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Our comforting conviction that the world makes sense rests on a secure
foundation: our almost unlimited ability to ignore our ignorance.

— Daniel Kahneman [1]

1 Introduction: data science and decision quality

Population health is a systems framework for studying and improving the health of
populations through collective action and learning [2]. Population health data science
(PHDS) is the art and science of transforming data and information into actionable
knowledge to improve health [2]. Actionable knowledge is information that informs,
influences, or optimizes decision-making. A decision is a choice between two or more
alternatives that involves an irrevocable allocation of time or resources [3,4]. Every
decision has an opportunity cost—the lost net benefit of the better option not chosen
or not considered. Hence: “The roads we take are more important than the goals we
announce. Decisions determine destiny.”1

Decision-making is the most important daily activity. Decisions drive vision,
strategy, execution, evaluation, problem-solving, performance, and continuous im-
provement. Every decision has a causal assumption and a prediction (“choosing and
doing action A (over say, B) will achieve net effect Y with probability p.”). This
prediction is a “prior probability”. Based on our evaluation, we adjust our causal
assumption and/or prediction—this is learning. Learning leads to new decisions
and new actions (adaptation). Improvements are adaptations that make processes
and/or results better. Continuous improvement is a foundational pillar of a learning
organization.2 Continuous decision improvement ensures continuous performance
improvement.

The human brain specializes in prediction (also called concepts, schema, memory,
etc.) [6]. In 2002, psychologist Daniel Kahneman won the Nobel Prize in Economics
for the pioneering studies that cataloged human cognitive biases and pitfalls that
formed the foundation of the new field of behavioral economics [1]. It turns out
that humans are not good at estimating probabilities (probabilistic reasoning),
especially for novel circumstances. We also have nonconscious cognitive biases that
affect our ability to draw valid causal inferences and to change course when we are
wrong. We are prone to defensiveness to protect our ego and to avoid our fears [7].
Population health thinking requires intellectual humility to acknowledge our innate
cognitive limitations and curiosity to experiment with a new way of computational
and inferential thinking [8].

The purpose of this paper is to introduce a new reasoning framework which we call
population health thinking (PHT); that is, the conceptual and/or computational
use of Bayesian networks (BNs) (and it’s variant) for

1. probabilistic reasoning (PR) with BNs,
2. causal inference (CI) with causal BNs (i.e., directed acyclic graphs), and
3. decision quality (DQ) with decision BNs.
BNs are probabilistic graphical models that can be drawn using one’s expert

knowledge and wisdom. (Figure 1 depicts the wide applicability of BNs.) First, to get
1— Frederick Speakman
2A learning organization requires other components. For details, see Aragón, et al. [5]
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the most out of PHT, master the BN concepts with pencil and paper. Second, explore
deploying computational tools to work your intuition and build your confidence.
In this article I illustrate the concepts using R—an open source language and
environment for statistical computing and graphics [9]. Advanced PHT usually
requires turning to computers or to colleagues for computational support.

PHT is the foundational core of population health data science. What is pop-
ulation health data science? In epidemiology, analyses are generally classified as
descriptive or analytic. In PHDS we extend this to five analytic domains (Figure
1 and Table 1), all of which should produce actionable knowledge in service of
a strategic, tactical or operational decision-making. PHT is important for daily
problem-solving, and for analysis, is critical for PHDS levels two through five.

Table 1. Population health data science levels of analysis

Analysis Description

1 Description (a) surveillance and early detection of events
(b) prevalence and incidence of risks and outcomes

2 Prediction (a) early prediction and targeting of interventions
3 Explanationa (a) discovery and testing of new causal pathways

(b) estimation of intervention efficacy/effectiveness
4 Simulation (a) modeling for epidemiologic or decision insights
5 Optimizationb (a) optimizing a decision, effectiveness, or efficiency metric

Figure 1. Population health data science landscape (source: http://www.bayesia.com/)
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2 Program theory is for the DAGs (motivation)

Basded on causal and prediction assumptions (often implicit), we make decisions and
takes actions towards our goals. Our programmatic activities are built upon these
causal assumptions which collectively we call program theory. Every public health
intervention has a program theory; however, many practitioners cannot describe
the program theory supporting their primary programmatic activity or research. I
too could not describe the program theories supporting my own work until I read
Funnell Rogers’ book Purposeful Program Theory [10].

It turns out that program evaluators not only live and breathe program theory,
but they call it by different names: logic model, program logic, theory of change,
causal model, results chain, intervention logic, etc. Hence the confusion! From
BetterEvaluation.org:3 “A program theory explains how an intervention (a project,
a program, a policy, a strategy) is understood to contribute to a chain of results that
produce the intended or actual impacts.”4

In public health, the logic model is very popular. For me, a logic model is a good
high-level summary for non-technical purposes (summary, communication, etc.);
however, I do not like them (or variants) as a place to start. For me, program theory
is for the DAGs—directed acyclic graphs—and must include the theories of causation,
change, and action.

Program theory has three components and answers why? what? and how?:
• theory of causation (Why? primary roots causes before an intervention),
• theory of change (What? key strategies to affect the root causes), and
• theory of action (How? key specific interventions to activate theory of change).
In public health we have two common DAG archetypes [11]: a risk (adverse) event

and a benefit (opportunity) event (Figure 2). For both, a trigger is an exposure,
condition, activity, or incident that increases the probability of a risk or benefit
event. A trigger can be a cumulative process. Before an intervention, these DAGs
represent the theory of causation component of program theory.

Trigger

Risk event

Consequence

Trigger

Benefit event

Consequence

Figure 2. Causal taxonomy for risk event (left) vs. benefit event (right)

Figure 3 depicts the program theory for a public health intervention to reduce
automobile crash injuries (a risk event). The theory of change has three strate-
gies (prevention, control, and mitigation), and the theory of action has three
interventions (speed bumps, automatic breaking, and seat belts).

3See http://www.betterevaluation.org/en/plan/define/develop_logic_model.>
4See PDF: http://www.betterevaluation.org/sites/default/files/Define%20-%20Compact.pdf.
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Drive fast

Crash

Injury

Speed bumps Prevention Strategy

Automatic breaking Control Strategy

Seat belt Mitigation Strategy

Figure 3. Risk-reduction program theory: theory of causation, theory of change (strategy),
and theory of action (intervention)

In a risk-event outcome (consequence), the 5 whys of root-cause analysis move
backwards: Why was there an injury? Because of a crash. Why was there a crash?
Because of fast driving? Why was there fast driving? We cannot answer this question
(yet).

The program theory is not complete. We must also understand why people
drive fast. We have not included the theory of causation from drivers’ perspectives.
Suppose, for instructional purposes, Figure 4 represents the most common DAG that
explains why drivers speed. Therefore, why was he or she driving fast? To make
a meeting. Why was this meeting important? To win a contract? Why was this
contract important? (unemployment?)

Drive fast

Make meeting

Win contract

Crash Impediment

Nerves Impediment

Figure 4. Benefit-event model from the driver’s perspective

We can now really appreciate the importance of evaluating multiple perspectives
(other causal drivers—not to be confused with vehicle driver in the example). For
example, the motivation to drive fast might cancel out the effect of any traditional
public health intervention (Figure 3). We must be able to integrate multiple causal
pathways reflecting multiple perspectives.

Figure 5 depicts the unified DAG that integrates driver motivation into a holistic,
improved public health program theory. We cannot emphasize enough the importance
of building causal graphs from multiple perspectives that include risks and benefits,
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and different strategy levels. This DAG is a big improvement.

Drive fast

Make meeting

Crash

Win contract

InjuryNerves

Speed bumps

Automatic breaking

Seat belt

Figure 5. Unified causal model that includes driver’s perspective (benefit-seeking) and
program theory (risk-reduction)

However, when you review it with subject matter experts they suggest adding
“gender” and “age” nodes because both are causally associated with driving fast and
wearing seat belts (Figure 6). This will enable you to evaluate the effectiveness of
the public health intervention while controlling for the confounding effects of gender
and age. For example, if drivers are predominately young males (who drive fast and
do not wear seat belts) then the seat belt intervention may appear falsely ineffective.
These DAGs encode expert and community knowledge and wisdom, and are used for
causal, evidential, and decision reasoning.

Drive fast

Make meeting

Crash

Win contract

InjuryNerves

Speed bumps

Automatic breaking Seat belt

AgeGender

Figure 6. Expanded unified causal model with age and gender

If we would like to know if one of our interventions (e.g., seat belt use) is working
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we need to design a study or analysis to test our hypothesis. Unfortunately, without
a causal model (Figure 6) to guide us, we cannot know what variables are required to
test our intervention, and what variables to control for (“confounders”) that threaten
the validity of our conclusions.

Here is a summary of program theory:
1. Every intervention has a program theory (whether expressed or not).
2. Program theory includes theories of causation, change, and action.
3. DAGs have archetypes: risk (adverse) event and benefit (opportunity) event.
4. Always include multiple causal perspectives (other causal drivers).
5. Use DAGs for root cause analyses and program theory design.
6. Don’t forget to consider confounders (that threaten validity).
7. Use DAGs to test interventions and to control confounding.
Getting this right is important because future decisions and resource allocations

depends on these causal inferences. Understanding the basics of program theory is
foundational. The sections ahead cover population health thinking concepts and
computational tools that support program theory and population health data science.

3 Probabilistic reasoning (with Bayesian networks)

A Bayesian network (BN) is a graphical model for representing probabilistic, but not
necessarily causal, relationships between variables called nodes [12,13]. The nodes
are connected by lines called edges which, for our purposes, are always directed with
an arrow. Consider this noncausal BN:

Smell smoke Fire nearby

Smelling smoke increases the probability of a fire burning nearby, but obviously
smoke alone does not cause a fire. In other words, does knowing X (smell smoke)
change the credibility of Y (fire nearby)? In contrast, now consider this causal BN:5

Fire Smoke
This causal BN depicts fire causing smoke. Notice that both noncausal and causal
BNs have probabilistic dependence which we will use for probabilistic reasoning.
Noncausal BNs are commonly used in influence diagrams6 for decision analysis which
we cover later.

A two-node causal BN which has two types of proabilistic reasoning (Table 2).
Cause Effect

Table 2. Types of probabilistic reasoning for two-node causal Bayesian network

Probabilistic reasoning Conditional probabilities

Causal (predictive) reasoning P (Effect | Cause)
Evidential (diagnostic) reasoning P (Cause | Effect)

When a causal effect is not firmly established, the BN asserts this concept:
5also called a causal graph or a directed acyclic graph (DAG)
6also called decision networks or relevance diagrams
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Hypothesis Evidence

Table 3. Bayesian network involving a hypothesis and evidence

Conditional probabilities Probabilistic reasoning

P (Evidence | Hypothesis) Causal reasoning
P (Hypothesis | Evidence) Evidential reasoning

Evidential reasoning require Bayes Theorem.

