
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Deep Learning Image Synthesis for MRI: From Super-Resolution to Cardiovascular 
Biomechanics

Permalink
https://escholarship.org/uc/item/800648s2

Author
Masutani, Evan Masataka

Publication Date
2022

Supplemental Material
https://escholarship.org/uc/item/800648s2#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/800648s2
https://escholarship.org/uc/item/800648s2#supplemental
https://escholarship.org
http://www.cdlib.org/


 
 

UNIVERSITY OF CALIFORNIA SAN DIEGO 
 

Deep Learning Image Synthesis for MRI: From Super-Resolution to 
Cardiovascular Biomechanics 

 
A dissertation submitted in partial satisfaction of the 

requirements for the degree 
Doctor of Philosophy 

 
in 
 

Bioengineering 
 

by 
 

Evan Masataka Masutani 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Committee in charge: 
 

Professor Albert Hsiao, Chair 
Professor Adam Engler, Co-Chair 
Professor Francisco Contijoch 
Professor Thomas Liu 
Professor Andrew McCulloch 
 

2022  



 
 

ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 
Evan Masataka Masutani, 2022 

All rights reserved  



 
 

iii 
 

The dissertation of Evan Masataka Masutani is approved, and it is acceptable in 
quality and form for publication on microfilm and electronically. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
University of California San Diego 

2022  



 
 

iv 
 

DEDICATION 
 
I dedicate this dissertation to my family, friends, and mentors who have all graciously 
supported me throughout this journey. 
 
Mom and Dad, thank you for raising me and making this all possible.  I will dedicate myself 
to improving the health and happiness of our society. 
 
Dad, it’s been a long, tough road—but we made it!  Thank you for holding on for this long.  
I hope I’ll continue to make you proud. 
 
Hana, my love and my life, my future wife, thank you for loving me throughout this 
turbulent time.  I love you. 
  



 
 

v 
 

TABLE OF CONTENTS 
 

DISSERTATION APPROVAL PAGE............................................................................... iii 

DEDICATION ..................................................................................................................iv 

TABLE OF CONTENTS .................................................................................................. v 

LIST OF FIGURES ..........................................................................................................xi 

LIST OF TABLES .......................................................................................................... xiii 

LIST OF SUPPLEMENTAL VIDEOS............................................................................. xiv 

ACKNOWLEDGEMENTS ..............................................................................................xv 

VITA ............................................................................................................................. xvii 

ABSTRACT OF THE DISSERTATION ........................................................................ xviii 

Chapter 1: Introduction .................................................................................................... 1 

1.1 Background ........................................................................................................ 1 

1.1.1 Introduction to Cardiac MRI ............................................................................. 1 

1.1.2 Strengths of Cardiac MRI ................................................................................ 2 

1.1.3 Limitations of Cardiac MRI .............................................................................. 3 

1.1.4 Introduction to Convolutional Neural Networks ............................................... 5 

1.2 Outline of the Dissertation ..................................................................................... 7 

Chapter 2: Deep Learning Single-Frame and Multiframe Super-Resolution for Cardiac 
MRI ................................................................................................................................ 11 

2.1 Abstract ................................................................................................................... 11 

2.2 Summary and Key Results .................................................................................. 12 

2.3 Introduction .......................................................................................................... 13 

2.4 Materials and Methods ........................................................................................ 14 

2.4.1 Prototype Neural Networks ........................................................................... 14 

2.4.2 Multiframe Neural Networks .......................................................................... 15 



 
 

vi 
 

2.4.3 Patients and Image Data ............................................................................... 16 

2.4.4 Synthetic Training Data ................................................................................. 17 

2.4.5 Fourier Downsampling .................................................................................. 18 

2.4.6 Neural Network Training................................................................................ 18 

2.4.7 Hybrid Loss Function .................................................................................... 19 

2.4.8 Evaluation of Performance ............................................................................ 19 

2.4.9 Statistical Analysis ........................................................................................ 20 

2.5 Results ................................................................................................................. 22 

2.5.1 Patient Characteristics .................................................................................. 22 

2.5.2 Quantitative Differences ................................................................................ 22 

2.5.3 Qualitative Differences .................................................................................. 23 

2.5.4 Clinical Proof of Concept ............................................................................... 27 

2.6 Discussion ........................................................................................................... 30 

