
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
ECKT: Enhancing Code Knowledge Tracing via Large Language Models

Permalink
https://escholarship.org/uc/item/8001b5mp

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Yu, Yang
Zhou, Yingbo
Zhu, Yaokang
et al.

Publication Date
2024
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8001b5mp
https://escholarship.org/uc/item/8001b5mp#author
https://escholarship.org
http://www.cdlib.org/


ECKT: Enhancing Code Knowledge Tracing via Large Language Models

Yang Yu Yingbo Zhou Yaokang Zhu Yutong Ye

Liangyu Chen Mingsong Chen

Shanghai Institute of Artificial Intelligence for Education, East China Normal University, Shanghai, China
MoE Engineering Research Center of SW/HW Co-Design Tech. and App., East China Normal University, Shanghai, China

Abstract

Code Knowledge Tracing (CKT) aims to model students’ pro-
gramming proficiency from their coding activities. Existing
approaches mainly rely on answer records and lack prob-
lem descriptions and knowledge concepts, thus fail to cap-
ture the inherent information. To solve this problem, we pro-
pose ECKT, an Enhanced Code Knowledge Tracing frame-
work using Large Language Models (LLMs), which simulates
human cognitive process through chain-of-thought prompting
and adapts quickly to new tasks with limited data using few-
shot learning. Specifically, ECKT generates detailed problem
descriptions and knowledge concepts from student code, en-
hancing the model’s understanding of programming concepts
and proficiency. Additionally, ECKT incorporates task diffi-
culty information by correlating problems with difficulty levels
based on student performance scores. This integration allows
for a more accurate assessment of student proficiency across
varying levels of difficulty. Also, ECKT can explicitly capture
the essence of code and learn a better representation. Experi-
mental results demonstrate that ECKT effectively improves the
performance of knowledge tracing in programming education.
This advancement not only supports personalized learning but
also contributes to a deeper understanding of coding activities.
Keywords: artificial intelligence; education; skill acquisition
and learning; programming; large language models

Introduction
With the popularization of computer science education, pro-
gramming skills have become an integral part of the modern
education system. In the realm of educational technology,
Knowledge Tracing (KT) serves as a crucial approach for
predicting student learning outcomes by analyzing their in-
teractions with educational content (Abdelrahman, Wang, &
Nunes, 2023). This approach has been impactful in program-
ming education, where Code Knowledge Tracing (CKT) is
developed to assess students’ coding proficiency. It identifies
students’ strengths and weaknesses in programming. Code
knowledge tracing provides a new perspective to dynamically
track and predict students’ learning states by analyzing their
behavioral data in solving programming problems.

The existing methods can be broadly categorized into two
groups: traditional KT models and advanced KT models that
incorporate additional features. Traditional KT models, such
as Deep Knowledge Tracing (DKT) (Piech et al., 2015), pri-
marily focus on the correctness of student responses to prob-
lems. These models often overlook the content of the stu-
dent’s code, which can provide valuable insights into their un-
derstanding of programming concepts. Advanced KT mod-
els, such as Code-DKT (Shi, Chi, Barnes, & Price, 2022)

and the approach proposed in (Zhu, Han, Yuan, & Lu, 2022),
seek to address these limitations by incorporating code anal-
ysis into the KT framework. However, the field is confronted
with challenges such as the absence of rich textual infor-
mation from problems, the complexity of code representa-
tion, and limitations in the adaptability of models to diverse
student abilities. The current CKT models, such as Code-
DKT, have made significant strides but still face several is-
sues. These models often fail to fully leverage the textual
context of problems, which is crucial for understanding the
student’s problem-solving process. Additionally, the repre-
sentation of code is a complex task, as traditional methods
may not effectively capture the hierarchical structure and se-
mantic meaning of code. Furthermore, the learning capac-
ity of these models is constrained, which limits their ability
to generalize across different programming tasks and student
skill levels.

To address these issues, we propose an innovative frame-
work called Enhanced Code Knowledge Tracing (ECKT).
ECKT begins by leveraging Large Language Models (LLMs)
to generate problem descriptions and knowledge concepts
from student code responses through chain-of-thought (CoT)
and few-shot learning. Then, we employ BERT to convert
these knowledge concept texts into vector embeddings. These
embeddings serve as additional features for the model, en-
hancing its ability to capture the semantic information of pro-
gramming concepts. In addition, we introduce a method to
rank problems by difficulty based on student performance,
associating each problem ID with its corresponding difficulty
level. This allows the model to learn the varying difficulty
levels of different problems, offering a more detailed analysis
of student performance. Finally, we utilize a stacked GRU
architecture to improve the model’s sequence learning capa-
bilities, enabling it to better understand the progression of stu-
dent skills over time.