P (H | E) = P (H)P (E | H)
P (E)

P (H) is the prior (old) belief, P (H | E) is the posterior (new) belief, and P (E | H)
is called the likelihood. The likelihood is critical because it is usually measurable,
allowing us to update our update our belief.

The marginal probabilty P (E) can be “marginalized over H” which is a sum of
conditional probabilities.

P (H | E) = P (H)P (E | H)
P (H)P (E | H) + P (H)P (E | H)

We need Bayes Theorem for two important reasons:
1. to use evidence and theory to update our belief from P (H) to P (H | E), and
2. to avoid the fallacy of the transposed conditional; i.e., confusing P (E | H) with
P (H | E).7

3.1 How to remember Baye’s Theorem

Again, consider the causal BN
Hypothesis • → • Evidence

Starting from left to right, and then from right to left we can tabulate the marginal
and conditional probabilites.

Table 4. Using a causal Bayesian Network (H → E) to derive expressions for causal
reasoning and evidencial reasoning, and to derive Bayes’ Formula (see Figure 7)

Reasoning N Probability Description

Causal reasoning 1 P (H) Prior probability (margin probability of H)
. . . leads to 2 P (E | H) Likelihood (TP [sensitivity], FP [1-specificity])
Evidential reasoning 3 P (E) Marginal probability of E
. . . leads to 4 P (H | E) Posterior probability (conditional probability)

For Bayes’ theorem just substitute probability expressions from Table 4:
7For example, because African Americans make up a high proportion in our criminal justice

system, some people believe, mistakenly, that a high proportion African Americans are involved in
crime. To understand this phenomenon we would need a full causal model.
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(4) = (1)(2)
(3)

Figure 7 is an infographical depiction of Table 4.

Figure 7. Bayes’ theorem for causal BN (Hypothesis -> Evidence).

3.2 Example 1: HIV testing

For example, from Neapolitan (p. 491, [14]), suppose Sam takes a test (evidence) to
determine whether he has HIV infection (hypothesis). Here is the BN:

HIV Test
In diagnostic testing we use Bayes Theorem to calculate the post-test probability

from the test results, pre-test probability (prevalence of infection), and test char-
acteristics (sensitivity, specificity). Table 5 displays the data we need for applying
Bayes Theorem.

Table 5. Probabilities for using Bayes Theorem in diagnostic testing

Name Probabilities Value

Pre-test (prior) probability of HIV+ P (HIV+) 0.00001
Sensitivity P (Test+ | HIV+) 0.999
Specificity P (Test− | HIV−) 0.998
Post-test (posterior) probability P (HIV | Test) TBD

To illustrate, we can calculate the “positive predictive value” (PPV)—what is
the probability of being HIV-positive given a positve diagnostic test?

P (H+ | T+) = P (T+ | H+)P (H+)
P (T+ | H+)P (H+) + P (T+ | H−)P (H−)

https://escholarship.org/uc/ item/8000r5m5 December 8, 2019
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This is easy to calculate in R.
prior <- 0.00001
sens <- 0.999
spec <- 0.998
(sens*prior)/(sens*prior+(1-spec)*(1-prior)) # PPV

#> [1] 0.004970223
Calculating the PPV (or NPV) is evidential reasoning and it requires applying

Bayes Theorem. Our brains are not capable of this calculation; we need computational
tools. In other words, our brains are not able to “flip the arrow” from P (Evidence |
Hypothesis) to P (Hypothesis | Evidence) and make valid Bayesian calculations.

3.2.1 Bayesian network packages in R

Since we need computational tools, why not just use BN tools that can scale to the
complexity of any problem and always provide us with valid Bayesian calculations.
We will be using the bnlearn and gRain packages in R.

1. Install bnlearn by following the instructions at http://www.bnlearn.com/.
From CRAN you will be installing bnlearn. From Bioconductor you will be
installing graph, Rgraphviz, and RBGL.

2. Install gRain.
Here is the same calculation using the bnlearn package in R [12].

library(bnlearn)
dag <- empty.graph(nodes = c("H", "T")) # create nodes
dag <- set.arc(dag, from = "H", to = "T") # link nodes
graphviz.plot(dag, layout = "circo")

H T
H.lv <- c("Pos", "Neg") ## create levels
T.lv <- c("Pos", "Neg")
#### create conditional probability tables
H.prob <- array(c(prior, 1-prior), dim = 2, dimnames = list(H = H.lv))
T.prob <- array(c(sens, 1-sens, 1-spec, spec), dim = c(2, 2),

dimnames = list(T.lv, H.lv))
cpt <- list(H = H.prob, T = T.prob)
bn <- custom.fit(dag, cpt)

We have captured this BN as an “expert knowledge system” in the R object bn
which we can now query.
names(bn)

#> [1] "H" "T"
bn$T

#>
#> Parameters of node T (multinomial distribution)
#>

https://escholarship.org/uc/ item/8000r5m5 December 8, 2019
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#> Conditional probability table:
#>
#> H
#> T Pos Neg
#> Pos 0.999 0.002
#> Neg 0.001 0.998

With BNs we can can ask “What if?” questions. For example, we can ask what
is the probability of HIV infection given a positive test? Again, P (H+ | T+) is the
positive predictive value. We have the choice between two R packages:

1. bnlearn for approximate inference
2. gRain for exact inference

3.2.2 Approximate inference with bnlearn (Monte Carlo simulation)

We can answer what is the positive predictive value (PPV); that is, what is P (HIV =
pos | Test = pos)?
(ppv1 <- cpquery(bn, event = (H == "Pos"), evidence = (T == "Pos"),

n = 10^6))

#> [1] 0.004882812
Notice that the cpquery function has a very intuitive syntax. In bnlearn approx-

imate inference is accomplished using Monte Carlo simulation. This scales efficiently
to very large, complex BNs.

3.2.2.1 Calculating PPV with new prior probability: Remember, for the
query above, the prior probability was 0.00001. What if the prior probability of HIV
infection was 0.1. How does the PPV change.

In the bn object we need to change the probabilities for node H.
bn$H$prob # view prior probabilities that we need to change

#> H
#> Pos Neg
#> 0.00001 0.99999
bn_newprior <- bn # make copy of BN model object
bn_newprior$H <- array(c(.1,.9), dim = dim(bn$H$prob),

dimnames = dimnames(bn$H$prob)) # assign new probs
bn_newprior$H$prob # confirm change to new probabilities

#> H
#> Pos Neg
#> 0.1 0.9
#### Calculate PPV w/ new prior of 0.1 and 'bn_newprior'
(ppv2 <- cpquery(bn_newprior, event = (H == "Pos"),

evidence = (T == "Pos"), n = 10^6))

#> [1] 0.9823476
For prior of 0.00001, the PPV = 0.0048828. In constrast, for prior of 0.1, the

PPV = 0.9823476.
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3.2.3 Exact inference with gRain

The gRain package calculates exact probabilities but is more computationally ex-
pensive for large BNs. Also the syntax is less intuitive compared to bnlearn. Notice
that in our example below gRain is using the bn object we compiled using bnlearn
above.
library(gRain) # for exact inference
junction <- compile(as.grain(bn)) # `bn` object is from `bnlearn` output
jtest <- setEvidence(junction, nodes = "T", states = "Pos")
querygrain(jtest, nodes = "H")$H # Positive Predictive Value (PPV)

#> H
#> Pos Neg
#> 0.004970223 0.995029777

3.3 Example 2: Evaluating respiratory diseases

For example, Figure 8 is from Neapolitan (p. 491, [14]) and depicts a BN representing
relationships among respiratory disease variables.

Figure 8. A Bayesian network of relationships among respiratory disease variables

dag2 <- empty.graph(nodes=c("H", "B", "L", "T", "M", "X", "CT", "MT"))
dag2 <- set.arc(dag2, from = "H", to = "B")
dag2 <- set.arc(dag2, from = "H", to = "L")
dag2 <- set.arc(dag2, from = "L", to = "M")
dag2 <- set.arc(dag2, from = "L", to = "X")
dag2 <- set.arc(dag2, from = "T", to = "X")

https://escholarship.org/uc/ item/8000r5m5 December 8, 2019
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dag2 <- set.arc(dag2, from = "M", to = "CT")
dag2 <- set.arc(dag2, from = "M", to = "MT")
graphviz.plot(dag2)

H

B L T

M X

CT MT

#### create levels
yn <- c("Yes", "No"); pn <- c("Pos", "Neg")
H.lv <- yn; B.lv <- yn; L.lv <- yn; T.lv <- yn; M.lv <- yn
X.lv <- pn; CT.lv <- pn; MT.lv <- pn
#### create conditional probability tables
H.prob <- array(c(0.2,1-0.2), dim = 2, dimnames = list(H = H.lv))
B.prob <- array(c(0.25,1-0.25,0.05,1-0.05), dim=c(2,2),

dimnames = list(B=B.lv, H=H.lv))
L.prob <- array(c(0.003,1-0.003,0.00005,1-0.00005), dim=c(2,2),

dimnames = list(L=L.lv, H=H.lv))
T.prob <- array(c(0.0001,1-0.0001), dim=2, dimnames=list(T = T.lv))
M.prob <- array(c(0.46,1-0.46,0,1 - 0), dim=c(2,2),

dimnames = list(M=M.lv, L=L.lv))
X.prob <- array(c(0.8,1-0.8,0.6,1-0.6,0.5,1-0.5,0.02,1-0.02),

dim=c(2,2,2), dimnames = list(X=X.lv, T=T.lv, L=L.lv))
CT.prob <- array(c(0.82,1-0.82,0.19,1-0.19), dim=c(2,2),

dimnames = list(CT=CT.lv, M=M.lv))
MT.prob <- array(c(0.82,1-0.82,0.005,1-0.005), dim=c(2,2),

dimnames = list(MT=MT.lv, M=M.lv))
cpt <- list(H=H.prob, B=B.prob, L=L.prob, T=T.prob,

M=M.prob, X=X.prob, CT=CT.prob, MT=MT.prob)
bn2 <- custom.fit(dag2, cpt)

Creating the conditional probability tables was straight forward. In the Neapolitan
paper the authors ask: “if a patient has a smoking history (H = yes), a positive
chest X-ray (X = pos), and a positive computer tomogram (CT = pos), we can
determine the probability of the patient having lung cancer (L = yes).” That is,
what is P (L = Yes | H = Yes, X = Pos, CT = Pos)?

