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Abstract

Some Problems on the Convex Geometry of Probability Measures

by

Theodore Zhu

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Jim Pitman, Chair

This thesis consists of three main topics in which we explore the geometry and other features
of certain convex sets arising in probabilistic contexts.

We first consider the set of laws of Kn, the number of distinct values among the first n
terms of a sequence, for infinite exchangeable sequences of random variables (X1, X2, . . .).
We prove for n = 3 that the extreme points of the convex set of all possible laws of K3

are those derived from i.i.d. sampling from discrete uniform distributions and the limit case
with P(K3 = 3) = 1. We also consider the problem in higher dimensions and variants of the
problem for finite exchangeable sequences and exchangeable random partitions.

Second, we introduce the notion of a coherent pair of random variables, or two conditional
probabilities of the same event, and study the convex set of laws on [0, 1]2 arising in this
manner. We classify all extreme laws with a certain restriction on the support. We also
discover a large class of extreme laws with finite and countably infinite support.

Third, we study the convex set of polynomial probability densities on [0, 1] of degree at
most n. We review some known results, including characterization of the extreme points, a
representation theorem, properties of the Bernstein polynomial basis, and the Lorentz degree
which measures in some sense the representability of positive polynomials in the Bernstein
basis. We map out the geometry for n = 2, consider the uniform random sampling model,
and compute the upper envelope for this set of polynomials.
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Chapter 1

Introduction

The theory of convex geometry has applications to nearly every area of mathematics as
well as many other disciplines, with no shortage of contributions in probability theory. One
popular theme is the characterization of extreme points of various convex sets of probability
measures, such as moment sets, invariant measures, and many more. Extreme points are
of intrinsic interest due to the elementary notion that any point in a convex body should
be representable as a weighted average of extreme points. This is formally a theorem due
to Carathéodory [10] for compact convex sets in Euclidean space, and was generalized to
infinite-dimensional spaces via Choquet theory, which studies representations of points in
compact convex sets as a generalized weighted average of extreme points in the form of an
integral. This perspective has proven to be of great value to probabilists; for example, using
Choquet theory, Hewitt and Savage [38] proved a more general version of de Finetti’s theorem
[30] for exchangeable sequences, and Johansen [41] gave a new proof of the Lévy-Khintchine
formula [48] for infinitely divisible distributions. Thus, two of the most celebrated theorems
in modern probability theory are instances of extreme point problems for convex sets.

This thesis covers three main topics in this general framework of convex geometry in
probabilistic settings. The remainder of this introductory chapter contains a background
section covering some standard concepts in convex geometry and probability, and an outline
of the main chapters.
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1.1 Preliminaries

This section provides a minimal treatment of standard definitions and theorems in convex
geometry and probability which are fundamental to the content of this thesis.

Convex geometry

Let V be a real vector space. Recall that a set C ⊆ V is called convex if it contains the line
segment connecting any pair of points in C, or formally

αx + (1− α)y ∈ C for every x, y ∈ C and every α ∈ [0, 1]. (1.1)

It easily follows from the definition that if C is convex then any convex combination

α1x1 + . . . + αnxn, α1, . . . , αn ≥ 0, α1 + . . . + αn = 1 (1.2)

of elements x1, . . . , xn ∈ C also belongs to C.

A point p in a convex set C is called an extreme point of C if it does not admit the repre-
sentation (1.1) for any pair of points x and y not equal to p. We denote the set of extreme
points of C by ext(C).

The convex hull of a set S, denoted conv(S), is the set of all convex combinations of el-
ements in S. It is the smallest convex set containing S, or formally the intersection of all
convex sets containing S. The closed convex hull of S is the (topological) closure of the
convex hull.

The dimension of a convex set C, denoted dimC, is the smallest dimension of an affine
subspace containing C.

The convex hull of a finite set of points S is called a convex polytope, whose set of extreme
points is a subset of S. Equivalently, a convex polytope is a closed and bounded convex set
with a finite number of extreme points, which are called vertices. A k-dimensional convex
polytope with k + 1 vertices is called a simplex.

A convex cone is a convex set which is closed under multiplication by positive scalars, or
equivalently, a set which is closed under linear combinations with positive coefficients. A
closed convex cone has the origin as its only extreme point.

If V is finite-dimensional, i.e. V is isomorphic to Rn, then a hyperplane is an affine subspace
of dimension n− 1. A closed half-space is the set of points which lie on and to one side of a
hyperplane.

A supporting hyperplane of a set S is a hyperplane H such that
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� S is contained in a closed half-space bounded by the hyperplane, and

� H ∩ ∂S ̸= ∅, where ∂S denotes the boundary of S.

Theorem 1.1.1 (Supporting hyperplane theorem). Let C be a convex set in Rn. If x ∈ ∂C,
then there exists a supporting hyperplane of C containing x.

A consequence of the supporting hyperplane theorem is that closed convex sets can be
characterized as intersections of closed half-spaces. For example, convex polytopes can also
be characterized as bounded convex sets which are finite intersections of closed half-spaces.
If H is a supporting hyperplane of a convex polytope C, then C ∩H is called a facet of C
if dimC ∩H = dimC − 1.

Theorem 1.1.2 (Minkowski-Carathéodory theorem). Let C be a k-dimensional compact
convex subset of Rn. Then every point in C is a convex combination of at most k + 1
elements of its extreme points. In particular, C is the convex hull of its extreme points.

The Minkowski-Carathéodory theorem generalizes to infinite-dimensional topological vec-
tor spaces V which are Hausdorff, meaning that the topology separates points, and locally
convex, meaning that it a neighborhood base consisting of convex open sets. For example,
any normed vector space satisfies these criteria.

Theorem 1.1.3 (Choquet’s theorem). Let C be a compact convex subset of a Hausdorff
locally convex vector space V . Then for each x ∈ C, there exists a probability measure µ on
C with µ(C \ ext(C)) = 0 such that

x =

∫
ext(C)

y dµ(y) (1.3)

in the weak sense, i.e. for every continuous linear functional f on C, we have

f(x) =

∫
ext(C)

f(y) dµ(y). (1.4)

Theorem 1.1.4 (Krein-Milman theorem). Let C be a compact convex subset of a Hausdorff
locally convex vector space V . Then C is the closed convex hull of its extreme points.

Beyond intrinsic appeal from a geometric perspective, convex sets and their extreme
points are of fundamental importance in convex optimization. If C is a convex set, a function
f : C → R is called convex if for all x, y ∈ C and 0 ≤ α ≤ 1,

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y). (1.5)

Theorem 1.1.5. Let C ⊆ V be a compact convex set and let f : C → R be a convex function.
Then

max
x∈C

f(x) = max
x∈ext(C)

f(x). (1.6)
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In words, the problem of maximizing a convex function over a compact convex set can
be reduced to maximizing the function over just the set of extreme points. In particular, if
f is linear, then the maximization or minimization problem over a compact convex set can
be simplified in this manner.

For a more thorough treatment of the material in this section, see e.g. [70].

Probability

We assume that the reader is familiar with basic terminology in measure theory, topology,
and probability theory. For background, refer to e.g. [31] and [22].

Let (Ω,F ,P) be a probability space.

The law or distribution of a random variable X : Ω → R is the probability measure µ
on R specified by

µ(B) = P(X ∈ B) (1.7)

for every (Borel) measurable subset B ⊆ R.

The support of a probability measure µ on R, denoted supp(µ), is the smallest closed set
S ⊆ R such that µ(S) = 1. We say µ is supported on a set T if supp(µ) ⊆ T .

A sequence of probability measures (µn) on R is said to converge weakly to µ if for ev-
ery bounded, continuous function f : R→ R we have∫

f(x)dµn(x)→
∫

f(x)dµ(x). (1.8)

The topology of weak convergence on the set of probability measures on R is called the weak
topology. It is a well-known result in functional analysis that if K is a compact subset of R,
then the set of probability measures supported on K is weakly compact. (See [31], specifically
the Riesz representation theorem and Alaoglu’s theorem.)

If C is a collection of probability measures on R, let λ(C) denote the σ-field on C gener-
ated by sets of form

{ν ∈ C : ν(B) ∈ A} (1.9)

for measurable A,B ⊆ R. This is the smallest σ-field which guarantees measurability of
functions on C of the form ν 7→ ν(B) for measurable B ⊆ R. A probability measure µ on R
is called a mixture over C if there exists a probability measure ρ on (C, λ(C)) such that

µ(B) =

∫
C
ν(B)dρ(ν) (1.10)
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for every measurable subset B ⊆ R. In particular, if C is a finite set, then the integral in
(1.10) reduces to a convex combination of the probability measures in C.

Note that the preceding definitions can be extended from real-valued random variables to
vector-valued random variables, as well as infinite sequences of random variables by way of
Kolmogorov’s extension theorem; see [22].

A finite sequence (X1, . . . , Xn) of random variables is called exchangeable if its law is in-
variant under permutations of the indices, i.e. for every permutation σ of {1, . . . , n}, we
have the equality in distribution

(Xσ(1), . . . , Xσ(n))
d
= (X1, . . . , Xn). (1.11)

An infinite sequence (X1, X2, . . .) of random variables is called exchangeable if (X1, . . . , Xn)
is exchangeable for every n ≥ 1.

Theorem 1.1.6 (de Finetti’s theorem [30],[38]). Let (X1, X2, . . .) be an infinite exchangeable
sequence of random variables and let C denote the set of (Borel) probability measures on R.
Then there exists a unique probability measure ρ on (C, λ(C)) such that for every n ≥ 1 and
measurable sets B1, . . . , Bn,

P(X1 ∈ B1, . . . , Xn ∈ Bn) =

∫
C
µ(B1) · · ·µ(Bn)dρ(µ). (1.12)

In words, de Finetti’s theorem asserts that the law of every exchangeable sequence of
random variables is a mixture of laws of i.i.d. sequences of random variables. Geometrically,
the assertion looks the part of a Choquet extreme point representation theorem; indeed, He-
witt and Savage [38] proved the general version of de Finetti’s theorem taking this approach,
showing that the extreme points of the set of exchangeable laws are precisely those derived
from i.i.d. sequences.
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1.2 Organization

The rest of this thesis is organized as follows:

� In Chapter 2, we study the set of laws of Kn for an exchangeable sequence of random
variables, where Kn is the number of distinct values among the first n terms. We
prove for n = 3 that the extreme points of the convex set of all possible laws of K3

are those derived from i.i.d. sampling from discrete uniform distributions and the
limit case with P(K3 = 3) = 1. We also consider variants of the problem for finite
exchangeable sequences and exchangeable random partitions. In particular, we discover
a remarkable symmetry for laws of K3 corresponding to the Ewens-Pitman [64] two-
parameter partition model. We also discuss recent contributions by Yakubovich [77],
in response to our main result for n = 3, toward former conjectures for the higher
dimensional problem. The material in this chapter was published in [78].

� In Chapter 3, we introduce the notion of a coherent pair of random variables (X, Y ),
or two conditional probabilities of the same event, and study the convex set of laws
on [0, 1]2 arising in this manner. We respond to a number of open problems posed in
[20] and [9]; specifically, we classify all extreme points of this set which are supported
on the corners of a rectangle, which leads to an alternate proof of a maximization
problem recently solved in [9]. We also discover a large class of extreme points with
finite and countably infinite support. The general problem of describing all extreme
points remains open.

� In Chapter 4, we study the convex set Dn, the set of polynomial probability densities
on [0, 1] of degree at most n, drawing connections to known results in algebra, geome-
try, analysis, and probability. We introduce the Lorentz degree of a polynomial, which
measures the representability of positive polynomials as a positive linear combination
of Bernstein basis polynomials, and map out the geometry of D2 which uncovers a
collection of ellipses related to this notion. We also consider a novel model for ran-
dom polynomial densities and compute the upper envelope of Dn using orthogonal
polynomials.
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Chapter 2

Clustering in exchangeable processes

For an infinite sequence of real-valued random variables (X1, X2, . . .), let

Kn = Kn(X1, . . . , Xn) := #{Xi : 1 ≤ i ≤ n}, (2.1)

the number of distinct values appearing in the first n terms. We focus our discussion on
the case in which the sequence (X1, X2, . . .) is exchangeable, meaning that its distribution is
invariant under finite permutations of the indices. It is a well-known and celebrated result
of de Finetti that every infinite exchangeable sequence is a mixture of i.i.d. sequences. We
explore ideas related to the following central question:

Given a probability distribution (a1, . . . , an) on [n] := {1, . . . , n}, is there an infi-
nite exchangeable sequence of random variables (X1, X2, . . .) such that P(Kn = k) = ak
for 1 ≤ k ≤ n?

The functional Kn has been studied extensively in the context of the occupancy problem
as well as other closely related formulations including the birthday problem, the coupon
collector’s problem, and random partition structures [29, 45, 63]. Much of the literature
pertains to the asymptotic behavior of Kn in the classical version in which the Xi are i.i.d.
discrete uniform random variables, as well as the general i.i.d. case. See [33] for a recent
survey with many references. Asymptotics of Kn have also been studied for a random walk
(X1, X2, . . .) with stationary increments [71],[22, Section 7.3].

Let us first consider the problem for small values of n. For n = 1, the random variable
K1 is just the constant 1. Next, it is easy to see that every probability distribution on {1, 2}
can be achieved as the law of K2 for some exchangeable sequence; indeed, for a ∈ [0, 1], i.i.d.
sampling from a distribution with a single atom having weight

√
a yields P(K2 = 1) = a.

However, the problem is not trivial for n = 3, as evident by the following bound due to Jim
Pitman (personal communication.) The proof is presented in Section 2.2.

Proposition 2.0.1. For K3 the number of distinct values in the first 3 terms of an infinite
exchangeable sequence of random variables (X1, X2, . . .),

P(K3 = 2) ≤ 3

4
. (2.2)
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Here we present the main result of this chapter. Let vn,m denote the law of Kn,m :=
Kn(Xm,1, . . . , Xm,n) where Xm,i are i.i.d. with uniform distribution on m elements, i.e.

vn,m =
(
P(Kn,m = k) : 1 ≤ k ≤ n

)
(2.3)

and let vn,∞ = (0, . . . , 0, 1), corresponding to the limit case m =∞ since

P(Kn,m = n) =
m(m− 1) · · · (m− n + 1)

mn
−→ 1 as m→∞. (2.4)

Let
Vn := {vn,m : m = 1, 2, . . . ,∞} (2.5)

and let Hn denote the convex hull of Vn.

Theorem 2.0.2. For n = 3,

(i) The set of extreme points of Hn is Vn.

(ii) The set of possible laws of Kn for an infinite exchangeable sequence (X1, X2, . . .) is Hn.

It is natural to conjecture that the assertions in Theorem 2.0.2 hold true for larger values
of n. Yuri Yakubovich [77] proved that (i) holds for all n ≥ 3. However, Yakubovich exhibits
a counterexample to (ii) for n = 7. The results in [77] are further discussed in Section 2.3.
It remains a conjecture that (ii) holds for n = 4, 5 and fails for all n ≥ 6, and more generally
it remains an open problem to characterize the the set of possible laws of Kn for n ≥ 4.

The rest of this chapter is organized as follows. Section 2.1 establishes notation and
the fundamentals of our approach. Section 2.2 covers some properties of the law of K3

leading to a proof of Theorem 2.0.2, and Section 2.3 extends some of these results to higher
dimensions. Section 2.4 considers a variant of the main problem for finite exchangeable
sequences by appealing to the framework of exchangeable random partitions, and Section
2.5 explores a remarkable symmetry for K3 in the Ewens-Pitman two-parameter partition
model.

2.1 Preliminaries

For an i.i.d. sequence (X1, X2, . . .), there is an associated ranked discrete distribution (p1, p2, . . .)
with p1 ≥ p2 ≥ . . . ≥ 0 and

∑∞
i=1 pi ≤ 1 where the pi are the weights of the atoms for the

law of Xi in decreasing order, and 1−
∑∞

i=1 pi is the weight of the continuous component.
Consider the set

∇∞ :=
{

(p1, p2, . . .) : p1 ≥ p2 ≥ . . . ≥ 0,
∞∑
i=1

pi ≤ 1
}
, (2.6)
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sometimes referred to as the infinite dimensional Kingman simplex as in [62]. The uniform
distribution on m elements corresponds to

um :=
( 1

m
, . . . ,

1

m︸ ︷︷ ︸
m times

, 0, 0, . . .
)
∈ ∇∞. (2.7)

and every non-atomic law corresponds to u∞ := (0, 0, . . .) ∈ ∇∞. With Theorem 2.0.2 in
mind, note that {

um : m = 1, 2, . . . ,∞
}

(2.8)

is precisely the set of extreme points of ∇∞ [16, Theorem 4.1]. Every (p1, p2, . . .) ∈ ∇∞ has
a unique representation as a convex combination of um, m = 1, 2, . . . ,∞ given by

(p1, p2, . . .) = p∗u∞ +
∞∑
i=1

(pi − pi+1)ui, p∗ = 1−
∞∑
i=1

pi. (2.9)

This is a discrete version of Khintchine’s representation theorem for unimodal distributions
[48].

It is easy to see that the law of Kn for an i.i.d sequence depends only on the ranked
frequencies of the atoms. Let

qn,i(p1, p2, . . .) := P
(
Kn = i

)
(2.10)

where Kn = Kn(X1, . . . , Xn) for i.i.d. Xi with ranked frequencies (p1, p2, . . .). Then for
n = 3, it is easy to see that

q3,1(p1, p2, . . .) =
∞∑
i=1

p3i (2.11)

q3,2(p1, p2, . . .) =
∞∑
i=1

3p2i (1− pi) (2.12)

q3,3(p1, p2, . . .) = 1−
∞∑
i=1

[
3p2i − 2p3i

]
. (2.13)

For the general exchangeable case, de Finetti’s theorem guarantees that the law of Kn

for an exchangeable sequence of random variables (X1, X2, . . .) is a mixture of laws of Kn for
i.i.d. sequences. In other words, the set of laws of Kn derived from exchangeable sequences
is the convex hull of those derived from i.i.d. sequences. This property allows us to focus on
the i.i.d. case and simplify our treatment to ranked discrete distributions.

Note that there is an equivalent reformulation of the problem in the setting of exchange-
able random partitions; see e.g. [63] for relevant background on the subject. For an ex-
changeable random partition Π = (Πn) of N, let Kn denote the number of clusters in the
restriction Πn of Π to [n]. Through Kingman’s representation theorem [50] for exchangeable
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random partitions of N in terms of random ranked discrete distributions, the possible laws
of Kn in this setting are identical to the possible laws of Kn as defined earlier as the number
of distinct values in the first n terms of an exchangeable sequence (X1, X2, . . .). In Sections
5 – 7, we explore some related problems in the framework of exchangeable random partitions.

Notations and conventions. If a ranked discrete distribution (p1, p2, . . .) has finitely
many atoms, i.e. there exists m such that pi = 0 for all i > m, we call it a finite distribu-
tion and abbreviate it as (p1, . . . , pm) when convenient. Since all of the functionals that we
work with on ∇∞ are symmetric functions of the arguments, we understand an equivalence
between an unordered discrete distribution (p1, p2, . . .) and its ranked version. Unless other-
wise stated, it is implicit in the appearance of (p1, p2, . . .) or (p1, . . . , pm) that the conditions
pi ≥ 0 and

∑
pi ≤ 1 hold.

2.2 Laws of K3

To simplify notation in this section, let

qi := q3,i = P(K3 = i) (2.14)

where qi may be treated as a functional on ∇∞.

Lemma 2.2.1. For (p1, . . . , pm) with m ≥ 3 and p1 ≤ . . . ≤ pm,

q2(p1 + p2, p3 . . . , pm) ≥ q2(p1, p2, p3, . . . , pm). (2.15)

Proof. Let a = p1 and b = p2. We have

q2(a, b, p3, . . . , pm) = 3a2(1− a) + 3b2(1− b) +
m∑
i=3

3p2i (1− pi) (2.16)

and

q2(a + b, p3, . . . , pm) = 3(a + b)2(1− a− b) +
m∑
i=3

3p2i (1− pi). (2.17)

Then

q2(a + b, p3, . . . , pm)− q2(a, b, p3, . . . , pm) = 3(a + b)2(1− a− b)− 3a2(1− a)− 3b2(1− b)
(2.18)

= 6ab(1− a− b)− 3a2b− 3ab2 (2.19)

= 3ab(2− 3(a + b)) (2.20)

≥ 0 (2.21)

since a and b are the two smallest values among {a, b, p3, . . . , pm} so a + b ≤ 2
m
≤ 2

3
for

m ≥ 3.
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This shows that for every (p1, . . . , pm) with m ≥ 3, merging the two smallest values
among {p1, . . . , pm} does not decrease q2.

Proof of Proposition 2.0.1. By de Finetti’s theorem, it suffices to prove the inequality for
i.i.d. sequences. Since

q2(p1, p2, . . .) =
∞∑
i=1

3p2i (1− pi) = lim
m→∞

m∑
i=1

3p2i (1− pi) = lim
m→∞

q2(p1, . . . , pm), (2.22)

it is enough to establish the inequality q2(p1, . . . , pm) ≤ 3
4

for finite discrete distributions
(p1, . . . , pm). If m = 2, then q2(p1, p2) = 3p21(1−p1)+3p22(1−p2) which attains its maximum
value of 3

4
subject to p1, p2 ≥ 0 and p1 + p2 ≤ 1 at p1 = p2 = 1

2
. For m ≥ 3, by Lemma 2.2.1

repeatedly merging the two smallest values until no more than two nonzero values remain
gives q2(p1, . . . , pm) ≤ q2(

1
2
, 1
2
) = 3

4
.

Consider the law of K3 for an i.i.d. sequence (X1, X2, . . .) where each Xi has the uniform
distribution uN := ( 1

N
, . . . , 1

N
). A probability distribution (q1, q2, q3) of K3 (on {1, 2, 3}) can

be represented by any pair of its coordinates; here we shall work with (q1, q3) :=
(
P(K3 =

1),P(K3 = 3)
)
. Then

q1(uN) := P(K3(uN) = 1) =
1

N2
(2.23)

q3(uN) := P(K3(uN) = 3) =
(N − 1)(N − 2)

N2
. (2.24)

The set of points {vN : N ∈ N} = {(1, 0), (1
4
, 0), (1

9
, 2
9
), ( 1

16
, 6
16

), ( 1
25
, 12
25

), ( 1
36
, 20
36

), . . .} where

vN := (q1(uN), q3(uN)) =
( 1

N2
,
(N − 1)(N − 2)

N2

)
(2.25)

are shown in Figures 2.1 and 2.2, with line segments connecting consecutive points.