Our work makes the following major contributions:

• Leveraging large language models, ECKT generates prob-
lem descriptions and knowledge concepts from student
code through chain-of-thought and few-shot learning.

• The framework establishes a correlation between problems
and their difficulty levels based on student scores, allowing
the model to account for the varying difficulty levels of
different problems.

1638
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



• A stacked GRU architecture is employed to improve the
model’s sequence learning capabilities, enabling it to better
track the progression of student skills over time.

By integrating these enhancements, the proposed framework
ECKT aims to provide a more comprehensive and accurate
assessment of student programming proficiency. This frame-
work not only addresses the existing challenges but also finds
a new way for the integration of advanced AI techniques in
educational analytics. Experimental results show ECKT out-
performs traditional models, demonstraing its effectiveness in
code knowledge tracing.

Related Work
Code Knowledge Tracing
In the field of educational data mining, code knowledge trac-
ing has taken on a significant role, focusing on the assessment
of students’ understanding of programming concepts. Tradi-
tional knowledge tracing models, such as Bayesian Knowl-
edge Tracing (BKT) (Bulut, Shin, Yildirim-Erbasli, Gorgun,
& Pardos, 2023), Factor Analysis (FA) (Chi, Koedinger, Gor-
don, Jordan, & VanLehn, 2011), and Item Response Theory
(IRT) (Su et al., 2021), have laid the groundwork for this
field, employing probabilistic models to track the acquisi-
tion of knowledge over time. For instance, BKT estimates
mastery through parameters like initial knowledge probabil-
ity and acquisition rates, while FA incorporates instructional
factors, and IRT relates student ability to problem difficulty.

Deep learning has been introduced innovative models such
as DKT (Piech et al., 2015), enhancing the predictive capa-
bilities of traditional knowledge tracing approaches. DKT
employs RNNs to convert past performance into a time se-
ries, predicting the likelihood of solving subsequent prob-
lems. (Tong, Zhou, & Wang, 2020) Calculate the similarity
of the text vector of the problem and use hierarchical cluster-
ing methods to extract the semantic features of the problem.
Then, the extracted features and student responses are input
into the RNN structure to predict the student’s response re-
sults (Russin, Jo, O’Reilly, & Bengio, 2020). The Code-DKT
model improves the predictive performance of the model for
programming tasks by combining Deep Knowledge Tracing
(DKT) (Piech et al., 2015) and code2vec models to extract
features of the code. Code2Vec learns distributed represen-
tations of code for code analysis, derived from Word2Vec,
which is a popular word embedding model. These embed-
dings capture the semantic relationships between code ele-
ments, providing a rich feature representation for downstream
tasks (Compton, Frank, Patros, & Koay, 2020). ASTs serve
as a fundamental representation of the syntactic structure of
source code. They have been extensively used to capture the
hierarchical feature of code (Wang, Li, Ma, Xia, & Jin, 2020).
ASTs enable the extraction of syntactic features that can be
leveraged to understand the structure and logic of code. AST
analysis methods extract code features by parsing the struc-
ture of the code. These features can include control flow

structure and data flow analysis, which helps to understand
the structural information of the code.