3.3.1 Approximate inference with bnlearn (Monte Carlo simulation)

cpquery(bn2, event = (L == "Yes"), evidence = (H == "Yes") & (X=="Pos")
& (CT=="Pos"), n = 10^6)

https://escholarship.org/uc/ item/8000r5m5 December 8, 2019
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#> [1] 0.1926007

3.3.2 Exact inference with gRain

junction2 <- compile(as.grain(bn2))
jriskfactors <- setEvidence(junction2, nodes = c("H","X","CT"),

states = c("Yes","Pos","Pos"))
(p <- querygrain(jriskfactors, nodes = "L")$L) # Pos. Predictive Value

#> L
#> Yes No
#> 0.1852825 0.8147175

The P (L = Yes | H = Yes, X = Pos, CT = Pos) = 0.1852825. The prior
probability of lung cancer in this model is 0.0064. So, the evidence has increased the
probability of lung cancer substantially.

For practice, how did we determine the prior probability of lung cancer? For this
query I do not need to set evidence, only query the marginal probability of L (lung
cancer) from the fitted BN.
querygrain(junction2, nodes = c("L"), type = "marginal")$L

#> L
#> Yes No
#> 0.00064 0.99936

3.4 Example 3: Fitting Bayesian network to data

An alternative method to build a BN is by fitting the model to data. We will read the
respiratory disease data frame with 20,000 observations. The key tip to remember is
that the BN node names must match the data frame variable names exactly.
#### Read respiratory disease data
rurl <- 'https://raw.githubusercontent.com/taragonmd/data/master/resp_dis.csv'
rd <- read.csv(rurl, header = TRUE)
str(rd)

#> 'data.frame': 20000 obs. of 8 variables:
#> $ H : Factor w/ 2 levels "No","Yes": 2 1 2 1 1 1 1 1 1 2 ...
#> $ B : Factor w/ 2 levels "No","Yes": 2 1 1 1 1 1 1 1 1 1 ...
#> $ L : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
#> $ T : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
#> $ M : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...
#> $ X : Factor w/ 2 levels "Neg","Pos": 1 1 1 1 1 1 1 1 1 1 ...
#> $ CT: Factor w/ 2 levels "Neg","Pos": 1 1 1 1 1 1 1 2 1 1 ...
#> $ MT: Factor w/ 2 levels "Neg","Pos": 1 1 1 1 1 1 1 1 1 1 ...
#### Build the Bayesian network
dag3 <- empty.graph(nodes=c("H", "B", "L", "T", "M", "X", "CT", "MT"))
dag3 <- set.arc(dag3, from = "H", to = "B")
dag3 <- set.arc(dag3, from = "H", to = "L")
dag3 <- set.arc(dag3, from = "L", to = "M")
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dag3 <- set.arc(dag3, from = "L", to = "X")
dag3 <- set.arc(dag3, from = "T", to = "X")
dag3 <- set.arc(dag3, from = "M", to = "CT")
dag3 <- set.arc(dag3, from = "M", to = "MT")
graphviz.plot(dag3) # Plot the BN

H

B L T

M X

CT MT

bn3 <- bn.fit(dag3, data = rd) # Fit the BN to the data

We can query the fitted BN, what is P (L = Yes | H = Yes, X = Pos, CT = Pos)?
cpquery(bn3, event = (L == "Yes"), evidence = (H == "Yes") & (X=="Pos")

& (CT=="Pos"), n = 10^6)

#> [1] 0.1559724

4 Causal inference (with causal Bayesian networks)

4.1 Directed acyclic graph (DAG)

Causal BNs are directed acyclic graphs (DAGs) (also called causal graphs) [15–17].
All of the probabalistic reasoning concepts we learned with BNs continue to apply.
With BNs the causal links are

1. assumptions based on expert knowledge,
2. evidenced-based from scientific research, or
3. conjecture to gain insights of new assumptions.
Causal inference is drawing valid, unbiased conclusions about cause-effect rela-

tionships. In causal inference we set out to
1. discover new causal pathways or models,
2. test causal hypotheses,
3. estimate causal effects.
Consider two variables (nodes), X and Y . What can explain an association

(correlation) between X and Y ?
1. random chance,
2. X caused Y (X → Y ),
3. Y caused X (X ← Y ),
4. X and Y share a common cause (X ← Z → Y ), or
5. X and Y share a common effect, Z, which is conditioned on (X → Z ← Y ;

which is called collider bias).
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By design, DAGs are not causal loops. Causal loops have an important role in
systems thinking and modeling but will not be discussed further. Statistical inference
supports causal inference with quantitative methods for estimation, chance, and bias.
A common cause involves three or more nodes and is discussed next.

Figure 9 displays the core DAG patterns of three nodes with two causal links. In
a chain (X → Y → Z), also called a sequential cause, X and Z are unconditionally
dependent. This means that X and Z are dependent without conditioning on any
variable. Likewise, in a fork (Y ← X → Z), also called a common cause, X and
Z are unconditionally dependent. In epidemiology, forks are the principle cause of
confounding.

(a)
X Y Z

(b)
Y Z

X

(c)

Y

Z

X

Figure 9. Core DAG patterns for three nodes and two edges: (a) chain (sequential cause),
(b) fork (common cause), and (c) collider (common effect).

Chains and forks make intuitive sense, colliders do not. In a collider (X → Z ←
Y ), also called a common effect, X and Y are unconditionally independent. However,
when we condition on Z (or any descendent of Z), X and Y become conditionally
dependent. Epidemiologists specialize in “adjusting for potential confounders.” When
we condition (“adjust”) on a collider we introduce a spurious association—and worse—
might conclude that the association is causal—which is impossible because X and Y
are unconditionally independent! In other words, we introduce confounding where
none existed! This is considered epidemiologic malpractice!8

Here is the classic example of collider bias. We flip a fair coin twice {0 = tail, 1 =
head}. T1 is the outcome of the first coin flip {0, 1}; T2 is the outcome of the second
coin flip {0, 1}; and S is sum of T1 and T2 {0, 1, 2}. Knowing the value of T1 tells
us absolutely nothing about the value of T2, and vice versa. They are completely
independent (represented by no solid edge in the DAG).

However, if we are told the value of S (say, 1) (this is “conditioning”), then T1
and T2 are now dependent (Figure 10). If T1 = 0, then we know the value of T2
must be 1. If T1 = 1, then we know the value of T2 must be 0. The reverse is true:
knowing T2 informs us of the value of T1. For an epidemiologic example see Cole
[18].

Our motivation for introducing DAGs is to emphasize that our causal and prob-
abilistic reasoning is very vulnerable—even when we have ’lots of data! Do your
analysts understand colliders and their perils? If not, why not?

8Or statistical malpractice if you are a statistician.
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T1 T2

S

Figure 10. Collider bias when flipping two fair coins. Conditioning on collider S introduces
a dependency (dashed edge) between T1 and T2.

4.2 Deconfounding (controlling for confounding)

Remember, while causal arrows are unidirectional, probabilistic dependence propa-
gates in both directions. By conditioning on a variable we block this propagation
unless it is a collider. In an observation study A is either a treatment or exposure,
and Y is the outcome or effect. If we are interested in measuring the causal effect of
A on Y we want to block all pathways that have arrows pointing into A (backdoor)
and that have arrows pointing into Y , but that are not descendents of A (frontdoor).

Figure 11 depicts four DAGs and the possible combinations of nodes that can
be chosen to block the backdoor pathway. The backdoor pathways are pathways
that point into X and connect to Y and do not have a collider. Colliders block
propagation unless we condition on them. If you condition on a collider you must
also condition on another variable to block the new pathway the conditioned collider
just opened.

(a)

A

V W

Y

(b)

A

V

M

W

Y

(c)

Z A Y

V

W

(d)

Z A Y

V

W M

Figure 11. In an observational study, A is either a treatment or exposure, and Y is the
outcome or effect. To measure the causal effect of A on Y we must block backdoor
pathways from A to Y by conditioning on a set of correct variables. We do not want to
condition on descedents of A, including intermediate nodes between A and Y . We do
not want to condition on colliders alone otherwize we introduce spurious associations.
For (a) we can condition on {V }, {W}, or {V,W}. For (b) we can condition on {},
{V }, {W}, {M,W}, {M,V }, {M,V,W}, but not on {M} (collider bias). For (c)
we can condition on {V }, {V,Z}, {Z,W}, {V,Z,W}, but not on {Z} alone (collider
bias), and not on {W} (leaves other path open). Finally for (d) we can condition on
{W,Z}, {W,V }, {M,Z}, {M,V }, {W,Z, V }, {M,Z, V }, {W,M,Z}, {W,M,V }, or
{W,M,Z, V }.

In Figure 11(b), conditioning on M (a collider) opens the path from A to Y by
creating a dependency between V and W . Figure 12 illustrates this new path which
is called M-bias. To the untrained analyst M behaves like a confounder because V
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and W are common causes (forks) that create an association between M and A, and
between M and Y . Without DAGs to guide us, controlling for confounders is like
flying blind: you are bound to get into trouble (i.e., introduce bias).

A

V

M

W

Y

Figure 12. Conditioning on M , a collider, introduces M-bias.

By deconfounding we mean estimating a specific causal effect while controlling
for confounding, and without introducing bias (e.g., collifer bias). In general, we
have three methodologic approaches:

1. Backdoor criterion (our primary focus)
2. Frontdoor criterion
3. Instrumental variable
For all of these we need to have a full DAG for the process we are studying. This

requires reviewing the scientific literature and collaborating with subject matter
experts (SMEs). Having a complete DAG does not mean we have data on every
variable. We may not need it depending on which variables we select for adjustment.
Hence, DAGs are also important for study and analysis design.

4.3 Backdoor criterion

DAGs are great because they are valid for whatever functional forms that connect
the variables (e.g., linear vs. nonlinear). So far, we have selected a set of variables
that will block the backdoor path. This approach is called the backdoor criterion:

1. block all spurious paths between A and Y ,
2. leave all directed paths from A to Y unperturbed, and
3. create no new spurious paths.
Now we need a calculation formula. Pearl developed do-calculus as a method to

derive this formula. The thinking goes like this: if I disconnect all backdoor arrows
into A (“graph surgery”) and set X = x for everyone in the population, then I get the
modified DAG in Figure 13(b). This do(A = a) is a hypothetical intervention. The
magic of do-calculus is to derive a formula that only has variable terms representing
the observation data from Figure 13(a).

