patches, to enable parallel samplings while main-
taining the overall smoothness level using summary statistics. We show that retrievals from
the two algorithms are consistent, with an increase in computational speed for the parallel
MCMC algorithm. To assess the performance of our methods, we apply them to retrieve
AOD values for the greater Beijing area in China. Our retrievals are tested against ground-
based measurements of AOD from two AERONET stations in the area. Results show im-
provement on retrieval accuracy and coverage, especially during high-AOD events. We also
include geographical conditions and levels of anthropogenic activities from Google Earth to
qualitatively validate our results.

The rest of this chapter is organized as follows: Section 2.2 provides the rationale and
details of our Bayesian model for retrieving AOD values and mixing vectors, while Section
2.3 details our MCMC algorithms. Section 2.4 contains case studies for model validation and
interpretation, comparing our results with MISR’s retrievals and AERONET measurements.
Section 2.4.3 illustrates the necessity to include a richer variety of aerosol compositions.
Section 3.5 summarizes the results and suggests directions for future research.

2.2 Hierarchical Bayesian Model

Our objective is to establish a more detailed data-driven description of the relationship among
radiances, AOD, and aerosol compositions to assist aerosol-related health studies. The MISR
operational retrieval algorithm provides this information by comparing the observed and
the radiative transfer calculated radiances, but it is limited within the 74 pre-fixed aerosol
compositions and a discrete grid of AOD values. We propose to allow a greater variety
of aerosol optical behaviors by considering AOD values and mixing vectors as continuous
variables, given a fixed set of four component aerosols. For the greater Beijing area, this set
includes spherical non-absorbing aerosols without sulfate, spherical non-absorbing aerosols
with sulfate, spherical absorbing aerosols, and grains (dust).

Each MISR Block contains 256 pixels (8 rows ⇥ 32 columns) at 17.6 km resolution in
the MISR retrievals. The number of pixels in a MISR Block rises to 4,096 (32 rows ⇥

3MISR observes the Earth’s surface in 233 swaths; each swath contains 180 560 ⇥ 140 km2 MISR Blocks.
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128 columns) at 4.4 km resolution, presenting a more complex problem with approximately
16,384 parameters to estimate. On the other hand, air particles interact in the atmosphere
within a certain range; they a↵ect aerosol conditions in near neighborhoods[1][36]. This
suggests a stronger spatial dependence among adjacent pixels at a finer scale. When modeling
at fine resolution, therefore, it is necessary and beneficial to borrow strength from AOD’s
spatial smoothness to reduce model complexity. In particular, we construct a hierarchical
Bayesian model with a built-in spatial dependence using a Gaussian Markov Random Field
prior for AOD.

2.2.1 Defining the Likelihood Function

Let p = 1, . . . , P index the P = 4, 096 pixels on a two-dimensional lattice in a MISR Block
at 4.4 km resolution, and L = (L1, . . . ,LP

) denote the MISR-observed top-of-atmosphere
radiances. For each pixel p, L

p

= (L1p, . . . , LCp

) 2 RC corresponds to MISR’s C = 36
channels. For every channel c = 1, . . . , C, the MISR retrieval algorithm sets a measurement
error of size �

c

as 5% of the smaller value between 0.04 and L̄

c

= (
P

P

p=1 Lcp

)/P . For pixel p,
our goal is to estimate its AOD value ⌧

p

2 R and mixing vector ✓
p

= (✓
p1, . . . , ✓pM) 2 RM ,

relative to the M component aerosols involved (✓
p

� 0 and
P

M

m=1 ✓pm = 1). Each of MISR’s
74 pre-fixed aerosol mixtures contain two or three component aerosols. We expand to allow
mixtures of four component aerosols by setting M = 4; case studies confirm the su�ciency
of this choice.

Given the geolocation of pixel p, its AOD value ⌧

p

, a set of component aerosols and
their mixing vector ✓

p

, Radiative Transfer (RT) equations are used to simulate radiances
LRT = (LRT

1 , . . . , L

RT

C

) [6]; their pre-computed values at discrete points are stored in MISR’s
SMART Dataset4. Thus, LRT can be viewed as functions of (⌧

p

,✓
p

), relative to the M

component aerosols involved. For each pixel p independently, the MISR operational retrieval
algorithm uses a weighted least squares criterion to measure the closeness of an observed
radiance vector to a particular RT simulated radiance vector. The weighted least squares
take the following form [5]:

�

2
p

=
CX

c=1

(L
cp

� L

RT

c

(⌧
p

,✓
p

))2

2�2
c

. (2.1)

The MISR retrieval algorithm exhaustively searches over all combinations of pre-fixed
AOD values and 74 aerosol compositions to match LRT to the observed L. The combinations
of AOD and compositions satisfying a pre-established threshold of �2

p

in (2.1) are considered
good fits to the observations; the average of all such AODs is the MISR retrieval at pixel p.

4The other parameters, such as the ambient pressure, take the default values unless otherwise specified.
The MISR team has kindly given us access to the SMART dataset.
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Inspired by MISR’s weighted least squares criterion, we propose to use the weighted
di↵erences between observed L and radiative transfer simulated LRT in (2.1) to form the
following operational likelihood function:

p(L|⌧ ,✓) / exp

(
�

CX

c=1

PX

p=1

(L
cp

� L

RT

c

(⌧
p

,✓
p

))2

2�2
c

)
. (2.2)

If we carry out a Maximum Likelihood estimation, the above Gaussian likelihood function
coincides with MISR’s weighted least squares criterion, assessing how relatively probable
are the unobserved parameters ⌧ = (⌧1, . . . , ⌧P ) and ✓ = (✓1, . . . ,✓P

), given the MISR
observations L. More importantly, this operational likelihood provides a formal device for
us to construct a spatial smoothness structure for the AOD values ⌧ into the Bayesian
hierarchy.

Even though the exact distribution of the weighted di↵erences in (2.2) is di�cult to deter-
mine due to the complex origins for these di↵erences5, histograms of retrieval residuals based
on (2.2) display a single modal distribution; this supports our choice for a Gaussian-shaped
operational likelihood. Another assumption in both (2.1) and (2.2) is that the di↵erences
between LRT and L are independent of the channel c6, if the correct values of (⌧ , ✓) have
been selected.

Now we are ready to describe our hierarchical model through building conditional rela-
tionships within the Bayesian hierarchy and assigning reasonable priors to the unobserved
variables.

2.2.2 Construction of Priors and Conditional Probabilities

For fixed atmospheric pressures, humidity, wind levels, and a set of component aerosols
involved, the top-of-atmosphere radiances L are mainly determined by AOD ⌧ and aerosol
mixing vectors ✓. Our Bayesian hierarchy’s first level depicts this dependence of L on ⌧ and
✓. Prior distribution for ⌧ is postulated to capture the spatial smoothness, calibrated by
hyperparameter . We further assume independence between priors for ⌧ and ✓ to simplify
computation, i.e., p(⌧ ,✓) = p(⌧ )p(✓). The inference of parameters and hyperparameters
using MCMC sampling methods, is discussed in Section 2.3.

5Such origins include MISR camera measurement errors, radiative transfer calculation noises, di↵erences
between the proposed and true values for AOD and mixing vectors, choices of component aerosols, and errors
in estimating surface-leaving radiances.

6We found close-to-0 correlations (-0.0445) between our retrievals’ residuals at di↵erent viewing angles,
but nontrivial correlations (0.5714) between residuals at di↵erent spectral bands. In current work, we are
building this dependence structure among di↵erent bands in our model.
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Prior Beliefs about AOD’s Spatial Dependence

We characterize the spatial dependence of AOD values ⌧ using an intrinsic Gaussian Markov
Random Field (GMRF) prior of first order[30]. Define  as the homogenous scaler precision
and use ⇠ to indicate spatial adjacency. The following prior is invariant to perturbation by
the same constant to ⌧ of all pixels[2],

p(⌧ |) / 

P�1
2 exp

(
�

2

X

p

0⇠p

(⌧
p

0 � ⌧

p

)2
)
. (2.3)

This allows us to model AOD’s spatial smoothness by penalizing sharp changes of ⌧ among
adjacent pixels, regardless of their unknown overall level. The prior in (2.3) is calibrated
by  as AOD’s precision. The larger  is, the smoother the region’s AOD values are. For
some regions, however, a more complicated GMRF prior might be necessary. For example, a
constant wind pattern might require distinguishing an upwind pixel from a downwind pixel.
This chapter works with a homogenous precision  and thus has its limitations.

To estimate , we assign it a hyperprior. Due to AOD’s large variability within a day
and the lack of pre-existing records to specify a prior belief of ⌧ ’s behaviors, we consider a
noninformative prior: p() / 1/. The posterior is a proper Gamma distribution,

p(|⌧ ) / 

P�1
2 �1 exp

(
�

2

X

p

0:p0⇠p

(⌧
p

0 � ⌧

p

)2
)
. (2.4)

For the above prior to work well, the number of groups, namely P , is to be larger than 5
[11]. In our case, P is commonly larger than 1000 at 4.4 km resolution. The simulation to
be described in Section 2.3.2 shows good agreement between the true and retrieved values
of  using our MCMC algorithm. For example, we observed 100 (true) and 92.08 (retrieved)
in one simulation, 500 (true) and 485.76 (retrieved) in another.

Prior Specification for Aerosol Compositions

Prior information on aerosol compositions is incorporated in the model through choices of the
M = 4 component aerosols involved, based on geophysical knowledge of the study region.
To model the mixing vectors ✓ of the M component aerosols, we use an M -dimensional
Dirichlet prior with Dirichlet parameter ↵ = (↵1, . . . ,↵M

). Conditioning on ↵, the mixing
vectors {✓

p

}P
p=1 are considered to be independent of each other,

p(✓|↵) =
PY

p=1

p(✓
p

|↵) =
PY

p=1

�(
P

M

m=1 ↵m

)
Q

M

m=1 �(↵m

)
✓

↵1�1
p1 · · · ✓↵M�1

pM

. (2.5)



CHAPTER 2 10

Even though the mixing vectors’ spatial smoothness is not explicitly formulated, it is still
captured and implicitly enforced by the spatial structure of AOD ⌧ through their dependence
on the observed radiances L. In fact, our estimates of mixing vectors ✓ indeed display
spatial smoothness. The model and algorithms remain relatively simple and computationally
e�cient.

We can further control the overall sparsity of the mixings of component aerosols by
adjusting the magnitude of ↵. In general, we obtain no prior information on the mixing’s
sparsity; we assign ↵ a hyperprior to estimate it. Since (2.5) belongs to an exponential
family, we adopt its conjugate: p(↵) / exp(

P
M

m=1(1 � ↵

m

)). This prior of ↵ gives larger
probability to a smaller sum of ↵

m

’s, which suggests a sparse mixing of component aerosols,
i.e. mixtures with one or two dominant components. This is supported by results from
observational studies on aerosol mixings[6]. The posterior has the following form,

p(↵|✓) / exp

(
MX

m=1

(↵
m

� 1)(
PX

p=1

log ✓
pm

+ 1)� P ⇥ (
MX

m=1

log�(↵
m

)� log�(
MX

m=1

↵

m

))

)
.

Hyperprior for �2

In our approach, we regard {�2
c

}C
c=1 as unknown and they are estimated together with (⌧ , ✓).

The likelihood function for �2 = (�2
1, . . . , �

2
C

), p(L|�2
, ⌧ ,✓), follows a normal distribution

with known mean and unknown variance. We adopt a noninformative scaled inverse-�2

hyperprior for �2 to model the channel weights { 1
2�2

c
}C
c=1: p(�2

c

) / �

�2
c

. This hyperprior
suggests that values for the unknown weights become less likely in inverse proportion to
their values; it is also a choice of computational convenience. The conditional posterior also
follows the scaled inverse-�2 distribution,

p(�2
c

|⌧ ,✓,L) / (�2
c

)�(P2 +1) exp

(
�
P

P

p=1(Lcp

� L

RT

c

(⌧
p

,✓p))2

2�2
c

)
.

2.3 MCMC Retrieval Algorithms

Based on the hierarchical Bayesian model previously developed, this section first derives
marginal posterior distributions of AOD values ⌧ and mixing vectors ✓. We then devise two
MCMC algorithms to sample from the posteriors. Using MISR observed radiances as input,
we take the sampled posterior means as outputs.
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2.3.1 Posterior Distributions of AOD Values and Mixing Vectors

The full Bayesian model discussed above can be summarized as follows:

L
p

|⌧
p

,✓p ⇠ N (LRT (⌧
p

,✓
p

),�2), p = 1, . . . , P,

⌧ | ⇠ GMRF (),

✓|↵ ⇠ Dirichlet(↵),

�2 ⇠ scaled inverse� �

2(⌫0),

 ⇠ Gamma(↵0, �0),

p(↵) ⇠ Exp(
MX

m=1

(1� ↵

m

)).

With no additional information on the hyperparameters, ⌫0, ↵0, and �0 are chosen to be 0
for convenience and later shown to be robust. The marginal posterior of AOD values ⌧ is,

p(⌧ |✓,,�2
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The marginal posterior distribution of the mixing vectors ✓ can be expressed as,

p(✓|⌧ ,↵,�2
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Both posteriors contain radiative transfer simulated LRT , which can be obtained at necessary
values through interpolations from the MISR SMART Dataset, using ⌧

p

and ✓
p

as inputs
[6]. The resulted non-closed-form posteriors, however, are di�cult to directly sample from.
A Metropolis-within-Gibbs sampler is thus used.