Large Language Models
The advent of large language models (LLMs) and BERT has
changed the way of natural language processing and under-
standing (Chuang, Hubbard, & Austerweil, 2020)(Liu et al.,
2023). These models have demonstrated remarkable capa-
bilities in capturing the nuances of language, which can be
leveraged to enhance the performance of knowledge tracing
systems in programming education (Kasneci et al., 2023).
LLMs, such as GPT-3 and BERT, have been employed in vari-
ous educational applications to generate coherent and contex-
tually relevant text (Floridi & Chiriatti, 2020). In the context
of programming, these models can be utilized to create de-
tailed problem descriptions from student code snippets, pro-
viding a richer source of information for knowledge tracing
models. Few-shot learning allows models to rapidly learn
new tasks from a small number of examples, effectively uti-
lizing their extensive pre-existing knowledge (Perez, Kiela,
& Cho, 2021). This technique is particularly advantageous in
domains where extensive data is not readily available. Chain
of Thought (COT) prompting enhances the reasoning capabil-
ities of large language models by encouraging them to mimic
human-like thought processes (Truzzi & Cusack, 2020). This
approach not only strengthens the models’ ability to solve
problems but also increases their interpretability, providing
a clearer understanding of the reasoning steps (Wei et al.,
2022). BERT’s ability to understand the context of words
within a sentence has been harnessed to transform knowl-
edge concept texts into vector representations (Liang, Cao,
Zheng, Ren, & Gao, 2021). These embeddings serve as a
powerful feature set for knowledge tracing models, enhanc-
ing their ability to predict student performance by capturing
the semantic relationships between programming concepts.
Studies have shown that language models acquire a signifi-
cant amount of world knowledge from the vast text corpora
they train (Petroni et al., 2019). Some methods generate fea-
ture vectors of problem text using BERT to obtain the knowl-
edge distribution and difficulty characteristics of the problem.
Traditional knowledge tracing algorithms typically use one or
several features to predict student behavior without consider-
ing the potential relationships between these features, which
may limit and ignore important information within the fea-
tures. MLFBK (Li, Jacobsen, Shi, Zhou, & Wang, 2023) is a
BERT-based knowledge tracing method that utilizes multiple
features and explores potential relationships between them to
improve the performance of knowledge tracing models.

Methodology
Problem Definition
The Code Knowledge Tracing (CKT) task is designed to as-
sess the extent to which students have mastered programming
skills by analyzing their programming submissions. This task
typically involves constructing models to predict how stu-

1639



dents will perform in future attempts and to track their mas-
tery of specific programming concepts (Portelance, Degen, &
Frank, 2020). In programming education, CKT models can
help teachers provide personalized feedback to guide student
learning more effectively.

A student’s interaction within a programming exercise typ-
ically includes information about the code submitted by the
student, the ID of the exercise, and the correctness of the
code. The code knowledge tracing model aims to predict stu-
dents’ ability to solve new programming tasks by analyzing
their historical programming practices. The task is to pre-
dict students’ subsequent performance based on their histor-
ical response information (i.e., correct or incorrect answers).
The process is defined as follows.

D = {S1,S2, . . . ,SN} ,
Si = {xi1,xi2, . . . ,xit , . . . ,xiM} ,
xit = {qit ,ait ,cit} ,

Pit+1 = M(xit),

(1)

where D represents the collection of students, and Si denotes
the series of responses from an individual student. At a given
timestamp t, qit specifies the problem number, ait reflects the
correctness of the answer (with 0 indicating an incorrect re-
sponse and 1 indicating a correct response), and cit is the code
submitted. Pit+1 represents the model’s prediction of a stu-
dent’s accuracy on a subsequent attempt.

Model Overview
As shown in Figure 1, our method first employs a large lan-
guage model to generate problem descriptions and knowledge
concepts from student code submissions, leveraging chain-
of-thought and few-shot learning. This process enhances the
model’s ability to simulate human reasoning and adapt to di-
verse coding tasks. Subsequently, BERT is used to embed
these knowledge concepts into vectors, augmenting the model
with a deeper understanding of the educational content. Then,
we derive difficulty levels from scoring distributions. In par-
allel, we utilize attention mechanisms to obtain code embed-
dings from the Abstract Syntax Tree (AST), identifying key
paths that represent the essence of the student’s code. These
embeddings, along with the knowledge and difficulty vec-
tors, are fused and send to a stack of Gated Recurrent Units
(SGRU) for the final prediction.

The Structure of ECKT
Code representation. To capture the deep structural and se-
mantic information of the student code, We represent the code
by utilizing the Abstract Syntax Tree (AST) (Shi et al., 2022).
AST is a tree structure where each node represents a syntactic
element in the code, such as a variable, a function, a loop, and
so on. We first convert student code into an AST. Then, by
traversing the AST, we can extract key paths in the code that
reflect the structures and concepts used by the students while
programming. For example, the path of a loop may reveal
how well a student understands loop control.

Figure 2 illustrates a simplified AST of the add function,
containing the argument list [a, b] and the function body. The
function body consists of a return node that contains a binary
operation node, the addition operation. The addition oper-
ation node has two child nodes: the left node and the right
node, which are the operands a and b, respectively. To con-
vert the AST structure into a form that can be handled by
deep learning models, we use the code2vec model to extract
the code path (Compton et al., 2020). Each leaf node is en-
coded as a vector, and the leaf-to-leaf path is also encoded as
a vector. A path consists of three parts: the start node, the
path, and the end node.