The slope of the line connecting vN =
(

1
N2 ,

(N−1)(N−2)
N2

)
and vN+1 =

(
1

(N+1)2
, N(N−1)

(N+1)2

)
is

N(N−1)
(N+1)2

− (N−1)(N−2)
N2

1
(N+1)2

− 1
N2

= −(N − 1)(3N + 2)

2N + 1
. (2.26)

This is increasing in N which proves Theorem 2.0.2(i). The equation of the Nth line is given
by

q3 −
(N − 1)(N − 2)

N2
= −(N − 1)(3N + 2)

2N + 1

(
q1 −

1

N2

)
(2.27)

or after rearranging,

q3 +
(N − 1)(3N + 2)

2N + 1
q1 =

2N − 2

2N + 1
. (2.28)
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Figure 2.1: Probability distributions of K3 rep-
resented as points (q1, q3) =

(
P(K3 = 1),P(K3 =

3)
)
with q1 horizontal and q3 vertical. Shaded in

black is the restricted region specified by Propo-
sition 2.0.1. The gray region is the closed convex
hull of {vN : N ∈ N} where vN corresponds to
the distribution of K3 for i.i.d. sampling from a
discrete uniform distribution on N elements, as
defined in (2.25).

Figure 2.2: The shaded regions (nested) correspond to the
images of {(p1, . . . , pm) : pi ≥ 0,

∑
pi = 1} under the map

(p1, . . . , pm) 7→
(
q1(p1, . . . , pm), q3(p1, . . . , pm)

)
, i.e. distri-

butions of K3 for i.i.d. sampling from a discrete distribu-
tion with at most m atoms for m = 3 (dark), m = 4 (dark
and medium), and m = 5 (dark, medium, and light). The
existence of the gap between the left boundary of the dark
region and the line segment connecting v2 and v3 is a con-
sequence of Lemma 2.2.6. The midpoint of v2 and v3, for
example, does not correspond to i.i.d. sampling from any
discrete distribution; however, it does correspond to the
the exchangeable sequence with law given by i.i.d. sam-
pling from u2 with probability 1

2
and i.i.d. sampling from

u3 with probability 1
2
.

For p = (p1, . . . , pm), define according to the left-hand side of (2.28) the functional

LN(p) := q3(p) +
(N − 1)(3N + 2)

2N + 1
q1(p) (2.29)
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which may be reexpressed as

LN(p) = 1−
(
1− LN(p)

)
(2.30)

= 1−
(

1− q3(p)− q1(p)−
[

(N − 1)(3N + 2)

2N + 1
− 1

]
q1(p)

)
(2.31)

= 1− q2(p) +
3(N2 −N − 1)

2N + 1
q1(p) (2.32)

= 1−
m∑
i=1

3p2i (1− pi) +
3(N2 −N − 1)

2N + 1

m∑
i=1

p3i (2.33)

= 1− 3
m∑
i=1

p2i +
3N(N + 1)

2N + 1

m∑
i=1

p3i . (2.34)

Note that LN is nonlinear as a function of discrete distributions p. Define

f(N) :=
3N(N + 1)

2N + 1
(2.35)

so

LN(p) = 1− 3
m∑
i=1

p2i + f(N)
m∑
i=1

p3i . (2.36)

To better understand the sequence of values f(N), note that f is increasing and

N <
2N + 2

2N + 1
(N) =

2

3
· 3N(N + 1)

2N + 1︸ ︷︷ ︸
f(N)

=
2N

2N + 1
(N + 1) < N + 1. (2.37)

The first few values are f(1) = 2, f(2) = 18
5

, f(3) = 36
7

, f(4) = 60
9

.

Lemma 2.2.2. For N ≥ 1 and every p = (p1, . . . , pm) with p1 ≥ . . . ≥ pm ≥ 0 and
∑

pi ≤ 1,

LN(p) ≥ 2N − 2

2N + 1
. (2.38)

Geometrically, Lemma 2.2.2 asserts that for every p = (p1, . . . , pm), the point
(
q1(p), q3(p)

)
lies on or above each of the lines connecting vN and vN+1 for N ∈ N. It will be shown in
the proof that for N ≥ 2, LN(p) = 2N−2

2N+1
if and only if p = uN or p = uN+1; as for N = 1,

L1(p) = q3(p) = 0 is attained if and only if p = (p1, p2) with p1 + p2 = 1.
The strategy for proving Lemma 2.2.2 is to show that LN is minimized at precisely vN and

vN+1 by reducing the domain of minimization in stages, first to (p1, . . . , pm) with
∑

pi = 1,
then to the uniform distributions, and finally to uN and uN+1. The key to the proof is the
following merging lemma, which generalizes Lemma 2.2.1.
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Lemma 2.2.3. For N ≥ 1 and (p1, . . . , pm) with m ≥ 2,

LN(p1 + p2, p3, . . . , pm)− LN(p1, p2, p3, . . . , pm) = 3p1p2
[
(p1 + p2)f(N)− 2

]
(2.39)

which is positive, negative, or zero according to the sign of p1 + p2 − 2
f(N)

.

Proof. Let a = p1 and b = p2. We have

LN(a, b, p3, . . . , pm) = 1− 3a2 − 3b2 − 3
m∑
i=3

p2i + f(N)(a3 + b3) + f(N)
m∑
i=3

p3i (2.40)

and

LN(a + b, p3, . . . , pm) = 1− 3(a + b)2 − 3
m∑
i=3

p2i + f(N)(a + b)3 + f(N)
m∑
i=3

p3i . (2.41)

Then

LN(a + b, p3, . . . , pm)− LN(a, b, p3, . . . , pm) = −6ab + f(N)(3a2b + 3ab2) (2.42)

= 3ab
[
(a + b)f(N)− 2

]
. (2.43)

The proof of Lemma 2.2.2 is organized according to the following lemmas.

Lemma 2.2.4. Let P denote the set of all finite ranked discrete distributions, and let P1

denote the set of finite ranked discrete distributions (p1, . . . , pm) with
∑

pi = 1. Then for
every N ≥ 1, we have the equality of sets

arg min
p∈P

LN(p) = arg min
p∈P1

LN(p) (2.44)

Proof. Let p0 = (p1, . . . , pm) ∈ P such that
∑m

i=1 pi < 1. Let ε satisfy

0 < ε < min
{ 3

f(N)
, 1−

m∑
i=1

pi

}
. (2.45)

Then

LN(ε, p1, . . . , pm) = −3ε2 + f(N)ε3 + LN(p1, . . . , pm) (2.46)

= ε2(f(N)ε− 3) + LN(p1, . . . , pm) (2.47)

< LN(p1, . . . , pm). (2.48)

This shows that if p0 /∈ P1, then p0 /∈ arg minp∈P LN(p).
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Lemma 2.2.5. Let P1 denote the set of finite ranked discrete distributions (p1, . . . , pm) with∑
pi = 1, and let U :=

{
um : m ∈ N}. Then for N ≥ 2, we have the equality of sets

arg min
p∈P1

LN(p) = arg min
p∈U

LN(p) (2.49)

Proof. Let p0 = (p1, . . . , pm), not necessarily ranked, such that
∑m

i=1 pi = 1. Suppose p0 has
a pair of distinct nonzero values, say a = p1 and b = p2 with a, b > 0 and a ̸= b. Consider
the three cases as designated in Lemma 2.2.3, noting that 2

f(N)
< 1 for N ≥ 2.

(i) If a + b < 2
f(N)

, then LN(a + b, p3, . . . , pm) < LN(a, b, p3, . . . , pm) by Lemma 2.2.3.

(ii) If a + b > 2
f(N)

, then

LN(a+b
2
, a+b

2
, p3, . . . , pm)− LN(a, b, p3, . . . , pm) (2.50)

=
(
LN(a + b, p3, . . . , pm)− LN(a, b, p3, . . . , pm)

)
(2.51)

−
(
LN(a + b, p3, . . . , pm)− LN(a+b

2
, a+b

2
, p3, . . . , pm)

)
= 3ab

(
(a + b)f(N)− 2

)
− 3(a+b

2
)2
(
(a + b)f(N)− 2

)
(2.52)

= 3
(
ab− (a+b

2
)2
)(

(a + b)f(N)− 2
)

(2.53)

which is negative since ab− (a+b
2

)2 < 0 and (a + b)f(N)− 2 > 0.

(iii) If a+ b = 2
f(N)

< 1, then there must exist a third nonzero value, say p3 = c > 0. If c =
2

f(N)
, then a ̸= c and a+ c > 2

f(N)
so LN(a+c

2
, a+c

2
, b, p4, . . . , pm) < LN(a, b, c, p4, . . . , pm)

by case (ii). If c ̸= 2
f(N)

, then merging a and b, which does not change LN , followed

by averaging a + b and c gives LN(a+b+c
2

, a+b+c
2

, p4, . . . , pm) < LN(a, b, c, p4, . . . , pm) by
case (ii) again.

Since permuting values in any discrete distribution does not change LN , the analysis above
holds for all ranked discrete distributions and thus shows that among p ∈ P1, LN cannot be
minimized at any p with a pair of distinct nonzero values, i.e. any non-uniform distribution.

Remark. As mentioned previously, for N = 1,

arg min
p∈P

L1(p) = {(p1, p2) : p1 ≥ p2 ≥ 0, p1 + p2 = 1}

which differs from the general case N ≥ 2. The reason the proof of Lemma 2.2.5 fails for
N = 1 is that f(1) = 2, so 2

f(1)
= 1 and case (iii) of the proof breaks down.

Lemma 2.2.6. Let U := {um : m ∈ N}. Then for N ≥ 1,

arg min
p∈U

LN(p) = {uN ,uN+1} (2.54)
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Proof. The claim is obvious based on Figure 2.1, which shows that the slopes between vN

and vN+1 for N ∈ N are decreasing in N . Indeed, the slope of the Nth line segment is
computed in (2.26) as

−(N − 1)(3N + 2)

2N + 1
= −3N2 −N − 2

2N + 1
= 2− 3N(N + 1)

2N + 1
= 2− f(N) (2.55)

which is decreasing in N .

Proof of Lemma 2.2.2. The claim holds trivially for N = 1. For N ≥ 2, applying Lemmas
2.2.4, 2.2.5, and 2.2.6 yields

arg min
p∈P

LN(p) = arg min
p∈P1

LN(p) = arg min
p∈U

LN(p) = {uN ,uN+1} (2.56)

and therefore for every p = (p1, . . . , pm) with pi ≥ 0 and
∑

pi ≤ 1,

LN(p) ≥ LN(uN) = LN(uN+1) =
2N − 2

2N + 1
. (2.57)

Proof of Theorem 2.0.2. Part (i) was proven earlier by the slope computation (2.26) and
illustrated in Figure 2.1. For part (ii), Lemma 2.2.2 asserts that (q1(p), q2(p), q3(p)) ∈
H3 = conv(V3) for every finite ranked discrete distribution p. Extension to infinite discrete
distributions (p1, p2, . . .) follows because limm→∞ qi(p1, . . . , pm) = qi(p1, p2, . . .), and then
extension to exchangeable sequences holds by convexity.

2.3 Higher dimensions

This section aims to extend some of the results in the previous section to Kn for larger n.
Here qn,i := P(Kn = i). We begin by generalizing Lemma 2.2.1 and Proposition 2.0.1.

Lemma 2.3.1. For n ≥ 3 and (p1, . . . , pm) with m ≥ 3,
∑m

i=1 pi = 1, p1 ≤ . . . ≤ pm,

qn,2(p1 + p2, p3, . . . , pm) ≥ qn,2(p1, p2, p3, . . . , pm). (2.58)

The proof requires the following inequality:

Lemma 2.3.2. For a, b > 0 and n ≥ 2,

4
(
n−1
n

)
ab(a + b)n−2 ≤ (a + b)n − an − bn ≤ nab(a + b)n−2 (2.59)
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Proof. We have

(a + b)n − an − bn =
n−1∑
k=1

(
n

k

)
akbn−k = ab

n−2∑
k=0

(
n

k + 1

)
akbn−2−k. (2.60)

Observe that(
n

k + 1

)
=

n(n− 1)(n− 2)!

(k + 1)k!(n− k − 1)(n− k − 2)!
=

n(n− 1)

(k + 1)(n− k − 1)

(
n− 2

k

)
; (2.61)

the denominator (k + 1)(n− k− 1) is no greater than (n/2)2, and is minimized at k = 0 and
k = n− 2, so (

n

k + 1

)
≥ n(n− 1)

(n/2)2

(
n− 2

k

)
= 4

n− 1

n

(
n− 2

k

)
(2.62)

and (
n

k + 1

)
≤ n

(
n− 2

k

)
. (2.63)

The result follows by substituting inequalities (2.62) and (2.63) into (2.60) and appealing to
the binomial theorem.

Proof of Lemma 2.3.1. Let a = p1 and b = p2. We can compute

qn,2(a, b, p3, . . . , pm) = P
(
Kn(a, b, p3, . . . , pm) = 2

)
by conditioning on the appearance of the first two values:

qn,2(a, b, p3, . . . , pm) =
n−1∑
k=1

(
n

k

)
akbn−k +

n−1∑
k=1

(
n

k

)
ak

m∑
i=3

pn−k
i (2.64)

+
n−1∑
k=1

(
n

k

)
bk

m∑
i=3

pn−k
i +

∑
3≤i<j≤m

n−1∑
k=1

(
n

k

)
pki p

n−k
j . (2.65)

Note that the first term, which is an expression for the probability that the first two values
both appear and are the only ones to appear in the first n observations, is also equal to
(a + b)n − an − bn. Similarly,

qn,2(a + b, p3, . . . , pm) =
n−1∑
k=1

(
n

k

)
(a + b)k

m∑
i=3

pn−k
i +

∑
3≤i<j≤m

n−1∑
k=1

(
n

k

)
pki p

n−k
j . (2.66)



CHAPTER 2. CLUSTERING IN EXCHANGEABLE PROCESSES 18

For m ≥ 3, the difference after appropriate cancellations and applying Lemma 2.3.2 is

qn,2(a + b, p3, . . . , pm)− qn,2(a, b, p3, . . . , pm) (2.67)

=
n−1∑
k=1

(
n

k

)[
(a + b)k − ak − bk

] m∑
i=3

pn−k
i −

n−1∑
k=1

(
n

k

)
akbn−k (2.68)

=
n−2∑
k=1

(
n

k

)[
(a + b)k − ak − bk

] m∑
i=3

pn−k
i︸ ︷︷ ︸

≥0

+n
[
(a + b)n−1 − an−1 − bn−1

]︸ ︷︷ ︸
≥4(n−2

n−1
)ab(a+b)n−3≥2ab(a+b)n−3

m∑
i=3

pi (2.69)

−
[
(a + b)n − an − bn

]︸ ︷︷ ︸
≤nab(a+b)n−2

(2.70)

≥ nab(a + b)n−3
[
2

m∑
i=3

pi − (a + b)
]
. (2.71)

Since
∑m

i=1 pi = 1 and a ≤ b ≤ p3 ≤ . . . ≤ pm, it follows that
∑m

i=3 pi ≥
m−2
m

and a + b ≤ 2
m

,
so

2
m∑
i=3

pi − (a + b) ≥ 2
(m− 2

m

)
− 2

m
=

2(m− 3)

m
≥ 0 (2.72)

and therefore merging the two smallest values among {p1, . . . , pm} does not decrease qn,2
provided that there are at least 3 nonzero values.

Lemma 2.3.3. For every (p1, . . . , pm) and n ≥ 3,

qn,2(p1, . . . , pm, p∗) ≥ qn,2(p1, . . . , pm) (2.73)

where p∗ := 1−
∑m

i=1 pi.

Proof. We have

qn,2(p1, . . . , pm) =
∑

1≤i<j≤m

n−1∑
k=1

(
n

k

)
pki p

n−k
j +

m∑
i=1

npn−1
i p∗ (2.74)

and

qn,2(p1, . . . , pm, p∗) =
∑

1≤i<j≤m

n−1∑
k=1

(
n

k

)
pki p

n−k
j +

m∑
i=1

n−1∑
k=1

(
n

k

)
pki p

n−k
∗ , (2.75)

so

qn,2(p1, . . . , pm, p∗)− qn,2(p1, . . . , pm) =
m∑
i=1

n−2∑
k=1

pki p
n−k
∗ ≥ 0. (2.76)
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Theorem 2.3.4. For every exchangeable sequence of random variables (X1, X2, . . .) and
every n ≥ 3,

P(Kn = 2) ≤ 1− 2−(n−1). (2.77)

Proof. As in the proof of Proposition 2.0.1, it suffices to show that qn,2(p1, . . . , pm) ≤ 1 −
2−(n−1) for any (p1, . . . , pm). If m = 2 and p1 + p2 = 1, then

qn,2(p1, p2) = 1− pn1 − pn2 (2.78)

which attains its maximum of 1− 2−(n−1) at p1 = p2 = 1
2
. For m ≥ 3, by Lemmas 2.3.1 and

2.3.3 we have

qn,2(p1, . . . , pm) ≤ qn,2(p1, . . . , pm, p∗) ≤ qn,2
(
1
2
, 1
2

)
= 1− 2−(n−1). (2.79)

The difficulty in extending the proof of Theorem 2.0.2(ii) to the problem in higher di-
mensions is that there is no simple generalization of Lemma 2.2.3. Lemma 2.2.3 is essential
because it asserts that whether merging two values in a discrete distribution increases, de-
creases, or preserves the functionals LN is determined by only the sum of the two value
to be merged. The corresponding functionals for the higher dimensional problem are more
complicated and do not have the same convenient property.

Recently, Yakubovich [77] resolved the previously standing conjecture regarding the as-
sertions in Theorem 2.0.2 for n ≥ 3.

Recall some notation from the beginning of the chapter: for n ≥ 3 and m = 1, 2, . . . ,∞,
denote by vn,m the law of Kn(Xm,1, . . . , Xm,n) where Xm,i are i.i.d. with uniform distribution
on m elements, i.e.

vn,m =
(
P(Kn,m = k) : 1 ≤ k ≤ n

)
(2.80)

and vn,∞ = (0, . . . , 0, 1). By a standard combinatorial argument, we have the formula

vn,m(k) =
S(n, k)

(
m
k

)
k!

mn
(1 ≤ k ≤ n) (2.81)

where the S(n, k) are Stirling numbers of the second kind. Let

Vn := {vn,m : m = 1, 2, . . . ,∞} (2.82)

and let Hn denote the convex hull of Vn. Yakubovich proved the following:

Proposition 2.3.5. For n ≥ 3, the set of extreme points of Hn is Vn.

This is a consequence of the following two lemmas, in which orthogonal vectors to the
supporting hyperplanes of Hn are found, revealing its geometry.
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Lemma 2.3.6. Let n ≥ 3 be odd. Let γn,1 := δn = (0, . . . , 0, 1) ∈ Rn, and for r ≥ 2 define
γn,r ∈ Rn by

γn,r(k) :=
(−1)k−1

(
n−1
k−1

)
S(n, k)

(
n+r−3
k−1

)
(k − 1)!

for k = 1, . . . , n. (2.83)

Then for r ≥ 1 we have ⟨γn,r,vn,m⟩ = 0 for m = r, r + 1, . . . , r + n− 2 and ⟨γn,r,vn,m⟩ > 0
for m < r or m > r + n− 2.

Proof. The assertion for r = 1 is obvious because the probability of observing n distinct
values in a n-sample from a uniform distribution on m elements is 0 for m = 1, . . . , n − 1
and positive for m ≥ n. For r ≥ 2, observe that

⟨γn,r,vn,m⟩ =
n∑

k=1

(−1)k−1
(
n−1
k−1

)
S(n, k)

(
n+r−3
k−1

)
(k − 1)!

S(n, k)
(
m
k

)
k!

mn
=

n∑
k=1

(−1)k−1
(
m−1
k−1

)(
n−k+r−2

r−2

)(
n+r−3
r−2

)
mn−1

(2.84)

because k
(
m
k

)
= m

(
m−1
k−1

)
and

(
n−1
k−1

)(
n+r−3
k−1

)−1
=

(
n−k+r−2

r−2

)(
n+r−3
r−2

)−1
. Note that the denom-

inator in the summand does not depend on k. It can be shown using generating functions
that the numerator evaluates to 0 for r ≤ m ≤ r+n− 2 and is otherwise positive for all odd
n (proof omitted).

Lemma 2.3.7. Let n ≥ 4 be even. Let γ ′′
n,2 := δn = (0, . . . , 0, 1) ∈ Rn. For r ≥ 2 define

γ ′
n,r ∈ Rn by

γ ′
n,r(k) :=

(−1)k−1
(
n−2
k−1

)
S(n, k)

(
n+r−4
k−1

)
(k − 1)!

for k = 1, . . . , n− 1, (2.85)

γ ′
n,r(n) := 0 (2.86)

and for r ≥ 3 define γ ′′
n,r ∈ Rn by

γ ′′
n,r(1) := 0, (2.87)

γ ′′
n,r(k) :=

(−1)k
(
n−2
k−2

)
S(n, k)

(
n+r−5
k−2

)
(k − 2)!

for k = 2, . . . , n. (2.88)

Then for r ≥ 2 we have ⟨γ ′
n,r,vn,m⟩ = 0 for m =∞, r, r+1, . . . , r+n−3 and ⟨γ ′

n,r,vn,m⟩ > 0
for m < r or r+n−3 < m <∞, and we have ⟨γ ′′

n,r,vn,m⟩ = 0 for m = 1, r, r+1, . . . , r+n−3
and ⟨γ ′′

n,r,vn,m⟩ > 0 for 1 < m < r or m > r + n− 3.

Proof. First, for r ≥ 2 we have ⟨γ ′
n,r,vn,∞⟩ = 0 since vn,∞ = δn, and for 1 ≤ m < ∞ we

have

⟨γ ′
n,r,vn,m⟩ =

n−1∑
k=1

(−1)k−1
(
n−2
k−1

)
S(n, k)

(
n+r−4
k−1

)
(k − 1)!