2.7 Acknowledgements .............................................................................................. 32 

2.8 Appendix: Supplemental Materials and Methods ................................................. 33 

2.8.1 Neural Network Training Data ....................................................................... 33 

2.8.2 Recovery of Fourier Data from DICOM Files ................................................. 33 

2.8.3 Fourier Downsampling of Multiframe Data .................................................... 33 

2.8.4 Hybrid Loss Function .................................................................................... 34 

2.8.5 Other Training Parameters ............................................................................ 34 

2.8.6 Super-Resolution of Full-Resolution Images ................................................. 34 

2.9 Supplemental Figures .......................................................................................... 36 

Chapter 3: Deep Learning Automated Background Phase Error Correction for 
Abdominopelvic 4D Flow MRI ....................................................................................... 38 

3.1 Abstract ............................................................................................................... 38 

3.2 Summary and Key Results .................................................................................. 39 



 
 

vii 
 

3.3 Introduction .......................................................................................................... 40 

3.4 Materials and Methods ........................................................................................ 43 

3.4.1 Patients ......................................................................................................... 43 

3.4.2 Data Acquisition ............................................................................................ 43 

3.4.3 Manual Background Phase Error Correction ................................................. 44 

3.4.4 Data Preprocessing ....................................................................................... 44 

3.4.5 Neural Network Training................................................................................ 45 

3.4.6 Polynomial Regression and Application ........................................................ 46 

3.4.7 Volumetric Flow Measurements .................................................................... 46 

3.4.8 Performance Evaluation ................................................................................ 47 

3.4.9 Statistical Analysis ........................................................................................ 48 

3.5 Results ................................................................................................................. 49 

3.5.1 Patient Characteristics .................................................................................. 49 

3.5.2 Performance of Manual Phase Error Correction ........................................... 50 

3.5.3 Clinical Application of 4D Flow ...................................................................... 51 

3.5.4 Performance of Automated Phase Error Correction ...................................... 53 

3.6 Discussion ........................................................................................................... 57 

3.7 Acknowledgements .............................................................................................. 60 

Chapter 4: Feasibility of Deep Learning to Synthesize Outflow Hemodynamics from 
Cardiac MRI .................................................................................................................. 61 

4.1 Abstract ............................................................................................................... 61 

4.2 Summary and Key Results .................................................................................. 62 

4.3 Introduction .......................................................................................................... 63 

4.4 Materials and Methods ........................................................................................ 64 

4.4.1 Patients and Image Data ............................................................................... 64 

4.4.2 Image Annotation .......................................................................................... 66 



 
 

viii 
 

4.4.3 Triton-Net: A Multi-Prong Neural Network ..................................................... 66 

4.4.4 Evaluation of Performance ............................................................................ 67 

4.4.5 Statistical Analysis ........................................................................................ 68 

4.5 Results ................................................................................................................. 69 

4.5.1 Patient Characteristics .................................................................................. 69 

4.5.2 Chamber Segmentation and Landmark Localization ..................................... 69 

4.5.3 Intracardiac Blood Flow Field Synthesis ....................................................... 71 

4.5.4 Detection of Outflow Stenosis and Wall Thickening ...................................... 75 

4.6 Discussion ........................................................................................................... 76 

4.7 Acknowledgements .............................................................................................. 78 

4.8 Appendix .............................................................................................................. 79 

4.8.1 Triton-Net ...................................................................................................... 79 

4.8.2 Data Preprocessing ....................................................................................... 80 

4.8.3 Neural Network Training................................................................................ 80 

4.8.4 Loss Functions .............................................................................................. 81 

4.8.5 Segmentation Loss ....................................................................................... 81 

4.8.6 Localization Loss ........................................................................................... 81 

4.8.7 Flow Synthesis Loss ..................................................................................... 81 

4.8.8 Peak Left Ventricular Speed Loss ................................................................. 83 

4.8.9 Loss Function Weighing ................................................................................ 84 

4.9 Supplemental Figures and Videos ....................................................................... 85 

Chapter 5: Deep Learning Synthetic Strain: Quantitative Assessment of Regional Wall 
Motion Abnormalities ..................................................................................................... 87 

5.1 Abstract ............................................................................................................... 87 

5.2 Summary and Key Results .................................................................................. 88 

5.3 Introduction .......................................................................................................... 89 



 
 

ix 
 

5.4 Materials and Methods ........................................................................................ 90 

5.4.1 Algorithm Training Data ................................................................................ 91 

5.4.2 Neural Network Architecture ......................................................................... 91 

5.4.3 Establishment of Segmental and Global Normal Ranges ............................. 92 

5.4.4 Assessment of Wall Motion Abnormalities in Patients with Ischemic Heart 
Disease .................................................................................................................. 93 

5.4.5 Data Acquisition ............................................................................................ 93 

5.4.6 Statistical Analysis ........................................................................................ 94 

5.5 Results ................................................................................................................. 94 