A piece of student code contains a series of paths P =
{p1, . . . , pk}. One of the paths is pi = ⟨si,ri,di⟩. si and di
are nodes, which are embedded by the node embedding ma-
trix Wn. ri is the path connecting two nodes, which is em-
bedded by the path embedding matrix Wp. The values of the
two matrices are randomly initialized and updated during the
training process. For knowledge tracing, the problem-answer
vectors are important features, so the path pi is fused with the
problem-answer vectors and then embedded by the embed-
ding matrix:

eni = [Wn (si,ri,di) ,xt] ,

epi = [Wp (si,ri,di) ,xt] ,
(2)

where si, ri, di, and xt are the embedded vectors for the source
node, path, destination node, and problem-answer vectors, re-
spectively.

In order to determine which AST paths are most important
for the knowledge tracing model, we introduce an attention
mechanism. The attention weight αi is used to measure the
contribution of each path to the model predictions.

An AST generated by student code contains a large number
of paths, each of which has a different importance. The nodes
and connections in each path also have different importance,
so it is necessary to learn how to combine these parts. We
introduce a fully connected layer W that gives different paths
different importance. This gives more attention to key paths
and less attention to common paths. Based on (Compton et
al., 2020), the formula is as follows:

pi = tanh(Wci), (3)

αi =
e(p

T
i ·a)

∑
k
j=1 e(p

T
j ·a)

, (4)

where W is the learnable weight matrix, tanh is the hyper-
bolic tangent function. αi is the computed importance of the
paths and the attention vector a is randomly initialized and
learned while the network is being trained. The path impor-
tance scores are then multiplied by the path vectors to gen-
erate the summed importance of all paths. This is followed
by a fully connected layer to get the final code representation,
which is computed as follows:

v =Wc

k

∑
j=1

αiei. (5)

1640



Node Embedding Path Embedding

Attention

Layer
Softmax Linear Layer

Code

Difficulty 

Embedding Problem

Description

Knowledge 

Concept

Bert
Knowledge 

Embedding

𝐶0

𝑒0

𝑥0
′

𝐶𝑡

𝑒𝑡

𝑥𝑡
′

𝐶𝑇

𝑒𝑇

𝑥𝑇
′

SGRU

𝑦0 𝑦𝑡 𝑦𝑇
𝑠0 𝑠𝑘𝑟0 𝑑0 𝑑𝑘𝑟𝑘

𝑒𝑠0 𝑒𝑟0 𝑒𝑑0 𝑥𝑡 𝑥𝑡𝑒𝑏𝑘 𝑒𝑜𝑘 𝑒𝑑𝑘

𝑒0 𝑒𝑘

𝑥𝑇𝑥0 …

LLM

CoT

Few 

Shot

Figure 1: The framework of ECKT model.

add

a b

args

return

a b

body

+

def add(a, b): 

return a + b

code AST

Figure 2: An example of an abstract syntax tree where
orange-colored nodes and edges form a path.

Chain-of-thought and few-shot learning for LLM-
based content generation. We utilize large-scale language
models to generate problem descriptions and knowledge con-
cepts that correspond to code submissions. Our approach be-
gins with the generation of problem descriptions which out-
line the task’s high-level requirements and imply the nec-
essary knowledge concepts. Subsequently, we apply chain-
of-thought (CoT) reasoning, which involves breaking down
the task into a series of logical steps, mirroring the human
problem-solving process (Wei et al., 2022). This step-by-
step analysis includes identifying inputs, processing steps,
expected outputs, and error-handling mechanisms. For each
step in the CoT, identify relevant programming elements and
generate knowledge concepts that explain these elements.
This process is iteratively refined, ensuring that the knowl-

Code

Difficulty 

Embedding Question 

Description

Knowledge 

Concept

Bert
Knowledge 

Embedding

…

LLM

CoT

Few Few-shot

Code

Submission

Knowledge

If either a or b is equal to 6.
If the sum of a and b is equal to 6.
If the absolute difference ...
…

Knowledge Concepts:

1. Arithmetic Operations: ...
2. Boolean Logic: ...
3. Math Library: ...
…

Code

Submission

Knowledge

Concept

Code

Submission

Example

Code

Submission

Knowledge

Concept
Knowledge

Concept

√ ×

Figure 3: An example of prompt-based few-shot learning.