S(n, k)
(
m
k

)
k!

mn
=

n−1∑
k=1

(−1)k−1
(
m−1
k−1

)(
n−k+r−3

r−2

)(
n+r−4
r−2

)
mn−1

(2.89)
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which is up to a factor of m the same as (2.84) with n replaced by n − 1. Therefore it
evaluates to 0 for r ≤ m ≤ r +n− 3 and is positive for other integer values of m for all even
n.
Next, the assertion about ⟨γ ′′

n,r,vn,m⟩ for r = 2 holds by the same reasoning as in the case
for n odd and r = 1. For r ≥ 3 we have ⟨γ ′′

n,r,vn,∞⟩ > 0 and for 1 ≤ m <∞ we have

⟨γ ′′
n,r,vn,m⟩ =

n∑
k=2

(−1)k
(
n−2
k−2

)
S(n, k)

(
n+r−5
k−2

)
(k − 2)!

S(n, k)
(
m
k

)
k!

mn
(2.90)

=
n∑

k=2

(−1)k(m− 1)
(
n−k+r−3

r−3

)(
m−2
k−2

)(
n+r−5
r−3

)
mn−1

(2.91)

=
n−1∑
k=1

(−1)k−1(m− 1)
(
n−k+r−4

r−3

)(
m−2
k−1

)(
n+r−5
r−3

)
mn−1

(2.92)

because k(k − 1)
(
m
k

)
= m(m − 1)

(
m−2
k−2

)
and

(
n−2
k−2

)(
n+r−5
k−2

)−1
=

(
n−k+r−3

r−3

)(
n+r−5
r−3

)−1
. We see

that ⟨γ ′′
n,r,vn,m⟩ = 0 for m = 1. For m > 1 by shifting the variables accordingly, specifically

r− 1 7→ r and m− 1 7→ m, we obtain (2.89) up to a positive factor and thus ⟨γ ′′
n,r,vn,m⟩ = 0

for r ≤ m ≤ r + n − 3, and is positive for other integer values of m > 1 and m = ∞ by
definition of γ ′′

n,r.

The set Hn ∈ Rn is a (n − 1)-dimensional apeirotope, or a generalized polytope which
has infinitely many facets, lying in the (n − 1)-dimensional affine subspace {(x1, . . . , xn) :
x1 + . . .+xn = 1} intersected with the positive orthant in Rn. Lemmas 2.3.6 and 2.3.7 show
that the geometry of Hn depends on the parity of n. Specifically,

� for odd n ≥ 3, the facets of Hn are (n− 2)-dimensional polytopes given by the vertices
vn,1,vn,2, . . . ,vn,n−2,vn,∞ and the vertices vn,r,vn,r+1, . . . ,vn,r+n−2 for r = 1, 2, . . .;

� for even n ≥ 4, the facets of Hn are (n−2)-dimensional polytopes given by the vertices
vn,1,vn,2, . . . ,vn,n−2,vn,∞, the vertices vn,1,vn,r, . . . ,vn,r+n−3 for r = 2, 3, . . ., and the
vertices vn,∞,vn,r, . . . ,vn,r+n−3 for r = 2, 3, . . ..

For some intuition regarding the structural difference between the two cases, see Figure 2.1
(n = 3) and Figure 2.3 (n = 4).

Yakubovich [77] also found the following counterexample to assertion (ii) in Theorem
2.0.2 for n = 7. Consider the distribution of K7 induced by i.i.d. sampling from the
discrete distribution p(t) := ( 1

4+t
, 1
4+t

, 1
4+t

, 1
4+t

, t
4+t

) = 4−4t
4+t

u4 + 5t
4+t

u5 for some t > 0. The
corresponding distribution of K7 can be computed according to

v
(t)
7 (k) := P(K7(p

(t)) = k) =
∑(

7

n1, . . . , n5

) 5∏
i=1

(p(t)(i))ni (2.93)
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Figure 2.3: The set H4 ∈ R4 projected onto the first,
second, and fourth coordinates. Each point v4,m is
labeled by m, for m = 1, 2, 3, 4, 5,∞.

where the sum is taken over quintuples (n1, . . . , n5) with
∑

ni = 7 and #{i : ni > 0} = k. In

particular, it can be verified numerically that for t ∈ (0, 0.13), ⟨γ7,2,v
(t)
7 ⟩ < 0 and hence by

Lemma 2.3.6, v
(t)
7 /∈ V7. This result is proved in [77] using a calculus argument, by showing

that function t 7→ ⟨γ7,2,v
(t)
7 ⟩, which takes the value 0 at t = 0 by Lemma 2.3.6, has a negative

one-sided derivative at t = 0, implying that ⟨γ7,2,v
(t)
7 ⟩ < 0 for small positive values of t.

A similar counterexample works for n = 6, with p(t) := ( 1
5+t

, 1
5+t

, 1
5+t

, 1
5+t

, 1
5+t

, t
5+t

) and
the hyperplane inequality with γ ′

6,3 as in Lemma 2.3.7. It appears empirically that similar
modifications can be made to produce counterexamples for larger values of n.

2.4 Finite exchangeable sequences

In this section, we consider the law of Kn for a finite exchangeable sequence (X1, . . . , Xm)
with m ≥ n. Note the deviation from the original problem: the first m terms of an infinite
exchangeable sequence always form a finite exchangeable sequence, but a finite exchangeable
sequence need not have an embedding into an infinite one, nor one with more terms. See
[17] for some nice geometric pictures of this property; [40] for an extension of de Finetti’s
theorem to finite exchangeable sequences in which such a sequence can be identified as a
“mixture” of i.i.d. random variables, but allowing for a signed mixing measure; and [51] for
conditions for the existence of an embedding of a finite exchangeable sequence in a longer
one. The presence of negative signs in the mixture confirms that the laws of Kn in this
setting are not simply derived from the i.i.d. case by convexity.

The set of possible laws of Kn for finite exchangeable sequences (X1, . . . , Xm) form de-
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creasing nested subsets for m ≥ n, all of which contain that for infinite exchangeable se-
quences. To analyze this problem, we shift to the framework of exchangeable random parti-
tions, for which we provide some background below.

A partition of [m] := {1, . . . ,m} is an unordered collection of disjoint non-empty subsets
{Ai} of [m] with

⋃
iAi = [m]. The Ai are called the clusters of the partition. The restriction

of a partition {Ai} of [m] to [n] where n < m is the partition of [n] whose clusters are the
nonempty members of {Ai ∩ [n]}.

Every infinite sequence of random variables (X1, X2, . . .) induces a random partition of
N according to the relation i ∼ j if and only if Xi = Xj. More precisely, a random partition
Π of N is a sequence (Πm) where for each m, Πm is a random partition of [m], and for
n < m, the restriction of Πm to [n] is Πn. For the random partition Π of N induced by a
sequence (X1, X2, . . .), the clusters of Πm are the indices associated to each distinct value
among {X1, . . . , Xm}. For example, if

(X1(ω), X2(ω), . . .) = (7, 6, 7, 8, 8, 7 . . .),

then
Π1(ω) = {{1}}, Π2(ω) = {{1}, {2}}, Π3(ω) = {{1, 3}, {2}},

Π4(ω) = {{1, 3}, {2}, {4}}, Π5(ω) = {{1, 3}, {2}, {4, 5}}, Π6(ω) = {{1, 3, 6}, {2}, {4, 5}}.

Observe that Kn as previously defined for a sequence (X1, X2, . . .) counts the number of
clusters of Πn for the associated partition Π. When (X1, X2, . . .) is exchangeable, it induces
an exchangeable random partition Π of N, meaning that for each m, the distribution of Πm

is invariant under every deterministic permutation of [m]. In this scenario, associated to Π
is a function p defined for all finite sequences of positive integers such that for every m and
every partition {A1, . . . , Ak} of [m],

P(Πm = {A1, . . . , Ak}) = p(|A1|, . . . , |Ak|). (2.94)

Here p is called the exchangeable partition probability function (EPPF) associated to Π. A
consequence of exchangeability is that the EPPF is a symmetric function of its arguments.
The probability mass function for Kn can therefore be expressed in terms of the EPPF as

P(Kn = k) =
∑

n1+...+nk=n
n1≥...≥nk≥1

C(n1, . . . , nk)p(n1, . . . , nk) (2.95)

where

C(n1, . . . , nk) :=
n!∏n

j=1(j!)
sjsj!

, sj = sj(n1, . . . , nk) := #{i : ni = j} (2.96)

counts the number of partitions of [n] whose cluster sizes in descending order are given by
n1, . . . , nk. Furthermore, the EPPF p satisfies the following consistency relation:

p(n1, . . . , nk) = p(n1, . . . , nk, 1) +
k∑

i=1

p(n1, . . . , ni + 1 , . . . , nk). (2.97)
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Reposed in this alternate framework, the goal of this section is to understand the possible
distributions of Kn = Kn(Πm) for an exchangeable random partition Πm of [m] for m ≥ n,
meaning the number of clusters of the restriction Πm↓n of Πm to [n]. A consequence of the
exchangeability of Πm is that Πm↓n is an exchangeable random partition of [n], whose EPPF
is determined recursively by the EPPF for Πm and the consistency relations (2.97). Note
that for m = n, Kn(Πn) can have any general probability distribution on [n]: for example,
given such a probability distribution (a1, . . . , an), define an EPPF according to

p(n− k + 1, 1, . . . , 1︸ ︷︷ ︸
k−1 singletons

) =
ak(
n

k−1

) , k = 1, . . . , n (2.98)

where the rest of the values are either 0 or specified by symmetry. By construction, p
corresponds to an exchangeable random partition of [n] such that P(Kn = k) = an for
1 ≤ k ≤ n. However, for m > n, the consistency relations (2.97) must be satisfied, so it is
not immediately clear given n and m > n what restrictions there are on the distribution of
Kn, if any. The next proposition shows that there are indeed nontrivial restrictions on the
law of Kn in this setting.

Proposition 2.4.1. Let n ≥ 3, and let Πn+1 be an exchangeable random partition of [n+ 1].
Then we have the sharp bound

P(Kn(Πn+1) = n− 1) ≤ max{4, n− 1}
n + 1

(2.99)

Proof. We have

P(Kn = n−1) =

(
n

2

)
p(2, 1n−2) =

(
n

2

)[
p(3, 1n−2)+(n−2)p(2, 2, 1n−3)+p(2, 1n−1)

]
(2.100)

where 1m is shorthand for m clusters of size 1. We consider the appearance of each of the
three terms p(3, 1n−2), p(2, 2, 1n−3), and p(2, 1n−1) in the expansion (2.97) of p(n1, . . . , nk)
for (n1, . . . , nk) with

∑k
i=1 ni = n and n1 ≥ . . . ≥ nk ≥ 1.

� p(3, 1n−2) appears in the expansion of only p(2, 1n−2) with coefficient 1 and p(3, 1n−3)
with coefficient 1. p(3, 1n−3) appears in the expansion of P(Kn = n − 2) according to
(2.95) with coefficient C(3, 1n−3) =

(
n
3

)
.

� p(2, 2, 1n−3) appears in the expansion of only p(2, 1n−2) with coefficient n − 2 and
p(2, 2, 1n−4) with coefficient 1. p(2, 2, 1n−4) appears in the expansion of P(Kn = n− 2)
according to (2.95) with coefficient C(2, 2, 1n−4) = 3

(
n
4

)
.

� p(2, 1n−1) appears in the expansion of only p(2, 1n−2) with coefficient 1 and p(1n) with
coefficient n. p(1n) appears in the expansion of P(Kn = n) with coefficient C(1n) = 1.
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Hence the problem reduces to maximizing (2.100) subject to the linear constraints[(
n

2

)
+

(
n

3

)]
p(3, 1n−2) +

[(
n

2

)
(n− 2) + 3

(
n

4

)]
p(2, 2, 1n−3) +

[(
n

2

)
+ n

]
p(2, 1n−1) ≤ 1.

(2.101)
The maximum value of (2.100) is evidently equal to

max

{ (
n
2

)(
n
2

)
+
(
n
3

) , (
n
2

)
(n− 2)(

n
2

)
(n− 2) + 3

(
n
4

) , (
n
2

)(
n
2

)
+ n

}
, (2.102)

with the first expression corresponding to Πn+1 having 1 cluster of size 3 and n− 2 clusters
of size 1 with probability 1; the second expression corresponding to Πn+1 having 2 clusters of
size 2 and n− 3 clusters of size 1 with probability 1; and the third expression corresponding
to Πn+1 having 1 cluster of size 2 and n− 1 clusters of size 1 with probability 1. Simplifying
each of the three expressions yields

max
{ 3

n + 1
,

4

n + 1
,
n− 1

n + 1

}
=

max{4, n− 1}
n + 1

. (2.103)

It follows from Proposition 2.4.1 that for n = 3, there are no restrictions on the distribu-
tion of K3(Π4) on {1, 2, 3}. The same claim cannot be made for n ≥ 4, as P(K4(Π5) = 3) ≤ 4

5

and P(Kn(Πn+1) = n− 1) ≤ n−1
n+1

for n ≥ 5.
The remainder of the section will focus on K3(Πn) for n ≥ 3. Intuitively, as n→∞, the

set of probability distributions of K3(Πn) should tend to the corresponding set for K3(Π)
for exchangeable random partitions Π of N, which was explicitly characterized in Section
2. Fix n ≥ 3, and as before, consider the parameterization q1 = P(K3(Πn) = 1) and
q3 = P(K3(Πn) = 3). By repeated application of (2.97), q1 and q3 may be written in terms
of the EPPF as

q1 = p(3) =
∑

1≤k≤n
n1+...+nk=n
n1≥...≥nk≥1

A(n1, . . . , nk)p(n1, . . . , nk) (2.104)

and
q3 = p(1, 1, 1) =

∑
1≤k≤n

n1+...+nk=n
n1≥...≥nk≥1

B(n1, . . . , nk)p(n1, . . . , nk) (2.105)

for uniquely defined nonnegative integer coefficients A(n1, . . . , nk) and B(n1, . . . , nk).The
problem is to describe the set of points (q1, q3) arising in this manner subject to∑

1≤k≤n
n1+...+nk=n
n1≥...≥nk≥1

C(n1, . . . , nk)p(n1, . . . , nk) = 1 (2.106)



CHAPTER 2. CLUSTERING IN EXCHANGEABLE PROCESSES 26

where C(n1, . . . , nk) is as defined in (2.96). Observe that, in vector notation,

(q1, q3) =
(∑

A(n1, . . . , nk)p(n1, . . . , nk),
∑

B(n1, . . . , nk)p(n1, . . . , nk)
)

(2.107)

=
∑

C(n1, . . . , nk)p(n1, . . . , nk)
(

A(n1,...,nk)
C(n1,...,nk)

, B(n1,...,nk)
C(n1,...,nk)

)
(2.108)

This shows that every (q1, q3) is a convex combination of points of the form
(A(n)
C(n)

, B(n)
C(n)

)
, and

thus the set of probability distributions of K3(Πn) over all exchangeable random partitions
Πn of [n], expressed in the parameterization (q1, q3), is the convex hull of the finite set of
points

Sn :=
{(

A(n1,...,nk)
C(n1,...,nk)

, B(n1,...,nk)
C(n1,...,nk)

)
: 1 ≤ k ≤ n, n1 + . . . + nk = 1, n1 ≥ . . . ≥ nk ≥ 1

}
. (2.109)

Figure 2.4: The nested regions are the possible probability
distributions of K3(Πn) for Πn an exchangeable random
partition of [n] for n = 4, 5, 7, 12, 19, 41, which tend to
the region corresponding to K3 for infinite exchangeable
sequences, as described in Theorem 2.0.2 and shown in
Figure 2.1.
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Listed below is the sequence (sn) for the number of extreme points of the convex hull of
Sn for 3 ≤ n ≤ 34, computed using SciPy [74].

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
sn 3 3 4 4 5 5 6 6 7 6 8 7 8 8 9 8 10

n 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
sn 9 10 10 11 9 12 11 11 11 13 11 13 12 13 13 14

2.5 The two-parameter family

It was shown in [64] that every pair of real parameters (α, θ) satisfying either of the conditions

(i) 0 ≤ α < 1 and θ > −α; or (2.110)

(ii) α < 0 and θ = −mα for some m ∈ N (2.111)

corresponds to an exchangeable random partition Πα,θ = (Πn) of N according to the fol-
lowing sequential construction known as the Chinese restaurant process: for each n ∈ N,
conditionally given Πn = {C1, . . . , Ck}, Πn+1 is formed by having n + 1

attach to cluster Ci with probability
|Ci| − α

n + θ
, 1 ≤ i ≤ k ;

form a new cluster with probability
θ + kα

n + θ
.

(2.112)

The corresponding EPPF is given by

pα,θ(n1, . . . , nk) =

∏k−1
i=0 (θ + iα)

∏k
j=1(1− α)nj−1

(θ)n
(2.113)

where n = n1 + . . . + nk and

(x)m := x(x + 1) · · · (x + m− 1) =
Γ(x + m)

Γ(x)
. (2.114)

Let Pα,θ denote the law of Πα,θ. The distribution of K3 for Πα,θ is given by

q1(α, θ) =
(1− α)(2− α)

(1 + θ)(2 + θ)
(2.115)

q2(α, θ) =
3(1− α)(θ + α)

(1 + θ)(2 + θ)
(2.116)

q3(α, θ) =
(θ + α)(θ + 2α)

(1 + θ)(2 + θ)
(2.117)
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Figure 2.5: The (α, θ) parameter space.

where
qi(α, θ) := Pα,θ(K3 = i). (2.118)

For m > 0, let

Am :=
{

(m + mθ, θ) : − m
m+1

< θ < 1−m
m

}
⊆ {(α, θ) : 0 ≤ α < 1, θ > −α} (2.119)

and let A0 := {(0, θ) : θ > 0}, the parameter subspace corresponding to the well-known
one-parameter Ewens sampling formula [27]. The line segments and one ray {Am}m≥0 with
inverse slope m in the (α, θ) plane, each of which would pass through the point (α, θ) =
(0,−1) if extended, partition the parameter subspace {(α, θ) : 0 ≤ α < 1, θ > −α}. Hence
the distribution of K3 can be reparameterized in m and θ as

q
(m)
1 (θ) =

(1−m−mθ)(2−m−mθ)

(1 + θ)(2 + θ)
(2.120)

q
(m)
2 (θ) =

3(1−m−mθ)[m + (m + 1)θ]

(1 + θ)(2 + θ)
(2.121)

q
(m)
3 (θ) =

[m + (m + 1)θ][2m + (2m + 1)θ]

(1 + θ)(2 + θ)
(2.122)
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It can be checked by calculus that for each fixed m > 0,

� the function q
(m)
1 (θ) is strictly decreasing for θ ∈ (− m

m+1
, 1−m

m
) with

limθ→− m
m+1

q
(m)
1 (θ) = 1 and limθ→ 1−m

m
q
(m)
1 (θ) = 0.

� the function q
(m)
3 (θ) is strictly increasing for θ ∈ (− m

m+1
, 1−m

m
) with

limθ→− m
m+1

q
(m)
3 (θ) = 0 and limθ→ 1−m

m
q
(m)
3 (θ) = 1.

� the function q
(m)
2 (θ) is strictly increasing on

(
− m

m+1
, τ(m)

]
and strictly decreasing

on
[
τ(m), 1−m

m

)
, with a unique maximum value of 9 − 6

(√
(m + 1)(m + 2) − m

)
at

θ = τ(m) :=
−m2−3m+

√
(m+1)(m+2)

1+3m+m2 , which is also the unique value of θ in the domain

at which q
(m)
1 (θ) = q

(m)
3 (θ).

The properties above also hold for m = 0 after slight modification by replacing each instance
of 1−m

m
with limm→0+

1−m
m

=∞, and this remark also applies to subsequent discussion.

Figure 2.6: Graphs of q
(m)
i (θ) for m = 0 and θ ∈ [0, 5]. Observe

that q1 and q3 intersect at the same value of θ as where q2 attains its
maximum value. The corresponding graphs for every m > 0 also share
this property.

Duality. The last observation implies that for m ≥ 0 and every real number p such that
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0 < p < 9− 6(
√

(m + 1)(m + 2)−m), there are exactly two values θ
(m)
± (p) with

− m

m + 1
< θ

(m)
− (p) < τ(m) < θ

(m)
+ (p) <

1−m

m
. (2.123)

satisfying
q
(m)
2 (θ

(m)
− (p)) = q

(m)
2 (θ

(m)
+ (p)). (2.124)

For p = 9 − 6(
√

(m + 1)(m + 2) − 2), define θ
(m)
− (p) = θ

(m)
+ (p) = φ(m). As θ

(m)
± (p) are

defined as the solutions to the equation

3(1−m−mθ)[m + (m + 1)θ]

(1 + θ)(2 + θ)
= p (2.125)

or equivalently the quadratic equation

p(1 + θ)(2 + θ)− 3(1−m−mθ)[m + (m + 1)θ] = 0, (2.126)

we have the polynomial identity

(θ − θ
(m)
+ (p))(θ − θ

(m)
− (p)) = θ2 +

3p− 3 + 6m2

p + 3m + 3m2
θ +

2p− 3m + 3m2

p + 3m + 3m2
(2.127)

after rearranging (2.126). It follows that

θ
(m)
+ θ

(m)
− =

2p− 3m + 3m2

p + 3m + 3m2
. (2.128)

For − m
m+1

< θ < 1−m
m

, define the m-dual θ
(m)
∗ of θ according to (2.123). Rearranging (2.128)

and simplifying gives the explicit formula

θ(m)
∗ =

2−m(3 + m)(1 + θ)

θ + m(3 + m)(1 + θ)
. (2.129)

Theorem 2.5.1. For m ≥ 0 and − m
m+1

< θ < 1−m
m

, we have

q
(m)
1 (θ(m)

∗ ) = q
(m)
3 (θ) and q

(m)
3 (θ(m)

∗ ) = q
(m)
1 (θ). (2.130)

Proof. It suffices to verify the first of the two identities since (2.129) is constructed as an
involution. Let D(m, θ) be the denominator in (2.129). Substituting and simplifying yields

1 + θ(m)
∗ =

2 + θ

D(m, θ)
; (2.131)

2 + θ(m)
∗ =

(1 + θ)(1 + m)(2 + m)

D(m, θ)
; (2.132)

1−m−mθ(m)
∗ =

(1 + m)[m + (m + 1)θ]

D(m, θ)
; (2.133)

2−m−mθ(m)
∗ =

(2 + m)[2m + (2m + 1)θ]

D(m, θ)
. (2.134)
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Figure 2.7: Contour plot of q2(α, θ). The level curves for q2(α, θ) ∈ {0.1, 0.2, 0.3, 0.4, 0.5} are
shown, along with their tangent lines where they meet the curve q1(α, θ) = q3(α, θ). Observe
that each tangent line passes through the point (α, θ) = (0,−1). Note that here α is plotted
on the vertical axis, for convenience of display.