5.5.1 Ranges of Segmental Strain in Normal Subjects .......................................... 94 

5.5.2 Reader Agreement for Ischemic Wall Motion Abnormalities ......................... 97 

5.5.3 Deep Learning Detection of Wall Motion Abnormalities ................................ 97 

5.5.4 Potential Applications of DLSS Beyond Ischemic Heart Disease ................ 101 

5.6 Discussion ......................................................................................................... 103 

5.7 Acknowledgements ............................................................................................ 106 

5.8 Appendix ............................................................................................................ 107 

5.8.1 DLSS Architecture ....................................................................................... 107 

5.8.2 Neural Network Training.............................................................................. 108 

5.8.3 Loss Functions ............................................................................................ 108 

5.8.4 Segmentation Loss ..................................................................................... 108 

5.8.5 Velocity Synthesis Loss .............................................................................. 108 

5.8.6 Loss Function Weighing .............................................................................. 110 

5.8.7 Calculation of Strain-Rate and Strain .......................................................... 110 

5.9 Supplemental Tables, Figures, and Videos ....................................................... 111 

Chapter 6. Conclusions and Future Directions ............................................................ 113 

6.1 Summary ........................................................................................................... 113 



 
 

x 
 

6.2 Future Directions ............................................................................................... 115 

6.2.1 Overview ..................................................................................................... 115 

6.2.2 Technical Innovations ................................................................................. 116 

6.2.3 Generalizability to Other Modalities and Organs ......................................... 119 

6.2.4 Image Synthesis for Biomechanical Discovery ............................................ 120 

6.3 Conclusion ......................................................................................................... 122 

WORKS CITED: .......................................................................................................... 123 

 



 
 

xi 
 

LIST OF FIGURES 
 

Figure 1: Prototype Convolutional Neural Networks ..................................................... 16 

Figure 2: Diagram shows strategy for generation of synthetic training data. ................ 18 

Figure 3: Box-and-whisker plots compare performance based on the structural 
similarity index (SSIM) for each super-resolution method across multiple upsampling 
factors ........................................................................................................................... 21 

Figure 4: Representative example images in a 62-year-old man for comparison of 
super-resolution methods across multiple upsampling factors ...................................... 24 

Figure 5: Example images compare super-resolution methods at upsampling by a 
factor of eight ................................................................................................................ 26 

Figure 6: Images demonstrate proof-of-concept assessment of super-resolution 
methods ........................................................................................................................ 28 
 
Supplemental Figure 1: Four prototype CNNs we trained and evaluated for single-
frame and multiframe super-resolution……………………………………………………...36 
 
Supplemental Figure 2: MRI examples comparing super-resolution methods at 64× 
upsampling……………………………………………………………………………………..37 

Figure 7:  Effect of background phase error correction on flow visualization and 
quantification ................................................................................................................. 42 

Figure 8: Pipeline for automated phase error correction .............................................. 46 

Figure 9: Visual example of background phase error correction for four-dimensional 
flow MRI ........................................................................................................................ 48 

Figure 10: Clinical applications of abdominopelvic four-dimensional (4D) flow MRI ..... 51 

Figure 11: Representative coronal sections of MRI scans from all 40 test cases ......... 54 

Figure 12: Analysis of volumetric flow continuity in the testing data set ....................... 55 

Figure 13: Patient Population Flowchart ....................................................................... 65 

Figure 14: Triton-Net: A three-pronged, spatiotemporal multitask convolutional neural 
network .......................................................................................................................... 67 

Figure 15: Performance of the segmentation and localization prongs of Triton-Net. .... 70 

Figure 16: Performance of the blood flow field synthesis prong of Triton-Net .............. 72 



 
 

xii 
 

Figure 17: Performance of Triton-Net flow synthesis on cine SSFP series with left 
ventricular outflow tract obstruction ............................................................................... 74 

Figure 18: Post-Processing of Triton-Net Inferences Yields Detection of Increased Left 
Ventricular Outflow Tract Pressure Gradients and Myocardial Thickness ..................... 76 
 
Supplemental Figure 3: Details of Triton-Net Architecture………………………………85 

Figure 19: Overview of the deep learning synthetic strain (DLSS) approach ............... 92 

Figure 20: Distribution of Peak Radial Strain in Normal Volunteers and Clinically-
Normal Patients ............................................................................................................. 96 

Figure 21: Exemplar case of a patient with catheter angiogram-proven LAD occlusion
 ...................................................................................................................................... 98 

Figure 22: Performance of DLSS for detecting segmental wall motion abnormalities .. 99 

Figure 23: Patient with cardiac arrest 4 months prior with viral prodrome and presumed 
myocarditis with negative myocardial biopsy. .............................................................. 101 