edge concepts are comprehensive and accurate. The chain-of-
thoughts prompting allows our model to simulate the human
cognitive process, explicitly reasoning through intermediate
steps to reach a final result (Edmonds, 2019). This method
is particularly effective in enhancing the model’s comprehen-
sion of the transition from code to knowledge concepts, as it
generates explanatory steps that clarify the underlying logic.
On the other hand, prompt-based few-shot learning allows
our model to swiftly adapt to new tasks with minimal data
(Lake, Linzen, & Baroni, 2019). This approach leverages the
model’s existing knowledge to learn from a small set of exam-
ples. It utilizes an additional code submission along with its
corresponding knowledge concepts as an example, as shown
in Figure 3. This approach is advantageous in educational
and programming contexts where large annotated datasets are
scarce, allowing for efficient learning from limited resources.

BERT embedding with feature enhancement. BERT
model can generate high-quality text vectors that capture

1641



the contextual information and semantic structure of the text
(Misra, Ettinger, & Rayz, 2020). We use the BERT model
to embed these knowledge concept texts(Devlin, Chang, Lee,
& Toutanova, 2019). The BERT model can capture the deep
semantic information in the text and convert it into a fixed-
length vector representation.

Problem difficulty correlation and embedding. To track
students’ knowledge states more accurately, we introduce the
concept of problem difficulty. We first determine the diffi-
culty of a problem based on the performance scores of code
submissions, and then associate the problem ID with the
problem difficulty. We define a difficulty estimation function
fDif(q), which estimates the difficulty of a problem based on
the score of the students’ answers. This function can be ex-
pressed as:

fDif(q) = σ

(
1

∑
N
n=1 ∑

T
t=1

N

∑
n=1

T

∑
t=1

score(qnt)

)
, (6)

where t is the attempt that the student made to solve the prob-
lem, N is the number of students who attempted the problem,
score(qnt) is the score of student n on problem q, and σ is the
sort function.

We correlate problem IDs with their estimated difficulties
to embed difficulty information in the model. This is achieved
by incorporating a score-based ranking of the problems into
the model’s input features.

Stacked gated recurrent unit. To improve the deep learn-
ing capability of the model, we adopt a stacked gated re-
current unit (GRU) (Bukhari et al., 2024). Stacked GRU
enhances the model’s ability to capture long-term depen-
dencies by adding additional GRU layers to the original
GRU(Aurnhammer & Frank, 2019).

Our ECKT model receives a sequence of student code sub-
missions S = {(q1,a1,c1,kv1), . . . ,(qT ,aT ,cT ,kvT )} as in-
puts, where qt is the problem ID, at is the correctness of the
attempt, ct is the code submission, and kvt is the knowledge
concept. The output Y = {y1,y2, . . . ,yT} of the model is a se-
quence of probabilities that the student will submit correctly
in the next attempt. The loss function is defined as:

L =−∑
t
(at log(ŷt)+(1−at) log(1− ŷt)) , (7)

where at is the correctness of the tth student attempt and ŷ is
the model prediction.

Experiments
To validate the effectiveness of our approach, we designed
a series of experiments to evaluate the performance of the
model. These experiments are designed to compare our pro-
posed model with existing knowledge tracing models. The
primary goal is to analyze the impact of our approach on
model performance. Specifically, we focus on how our model
enhances the understanding of programming tasks and pre-
dicts student performance in problem-solving.

Table 1: Answer data content description.
Field name Field Description
ProblemID Problem Number
CourseID ID of the course
SubjectID ID of the student
EventType Running state of program
CompileMessageType Compile information of Program
Score Score of the attempt

Experimental Settings
Dataset. The dataset used in this study originated from a
programming course at a large university in the United States
(Shi et al., 2022). These data record students’ attempts at
solving programming assignments, including the code they
submitted, the correctness of each attempt, and the problem
ID. The dataset consists of 50 programming problems tack-
led by 410 students, distributed across 5 assignments. Each
student in the dataset made multiple attempts at each problem
until it was successfully solved.

Baselines. We set up multiple experimental groups, each
using a different model configuration. These configurations
included different models and settings. We also compare
model performance using different enhancements, including
a baseline model using only problem IDs and correctness la-
bels and an augmented model with the addition of knowledge
concept embedding vectors of generated problem knowledge
concepts. We first reproduce the BKT (Bulut et al., 2023),
DKT (Piech et al., 2015), and Code-DKT (Shi et al., 2022)
models as a baseline and introduce improvements based on
them. To ensure the comparability of the experiments, we
adopt the same dataset partitioning strategy as Code-DKT,
i.e., 80% of the data is used for training, and the remaining is
used for testing.