Hence we have

q
(m)
1 (θ(m)

∗ ) =
(1−m−mθ

(m)
∗ )(2−m−mθ

(m)
∗ )

(1 + θ
(m)
∗ )(2 + θ

(m)
∗ )

(2.135)

=
[m + (m + 1)θ][2m + (2m + 1)θ]

(1 + θ)(2 + θ)
(2.136)

= q
(m)
3 (θ) (2.137)

as desired.

Symmetry. A consequence of Theorem 2.5.1 is a surprising symmetry in the set of laws of
K3 arising from the two-parameter model. To make this observation explicit, for any m ≥ 0
we solve for q3 = q

(m)
3 in terms of q1 = q

(m)
1 as defined in (2.120) and (2.122) to obtain the

formula

q3 = φm(q1) := 1 +
3

4
m +

5

4
q1 −

3

4

√
m2 + 6q1m + q1(8 + q1). (2.138)

Rearranging to eliminate the radical yields the relation

(4 + 3m)(q1 + q3) + 5q1q3 − 2(q21 + q23)− 2− 3m = 0 (2.139)

which verifies the symmetry. For m = 0 the identity reduces to

h(q1, q3) := 4(q1 + q3) + 5q1q3 − 2(q21 + q23)− 2 = 0. (2.140)

This appears to be an exclusive property of the case n = 3, as no similar symmetry appears
to manifest for larger n.
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Theorem 2.5.2. The mapping (α, θ) 7→ (q1, q3) defined by (2.115) and (2.117) is a bijection
between the regions

{(α, θ) : 0 ≤ α < 1, θ > −α} and {(q1, q3) : h(q1, q3) ≥ 0, q1 + q3 < 1} (2.141)

where h(q1, q3) is defined as in (2.140).

Proof. Consider φ(m, q1) := φm(q1) as in (2.138). To show the desired bijection, it suf-
fices to show that for every fixed 0 < q1 < 1 that (i) φ(m, q1) is increasing in m, and (ii)
limm→∞ φ(m, q1) = 1− q1.

(i)

∂

∂m
φ(m, q1) =

3

4
(1− 2m + 6q1

2
√

m2 + 6q1m + q1(8 + q1)
) >

3

4
(1− 2m + 6q1

2
√

m2 + 6q1m + 9q21
) = 0

(2.142)
(ii)

lim
m→∞

φ(m, q1) = lim
m→∞

1 +
5

4
q1 +

3

4

(
m2 − (m2 + 6q1m + q1(8 + q1))

m +
√

m2 + 6q1m + q1(8 + q1)

)
(2.143)

= lim
m→∞

1 +
5

4
q1 +

3

4

( −6q1 − q1(8+q1)
m

1 +
√

1 + 6q1
m

+ q1(8+q1)
m2

)
(2.144)

= 1− q1 (2.145)

Explicit inverse. Define the ratios

r(α, θ) :=
q1(α, θ)

q2(α, θ)
=

2− α

3(θ + α)
, s(α, θ) :=

q2(α, θ)

q3(α, θ)
=

3(1− α)

(θ + 2α)
(2.146)

These ratios uniquely define the law of K3 for the corresponding (α, θ). The map (θ, α) 7→
(r, s) can be explicitly inverted as

α(r, s) =
9r − 2s

9r − s + 3rs
, θ(r, s) =

3− 9r + 4s

9r − s + 3rs
(2.147)

Expressed in terms of q1 and q3, this gives the inversion formulas

α(q1, q3) =
4q1 + 4q3 + 5q1q3 − 2q21 − 2q23 − 2

5q1 + 2q3 + 4q1q3 − 4q21 − q23 − 1
, (2.148)

θ(q1, q3) = −8q1 + 5q3 + 4q1q3 − 4q21 − q23 − 4

5q1 + 2q3 + 4q1q3 − 4q21 − q23 − 1
. (2.149)
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Figure 2.8: The bijection of Theorem 2.5.2. The regions colored in different shades of gray reveal the geometry of
the bijection.

Note that the numerator in the formula for α(q1, q3) is equal to h(q1, q3) as defined in (2.140).
It is easy to verify that these formulas give an algebraic inverse. Observe that the denomi-
nator which is the same in both formulas is nonvanishing on the region {(q1, q3) : h(q1, q3) ≥
0, q1 + q3 < 1}, since

2(5q1 + 2q3 + 4q1q3 − 4q21 − q23 − 1) = h(q1, q3) + 6q1 − 6q21 + 3q1q3 > 0. (2.150)

Corollary 2.5.3. For any parameters (α, θ) with 0 ≤ α < 1 and θ > −α, there exists a
unique pair (α∗, θ∗) with 0 ≤ α∗ < 1 and θ∗ > −α∗ such that

q2±1(α, θ) = q2∓1(α∗, θ∗). (2.151)

Explicit formulas for α∗ and θ∗ in terms of α and θ can be computed as

α∗ =
(2− 3α)(1 + θ)− α2

(θ + 3α)(1 + θ) + α2
(2.152)

θ∗ =
α(2 + θ)

(θ + 3α)(1 + θ) + α2
. (2.153)
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Exceptional parameters. α < 0, θ = −mα for some m ∈ N

It is well-known that in this case, the exchangeable random partition (Πn) of N gener-
ated according to the Chinese restaurant construction is distributed as if by sampling from
a symmetric Dirichlet distribution with m parameters equal to −α [63]. Hence for fixed
m ∈ N, as α ↓ −∞ the exchangeable random partition of N corresponding to the parameter
pair (α, θ) = (α,−mα) converges in distribution to that obtained by sampling from the
discrete uniform distribution on m elements. For K3, the (α, θ) to (q1, q3) correspondence
can be seen in Figure 2.9.

Figure 2.9: The blue curves correspond to the images of (α, θ) =
(α,−mα) for α ∈ (−∞, 0) and fixed m under the (α, θ) 7→ (q1, q3)
map, for m = 2, 3, 4, 5, 6. The curve defined by (2.140) is included in
black.
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2.6 Complements

In this section, we point out an interesting convexity property for the the law of K3. With
notation as in Section 2.2, for p ∈ ∇∞, let

Q(p) :=
(
q1(p), q3(p)

)
(2.154)

be the mapping from a ranked discrete distribution to its corresponding law of K3 obtained
by i.i.d. sampling. In Section 2.2 we established that the range of Q is a (strict) subset of
the closed convex hull of the set of points {Q(uN) : N ∈ N}. Note that the range of Q
includes only distributions of K3 which arise from i.i.d. sampling. Here are some preliminary
efforts to better understand the geometry of this mapping.

Proposition 2.6.1. For every 0 ≤ λ ≤ 1 and N ≥ 1,

Q(λuN + (1− λ)u2N) = λ2Q(uN) + (1− λ2)Q(u2N) (2.155)

Proof. We have
λuN + (1− λ)u2N =

(
1+λ
2N

, . . . , 1+λ
2N︸ ︷︷ ︸

N times

, 1−λ
2N

, . . . , 1−λ
2N︸ ︷︷ ︸

N times

)
. (2.156)

Hence

q1(λuN + (1− λ)u2N) = N
(1 + λ

2N

)3

+ N
(1− λ

2N

)3

=
1 + 3λ2

4N2
(2.157)

and

q3(λuN + (1− λ)u2N) =

(
N

3

)(1 + λ

2N

)3

+

(
N

2

)
N
(1 + λ

2N

)2(1− λ

2N

)
(2.158)

+ N

(
N

2

)(1 + λ

2N

)(1− λ

2N

)2

+

(
N

3

)(1− λ

2N

)3

(2.159)

=

(
N

3

)
1 + 3λ2

4N3
+ N

(
N

2

)
1− λ2

4N3
(2.160)

=
N − 1

3

(2N − 1− 3λ2

4N2

)
. (2.161)

On the other side,

λ2q1(uN) + (1− λ2)q1(u2N) =
λ2

N2
+

1− λ2

4N2
=

1 + 3λ2

4N2
(2.162)

and

λ2q3(uN) + (1− λ2)q3(u2N) = λ2

(
N

3

)
1

N3
+ (1− λ2)

(
2N

3

)
1

8N3
(2.163)

=
N(N − 1)(N − 2)

6
· λ

2

N3
+

2N(2N − 1)(2N − 2)

6
· 1− λ2

8N3

(2.164)

=
N − 1

3

(2N − 1− 3λ2

4N2

)
.
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Chapter 3

Extreme coherent distributions

A probability measure µ on [0, 1]2 is called coherent if it is the joint distribution of a pair of
random variables (X, Y ) on some probability space (Ω,F ,P) satisfying

X = P(A | G) and Y = P(A | H) (3.1)

for some event A ∈ F and two sub-σ-fields G,H ⊆ F . Following [15], X and Y as in (3.1)
may be interpreted as the opinions of two experts about the probability of an event A, given
different sources of information G and H. In this setup, we assume that the experts agree
on some initial assignment P of probabilities to events in F . We adopt the terminology of
[15] and use the term coherent to describe (X, Y ) as in (3.1) as well as the joint distribution
of such.

The definition of coherence is easily extended to a family of random variables (Xi, i ∈ I).
That is, (Xi, i ∈ I) is coherent if there exists an event A ∈ F and sub-σ-fields Gi ⊆ F such
that Xi = P(A | Gi) for all i ∈ I. Then a coherent family based on increasing information,
in the sense that the sequence of σ-fields is increasing, forms a martingale. Other impor-
tant examples of coherent families include reversed martingales and martingales relative to
directed index sets [19], [49].

Dawid, DeGroot, and Mortera [15] pioneered the notion of coherent expert opinions from
the perspective of Bayesian statistics. However, well beforehand Dubins and Pitman [20]
studied the same probabilistic structure from the vantage of martingale theory, specifically
with interest in various maximal inequalities. Recently there has been a resurgence of interest
in the subject. The notion of coherence is studied from the perspective of Bayesian economics
and game theory in [2] and [37], and the problem of maximizing various linear functionals
over coherent distributions is explored in [9], [8], [12], and [13]. However, the known fact
that the set of coherent distributions is a compact convex set of measures is not exploited in
any of this analysis, largely due to the lack of understanding of both the geometry and the
extreme points of this set. This chapter documents our contributions on this front.

The chapter is organized as follows. Section 3.1 provides some background and intuition
for coherent distributions. Section 3.2 covers a couple of classical examples on extreme points
of certain sets of probability measures. Section 3.3 presents some inequalities for coherent
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distributions. In Section 3.4, we characterize the subset of extreme coherent distributions
which are supported on the corners of a rectangle, solving a problem posed in [9]. In Section
3.5, we demonstrate an application of this characterization to a maximization problem in
[9]. In Section 3.6, we construct a large class of extreme coherent distributions which are
uniquely determined by a support set satisfying certain properties. In particular, we prove
the existence of coherent distributions with countably infinite support, a result which was
also independently obtained in [2]. In Section 3.7, we consider an interesting example of a
coherent distribution with uniform marginals.

3.1 Background

Some basic consequences of the definition of coherence are

� E(X) = E(Y ) = P(A) = p for some p ∈ [0, 1];

� If (X, Y ) is coherent, then (Y,X), (1−X, 1− Y ), and (1− Y, 1−X) are also coherent
(reflection symmetry).

Note also that in the definition of coherence, by law of iterated expectation (3.1) can be
reformulated as X = P(A |X) and Y = P(A | Y ).

It is not immediately obvious that coherence is a stronger condition than just having
equal marginal expectations. To see that it is, let X be a random variable with EX = 1

2
and

suppose that the pair (X, 1−X) is coherent. Then we must have

X = P(A |X) = P(A | 1−X) = 1−X a.s. (3.2)

Hence (X, 1−X) with EX = 1
2

is coherent if and only if X = 1
2

a.s.
In the case that X and Y are discrete random variables, we also have the following

condition.

Lemma 3.1.1. Suppose (X, Y ) is coherent and that (x, y) is a possible pair, meaning
P((X, Y ) = (x, y)) > 0. Then either x = y, or there exists a different possible pair (x′, y′)
with either x′ = x or y′ = y.

Proof. If there does not exist a possible pair (x′, y′) ̸= (x, y) with either x′ = x or y′ = y,
then the events {X = x} and {Y = y} are almost surely equal, in which case x = P(A |X =
x) = P(A | Y = y) = y.

The following proposition gives some known characterizations of coherent pairs of random
variables.

Proposition 3.1.2 ([9]). Let (X, Y ) be a pair of random variables defined on a probability
space (Ω,F ,P), on which there is also a random variable U with uniform distribution on
[0, 1], independent of (X, Y ). Then the following conditions are equivalent:
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(i) (X, Y ) is coherent.

(ii) There exists a random variable Z defined on (Ω,F ,P), with 0 ≤ Z ≤ 1, such that both

E[Zg(X)] = E[Xg(X)] and E[Zg(Y )] = E[Y g(Y )] (3.3)

either for all bounded measurable functions g defined on [0, 1], or for all bounded con-
tinuous functions g.

(iii) There exists a measurable function ϕ : [0, 1]2 → [0, 1] such that

E[ϕ(X, Y )g(X)] = E[Xg(X)] and E[ϕ(X, Y )g(Y )] = E[Y g(Y )] (3.4)

either for all bounded measurable g defined on [0, 1], or for all bounded continuous g.

(iv) EX = EY = p for some 0 ≤ p ≤ 1, and

E[X1(X ∈ B)] + E[Y 1(Y ∈ C)] ≤ p + P(X ∈ B, Y ∈ C) (3.5)

for all B,C ∈ B, where B may be either the collection of all Borel subsets of [0, 1], or
the collection of all finite unions of intervals contained in [0, 1].

Condition (iv) is derived from a classical result due to Strassen [72] on the existence of
probability measures with given marginals. Observe that the inequality (3.5) is trivial if
either B or C is equal to ∅ or [0, 1]. In the case that X and Y each take only finitely many
distinct values, say m and n, respectively, this in general gives us a system of (2m−2)(2n−2)
nontrivial inequalities, which we shall refer to as the Strassen inequalities.

The characterizations (ii) and (iii) in Proposition 3.1.2 extend easily to a coherent family
(Xi, i ∈ I) of random variables, while (iv) does not [9].

Proposition 3.1.3 ([9]). For a finite index set I, the set of coherent distributions of (Xi, i ∈
I) is a convex, compact subset of probability distributions on [0, 1]I with the usual weak
topology.

3.2 Some examples of extremal probability measures

In this section, we review some classical results on extremal probability measures. It is well-
known that for a compact subset X ⊆ Rn, the set M(X) of Borel probability measures on
X is convex and compact in the weak topology. (More generally, X can be taken to be any
compact Hausdorff space andM(X) the set of regular Borel probability measures on X; see
e.g. [31].) Recall that the support of a measure µ on X, denoted supp(µ), is defined as the
smallest closed set E such that µ(X \ E) = 0; equivalently, supp(µ) is the set of all x ∈ X
for which µ(U) > 0 for every open set U containing x.
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Theorem 3.2.1. [70] Let X be a compact subset of Rn. The set of extreme points ofM(X)
is {δx : x ∈ X} where δx is the Dirac measure

δx(A) =

{
1 if x ∈ A,

0 if x /∈ A.
(3.6)

Proof. First, we show that an extreme probability measure µ must have the property that
µ(B) ∈ {0, 1} for every measurable set B ⊆ X. Indeed, if 0 < µ(B) < 1, define the
probability measures

µB(A) :=
µ(A ∩B)

µ(B)
, µBc(A) :=

µ(A ∩Bc)

µ(Bc)
. (3.7)

Then
µ = αµB + (1− α)µBc (3.8)

where α := µ(B), hence µ is not extreme.
Now suppose µ is extreme. If x, y ∈ supp(µ) and x ̸= y, then there exist disjoint open

sets U and V with x ∈ U and y ∈ V ; then µ(U) = µ(V ) = 1 which is a contradiction. Hence
supp(µ) must contain exactly 1 element, so µ = δx for some x ∈ X. To see that each δx
is indeed an extreme point, note that if δx = 1

2
ν + 1

2
ρ, then supp(ν) ⊆ {x} and therefore

ν = δx, and likewise ρ = δx.

For our next example, for a subset X of Rn define Ma(X) to be the set of probability
measures on X with mean vector a = (a1, . . . , an). Note thatMa(X) is a convex and closed
subset of M(X) in the weak topology, hence it is compact if X is compact. Let fi be the
projection map fi(x1, . . . , xn) = xi for 1 ≤ i ≤ n, and let f0 ≡ 1. So for µ ∈Ma(X),(∫

X

fi dµ : 0 ≤ i ≤ n

)
= (1, a1, . . . , an). (3.9)

Let U be the linear span of {fi : 0 ≤ i ≤ n}.

Theorem 3.2.2. Let X be a compact subset of Rn and let µ ∈ Ma(X). The following are
equivalent:

(a) µ is an extreme point ofMa(X);

(b) L1(µ) = Span{fi : 0 ≤ i ≤ n};

(c) {(1,x) : x ∈ supp(µ)} is a linearly independent set of vectors in Rn+1.

Proof.
(a) ⇒ (b). Let U := Span{fi : 0 ≤ i ≤ n}, and suppose U ̸= L1(µ), so U is a proper closed
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subspace of L1(µ). It follows from the Hahn-Banach theorem and standard theory of Lp

spaces that there exists a nonzero function g ∈ L∞(µ) such that∫
X

fg dµ = 0 for f ∈ U. (3.10)

Define a signed measure ν according to

ν(E) :=
1

∥g∥∞

∫
E

g dµ. (3.11)

Note that ν(X) = 0 since f0 ≡ 1 ∈ U , and ν ≥ −1 by construction, so µ± ν is a probability
measure, and∫

X

fi d(ρ± ν) =

∫
X

fi dµ±
∫
X

fi dν = mi +
1

∥g∥∞

∫
X

fig dµ = mi (3.12)

so µ± ν ∈Ma. Since µ = 1
2
(µ + ν) + 1

2
(µ− ν), µ is not an extreme point of Ma.

Remark : The equivalence of conditions (a) and (b) is a version of Douglas’s theorem. See
[18] for the direct proof of equivalence, independent of condition (c).

(b) ⇒ (c). As previously remarked, condition (b) implies #(supp(µ)) ≤ n + 1, so let
supp(µ) = {x1, . . . ,xk} with k ≤ n + 1. Consider the (n + 1)× k matrix

A =


1 · · · 1

x
(1)
1 · · · x

(k)
1

...
. . .

...

x
(1)
n · · · x

(k)
n

 (3.13)

Since dimU = dimL1(µ) = k, the span of the rows has dimension k and it follows from the
fundamental theorem of linear algebra that the span of the columns also has dimension k,
so the k columns must be linearly independent.

(c)⇒ (a). Since the columns of A are linearly independent, µ := (µ({x(1)}), . . . , µ({x(k))})
is the unique vector y = (y1, . . . , yk) ∈ Rk satisfying

1 · · · 1

x
(1)
1 · · · x

(k)
1

...
. . .

...

x
(1)
n · · · x

(k)
n


y1...
yk

 =


1
m1
...

mn

 (3.14)

Therefore µ is the only probability measure in Ma that is supported on {x(1), . . . ,x(k)}, so
µ cannot be a convex combination of any two other elements µ1, µ2 ∈ Ma for otherwise µ1

and µ2 would each be supported on {x(1), . . . ,x(k)}.
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Corollary 3.2.3. Let X be a compact subset of Rn. If µ is an extreme point of Ma(X),
then

#supp(µ) ≤ n + 1. (3.15)

Proof. Conditions (b) and (c) in Theorem 3.2.2 each imply that µ is supported on at most
n + 1 points. For (b), dimL1(µ) = dimU ≤ n + 1 implies the claim, and from (c) it is
obvious.

Condition (c) ensures that the points in the support of µ do not lie on the same hyper-
plane in Rn. For example, if µ on X ⊆ R2 has support on exactly 3 points which lie on
the same line in R2, then µ is not extreme because it is a mixture of two 2 point distributions.

More general versions of Theorem 3.2.2 can be found in [46] and [76]. The proof presented
above is based on the proof in [46], with some insightful modifications. In particular, [46]
uses condition (b) to prove the implication (a) ⇒ (c) and does not note the equivalence
between the three conditions.

3.3 Some inequalities

In this section, we present some new inequalities for the law of a coherent pair of random
variables (X, Y ). Recall Lemma 3.1.1; intuitively, if (x, y) is a possible pair for (X, Y ) with
no other possible pair lying on either the horizontal or vertical lines containing (x, y), so
(X, Y ) is not coherent, then one should not expect to make the distribution coherent just
by adding some small mass to one or both lines. The amount of mass necessary should be
a function of x, y, and px,y := P(X = x, Y = y). Indeed,

Proposition 3.3.1. If (X, Y ) is coherent and P(X = x, Y = y) > 0 for some pair x, y ∈
[0, 1] with x ̸= y, then

P
(
{X = x}△{Y = y}

)
≥ |x− y|

1 + x ∨ y
P(X = x, Y = y) (3.16)

Here △ denotes symmetric difference.

More generally, let Ax1,x2 := {x1 ≤ X ≤ x2} and By1,y2 := {y1 ≤ Y ≤ y2}.

Proposition 3.3.2. If (X, Y ) is coherent and P(Ax1,x2By1,y2) > 0, then

P
(
Ax1,x2△By1,y2

)
≥ max{x1 − y2, y1 − x2, 0}

1 + min{x2, y2}
P(Ax1,x2By1,y2) (3.17)

Proof. Assume 0 ≤ x1 ≤ x2 < y1 ≤ y2 ≤ 1, so the (possibly degenerate) rectangle [x1, x2]×
[y1, y2] lies completely above the diagonal y = x. Let p = EX = EY and let A = Ax1,x2 and
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B = By1,y2 . By Proposition 3.1.2,

EX1A + EY 1Bc ≤ p + P(ABc) (3.18)

EX1A + p− EY 1B ≤ p + P(ABc) (3.19)

EX1A − EY 1B ≤ P(ABc). (3.20)

Likewise,
EY 1B − EX1A ≤ P(AcB). (3.21)

Hence

P(ABc) + P(AcB) ≥ EY 1B − EX1A (3.22)

≥ y1P(B)− x2P(A) (3.23)

= (y1 − x2)P(AB) + y1P(AcB)− x2P(ABc) (3.24)

so
(1 + x2)P(ABc) + (1− y1)P(AcB) ≥ (y1 − x2)P(AB). (3.25)

Then P(A△B) = P(ABc) + P(AcB) is minimized subject to the constraint (3.25) when
P(AcB) = 0 and P(ABc) = y1−x2

1+x2
P(AB), so

P(A△B) ≥ y1 − x2

1 + x2

P(AB). (3.26)

The general form (3.17) is obtained by consideration of the case y1 ≤ y2 < x1 ≤ x2 where
the rectangle lies completely under the diagonal, and the case that the rectangle intersects
the diagonal, in which case x1 ≤ y2 and y1 ≤ x2 and the numerator in (3.17) is 0 as should
be.