Figure 24: Ventricular dyssynchrony with dissociation of contraction of the septal and 
lateral walls due to left bundle branch block, visualized and quantified with DLSS. .... 103 
 
Supplemental Figure 4: Details of the DLSS CNN Architecture………………………111 

 
  



 
 

xiii 
 

LIST OF TABLES 

Table 1: Patient Demographics .................................................................................... 17 

Table 2: MRI Short-Axis Cine Steady-State Free Precession Parameters ................... 17 

Table 3: Pairwise Comparison of Shallow (SRNet) and Deep (UNet) Methods for Super 
Resolution ..................................................................................................................... 22 

Table 4: Pairwise Comparison of LV Volumes Derived from Prospectively Acquired 
Examinations ................................................................................................................. 30 

Table 5: Imaging Parameters for Time-resolved 3D Phase-Contrast MRI with 3D 
Velocity Encoding .......................................................................................................... 44 

Table 6: Patient Characteristics .................................................................................... 50 

Table 7: Effect of Manual and Deep Learning-based Automated Phase Error Correction 
on Inflow-Outflow Consistency for Five Vessel Comparisons ....................................... 56 

Table 8: MRI Scanner Parameters ............................................................................... 66 

Table 9: Performance of Triton-Net Multi-Chamber Segmentation and Multi-Landmark 
Localization ................................................................................................................... 71 

Table 10: Performance of Triton-Net Flow Synthesis ................................................... 73 

Table 11: Patient Demographics .................................................................................. 95 

Table 12: DLSS peak strain in volunteers and patients without known cardiac disease
 ...................................................................................................................................... 95 

Table 13: Inter-rater Cohen’s kappa for identification of segmental wall motion 
abnormalities ................................................................................................................. 97 

Table 14: DLSS performance using fixed peak strain cutoffs ..................................... 100 
 
Supplemental Table 1: Data for short axis cine SSFP parameters presented as means 
with ranges in parentheses………………………………………………………………….111  

  



 
 

xiv 
 

LIST OF SUPPLEMENTAL VIDEOS 

Supplemental Video 1: Multi-chamber Segmentation Over the Cardiac Cycle 

Supplemental Video 2: Intracardiac Blood Flow Field Synthesis in a Morphologically-
Normal Patient 

Supplemental Video 3: Intracardiac Blood Flow Field Synthesis in a Patient with 
Hypertrophic Obstructive Cardiomyopathy 

Supplemental Video 4: Overview of the deep learning synthetic strain (DLSS) 
approach 

Supplemental Video 5: Exemplar case of a patient with catheter angiogram-proven 
LAD occlusion 

Supplemental Video 6: Patient with cardiac arrest 4 months prior with viral prodrome 
and presumed myocarditis with negative myocardial biopsy 

Supplemental Video 7: Ventricular dyssynchrony with dissociation of contraction of the 
septal and lateral walls due to left bundle branch block, visualized and quantified with 
DLSS 
 
  



 
 

xv 
 

 
ACKNOWLEDGEMENTS 

I would like to acknowledge my truly wonderful mentors and co-authors, without 

whom none of this work would be possible.  Thank you, Dr. Albert Hsiao and Dr. Adam 

Engler, for being exceptional co-mentors throughout this learning process.  Thank you, 

Dr. Tara Retson, Dr. Brian Hurt, Dr. Kevin Blansit, and Dr. Naeim Bahrami for being 

wonderful people, insightful lab-mates, and good friends. 

I would also like to gratefully thank the NVIDIA Corporation for graciously donating 

a Titan Xp GPU, which enabled me to build the technical foundation necessary to pursue 

this project.  I am also deeply grateful to the San Diego Supercomputer Center, Microsoft, 

and Oracle for providing me with invaluable GPU-accelerated compute credits.  I would 

also like to thank the National Institute of General Medical Sciences, the National Heart, 

Lung, and Blood Institute, the American Heart Association, and the Radiological Society 

of North America for their very generous grant support.  Finally, I would like to 

acknowledge the UC San Diego Medical Scientist Training Program, the UC San Diego 

Department of Bioengineering, the UC San Diego Department of Radiology, and the UC 

San Diego School of Medicine for their unwavering support.  Thank you all! 

Chapter 2, in part, is a reprint as it appears in Radiology (2020).  The author list is: 

Masutani, Evan; Bahrami, Naeim; Hsiao, Albert.  The dissertation author was the primary 

investigator and author of this paper.   