2.3.2 Metropolis-within-Gibbs Sampling from the Posterior Dis-
tributions

The Gibbs sampler[13] is a numerical technique to sample from a joint distribution, p(⌧ ,✓,�2
,,↵|L)

in our case. We sample for ⌧
p

and ✓
p

using a Metropolis-Hastings (M-H) sampler, for each
pixel p on the MISR Block column by column and pixel by pixel. The following proposal
distribution is used in M-H sampler for ⌧

p

,
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!
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where n
p

is the number of adjacent pixels to pixel p, and  the scalar precision of the Markov
Random Field. A Dirichlet proposal distribution with parameter ↵ is used in M-H for ✓

p

.
Denote vector (⌧

p

, . . . , ⌧

p

0) by ⌧
p:p0 and similarly for ✓ and their Dirichlet parameter ↵. Given

initializations (⌧ (0)
,✓(0)

, (�2)(0),(0)
,↵(0)), the sampler proceeds as described in the following

Metropolis-within-Gibbs Algorithm.

Algorithm 1 *
Metropolis-within-Gibbs Algorithm (M-w-G) At step t, iterate the following pro-
cess:

1: for p = 1 to P do
2: Use M-H to sample ⌧

(t)
p

⇠ p(⌧
p

|⌧ (t)
1:(p�1), ⌧

(t�1)
(p+1):P ,✓

(t�1)
, (�2)(t�1)

,

(t�1)
,L).

3: for p = 1 to P do
4: Use M-H to sample ✓(t)

p

⇠ p(✓
p

|⌧ (t)
,✓(t)

1:(p�1),✓
(t�1)
(p+1):P , (�

2)(t�1)
,↵(t�1)

,L).
5: for c = 1 to C do
6: Use M-H to sample (�2

c

)(t) ⇠ p(�2
c

|⌧ (t)
,✓(t)

, (�2
1:(c�1))

(t)
, (�2

(c+1):C)
(t�1)

,L).

7: Sample 

(t) ⇠ p(|⌧ (t)).
8: for m = 1 to M do
9: Use M-H to sample ↵

(t)
m

⇠ p(↵
m

|✓(t)
,↵(t)

1:(m�1),↵
(t�1)
(m+1):M).

Each cycle of the algorithm generates a realization of a Markov chain, which gives ap-
proximate samples from the marginal posteriors after a successful burn-in process[13]. We
check that the acceptance rate of the Metropolis-Hastings sampler is roughly between 25%
and 50% for adequate mixing of posterior samples [10]. The potential scale reduction R̂ [12]
is also used to check convergence of the Markov chains. We run the chains until R̂ is less
than 1.1 or 1.2, using R̂ of the logarithm of the posterior distribution as a benchmark. A
geometric decay of the autocorrelation as a function of the lag also suggests well mixing of
our chains.

We also conduct a simulation study to verify the M-w-G’s ability to converge to the
target distribution:

The trace plots of the MCMC samples of AOD values (Figure 2.108) show good conver-
gence after approximately 400 iterations, whether the initialization is close to the true value
or not. We observe similar convergence rates for mixing vectors. Assigning di↵erent values to
the hyperparameters, the correlation between the true AOD and the MCMC-retrieved AOD
ranges between 0.78 and 0.90, and the coe�cient of variation of the rooted-mean-square
error ranges between 4.24% and 9.26%.

Finally, we use the sampled posterior mean to estimate AOD values and mixing vectors.
While the MCMC algorithm enables us to handle a hierarchy whose complexity precludes

7The noise’s standard deviation � is set as 10% of the averaged radiance, while the MISR operational
algorithm estimates � as 5% of the same average.

8We attach in appendix two trace plots showing one example of each type, up to the first 1000 iterations.
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Algorithm 2 *
Algorithm Example Simulation to Verify Convergence of M-w-
G

1: Select the same four component aerosols as in the Beijing case studies (Section 2.4).
2:  100 (or 500 for di↵erent runs).
3: ↵ (0.8, 0.4, 0.2, 0.2) (or (2, 4, 0.1, 0.1) for di↵erent runs).
4: Sample ⌧ (0) ⇠ (2.3).
5: Sample ✓(0) ⇠ (2.5).
6: Considering (⌧ (0), ✓(0)) as the true values, simulate radiances Lsim using the SMART

lookup table and an additive Gaussian noise7.
7: Input Lsim into M-w-G retrieval algorithm to estimate AOD and mixing vectors.

fitting by analytical methods, its computational intensity limits its operational use. Next,
we propose a parallel MCMC algorithm to reduce computational cost.

2.3.3 A Parallel MCMC Algorithm

Many MCMC sampling algorithms for spatial data su↵er from high computational cost
caused by the large dimensionality of data. At 4.4 km resolution, our MCMC algorithm
simulates samples for more than 16,000 variables9 for one MISR Block. The large computa-
tional cost is exacerbated by the non-closed form of the posterior distributions. It is possible,
however, to develop a faster algorithm to sample from a distribution which approximates
the target posterior of the original MCMC algorithm.

By this token, we devise a parallel MCMC algorithm to improve the computational
e�ciency: each MISR block is divided into 2 ⇥ 8 patches of equal size with at least four
overlapping columns and rows for adjacent patches; the M-w-G sampler is applied to each
patch independently to generate samples for (⌧ , ✓). This independent sampling on di↵erent
patches can therefore benefit from parallel computing.

Information on AOD’s spatial dependence structure is to be communicated across the
entire MISR Block to estimate AOD’s spatial smoothness level. On that account, we let the
patches periodically exchange spatial smoothness information across the entire MISR Block.
Given ’s conditional posterior,

p(|⌧ ) / 

(P�1)/2�1 exp{�1

2


X

p⇠p

0

(⌧
p

� ⌧

p

0)2},

and summary statistic, T


=
P

p⇠p

0(⌧
p

� ⌧

p

0)2, it follows that p(|⌧ ) = p(|T


). Hence T



summarizes the information on calibration  for AOD’s spatial smoothness across the entire
MISR block. Given that the hyperparameters control the spatial smoothness level of model

9Excluding cloudy pixels can sometimes reduce the total dimensions to around 5,000 for one MISR Block.
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parameters in all patches, the parallel MCMC algorithm provides an approximation to the
posterior of AOD values ⌧ , while the patch-samplings in parallel improve the computational
e�ciency. We now describe the parallel MCMC algorithm in detail:

Algorithm 3 *
Parallel MCMC Algorithm Obtain a MISR Block of 32⇥128 pixels at 4.4 km resolu-
tion and divide the Block into 2⇥8 patches, each of 20⇥20 pixels, with at least 4 over-
lapping columns/rows between adjacent patches. At step t, iterate the following pro-
cess:

1: Use M-w-G algorithm to sample ⌧ ⇠ p(⌧ |✓,,�2
,L), ✓ ⇠ p(✓|⌧ ,↵,�2

,L), �2 ⇠
p(�2|T (t)

� ),  ⇠ p(|T (t)


), ↵ ⇠ p(↵|T (t)
↵ ) within each patch in parallel for 50 iterations.

2: Average the samples of the overlapping pixels between any two adjacent patches.
3: Calculate summary statistics using current samples,

T
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(t+1)
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=
P

p⇠p

0(⌧
p

� ⌧

p

0)2,

T

(t+1)
↵m =

P
P

p=1 log ✓pm,m = 1, . . . ,M .

The above process can be automated using the Perl programming language. For a MISR
block at 4.4 km resolution, the computational time of the parallel MCMC algorithm is less
than one-fifth of that of the global MCMC sampling algorithm, accounting for overhead time
of communication among di↵erent patches.

This parallel MCMC sampling scheme can be generalized to improve the computational
e�ciency of MCMC sampling based on spatial data of a large scale. By conditioning on a
summary statistic which preserves the global spatial dependence level, we can partition the
original sampling problem into many sub-samplings and distribute them to di↵erent pro-
cessing units concurrently. Samples generated from each processing unit can be periodically
collected to renew the summary statistic, which is then returned to each processing unit to
update the sub-samplings. Though this scheme samples from an approximation to the target
distribution, it can largely speed up the computation.

The global and the parallel MCMC algorithms produce reasonably consistent results.
The outputs generally agree, except for a small group of pixels that mostly lie on the patch
edges. The spatial smoothness is interrupted between patches; the benefits of a stabilizing
factor from neighboring pixels are lost. This confirms that maintaining an appropriate spa-
tial structure is important, and that our parallel MCMC algorithm’s outputs are only an
approximation to the target distribution. Increasing the number of iterations and commu-
nications of summary statistics, and smoothing the patch edges, reduce the disagreement.
The next section evaluates the performance of our retrievals using case studies. For non-
operational model validations, we apply the global MCMC algorithm to avoid inconsistency
in number of iterations for di↵erent retrievals.
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2.4 Validation and Results: Case Studies on Aerosol
Retrievals for the Greater Beijing Area, China

In this section, we compare our retrievals to MISR outputs for the greater Beijing area
(latitude: 38.95N⇠40.15N; longitude: 115.57E⇠119.50E) and discuss their di↵erences. We
validate our results using AERONET measurements and Google Earth satellite images.
Through case studies, we demonstrate the importance of fine-resolution retrievals and a
greater variety of compositions to improve retrieval accuracy and coverage.

2.4.1 Comparison with MISR Retrievals

Figure 2.2 displays the MISR AOD retrievals at 17.6 km resolution in panel (a) and our
Bayesian AOD retrievals at 4.4 km resolution in panel (b). Shared information in MISR
and our retrievals is observed, such as the coastline on the right, the overall AOD level,
and its spatial patterns. This consistency is confirmed by the scatterplots of MISR outputs
and Bayesian AOD retrievals aggregated to 17.6 km resolution (Figure 2.3, left panel). The
black pixels in Figure 2.2 represent missing retrievals, mostly due to two common reasons.
Firstly, aerosol retrievals are not attempted when clouds are detected. MISR averages the

(a) MISR AOD retrievals at 17.6 km resolution.

(b) Bayesian AOD retrievals using MCMC at 4.4 km resolution.

Figure 2.2: AOD estimates from MISR and our Bayesian retrievals.

1.1 km observations into a pixel at 17.6 km resolution and ignores clouds, when the cloudless
areas are more than 1

16
of the pixel. Clouds negligible at 17.6 km resolution, however, might
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be significant at 4.4 km resolution; we tend to have more missing retrievals in some areas,
intrinsically determined by the observations. Secondly, when none of the 74 MISR-designated
compositions satisfy MISR’s weighted least squares criterion, MISR operational algorithm
marks the retrieval as missing. Our Bayesian retrievals, allowing for a richer variety of
compositions, eliminate such unnecessarily missing retrievals (Section 2.4.3).

On the other hand, Figure 2.2 also demonstrates increased diversity in our Bayesian-
retrieved AOD across the MISR Block, as the retrieval resolution improves. This is expected,
since a finer resolution leads to more information observed and piped into the model. The

Figure 2.3: Scatterplots of MISR against MCMC retrievals at an aggregated 17.6 km reso-
lution (left, r.m.s. = 0.0295) and a 4.4 km resolution (right, r.m.s. = 0.0309).

reliability of such diversity needs to be further validated by other independent sources such
as ground-based measurements, as discussed in the next section.

2.4.2 Model Validation for Bayesian Retrievals by Ground-based
Measurements and Google Earth

Ground-based measurements are collected at AERONET Beijing and AERONET Xianghe
stations, as well as via a hand-held MICROTOPS II Sunphotometer at several locations in
urban Beijing area. The fixed locations of the AERONET stations and the limited travel
range of the Sunphotometer’s human operator make it impossible to validate retrievals of
all pixels on the MISR Block under study. Instead, we focus on the pixels that contain the
AERONET stations or our Sunphotometer-visited locations. To match the AOD values at
the same wavelength, we first convert AERONET measurements to those at 550 nm using
AERONET estimates of Angström exponent. We then average the measurements within
a one-hour window when Terra carrying MISR passes over the AERONET stations, for
Jiang, et al. [16] show that a narrower time window better captures the correlation between
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AERONET measurements and MISR retrievals. The area’s frequent cloudy weather and its
latitude10 contribute to the scarcity of the remote-sensed versus ground-based data pairs for
validation.

As a result of this scarcity of ground-based validation, we also carry out qualitative
validation using satellite images from Google Earth and discuss the findings in Section 2.4.2.

Retrieval Validation at AERONET Beijing Station

Figure 2.4 shows a boxplot of our Bayesian AOD retrievals for the pixel which contains the
AERONET Beijing Station11, with estimated uncertainties indicated by the box edges for
inter-quartile ranges of posteriors and the whiskers drawn to the 5th and 95th percentiles.
The three retrievals on March 15, April 30, and May 16, 2009 are plotted separately in the
right panel to keep an appropriate scale for the left panel.

As long as a pixel is cloudless, our MCMC algorithms provide an AOD retrieval. However,
the MISR operational retrieval algorithm shows missing values for 24% of the 21 cases in
Figure 2.4. This results from the increasingly heterogeneous aerosol conditions in Beijing

Figure 2.4: Validation of our AOD retrievals by measurements at AERONET Beijing Station.

and the limited choices of aerosol compositions in MISR retrievals. In the coarse-resolution
retrievals, high AOD values are averaged down by its neighbors and low AOD values averaged
up, resulting in a loss of useful information. Our Bayesian retrievals show improvement
in accuracy; detailed information on aerosols are revealed by the fine-resolution retrievals.
The three high AOD values in the right panel of Figure 2.4 indicate Beijing’s extreme air

10The Beijing city is visited by the Terra satellite every five to nine days.
11Latitude: 39.97689� North; longitude: 116.38137� East.
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conditions, corresponding to 86%, 71%, and 81% reduced radiation by aerosols. For example,
records of news from Xinhua Headlines show that on March 15, 2009, the city was trapped
in a sandstorm originated in Inner Mongolia.