Using do-calculus Pearl derived this backdoor adjustment formula [16]:

P (y | do(x)) =
∑

x

P (Y = y | A = a,X = x)P (X = x)

=
∑

x

P (Y = y,A = a,X = x)
P (A = a | X = x)

In this formula, the joint probability, P (y, a, x) is weighted by the term 1/P (a | x),
also called inverse probability weighting When the denominator term is used to
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(a)
A Y

X

(b)
A = a

a

Y

X

Figure 13. Backdoor criterion: (a) unmodified causal graph where A affects Y , and X
represents the covariate set of variables selected for adjustment; (b) modified causal
graph where for everyone in the population X is set to x. This is do-calculus, and is
used to derive an adjustment formula.

calculate the probability of treatment (A = 1) given covariate set X it is called the
propensity score or P (A = 1 | X)

Now we can calculate the average causal effect (ACE) or causal risk difference:

causal RD = P (Y = 1 | do(A = 1))− P (Y = 1 | do(A = 0))

And the causal risk ratio is

causal RR = P (Y = 1 | do(A = 1))
P (Y = 1 | do(A = 0))

And the causal odds ratio is

causal OR = P (Y = 1 | do(A = 1))/{1− P (Y = 1 | do(A = 1))}
P (Y = 1 | do(A = 0))/{1− P (Y = 1 | do(A = 0))}

Our goal is to measure the causal effect of A on Y . Our DAG guided the selection
of a set of variables (X) that will block the backdoor path. We see that the backdoor
adjustment formula is the weighted sum P (y, a, x) weighted by 1/P (a | x), the
inverse probability weigtht.

Let’s briefly review the general methods for deconfounding [17,19]:
1. Randomization
2. Generalized (G) methods

• Inverse probability weighting
• Standardization (g-formula)
• G-estimation

3. Stratification methods
• Restriction
• Matching (on covariates or propensity score)
• Weighted average (e.g., Mantel-Haenszel methods)
• Regression

4. Quasi-experimental methods
• Natural experiments
• Instrumental variables
• Differences in differences
• Regression discontinuity
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Our focus is obervational studies, so we will not review randomization. The
G-methods estimate the average causal effect on the entire synthetic study
population that has been deconfounded. The advantage of a synthetic study
population is that it can be analyzed as if it were a randomized controlled trial.
However, special attention is required for calculating valid confidence intervals.

In contrast, stratification methods estimate the average causal effect of treat-
ment on the treated (ATT) (or the average causal effect of exposure on the
exposed). These traditional methods are familiar to most epidemiologists not trained
in G-methods. Next, we cover a selection of methods.

4.3.1 Inverse probability weighting

4.3.1.1 IPW with stratified contingency table: Consider an observational
study where 700 patients were given access to a new drug for an ailment (Table 6)
[16]. A total of 350 patients chose to take the drug and 350 patients did not. From
previous studies we know that estrogen has a negative effect on recovery, and women
are more likely to take the drug compared to men.

Table 6. Recovery outcomes of 700 patients given access to a new drug, Stratified by sex

Men Women Combined
Drug No drug Drug No drug Drug No drug

Recovered 81 234 192 55 273 289
No recovery 6 36 71 25 77 61
Total at risk 87 270 263 80 350 350

D R

G

Figure 14. Directed acyclic graph for Table 6. D = drug; R = recovery; and G = gender

Using the backdoor adjustment formula for this DAG (Figure 14), let’s estimate
the probability of recovery (R), if the entire study population receives the drug
(D = 1), deconfounded for gender (G); and if the entire study population does not
receive the drug (D = 0), deconfounded for gender (G).

P (R = 1 | do(D = 1)) =
∑

x

P (R = 1, D = 1, X = x)
P (D = 1 | G = g) = r0

P (R = 1 | do(D = 0)) =
∑

x

P (R = 1, D = 0, X = x)
P (D = 0 | G = g) = r1

We can then calculate average causal effect as either the
• causal risk difference,
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• causal risk ratio, or
• causal odds ratio.
Using the equations above, we use R code to calculate a vector of average causal

risks:

[r0, r1]

durl <- 'https://raw.githubusercontent.com/taragonmd/data/master/drugrx-pearl2.csv'
jd <- read.csv(durl, header = TRUE)
names(jd) <- c('id', 'R', 'D', 'G')
tab_rdg <- xtabs(~ R + D + G, data = jd)
tab_dg <- apply(tab_rdg, c(2, 3), sum)
(jprob_r1dg <- prop.table(tab_rdg)['Yes',,]) # P(R = yes, D = d, G = g)

#> G
#> D Men Women
#> No 0.33428571 0.07857143
#> Yes 0.11571429 0.27428571
(cprob_dg <- prop.table(tab_dg, 2)) # P(d | g)

#> G
#> D Men Women
#> No 0.7563025 0.2332362
#> Yes 0.2436975 0.7667638
(jprob_r1dg_ipw <- jprob_r1dg/cprob_dg) # IPW matrix

#> G
#> D Men Women
#> No 0.4420000 0.3368750
#> Yes 0.4748276 0.3577186
(cprob_r1d_ipw <- apply(jprob_r1dg_ipw, 1, sum)) # summation over G

#> No Yes
#> 0.7788750 0.8325462
r0 <- unname(cprob_r1d_ipw['No']) # P(R = yes | D = no)
r1 <- unname(cprob_r1d_ipw['Yes']) # P(R = yes | D = yes)
#### Average causal effects (ACEs)
c(causal_RD=r1-r0, causal_RR=r1/r0, causal_OR=(r1/(1-r1))/(r0/(1-r0)))

#> causal_RD causal_RR causal_OR
#> 0.05367122 1.06890864 1.41150841

Here is a slightly different approach that calculates the same results but creates
the IPW array that allows us to generate a IPW synthetic population that is
deconfounded by removing the arrow into D (treatment).
jprob_rdg <- prop.table(tab_rdg) # P(r, d, g)
cprob_dg <- prop.table(tab_dg, 2) # P(d | g)
jprob_rdg_ipw <- sweep(jprob_rdg, c(2,3), cprob_dg, '/') # IPW array
cprob_rd_ipw <- apply(jprob_rdg_ipw, c(1,2), sum) # sum over G

https://escholarship.org/uc/ item/8000r5m5 December 8, 2019

https://escholarship.org/uc/item/8000r5m5


Population health thinking with Bayesian networks p. 22 of 48

r0 <- cprob_rd_ipw['Yes','No'] # P(R = yes | D = no)
r1 <- cprob_rd_ipw['Yes','Yes'] # P(R = yes | D = yes)
#### Average causal effects (ACEs)
c(causal_RD=r1-r0, causal_RR=r1/r0, causal_OR=(r1/(1-r1))/(r0/(1-r0)))

#> causal_RD causal_RR causal_OR
#> 0.05367122 1.06890864 1.41150841

To retrieve the original population we multiple the joint probability by 700 (the
total study population). To view the synthetic population we multiple the IPW joint
probability by 700 (the total study population). In the R code below we create a
data frame to display both the original and IPW synthetic study populations.
df_rdg_both <- as.data.frame(jprob_rdg*700) # temp; original
df_rdg_ipw2 <- as.data.frame(jprob_rdg_ipw*700) # IPW synthetic pop
df_rdg_both$Freq_IPW <- df_rdg_ipw2$Freq # final # combine both
df_rdg_both # display

#> R D G Freq Freq_IPW
#> 1 No No Men 36 47.60000
#> 2 Yes No Men 234 309.40000
#> 3 No Yes Men 6 24.62069
#> 4 Yes Yes Men 81 332.37931
#> 5 No No Women 25 107.18750
#> 6 Yes No Women 55 235.81250
#> 7 No Yes Women 71 92.59696
#> 8 Yes Yes Women 192 250.40304

In fact, to prove that the synthetic population is deconfounded we can analyze
the new data and show that the back-door is blocked; that is, there is no association
between Drug (treatment or exposure) and Gender (confounder).
ipwpop_rdg <- jprob_rdg_ipw*700 # create stratified synthetic table
(ipwpop_dg <- apply(ipwpop_rdg, c(2,3), sum)) # Drug vs Gender (no assoc)

#> G
#> D Men Women
#> No 357 343
#> Yes 357 343
ft <- fisher.test(ipwpop_dg) # no assoc betw D and G (i.e., deconfounded)
c(ft$estimate, p.value = ft$p.value)

#> odds ratio p.value
#> 1 1
(ipwpop_rd <- apply(ipwpop_rdg, c(1,2), sum)) # R vs D (crude table)

#> D
#> R No Yes
#> No 154.7875 117.2176
#> Yes 545.2125 582.7824
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(risk <- prop.table(ipwpop_rd, 2))

#> D
#> R No Yes
#> No 0.221125 0.1674538
#> Yes 0.778875 0.8325462
r0 <- risk['Yes', 'No'] # P(R = yes | D = no)
r1 <- risk['Yes', 'Yes'] # P(R = yes | D = yes)
#### Average causal effects (ACEs)
c(causal_RD=r1-r0, causal_RR=r1/r0, causal_OR=(r1/(1-r1))/(r0/(1-r0)))

#> causal_RD causal_RR causal_OR
#> 0.05367122 1.06890864 1.41150841

The is a marginal (crude table) analysis of the IPW sythetic population. In the
next section we repeat IPW with a generalized linear model (GLM) which is called
a marginal structural model (MSM). By “marginal” we measure the average causal
effect in the population without conditioning on any variables (e.g., confounders).
By “structural” we mean modeling potential outcomes, not observed outcomes.

4.3.1.2 IPW with marginal structural model (MSM): The general MSM
is represented by

g{E(Y a | V )} = h(a, V ;ψ),

where h is some parametric function, usually linear and additive; and g is a link
function (log, identity, logit) in a generalized linear model for estimating

• causal risk difference,
• causal risk ratio, or
• causal odds ratio.
V represents additional variables that might be used, for example, for evaluating

effect modification. For our purposes, we will ignore V .
Recall that the IPW is related to the propensity score. The IPW for the i-th

treated (or exposed) subject is

Wi = 1
P (A = 1 | Xi)

= 1
propensity score ,

and the IPW for the i-th untreated (or non-exposed) subject is

Wi = 1
P (A = 0 | Xi)

= 1
1− propensity score ,

where A = treatment (or exposure) and Xi is the set of variables (“covariates”) that
will be used for deconfounding. In our example, A is drug (D) and X is gender (G).