Evaluation metrics. We utilize Area Under the Curve
(AUC) rather than accuracy (ACC) due to its robustness
against class imbalances. For instance, in a dataset where
90% of submissions are incorrect, a model that always pre-
dicts incorrect would achieve high ACC, yet AUC would ex-
pose its ineffectiveness. We evaluate model performance us-
ing two metrics, i.e., all attempts and first attempt. All at-
tempts measure the student’s cumulative performance across
all submissions. In contrast, first attempt assesses the stu-
dent’s initial problem-solving ability.

Performance Comparison
The experimental results show that our proposed model out-
performs the baseline models on several evaluation metrics.
In particular, the model’s performance in predicting students’
programming proficiency is enhanced by incorporating the
generated knowledge concept embeddings and difficulty em-
beddings. This augmentation leads to improvements in the
model prediction performance, particularly in assessing the
students’ problem-solving capabilities.

The comparative analysis across all assignments, as de-

1642



Table 2: Performance Comparison on all assignments.

Model DKT Code-DKT ECKT

A1 71.26% 74.32% 76.53%
A2 73.17% 76.54% 77.09%
A3 76.86% 80.23% 80.47%
A4 69.04% 72.71% 74.14%
A5 75.25% 79.22% 79.53%

Table 3: All and the first attempt performance of all models
on assignment A1.

Model Overall First Attempt
ECKT 76.53% 80.01%
Code-DKT 74.32% 75.71%
DKT 71.26% 72.01%
BKT 63.50% 50.06%

tailed in Table 2, demonstrates the robustness of the ECKT
framework. ECKT consistently outperforms both DKT and
Code-DKT across all assignments, indicating its effectiveness
in understanding the subtle differences in student program-
ming proficiency. This improvement is particularly notable
in assignments A1 and A4, where ECKT achieves the highest
AUC scores, suggesting that the integration of our proposed
enhancements contributes significantly to the model’s predic-
tive performance.

In Table 3, the performance for all attempts and first
attempt on Assignment A1 highlights the importance of
ECKT’s ability to provide early and accurate predictions.
ECKT’s higher AUC scores for both overall and first at-
tempt indicate a superior ability to predict student perfor-
mance. This enhanced understanding of problem difficulty
and knowledge concepts is crucial for timely intervention and
personalized learning support.

Performance Analysis on Specific Problems
The detailed AUC performance on individual problems
within Assignment A1, as presented in Table 4, shows
ECKT’s adaptability to various programming challenges.

Table 4: AUC performance of Code-DKT, DKT and ECKT
on different problems on assignment A1.

Problems Code-DKT DKT ECKT

Overall First Overall First Overall First

234 64.60% 71.38% 63.75% 73.48% 59.95% 70.10%
13 78.45% 86.55% 63.59% 68.81% 72.37% 87.59%

232 74.93% 78.99% 72.49% 73.09% 72.01% 78.02%
233 64.79% 74.57% 67.18% 76.33% 70.52% 83.26%
5 75.38% 81.34% 74.28% 81.79% 78.77% 86.10%

235 70.65% 71.96% 75.03% 70.80% 71.19% 78.49%
236 74.25% 74.30% 78.68% 77.06% 70.64% 74.22%
1 68.62% 70.32% 66.67% 73.20% 78.57% 73.63%
3 71.00% 71.00% 64.02% 64.02% 79.32% 81.76%

Table 5: Ablation study of ECKT on assignment A1.
Model Overall First Attempt
ECKT 76.53% 80.01%
ECKT-dg 74.15% 77.16%
ECKT-df 75.04% 79.19%
ECKT-kv 75.15% 79.64%
ECKT-df-kv 75.31% 79.41%
ECKT-dg-kv 76.18% 80.01%
ECKT-dg-df 75.36% 78.93%

ECKT’s superior performance indicates that the combination
of LLM-generated problem texts, BERT embeddings, and
difficulty-aware features allows ECKT to effectively trace
knowledge in diverse coding contexts.