We would like to discuss one particular case when the Bayesian retrieval (0.8560) is much
worse than MISR output (0.6750), compared to the AERONET measurement (0.5455): the
third to last case in Figure 2.4 (left panel), May 25, 2009. AERONET reports no measure-
ment when Terra carrying MISR passed above Beijing. Instead, we use the measurement
of 0.5455, which is the closest in time but three hours earlier. This record reached the
lowest of that day, with others between 0.6521 and 1.5366. It suggests that the particular
AERONET record we used might not be ideal to validate the remote-sensed retrieval, but
our best option.

Retrieval Validation at AERONET Xianghe Station

Figure 2.5 compares the remote-sensed retrievals to AERONET measurements at the pixel
that contains the AERONET Xianghe station12. From December to February, AERONET
measurements are mostly higher than remote-sensed retrievals, but no distinctive pattern
afterwards.

AERONET Xianghe station has the Jingshen Expressway to its north, which is a major
path connecting two hub cities: Beijing and Shenyang13. The northwest wind in winter
carries car exhaust to the AERONET Xianghe station, possibly leading to high AOD mea-
surements. Yet for remote-sensing retrievals, the green fields in a larger neighborhood bal-
ance this factor, which possibly results in a washed-out signal. However, the fine-resolution
retrievals seem to su↵er less from the balancing factors and display a better accuracy.

We would like to discuss one of the cases where our AOD retrieval is much higher than
AERONET measurement: the first data point in Figure 2.5, December 25, 2008. MISR
produced no output for this day. To the east of Xianghe station in Hebei Province lie several
major malls for furniture exhibition and manufacture. On December 25, 2008, the furniture
companies started renovating their exhibition halls. The construction could have caused
localized aerosol loadings not observed by the Xianghe AERONET site 2 km away upwind
within one day, but detected by the MISR instrument and captured by our retrievals.

Qualitative Validation using Google Earth in Absence of Ground Measurements

We observe other disagreements in our Bayesian-retrieved AOD values and those of MISR,
in addition to those at the two pixels that contain the two AERONET stations in the MISR
Block. Since they are retrievals at di↵erent spatial scales, they could as well be di↵erent,
that is, they could both be valid. An indirect way to validate our retrieved AOD values is to
see whether they reasonably reflect the region’s geographical and anthropogenic conditions,

12Latitude: 39.75360� North; longitude: 116.96150� East.
13The capital and largest city of Liaoning Province in Northeast China.
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Figure 2.5: Validation of our AOD retrieval results by AERONET measurements in Xianghe.

such as existence of heavy industries and transportation patterns. These conditions can be
easily assessed using the satellite images from Google Earth, making them indirect validation
for our retrievals as a reasonable and detailed profiling of AOD spatial distribution. Here we
focus on pixels with Bayesian AOD retrievals largely disagreeing with those of their adjacent
pixels or pixels with locally highly variable Bayesian AOD retrievals. Since our retrieval
pixels are only 1

16
of the size of a MISR retrieval pixel, these AOD locations cannot be

identified in the corresponding MISR retrievals.
In particular, we project our Bayesian AOD values onto Google Earth (Figure 2.6) and

examine the pixels with locally highly variable AOD values. We thus identify a hub of
the Jingshen and Jingtang Highways (pin A in Figure 2.6) and construction sites producing
pollution (pin C), supporting the high AOD values indicated by only our Bayesian retrievals.
The Olympic Park (pin D) and Beidaihe (pin F), a famous beach resort, also confirm the
reasonability of the low AOD values captured by only the Bayesian retrievals at a finer
resolution.

2.4.3 Case Study for Including a Richer Variety of Aerosol Com-
positions

This section emphasizes the necessity to expand MISR’s 74 aerosol compositions. This
expansion improves retrieval coverage and detects more features of aerosol behaviors, such
as seasonality of component aerosols.

For an example of the improvement on retrieval coverage, we examine March 15, 2009.
MISR failed to retrieve AOD for the majority of the Block (Figure 2.7, upper panel). Our
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Figure 2.6: Retrieval results projected on Google Earth.

Bayesian retrievals provide better coverage and the retrievals give distinctly high AOD values
with a clear path of aerosols migrating from west to east and into the ocean. This unusual
discrepancy leads us to run through the weather records: on that day, the area su↵ered from
a sandstorm originated in Inner Mongolia, which later passed into eastern China.

Figure 2.8 shows the corresponding mixing percentages of the four component aerosols
involved. The fourth component aerosol with mixing percentage ✓4 represents the dust-
related aerosols, listed as No. 19 in MISR documentation. In MISR retrieved mixing vectors
(left panel, Figure 2.8), the fourth component showed barely any existence. In the MAP re-
trieved mixing vectors, the dust component dominates, which is consistent with the reported
sandstorm.

Moreover, information on retrieved mixing vectors can be used to study aerosols’ seasonal
behaviors, and to further identify pollution types and sources. For example, results show
that component No.6 which contains sulfate tends to dominate the mixture in winter due to
burning coal for heating, while component No.19, grains (dust), dominates in spring due to
sandstorms.

In general, in terms of retrieval coverage and accuracy, it is necessary and beneficial to
expand the MISR-designated 74 mixtures. By correctly identifying the major pollutants in
each season, we can better understand the movement and dispersion of aerosols. Measures
can then be taken to improve air quality in a more specific and e↵ective manner. More of
such information in the retrieved aerosol mixing vectors is discussed in Chapter 4.
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MCMC AOD (558nm)

Figure 2.7: Case study of AOD retrievals on March 15, 2009.

Figure 2.8: Mixing vectors of component aerosols for the greater Beijing area on March 15,
2009.
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In general, for areas like Beijing, which experience occasional sandstorms, the limited
compositions containing grains(dust) among MISR’s 74 choices could easily result in a low
coverage of MISR retrievals. Similar situations might exist for other locations with usual
aerosol conditions. The retrieved mixing vectors also contains information on the regional
aerosol composition and can be used to identify pollution type and source. For example,
results show that component No.6 with sulfate tends to dominate the composition in winter
due to coal burning for heating, with No.19, grains (dust) dominating in spring due to
sandstorms.

Figure 2.9 shows the mixing percentages of component No.19 over December 2008 to
June 2009, at four di↵erent locations: the AERONET Beijing station, the AERONET Xi-
anghe station, location (A) and (F) marked in Figure 2.6. For AERONET Beijing station,
the percentage of grains(dust) only rose in the spring, due to the sandstorms, while the
constructions around AERONET Xianghe might have raised the percentage earlier in the
year. Location (A), where major highways intersect, showed a high amount of dust in its
aerosol compositions through the warm seasons when tra�c typically increases. The mixing
percentage of No.19 at Location (F), the Beidaihe Resort, moved relatively in consistence
with AERONET Beijing station. We hope to explore this trend in future research. In gen-
eral, by correctly identifying the major pollutants for each season, we can better understand
the transitions of aerosols and, therefore, take e↵orts to improve air quality in a more spe-
cific and to the point manner. For accuracy and coverage, it is necessary to expand the
MISR-designated 74 aerosol compositions to a richer variety.
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Figure 2.9: Mixing percentages of component No.19 from winter to spring.

2.5 Discussion

Aerosols serve as an important factor in air quality and public health. A profile of AOD’s
spatial distribution can eventually expand the potential of remote-sensed observations in
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facilitating urban air quality monitoring and public health studies [34][33]. The heterogeneity
of urban aerosols due to anthropogenic activities calls for a profile of aerosols at a fine
resolution and a larger variety of aerosol compositions.

In this chapter, we have presented a hierarchical Bayesian model to retrieve AOD values
and mixing vectors relative to a collection of four component aerosols at an improved res-
olution of 4.4 km using MISR observations. The model incorporates a spatial dependence
structure to gain strength from AOD’s spatial smoothness; it also allows for a richer variety
of aerosol mixing vectors to better capture the growing heterogeneity of urban aerosols and
the increasingly severe weather conditions, such as dust storms. A more detailed AOD spa-
tial profile is provided and further validated by AERONET and Google Earth; an improved
accuracy and a better retrieval coverage is obtained due to the improved resolution and
flexible choices of aerosol compositions. This improvement is particularly important during
high-AOD events, which often indicate severe air pollution. We further develop a parallel
MCMC algorithm to improve the computational e�ciency, which can be generalized to speed
up other MCMC sampling algorithms based on spatial data.

From the case studies, we become more aware of the complexity in aerosol conditions and
thus hope to use our results to study the aerosols’ impact on public health in urban areas at
the enhanced resolution. We also hope to explore the possibility of improving the retrieval
accuracy by incorporating more prior knowledge in the model, such as wind measurements
and dependence among the four spectral bands.

2.6 Appendix: Example trace plots of MCMC samples
for AOD in simulation study (Section 3.2)
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Figure 2.10: Example of sampling trace plots of AOD retrievals.
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Chapter 3

An MAP Aerosol Retrieval for MISR
Data at 4.4 km Resolution

3.1 Motivation

Our previous studies in Chapter 2 showed that 4.4 km resolution, together with flexibly mod-
eled aerosol mixtures, can improve both the accuracy and spatial coverage of aerosol retrievals
using MISR observed radiances. Our retrieval algorithm was based on Markov Chain Monte
Carlo (MCMC) sampling methods. Like most MCMC algorithms, it was computationally
intense. Continued development produced a parallel MCMC retrieval algorithm, which was
approximately five times faster than the original global MCMC algorithm. It is still not fast
enough to be e↵ective for operational use: satellite Terra revolves once around the planet in
98.88 minutes; any operational algorithm needs to retrieve at a speed compatible with the
observation speed.

This chapter proposes an optimization-based approach and a flexible model for aerosol
mixtures at 4.4 km spatial resolution. While MISR uses an exhaustive search over a discrete
grid of AOD values and the 74 MISR-prefixed mixtures, we treat both AOD and mixing
vectors as continuous variables. We build upon MISR weighted least squares criterion to
construct objective functions. The number of parameters to optimize, however, is large as
is commonly encountered in problems involving spatial data. To reduce the model com-
plexity, our objective functions incorporate penalty terms to borrow strength from spatial
smoothness of AOD values and a global parameter for aerosol mixing vectors. The penalties
further correspond to a Gaussian Markov Random Field prior for AOD values and a Dirichlet
prior for aerosol mixing vectors under a hierarchical Bayesian scheme; the optimization-based
approach corresponds to the Maximum a Posteriori (MAP) estimation in the Bayesian frame-
work. This correspondence further serves us to better understand the relationship of these
two frameworks: the optimization-based approach helps us see within the Bayesian hierar-
chy how elements interact with each other; the hierarchical Bayesian model, from another
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standpoint, provides a high-level picture of all variables in di↵erent objective functions. We
then use gradient-based methods to find the optimal values of AOD and mixing vectors as
retrieval outputs. Our MAP retrieval algorithm demonstrates a significant gain in compu-
tational e�ciency, as well as an improved accuracy for high-AOD events. To assess the
performance of the MAP retrieval method, we apply our retrieval algorithm to estimate
AOD and mixing vectors for the greater Beijing area, using MISR observations. Our results
are validated by ground measurements from the two AERONET stations in the area. They
show improvement in both the accuracy and the retrieval coverage, especially in high-AOD
events, enhancing our understanding of spatial and seasonal behaviors of aerosols.

The rest of the chapter is organized as follows: Section 3.2 defines the objective functions
and further modifies them to allow for finer retrieval resolution and flexibility in aerosol
mixing vectors. Section 3.3 provides the rationale and details of our MAP retrieval algo-
rithm. Section 3.4 contains case studies for model validation and interpretation, comparing
our results with AERONET ground measurements and MISR retrievals. In particular, a
case study with severe air pollution conditions is discussed in Section 3.4.3. Section 3.5
summarizes the results and suggests directions for future research.

3.2 The Objective Functions

To assist aerosol-related public health studies, we first need to establish a data-driven descrip-
tion of the relationships among the remote-sensed radiances, AOD, and aerosol types. The
goal of this study is to refine this description through finer retrieval resolution, specifically
4.4 km, as well as flexible models for aerosol mixtures.

The above goal, however, leads to inevitable challenges caused by the high dimensionality
of problems involving spatial data at fine resolution. In our case, MISR observations during
one revolution around the Earth are divided into 180 MISR Blocks, each measuring an
area of 563.2 km (cross-track) ⇥ 140.8 km (along-track). In MISR retrievals at 17.6 km
resolution, each MISR Block contains 256 pixels (8 rows ⇥ 32 columns). As we retrieve at
4.4 km resolution, the number of pixels rises to 4,096 (32 rows ⇥ 128 columns), presenting
parameters to estimate at least 15 times more than those at the coarser resolution. Such
retrievals are possible if we borrow strength from aerosols’ spatial smoothness; movement and
dispersion of air particles in the atmosphere justify from a physical viewpoint the inclusion
of AOD spatial smoothness into our model [1] [36]. Section 3.2.3 discusses how we add a
penalty term to the objective function to represent the spatial smoothness structure of AOD
values.

Furthermore, the retrieval complexity continues to rise as we let component aerosols
mix beyond the 74 MISR-prefixed aerosol mixtures. This freedom poses more challenges
for modeling and computation. As we see through case studies in Section 3.4, however,
it is necessary for retrieving heterogeneous urban aerosols. Of the 21 component aerosols
established in the MISR retrieval algorithm, only eight are used in the MISR routine retrievals
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because they are commonly observed in the atmosphere. In fact, each of the 74 MISR
mixtures contains only two or three component aerosols from the eight commonly observed
ones. To control the number of parameters that must be estimated, we further choose a
subset of four from the eight commonly observed components based on the study region’s
aerosol conditions. Then, by considering the mixing vectors as continuous variables, we allow
for full flexibility in aerosol mixings relative to the four components involved. Section 3.2.2
explains the construction of the objective functions after incorporating such flexibility. In
this chapter, we have not introduced an explicit spatial smoothness structure for the mixing
vectors. Instead, the spatial smoothness of mixing vectors is implicitly enforced by the
smoothness of AOD values; translating the relationship between variables into a hierarchical
Bayesian viewpoint clarifies such implicit interactions.