Note that in the inequality (3.22), there is no guarantee that the r.h.s. EY 1B − EX1A

is nonnegative; if it is negative, then (3.22) can be replaced by the stronger inequality
P(ABc) + P(AcB) ≥ EX1A − EY 1B > 0, but this does not seem to lead to anything better
under the assumption that x2 < y1.

Corollary 3.3.3. If (X, Y ) is coherent, then

P(Ax1,x2By1,y2) ≤
1 + min{x2, y2}

1 + max{x1, y1,min{x2, y2}}
(3.27)

Proof.

1 ≥ P(A△B) + P(AB) ≥ max{x1 − y2, y1 − x2, 0}
1 + min{x2, y2}

P(AB) + P(AB) (3.28)

=
1 + max{x1, y1,min{x2, y2}}

1 + min{x2, y2}
P(AB) (3.29)
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The inequality in Corollary 3.3.3 may be easier to understand by unraveling the formula
according to the three cases as before, where the rectangular region is either completely
above the diagonal, completely below the diagonal, or on the diagonal:

P(AB) ≤



1 + x2

1 + y1
if x1 ≤ x2 < y1 ≤ y2

1 + y2
1 + x1

if y1 ≤ y2 < x1 ≤ x2

1 otherwise

(3.30)

When restricted to a single point, i.e. x1 = x2 = x and y1 = y2 = y, the bound reduces to

P(X = x, Y = y) ≤ 1 + min{x, y}
1 + max{x, y}

(3.31)

Note that this is strictly better than the following sharp bound for joint distributions of
(X, Y ) with equal mean.

Proposition 3.3.4. If X and Y are random variables on [0, 1] with EX = EY , then

P(X = x, Y = y) ≤ 1

1 + |x− y|
. (3.32)

Proof. If x = y, the inequality is trivial. Without loss of generality, assume x < y. By
Theorem 3.2.2 each extreme point of M(a,a)([0, 1]2) for 0 ≤ a ≤ 1 is supported on at most
3 points in [0, 1]2 and is uniquely defined by those points. It can be shown by analysis of
these extreme points that the unique extreme probably measure which maximizes the linear
functional P(X = x, Y = y) = E1(X = x, Y = y) subject to the constraint of equal means
is the one supported on the two points (x, y) and (1, 0), which has P(X = x, Y = y) =
1/(1 + y − x). Combining this with the case for x > y yields the desired inequality.

We omit the complete argument.

3.4 2×2 extreme coherent laws

Given 0 ≤ x1 < x2 ≤ 1 and 0 ≤ y1 < y2 ≤ 1, we aim to describe all extreme coherent laws
supported on {x1, x2} × {y1, y2}, or in words, the corners of a rectangle. The problem is
trivial if x1 ≥ y2 or y1 ≥ x2, since in either case the rectangle lies completely on one side
of the diagonal, so there are no coherent laws with that support. For our analysis, let us
assume that

y1 ≤ x1 < y2 (3.33)

so the diagonal intersects left side of rectangle, including the bottom left corner, as in either
of the figures below:
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�

� �

�

x1 x2

y1

y2

�

� �

�

x1 x2

y1

y2

Results for the other case (diagonal intersects bottom side of rectangle) can then be obtained
by the reflection symmetry. By Proposition 3.1.2 (iv), we have the inequalities

xipi• + yjp•j ≤ p + pij (3.34)

where
pi• :=

∑
j

pij and p•j :=
∑
i

pij. (3.35)

The inequalities for (i, j) = (1, 1) and (i, j) = (2, 1) are trivial. The inequality for (i, j) =
(1, 2) can be rewritten in either of the two forms

(x1 − y1)p11 ≤ y1p21 + (1− x1)p12 (3.36)

(y2 − x2)p22 ≤ x2p21 + (1− y2)p12 (3.37)

and the inequality for (i, j) = (2, 2) can be rewritten in either of the two forms

(x2 − y1)p21 ≤ y1p11 + (1− x2)p22 (3.38)

(y2 − x1)p12 ≤ x1p11 + (1− y2)p22 (3.39)

Proposition 3.4.1. If pij > 0 for all i, j, then (pij) is not an extreme coherent law.

Proof. First suppose (3.36) is a strict inequality, and let

ε := y1p21 + (1− x1)p12 − (x1 − y1)p11 > 0. (3.40)

The homogeneous system of equations

z11 + z12 + z21 + z22 = 0 (3.41)

(x1 − y1)z11 − (y2 − x1)z12 + (x2 − y1)z21 + (x2 − y2)z22 = 0 (3.42)

y1z11 − (x2 − y1)z21 + (1− x2)z22 = 0 (3.43)
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has an at least one dimensional space of solutions in R4, so there exists (δ11, δ12, δ21, δ22) ̸=
(0, 0, 0, 0) satisfying the system of equations above such that

0 ≤ pij ± δij ≤ 1 for all i, j (3.44)

and
|y1δ21 + (1− x1)δ12 − (x1 − y1)δ11| ≤ ε. (3.45)

Then (pij ± δij) is a probability distribution by (3.41) and (3.44), whose marginal distribu-
tions have equal means by (3.42), and still satisfies (3.36) and (3.38) by (3.45) and (3.43),
respectively. Therefore (pij ± δij) are coherent and

pij =
1

2
(pij + δij) +

1

2
(pij − δij) (3.46)

so (pij) is not an extreme coherent law.
Similarly, if (3.38) is a strict inquality, an analogous argument shows that (pij) is not an

extreme coherent law. This leaves only the case that both (3.36) and (3.38) are equalities.
A coherent law with equality in both (3.36) and (3.38) must satisfy the system of equations

p11 + p12 + p21 + p22 = 1 (3.47)

(x1 − y1)p11 − (y2 − x1)p12 + (x2 − y1)p21 − (y2 − x2)p22 = 0 (3.48)

(1− y2)p12 + x2p21 − (y2 − x2)p22 = 0 (3.49)

x1p11 − (y2 − x1)p12 + (1− y2)p22 = 0 (3.50)

Equation (3.48) can be replaced with (3.50) minus (3.48), and after rearranging and express-
ing in matrix notation:

1 1 1 1
0 1− y2 x2 −(y2 − x2)
y1 0 −(x2 − y1) 1− x2

x1 −(y2 − x1) 0 1− y2



p11
p12
p21
p22

 =


1
0
0
0

 (3.51)

Adding the second and third equations above gives

y1p11 + (1− y2)p12 + y1p21 + (1− y2)p22 = 0 (3.52)

� If y1 ̸= 0 and y2 ̸= 1, then there is no way to assign positive probabilities pij so that
this equation holds.

� If y1 = 0 and y2 ̸= 1, then the third equation reduces to x2p21 = (1 − x2)p22. Substi-
tuting this into the second equation gives (1 − y2)p12 + (1 − y2)p22 = 0. There is no
way to assign positive probabilities pij to satisfy this equation.

� If y2 = 1 and y1 ̸= 0, then the second equation reduces to x2p21 = (1 − x2)p22.
Substituting this into the third equation gives y1p11 + y1p21 = 0. There is no way to
assign positive probabilities pij to satisfy this equation.
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� If y1 = 0 and y2 = 1, then the system of equations reduces to 1 1 1 1
x1 −(1− x1) 0 0
0 0 x2 −(1− x2)



p11
p12
p21
p22

 =

1
0
0

 (3.53)

This has solutions with pij all positive, but they are obviously all mixtures of the
two-point laws concentrated on the lines x = x1 and x = x2.

Proposition 3.4.2. If y1 ≤ x1 < y2, there exists an extreme coherent law whose support is
{(x1, y1), (x1, y2), (x2, y1)} if and only if y1 ̸= 0, in which case it is the unique extreme
coherent law with this support.

�

�

�

x1 x2

y1

y2

�

�

�

x1 x2

y1

y2

Proof. Suppose p22 = 0. Then (3.37) holds trivially, and (3.38) reduces to

(x2 − y1)p21 ≤ y1p11. (3.54)

By the same argument as in Proposition 3.4.1, if (3.54) is a strict inequality then (pij) is
not an extreme coherent law. Then if (3.54) is an equality, (pij) must satisfy the system of
equations

p11 + p12 + p21 = 1 (3.55)

y1p11 − (x2 − y1)p21 = 0 (3.56)

(x1 − y1)p11 − (y2 − x1)p12 + (x2 − y1)p21 = 0 (3.57)

which has the unique solution[
p12 p22
p11 p21

]
=

[
x1(x2−y1)

(y2−x1)(x2−y1)+x1(x2−y1)+y1(y2−x1)
0

(y2−x1)(x2−y1)
(y2−x1)(x2−y1)+x1(x2−y1)+y1(y2−x1)

y1(y2−x1)
(y2−x1)(x2−y1)+x1(x2−y1)+y1(y2−x1)

]
(3.58)
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with positive p11, p12, p21 if and only if y1 ̸= 0.

Here, the auxiliary function ϕ from Proposition 3.1.2 (iii) with E(ϕ(X, Y )|X) = X and
E(ϕ(X, Y )|Y ) = Y is given by

ϕ(x1, y2) = E(ϕ(X, Y )|Y = y2) = y2, (3.59)

ϕ(x2, y1) = E(ϕ(X, Y )|X = x2) = x2, (3.60)

ϕ(x1, y1)
y2 − x1

y2
+ ϕ(x1, y2)︸ ︷︷ ︸

y2

x1

y2
= E(ϕ(X, Y )|X = x1) = x1 =⇒ ϕ(x1, y1) = 0. (3.61)

Proposition 3.4.3. If y1 ≤ x1 < y2, there exists an extreme coherent law whose support is
{(x1, y1), (x1, y2), (x2, y2)} if and only if y1 < x1 and x2 < y2, and y2 ̸= 1, in which case it is
the unique extreme coherent law with this support.

�

� �

x1 x2

y1

y2

Proof. Suppose p21 = 0. Then (3.38) holds trivially, and (3.36) reduces to

(x1 − y1)p11 ≤ (1− x1)p12. (3.62)

As before, if (3.62) is a strict inequality then (pij) is not an extreme coherent law. Then if
(3.62) is an equality, (pij) must satisfy the system of equations

p11 + p12 + p22 = 1 (3.63)

(x1 − y1)p11 − (1− x1)p12 = 0 (3.64)

(x1 − y1)p11 − (y2 − x1)p12 − (y2 − x2)p22 = 0 (3.65)

which has the unique solution[
p12 p22
p11 p21

]
=

[
(y2−x2)(x1−y1)

(y2−x2)(x1−y1)+(1−y2)(x1−y1)+(1−x1)(y2−x2)
(1−y2)(x1−y1)

(y2−x2)(x1−y1)+(1−y2)(x1−y1)+(1−x1)(y2−x2)
(1−x1)(y2−x2)

(y2−x2)(x1−y1)+(1−y2)(x1−y1)+(1−x1)(y2−x2)
0

]
(3.66)
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with positive p11, p12, p22 if and only if x1 > y1, y2 > x2, and y2 < 1.

Here, the auxiliary function ϕ is given by

ϕ(x1, y1) = E(ϕ(X, Y )|Y = y1) = y1, (3.67)

ϕ(x2, y2) = E(ϕ(X, Y )|X = x2) = x2, (3.68)

ϕ(x1, y1)︸ ︷︷ ︸
y1

1− x1

1− y1
+ ϕ(x1, y2)

x1 − y1
1− y1

= E(ϕ(X, Y )|X = x1) = x1 =⇒ ϕ(x1, y2) = 1. (3.69)

Corollary 3.4.4. If y1 ≤ x1 < y2, there exists an extreme coherent law whose support is
{(x1, y2), (x2, y1), (x2, y2)} if and only if x2 ̸= 1, in which case it is the unique extreme
coherent law with this support.

� �

�

x1 x2

y1

y2
� �

�

x1 x2

y1

y2

Corollary 3.4.5. If y1 ≤ x1 < y2, there exists an extreme coherent law whose support is
{(x1, y1), (x2, y1), (x2, y2)} if and only if y1 < x1 and x2 < y2, and y1 ̸= 0, in which case it is
the unique extreme coherent law with this support.

�

�

�

x1 x2

y1

y2
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Proposition 3.4.6. If y1 ≤ x1 < y2, there are exactly two distinct extreme coherent laws
that are supported on at most two points of {x1, x2} × {y1, y2}.

�

�

x1 x2

y1

y2

�

�

x1 x2

y1

y2

�

�

x1 x2

y1

y2 ��

x1 x2

y1

y2

Corollary 3.4.7. If y1 ≤ x1 < y2, the number of extreme coherent laws supported on
{x1, x2} × {y1, y2} is exactly

(i) 2 if y1 = 0 and y2 = 1 OR y1 = 0 and x2 = 1;

(ii) 3 if y2 ≤ x2 < 1 and y1 = 0 OR if x1 = y1 > 0 and y2 = 1 OR if y1 > 0 and x2 = 1;

(iii) 4 if 0 < y1 ≤ x1 < y2 ≤ x2 < 1 OR 0 = y1 < x1 < x2 < y2 < 1 OR 0 < y1 < x1 < x2 <
y2 = 1;

(iv) 6 if 0 < y1 < x1 < x2 < y2 < 1.

3.5 Application: an optimization problem

In [9] and [8], the authors consider for 0 ≤ δ ≤ 1 the problem of evaluating

ε(δ) := sup
coherent (X,Y )

P(|X − Y | ≥ 1− δ) (3.70)
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and ε2×2(δ) defined like (3.70) but with the supremum taken over the restricted set of 2× 2
coherent laws. The quantity

P(|X − Y | ≥ 1− δ) =

∫
[0,1]2

1(|x− y| ≥ 1− δ)dµ(x, y), (3.71)

where µ is the law of (X, Y ), is a linear functional over the set of probability measures
on [0, 1]. Since the set of coherent distributions is a compact convex subset, the objective
function must attain its maximum at an extreme point of the set, and similarly over 2 × 2
coherent distributions the functional must attain its maximum at one of the 2× 2 extreme
coherent distributions. We present an alternative proof to the following result from [9] using
extreme point analysis, based on the results in the previous section.

Proposition 3.5.1. [9] For δ ∈ [0, 1
2
),

ε2×2(δ) =
2δ

1 + δ
. (3.72)

Proof. By symmetries, it suffices to consider the extreme coherent laws with support ei-
ther {(x1, y1), (x1, y2), (x2, y2)} with y1 ≤ x1 < y2 < 1, or {(x1, y1), (x1, y2), (x2, y1)} with
0 < y1 ≤ x1 < y2.

First, consider the extreme coherent law with support {(x1, y1), (x1, y2), (x2, y2)}.

Case 1. y2 − x1 ≥ 1− δ and y2 − x2 < 1− δ.

�

�

�

1− δ

1− δ

y2

y1
x1 x2

Consider

P(|X − Y | ≥ 1− δ) = p12 =
(y2 − x2)(x1 − y1)

(y2 − x2)(x1 − y1) + (1− y2)(x1 − y1) + (1− x1)(y2 − x2)
.

(3.73)
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Any (x1, x2, y1, y2) satisfying the specified constraints maximizes (3.73) if and only if it
minimizes

1− y2
y2 − x2

+
1− x1

x1 − y1
. (3.74)

But no matter the choice of x2 and y2 satisfying y2−x2 < 1−δ, x2 can always be adjusted to
make (3.74) smaller, and therefore (3.73) cannot be maximized subject to these constraints.

Case 2. y2 − x2 ≥ 1− δ.

�

�

�

1− δ

1− δ

In this case,

P(|X−Y | ≥ 1− δ) = p12 + p22 =
(1− x2)(x1 − y1)

(y2 − x2)(x1 − y1) + (1− y2)(x1 − y1) + (1− x1)(y2 − x2)
.

(3.75)
Any (x1, x2, y1, y2) satisfying the specified constraints maximizes (3.75) if and only if it
minimizes

(1− x1)(y2 − x2)

(1− x2)(x1 − y1)
(3.76)

But for a x1 < x2, x1 can always be increased to make (3.76) smaller, and therefore (3.75)
cannot be maximized subject to these constraints.

Now consider the extreme coherent law with support {(x1, y1), (x1, y2), (x2, y1)}.

Case 1. y2 − x1 ≥ 1− δ and x2 − y1 < 1− δ.
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�

� �

1− δ

1− δ

y2

y1
x1 x2

Here

P(|X − Y | ≥ 1− δ) = p12 =
x1(x2 − y1)

(y2 − x1)(x2 − y1) + x1(x2 − y1) + y1(y2 − x1)
(3.77)

which is maximized if and only if
x2(y2 − x1)

x1(x2 − y1)
(3.78)

is minimized. But for every choice of x2 and y1 satisfying x2 − y1 < 1− δ, y1 can always be
decreased to make (3.78) smaller, so (3.77) cannot be maximized subject to these constraints.

Case 2. y2 − x1 < 1− δ and x2 − y1 ≥ 1− δ.

�

� �

1− δ

1− δ

y2

y1
x1 x2

Here

P(|X − Y | ≥ 1− δ) = p21 =
y1(y2 − x1)

(y2 − x1)(x2 − y1) + x1(x2 − y1) + y1(y2 − x1)
(3.79)

which is maximized if and only if
y2(x2 − y1)

y1(y2 − x1)
(3.80)
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is minimized. But for every choice of x1 and y2 with y2− x1 < 1− δ, x1 can be decreased to
make (3.80) smaller, so (3.79) cannot be maximized subject to these constraints.

Case 3. y2 − x1 ≥ 1− δ and x2 − y1 ≥ 1− δ.

�

� �

1− δ

1− δ

y2

y1
x1 x2

Then

P(|X − Y | ≥ 1− δ) = p12 + p21 =
x1(x2 − y1) + y1(y2 − x1)

(y2 − x1)(x2 − y1) + x1(x2 − y1) + y1(y2 − x1)
(3.81)

which is maximized if and only if

x1

y2 − x1

+
y1

x2 − y1
(3.82)

is maximized. For fixed x1 and y1 with x1 ≥ y1, (3.82) is maximized when y2 − x1 = 1 − δ
and x2 − y1 = 1 − δ. Therefore (3.82) is maximized when x1 = y1 = δ and x2 = y2 = 1, in
which case (3.81) subject to the specified constraints attains its maximum value of

2δ

1 + δ
. (3.83)

Combining all the different cases analyzed here along with the easy result that ε2×1(δ) =
δ < 2δ

1+δ
, it follows that

ε2×2(δ) =
2δ

1 + δ
. (3.84)

By consideration of symmetries, we see that P(|X − Y | ≥ 1− δ) is maximized at exactly
two of the 2 × 2 extreme coherent laws: the one with support {(δ, δ), (δ, 1), (1, δ)}, and the
one with support {(1− δ, 1− δ), (0, 1− δ), (1− δ, 0)}.



CHAPTER 3. EXTREME COHERENT DISTRIBUTIONS 54

� �

�

�

� �

1− δ

1− δ

δ

δ

3.6 More extreme coherent laws

We first establish the following lemma.

Lemma 3.6.1. Let (X1, Y1) and (X2, Y2) be pairs of coherent random variables, independent
of each other, with corresponding auxiliary functions ϕi, i.e.∑

y

ϕi(x, y)ri(x, y) = x
∑
y

ri(x, y) (3.85)∑
x

ϕi(x, y)ri(x, y) = y
∑
x

ri(x, y) (3.86)

where
ri(x, y) := P(Xi = x, Yi = y). (3.87)

Let Bp, 0 ≤ p ≤ 1 be a Bernoulli(p) random variable independent of Xi and Yi for i = 1, 2.
Define

X ′ = BpX1 + (1−Bp)X2, Y ′ = BpY1 + (1−Bp)Y2. (3.88)

Then (X ′, Y ′) is coherent with corresponding auxiliary function

ϕ′(x, y) :=
pr1(x, y)

pr1(x, y) + (1− p)r2(x, y)
ϕ1(x, y) +

(1− p)r2(x, y)

pr1(x, y) + (1− p)r2(x, y)
ϕ2(x, y) (3.89)

Proof. Let ϕ′ be defined as above. Note that

r′(x, y) := P(X ′ = x, Y ′ = y) = pr1(x, y) + (1− p)r2(x, y). (3.90)
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Then

x
∑
y

r′(x, y) = x
∑
y

[
pr1(x, y) + (1− p)r2(x, y)

]
(3.91)

= p
[
x
∑
y

r1(x, y)
]

+ (1− p)
[
x
∑
y

r2(x, y)
]

(3.92)

= p
∑
y

ϕ1(x, y)r1(x, y) + (1− p)
∑
y

ϕ2(x, y)r2(x, y) (3.93)

=
∑
y

ϕ′(x, y)r′(x, y) (3.94)

and likewise
y
∑
x

r′(x, y) =
∑
x

ϕ′(x, y)r′(x, y). (3.95)

To better understand the properties of extreme coherent laws, consider the following 2 × 3
examples.

Example 1. Let 0 < x1 < x2 and y1 < y2 < y3 and y1 < x2 < y2. Let (p12, p13, p21, p22) be
a probability distribution on S = {(x1, y2), (x1, y3), (x2, y1), (x2, y2)} with all nonzero proba-
bilities.