Ablation Study
In our ablation study, we denote the ECKT framework’s vari-
ations as follows: dg signifies stacked gated recurrent units,
d f indicates difficulty embeddings, and kv represents prob-
lem description and knowledge concept embeddings derived
from the large language model. The hyphen (-) in model
names indicates the exclusive presence of the specified mod-
ule. The ablation study on Assignment A1 evaluates the con-
tributions of various components within the ECKT frame-
work. The full ECKT model achieves the highest AUC at
76.53%. While ECKT-dg (SGRU only) yields a lower AUC
of 74.15%, emphasizing the importance of LLM-generated
content and BERT embeddings. ECKT-df (difficulty em-
bedding only) achieves an AUC of 75.04%, highlighting the
value of difficulty information. ECKT-kv (knowledge con-
cept embeddings only) reaches an AUC of 75.15%, under-
scoring the significance of textual knowledge representation.
ECKT-df-kv results in an AUC of 75.31%, demonstrating
the added benefit of combining two components. ECKT-dg-
df, with stacked GRU and difficulty embeddings, reaches an
AUC of 75.36%, emphasizing the need for knowledge con-
cept embeddings.

Conclusion
In this work, we propose Enhanced Code Knowledge Trac-
ing (ECKT), which addresses the limitations of traditional
CKT models by incorporating several contributions. ECKT
leverages large language models to generate problem descrip-
tions and knowledge concepts from student code, utilizing
chain-of-thought (CoT) and few-shot learning. These con-
tents are embedded using BERT, providing the model with
a more comprehensive understanding. Furthermore, ECKT
associates difficulty with problems, allowing for a more de-
tailed assessment of student proficiency. The integration of
a stacked GRU enhances the model’s ability to capture the
temporal dynamics of student interactions. Experimental re-
sults show that ECKT outperforms baseline models, offering
a more effective method for programming education.

1643



Acknowledgments
This work was supported by the Natural Science Foundation
of China (62272170), and the Shanghai International Joint
Lab of Trustworthy Intelligent Software (22510750100).
Mingsong Chen (mschen@sei.ecnu.edu.cn) and Liangyu
Chen (lychen@sei.ecnu.edu.cn) are the corresponding au-
thors.

References
Abdelrahman, G., Wang, Q., & Nunes, B. (2023). Knowledge

tracing: A survey. ACM Computing Surveys, 55(11), 1–37.
Aurnhammer, C., & Frank, S. (2019). Comparing gated and

simple recurrent neural network architectures as models of
human sentence processing. In Proceedings of the 41th
annual meeting of the cognitive science society (CogSci)
(pp. 112–118).

Bukhari, S. M. S., Moosavi, S. K. R., Zafar, M. H., Mansoor,
M., Mohyuddin, H., Ullah, S. S., . . . Sanfilippo, F. (2024).
Federated transfer learning with orchard-optimized conv-
sgru: A novel approach to secure and accurate photovoltaic
power forecasting. Renewable Energy Focus, 48, 100520.

Bulut, O., Shin, J., Yildirim-Erbasli, S. N., Gorgun, G., &
Pardos, Z. A. (2023). An introduction to bayesian knowl-
edge tracing with pybkt. Psych, 5(3), 770–786.

Chi, M., Koedinger, K. R., Gordon, G. J., Jordan, P. W.,
& VanLehn, K. (2011). Instructional factors analy-
sis: A cognitive model for multiple instructional inter-
ventions. In Proceedings of the 4th international con-
ference on educational data mining(EDM) (pp. 61–70).
www.educationaldatamining.org.

Chuang, Y.-S., Hubbard, E., & Austerweil, J. L. (2020). The”
fraction sense” emerges from a deep convolutional neural
network. In Proceedings of the 42th annual meeting of the
cognitive science society (pp. 1207–1213).

Compton, R., Frank, E., Patros, P., & Koay, A. (2020). Em-
bedding java classes with code2vec: Improvements from
variable obfuscation. In Proceedings of the 17th interna-
tional conference on mining software repositories (MSR)
(pp. 243–253). ACM.

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019).
BERT: pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the 2019 con-
ference of the north american chapter of the association for
computational linguistics: Human language technologies,
NAACL-HLT (pp. 4171–4186). Association for Computa-
tional Linguistics.

Edmonds, M. (2019). Decomposing human causal leanring:
bottom-up associative learning and top-down schema rea-
soning. In Proceedings of the annual meeting of the cogni-
tive science society (CogSci).

Floridi, L., & Chiriatti, M. (2020). Gpt-3: Its nature, scope,
limits, and consequences. Minds and Machines, 30, 681–
694.

Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., De-
mentieva, D., Fischer, F., . . . others (2023). Chatgpt for

good? on opportunities and challenges of large language
models for education. Learning and individual differences,
103, 102274.