We now review the notations. Let p = 1, . . . , P denote the P = 4, 096 pixels in an MISR
Block at 4.4 km resolution. For each pixel p, we obtain its top-of-atmosphere radiances
L

p

= (L
p1, . . . , LpC

) at C = 36 MISR channels (9 viewing angles ⇥ 4 spectral bands) by
averaging MISR 1.1 km observations. Every channel c is weighted by 1

2�2
c
, c = 1, . . . , C, to

account for di↵erent errors that occur in measurement, radiative transfer calculation, etc.
For pixel p, let ⌧

p

2 R denote its AOD value, and ✓
p

= (✓
p1, . . . , ✓pM) 2 RM the mixing

vector of the M component aerosols involved. The value of M is two or three for MISR
operational retrievals, and M = 4 in our retrievals. We have

P
M

m=1 ✓pm = 1. We further
denote L = (L1, . . . ,LP

), ⌧ = (⌧1, . . . , ⌧P ), and ✓ = (✓1, . . . ,✓P

).
For each MISR output pixel at 17.6 km resolution, MISR first establishes a lookup table

of simulated radiances LRT = (LRT

1 , . . . , L

RT

C

) using radiative transfer calculations based on
a number of fixed aerosol settings. Each of these settings are characterized by an AOD level
and a component aerosol1. Simulated radiances for an aerosol mixture are computed as a
linear combination of simulated radiances for the mixing component aerosols. All simulated
radiances are stores in the MISR SMART dataset. In routine retrievals, the values of LRT can
be obtained by interpolating at discrete points from SMART, and thus viewed as functions
of AOD values and mixing vectors, relative to the component aerosols involved. For pixel p
at 4.4 km resolution, we use the simulated radiances for the 17.6 km MISR pixel in which
pixel p resides. Our goal is to estimate AOD values ⌧ , and mixing vectors ✓ relative to the
M component aerosols involved.

The following section discusses the weighted least squares criterion used by the MISR op-
erational retrieval algorithm, which is the basis upon which we build the objective functions
in our MAP retrievals.

1Simulated radiances are computed using all combinations of AOD levels in the MISR pre-fixed grid, [0,
0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 4, 6], and the 21 component aerosols.
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3.2.1 MISR Weighted Least Squares Criterion

Use ac1, . . . ,ac74 to represent the 74 MISR-prefixed aerosol mixtures. For notational sim-
plicity, we use ac

i

for both the set of two or three component aerosols involved and their
mixing vector.

For each pixel p, p = 1, . . . , P , MISR observes top-of-atmosphere radiances L
p

at C = 36
channels. Using all combinations of AOD values from the MISR-prefixed AOD grid, ⌧

p

,
and the 74 MISR aerosol mixtures, ac

p

2 {ac1, . . . ,ac74}, the MISR operational retrieval
algorithm simulates radiative transfer radiances {LRT (⌧

p

,ac
p

)}, interpolating from the MISR
SMART dataset. The algorithm then exhaustively searches over all simulated radiances in
order to match the observed radiances L

p

. In particular, the MISR operational retrieval
algorithm uses the following weighted least squares criterion to measure good fits between
LRT and L

p

[5]:

�

2
p

=
CX

c=1

(L
pc

� L

RT

c

(⌧
p

,ac
p

))2

2�2
c

. (3.1)

The values of {�2
c

}C
c=1 are explicitly given as the minimum of 0.04 and L̄

c

= (
P

P

p=1 Lpc

)/P .
The combinations of AOD and mixtures whose �

2
p

satisfy a pre-established threshold are
considered “successful” retrievals. The above search and match are carried out independently
for each pixel p in an MISR Block, p = 1, . . . , P ; the MISR retrievals of AOD value for pixel
p is the average of all successfully retrieved {⌧

p

} for that pixel.

3.2.2 Improving Retrieval Resolution and Allowing Flexibility for
Mixings of Components

The observational resolution of MISR is at coarsest 1.1 km. To prepare the observations for
retrieval, MISR retrieval algorithm averages the radiances to 17.6 km resolution. Instead, we
aggregate MISR observed radiances from 1.1 km (or 275 m for red band and nadir camera)
to 4.4 km. The reduced area over which the observed data are aggregated increases the noise
level. It is thus necessary to take advantage of the spatial smoothness structure of AOD
values. Details for establishing objective functions to construct this structure are introduced
in Section 3.2.3.

Moreover, the MISR operational retrieval algorithm allows for only 74 aerosol mixtures.
An early investigation of the missing retrievals in MISR outputs indicates that, besides
the existence of clouds, many retrievals are missing because none of the 74 MISR mixtures
provide good fits to the observed radiances. Models with all 21 or even the 8 common
component aerosols while allowing flexible mixing vectors, however, have a large number
of parameters to estimate. Such models are computationally expensive. They are also
unnecessary, for current knowledge suggests that aerosol mixtures mostly consist of only two
or three component aerosols[6]. We reduce the number of component aerosols involved from
21 toM = 4, and treat their mixing vectors as continuous variables. For example, the choices



CHAPTER 3 29

of component aerosols for the greater Beijing area include spherical non-absorbing aerosols
without sulfate, spherical non-absorbing aerosols with sulfate, spherical absorbing aerosols,
and grains (dust). Case studies in Section 3.4 indicate the su�ciency of this choice2. For
each pixel p, p = 1, . . . , P , we use notation ✓

p

= (✓
p1, . . . , ✓pM) 2 RM for the mixing vector

for the four selected components.
Now we are ready to turn the weighted least squares in (3.1) into an objective function

to seek for minimal di↵erences between the MISR observations L and the radiative transfer
calculations LRT . The optimal values, ⌧ ⇤ and ✓⇤, are used as point estimates for AOD
values and aerosol mixing vectors. In particular, we quantify this objective through the
Euclidean distance between L

p

and LRT and formalize the aerosol retrieval constraint in
(3.1) as optimizing functions of (⌧

p

,✓
p

). For each pixel p, p = 1, . . . , P , let

⌧

⇤
p

,✓⇤
p

= argmin
⌧p�0

✓p2RM
,✓p·1=1

F (⌧
p

,✓
p

), (3.2)

where,
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p

,✓
p

) =
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c=1
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pc

� L

RT

c

(⌧
p

,✓
p

))2

2�2
c

. (3.3)

For fixed atmospheric pressures, humidity and wind levels, the top-of-atmosphere radi-
ances L are mainly determined by ⌧ and ✓. Hence, if we view the objective (3.3) as a
likelihood function to assess how probable are the observations L

p

given ⌧

p

and ✓
p

, the prob-
lem can also be formalized as inference of (⌧

p

,✓
p

) based on the following Gaussian density,

p(L
p

|⌧
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,✓
p

) / exp
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c
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,✓
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))2
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c

)
. (3.4)

3.2.3 Establish Objective Functions with Spatial Smoothness

In order to build a spatial smoothness structure for AOD values of all pixels, we first combine
the objectives in (3.3) for all pixels into one function:
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Due to the large number of parameters to estimate and the non-closed form of the ra-
diative transfer calculations LRT in (3.5), we simplify the multivariate optimization into

2For areas with more varying terrain types or aerosol sources, however, it can be necessary to include
more component aerosols in the model. We are currently working on e�cient retrievals using all of the 8
commonly observed component aerosols.
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iterations of univariate optimization. Namely, for each pixel p = 1, . . . , P , we first fix an
aerosol mixing vector ✓

p

and optimize (3.5) over its AOD value ⌧

p

based on the observed
radiance L

p

. Then we update its AOD value by ⌧

⇤
p

and optimize (3.5) over the mixing
percentage of the first component aerosol, ✓

p1, and so forth. After updating all parameters
related to the current pixel p, we move on to the next pixel. After updating all pixels, we
repeat the above optimization steps in a reverse order for the MISR Block.

Now that the retrieval problem is formalized for all pixels, we continue to introduce
penalty terms to the objective function in (3.5) in order to impose a spatial smoothness
structure on the estimates of parameters.

Updating AOD Values ⌧ with Spatial Smoothness

We propose the following objective to optimize over AOD value ⌧

p

of pixel p, a function
of ⌧

p

only:
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where ⇠ indicates spatial adjacency3. The second term penalizes steep changes in AOD
values among neighboring pixels. Model turning parameter , which calibrates the level of
spatial smoothness, is also periodically updated according to (3.11). We can also obtain
estimates of  based on outputs from MISR coarse-resolution operational algorithm for the
same region, or other estimates of the spatial smoothness precision, if such information is
available.

The above penalty term in (3.6) for AOD’s spatial smoothness can also be viewed under
the hierarchical Bayesian scheme as introducing a Gaussian Markov Random Field (GMRF)
prior for AOD values. Firstly, in correspondence with (3.5), the likelihood function (3.4) for
a single pixel p can be expanded into one for all pixels together:
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Then the spatial smoothness in ⌧ can be incorporated through prior distributions. We
model the spatial smoothness structure of AOD values using an intrinsic GMRF prior of
first order[30]. If we consider  as the homogenous scalar precision, the following GMRF
prior is invariant to perturbation by the same constant to ⌧ of all pixels[2],

p(⌧ |) / 

P�1
2 exp

(
�

2
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0⇠p

(⌧
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)2
)
. (3.8)

3In this study, we consider that each central pixel has four adjacent pixels.
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The larger , the smoother the region’s AOD values are, with 1p


as AOD’s precision. The
marginal posterior of ⌧ is then,
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In fact, we see that the cost function (3.6) is the negative logarithm of (3.9), and such
optimization over posteriors is referred to as an Maximum a Posteriori (MAP) algorithm.
The minimum of the objective functions in turn corresponds to the mode of the posterior
distributions.

Updating AOD Spatial Precision 

Given the above Bayesian interpretation, the posterior distribution of the homogenous
precision  2 R conditioning on AOD values ⌧ is a proper Gamma distribution. Namely,
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After updating the AOD values ⌧ according to the objective function in (3.6), we can use
the updated ⌧ to renew the value of . In particular, we use the posterior mode of (3.10),
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⇤ =
P � 3P
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0⇠p
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p

)2
. (3.11)

Updating Aerosol Mixing Vectors ✓ with a Global Dirichlet Parameter

Similarly, we assign the mixing vectors of component aerosols ✓ a global prior distribution
to impose an overall sparsity level of the mixings within an MISR Block. Mode of the
posterior distribution is then used to update the value of ✓ at each iteration of the MAP
retrieval algorithm. Prior distributions for ⌧ and ✓ are further assumed to be independent,
i.e., p(⌧ ,✓) = p(⌧ )p(✓) to simplify the resulted optimization. There is no explicit spatial
structure for ✓, the interactions between ⌧ , ✓ and observed radiances L through the hierarchy
implicitly enforce a spatial dependence structure for ✓. Results of case studies display such
spatial smoothness patterns as we anticipated (see Section 3.4).

To model the mixing vectors ✓ for the M component aerosols involved, we adopt an
M -dimensional Dirichlet prior with parameter ↵ = (↵1, . . . ,↵M

). Define ↵0 =
P

M

m=1 ↵m

.
By adjusting the magnitude of ↵, we can control the sparsity of the mixings of the M

components. Conditioning on ↵, the mixing vectors ✓
p

for each pixel p are considered to be
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independent,
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The marginal posterior distribution of ✓ can then be expressed as:
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Based on the above result, we establish the following objective function for aerosol mixing
vectors,
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The second term in the above objective serves as penalties for aerosol mixings (✓
p1, . . . , ✓pM)

in large disagreement with the Dirichlet ratio (↵1
↵0
, . . . ,

↵M
↵0

). The Dirichlet parameter ↵ thus
implicitly serves to calibrate the general level of spatial smoothness for the mixing vectors
over the MISR Block.

During optimization retrievals, the objective in (3.15) can be viewed as a univariate
function of ✓

pm

, having fixed the values of the other variables.

Updating Aerosol Mixing Dirichlet Parameter ↵

In order to determine the values for the Dirichlet parameter ↵, we assign ↵ a hyperprior
and add another layer of optimization to search for their appropriate values. Notice that
(3.12) belongs to an exponential family. For convenience, we take the conjugate distribution
as a prior for ↵. The posterior becomes,
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The above posterior includes Gamma functions; calculations of both derivatives and inverse
functions of Gamma functions usually resort to numerical approximations. Due to compu-
tational concerns, instead of using gradient-based methods, we update the values of ↵ using
estimates of moments based on the Dirichlet prior in (3.12). Recall that ↵0 =

P
M

m=1 ↵m

.
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We have the following:
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For m = 1, . . . ,M , we use the sample mean ✓̄
m

and sample variance s

2
P

as estimates for the
mean and variance of the prior for ✓m,
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Relating (3.20) to (3.18) and (3.21) to (3.19), we can solve the following estimates for ↵:
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Updating MISR Channel Variance �2

The likelihood function for �2 = (�2
1, . . . , �

2
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), p(L|�2
, ⌧ ,✓) in (3.7), follows a Gaussian

distribution with known mean and unknown variance. We adopt a noninformative inverse-�2
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We can further update �2 using the corresponding posterior mode:
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Now that we have established univariate objective functions given fixed values of all other
variables, the next section describes our optimization algorithm based on these objective
functions. The algorithm takes MISR observed radiancesL as input, and outputs the optimal
AOD values and mixing vectors, namely the posterior modes, as our retrievals.
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3.3 The Maximum a Posteriori Retrieval Algorithm
(MAP)

For all P pixels in an MISR Block, our goal is to estimate their AOD values ⌧ and mixing
vectors ✓ relative to the M component aerosols, with the exception of unretrievable pixels4.
Thus, we have more than [1 + (M � 1)] ⇥ P parameters to estimate, since the degree of
freedom in mixing vectors is M �15. We break this multi-dimensional optimization problem
into iterations of univariate optimizations.