We have everything we need to estimate ACEs with IPW/MSM. Here are the
general steps:

1. Estimate propensity scores
2. Create inverse probability weights
3. Specify the MSM of interest (causal RR, OR, or RD)
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4. Fit IPW generalized linear model
5. Test for deconfounding; i.e., confounder(s) independent of treatment (exposure)
6. Use asymptotic (sandwich) variance estimator (or bootstrapping) to account

for artificial “sample size” of synthetic population.
We will analyze the same data from Table 6. A key feature of the analyses that

follow is the display of “Table 1” using the tableone R package. Once we have
deconfounded the back-door path, by any method (IPW, matching, etc.), then the
confounding variables will not be associated with the treatment (exposure) variable.
In other words, their distribution will be balanced across treatment (exposure) levels.
To assess balance we use the standardized mean distance (SMD).

SMD = (x̄A=1 − x̄A=0) /

√
s2

A=1 + s2
A=0

2


Deconfounding means achieving balance; that is, the covariates are independent

from treatment (or exposure) level. The SMD < 0.1 indicates balance. With respect
to causal inference, achieving this conditional independence is called achieving
exchangeability (or conditional exchangeability) or achieving ignorability [19].

Finally, because we are generating an IPW synthetic population we will need
special attention in calculating appropiate confidence intervals. We will use R’s
sandwich package for robust variance estimation.
library(tableone)
library(sandwich) #for robust variance estimation
library(survey)

jd2 <-jd # copy original data set with factors
jd2$R <- as.numeric(jd2$R=='Yes') # recode yes = 1, no = 0
jd2$D <- as.numeric(jd2$D=='Yes') # recode yes = 1, no = 0
jd2$G <- as.numeric(jd2$G=='Women') # recode women = 1, men = 0

#### look at a table 1
table1 <- CreateTableOne(vars = "G", strata = "D",

data = jd2, test = FALSE)
#### include standardized mean difference (SMD)
print(table1,smd=TRUE)

#> Stratified by D
#> 0 1 SMD
#> n 350 350
#> G (mean (SD)) 0.23 (0.42) 0.75 (0.43) 1.225
#### propensity score model
psmodel <- glm(D ~ G, family = binomial(link ="logit"), data = jd2)

#### value of propensity score for each subject
## ps <- psmodel$fitted.values # alternative
ps <- predict(psmodel, type = "response")
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#### create IP weights
jd2$wt <- ifelse(jd2$D==1, 1/(ps), 1/(1-ps))

#### apply weights to data
weighteddata <- svydesign(ids = ~ 1, data =jd2, weights = ~ wt)

#### weighted table 1
weightedtable <- svyCreateTableOne(vars = "G", strata = "D",

data = weighteddata, test = FALSE)
#### Show table with SMD
print(weightedtable, smd = TRUE)

#> Stratified by D
#> 0 1 SMD
#> n 700.00 700.00
#> G (mean (SD)) 0.49 (0.50) 0.49 (0.50) <0.001
#### Causal Risk Difference with weigthed GLM
glm_obj <- glm(R ~ D, weights = wt, family =

quasibinomial(link="identity"), data = jd2)
beta_ipw <- unname(coef(glm_obj))
SE <- unname(sqrt(diag(vcovHC(glm_obj, type="HC0"))))

#### get point estimate and CI for risk difference
cRD <- beta_ipw[2]
conf_level = 0.95
Z <- qnorm((1 + conf_level)/2)
cint <- beta_ipw[2] + c(-1,1) * Z * SE[2]
list(causal_RD = cRD, conf_int = cint, conf_level = conf_level )

#> $causal_RD
#> [1] 0.05367122
#>
#> $conf_int
#> [1] -0.01419789 0.12154033
#>
#> $conf_level
#> [1] 0.95
#### Causal Risk Ratio with weighted GLM
glm_obj <- glm(R ~ D, weights = wt, family =

quasibinomial(link = log), data = jd2)
beta_ipw <- unname(coef(glm_obj))

#### To account for weighting, use asymptotic (sandwich) variance
SE <- unname(sqrt(diag(vcovHC(glm_obj, type="HC0"))))
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#### get point estimate and CI for risk ratio
cRR <- exp(beta_ipw[2])
conf_level = 0.95
Z <- qnorm((1 + conf_level)/2)
cint <- exp(beta_ipw[2] + c(-1,1) * Z * SE[2])
list(causal_RR = cRR, conf_int = cint, conf_level = conf_level)

#> $causal_RR
#> [1] 1.068909
#>
#> $conf_int
#> [1] 0.9815544 1.1640371
#>
#> $conf_level
#> [1] 0.95
#### Causal Odds Ratio with weighted GLM
glm_obj <- glm(R ~ D, weights = wt, family =

quasibinomial(link = logit), data = jd2)
beta_ipw <- unname(coef(glm_obj))

#### To account for weighting, use asymptotic (sandwich) variance
SE <- unname(sqrt(diag(vcovHC(glm_obj, type="HC0"))))

#### get point estimate and CI for odds ratio
cOR <- exp(beta_ipw[2])
conf_level = 0.95
Z <- qnorm((1 + conf_level)/2)
cint <- exp(beta_ipw[2] + c(-1,1) * Z * SE[2])
list(causal_OR = cOR, conf_int = cint, conf_level = conf_level)

#> $causal_OR
#> [1] 1.411508
#>
#> $conf_int
#> [1] 0.9199587 2.1657016
#>
#> $conf_level
#> [1] 0.95

4.3.1.3 IPW/MSM with multiple confounders (“covariates”): The fol-
lowing analysis is with data from a hospital-based observational study of right
heart catherization (RHC). A description of the data set is available from http:
//biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/rhc.html.
#### load packages
library(tableone)
library(sandwich) #for robust variance estimation
library(survey)
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#read in data
load(url("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/rhc.sav"))

#### create smaller data set and binary (0, 1) X variables
ARF <- as.numeric(rhc$cat1=='ARF')
CHF <- as.numeric(rhc$cat1=='CHF')
Cirr <- as.numeric(rhc$cat1=='Cirrhosis')
colcan <- as.numeric(rhc$cat1=='Colon Cancer')
Coma <- as.numeric(rhc$cat1=='Coma')
COPD <- as.numeric(rhc$cat1=='COPD')
lungcan <- as.numeric(rhc$cat1=='Lung Cancer')
MOSF <- as.numeric(rhc$cat1=='MOSF w/Malignancy')
sepsis <- as.numeric(rhc$cat1=='MOSF w/Sepsis')
female <- as.numeric(rhc$sex=='Female')
died <- as.numeric(rhc$death=='Yes')
age <- rhc$age
treatment <- as.numeric(rhc$swang1=='RHC')
meanbp1 <- rhc$meanbp1

#### new dataset
mydata <- cbind(ARF, CHF, Cirr, colcan, Coma, lungcan, MOSF,

sepsis, age, female, meanbp1, treatment, died)
mydata <- data.frame(mydata)

#### covariate set
xvars <- c("ARF", "CHF", "Cirr", "colcan", "Coma", "lungcan", "MOSF",

"sepsis", "age","female","meanbp1")

#### look at a table 1
table1 <- CreateTableOne(vars = xvars, strata = "treatment",

data = mydata, test = FALSE)

#### include standardized mean difference (SMD)
print(table1,smd=TRUE)

#> Stratified by treatment
#> 0 1 SMD
#> n 3551 2184
#> ARF (mean (SD)) 0.45 (0.50) 0.42 (0.49) 0.059
#> CHF (mean (SD)) 0.07 (0.25) 0.10 (0.29) 0.095
#> Cirr (mean (SD)) 0.05 (0.22) 0.02 (0.15) 0.145
#> colcan (mean (SD)) 0.00 (0.04) 0.00 (0.02) 0.038
#> Coma (mean (SD)) 0.10 (0.29) 0.04 (0.20) 0.207
#> lungcan (mean (SD)) 0.01 (0.10) 0.00 (0.05) 0.095
#> MOSF (mean (SD)) 0.07 (0.25) 0.07 (0.26) 0.018
#> sepsis (mean (SD)) 0.15 (0.36) 0.32 (0.47) 0.415
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#> age (mean (SD)) 61.76 (17.29) 60.75 (15.63) 0.061
#> female (mean (SD)) 0.46 (0.50) 0.41 (0.49) 0.093
#> meanbp1 (mean (SD)) 84.87 (38.87) 68.20 (34.24) 0.455
#### propensity score model
psmodel <- glm(treatment ~ age + female + meanbp1+ARF+CHF+Cirr+colcan+

Coma+lungcan+MOSF+sepsis, family = binomial(link ="logit"))

#### value of propensity score for each subject
## ps <- psmodel$fitted.values # alternative
ps <- predict(psmodel, type = "response")

#### create IP weights
weight <- ifelse(treatment==1,1/(ps),1/(1-ps))

#### apply weights to data
weighteddata<-svydesign(ids = ~ 1, data =mydata, weights = ~ weight)

#### weighted table 1
weightedtable <-svyCreateTableOne(vars = xvars, strata = "treatment",

data = weighteddata, test = FALSE)
#### Show table with SMD
print(weightedtable, smd = TRUE)

#> Stratified by treatment
#> 0 1 SMD
#> n 5732.49 5744.88
#> ARF (mean (SD)) 0.44 (0.50) 0.44 (0.50) 0.010
#> CHF (mean (SD)) 0.08 (0.27) 0.08 (0.27) 0.005
#> Cirr (mean (SD)) 0.04 (0.19) 0.04 (0.19) 0.001
#> colcan (mean (SD)) 0.00 (0.04) 0.00 (0.06) 0.042
#> Coma (mean (SD)) 0.08 (0.26) 0.07 (0.25) 0.023
#> lungcan (mean (SD)) 0.01 (0.08) 0.01 (0.09) 0.014
#> MOSF (mean (SD)) 0.07 (0.26) 0.07 (0.26) 0.004
#> sepsis (mean (SD)) 0.21 (0.41) 0.22 (0.41) 0.002
#> age (mean (SD)) 61.36 (17.56) 61.43 (15.33) 0.004
#> female (mean (SD)) 0.45 (0.50) 0.45 (0.50) 0.001
#> meanbp1 (mean (SD)) 78.60 (37.58) 79.26 (40.31) 0.017
#### Causal Risk Difference with weigthed GLM
glm.obj <- glm(died ~ treatment, weights = weight, family =

quasibinomial(link="identity"))
beta_ipw <- unname(coef(glm.obj))
SE <- unname(sqrt(diag(vcovHC(glm.obj, type="HC0"))))

#### get point estimate and CI for risk difference
cRD <- beta_ipw[2]
conf_level = 0.95
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Z <- qnorm((1 + conf_level)/2)
cint <- beta_ipw[2] + c(-1,1) * Z * SE[2]
list(causal_RD = cRD, conf_int = cint, conf_level = conf_level)