Lake, B. M., Linzen, T., & Baroni, M. (2019). Human few-
shot learning of compositional instructions. In Proceed-
ings of the annual meeting of the cognitive science society
(CogSci).

Li, Z., Jacobsen, M., Shi, L., Zhou, Y., & Wang, J. (2023).
Broader and deeper: A multi-features with latent relations
BERT knowledge tracing model. In Proceedings of the
18th european conference on technology enhanced learn-
ing (EC-TEL) (Vol. 14200, pp. 183–197). Aveiro, Portugal:
Springer.

Liang, Y., Cao, R., Zheng, J., Ren, J., & Gao, L. (2021).
Learning to remove: Towards isotropic pre-trained bert em-
bedding. In Proceedings of the 30th international confer-
ence on artificial neural networks (ICANN) (pp. 448–459).
Springer.

Liu, Y., Han, T., Ma, S., Zhang, J., Yang, Y., Tian, J., . . .
others (2023). Summary of chatgpt-related research and
perspective towards the future of large language models.
Meta-Radiology, 100017.

Misra, K., Ettinger, A., & Rayz, J. (2020). Exploring lexi-
cal relations in bert using semantic priming. In Proceed-
ings of the annual meeting of the cognitive science society
(CogSci) (p. 1939).

Perez, E., Kiela, D., & Cho, K. (2021). True few-shot learn-
ing with language models. In Proceedings of the 35th an-
nual conference on neural information processing systems
(NeurIPS) (pp. 11054–11070).

Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P. S. H.,
Bakhtin, A., Wu, Y., & Miller, A. H. (2019). Language
models as knowledge bases? In Proceedings of the 2019
conference on empirical methods in natural language pro-
cessing and the 9th international joint conference on nat-
ural language processing (EMNLP-IJCNLP) (pp. 2463–
2473). Association for Computational Linguistics.

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M.,
Guibas, L. J., & Sohl-Dickstein, J. (2015). Deep knowl-
edge tracing. In Proceedings of the 29th annual conference
on neural information processing systems (NeurIPS) (pp.
505–513).

Portelance, E., Degen, J., & Frank, M. C. (2020). Predicting
age of acquisition in early word learning using recurrent
neural networks. In Proceedings of the annual meeting of
the cognitive science society (CogSci) (pp. 1057–1063).

Russin, J. L., Jo, J., O’Reilly, R. C., & Bengio, Y. (2020).
Systematicity in a recurrent neural network by factoriz-
ing syntax and semantics. In Proceedings of the annual
meeting of the cognitive science society (CogSci) (pp. 109–
115).

Shi, Y., Chi, M., Barnes, T., & Price, T. W. (2022). Code-dkt:
A code-based knowledge tracing model for programming
tasks. In Proceedings of the 15th international conference
on educational data mining (EDM). International Educa-

1644



tional Data Mining Society.
Su, Y., Cheng, Z., Luo, P., Wu, J., Zhang, L., Liu, Q., &

Wang, S. (2021). Time-and-concept enhanced deep multi-
dimensional item response theory for interpretable knowl-
edge tracing. Knowledge-Based Systems, 218, 106819.

Tong, H., Zhou, Y., & Wang, Z. (2020). Exercise hierarchi-
cal feature enhanced knowledge tracing. In Proceedings of
the 21st international conference on artificial intelligence
in education (AIED) (Vol. 12164, pp. 324–328). Ifrane,
Morocco: Springer.

Truzzi, A., & Cusack, R. (2020). Can visual object rep-
resentations in the human brain be modelled by untrained
convolutional neural networks with random weights? In
Proceedings of the annual meeting of the cognitive science
society (CogSci) (p. 2810).

Wang, W., Li, G., Ma, B., Xia, X., & Jin, Z. (2020). De-
tecting code clones with graph neural network and flow-
augmented abstract syntax tree. In Proceedings of the 27th
international conference on software analysis, evolution
and reengineering (SANER) (pp. 261–271). IEEE.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., . . . Zhou, D. (2022). Chain-of-thought prompting
elicits reasoning in large language models. In Proceedings
of the 36th annual conference on neural information pro-
cessing systems (NeurIPS).

Zhu, M., Han, S., Yuan, P., & Lu, X. (2022). Enhancing pro-
gramming knowledge tracing by interacting programming
skills and student code. In Proceedings of the international
learning analytics and knowledge conference (LAK) (pp.
438–443). ACM.

1645