In particular, Section 3.2.3 calculated the updating rules for AOD spatial precision ,
the Dirichlet parameter ↵ and MISR channel variance �2. We also established univariate
objective functions for AOD ⌧ and mixing vectors ✓, having the values of all other variables
fixed. This section describes how to further obtain the optimum of ⌧ and ✓ based on the
above objective functions, using gradient-descent methods.

Convexity, or local convexity, is highly desirable for e�ciently using gradient-based opti-
mization methods to acquire the correct optimum. In our case, it is di�cult to analytically
prove local convexity of the objective functions, due to the non-closed-form segment of ra-
diative transfer simulated radiances LRT . Empirical results show that, in fact, the objective
functions are not strictly convex, but the global minima exists. The examples in Figure
3.1 indicate that the objective functions, i.e. negative log-posterior6, are locally convex to ⌧

around the minima, and globally convex to the first element of aerosol mixing vector. Similar
patterns are observed for other elements of the mixing vector.

Case studies suggest that the cost functions are close enough to being convex with respect
to the choice of initial points. Hence, with an appropriately chosen initial step size �, we can
adopt the steepest direction optimization algorithm to find the global minima. The Armijo
rule is used to choose the step size after the first step. The results also prove to be reliable
and stable with di↵erent starting values.

Now we are going to discuss in detail our MAP retrieval algorithm.

4MISR-observed radiances are flagged as unusable for aerosol retrieval, if cloud occurs, or the observations
fail to pass MISR Radiometric Data Quality test, etc.

5Based on cases in the greater Beijing area over the period of December 2008 to June 2009, the number
of retrievable pixels in an MISR Block ranges between 100 and 1,600 at 4.4 km resolution (Section 3.4).

6The figures adopt the logarithm scale in order to clearly illustrate the shape of equivalent cost functions
in range (0,2) for ⌧ and (0, 0.7) for ✓1.
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Figure 3.1: Convexity of the negative log-posterior to AOD ⌧ (left panel, with ✓1 = 0.4782)
and mixing percentage ✓1 for component aerosol 1 (right panel, with ⌧ = 0.5000).

Optimizing Objectives over AOD ⌧

For each pixel p, p = 1, . . . , P , to minimize the objective function in (3.6) over AOD ⌧

p

,
we consider a small perturbation ⌧

� of size � to a current approximation of ⌧
p

:
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The derivative of the objective function can be approximated using numerical di↵erences as
follows:
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where 4⌧ is taken as 0.025, the AOD grid-search gap size in MISR AOD retrieval algorithm.
From the first order Taylor expansion around ⌧
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we have
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Thus, for positive but su�ciently small �, F (⌧ �
p

) is smaller than F (⌧
p

). Hence, by updating
⌧

p

to ⌧

�

p

, the algorithm is approaching the minima of the objective function F (⌧
p

) in (3.6).

Optimizing Objectives over Mixing Vectors ✓

We then optimize the objective functions in (3.15) over the mixing vector ✓
p

in a similar
manner, using the steepest direction optimization method.

One of the major di↵erence in optimizing over ✓
p

from optimizing over ⌧
p

is the constraint
that the elements of the mixing vector sum up to 1, namely

P
M

m=1 ✓pm = 1, for any pixel p.
For m = 1, . . . ,M , we maintain the constraint by perturbing ✓
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by 4✓ and re-normalizing:
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The perturbation size � to optimize over ✓ can take a di↵erent value than that for optimizing
over ⌧ . The perturbation unit4✓ is chosen to be along the steepest direction of the objective
function, with an absolute value no greater than 0.01, while maintaining the non-negativity
of ✓. We also notice that a smaller ✓

pm

is more sensitive to such perturbations than a larger
✓

pm

:

|✓�
pm

� ✓

pm

| = �|4✓|
1� �4✓

· (1� ✓

pm

). (3.29)

In other words, a small value of ✓
pm

leads to a proportionally large di↵erence between the
mixing percentage before and after the perturbation. This property can be beneficial in two
ways. Firstly, we would like to explore all possible mixings of component aerosols. With
(3.29), even if the initial mixture approximation assigns a close-to-0 percentage to a certain
component, the algorithm will not be forced to ignore this component as the algorithm
iterates to optimize. Secondly, if a certain component aerosol currently fills up most of the
aerosol mixture, the algorithm is reluctant to further increase its mixing percentage.

Description of MAP

The complete Maximum a Posteriori Retrieval Algorithm (MAP) can be summarized as
follows. The number of iterations (line 2 of Algorithm 1) is generally a trade-o↵ between
computation resources and estimation accuracy. Case studies show that MAP typically
converges within six iterations so that we can get the number of iterations I = 6.

Like many algorithms with alternations of univariate optimizations, one concern of MAP
is whether optimizing over the variables in di↵erent orderS will significantly change the
algorithm outputs, and if so, how to choose the order in which to optimize. For each pixel p,
p = 1, . . . , P ,the overall negative log-posterior is a function of five variables: AOD ⌧

p

, aerosol
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Algorithm 4 The Maximum a Posteriori Retrieval Algorithm (MAP)
For an MISR Block,

1: Initiate model parameters with random values drawn from their prior distributions.
2: for i = 1 to I do
3: for p = 1 to P do
4: Use (3.25) to update AOD value ⌧

p

according to (3.6), based on MISR observations
L, the updated values of {⌧

q

}
q 6=p

, current values of ✓, ↵ and �2.
5: Use (3.27) to update the mixing vector ✓

p

according to (3.15), based on the updated
value of {⌧

q

}
qp

.
6: Update AOD’s spatial precision parameter  according to (3.11), using the updated

values of ⌧ .
7: Update the tuning parameter ↵ according to (3.22), using the updated values of ✓.
8: Sweep the MISR Block in a reverse order and apply the same optimization steps as

lines 3 to 7, in order to incorporate the information from all adjacent pixels regardless
of the position.

mixing vector ✓
p

= (✓
p1, . . . , ✓pM), where M = 4. To identify the best order, it is important

to understand how these variables influence the behavior of the log-posterior, and how they
interact with each other. Figure 3.2 shows that the relationship among the negative log-
posterior, ⌧ and ✓1 for a typical pixel on an MISR Block. The pattern we observe in Figure
3.2 is similar for other pixels and MISR Blocks: the negative log-posterior is more sensitive
to the change of AOD ⌧ , than to that of the mixing vectors ✓. Therefore, our algorithm
optimizes the objective function over ⌧ before it seeks the optimal values of ✓. The updating
order within (✓

p1, . . . , ✓pm) is assigned randomly and independently during each iteration.
The next section discusses some results of aerosol retrieval using the MAP and further

evaluates the algorithm’s performance based on case studies for the greater Beijing area,
China. It also discusses the informational and computational gain of our optimization ap-
proach.

3.4 Results

First of all, we compare our MAP AOD retrievals at 4.4 km resolution to MISR AOD
retrievals at 17.6 km resolution, using the latter as a benchmark. Results show overall
agreement between the two sets of retrievals, while the finer resolution is characterized by
more varying levels of AOD values. To further validate the reliability of this increased
variability of MAP AOD retrievals, we resort to ground measurements provided by the
AErosol RObotic NETwork (AERONET)[14]. We will then demonstrate the necessity of
flexibility in modeling aerosol mixtures through case studies. Finally, we showcase two
retrieval instances with high-AOD conditions captured by our MAP AOD retrievals but not
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Figure 3.2: Left panel: convexity of negative log-posterior as a function of AOD ⌧ and mixing
percentage ✓1 of aerosol component 1 (spherical non-absorbing aerosols). Right panel: side
view of the three dimensional surface.

the MISR AOD retrievals. Such events are especially important, since they indicate heavy
air pollution su�cient to have a long term impact on human health.

The retrievals studied in this section are based on the MISR observations over the greater
Beijing area in China (latitude 38.95N⇠40.15N; longitude: 115.57E⇠119.50E).

3.4.1 Comparison with MISR Retrievals

Figure 3.3 panel (a) shows the observed MISR imagery captured by one of the forward
cameras (CF) on Mar 06, 2009. MISR AOD retrievals are plotted at 17.6 km resolution in
panel (b). Our MAP AOD retrievals are plotted in panel (c) at 4.4 km. Figure 3.3 suggests
overall agreement between MISR AOD and our MAP AOD retrievals, such as the coastline
on the right and patterns of AOD spatial distribution. For example, both panel (b) and (c)
display lower AOD values in the lower lefthand corner and higher values in the top righthand
corner, as well as in the lower middle portion of this MISR Block.

The black pixels represent missing retrievals, which are primarily caused by two situa-
tions. Firstly, aerosol retrievals are not attempted in cloudy situations. Particularly, cloud
detections are implemented at 1.1 km resolution on MISR observations. Each MISR output
pixel at 17.6 km resolution corresponds to 256 “child” pixels at 1.1 km resolution, each of
which is flagged cloudy or clear. This high level of information aggregation from 1.1 km to
17.6 km resolution allows MISR to retrieve for a 17.6 km pixel as long as no more than 1

16
of

its “child” pixels are cloudy. To maintain the same cloudy/clear ratio at 4.4 km resolution,
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however, is a much stricter requirement for a pixel to be treated as clear. This requirement
is much less often met, since the common size of clouds is beyond 1.1 ⇥ 1.1 km2. Hence,
we sometimes observe more missing retrievals at 4.4 km resolution that are caused to cloud
screening.

(a) MISR radiance imagery by the nadir camera on Mar 06, 2009.

(b) MISR AOD retrievals at 17.6 km resolution.

(c) Bayesian AOD retrievals using MAP at 4.4 km resolution.

Figure 3.3: AOD estimates from MISR and MAP retrievals.

The second situation where missing values occur is due to the limitation of the 74 MISR-
prefixed aerosol mixtures. When none of these 74 mixtures produce good fits to the MISR
observed radiances, the MISR operational retrieval algorithm marks the pixel with missing
retrieval. Our MAP retrieval algorithm allows for a richer variety of aerosol mixtures, and
thus is able to eliminate these unnecessary missing retrievals. More details and an example
is given in Section 3.2.2.
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Another advantage of our MAP retrieval algorithm lies in its computational e�ciency.
Table 3.1 displays one typical example of the computational expenses of three methods: the
MISR operational retrieval algorithm, our MAP retrieval algorithm and an aerosol retrieval
algorithm using MCMC sampling methods, developed in a previous study [35]. The MCMC-
based algorithm is computationally the most intense.

Even though MAP allows for a much larger variety of aerosol mixtures, its steepest
gradient direction method proves to be more e�cient: the MAP at 4.4 km resolution is almost
three times faster than the MISR operational algorithm at the much coarser resolution of
17.6 km. This is largely due to the nature of optimization. Namely, once MAP tests the

Table 3.1: Computational Expenses of Retrieval Algorithms.
Algorithm (resolution) Computation Time for Retrieval

MISR (17.6 km) ⇠ 16.7 minutes (1004.03 sec)
MCMC sampling (4.4 km) ⇠ 6.2 hours (22452.26 sec)
MAP (4.4 km) ⇠ 6 minutes (378.91 sec)

agreement of a combination of AOD and mixing vector to the observed radiances, it does
not have to test any combinations which perform worse than one already evaluated. Thus,
computation is largely saved without the exhaustive search as in the MISR operational
retrieval algorithm.

On the other hand, though our MAP AOD retrievals appear to be consistent with the
MISR AOD retrievals on the whole, our finer-resolution retrievals in panel (c) of Figure 3.3
reveal more widely varying levels of AOD values. We also observe high AOD values in the
top lefthand corner, which are missing in MISR AOD retrieval outputs shown in panel (b)
of Figure 3.3. To objectively evaluate the performance of our MAP and understand the
above di↵erences in the retrieval outputs, the next section conducts a validation study using
ground measurements from AERONET.

3.4.2 Validation for MAP Retrievals by AERONET Measurements

The AERONET provides a data archive of local AOD values using a network of automatic
sun photometers located at more than 400 stations on the Earth’s surface. At each station,
local AOD level is measured from every half hour to every two hours, with AOD uncertainties
< ±0.01 at wavelengths > 440 nm[15]. AERONET measurements are widely accepted as the
gold standard for validating AOD estimates based on remote-sensed imageries, and hence
our choice of source for validation.

To validate aerosol retrievals over the greater Beijing area, we use ground measurements of
AOD collected at AERONET Beijing and AERONET Xianghe stations. The fixed locations
of the AERONET stations make it impossible to validate retrievals of all pixels in the
MISR Block. Instead, we focus on the pixels that contain the AERONET stations. To
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match the MAP retrieval outputs at the wavelength of 550 nm, we first convert AERONET
measurements to those at 550 nm using AERONET estimates of Angström exponent and
a linear transformation. Jiang, et al. [16] showed that a narrower time window better
captures the correlations between AERONET measurements and MISR retrievals. Thus,
we then average the measurements within a one-hour window when satellite Terra carrying
MISR passes over the AERONET stations. The frequent cloudy weather in the greater
Beijing area and its latitude7 contribute to the di�culty of matching remote-sensed versus
ground-based data pairs for model validation.

Figure 3.4 presents our MAP retrievals plotted in blue on the y-axis against AERONET
measurements on the x-axis, with MISR retrievals in black for comparison. All matched
data pairs of remote-sensed AOD and ground measurements are included in the left panel;
the right panel plots only the pairs with AERONET measurements  0.5, so as to obtain
an appropriate scale.