#> $causal_RD
#> [1] 0.05154951
#>
#> $conf_int
#> [1] 0.02333275 0.07976627
#>
#> $conf_level
#> [1] 0.95
#### Causal Risk Ratio with weighted GLM
glm.obj <- glm(died ~ treatment, weights = weight, family =

quasibinomial(link=log))
beta_ipw <- unname(coef(glm.obj))

#### To account for weighting, use asymptotic (sandwich) variance
SE <- unname(sqrt(diag(vcovHC(glm.obj, type="HC0"))))

#### get point estimate and CI for risk ratio
cRR <- exp(beta_ipw[2])
conf_level = 0.95
Z <- qnorm((1 + conf_level)/2)
cint <- exp(beta_ipw[2] + c(-1,1) * Z * SE[2])
list(causal_RR = cRR, conf_int = cint, conf_level = conf_level)

#> $causal_RR
#> [1] 1.081764
#>
#> $conf_int
#> [1] 1.036698 1.128789
#>
#> $conf_level
#> [1] 0.95
#### Causal Odds Ratio with weighted GLM
glm.obj <- glm(died ~ treatment, weights = weight, family =

quasibinomial(link=logit))
beta_ipw <- unname(coef(glm.obj))

#### To account for weighting, use asymptotic (sandwich) variance
SE <- unname(sqrt(diag(vcovHC(glm.obj, type="HC0"))))

#### get point estimate and CI for odds ratio
cOR <- exp(beta_ipw[2])
conf_level = 0.95
Z <- qnorm((1 + conf_level)/2)
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cint <- exp(beta_ipw[2] + c(-1,1) * Z * SE[2])
list(causal_OR = cOR, conf_int = cint, conf_level = conf_level)

#> $causal_OR
#> [1] 1.257132
#>
#> $conf_int
#> [1] 1.107062 1.427545
#>
#> $conf_level
#> [1] 0.95

4.3.2 Matching on covariate set of confounders

In this section I briefly review some of the analyses from Professor Jason Roy’s
Coursera course [20]. This is an outstanding course and I highly recommend that
everyone view or take it. My review is no substitute for his course. Here are the
general steps:

1. Prepare data
2. Match on covariate set X (using Mahalanobis distance)
3. Check for balanced covariate means (using standardized mean differencee)
4. Estimate average causal effect (as if randomized controlled trial)
5. Sensitivity analysis for hidden bias (not shown; instead see [20])
We will be pairwise matching control subjects (A = 0) to treated subjects (A = 1).

Remember that “treated” is a general term for being exposed and “control” for not
being exposed.9 By matching on an appropriate set of confounders we are actually

• simulating a randomized controlled study, and
• measuring the average causal effect of treatment on the treated (ATT).
There are several R packages for matching: Matching, optmatch, MatchIt

Table 7. R packages for matching

Method or task tableone Matching rcbalance

Mahalanobis distance
Robust M-distance
Greedy matching
Optimal matching
Assessing balance

The Mahalanobis distance is a multi-dimensional measure of mean distance
between two vectors of covariates comparing treated to control. The smaller the
M-distance the better the match. Because mean values can be influencd by outliers,
an alternative is the robust M-distance that uses a rank statistic.

Greedy (nearest neighbor) matching is computationally fast but not globally
optimized. Optimal matching finds the best global match but is computationally

9In a case-control study this would be matching controls (non-disease) to cases (disease).
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demanding. We will use greedy matching.
We will analyze data from a health care observational study on right health

catheterization (treatment) and death (outcome). We will match on a set of con-
founders, including age, sex, and mean blood pressure.
#load packages
library(tableone)
library(Matching)

#read in data
load(url("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/rhc.sav"))

#### create smaller data set and binary (0, 1) X variables
ARF <- as.numeric(rhc$cat1=='ARF')
CHF <- as.numeric(rhc$cat1=='CHF')
Cirr <- as.numeric(rhc$cat1=='Cirrhosis')
colcan <- as.numeric(rhc$cat1=='Colon Cancer')
Coma <- as.numeric(rhc$cat1=='Coma')
COPD <- as.numeric(rhc$cat1=='COPD')
lungcan <- as.numeric(rhc$cat1=='Lung Cancer')
MOSF <- as.numeric(rhc$cat1=='MOSF w/Malignancy')
sepsis <- as.numeric(rhc$cat1=='MOSF w/Sepsis')
female <- as.numeric(rhc$sex=='Female')
died <- as.numeric(rhc$death=='Yes')
age <- rhc$age
treatment <- as.numeric(rhc$swang1=='RHC')
meanbp1 <- rhc$meanbp1

#### new dataset
mydata <- cbind(ARF, CHF, Cirr, colcan, Coma, lungcan, MOSF,

sepsis, age, female, meanbp1, treatment, died)
mydata <- data.frame(mydata)

#### covariate set
xvars <- c("ARF","CHF","Cirr","colcan","Coma","lungcan","MOSF","sepsis",

"age","female","meanbp1")

#### look at a table 1
table1 <- CreateTableOne(vars=xvars,strata="treatment", data=mydata,

test=FALSE)
#### include standardized mean difference (SMD)
print(table1, smd = TRUE)

#> Stratified by treatment
#> 0 1 SMD
#> n 3551 2184
#> ARF (mean (SD)) 0.45 (0.50) 0.42 (0.49) 0.059
#> CHF (mean (SD)) 0.07 (0.25) 0.10 (0.29) 0.095
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#> Cirr (mean (SD)) 0.05 (0.22) 0.02 (0.15) 0.145
#> colcan (mean (SD)) 0.00 (0.04) 0.00 (0.02) 0.038
#> Coma (mean (SD)) 0.10 (0.29) 0.04 (0.20) 0.207
#> lungcan (mean (SD)) 0.01 (0.10) 0.00 (0.05) 0.095
#> MOSF (mean (SD)) 0.07 (0.25) 0.07 (0.26) 0.018
#> sepsis (mean (SD)) 0.15 (0.36) 0.32 (0.47) 0.415
#> age (mean (SD)) 61.76 (17.29) 60.75 (15.63) 0.061
#> female (mean (SD)) 0.46 (0.50) 0.41 (0.49) 0.093
#> meanbp1 (mean (SD)) 84.87 (38.87) 68.20 (34.24) 0.455

In the table we want the standardized mean difference (SMD) to be less than 0.1.
We see that several variables are not balanced (cirrhosis, coma, sepsis, and mean
BP). Now let’s perform the greedy match.
greedymatch <- Match(Tr=treatment,M=1,X=mydata[xvars],replace=FALSE)
#### create new data set with treated and matched controls
matched <- mydata[unlist(greedymatch[c("index.treated","index.control")]),]

#### get table 1 for matched data with standardized differences
matchedtab1 <- CreateTableOne(vars=xvars, strata ="treatment",

data=matched, test = FALSE)
print(matchedtab1, smd = TRUE)

#> Stratified by treatment
#> 0 1 SMD
#> n 2184 2184
#> ARF (mean (SD)) 0.42 (0.49) 0.42 (0.49) 0.006
#> CHF (mean (SD)) 0.10 (0.29) 0.10 (0.29) <0.001
#> Cirr (mean (SD)) 0.02 (0.15) 0.02 (0.15) <0.001
#> colcan (mean (SD)) 0.00 (0.02) 0.00 (0.02) <0.001
#> Coma (mean (SD)) 0.04 (0.20) 0.04 (0.20) <0.001
#> lungcan (mean (SD)) 0.00 (0.05) 0.00 (0.05) <0.001
#> MOSF (mean (SD)) 0.07 (0.26) 0.07 (0.26) <0.001
#> sepsis (mean (SD)) 0.24 (0.43) 0.32 (0.47) 0.177
#> age (mean (SD)) 61.53 (16.15) 60.75 (15.63) 0.049
#> female (mean (SD)) 0.44 (0.50) 0.41 (0.49) 0.042
#> meanbp1 (mean (SD)) 73.12 (34.28) 68.20 (34.24) 0.144

Once we have matched we can precede with the analysis as if we had data from a
randomized controlled trial.
#### outcome analysis
y_trt <- matched$died[matched$treatment == 1]
y_con <- matched$died[matched$treatment == 0]

#### pairwise difference
diffy <- y_trt - y_con

#### paired t-test
t.test(diffy)
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#>
#> One Sample t-test
#>
#> data: diffy
#> t = 3.9289, df = 2183, p-value = 8.799e-05
#> alternative hypothesis: true mean is not equal to 0
#> 95 percent confidence interval:
#> 0.02706131 0.08099730
#> sample estimates:
#> mean of x
#> 0.0540293
#### McNemar test is an alternative
(mctab <- table(y_trt, y_con))

#> y_con
#> y_trt 0 1
#> 0 303 395
#> 1 513 973
mcnemar.test(mctab)

#>
#> McNemar's Chi-squared test with continuity correction
#>
#> data: mctab
#> McNemar's chi-squared = 15.076, df = 1, p-value = 0.0001033

4.3.3 Matching on propensity score

A propensity score (PS), P (A = 1 | X) is the probability of treatment given the
selected covariate set X. The PS is a balancing score, meaning that if we match
controls to treated using PS, we also balance the distribution of covariates between
treated and controls. That’s really cool!10 We will use logistic regression to calculate
the PS. Once we have successfully matched the analysis proceeds as before.
psmodel <- glm(treatment~ARF+CHF+Cirr+colcan+Coma+lungcan+MOSF+

sepsis+age+female+meanbp1, family=binomial(),
data=mydata)

#### create propensity score
## pscore <- predict(psmodel, type = "response") # alternative
pscore <- psmodel$fitted.values

#### do greedy matching on logit(PS) using Match with a caliper
logit <- function(p) {log(p)-log(1-p)}
psmatch <- Match(Tr = mydata$treatment, M = 1, X = logit(pscore),

replace = FALSE, caliper = .2)
#### create new data set with treated and matched controls
matched <- mydata[unlist(psmatch[c("index.treated","index.control")]),]

10To understand the theory see [20].
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xvars <- c("ARF", "CHF", "Cirr", "colcan", "Coma", "lungcan", "MOSF",
"sepsis", "age", "female", "meanbp1")

#### get standardized differences
matchedtab1<-CreateTableOne(vars = xvars, strata ="treatment",

data = matched, test = FALSE)
print(matchedtab1, smd = TRUE)