�

��

�

x1 x2

y1

y2

y3

It is coherent if and only if there is a corresponding auxiliary function ϕ : S → [0, 1] satisfying
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the constraints for coherence: (ϕij := ϕ(xi, yj))

y3 = ϕ13 (3.96)

x1 =
p12

p12 + p13
ϕ12 +

p13
p12 + p13

ϕ13 (3.97)

y2 =
p12

p12 + p22
ϕ12 +

p22
p12 + p22

ϕ22 (3.98)

x2 =
p21

p21 + p22
ϕ21 +

p22
p21 + p22

ϕ22 (3.99)

y1 = ϕ21 (3.100)

Substituting and rearranging the middle three equations yields

p12(x1 − ϕ12) = p13(y3 − x1) (3.101)

p12(y2 − ϕ12) = p22(ϕ22 − y2) (3.102)

p21(x2 − y1) = p22(ϕ22 − x2) (3.103)

Observe that ϕ exists and satisfies ϕ13 = y3, ϕ21 = y1, ϕ12 < x1, and ϕ22 > y2 if and only if
(pij) is coherent with all nonzero probabilities, and if ϕ satisfies these conditions, then (pij)
is uniquely determined. Suppose (ϕ12, ϕ13, ϕ21, ϕ22) satisfies these conditions, and suppose
0 < ϕ12 < x1. Then 0 ≤ ϕ12− ε < ϕ12 < ϕ12 + ε < x1 for some ε > 0. Then by Lemma 3.6.1,
the law corresponding to (ϕ12, ϕ13, ϕ21, ϕ22) is a probabilistic mixture of the laws correspond-
ing to (ϕ12 − ε, ϕ13, ϕ21, ϕ22) and (ϕ12 + ε, ϕ13, ϕ21, ϕ22), so it is not an extreme coherent law.
Likewise if y2 < ϕ22 < 1; therefore the only law with support S which could be extreme is
(ϕ12, ϕ13, ϕ21, ϕ22) = (0, y3, y1, 1), and indeed it must be because there are no other extreme
laws supported on S for which (x1, y3) has nonzero probability.

Example 2. Let 0 < x1 < x2 and y1 < y2 < y3 < 1 and y1 < x2 < y3 and x1 < y2. By
similar reasoning as in Example 1, there is a unique extreme coherent law with support
{(x1, y2), (x1, y3), (x2, y1), (x2, y3)} corresponding to (ϕ12, ϕ13, ϕ21, ϕ23) = (y2, 0, y1, 1).

�

�

�

�

x1 x2

y1

y2

y3
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Example 3. (Nonexample) Let 0 < x1 < x2 and y1 < y2 < y3 < y4 < 1. and y1 <
x2 < y4 and x1 < y2. Let (p12, p13, p14, p21, p24) be a probability distribution on S =
{(x1, y2), (x1, y3), (x1, y4), (x2, y1), (x2, y4)}.

�

�

�

�

�

x1 x2

y1

y3

y4

y2

Then

y2 = ϕ12 (3.104)

y3 = ϕ13 (3.105)

x1 =
p12

p12 + p13 + p14
ϕ12 +

p13
p12 + p13 + p14

ϕ13 +
p14

p12 + p13 + p14
ϕ14 (3.106)

y4 =
p14

p14 + p24
ϕ14 +

p24
p14 + p24

ϕ24 (3.107)

x2 =
p21

p21 + p24
ϕ21 +

p24
p21 + p24

ϕ24 (3.108)

y1 = ϕ21 (3.109)

Substituting and rearranging the unsolved equations yields

p14(x1 − ϕ14) = p12(y2 − x1) + p13(y3 − x1) (3.110)

p14(y4 − ϕ14) = p24(ϕ24 − y4) (3.111)

p21(x2 − y1) = p24(ϕ24 − x2) (3.112)

It follows that if (pij) is coherent, then ϕ14 < x1 and ϕ24 > y4. On the other hand, given
ϕ satisfying ϕ12 = y2, ϕ13 = y3, ϕ21 = y1, ϕ14 < x1, and ϕ24 > y4, for r > 0, there is a
unique probability distribution (pij) satisfying the requisite equations such that p13/p12 = r.
But by Example 2, there is a coherent law with support {(x1, y2), (x1, y4), (x2, y1), (x2, y4)}
corresponding to ϕ′ with (ϕ′

12, ϕ
′
14, ϕ

′
21, ϕ

′
24) = (ϕ12, ϕ14, ϕ21, ϕ24), and a coherent law with

support {(x1, y3), (x1, y4), (x2, y1), (x2, y4)} corresponding to ϕ′′ with (ϕ′′
13, ϕ

′′
14, ϕ

′′
21, ϕ

′′
24) =

(ϕ13, ϕ14, ϕ21, ϕ24). Then there is a unique mixture of these two laws for which the ratio
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of probabilities of (x1, y3) to (x1, y2) is equal to r, with corresponding ϕ as desired. There-
fore, there are no extreme coherent laws with support S.

Extrapolation of the arguments in the preceding examples reveals a structure which is
a sufficient condition for a set to be the support of a unique extreme coherent law. For
example, the configuration of points in the figure below:

� �

�

� �

�

� �

�

��

�

Let us formalize the properties of this type of set and our claim.

A large class of extreme coherent laws with finite support.

Call a finite set of points S ⊆ [0, 1]2 traceable if for every pair of distinct points (x, y), (x′, y′) ∈
S, there exists a unique sequence of distinct points (x0, y0), . . . , (xk, yk) in S with (x0, y0) =
(x, y) and (xk, yk) = (x′, y′) such that for 1 ≤ i ≤ k, either xi = xi−1 or yi = yi−1. In
particular, if S is traceable, then

� no horizontal or vertical line contains more than two points in S;

� there are no “loops” in S;

� there exists an ordering of S which satisfies the condition in the definition of traceable,
i.e. the points in S can be labeled so that S = {(x1, y1), . . . , (xn, yn)} with either
xi = xi−1 or yi = yi−1 for i = 2, . . . , n.

Given a traceable set S, let

S := {(x, y) : ∃ x′ ≤ x ≤ x′′ with (x′, y), (x′′, y) ∈ S or ∃ y′ ≤ y ≤ y′′ with (x, y′), (x, y′′) ∈ S}
(3.113)

In words, S is the union of all horizontal and vertical line segments connecting points in S.

Theorem 3.6.2. Let S be a finite subset of [0, 1]2 with at least 2 points. Then there exists
an extreme coherent law with support S if
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(i) S is traceable,

(ii) S ∩ {(x, y) : x < y} ≠ ∅, S ∩ {(x, y) : x > y} ≠ ∅, and
∣∣S ∩ {(x, y) : x = y}

∣∣ = 1, and

(iii)
∣∣S ∩ {

(x, y) : x ∈ {0, 1} or y ∈ {0, 1}
}∣∣ ≤ 2,

in which case the extreme coherent law is unique.

Proof. Suppose S satisfies (i), (ii), and (iii) and S = {(x1, y1), . . . , (xn, yn)} where y1 > x1

and xn > yn, and for each 2 ≤ i ≤ n, either xi = xi−1 or yi = yi−1. Let c := min{k : xk ≥ yk}.
There are several cases to consider: x1 = x2 or y1 = y2, n even or odd, and c even or odd.
Let us assume that x1 = x2, n is odd (hence yn−1 = yn), and c is even; the proofs of the
other cases are nearly the same. Suppose (p1, . . . , pn) is a coherent law on S with all nonzero
probabilities, and let ϕ = (ϕ1, . . . , ϕn) where ϕi = ϕ(xi, yi) be the corresponding auxiliary
function. It is neccessary that ϕ1 = y1 and ϕn = xn. Furthermore,

pi
pi + pi+1

ϕi +
pi+1

pi + pi+1

ϕi+1 = xi = xi+1 for i odd (3.114)

pi
pi + pi+1

ϕi +
pi+1

pi + pi+1

ϕi+1 = yi = yi+1 for i even (3.115)

(3.116)

or equivalently

pi(ϕi − xi) = pi+1(xi+1 − ϕi+1) for i odd (3.117)

pi(ϕi − yi) = pi+1(yi+1 − ϕi+1) for i even. (3.118)

Note that condition (ii) guarantees that 0 < xi, yi < 1 for 2 ≤ i ≤ n − 1. By consideration
of the edge cases ϕ1 = y1 and ϕn = xn and sign analysis,

ϕi < xi for i even, 2 ≤ i ≤ c− 1 (3.119)

ϕi > yi for i odd, 2 ≤ i ≤ c− 1 (3.120)

ϕi < yi for i even, c ≤ i ≤ n− 1 (3.121)

ϕi > xi for i odd, c ≤ i ≤ n− 1 (3.122)

which simplifies to

0 ≤ ϕi < min(xi, yi) for i even, 2 ≤ i ≤ n− 1 (3.123)

1 ≥ ϕi > max(xi, yi) for i odd, 2 ≤ i ≤ n− 1 (3.124)

Conversely, given ϕ = (ϕ1, . . . , ϕn) satisfying ϕ1 = y1, ϕn = xn, and (3.123) and (3.124),
there is a unique law (p1, . . . , pn) corresponding to ϕ which is uniquely recovered according
to (3.117) and (3.118). Hence there is a bijection between coherent laws with support S and
auxiliary functions ϕ satisfying the specified conditions.
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Now suppose ϕ = (ϕ1, . . . , ϕn) satisfies ϕ1 = y1, ϕn = xn, and (3.123) and (3.124), and
that 0 < ϕk < 1 for some 2 ≤ k ≤ n− 1. Let ε > 0 be such that

ϕ′ := (ϕ1, . . . , ϕk − ε, . . . , ϕn) and ϕ′′ := (ϕ1, . . . , ϕk + ε, . . . , ϕn) (3.125)

satisfy (3.123) and (3.124). Then by Lemma 3.6.1, the coherent law corresponding to ϕ is a
mixture of the coherent laws corresponding to ϕ′ and ϕ′′ and hence is not extreme. It follows
that the coherent law corresponding to ϕ = (y1, 0, 1, 0, . . . , 1, 0, xn) (alternating 0s and 1s) is
extreme and is therefore the unique extreme coherent law with support S.

The validity of the converse to Theorem 3.6.2 remains an open problem:

Conjecture 3.6.3. Let S be a finite subset of [0, 1]2 with at least 2 points. Then there exists
an extreme coherent law with support S if and only if

(i) S is traceable,

(ii) S ∩ {(x, y) : x < y} ≠ ∅, S ∩ {(x, y) : x > y} ≠ ∅, and
∣∣S ∩ {(x, y) : x = y}

∣∣ = 1, and

(iii)
∣∣S ∩ {

(x, y) : x ∈ {0, 1} or y ∈ {0, 1}
}∣∣ ≤ 2,

in which case the extreme coherent law is unique.

Extreme coherent laws with infinite support

The ideas from the previous discussion of extreme coherent laws with support on traceable
sets can, to some extent, be pushed to infinite sets. Series convergence becomes a concern
for general “infinite traceable sets,” but can be guaranteed if restricted properly. Consider
an infinite collection of points S = {(xi, yi)}i∈Z in [0, 1]2 satisfying

(i) inf{k : xk > yk} = 1

(ii) xi+1 = xi and yi+1 < yi for i odd

(iii) yi+1 = yi and xi+1 > xi for i even

� �

� �

� �

� �
� �

� �
�

(x0, y0)

(x1, y1)
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Consider the prescribed auxiliary function ϕ where ϕi := ϕ(xi, yi) = 1 for i odd and 0 for i
even. Then a coherent law (pi)i∈Z corresponding to ϕ satisfies (3.117) and (3.118) which can
be simplified to

p2k = p0

k∏
i=1

y2i−1

x2i−1

· 1− x2i−1

1− y2i−1

(3.126)

p2k+1 = p0
y0

1− y0

k∏
i=1

y2i
x2i

· 1− x2

1− y2
(3.127)

p−2k = p0

k∏
i=1

x−2i+1

y−2i+1

· 1− y−2i+1

1− x−2i+1

(3.128)

p−2k−1 = p0
x0

1− x0

k∏
i=1

x−2i

y−2i

· 1− y−2i

1− x−2i

(3.129)

for k = 0, 1, 2, . . . . Let R+ = y1
x1
· 1−x1

1−y1
and R− = x−1

y−1
· 1−y−1

1−x−1
and note that 0 < R± < 1 and

p2k ≤ p0R
k
+ (3.130)

p2k+1 ≤ p0
y0

1− y0
Rk

+ (3.131)

p−2k ≤ p0R
k
− (3.132)

p−2k−1 ≤ p0
x0

1− x0

Rk
− (3.133)

so the series

σ :=
∞∑
k=0

[ k∏
i=1

y2i−1

x2i−1

·1− x2i−1

1− y2i−1

+
y0

1− y0

k∏
i=1

y2i
x2i

· 1− x2

1− y2
+

k∏
i=1

x−2i+1

y−2i+1

· 1− y−2i+1

1− x−2i+1

+
x0

1− x0

k∏
i=1

x−2i

y−2i

· 1− y−2i

1− x−2i

] (3.134)

converges, and p0 = 1/(σ − 1). Hence this is the unique coherent law with support S and ϕ

as defined. Furthermore, this must be an extreme coherent law: if (ρ
(1)
i )i∈Z and (ρ

(2)
i )i∈Z are

coherent laws with supports T (1) and T (2) and auxiliary functions ϕ(1) and ϕ(2), respectively,
and (pi) is a nondegenerate convex combination of (ρ

(1)
i ) and (ρ

(2)
i ), then T (1), T (2) ⊆ S and

(x0, y0) ∈ T (1)∩T (2). Then by Lemma 3.6.1, ϕ
(1)
0 = ϕ

(2)
0 = 0 which forces (x−1, y−1), (x1, y1) ∈

T (1) ∩ T (2). Applying this argument inductively shows that T (1) = T (2) = S and hence
(ρ

(1)
i ) = (ρ

(2)
i ) = (pi).

Thus there exist extreme coherent laws with countably infinite support. Note that this
fact was also independently discovered in [2], using a slightly different but still “well-behaved”
configuration of points than the one in our example. Whether or not there are any non-atomic
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extreme coherent laws remains an open problem. However, the following result was proved
in [2]:

Theorem 3.6.4. [2] Let n ≥ 2. Every extreme coherent distribution µ on [0, 1]n is singular
with respect to Lebesgue measure on [0, 1]n, i.e. µ is supported on a Lebesgue null set.

Remarks. For other configurations of infinitely many points in [0, 1]2 other than the partic-
ularly friendly one specified for the preceding example, it may potentially be the case that
the series in (3.134) diverges, in which case there is no extreme coherent law on that support
with the prescribed ϕ. Also, it may be tempting to think that by constructing a sequence of
extreme coherent laws with finite nested supports, that in the limit one would automatically
get an extreme coherent law with infinite support. However, it is not true in general that
the set of extreme points of a compact convex set is closed. Consider the following example
from [70]: in R3, (0, 1, 0) is a limit of extreme points but is not an extreme point of the
closed convex hull of {(x, y, 0) : x2 + y2 = 1} ∪ {(0, 1,±1)}.

Figure 3.1: Example from [70]. The extreme
points of this convex body are drawn in black.
The red point is not an extreme point but is a
limit point of the set of extreme points.



CHAPTER 3. EXTREME COHERENT DISTRIBUTIONS 63

3.7 Coherent copulas

An n-dimensional copula is a probability measure on [0, 1]n whose univariate marginals are
uniform on [0, 1]. The theory of copulas has applications in quantitative finance, statistics,
engineering, and many other disciplines [7], [57], [52]. It is well-known and easy to see that
the set of n-dimensional copulas is convex and weakly compact; see e.g. [21]. Thus it is
natural to consider the problem of describing the extreme points of this set. This topic
was recently explored by Ghosh and Bhandari [32] who gave some sufficient conditions for
copulas to be extreme. For the case n = 2, two-dimensional copulas are also known as
doubly stochastic measures, which have been extensively studied in the literature. Douglas
[18] and Lindenstrauss [53] give a characterization of the extreme points of the set of doubly
stochastic measures, but as remarked in [69] and [11], this characterization has limited value
in identifying concrete examples.

In this section, we discuss a couple of examples of doubly stochastic measures in connec-
tion to our study of coherent distributions. Of course, the intersection of these two compact
convex sets is itself a compact convex set. The simplest example of a doubly stochastic
measure is uniform (Lebesgue) measure λ on [0, 1]2, corresponding to independent (X, Y ).
In this case, as remarked in [2], (X, Y ) is coherent; taking

A := {Y > 1−X}, (3.135)

it is readily checked that

P(A |X = x) = x, P(A | Y = y) = y. (3.136)

A

x

x

y
y

Figure 3.2: Uniform measure on [0, 1]2. Taking
A to be the event {Y > 1−X}, it is readily seen
from the figure that the definition of coherence
is satisfied.



CHAPTER 3. EXTREME COHERENT DISTRIBUTIONS 64

Lindenstrauss [53] proved that every extreme doubly stochastic measure is singular with
respect to Lebesgue measure, and Theorem 3.6.4, which is derived from Lindenstrauss’s
result, asserts the same for extreme coherent distributions. Thus λ is not an extreme point
of either set. However, it still appears to be an interesting problem to formally, or even
informally, express λ as a mixture of extreme coherent distributions, or doubly stochastic
measures.

The next example is derived from a general result in [20] concerning the existence of a
stochastically minimal minimum M := min(X1, . . . , Xn) over coherent families (X1, . . . , Xn)
with given marginals. Define f0, f1 : [0, 1]→ [0, 1] by

f0(x) = 1−
√

1− (1− x)2, (3.137)

f1(x) =
√

1− x2. (3.138)

Let Γ0 and Γ1 denote the graphs of f0 and f1, respectively; that is,

Γi := {(x, fi(x)) : 0 ≤ x ≤ 1} i = 0, 1. (3.139)

Γ0

Γ1

Figure 3.3: The graphs of f0 and f1. The union
of these two circular arcs are the support of the
doubly stochastic measure µ given by (3.140)
and (3.141).

Consider the probability measure µ with support Γ0 ∪ Γ1, defined by

µ({(t, f0(t)) : 0 ≤ t ≤ x}) :=

∫ x

0

(1− t) dt = x− 1

2
x2 (3.140)

µ({(t, f1(t)) : 0 ≤ t ≤ x}) :=

∫ x

0

t dt =
1

2
x2. (3.141)
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It is immediate from (3.140) and (3.141) that the first marginal is uniform. Since f0 and f1
are involutions, we have

µ({(f0(s), s) : 0 ≤ s ≤ y}) = µ({(s, f0(s)) : f0(y) ≤ s ≤ 1}) =

∫ 1

f0(y)

(1− s) ds = y − 1

2
y2,

(3.142)

µ({(f1(s), s) : 0 ≤ s ≤ y}) = µ({(s, f1(s)) : f1(y) ≤ s ≤ 1}) =

∫ 1

f1(y)

s ds =
1

2
y2., (3.143)

so we have the symmetry in distribution

(X, Y )
d
= (Y,X). (3.144)

Hence µ is a doubly stochastic measure which is supported on the graphs of two functions.
The following theorem from [68] implies that µ is an extreme point of the set of doubly
stochastic measures.

Theorem 3.7.1. [68] Let f, g : [0, 1]→ [0, 1] such that f ≤ g. If f or g is one-to-one, then
there exists at most one doubly stochastic measure supported on the union of the graphs of f
and g.

Next, for the same example, suppose (X, Y ) has law µ, and let A := {(X, Y ) ∈ Γ1}. Then
by (3.140) and (3.141),

P(A |X = x) =
x

(1− x) + x
= x (3.145)

and similarly P(A |Y = y) = y, so µ is coherent. The natural question then is whether or not
µ, which has uncountable support, is an extreme point of the set of coherent distributions.
In principle, it appears that it may be possible to represent µ as a mixture of the “zigzag”
extreme coherent laws from Section 3.6 with countable support indexed by the integers; but
we do not have a definitive answer.

Figure 3.4: The “zigzag” extreme coherent laws supported on the union
of the two circular arcs. The blue and red dotted lines identify two infinite
traceable sets which are each the support of an extreme coherent law.
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Chapter 4

Polynomial probability densities

A polynomial probability density on the unit interval [0, 1] is a polynomial

p(x) = a0 + a1x + . . . + anx
n (4.1)

satisfying

(i) p(x) ≥ 0 for 0 ≤ x ≤ 1,

(ii)
∫ 1

0
p(x)dx = 1.

The study of polynomials that are positive or nonnegative on an interval fall into a larger
framework of sum-of-squares (SOS) representation theorems for polynomials satisfying var-
ious positivity conditions. Such results are known as positivstellensatz and are of great
interest in algebraic geometry with important applications in theoretical computer science
and convex optimization; see e.g. [58]. Karlin and Shapley [44] studied the set of polynomial
probability densities from a geometric perspective in connection to moment spaces. They
proved a SOS-type representation theorem which refines a classical result due to Fekete on
nonnegative polynomials on an interval. See [65] which contains an excellent survey with
many references.

From a more combinatorial and probabilistic perspective, it is natural to consider the
Bernstein basis polynomials, which are inherently nonnegative on [0, 1] and when normalized
are densities of the beta family of probability distributions, which has many applications
in probability and statistics. For example, the beta distribution is essential in Bayesian
inference as a conjugate prior for many discrete distributions [47]. In density estimation
problems and for smoothing it is natural to consider models of polynomial densities, in
particular positive mixtures of beta densities, which has been studied by various authors;
see e.g. the works of Petrone [59], Guan [35],[34],[36], and Vitale [75].
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4.1 Preliminaries

For n ≥ 0, let Pn denote the set of real univariate polynomials of degree at most n, and let
P =

⋃∞
n=0Pn. Define

P+
n = P+

n ([0, 1]) := {p(x) ∈ Pn : p(x) ≥ 0 for x ∈ [0, 1]}, P+ :=
∞⋃
n=0

P+
n (4.2)

P1
n = P1

n([0, 1]) := {p(x) ∈ Pn :

∫ 1

0

p(x)dx = 1}, P1 :=
∞⋃
n=0

P1
n. (4.3)

Note that geometrically, P+
n is a convex cone in Pn, and P1

n is the affine hyperplane in Pn

of polynomials p(x) = a0 + a1x + . . . + anx
n satisfying the integral condition

n∑
i=0

ai
i + 1

= 1. (4.4)

Let

Dn := P+
n ∩ P1

n, D :=
∞⋃
n=0

Dn = P+ ∩ P1 (4.5)

denote sets of polynomials which we shall refer to without ambiguity as polynomial probability
densities.

Proposition 4.1.1. The set Dn, identified as a subset of Rn+1 according to

a0 + a1x + . . . + anx
n ←→ (a0, a1 . . . , an) ∈ Rn+1, (4.6)

is a compact convex set in Rn+1.