In low-AOD situations, as is shown in the right panel of Figure 3.4, our MAP retrieval
algorithm mostly overestimated the AOD values, compared to AERONET measurements.
In high-AOD situations, on the other hand, the performance of our MAP AOD retrievals is
much better compared to MISR retrievals, using AERONET measurements as a standard.
For example, the three high AOD values in the top righthand corner of the left panel, Figure

Figure 3.4: Validation of our MAP AOD retrievals.

3.4, indicate that Beijing is characterized by heavy air pollution relatively frequently. These

7The Beijing city is visited by the Terra satellite every five to nine days due to the area’s latitude.
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three cases have AOD ground measurements larger than 1.9, corresponding to more than
85% reduced radiation by aerosols. Out of the three cases, the MISR operational algorithm
reported two missing retrievals and underestimated the AOD level in the third case, when
compared to AERONET measurements. The MAP AOD retrievals manage to agree well
with the AERONET measurements in these three high-AOD situations. This suggests that
for high aerosol loadings, the “optimized” combination of AOD and mixtures, as obtained
in the MAP retrievals, is able to better describe the observed conditions; the average of all
“successful” retrieved AOD, as produced by the MISR retrieval algorithm, is more suitable
for low-AOD situations.

Meanwhile, a flexible model of aerosol mixtures improves the retrieval outputs’ spatial
coverage as well as accuracy, especially in high-AOD situations. In particular, as long as a
pixel is cloudless, our MAP provided an AOD retrieval, as in all of the 37 cases in Figure
3.4. The MISR operational retrieval algorithm, however, produced missing retrievals for
19% of these 37 cases. These missing retrievals result from the limited choices of 74 aerosol
mixtures in MISR retrievals and the increasingly heterogeneous aerosol conditions in Beijing.
It further emphasizes the necessity in allowing for flexible aerosol mixings in retrieving urban
aerosols.

3.4.3 High/Medium-AOD Situations

Finally, we showcase one more high-AOD situation and a medium-AOD situation, where
MAP managed to capture the weather conditions in mainland China. We first look at the
aerosol conditions in Beijing on April 14, 2009.

Using MAP Retrievals to Depict a Dust Storm in Beijing and Zhengzhou on April 14, 2009

Figure 3.5 shows the MISR and MAP retrieval results over the greater Beijing area on
April 14, 2009, at spatial resolutions of 17.6 km and 4.4 km respectively. The MAP AOD
retrievals are overall higher than those of MISR AOD retrievals across the MISR Block. We
also observe more high MAP-retrieved AOD values in the lower half of the MISR Block,
which are absent in MISR retrievals.

Another search on the weather archive for April 14 provides us another dust storm alert
for central China. This explains the overall high AOD values in MAP retrievals. However,
we are currently unable to find concrete evidence for or against the high values in the
middle of the Block, because of the lack of ground measurements in the great Beijing area.
Instead, we turn our analysis to the center of this particular dust storm, Zhengzhou, Henan
Province. AOD retrievals for the greater Zhengzhou area are plotted in Figure 3.6, with
MISR retrievals in the upper panel and MAP retrievals in the lower panel. As is shown,
the MAP retrievals display an apparent pattern of high AOD levels spreading, where the
AOD values are consistent with the AERONET measurements of similar conditions. The
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Figure 3.5: Case study of AOD retrievals on April 14, 2009 over the greater Beijing area.

Figure 3.6: Case study of AOD retrievals on April 14, 2009 at Zhengzhou, Henan.



CHAPTER 3 44

MISR retrievals in the upper panel, however, seem to underestimate the AOD values in this
situation.

From the two cases we discussed in this and the previous sections, we see that MAP
retrievals are able to depict dust storms with an better coverage and accuracy than MISR. For
regions like Beijing and Zhengzhou which experience occasional severe weather conditions,
the 74 MISR-prefixed aerosol mixtures contain a very limited variety of how grains (dust)
aerosols exist in the atmosphere. Failing to provide an aerosol mixture that reflects the
observed situations could easily result in a low retrieval coverage and underestimation of
AOD levels. In the aerosol-related public health studies, however, it is more crucial to
accurately estimate the AOD values for high-AOD events. They have a larger impact on
human health than the fine weather.
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Using MAP Retrievals to Capture Air Pollution in the Beijing Area on January 24, 2009

Here we present an event with medium-level AOD values for the greater Beijing area.
Figure 3.7 shows the MISR retrievals at 17.6 km resolution (upper panel) and our MAP
retrievals at 4.4 km resolution (lower panel). The general level of AOD values are not as
high and unusual as the previous two cases, but the disagreement in the two sets of AOD
estimates is distinctive.

For validation, we resort to the ground measurements. The AERONET measurement at
the Beijing station reached 0.2319 on that day; AERONET Xianghe station reported AOD
as high as 0.3519. Such medium-AOD situations are relatively common in urban areas with
constant air pollution, such as Beijing, due to its heavy industry development and highly
concentrated population. It is important to be able to detect such events and further study
their long-term impact on public health. Our MAP proves to be more accurate and relevant
when it comes to high/medium-AOD situations.

Figure 3.7: Case study of AOD retrievals on January 24, 2009 over the greater Beijing area.

3.5 Discussion

Urban public health and air quality su↵er from hazardous aerosols due to heavy industri-
alization and dense population. Anthropogenic activities, global climate and regional wind
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patterns continue to shape aerosols into an increasingly heterogeneous system. This growing
complexity calls for a flexible model and fine retrieval resolution in order to better understand
urban aerosols and their impacts on human health.

In this chapter, we have presented an optimization-based approach to retrieve AOD values
and mixing vectors relative to a selection of four component aerosols at 4.4 km resolution
using MISR observations. Our model borrows strength from a spatial smoothness structure
for AOD values to reduce model complexity, while treating mixing vectors as continuous
variables to flexibly represent the mixing of the component aerosols. The free mixing of the
selected component aerosols, instead of prefixed mixtures in the MISR retrieval algorithm,
proves necessary in case of severely polluted situations, such as dust storms. Spatial profiles of
AOD values at finer resolution are provided using our retrieval algorithm, and then validated
using ground measurements collected by AERONET. Compared to the MISR operational
retrieval algorithm, our algorithm achieves a better retrieval coverage due to flexible mixing
of component aerosols. In the case studies, we also observed significantly improved accuracy
in high-AOD and medium-AOD situations.

Our optimization approach can also be viewed as a Maximum a Posteriori (MAP) estima-
tion problem in a hierarchical Bayesian scheme. The optimization-based retrieval algorithm
(MAP algorithm) is almost 60 times faster than the Markov Chain Monte Carlo sampling
algorithm developed based on the same hierarchical Bayesian model. The enhanced compu-
tation e�ciency further gives room for developing retrievals at higher temporal resolution.
Ideally, technology enhancement will improve both spatial and temporal resolution that fa-
cilitates in-depth assessments of air pollution and human health. For example, one possible
solution exploits data fusion with observed radiances from other instruments, such as the
Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the NASA Terra and
Aqua satellites.

Another possible continuation of this work is to develop a systematic approach to select
four component aerosols involved in the retrievals. Also, a larger number of component
aerosols might be necessary for regions with a more varying terrain structure or aerosol
emission sources than those in the greater Beijing area. We are currently working on a full
expansion of the 74 MISR mixtures by allowing free mixings of all eight commonly observed
component aerosols. This will capture a wider range of aerosol mixtures and could potentially
improve retrieval accuracy.

We hope that an aerosol profile obtained at fine resolution by an e�cient algorithm will
eventually expand the potential of MISR observations to assist urban air quality monitoring
and public health studies.
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Chapter 4

Aerosol Retrievals for Baltimore Area
and A Full Inclusion of Component
Aerosols

4.1 Motivation

The previous two chapters focused on Aerosol Optical Depth (AOD), quantification of the
level of atmospheric aerosol concentration. The current chapter, instead, looks into another
critical factor of aerosols’ optical properties in determining the reflected solar radiations:
the types of aerosols and their mixing percentages. In fact, information of aerosol types
and mixing percentages, together with AOD levels, enter the forward radiative transfer
simulations as a major input. The simulated results construct the SMART dataset. Both
MISR operational and our Bayesian retrieval algorithms rely on comparisons between these
simulations and MISR observations.

4.1.1 More on Component Aerosols

To represent and understand the mixing of di↵erent types of aerosols, MISR operational
retrieval algorithm categorizes aerosol particles into 21 groups based on their properties
such as particle size distribution, refractive index and their tendency to absorb water. Each
group is referred to as a component aerosol. Eight of these 21 component aerosols represent
commonly observed aerosol particles, upon which the radiative transfer simulations and
the MISR routine retrievals are based. These eight component aerosols are Black carbon
(soot), Carbonaceous (biomass burning particles), Mineral dust accumulation 1, Mineral
dust accumulation 2, Mineral dust coarse, Sea salt accumulation, Sea salt coarse and Sulfate
mode 1.
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Using these eight commonly observed component aerosols, MISR constructs 74 aerosol
mixtures to represent the atmospheric aerosol compositions. Each of the 74 MISR aerosol
compositions consists of two or three of the eight component aerosols, accompanied by a
fixed vector to indicate the relevant abundance of the components. In fact, the 74 MISR
aerosol compositions include only six distinct combinations of the eight component aerosols,
mixed according to di↵erent settings of their relevant abundance. These six combinations
can be represented by the indices of component aerosols involved: {1, 6, 19}, {2, 6, 19},
{3, 6, 19}, {6, 8, 19}, {6, 14, 19} and {2, 19, 21}. MISR operational retrieval algorithm
exhaustively searches over radiative transfer simulations generated according to these 74
MISR compositions, in order to provide good fits to the observations. As the complexity
of urban aerosols grows with metropolitan population and industrialization, the 74 MISR
compositions are no longer su�cient to represent the aerosol mixing conditions.

In fact, previous case studies based on aerosol conditions in the greater Beijing area of
China support the necessity to expand the 74 MISR compositions. MISR reported many
missing retrievals for the Beijing area due to the failure to match any of the 74 MISR
compositions to the observations. In Chapter 2, we included into our model four component
aerosols that are commonly observed for the greater Beijing area. The four components
are selected based on historical retrieval results from MISR; we did not include all eight
components in order to achieve computational e�ciency. Our model then considers the
mixing vectors for the four selected component aerosols as continuous variables and thus
allows for the maximum freedom for mixing of these components. For example, we discovered
that aerosol compositions with a high abundance of coarse mineral dust are common in the
greater Beijing area in spring due to regular sandstorms. However, such compositions are
not represented by any of the 74 MISR compositions, but is considered by our model because
of the free mixing of component aerosols. For such cases, MISR fails to match any of the 74
prefixed compositions to the observations and thus reports no retrievals of AOD nor aerosol
composition. Our retrieval algorithm, on the other hand, is still able to provide retrievals of
AOD and mixing vectors. Validation of our retrievals by ground-based measurements of AOD
levels suggests the four selected component aerosols well represent the aerosol conditions in
the greater Beijing area. For regions with more complex types of aerosol emissions, however,
more than four component aerosols might be necessary to capture the region’s aerosol mixing
conditions.

In search of a second study region to validate our retrievals and to further understand
aerosol mixings, we turn to Baltimore, Maryland.

4.1.2 Baltimore and the DRAGON Stations

Baltimore is chosen for its complex terrain conditions and various aerosol emission types, as
well as the availability of ground-base AOD measurements from a dense network of AErosol
RObotic NETwork (AERONET) stations, known as the Distributed Regional Aerosol Grid-
ded Observation Networks (DRAGON).
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The DRAGON stations use ground-based sun photometers to collect ground measure-
ments of aerosol properties to validate remote-sensed retrievals at resolution from 50 m to 10
km. It is implemented under the NASA Earth Venture airborne mission, DISCOVER-AQ
(Deriving Information on Surface Conditions from Column and Vertically Resolved Obser-
vations Relevant to Air Quality). Measurements of AOD levels, as well as size distribution
and single scattering albedo among other optical properties, are collected for the Baltimore-
Washington DC metropolitan area over the period of June to August, 2011. The entire
region covers di↵erent types of terrain, including urban, agricultural and mountain land-
scapes. Figure 4.1 marks the locations of the DRAGON ground stations over the Baltimore-
Washington region. The dense and rather gridded distribution of the DRAGON stations
provides us an opportunity to extensively validate remote-sensed AOD retrievals. Such val-
idation is especially important in justifying the gains in AOD accuracy by improving the
retrieval resolution. Moreover, measurements of particle size distributions can be used as a
preliminary validation for the retrieved mixing vectors, as discussed in Section 4.3.

Figure 4.1: Locations of the DRAGON ground stations.
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4.1.3 Terrain Structure around Baltimore

Figure 4.2: Display of terrain in Baltimore area.

The Baltimore-Washington metropolitan area has always been of interest to meteorolo-
gists and climatologists due to its reliably overall high levels of aerosol concentration for a
large region. Besides the access to densely distributed ground measurements of aerosol opti-
cal properties, the complex terrain of Baltimore makes it a unique study region with various
landscapes. Figure 4.2 displays the area’s terrain conditions, with Baltimore in the center of
map. With our final research goal to study the relationship between aerosol concentration
and public health, as well as the available DRAGON ground-based measurements, Baltimore
naturally become a unique site of great interest to us. It is the case especially in summer
when the aerosol loading reaches the highest of the year. The generous precipitation makes
it more important to develop timely and accurate aerosol retrievals, as rainfalls reduce the
lifespan of atmospheric aerosols.