#> Stratified by treatment
#> 0 1 SMD
#> n 1932 1932
#> ARF (mean (SD)) 0.47 (0.50) 0.47 (0.50) 0.002
#> CHF (mean (SD)) 0.10 (0.30) 0.09 (0.29) 0.009
#> Cirr (mean (SD)) 0.02 (0.15) 0.03 (0.16) 0.010
#> colcan (mean (SD)) 0.00 (0.03) 0.00 (0.02) 0.019
#> Coma (mean (SD)) 0.05 (0.21) 0.05 (0.22) 0.015
#> lungcan (mean (SD)) 0.00 (0.06) 0.00 (0.05) 0.010
#> MOSF (mean (SD)) 0.09 (0.28) 0.08 (0.27) 0.019
#> sepsis (mean (SD)) 0.25 (0.43) 0.25 (0.43) 0.004
#> age (mean (SD)) 60.99 (17.69) 60.91 (15.51) 0.005
#> female (mean (SD)) 0.44 (0.50) 0.43 (0.49) 0.027
#> meanbp1 (mean (SD)) 71.39 (34.13) 71.00 (35.01) 0.011
#### outcome analysis
y_trt <- matched$died[matched$treatment == 1]
y_con <- matched$died[matched$treatment == 0]
#### pairwise difference
diffy <- y_trt-y_con
#### paired t-test
t.test(diffy)

#>
#> One Sample t-test
#>
#> data: diffy
#> t = 2.6578, df = 1931, p-value = 0.007931
#> alternative hypothesis: true mean is not equal to 0
#> 95 percent confidence interval:
#> 0.01058136 0.07016399
#> sample estimates:
#> mean of x
#> 0.04037267

4.4 Front-door criterion

For public health epidemiologists, the backdoor criterion is our go-to approach.
However, we have occasions where unmeasured or unknown potential confounders
complicate our health promotion strategy. For example, because studies linking
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smoking to lung cancer were observational (i.e., not randomized controlled trials)
the tobacco industry argued that investigators were unable to control for unknown
confounders such as a “carcinogenic genotype that also induces an inborn craving
for nicotine” [16].

Figure 15(a) depicts this challenge faced by investigators: The DAG does not
satisfy the backdoor criterion because the variable U (carcinogenic genetype) is
unobserved and cannot be used to block the backdoor path from A (smoking) to
Y (lung cancer) (A← U → Y ). The causal effect of smoking on lung cancer is not
identifiable in this DAG.

(a)
A Y

U

(b)
A M Y

U

Figure 15. Frontdoor criterion: (a) backdoor criterion will not work; we cannot block
backdoor path (A← U → Y ); (b) in the presence of a mediator (M) we can apply the
backdoor criterion twice and measure the causal effect of A on Y . This is called the
frontdoor criterion.

However, if a measurable mediator exist between A (smoking) and Y (lung
cancer), for example, M (tar deposits), then we can measure the causal effect
P (Y = y | do(X = x)) through two consecutive application of the backdoor criterion
(see Figure 15(b)). The effect of A on M is identifiable because there is no backdoor
path from A to M . Also, the effect of M on Y is identifiable because there is no
backdoor path from M to Y .

For the frontdoor criterion, the backdoor criterion is applied twice: A to M , then
M to Y . Here is the full expression:

P (Y = y | do(A = a)) =
∑
m

P (Y = y | do(M = m))P (M = m | do(A = a))

Solving for each expression on the right side yields:

P (M = m | do(A = a)) = P (M = m | A = a)

P (Y = y | do(M = m)) =
∑

a

P (Y = y |M = m,A = a)P (A = a)

And by substituting back into to full expression we get the front-door adjust-
ment formula, where P (Y = y | do(A = a)) =∑

m

∑
a′

P (Y = y |M = m,A = a′)P (A = a′)P (M = m | A = a)

And the front-door adjustment formula can be written in shorter form:
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P (y | do(a)) =
∑
m

P (m | a)
∑
a′

P (y | m, a′)P (a′)

4.4.1 Example: lung cancer, smoking, tar and carcinogenic genotype

Pearl presents a hypothetical population of 800,000 subjects at high risk for lung
cancer due to smoking and other exposures [16]. Data was available on smoking
history (A), lung cancer (Y ), and lung tar deposits (M). Figure 15(b) represents
the DAG for this data. The data numbers are in the thousands.
A.lv <- c("Smokers", "Non.smokers")
M.lv <- c("Tar", "No.tar")
Y.lv <- c("Cancer", "No.cancer")
tab.yma <- array(c(323, 57, 18, 2, 1, 19, 38, 342), dim = c(2, 2, 2),

dimnames = list(Y = Y.lv, M = M.lv, A = A.lv))
tab.may <- aperm(tab.yma, perm=c(2,3,1))
tab.amy <- aperm(tab.yma, perm=c(3,2,1))
ftable(tab.may)

#> Y Cancer No.cancer
#> M A
#> Tar Smokers 323 57
#> Non.smokers 1 19
#> No.tar Smokers 18 2
#> Non.smokers 38 342
ftable(tab.amy)

#> Y Cancer No.cancer
#> A M
#> Smokers Tar 323 57
#> No.tar 18 2
#> Non.smokers Tar 1 19
#> No.tar 38 342

This hypothetical data set could be analyzed in such a way to make smoking
appear healthy (smokers have less lung cancer), or that tar deposits are unhealthy
(tar deposits associated with lung cancer).11 However, we recognize this as an
opportunity to use the front-door criterion to assess the causal effect of smoking on
lung cancer while controlling for unknown confounders.

Here is the front-door adjustment formula again where P (y | do(a)) =∑
m

P (m | a)
∑
a′

P (y | m, a′)P (a′)

We need the sum of these products over all combinations of m and a′. Because
there are two summations we will use nested for loops twice: once for nonsmokers
(A = 0) and once for smokers (A = 1).

11See Pearl [16], p. 67, for these arguments.
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(P.m_a <- prop.table(apply(tab.yma, c(2,3), sum),2))

#> A
#> M Smokers Non.smokers
#> Tar 0.95 0.05
#> No.tar 0.05 0.95
(P.y_m.a <- prop.table(tab.yma,c(2,3)))

#> , , A = Smokers
#>
#> M
#> Y Tar No.tar
#> Cancer 0.85 0.9
#> No.cancer 0.15 0.1
#>
#> , , A = Non.smokers
#>
#> M
#> Y Tar No.tar
#> Cancer 0.05 0.1
#> No.cancer 0.95 0.9
(P.a <- prop.table(apply(tab.yma, 3, sum)))

#> Smokers Non.smokers
#> 0.5 0.5
####
#### Calculate front-door adjustment
#### Y = cancer among nonsmokers
pY1_do.A0.vec <- rep(NA, length(A.lv)*length(M.lv))
y1 <- Y.lv[1] # cancer
a0 <- A.lv[2] # nonsmokers
step <- 1
for(ap in A.lv){

for(m in M.lv){
pY1_do.A0.vec[step] <- P.y_m.a[y1, m, ap] * P.a[ap] * P.m_a[m, a0]
step <- step + 1

} }
(pY1_do.A0 <- sum(pY1_do.A0.vec))

#> [1] 0.4975
####
#### Y = cancer among smokers
pY1_do.A1.vec <- rep(NA, length(A.lv)*length(M.lv))
y1 <- Y.lv[1] # cancer
a1 <- A.lv[1] # smoker
step <- 1
for(ap in A.lv){
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for(m in M.lv){
pY1_do.A1.vec[step] <- P.y_m.a[y1, m, ap] * P.a[ap] * P.m_a[m, a1]
step <- step + 1

} }
(pY1_do.A1 <- sum(pY1_do.A1.vec))

#> [1] 0.4525
This problem is fully worked out here: http://bayes.cs.ucla.edu/BOOK-2K/ch3-

3.pdf. Because this is a hypothetical data set the final answer is contrary to known
facts about smoking and lung cancer. This exercise was designed to illustrate the
front-door adjustment formula.

4.5 Instrumental variable

TBD

Z A Y

U

Figure 16. Instrumental variable

#### read dataset
data(card.data)

#IV is nearc4 (near 4 year college)
#outcome is lwage (log of wage)
#'treatment' is educ (number of years of education)

#summary stats
mean(card.data$nearc4)
par(mfrow=c(1,2))
hist(card.data$lwage)
hist(card.data$educ)

#is the IV associated with the treatment? strenght of IV
mean(card.data$educ[card.data$nearc4==1])
mean(card.data$educ[card.data$nearc4==0])

#make education binary
educ12<-card.data$educ>12
#estimate proportion of 'compliers'
propcomp<-mean(educ12[card.data$nearc4==1])-

mean(educ12[card.data$nearc4==0])
propcomp
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#intention to treat effect
itt<-mean(card.data$lwage[card.data$nearc4==1])-

mean(card.data$lwage[card.data$nearc4==0])
itt

#complier average causal effect
itt/propcomp

#two stage least squares

#stage 1: regress A on Z
s1<-lm(educ12~card.data$nearc4)
## get predicted value of A given Z for each subject
predtx <-predict(s1, type = "response")
table(predtx)

#stage 2: regress Y on predicted value of A
lm(card.data$lwage~predtx)

#2SLS using ivpack
ivmodel=ivreg(lwage ~ educ12, ~ nearc4, x=TRUE, data=card.data)
robust.se(ivmodel)

ivmodel=ivreg(lwage ~ educ12 + exper + reg661 + reg662 +
reg663 + reg664 + reg665+ reg666 + reg667 + reg668,
~ nearc4 + exper +

reg661+ reg662 + reg663 + reg664 + reg665 + reg666 +
reg667 + reg668, x=TRUE, data=card.data)
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5 Decision quality (with decision Bayesian networks)

Public health practice is replete with claims of “data-driven decision-making.” This
usually means reading scientific articles, looking at local data and information, and
implementing evidence-based strategies. With few exceptions, there is generally no
formal, deliberative, structured process for translating data into actionable knowl-
edge, and for knowledge integration—the management, synthesis, and translation of
knowledge into decision support systems to improve policy, practice, and—ultimately—
population health.

Because we make intuitive decisions daily, most of us are not formerly trained in
decision making. Decisions are oftens based on power, politics, advocacy, organiza-
tional history and culure, and personal interests. Yet, decisions determine how we
spend our time and allocate scarce resources, so they should be driven by strategic
goals, stakeholder needs, evidence, and decision quality (DQ).

DQ (Table TODO) is a checklist for continuous decision improvement (decision
competence), and a road map for advanced methods such as decision analysis (DA).
DA is a formal method for tackling decisions in the face of uncertainty and trade-offs.
DA is usually conducted with decision trees (Figure 17) where squares represent
decision nodes and ellipses represent uncertainty (chance) nodes. On the right
side of the decision tree are the utilities (weighted outcomes [usually weighted by
preference]). The general approach is to calculate the expected utility (value) for
each decision option, and to choose the option that maximizes this utility.