Proof. Here Dn corresponds to the set

S :=
{

(a0, a1, . . . , an) :
n∑

i=0

aix
i ≥ 0 for all x ∈ [0, 1] and

n∑
i=0

ai
i + 1

= 1
}
⊆ Rn+1. (4.7)

It is readily checked that S is convex and closed. For compactness, let 0 ≤ x0 < . . . < xn ≤ 1.
Then S is a closed subset of{

(a0, a1, . . . , an) :
n∑

i=0

aix
i
j ≥ 0 for j = 0, 1, . . . , n and

n∑
i=0

ai
i + 1

= 1
}

(4.8)

which is an n-dimensional polytope in the affine hyperplane
∑n

i=0
ai
i+1

= 1 whose facets are
defined by the n + 1 supporting hyperplanes through the origin with linearly independent
normal vectors due to the Vandermonde system (see e.g. [56].)
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Note that since compactness and convexity are invariant set properties under linear maps,
Proposition 4.1.1 implies that Dn is a compact convex set when embedded in Rn+1 according
to any basis of Pn. In this setting, it is natural and convenient to work with the Bernstein
basis polynomials.

The rest of the chapter is organized as follows. Section 4.2 recalls a number of known
results regarding the Bernstein basis polynomials, including the definition of the Lorentz
degree of a polynomial. Section 4.3 discusses the extreme points of Dn and presents a
representation theorem due to Karlin and Shapley [44]. In Section 4.4 we map out the
geometry of D2, specifically in terms of the level sets defined by the Lorentz degree. In
Section 4.5 we consider uniform sampling from Dn and prove some properties of the Lorentz
degree of a random polynomial probability density sampled from D2. In Section 4.6 we
derive a formula for the upper envelope of Dn using orthogonal polynomials.

4.2 Bernstein basis polynomials

Let
U(1) < U(2) < . . . < U(n+1) (4.9)

denote the order statistics obtained by ranking n + 1 i.i.d. uniform [0, 1] random variables
U1, . . . , Un+1. It is well-known that for 0 ≤ k ≤ n, U(k+1) has the beta(k + 1, n − k + 1)
distribution with probability density function

d

dx
P(U(k+1) ≤ x) = (n + 1)

(
n

k

)
xk(1− x)n−k. (4.10)

We refer to the polynomials

bn,k(x) :=

(
n

k

)
xk(1− x)n−k (4.11)

as the Bernstein basis polynomials of degree n, and

b̃n,k(x) := (n + 1)bn,k(x) (4.12)

in (4.10) as normalized Bernstein basis polynomials. It is well-known and easy to see that
{bn,k(x) : 0 ≤ k ≤ n} forms a basis for the real vector space Pn for each n ≥ 0. Indeed, we
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can expand any monomial xj for 0 ≤ j ≤ n in the Bernstein basis for Pn as

xj = xj(x + (1− x))n−j (4.13)

= xj

n−j∑
k=0

(
n− j

k

)
xk(1− x)n−j−k (4.14)

=

n−j∑
k=0

xj+k(1− x)n−j−k (4.15)

=
n∑

k=j

(
n− j

k − j

)
xk(1− x)n−k (4.16)

=
n∑

k=j

(
n−j
k−j

)(
n
k

) bn,k(x). (4.17)

Then for a polynomial
f(x) = a0 + a1x + . . . + adx

d (4.18)

with degree d ≤ n, we have

f(x) =
d∑

j=0

aj

n∑
k=j

(
n−j
k−j

)(
n
k

) bn,k(x) (4.19)

=
n∑

k=0

[ k∧d∑
j=0

aj

(
n−j
k−j

)(
n
k

) ]
bn,k(x). (4.20)

In particular, taking the constant polynomial f(x) = 1, this gives the well-known identity

n∑
k=0

bn,k(x) = 1. (4.21)

Recall from (4.12) that b̃n,k(x) are the normalized Bernstein basis polynomials.

Proposition 4.2.1. For n ≥ 0, every p(x) ∈ Dn has a unique representation

p(x) =
n∑

k=0

cn,kb̃n,k(x) (4.22)

with real coefficients cn,k, 0 ≤ k ≤ n, subject to the constraint

n∑
k=0

cn,k = 1. (4.23)
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If each cn,k in (4.22) is nonnegative, then p(x) is the probability density on [0, 1] of a
random order statistic of n+1 i.i.d. uniform [0, 1] random variables U1, . . . , Un+1. Explicitly,
p(x) corresponds to the distribution of the Ith order statistic where I is a random variable
independent of U1, . . . , Un+1 with

P(I = i) = cn,i−1 (1 ≤ i ≤ n + 1). (4.24)

In general, the coefficients in (4.22) need not all be nonnegative. For example, for n = 2,
12(x− 1

2
)2 ∈ D2 has the representation

12(x− 1
2
)2 = 3(1− x)2 − 6x(1− x) + 3x2 = b̃2,0 − b̃2,1 + b̃2,2. (4.25)

In fact, a polynomial probability density which takes the value 0 somewhere in the open
interval (0, 1) cannot admit the representation (4.22) with all coefficients nonnegative, since
each b̃n,k(x) is positive on (0, 1).

We can approximate the coefficients

cn,k :=
k∧d∑
j=0

aj

(
n−j
k−j

)(
n
k

) =
d∑

j=0

aj

(
n−j
k−j

)(
n
k

) (4.26)

from (4.20) using

an,k ≈ f(k/n) = a0 + a1

(k
n

)
+ a2

(k
n

)2

+ . . . + ad

(k
n

)d

. (4.27)

following Bernstein’s approximation theorem:

Theorem 4.2.2 (Bernstein). [5] Let g be a continuous function on the interval [0, 1]. For
n ≥ 1, define the polynomial

Bn(g)(x) =
n∑

k=0

g(k/n)bn,k(x). (4.28)

Then Bn(g)→ g uniformly on [0, 1].

For the approximation (4.27), we have

|an,k − f(k/n)| =
∣∣∣∣ d∑
j=2

aj

[(k
n

)j

− k(k − 1) · · · (k − j + 1)

n(n− 1) · · · (n− j + 1)

]∣∣∣∣ (4.29)

≤
d∑

j=2

|aj|
[(k

n

)j

− k(k − 1) · · · (k − j + 1)

n(n− 1) · · · (n− j + 1)

]
. (4.30)
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It is an elementary exercise to show for 2 ≤ j ≤ d that

sup
0≤k≤n

[(k
n

)j

− k(k − 1) · · · (k − j + 1)

n(n− 1) · · · (n− j + 1)

]
→ 0 as n→∞. (4.31)

Note that the expression over which the supremum is taken in (4.31) has the probabilis-
tic interpretation as the difference between drawing with and without replacement for the
probability of drawing only “good” objects in j draws from a box containing k good objects
among n total objects. See [67] for explicit bounds on this expression. Consequently,

sup
0≤k≤n

|an,k − f(k/n)| → 0 as n→∞. (4.32)

Proposition 4.2.3. [5] Let p(x) ∈ D. Then p(x) > 0 for all 0 < x < 1 if and only if there
exists a nonnegative integer n such that p(x) has the expansion

p(x) =
n∑

k=0

cn,kb̃n,k(x) (4.33)

with cn,k ≥ 0 for all 0 ≤ k ≤ n.

Proof. The “if” direction is obvious. For the other direction, if p(x) > 0 for 0 < x < 1, then
p(x) = xi(1−x)jq(x) for some i, j ≥ 0 and a polynomial q(x) which is positive for 0 ≤ x ≤ 1.
Let u := min0≤x≤1 q(x) > 0. By (4.32), there exists m such that q(x) =

∑m
k=0 am,kbm,k(x)

with
sup

0≤k≤m
|am,k − q(k/m)| < u. (4.34)

Since q(x) ≥ u for all 0 ≤ x ≤ 1, it follows that am,k ≥ 0 for 0 ≤ k ≤ m. Then for
n = m + i + j, p(x) = xi(1− x)jq(x) has the representation

n∑
k=0

cn,kb̃n,k(x) (4.35)

with cn,k ≥ 0 for 0 ≤ k ≤ n.

Note that if p(x) has the representation (4.33) for a nonnegative integer n, it does for all
n′ > n as well; indeed, we have the identity

b̃n,k(x) = b̃n,k(x)(x + (1− x)) (4.36)

= (n + 1)

(
n

k

)
xk+1(1− x)n−k + (n + 1)

(
n

k

)
xk(1− x)n−k+1 (4.37)

= (k + 1)

(
n + 1

k + 1

)
xk+1(1− x)n−k + (n + 1− k)

(
n + 1

k

)
xk(1− x)n−k+1 (4.38)

= k+1
n+2

b̃n+1,k+1(x) + n+1−k
n+2

b̃n+1,k(x) (4.39)
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and subsequently

p(x) =
n∑

k=0

cn,kb̃n,k(x) (4.40)

=
n∑

k=0

cn,k

[
k+1
n+2

b̃n+1,k+1(x) + n+1−k
n+2

b̃n+1,k(x)
]

(4.41)

= n+1
n+2

cn,0b̃n+1,0(x) +
n∑

k=1

[
k

n+2
cn,k+1 + n+1−k

n+2
cn,k

]
b̃n+1,k(x) + n+1

n+2
cn,nb̃n+1,n+1(x) (4.42)

=
n+1∑
k=0

cn+1,kb̃n+1,k(x) (4.43)

where the coefficients cn+1,k are all nonnegative if the cn,k are all nonnegative. The claim
follows by induction.

The smallest nonnegative integer n for which a polynomial probability density or more
generally p(x) ∈ P+ has the representation (4.33) is known as the Lorentz degree of p(x),
which we denote by δ(p(x)) [55],[25]. If no such n exists, i.e. p(x) = 0 for some 0 < x < 1,
we define δ(p(x)) =∞. It is clear that for p(x) ∈ P+ that

δ(p(x)) ≥ deg p(x) (4.44)

but in general δ(p(x)) can be arbitrarily large over polynomial probability densities with any
fixed ordinary degree of at least 2; see Section 4.4 for this discussion for the quadratic case.
See e.g. [24],[26],[25] for more on the Lorentz degree of polynomials. Let

Ld,n := {p(x) ∈ Dd : δ(p(x)) ≤ n}, (4.45)

i.e. the set of polynomial densities with ordinary degree at most d and Lorentz degree at
most n.

4.3 Extreme points

In this section, we consider the set of extreme points of the compact convex set Dn for n ≥ 1.
An immediate observation is that every extreme point of this set must have a zero in [0, 1].
Indeed, suppose p(x) ∈ Dn with p(x) > 0 for 0 ≤ x ≤ 1 and let ε := min0≤x≤1 p(x) > 0 by
compactness of [0, 1]. Then

p(x) = 1
2
[p(x) + ε(2x− 1)] + 1

2
[p(x)− ε(2x− 1)] (4.46)

is the midpoint of two distinct elements of Dn, where the perturbation ε(2x − 1) is chosen
so that p(x)± ε(2x− 1) remains nonnegative with integral 1. Hence p(x) is not extreme.
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For n = 1, it is obvious that D1 has exactly two extreme points: 2x and 2(1 − x). For
n = 2, if p(x) ∈ D2 has a zero r ∈ (0, 1) then p(x) must be extreme, because it is the unique
polynomial in D2 with a zero at r, given by

C(x− r)2 (4.47)

where C is the appropriate normalizing constant, hence it cannot be a convex combination
of two distinct polynomials in D2. If p(0) = 0 then p(x) has either the form Cx(x − a) for
r ≤ 0 or Cx(a− x) for a ≥ 1.

� If p(x) = Cx(x− a) with a < 0, then p(x) is not extreme; for instance, we have

Cx(x− a) = C−3
D−3

Dx(x− 2a) + D−C
D−3

3x2 (4.48)

where C = (1
3
− a

2
)−1 and D = (1

3
− a)−1.

� If p(x) = Cx(a− x) with a > 1, then p(x) is not extreme; for instance, we have

Cx(a− x) = C−6
D−6

Dx(2a− x) + D−C
D−6

6x(1− x) (4.49)

where C = (a
2
− 1

3
)−1 and D = (a− 1

3
)−1.

� The polynomial p(x) = 3x2 is extreme, because it is the unique polynomial in D2

satisfying p(0) = p′(0) = 0, and every other polynomial q(x) ∈ D2 with q(0) = 0 must
have q′(0) > 0, so p(x) cannot be a convex combination of two distinct polynomials in
D2.

� The polynomial p(x) = 6x(1 − x) is extreme, because it is the unique polynomial in
D2 satisfying p(0) = p(1) = 0, so it cannot be a convex combination of two distinct
polynomials in D2.

By symmetry, the polynomial 3(1− x)2 is also extreme in P2. This completes the list of ex-

treme points of D2: C(r)(x−r)2 for 0 ≤ r ≤ 1 where C(r) := (
∫ 1

0
(x−r)2 dx)−1, and 6x(1−x).

The problem of classifying the extreme points of Dn for general n was solved by Karlin
and Shapley [44] who gave a precise representation theorem for polynomial densities.

Theorem 4.3.1. [44] For q(x) ∈ P+ and m ≥ 0, define the set

Tm(q(x)) :=
{
p(x) ∈ D : p(x) = Cq(x)

m∏
i=1

(x− ri)
2, 0 ≤ r1 ≤ · · · ≤ rm ≤ 1

}
. (4.50)

Let n ≥ 1. Then

ext(Dn) =

{
Tm(1) ∪ Tm−1(x(1− x)) if n = 2m,

Tm(x) ∪ Tm(1− x) if n = 2m + 1.
(4.51)
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Furthermore, every nonextreme p(x) ∈ Dn has a unique representation as a convex combi-
nation of a pair of extreme polynomials with interlacing roots; more precisely, p(x) has a
unique representation of the form

� for n = 2m,

p(x) = αC1

m∏
i=1

(x− r2i−1)
2 + (1− α)C2x(1− x)

m−1∏
i=1

(x− r2i)
2 (4.52)

where 0 ≤ r1 ≤ · · · ≤ r2m−1 ≤ 1;

� for n = 2m + 1,

p(x) = αC1x
m∏
i=1

(x− r2i)
2 + (1− α)C2(1− x)

m∏
i=1

(x− r2i−1)
2 (4.53)

where 0 ≤ r1 ≤ · · · ≤ r2m ≤ 1.

Moreover, p(x) is an interior point of Dn if and only if all of the inequalities for the inter-
lacing roots are strict.

4.4 Geometry of quadratic densities

The normalized Bernstein basis polynomials of degree 2 are

b̃2,0 = 3(1− x)2, (4.54)

b̃2,1 = 6x(1− x), (4.55)

b̃2,2 = 3x2. (4.56)

Consider the set D2 represented as a subset S ⊆ R3 according to the correspondence

p(x) = a(3(1− x)2) + b(6x(1− x)) + c(3x2)←→ (a, b, c) ∈ R3, (4.57)

i.e. the coordinate representation under the normalized Bernstein polynomial basis of degree
2. It is natural to work in this basis because the b̃2,k for k = 0, 1, 2 are elements of D2 and
also because of the reversal symmetry

(a, b, c) ∈ S ⇐⇒ (c, b, a) ∈ S. (4.58)

Following the discussion in Section 4.3, consider polynomial densities of the form

C(r)(x− r)2 = C(r)[(1− r)x− r(1− x)]2 (4.59)

= C(r)
[
r2

3
3(1− x)2 − r(1−r)

3
6x(1− x) + (1−r)2

3
3x2

]
(4.60)
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for r ∈ R The coefficients (a, b, c) := (C(r)r2

3
,−C(r)r(1−r)

3
, C(r)(1−r)2

3
) satisfy the conditions

b ≤ 0 and
b2 = ac, (4.61)

which is equivalent to the discriminant condition in the standard monomial basis for quadratic
polynomials with a double root. This, in conjunction with the integral condition

a + b + c = 1, (4.62)

reveals that this class of points in S lie on the sphere

(a− 1)2 + b2 + (c− 1)2 = 1. (4.63)

These points lie on the circle given by the intersection of the sphere (4.63) and the affine
hyperplane (4.62), and the extreme points of S corresponding to polynomial densities of the
form C(r)(x − r)2 for 0 ≤ r ≤ 1 lie on the intersection of this circle with the half-space
b ≤ 0. Since the part of the circle not corresponding to the extreme points lie in the simplex
{(a, b, c) : a, b, c ≥ 0, a + b + c ≤ 1}, S is the convex hull of the point (0, 1, 0) and the circle
defined by (4.62) and (4.63).

It is convenient here to view S as a subset S̃ ⊆ R2 via the projection

(a, b, c) 7→ (a, c) =: (x, y) ∈ R2. (4.64)

Then the circle in R3 defined by (4.62) and (4.63) projects to the ellipse satisfying the
equation

(x− 1)2 + (1− x− y)2 + (y − 1)2 = 1 (4.65)

which can be rearranged as

(x + y − 4
3
)2

4
9

+
(x− y)2

4
3

= 1. (4.66)

The ellipse is centered at (2
3
, 2
3
), corresponding to the polynomial probability density 6(x−

1
2
)2+ 1

2
; passes through the points (1, 0) and (0, 1), corresponding to the polynomial densities

3(1− x)2 and 3x2; has major axis of length 2
√
6

3
along the line x+ y = 4

3
; and has minor axis

connecting (1
3
, 1
3
) and (1, 1), corresponding to the polynomial densities 1 and 12(x− 1

2
)2. See

Figure 4.1.
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Figure 4.1: Planar representation of the extreme points of D2. This
is a coordinate transformation of a graph presented in [44] from the
standard monomial basis to the normalized Bernstein basis which dis-
plays a natural symmetry.

Proposition 4.4.1. Let n ≥ 2. The image of the set

Qn :=
{
Cn(r)

(
(x− r)2 + r(1−r)

n

)
: r ∈ R

}
⊆ P1

2 (4.67)

where Cn(r) :=
( ∫ 1

0
((x− r)2 + r(1−r)

n
)dx

)−1
under the map π : P2 → R2 given by

p(x) = a3(1− x)2 + b6x(1− x) + c3x2 7→ (a, c) (4.68)

is En \ {(13 ,
1
3
)} where En is the ellipse with equation

(a + c− 4n+6
3n+9

)2

4n2

9(n+3)2

+
(a− c)2

4n2

3(n+3)(n−1)

= 1. (4.69)

Note that

� The polynomial (x − r)2 + r(1−r)
n

is nonnegative on [0, 1] if and only if 0 ≤ r ≤ 1,

r < − 1
n−1

, or r > 1+ 1
n−1

. Hence Cn(r)((x−r)2+ r(1−r)
n

) is not a polynomial probability

density for − 1
n−1

< r < 0 or 1 < r < 1 + 1
n−1

.
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� For every r ∈ R,
∫ 1

0
((x− r)2 + r(1−r)

n
)dx = (r− 1

2
)2 + 1

3
n

n−1
− 1

4
> (r− 1

2
)2 + 1

3(n−1)
> 0.

Proof. For every r ∈ R, we have

(x− r)2 + r(1−r)
n

= (r2 + r(1−r)
n

)(1−x)2 + (−r(1− r) + r(1−r)
n

)︸ ︷︷ ︸
−n−1

n
r(1−r)

2x(1−x) + ((1− r)2 + r(1−r)
n

)x2

(4.70)
so

Cn(r)
(
(x− r)2 + r(1−r)

n

)
= a3(1− x)2 + b6x(1− x) + c3x2 (4.71)

where

b = −Cn(r)
3

n−1
n
r(1− r) (4.72)

a = Cn(r)
3

r2 − 1
n−1

b (4.73)

c = Cn(r)
3

(1− r)2 − 1
n−1

b (4.74)

satisfy (
n−1
n
b
)2

=
(
a + 1

n−1
b
)(
c + 1

n−1
b
)
. (4.75)

Simplifying and substituting b = 1− a− c yields

n+1
n−1

(1− a− c)2 − 1
n−1

(a + c)(1− a− c)− ac = 0. (4.76)

Using the substitution
s = a + c, t = a− c, (4.77)

equation (4.76) becomes

n+1
n−1

(1− s)2 − 1
n−1

s(1− s)− s+t
2

s−t
2

= 0 (4.78)
n+1
n−1

(1− 2s + s2)− 1
n−1

(s− s2)− 1
4
s2 + 1

4
t2 = 0 (4.79)

3n+9
4(n−1)

s2 − 2n+3
n−1

s + 1
4
t2 + n+1

n−1
= 0 (4.80)

3(n+3)
4(n−1)

(
s− 2(2n+3)

3(n+3)

)2
+ 1

4
t2 = n2

3(n+3)(n−1)
(4.81)

9(n+3)2

4n2

(
s− 4n+6

3n+9

)2
+ 3(n+3)(n−1)

4n2 t2 = 1 (4.82)

as desired. The map π restricted to Qn is continuous and injective with

π
(
Cn(r)

(
(x− r)2 + r(1−r)

n

))
=

(
r2 + r(1−r)

n

1− 3(1− 1
n
)r + 3(1− 1

n
)r2

,
(1− r)2 + r(1−r)

n

1− 3(1− 1
n
)r + 3(1− 1

n
)r2

)
,

(4.83)
so

lim
r→±∞

π
(
(x− r)2 + r(1−r)

n

)
=

(
1
3
, 1
3

)
(4.84)

which implies that the image of Qn under π is En \ {(13 ,
1
3
)}.
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It turns out that there is a direct connection between the class of polynomial densities in
Proposition 4.4.1 and the set L2,n of polynomial densities of ordinary degree at most 2 and
Lorentz degree at most n for n ≥ 2.

Theorem 4.4.2. Let n ≥ 2. The extreme points of L2,n are the n polynomial densities of
the form

pn,k(x) := Cn( k
n−1

)
(
(x− k

n−1
)2 + 1

n
k

n−1
(1− k

n−1
)
)
, 0 ≤ k ≤ n− 1 (4.85)

and 6x(1− x).