Another major reason that we set the study region to Baltimore-Washington is that the
area has a complex terrain, which has the benefit of a gradient meteorology: mountains,
forest, plain, port, river and city. The complexity of the terrain adds to the challenge and
significance of the retrievals.
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Moreover, the Baltimore metropolitan area has a wide range of di↵erent aerosol emissions
and thus di↵erent types of aerosol particles. This calls into question the assumptions of
spatial homogeneity of the selection of component aerosols and makes it interesting to study
the mixing of component aerosols in the region. In fact, as we will see in Section 4.2,
four component aerosols are not su�cient to represent the complex aerosol mixings in the
Baltimore area. Di↵erent types of aerosols from this region include fine-mode urban or
industrial and biomass burning, coarse-mode dust and sea salt, as well as in mixtures of the
various types.

In particular, the following di↵erent aerosol emission sources contribute to the complexity
of anthropogenic aerosols in the Baltimore-Washington region:

• Thirty-six miles southwest to the city of Baltimore stands the Duke Energy power
plant in the Ohio River Valley. Its coal-burning process produces aerosols that contain
sulfate.

• Baltimore is surrounded by several interstate highways, including I-70, I-83 (the Jones
Falls Expressway), I-95 (the John F. Kennedy Memorial Highway), I-395, I-695 (the
Baltimore Beltway), I-795 (the Northwest Expressway), I-895 (the Harbor Tunnel
Thruway), and I-97. Baltimore also serves as a top destination for Amtrak trains
along the Northeast tra�c corridor. Baltimore’s Penn Station is one of the busiest in
the country. The exhaust fumes from heavy tra�c congestion and general tranportaion
generates more organic aerosols and cause air pollution.

• Diesel-burning ships and loading trucks at the Port of Baltimore generates more air-
polluting aerosols, due to the large scale of the engines. In fact, the Port of Baltimore
is one of two seaports on the U.S. east coast with a 15 m dredge to accommodate the
largest shipping vessels.

• Aviation is another major source of gaseous and particulate aerosol emissions in the re-
gion, especially take-o↵ processes from the Baltimore Washington International (BWI)
airport.

• At the same time, the bay breeze e↵ect from the Chesapeake Bay brings inland sea
salt particles and adds to the complexity of aerosols mixings, from the southeast in
Baltimore, and from the southwest on the Eastern Shore.

Due to the above reasons, AERONET established a mesoscale gridded network of sun
photometers in Baltimore-Washington metropolitan area in 2011, namely the DRAGON
campaign. DRAGON provide not only ground-based measurements for AOD levels, but also
comprehensive measurements of other aerosol optical properties, such as size distribution,
single scattering albedo and refractive index (imagery). We use this additional information
to validate our retrieved mixing vectors for the eight commonly observed component aerosols,
as to be discussed in Section 4.3.
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4.1.4 Overview of Chapter 4

In this chapter, we provide aerosol retrievals for the Baltimore-Washington region with a
fully flexible model to represent the mixing of component aerosols, based on MISR observed
radiances. In our retrieval algorithm, we adopt a hierarchical Bayesian model that constructs
a spatial smoothness structure for AOD values over a spatial lattice. We further develop our
retrieval algorithm at 4.4 km resolution, using Markov Chain Monte Carlo (MCMC) sampling
methods or Maximum a Posteriori (MAP) estimation methods. Aerosol Optical Depth
(AOD) retrievals at fine resolution are provided for the Baltimore-Washington region for
further studies on the relationship between aerosol concentration and public health. Section
4.2 summarizes the limitation of our previous work caused by large variety of landscapes in
the region, as well as the necessity to fully expand the selection of component aerosols to all
eight commonly observed components in an e↵ective retrieval model.

The inclusion of all eight commonly observed component aerosols, however, adds to the
complexity of the computation. To improve the computation e�ciency, we propose a warm
start for the Markov sampling algorithm. We first develop two separate Markov chains based
on two sub-models, each of which incorporates only four component aerosols. Combining
the samples generated by these two separate Markov chains renders a better initialization for
the Markov chain incorporating all eight commonly observed component aerosols. Details
on subsetting the eight component aerosols and combining the results from the two separate
Markov chains are discussed in Section 4.3.2.

The retrieved results are displayed, validated by ground measurements and analyzed in
Section 4.3, with future research direction discussed in Section 4.4.

4.2 Limitations of Previous Work

This section explains the limitation of our previously developed retrieval algorithm and the
circumstances made limitation impair our retrieval performance. We allow for a wider range
of possible values for certain model parameters to expand the selection of component aerosols
in our previous algorithm to the complete set of the eight commonly observed components.

4.2.1 Retrieval Results Using the Previous Bayesian Algorithm
with Four Components

We first retrieved AOD and aerosol compositions using our previous Bayesian aerosol retrieval
algorithm, taking as input the MISR observed radiances for the Baltimore-Washington re-
gion. The previous algorithm included only four component aerosols, which are selected
based on current knowledge of the study region’s aerosol conditions. In particular, we tested
the retrieval performance with several di↵erent subsets of four component aerosols for the
Baltimore-Washington region:
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(M1) Components 2, 3, 6 and 19: the collection of component aerosols based on domain
knowledge suggested by Prof. Yang Liu at the Rollins School of Public Health at the
Emory University;

(M2) Components 2, 3, 8 and 19: the collection of the most commonly observed components
for Baltimore-Washington region, based on MISR historical retrievals for the study
region;

(M3) Components 2, 6, 8 and 19: the collection of the second most commonly observed
components for the study region, based on MISR historical retrievals.

As an example, Figure 4.3 displays the MISR observed radiances (upper panel), MISR AOD
retrievals at 17.6 km resolution (middle panel) and ours at 4.4 km resolution (lower panel)
for the Baltimore-Washington region on June 2, 2011. MISR AOD estimates were obtained
by fitting the 74 MISR prefixed compositions to MISR observations; our retrievals allowed
for free mixings of components 2, 3, 8 and 19.

4.2.2 Comparison of MISR Retrievals, Bayesian Retrievals and
DRAGON Measurements

Our Bayesian retrievals are reasonable when benchmarked against the MISR retrievals. Our
Bayesian and MISR retrievals share a general pattern in AOD spatial distribution: relatively
low AOD levels in the north and gradually increasing AOD levels in the southeast corner.
Figure 4.3, however, also shows two major di↵erences between MISR and our AOD retrievals,
besides the retrieval resolution.

Firstly, our Bayesian retrievals have a better spatial coverage, compared to the MISR
retrievals. There are primarily two situations where MISR reports missing retrievals: if
clouds are detected or if none of the 74 MISR compositions provide good fits to the observed
radiances. In the Baltimore-Washington region on June 2, the latter explanation caused
the MISR missing retrievals. In fact, 186 (72.66% of the total 256 pixels and 87.74% of
the total missing retrievals) of the 212 missing retrievals (82.82% of the total 256 pixels) in
MISR output (Figure 4.3, upper panel) reported that none of the 74 MISR prefixed aerosol
compositions could produce simulated radiances that matched the observed radiances. In
summary, more than 87% of the missing retrievals were caused by the fact that none of the
74 MISR compositions could well represent the observed aerosol mixing conditions. Our
Bayesian retrieval algorithm, on the other hand, is able to significantly improve the retrieval
spatial coverage by letting the selected component aerosols vary according to any choice of
relative abundance. As a result, we were able to provide estimates for AOD levels as long as
the pixel was mostly cloudless.

Secondly, we also observed generally higher AOD levels in our Bayesian retrievals through-
out the region, compared to the MISR retrievals. In our previous work, the Maximum a
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Figure 4.3: MISR observed radiances at nadir camera (upper), MISR AOD retrievals at 17.6
km resolution (middle) and our Bayesian retrievals at 4.4 km resolution (lower) over the
greater Baltimore area on June 2, 2011.
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Posteriori (MAP) AOD retrieval algorithm tends to overestimate AOD during low-AOD
situations as is the case for Baltimore-Washington region on June 2.

In order to objectively validate our AOD retrievals for June 2, we compared the results
to ground-based measurements collected by DRAGON in Figure 4.4. It compares remote-
sensed retrievals by MISR operational algorithm, as well as our MAP and MCMC AOD
retrieval algorithms with three di↵erent sets of component aerosols. All remote-sensed AOD
retrievals are plots on the y-axis against the ground measurements on the x-axis, with the
index of involved component aerosols listed in the legend.

Figure 4.4 shows that the MAP retrieval algorithm tends to overestimate AOD levels in
low-AOD cases. MISR operational algorithm, on the other hand, tends to underestimate
AOD values in medium-AOD situations. We also observe that the selection of component
aerosols in the Bayesian retrieval algorithms plays an important role in determining the
overall levels of AOD estimates, and hence retrieval accuracy.

4.2.3 Choice of Relevant Component Aerosols and the Necessity
to Consider the Complete Set of Eight Commonly-observed
Component Aerosols

Our previous MAP and MCMC retrieval algorithms are limited in terms of incorporating
all of the eight commonly observed component aerosols. The decision of including only
four component aerosols in our previous algorithms results from rather homogenous aerosol
conditions in the previous study region, as well as the balance to achieve computational
e�ciency. In our previous studies in Beijing area, AOD retrievals obtained by our MAP
retrieval algorithm agreed with the ground measurements. That is because the aerosol
compositions remained relatively homogenous over the area. The region around the city
of Baltimore, however, has a very di↵erent terrain from the city, leading to largely varying
aerosol compositions for this region, as is to be discussed in Section 4.1.3. The Baltimore-
Washington cases, therefore, demonstrate necessity to expand the choice of components
to the full set of all eight commonly observed components. Our previous algorithms were
flexible in letting the mixing vector vary freely, once the subset of four component aerosols
is hand-picked. We hence continue to allow the fully flexible mixing of component aerosols
in this work.

To confirm the above arguments, we take a closer look at the distribution of each com-
ponent aerosols in the retrievals over the Baltimore-Washington region. The upper panel in
Figure 4.5 uses a range of colors to display the index of MISR-prefixed compositions chosen
by MISR retrieval algorithm; the index ranges from 1 to 74. The choice of compositions
seem to be indeed largely varying and not quite clustered. It suggests that even though
most aerosol mixtures consist of two or three component aerosols, one MISR Block might
be too big to maintain the same subset of three or even four component aerosols.
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Figure 4.4: Comparisons of AOD retrievals against ground measurements by MISR, MAP
and MCMC algorithms with di↵erent sets of component aerosols.
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Figure 4.5: Plot of composition index of MISR retrievals (upper) and plot of MISR observed
radiances at nadir camera (lower) for Baltimore-Washington region on June 2.

Figure 4.6: Existence of individual component aerosol 1 for Baltimore-Washington region on
June 2.
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Figure 4.7: Existence of individual component aerosols 2, 3, 8 and 14 for Baltimore-
Washington region on June 2.
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Specifically, Figure 4.6 and Figure 4.7 indicate the existence of each individual component
aerosols in the MISR retrievals for the Baltimore-Washington region on June 2. A red pixel
indicates appearance of the component aerosol in question in MISR retrieval for that pixel;
a green pixel indicates that MISR obtains retrievals for this pixel but reports no appearance
of the component in question; black pixels indicate missing retrievals. Component 6 and
19 appeared in all MISR retrieved pixels and component 21 made no appearance in MISR
retrievals.

Figure 4.6 and Figure 4.7 confirmed the necessity to incorporate more than four compo-
nent aerosols for the Baltimore-Washington region. In this case, our original MAP retrieval
algorithm was limited and our performance was impaired, due to our fixed subset of compo-
nent aerosols for the entire MISR Block. The exact existence of di↵erent types of component
aerosols might result from the di↵erent atmospheric environments or ground-level geology of
the spatial locations.

The following two sections will briefly summarize background information before we
expand the subset of four component aerosols to all of the eight commonly observed compo-
nents. In particular, Section 4.1.3 reviews the Baltimore-Washington terrain, while Section
4.3.4 introduces some crucial optical properties of the eight commonly observed component
aerosols.

4.3 Retrieval Results and Validations using DRAGON
Measurements

This section summarizes our retrieval results for the Baltimore-Washington region during
June to August, 2011, using our Bayesian MCMC retrieval algorithm and incorporating all
eight commonly observed component aerosols.

4.3.1 Retrieving AOD Values

Recall that Section 4.2 discussed the limitations of our previous algorithms and the motiva-
tion to remove the model restrictions for the aerosol mixings. All results in this section are
generated using Bayesian MCMC aerosol retrieval algorithm which allows for the full free
mixing of all eight commonly observed component aerosols.

We match the ground-based DRAGON measurements and the remote-sensed AOD re-
trievals for the duration of the DRAGON campaign, June to August, 2011. That is, for days
when Satellite Terra carrying MISR flies over the Baltimore-Washington region, we locate
the pixels with valid AOD retrievals and a DRAGON station inside.

Figure 4.8 displays all such pairs of remote-sensed AOD retrievals and DRAGON mea-
surements. As is shown in the figure, our MCMC retrievals using all of the eight commonly
observed component aerosols have a correlation of 0.9512 with the DRAGON measurements,
while MISR retrievals have a correlation of 0.7751 with the DRAGON measurement. Out of
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Figure 4.8: Comparisons of AOD retrievals by MISR, our Bayesian MCMC and MAP re-
trieval algorithms for Baltimore-Washington on June 02, July 20 and July 22 2011.
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the 39 validation data pairs, MISR reports 13 cases of missing retrievals, while our MCMC
algorithm is able to provide AOD retrievals as long as the pixel is cloudless. We further
notice that MISR retrievals tend to underestimate AOD levels in high-AOD events, which is
problematic if we want to use these results to provide guidance for policies on public health.