Treat
(decision)

Diseasetreat

Diseaseno treat

Test
yes

Testno

Testyes

Test

no

U[D+,T+]pos

U[D+,T-]neg

U[D-,T+]pos

U[D-,T+]neg

U[D+,T+]pos

U[D+,T-]
neg

U[D-,T+]pos

U[D-,T-]

neg

Figure 17. A decision tree for decision analysis

An alternative way to structure a decision is with a decision Bayesian network (BN)
(also called an influence diagram). An influence diagram is a BN that includes
decision, uncertainty (chance), calculation (deterministic), and value (utility) nodes
(Figure 18).

Figure 19 (p. 41) is the influence diagram version of Figure 17 (p. 40). Compared
to decision trees, influence diagrams can more efficiently represent complex decision
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problems. Figure 19 has some key features:
1. Decision nodes alway connect to the final utility (value) node.
2. A node connecting into a decision node (e.g., “Test”) represents information

that is available to “influence” the decision node.
3. The disease node has a causal effect on the diagnostic test results.
4. The disease node has a causal effect on the final outcome (utility node).
Notice that this influence diagram is able to integrate disease prevalence (prior

probability), diagnostic testing, test characteristics (sensitivity, specificity), and
outcomes.

Decision Uncertainty Calculation Value

Figure 18. Node definitions for influence diagrams

Treat
(decision)

Utility
(value)

Disease
(hypothesis)

Test
(evidence)

Figure 19. A Bayesian decision network (influence diagram) for decision analysis

5.1 Example 1: Decision to buy stock

A basic decision that involves uncertainty is to choose between (a) an option with
an uncertain outcome and payout, or (b) continue with the status quo. Figure 20
from Neapolitan (p. 492, [14]) is the decision tree that represents the decision (“d1”)
to invest $1000 and buy stock X with a 0.6 chance to grow in value to $1100 and
0.4 chance to shrink in value to $900, or the decision (“d2”) to do nothing and keep
the $1000.

Figure 20. Simple decision tree for decision whether to buy stock X.

Figure 21 (p. 42) from Neapolitan (p. 492, [14]) is the influence diagram version
of the Figure 20 decision tree. Now, here are the expected value calculations for each
decision option:

https://escholarship.org/uc/ item/8000r5m5 December 8, 2019

https://escholarship.org/uc/item/8000r5m5


Population health thinking with Bayesian networks p. 42 of 48

E(d1) = 0.6× $1100 + 0.4× $900 = $1020

E(d2) = $1000

Figure 21. Simple influence diagram for decision whether to buy stock X.

Using R, we create the decision BN. Actually, it is a regular BN with minor
tweaks. For the decision node, we set the probabilities for each decision option (d1,
d2) to 0.5. To get the expected value (EV) we set the decision node evidence to “d1”
and calculate EV, and then to “d2” and calculate EV again.

For the utility (value) node we set the possible dollar outcome levels as 900,
1100, and 1000. After setting decision node evidence to “d1”, we derive the new
distribution of dollar outcomes, and we calculate the EV. We repeat this for “d2”.
See the R code below with the details.
#### reload R packages if necessary
#### library(bnlearn)
#### library(gRain)
dag3 <- empty.graph(nodes=c("D", "U", "X"))
dag3 <- set.arc(dag3, from = "X", to = "U")
dag3 <- set.arc(dag3, from = "D", to = "U")
## graphviz.plot(dag3)
#### create levels
X.lv <- c("9", "11")
D.lv <- c("d1", "d2")
U.lv <- c("900", "1100", "1000") ## possible dollars outcomes
#### create conditional probability tables
X.prob <- array(c(0.4,1-0.4), dim = 2, dimnames = list(X = X.lv))
D.prob <- array(c(0.5,0.5), dim = 2, dimnames = list(D = D.lv))
U.prob <- array(c(1,0,0,0,1,0,0,0,1,0,0,1), dim = c(3,2,2),
dimnames = list(U = U.lv, X=X.lv, D=D.lv))

cpt3 <- list(X=X.prob, D=D.prob, U=U.prob)
bn3 <- custom.fit(dag3, cpt3)
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junction3 <- compile(as.grain(bn3))
querygrain(junction3) ## display BN

#> $D
#> D
#> d1 d2
#> 0.5 0.5
#>
#> $U
#> U
#> 900 1100 1000
#> 0.2 0.3 0.5
#>
#> $X
#> X
#> 9 11
#> 0.4 0.6
#### Expected value for D = "d1" (buy stock X)
jbuy <- setEvidence(junction3, nodes = "D", states = "d1")
U.buy <- querygrain(jbuy, nodes = "U")$U
(EV.buy <- sum(U.buy*as.numeric(names(U.buy))))

#> [1] 1020
#### Expected value for D = "d2" (do nothing)
jdont <- setEvidence(junction3, nodes = "D", states = "d2")
U.dont <- querygrain(jdont, nodes = "U")$U
(EV.dont <- sum(U.dont*as.numeric(names(U.dont))))

#> [1] 1000

5.2 Example 2: Decision to buy Spiffycar

From Neapolitan (p. 492, [14]) we now tackle a decision problem that includes a
diagnostic test (Figure 22, p. 44):

“. . . Suppose Sam has the opportunity to buy a 1996 Spiffycar automobile
for $10,000, and he had a prospect that would be willing to pay $11,000
for the auto if it were in excellent mechanical shape. Suppose further
that if the transmission is bad, Sam will have to spend $3000 to repair
it before he could sell the vehicle. So he would end up with only $8,000
if he bought the vehicle and its transmission was bad. Finally, suppose
Sam has a friend who could run a test on the transmission, and we have
the following:”

P (Test = positive | Tran = good) = 0.3

P (Test = positive | Tran = bad) = 0.9

P (Tran = good) = 0.8
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The Bayesian network (Figure 22) “in this influence diagram contains
2 nodes, Tran and Test. There is an edge from Tran to Test because
the value of the test is probabilistically dependent on the state of the
transmission. There is an edge from Test to D because the outcome
of the test will be known at the time the decision is made. That is, D
follows Test in sequence. Finally, the utility U depends only on the value
of Tran and the decision D. It does not depend on the outcome of the
Test. So there are arrows from Tran and D to U . If Sam makes decision
d1 and Tran is good, the utility of the outcome will be $11 000. On
the other hand, if Sam makes decision d1 and Tran is bad, the utility
of the outcome will be $8,000. However, if Sam makes decision d2, the
utility of the outcome is $10,000 regardless of whether Tran is good or
bad because he has decided not to buy the car.”

Figure 22. Influence diagram representing decision to buy Spiffycar.

Using R, we create the “decision BN.” Actually, it is a regular BN with minor
tweaks. For the decision node, we set the probabilities for each decision option (d1,
d2) to 0.5. To get the expected utility (EU) we set the decision node evidence to
“d1” and calculate EU, and then to “d2” and calculate EU again.

For the utility (value) node we set the possible dollar outcome levels as 8000,
10000, and 11000. After setting decision node evidence to “d1”, we derive the new
distribution of dollar outcomes, and we calculate the EU. We repeat this for “d2”.
See the R code below with the details.
dag4 <- empty.graph(nodes=c("Test", "Tran", "D", "U"))
dag4 <- set.arc(dag4, from = "Tran", to = "Test")
dag4 <- set.arc(dag4, from = "Tran", to = "U")
dag4 <- set.arc(dag4, from = "Test", to = "D")
dag4 <- set.arc(dag4, from = "D", to = "U")
#### create levels
Tran.lv <- c("Good", "Bad")
Test.lv <- c("Pos", "Neg")

https://escholarship.org/uc/ item/8000r5m5 December 8, 2019

https://escholarship.org/uc/item/8000r5m5


Population health thinking with Bayesian networks p. 45 of 48

D.lv <- c("d1", "d2") ## d1 = buy spiffycar; d2 = do not buy
U.lv <- c("11000", "8000", "10000")
#### create conditional probability tables
Tran.prob <- array(c(0.8,1-0.8), dim = 2, dimnames = list(Tran = Tran.lv))
Test.prob <- array(c(0.3,1-0.3,0.9,1-0.9), dim = c(2,2),

dimnames = list(Test = Test.lv, Tran = Tran.lv))
D.prob <- array(c(.5, .5, .5, .5), dim = c(2,2),

dimnames = list(D = D.lv, Test = Test.lv))
U.prob <- array(c(1,0,0,0,1,0,0,0,1,0,0,1), dim = c(3,2,2),
dimnames = list(U = U.lv, Tran=Tran.lv, D=D.lv))

cpt4 <- list(Tran=Tran.prob, Test=Test.prob, D=D.prob, U=U.prob)
bn4 <- custom.fit(dag4, cpt4)
junction4 <- compile(as.grain(bn4))
querygrain(junction4) ## display BN

#> $Test
#> Test
#> Pos Neg
#> 0.42 0.58
#>
#> $Tran
#> Tran
#> Good Bad
#> 0.8 0.2
#>
#> $D
#> D
#> d1 d2
#> 0.5 0.5
#>
#> $U
#> U
#> 11000 8000 10000
#> 0.4 0.1 0.5

What is the EU of choosing “d1” even if the transmision test is positive? That is,
what is EU(D = d1, T est = positive)?
#### What is EU(D = d1, Test = positive)?
jTest.pos_D.d1 <- setEvidence(junction4, nodes = c("Test", "D"),

states = c("Pos", "d1"))
U_T.p_D.d1 <- querygrain(jTest.pos_D.d1, nodes = "U")$U
(EU_T.p_D.d1 <- sum(U_T.p_D.d1 * as.numeric(names(U_T.p_D.d1))))

#> [1] 9714.286
What is the EU of choosing “d1” even if the transmision test is negative? That

is, what is EU(D = d1, T est = negative)?
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#### What is EU(D = d1, Test = negative)?
jTest.neg_D.d1 <- setEvidence(junction4, nodes = c("Test", "D"),

states = c("Neg", "d1"))
U_T.n_D.d1 <- querygrain(jTest.neg_D.d1, nodes = "U")$U
(EU_T.n_D.d1 <- sum(U_T.n_D.d1 * as.numeric(names(U_T.n_D.d1))))

#> [1] 10896.55
What is the EU of choosing “d2” regardless of transmission test results? That is,

what is EU(D = d2)?
#### What is EU(D = d2)?
jD.d2 <- setEvidence(junction4, nodes = "D", states = "d2")
U_D.d2 <- querygrain(jD.d2, nodes = "U")$U
(EU_D.d2 <- sum(U_D.d2 * as.numeric(names(U_D.d2))))

#> [1] 10000

5.3 Example 3: Comparing complex policy options

TBD

5.4 Example 4: Discrete time Markov chains

TBD

5.5 Example 5: Cost-effective analysis

TBD
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