Proof. For
p(x) = c2,0b̃2,0(x) + c2,1b̃2,1(x) + c2,2b̃2,2(x) ∈ P1

2

we have

p(x) = [c2,03(1− x)2 + c2,16x(1− x) + c2,23x
2](x + 1− x)n−2 (4.86)

= [c2,03(1− x)2 + c2,16x(1− x) + c2,23x
2]

n−2∑
k=0

(
n− 2

k

)
xk(1− x)n−2−k (4.87)

=
n−2∑
k=0

3

n + 1
c2,0

(n− k)(n− k − 1)

n(n− 1)
b̃n,k(x) +

n−1∑
k=1

6

n + 1
c2,1

k(n− k)

n(n− 1)
b̃n,k(x)

+
n∑

k=2

3

n + 1
c2,2

k(k − 1)

n(n− 1)
b̃n,k(x)

(4.88)

=
3

(n + 1)n(n− 1)

n∑
k=0

[
(n− k)(n− k − 1)c2,0 + 2k(n− k)c2,1 + k(k − 1)c2,2

]
b̃n,k(x),

(4.89)

so p(x) ∈ L2,n if and only if

(n− k)(n− k − 1)c2,0 + 2k(n− k)c2,1 + k(k − 1)c2,2 ≥ 0 for 0 ≤ k ≤ n. (4.90)

Now substituting c2,1 = 1− c2,0 − c2,2 and simplifying, we obtain

(n− k)(3k − n + 1)c2,0 + k(3(n− k)− n + 1)c2,2 ≤ 2k(n− k) for 0 ≤ k ≤ n. (4.91)

These n + 1 inequalities define an (n + 1)-gon in R2 which lies inside S̃. The vertices
(xn,k, yn,k), k = 0, 1, . . . , n are computed as

xn,k =
k(k + 1)

k(k + 1)− k(n− k − 1) + (n− k)(n− k − 1)
, (4.92)

yn,k =
(n− k)(n− k − 1)

k(k + 1)− k(n− k − 1) + (n− k)(n− k − 1)
(4.93)
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for k = 0, 1, . . . , n− 1 where (xn,k, yn,k) is computed by intersecting the lines corresponding
to (4.4) for k and k + 1, and (xn,n, yn,n) = (0, 0) is the intersection of the lines for k = 0 and
k = n. Then for 0 ≤ k ≤ n− 1, with rn,k := k

n−1
, we have

xn,k =
rn,k(rn,k + 1

n−1
)

rn,k(rn,k + 1
n−1

)− rn,k(1− rn,k) + (1− rn,k + 1
n−1

)(1− rn,k)
(4.94)

=
n

n−1
r2n,k + 1

n−1
rn,k(1− rn,k)

n
n−1
− 3rn,k + 3r2n,k

(4.95)

=
r2n,k −

rn,k(1−rn,k)

n

1− 3(n−1
n

)rn,k + 3(n−1
n

)r2n,k
(4.96)

and similarly

yn,k =
(1− rn,k)2 +

rn,k(1−rn,k)

n

1− 3(n−1
n

)rn,k + 3(n−1
n

)r2n,k
. (4.97)

By (4.83), we see that the point (xn,k, yn,k) corresponds to the polynomial probability density

pn,k(x) = Cn(rn,k)
(
(x− rn,k)2 + 1

n
rn,k(1− rn,k)

)
. (4.98)

It can be seen with a bit of effort that (xn,k, yn,k) as in (4.92) and (4.93) satisfies equality
in (4.91) with (n, k) 7→ (n+ 1, k + 1). This implies that the extreme points of L2,n lie on the
boundary of L2,n+1, which is an unexpected and nontrivial feature of the geometry of these
sets; see Figure 4.2. Specifically,

pn,k(x) = αn,kpn+1,k(x) + (1− αn,k)pn+1,k+1(x) (4.99)

where

αn,k :=
(n− k − 1)Cn+1(

k+1
n

)

kCn+1(
k
n
) + (n− k − 1)Cn+1(

k+1
n

)
. (4.100)

Also, the lines in S̃ that pass through the point (1
3
, 1
3
) (which corresponds to the constant

polynomial 1) have a natural correspondence in terms of polynomial densities. It is easy to
check that the line through (1

3
, 1
3
) with slope −1 corresponds to D1, the polynomial densities

of degree at most 1. If p(x), q(x), 1 ∈ D2 are collinear and p(x) has the form s(x − r)2 + t,
then without loss of generality either

1 = αp(x) + (1− α)q(x) or q(x) = αp(x) + (1− α)1, (4.101)

for some α ∈ [0, 1]. In either case, q(x) has the form s′(x − r)2 + t′. In other words, the
lines in S̃ passing through (1

3
, 1
3
) with slope not equal to −1 can be parameterized by r ∈ R,
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Figure 4.2: The geometry of the nested sets (L2,n)n≥2 in D2. For each
n, L2,n corresponds to an (n + 1)-gon, n of whose vertices lie on the
ellipse En defined in Proposition 4.4.1. Notice that the vertices of L2,n

lie on the boundary of L2,n+1.

corresponding to polynomial probability densities with functional critical point r, i.e. those
of the form s(x− r)2 + t where s and t may vary, and of course the polynomial probability
density 1 which can be seen as the limiting probability density corresponding to s(x− r)2 + t
as s→ 0. In particular, observe that

α3(1− x)2 + (1− α)3x2 = 3(x− α)2 + 3α(1− α) (4.102)

which in S̃ corresponds to

α(1, 0) + (1− α)(0, 1) = (α, 1− α). (4.103)

This leads to the following corollary.

Corollary 4.4.3. The image of L2,n under π is a (n + 1)-gon whose vertices are (0, 0) and
n vertices on the ellipse En with equation

(x + y − 4n+6
3n+9

)2

4n2

9(n+3)2

+
(x− y)2

4n2

3(n+3)(n−1)

= 1. (4.104)

Geometrically, the n vertices on En are given by the intersection of the line through (1
3
, 1
3
)

and ( k
n−1

, n−1−k
n−1

) and the elliptic arc En ∩ {(x, y) : x + y ≥ 1}, for k = 0, 1, . . . , n− 1.
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4.5 A model for random polynomials

Consider sampling a polynomial probability density uniformly at random from Dn. That is,
let F (x) be a random polynomial with law

P(F (x) ∈ Q) :=
voln(Q)

voln(Dn)
(4.105)

for every measurable Q ⊆ Dn in the usual sense, where the n-dimensional volume ratio can
be taken in any suitable coordinate representation of Dn.

Random polynomials have been studied extensively since the 1930s. Classical models
pioneered by Block and Polya [6], Littlewood and Offord [54], and Kac [42],[43] consider
random polynomials of the form

∑
Akx

k where the coefficients Ak are real or complex ran-
dom variables according to some prescribed distribution, with particular interest various
properties of the zeros and asymptotic behavior. See e.g. [3] for a recent survey and [23] for
a geometric interpretation of some of the classical results. This model can be extended to
coefficients in other polynomial bases, including trigonometric polynomials and orthogonal
polynomials; see works of Farahmand [28] and Das [14]. In particular, random polynomials
in the Bernstein basis are studied in [4], and Petrone [60] considers a model for random den-
sities which are convex combinations of beta densities with coefficients following a Dirichlet
distribution, with applications in Bayesian statistics [59], [61]. However, such models do
not faithfully sample from Dn, since they only consider nonnegative combinations of beta
densities, which are supported on the Bernstein simplex.

Our results in Section 4.4 give us an elementary approach to understanding the case
n = 2, where we consider a random polynomial probability density F (x) of degree at most
2 with law

P(F (x) ∈ Q) =
area(π(Q))

area(S̃)
(4.106)

Let Rn denote the region in S̃ bounded by x ≥ 0, y ≥ 0, and the arc En∩{(x, y) : x+y ≥ 1}.
Note that π(L2,n) ⊆ Rn. We have the following basic geometry formula:

Lemma 4.5.1. Let 0 < s < b and a > 0 and let E be the ellipse with equation

x2

a2
+

y2

b2
= 1. (4.107)

Then the area of the sector of the ellipse above and defined by the line y = −s is

ab
(π

2
+ arcsin(s/b)

)
. (4.108)

Proof. See Figure 4.3. The idea here is to scale the ellipse along its major axis to a circle,
apply basic trigonometry, and then rescale back to original. We leave the calculation as an
exercise.
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a

b

y = −s

Figure 4.3: The sector of the ellipse (shaded) whose
area is computed in Lemma 4.5.

Figure 4.4: The region Rn, which is composed of two
triangles and a sector of an ellipse. The area of Rn

is computed in Proposition 4.5.2.

Proposition 4.5.2. For n ≥ 3, the area of Rn is

n2(π + 2θn)

3(n + 3)
√

3(n + 3)(n− 1)
+

2n + 3

3n + 9
. (4.109)

where
θn := arcsin

(
1
2
− 3

2n

)
. (4.110)

Proof. See Figure 4.4. The region Rn is composed of two triangles and a sector of the ellipse
En. The triangle corresponding to the Bernstein simplex has area 1/2. The other triangle
has base

√
2 and height

d
((1

2
,
1

2

)
,
(2n + 3

3n + 9
,
2n + 3

3n + 9

))
=
√

2
n− 3

6(n + 3)
, (4.111)

so it has an area of n−3
6(n+3)

. The area of the sector of En can be computed using Lemma 4.5.1
with

a = a(n) :=
1√
2

2n√
3(n + 3)(n− 1)

, (4.112)

b = b(n) :=
1√
2

2n

3(n + 3)
, (4.113)

s = s(n) :=
√

2
n− 3

6(n + 3)
. (4.114)

Adding the areas of the three components gives the desired formula.
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In particular, the probability that a random quadratic polynomial probability density
has all coefficients nonnegative in the Bernstein basis {3(1− x)2, 6x(1− x), 3x2} is

P(L2,2) =
1
2

4π
9
√
3

+ 2
3

≈ 0.33949. (4.115)

Theorem 4.5.3. Let F (x) be a random polynomial sampled uniformly from D2. Then for
n ≥ 3,

P
(
δ(F (x)) > n

)
> ( 4π

9
√
3

+ 2
3
)−1 1

n + 3
. (4.116)

Proof. Observe that 0 ≤ 1
2
− 3

2n
< 1

2
for n ≥ 3, so θn < π

6
as defined in (4.110) and

area(π(L2,n)) < area(Rn) <
n2(4π

3
)

3(n + 3)
√

3(n + 3)(n− 1)
+

2n + 3

3n + 9
<

4π

9
√

3
+

2n + 3

3n + 9
. (4.117)

By Proposition 4.5.2, for n ≥ 3 we have

P(δ(F (x)) > n) = 1− P(F (x) ∈ L2,n) > 1−
4π
9
√
3

+ 2n+3
3n+9

4π
9
√
3

+ 2
3

= ( 4π
9
√
3

+ 2
3
)−1 1

n + 3
. (4.118)

Corollary 4.5.4. Let F (x) be a random polynomial sampled uniformly from D2. Then

Eδ(F (x)) =∞. (4.119)

4.6 Upper envelopes

In this section, we consider the problem of describing for each n the upper envelope of Dn;
that is, for each u ∈ [0, 1],

fn(u) := max
f∈Dn

f(u) = max
f∈ext(Dn)

f(u). (4.120)

Note that finiteness of fn(u) and the second equality follow from linearity of the functional
f 7→ f(u) and compactness of Dn. It is an easy calculus exercise to show that for n = 2,

f 2(u) = max(4− 12u(1− u), 6u(1− u)) (4.121)

=

{
4− 12u(1− u) if 0 ≤ u ≤ 1

3
or 2

3
≤ u ≤ 1,

6u(1− u) if 1
3
< u < 2

3
.

(4.122)

We first establish some basic definitions from the theory of orthogonal polynomials ; see e.g.
[73].
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An orthonormal system of polynomials on [0, 1] with respect to a weight function w : [0, 1]→
[0,∞) is a sequence of polynomials (pn(x) : n ≥ 0) such that deg(pn(x)) = n and∫ 1

0

pm(x)pn(x)w(x)dx = 1(m = n) (4.123)

for all m,n ≥ 0. The normalization
∫ 1

0
pn(x)2w(x)dx = 1 uniquely determines the sequence

of polynomials. Note that for every n ≥ 0, {pk(x) : 0 ≤ k ≤ n} forms a basis for Pn.
If w ∈ D, then there is a natural probabilistic reformulation of (4.123): if X is a random
variable with probability density w on [0, 1], then

Epm(X)pn(X) = 1(m = n) (4.124)

for all m,n ≥ 0. In particular, the beta densities

w(x) =
Γ(α + β + 1)

Γ(α + 1)Γ(β + 1)
xβ(1− x)α (4.125)

correspond, up to a scaling factor, to the classical orthonormal system known as the (shifted)

Jacobi polynomials p
(α,β)
n (x). We shall need the following three special cases of Jacobi poly-

nomials.

� (α, β) = (0, 0) corresponding to w(x) ≡ 1. This gives us the (shifted) Legendre poly-
nomials.

� (α, β) = (0, 1) corresponding to w(x) = 2x.

� (α, β) = (1, 1) corresponding to w(x) = 6x(1− x).

Table 4.1 displays the first few polynomials in each of these three orthonormal systems.

Lemma 4.6.1. [1][39] Let (pn(x) : n ≥ 0) be an orthonormal system on [0, 1] with respect
to weight function w. Suppose

f(x) =
m∑
k=0

akpk(x) ∈ Pm (4.126)

satisfies
∫ 1

0
f(x)2w(x)dx = 1. Then for every 0 ≤ u ≤ 1,

f(u)2 ≤
m∑
k=0

pk(u)2 (4.127)

with equality if and only if

f(x) = ±
∑m

k=0 pk(u)pk(x)√∑m
k=0 pk(u)2

. (4.128)
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Proof. By orthonormality,

1 =

∫ 1

0

f(x)2w(x)dx =

∫ 1

0

( m∑
k=0

akpk(x)
)2

w(x)dx =
m∑
k=0

a2k. (4.129)

Then by the Cauchy-Schwarz inequality,

f(u)2 ≤
m∑
k=0

a2k

m∑
k=0

pk(u)2 =
m∑
k=0

pk(u)2 (4.130)

with equality if and only if ak = apk(u) for all k, for some constant a. Hence by (4.129)
a = ±(

∑
pk(u)2)−1/2 and equality is attained by

f(x) = ±
m∑
k=0

apk(u)pk(x) (4.131)

as desired.

Table 4.1: Some Jacobi polynomials, defined according to (4.123) and the convention (4.125).

n p
(0,0)
n (x) p

(0,1)
n (x)

0 1 1

1
√

3(2x− 1)
√

2(3x− 2)

2
√

5(6x2 − 6x + 1)
√

3(10x2 − 12x + 3)

3
√

7(20x3 − 30x2 + 12x− 1)
√

4(35x3 − 60x2 + 30x− 4)

4
√

9(70x4 − 140x3 + 90x2 − 20x + 1)
√

5(126x4 − 280x3 + 210x2 − 60x + 5)

n p
(1,1)
n (x)

0 1

1
√

5(2x− 1)

2
√

14(5x2 − 5x + 1)

3
√

30(14x3 − 21x2 + 9x− 1)

4
√

55(42x4 − 84x3 + 56x2 − 14x + 1)
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Theorem 4.6.2. Let 0 ≤ u ≤ 1. Then

(i) for even n = 2m > 0,

fn(u) = max

( m∑
k=0

p
(0,0)
k (u)2, 6u(1− u)

m−1∑
k=0

p
(1,1)
k (u)2

)
; (4.132)

(ii) for odd n = 2m + 1,

fn(u) = max

(
2u

m∑
k=0

p
(0,1)
k (u)2, 2(1− u)

m∑
k=0

p
(1,0)
k (u)2

)
. (4.133)

Proof. The result follows from Lemma 4.6.1 and Theorem 4.3.1. Note that by symmetry,
p
(1,0)
k (x) = p

(0,1)
k (1− x).

Figure 4.5: The upper envelopes fn of Dn for 0 ≤ n ≤ 21, colored

blue for even n and yellow for odd n. The formulas for fn are given
in terms of Jacobi polynomials in Theorem 4.6.2.

Corollary 4.6.3. We have

fn(0) = fn(1) =
⌊n + 2

2

⌋⌈n + 2

2

⌉
=

{
(m + 1)2 for even n = 2m,

(m + 1)(m + 2) for odd n = 2m + 1.
(4.134)
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Proof. The result follows from Theorem 4.6.2 and the following well-known identities involv-
ing the Jacobi polynomials (see [66]) defined according to (4.125) which can be seen in Table
4.1 for low degrees:

� p
(0,0)
k (1) =

√
2k + 1

� p
(0,1)
k (1) =

√
k + 1

Then for n = 2m,

fn(1) =
m∑
k=0

(2k + 1) = (m + 1)2 (4.135)

and for n = 2m + 1,

fn(1) = 2
m∑
k=0

(k + 1) = (m + 1)(m + 2). (4.136)

The sequence defined in (4.134) is the sequence of positive quarter-squares; see OEIS entry
A002620.

Next, consider
Mn := max

f∈Dn

max
0≤u≤1

f(u) = max
0≤u≤1

fn(u). (4.137)

Following intuition, it is natural to suspect that fn is maximized at the endpoints of the
interval [0, 1]. Indeed this is correct, but the proof is nontrivial. Let

In := {non-negative, increasing polynomials on [0, 1] of degree at most n}. (4.138)

Lemma 4.6.4. [66] For every nonnegative, increasing polynomial function f on [0, 1], define

λ(f) :=
maxu∈[0,1] f

′(u)

f(1)
. (4.139)

Then for n ≥ 1,

λn := sup
f∈In

λ(f) = sup
f∈In

f ′(1)

f(1)
(4.140)

Proof. Suppose there does not exist f ∈ In satisfying f ′(1)
f(1)

= λn. It follows by considering

the function f(1) − f(1 − x) that also no f ∈ In satisfies f ′(0)
f(1)

= λn. Let f ∈ In satisfy

λ(f) = λn. Then f ′(c)
f(1)

= λn for some c ∈ (0, 1). Define g, h ∈ In by

g(x) = f(cx), (4.141)

h(x) = f(c + (1− c)x)− f(c). (4.142)
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Then

λn >
g′(1)

g(1)
=

cf ′(c)

f(c)
=⇒ f(c) >

cf ′(c)

λn

, (4.143)

λn >
h′(0)

h(1)
=

(1− c)f ′(c)

f(1)− f(c)
=⇒ f(1)− f(c) >

(1− c)f ′(c)

λn

. (4.144)

Adding the two inequalities yields f(1) > f ′(c)
λn

or λn > f ′(c)
f(1)

, which is a contradiction.

Corollary 4.6.5. For n ≥ 0,

Mn := max
0≤u≤1

fn(u) =

{
(m + 1)2 if n = 2m,

(m + 1)(m + 2) if n = 2m + 1.
(4.145)

Proof. Note that f ′(1)
f(1)−f(0)

> f ′(1)
f(1)

whenever f(0) > 0, which implies that every f ∈ In which

maximizes λ(f) must have f(0) = 0. Thus Lemma 4.6.4 can be reformulated using calculus
as

Mn = sup
f∈P+

n

max0≤u≤1 f(u)∫ 1

0
f(x)dx

= sup
f∈P+

n

f(1)∫ 1

0
f(x)dx

= fn(1). (4.146)

Figure 4.6: Graphs of the unique polynomials f which maximize f(1) over
f ∈ Dn for 0 ≤ n ≤ 9, colored blue for even n and yellow for odd n. For
each n, the degree n polynomial is an extreme point of Dn. See Table 4.2
for exact formulas for 0 ≤ n ≤ 9.
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Table 4.2: The unique polynomials which maximize f(1) over f ∈ Dn for 0 ≤ n ≤ 9.
Their graphs are shown in Figure 4.6. The general formulas for every n are given in
Lemma 4.6.1 in terms of Jacobi polynomials. Observe that for odd n the polynomials

are the normalized squared Jacobi polynomials of the form p
(1,1)
n (x) (cf. Table 4.1).

n arg maxf∈Dn
f(1)

0 1

1 2x

2 (3x− 1)2

3 6x(2x− 1)2

4 (10x2 − 8x + 1)2

5 12x(5x2 − 5x + 1)2

6 (35x3 − 45x2 + 15x− 1)2

7 20x(14x3 − 21x2 + 9x− 1)

8 (126x4 − 224x3 + 126x2 − 24x + 1)2

9 30x(42x4 − 84x3 + 56x2 − 14x + 1)2
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[30] Bruno de Finetti. “La Prévision: Ses Lois Logiques, Ses Sources Subjectives”. In: An-
nales de l’Institut Henri Poincaré 17 (1937), pp. 1–68.
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M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy
1.0 Contributors. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-
0686-2.

[75] Richard A. Vitale. “Bernstein polynomial approach to density function estimation”.
In: Statistical inference and related topics (Proc. Summer Res. Inst. Statist. Inference
for Stochastic Processes, Indiana Univ., Bloomington, Ind., 1974, Vol. 2; dedicated to
Z. W. Birnbaum). 1975, pp. 87–99.

[76] Gerhard Winkler. “Extreme points of moment sets”. In: Math. Oper. Res. 13.4 (1988),
pp. 581–587. issn: 0364-765X. doi: 10.1287/moor.13.4.581. url: https://doi.
org/10.1287/moor.13.4.581.

[77] Yuri Yakubovich. “On the distribution of the number of distinct values in a finite
sample”. In: Unpublished (2021).

[78] Theodore Zhu. “The distribution of the number of distinct values in a finite exchange-
able sequence”. In: Electronic Journal of Probability 27 (2022), pp. 1–25. doi: 10.
1214/22-EJP815. url: https://doi.org/10.1214/22-EJP815.

https://doi.org/10.1007/BF00353879
https://doi.org/10.1007/BF00353879
https://doi.org/10.1017/CBO9780511910135
https://doi.org/10.1017/CBO9780511910135
https://doi.org/10.1017/CBO9780511910135
https://doi.org/10.1214/aoms/1177700153
https://doi.org/10.1214/aoms/1177700153
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1287/moor.13.4.581
https://doi.org/10.1287/moor.13.4.581
https://doi.org/10.1287/moor.13.4.581
https://doi.org/10.1214/22-EJP815
https://doi.org/10.1214/22-EJP815
https://doi.org/10.1214/22-EJP815

	Contents
	Introduction
	Preliminaries
	Organization

	Clustering in exchangeable processes
	Preliminaries
	Laws of K3
	Higher dimensions
	Finite exchangeable sequences
	The two-parameter family
	Complements

	Extreme coherent distributions
	Background
	Some examples of extremal probability measures
	Some inequalities
	22 extreme coherent laws
	Application: an optimization problem
	More extreme coherent laws
	Coherent copulas

	Polynomial probability densities
	Preliminaries
	Bernstein basis polynomials
	Extreme points
	Geometry of quadratic densities
	A model for random polynomials
	Upper envelopes

	Bibliography