Results above show that expanding the set of component aerosols in consideration to
all of the eight commonly observed component aerosols is beneficial for aerosol retrieval
accuracy. The increased computation expenses, however, make this expansion less desirable.
After confirming the gain in retrieval accuracy from incorporating all eight components, we
now work to develop a faster approach to retrieve information on aerosol optical properties.
In fact, the Markov chains take more than twice as many steps to converge and the sampling
process at each step also consumes more computation. To speed up the mixing of the chains,
the next section proposes an approach to search for a warmer initialization for the chains.

4.3.2 Warm-start for MCMC Sampling Using Samples from Sub-
chains

This section explains our motivation and design of searching for a warm start of the Markov
chains, as well as demonstrates the consequential computational gain.

We notice that the total run time of retrievals with only four component aerosols is less
than a third of that for retrievals with eight component aerosols. It is possible to take
advantage of the faster mixing of Markov chains that involve a smaller set of component
aerosols and thus a much smaller number of parameters to sample at once. In particular, we
split the set of the eight most commonly observed component aerosols into two subsets, each
with four components. We first split the set into components {1, 3, 8, 19} and components
{2, 6, 14, 21} to balance the di↵erent properties of the components, such as size distribution
etc. For example, component 8 and component 14 are not distinguishable in many aspects.
We tried to put them into di↵erent subsets. Also component 1, 2 and 3 are similar in
their optical behaviors with their e↵ective radii increasing from component 1 to component
3. Thus, we place them into two di↵erent chains. Later we also tried to split the eight
components into two subsets as {1, 2, 3, 6} and {8, 14, 19, 21}. Results are quite similar to
those using the first split of the eight components.

We first establish some notations. Denote the first chain with superscript a and the
second chain with superscript b. We run the MCMC algorithm on the chain a and obtained
samples for: AOD values, ⌧a; mixing vectors for components 1, 3, 8 and 19, denoted as
(✓a1 , ✓

a

3 , ✓
a

8 , ✓
a

19); AOD spatial precision parameter 

a; the Dirichlet parameter for aerosol
mixings, ↵a; and variance terms for the 36 MISR channels, (�a)2. Similarly, we have samples
for the second chain: ⌧ b, b, ↵b, (�b)2; and for the mixing vectors: (✓b2, ✓

b

6, ✓
b

14, ✓
b

21).
After we have split the eight component aerosols into two subsets, we run the Bayesian

MCMC retrieval algorithm based on MISR observations and each of the two subset of com-
ponents independently. We then combine the samples from both of the Markov chains to
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generate an initialization point for the chain that incorporates all eight components. We use
the average of the two sets of samples as the new starting point of the model parameters
and hyperparameters, for the full chain with eight component aerosols:

⌧0 =
⌧ a + ⌧ b

2
(4.1)

✓
k0 = ✓a

k

, if k = 1, 3, 8 or 19 (4.2)

✓
k0 = ✓b

k

, if k = 2, 6, 14 or 21 (4.3)

0 =


a + 

b

2
(4.4)

↵0 =
↵a +↵b

2
(4.5)

(�0)
2 = (

p
(�a)2 +

p
(�b)2

2
)2. (4.6)

To capture the progress of the Markov chains, we took snapshots of the AOD samples.
Each snapshot is obtained by averaging over 100 steps along the chain to reduce unnecessary
sampling noise. For example, Figure 4.9 displays four snapshots of the MCMC samples of
AOD values over the Baltimore-Washington region for June 2. The snapshots are averaged
over MCMC sampling steps 1:100, 301:400, 901:1000 and 1901:2000, generated by our MCMC
retrieval algorithm with random initialization.

The four snapshots respectively display the progress of a random start, mixing, developing
spatial shapes of the final retrievals and finally smoothing. One distinct shape in the final
retrievals is the stripe of relatively high AOD values in the middle of the MISR Block,
stretching from lower west to upper east. This stripe is not visible in the first two panels,
but already falls into place in the third panel and is quite obvious in the last panel. The
second panel already display an overall level similar to the final retrievals, while the first
panel is still quite far away from the final results.

To explore the possibility of a warmer initialization than a random start, we ran two
subchains as discussed above. Figure 4.10 displays estimates of AOD values based on samples
from the two sub-chains. As we can see, both share the general pattern of the last panel
in Figure 4.9. Their overall levels of AOD values, however, are very di↵erent from that of
the last panel, Figure 4.9. In particular, the upper panel of Figure 4.9 allows for component
aerosols 1, 3, 8 and 19; while the lower panel allows for component aerosols 2, 6, 14 and
21. In general, component aerosols with a large e↵ective radius tend to be associated with
higher level of aerosol concentrations, as is seen in the lower panel of Figure 4.10.

When we combine the samples from the two sub-chains according to (4.3.2), however, the
MCMC sampling process seems to have skipped the random start and initial mixing. Figure
4.11 displays three snapshots of MCMC samplings over steps 1:10, 1:100 and 301:400.
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Figure 4.9: Converging progress of AOD retrievals using Bayesian MCMC algorithm with
random start for Baltimore-Washington on June 2, 2011.
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Figure 4.10: Retrieved AOD values by two separate Markov chains each including four
components for Baltimore-Washington on June 2.
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Figure 4.11: Converging progress of AOD retrievals using Bayesian MCMC algorithm with
a warm start for Baltimore-Washington on June 2.
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To reach the final smooth stage of the AOD estimates, the original MCMC retrieval
algorithm with random start took 26251.22 seconds. Sampling along two sub-chains, which
can be run independently in parallel, took 7699.35 seconds. After combining the samples
from the two sub-chains to reach a warmer start, the new chain took up to 4195.16 seconds
to reach the smoothed AOD estimates, as shown in Figure 4.11. Therefore, by running two
sub-chains to construct a warm start, we are able to save more than 50% of the computation
time. This is partially due to sampling in parallel for the 4-component sub-chains and the
reduced number of steps for the 8-component chain to converge.

We also tested an approach to combine samples from the two sub-chains to construct
a warm start for the Markov chain with eight component aerosols. Instead of taking the
average of the two chains, we calculated MISR’s �2 criterion and use them as inverse weight
when combining the samples from the sub-chains. That is, we assign a heavier weight to
components that result in a smaller �2 score and thus a better fit to the observations. Let,

d

a =
p

(�a)2

d

b =
p
(�b)2,

and we further have,
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But the mixing behaviors of the resulted Markov chain are similar to the one started with
average values of the two sub-chains. For example, Figure 4.12 displays the MCMC samples
over the first 10 steps after the warm start. Both the overall AOD level and the general
pattern appear to be quite similar to the first panel in Figure 4.11.
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Figure 4.12: AOD retrievals by Bayesian MCMC retrieval algorithm using a warm start for
Baltimore-Washington on June 2.

4.3.3 Retrieving Aerosol Mixing Vectors

In this section, we look at the retrieved aerosol mixing vectors. Incorporating all of the eight
commonly observed components and letting their mixing vectors vary freely to completely
expand the 74 MISR prefixed aerosol compositions.

We first review the basic optical properties of aerosol particles, which are categorized
into the 21 component aerosols according to MISR operational retrieval algorithm.

4.3.4 Important Optical Properties of Component Aerosols

Ninety percent of the aerosols are generated by dust storms, desert and soil erosion, biogenic
emissions, forest and grassland fires, and sea spray, while ten percent are due to anthro-
pogenic activities. The terrain of Baltimore as shown in Section 4.1.3 suggests a complex
mix of aerosols sources in the Baltimore area.

For relevance to our retrieval algorithms, here we only focus on the eight commonly
observed component aerosols, namely the component aerosols 1, 2, 3, 6, 8, 14, 19 and 21.

Size Distribution
The Particle Size Distribution (PSD) of aerosol particles is a function indicating the

relative abundance of particles present, sorted according to their radius. In particular,
the MISR component aerosols are modeled using a log-normal particle size distribution,
parameterized by the characteristic radius r

c

and characteristic width � [6]. Then the density
function of the PSD can be written as:

f(r; r
c

, �) =
1

r�

p
2⇡

exp

✓
�(ln r � r

c

)2

2�2

◆
. (4.7)

Sieve analysis is one of the most common approaches to determine a PSD. The particles
are first separated by sieves of di↵erent sizes. Then their PSD are approximated by the
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Component 1 2 3 6 8 14 19 21
Minimum Radius (r

min

, µm) 0.0010 0.0010 0.0100 0.1000 0.0010 0.0010 0.1000 0.1000
Maximum Radius (r

max

, µm) 0.4000 0.7500 1.5000 50 0.7500 0.7500 1 6
E↵ective Radius (r

c

, µm) 0.0562 0.1212 0.2620 2.8009 0.1212 0.1212 0.7542 2.3997
E↵ective Size Variance (�2) 0.0808 0.1034 0.1281 0.2596 0.1034 0.1034 0.0319 0.0510

Table 4.1: Size distribution parameters for the eight commonly observed component aerosols.

relative abundance of particles that “pass” through the sieves with size of a list of discrete
ranges.

For a mixture of MISR component aerosols, the density function of its PSD can be
calculated as linear combinations of the density functions of each of the component aerosols
involved. The characteristic radius and characteristic width for each component aerosol are
stored in MISR Aerosol Climatology Product, aerosol physical and optical properties file.

In particular, for the eight commonly observed components, Table 1 displays their pa-
rameters for their size distributions.

Single Scattering Albedo
Single scattering albedo (SSA) is the ratio of scattering e�ciency of aerosols to their total

extinction e�ciency, namely the sum of scattering and absorption e�ciency.
For a mixture of n component aerosols, denote !

n

the single scattering albedo of the nth
component and ✓

n

its relative abundance in the mixture. The single scattering albedo of the
mixture is calculated as:

!

mix

=
X

n

✓

n

!

n

. (4.8)

The single scattering albedo of each component aerosol is stored in MISR Aerosol Clima-
tology Product, aerosol physical and optical properties file. The eight commonly observed
component aerosols share a same SSA values as 1.

4.3.5 Comparison to MISR Retrieved Mixing Vectors

We first compare the Bayesian MCMC retrieved mixing vectors to those of MISR. Since MISR
retrievals are based on 74 prefixed compositions, we first project the 74 aerosol mixtures into
an eight-dimensional space. If one of the eight commonly observed component aerosols is
absent in the MISR retrieved mixtures, we consider the corresponding mixing percentage as
zero.

Figure 4.13 to 4.16 display the mixing percentage of each of the eight component aerosols.
As we can see from the results, MISR retrieved mixing vectors disagree largely with our
retrieved mixing vectors. The major di↵erence lies in the relative abundance of component
1 and 21. Both components displayed almost zero appearance in MISR retrievals but are
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quite dominant in our MCMC retrievals, especially component 21. Specifically, 91.58% of
the MCMC retrieved pixels have more than 10% component No.21, 70.66% of them have
more then 50% component No.21 and 1% of them have more than 70% component No.21.

To validate these retrieved component aerosol mixing percentages, we turn to particle size
distribution, collected by the DRAGON and available on AERONET website. For example,
we downloaded data for the particle size distribution measured at Station Aldino in the
Baltimore-Washington region on June 2, 2011. The upper panel of Figure 4.3.5 plots the
corresponding density.

For remote-sensed aerosol compositions, we use mixture density models to combine the
particle size distribution of each individual component aerosol and obtain the size distribution
for the aerosol mixture. The size distribution of each component aerosol is obtained using
the distribution parameters provided in Table 1 (Section 4.3.4). The middle panel of Figure
4.3.5 displays the estimated size distribution retrieved by MISR operational algorithm. It
rather accurately captures the first high mode of the size distribution, indicating a high
concentration of small-radius aerosols. The DRAGON measured Particle Size Distribution,
however, shows another mode for particles with radius around 5 µm. Our Bayesian MCMC
retrieved mixing vectors lead to a particle size distribution with a mode near zero and
another mode with radius around 6 µm. This further confirms that our retrieved mixing
percentage for component 21 is reasonably high, though this particular component aerosol
is not commonly observed in urban areas. One possible explanation is that there could be
fugitive dust particles or small dusts coated with nitrogen, forming aerosols with a large
e↵ective radius like coarse aerosols.

Though this comparison between retrieved particle size distribution and ground-measured
particle size distribution does not agree to every detail as seen in Figure 4.3.5, it can already
provide some guidance on validating the remote-sensed aerosol compositions.

4.4 Discussion

To obtain a warm start for the MCMC sampling algorithm, instead of using two exclusive
subsets of the eight commonly observed components (Section 4.3.2), we could also consider
using overlapping subsets of component aerosols. It could potentially take advantage of the
relative abundance of components within each subset represented by the samples from each
sub-chain. Moreover, splitting the eight commonly observed components into more than two
subsets may further reduce the computation time due to e�cient parallel sampling for the
four separate Markov chains. For instance, four subsets of two components each.

Another direction for future research is to further refine the retrieval resolution to 1.1
km. We implemented our Bayesian retrieval algorithm at even finer resolution to test the
potential reliability of retrievals at 1.1 km resolution.
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Figure 4.13: Comparisons of retrieved mixing percentage for component aerosols 1 and 2 on
June 9, 2011.
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Figure 4.14: Comparisons of retrieved mixing percentage for component aerosols 3 and 6 on
June 9, 2011.



CHAPTER 4 72

Figure 4.15: Comparisons of retrieved mixing percentage for component aerosols 8 and 14
on June 9, 2011.
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Figure 4.16: Comparisons of retrieved mixing percentage for component aerosols 19 and 21
on June 9, 2011.
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Figure 4.17: Comparisons of DRAGON-measured and remote-sensed retrievals of size dis-
tributions for Baltimore-Washington on June 2, 2011.
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Figure 4.18: AOD retrievals over the greater Baltimore area on June 2, 2011.
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