Chapter 3, in part, is a reprint as it appears in Radiology (2021).  The author list is: 

You, Sophie*; Masutani, Evan*; Alley, Marcus; Vasanawala, Shreyas; Taub, Pam; Liau, 

Joy; Roberts, Anne; Hsiao, Albert.  *Denotes co-first authorship.  The dissertation author 

was the co-first investigator and co-first author of this paper. 



 
 

xvi 
 

Chapter 4, in part, is in preparation for submission to Radiology: Artificial 

Intelligence.  The author list is: Masutani, Evan; Retson, Tara; Hurt, Brian; Blansit, Kevin; 

Hsiao, Albert.  The dissertation author was the primary investigator and author of this 

manuscript. 

Chapter 5, in part, is in preparation for submission to Radiology.  The author list is: 

Masutani, Evan; Chandrupatla, Rahul; Hahn, Lewis; Horowitz, Misha; Jacobs, Kathleen; 

Kligerman, Seth; Hsiao, Albert.  The dissertation author was the primary investigator and 

author of this manuscript.  



 
 

xvii 
 

VITA 
 
2014 — Stanford University 
 Bachelor of Science, Engineering: Bioengineering 
  
2022 — University of California San Diego 
 Doctor of Philosophy, Bioengineering  



 
 

xviii 
 

ABSTRACT OF THE DISSERTATION 
 

Deep Learning Image Synthesis for MRI: 
From Super-Resolution to Cardiovascular Biomechanics 

 
By 

 
 

Evan Masataka Masutani 
 
 

Doctor of Philosophy in Bioengineering 
 
 

University of California San Diego, 2022 
 
 

Professor Albert Hsiao, Chair 
 

Professor Adam Engler, Co-Chair 
 
 

Since its invention in the 1970s, magnetic resonance imaging (MRI) has 

contributed greatly to our understanding of the human body in health and disease.  MRI 

images anatomy and physiology with high spatiotemporal resolution and without ionizing 

radiation.  Due to these factors, MRI is particularly well suited to studying the heart, and 

cardiac MRI is considered the clinical gold-standard for assessment of cardiac 

morphology, flow, and function.  However, interpretation of cardiac MRI is highly 

dependent on image quality and often requires extensive manual annotation and visual 

analysis.   
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Convolutional neural networks (CNNs), a form of deep learning and artificial 

intelligence, have potential to revolutionize medical imaging.  Broadly, CNNs comprise a 

series of trainable weights called layers, which iteratively learn the features required to 

perform a given task. Currently, CNNs are being explored for a variety of computer vision 

tasks, such as classification, localization, and segmentation, but have untapped potential.  

Specifically, their ability to perform image synthesis is unknown. 

Given these challenges in MRI and the untapped potential of CNNs, I asked: can 

we use deep learning to perform image synthesis for MRI?  Using this question as the 

bedrock for my dissertation, I set out to solve progressively more challenging problems in 

cardiovascular MRI using CNNs, building towards the ultimate task of automatically 

quantifying cardiac function and biomechanics.  In aim 1, I asked whether existing CNNs 

can enhance low-resolution cardiac images.  That is, can CNNs perform image super-

resolution of steady-state free precession (SSFP)?  Specifically, I asked which CNN 

architectures are suitable for this task and how well they perform relative to conventional 

image upscaling methods. 

In aim 2, I asked whether I could upgrade the CNN architectures from aim 1 to 

isolate and remove background signal from 4D Flow MRI.  That is, can CNNs perform 

phase-error correction of 4D Flow MRI acquisitions via synthesis of the background static 

vector field?  To achieve this, I asked what architectural modifications are necessary to 

infer these multi-component volumetric vector fields.  I then compared CNN-based phase 

error correction with existing manual segmentation-based methods. 

In aim 3, I asked whether I could further upgrade my phase-error correction CNN 

from aim 2 to predict intracardiac blood flow from videos of the beating heart.  That is, 
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can CNNs infer dynamic blood flow velocity fields from cardiac cine SSFP images?  

Specifically, I asked how I could incorporate spatiotemporal information and anatomical 

boundaries into this new architecture I call Triton-Net.  I then measured the correlation 

between the synthesized flow fields and 4D Flow MRI measurements.  Lastly, I asked 

whether I could use these flow values to detect left ventricular outflow obstruction. 

Finally, in aim 4, I asked whether I could refine Triton-Net to evaluate local 

myocardial function.  That is, could I add explicit physical constraints into Triton-Net to 

infer dynamic myocardial velocity and strain tensor fields from cardiac cine SSFP 

images?  Realizing that myocardial contraction is periodic, I explored how I may encode 

net-zero displacement and strain constraints into the Triton-Net architecture, resulting in 

a heavily modified deep learning synthetic strain (DLSS) CNN.  I then characterized DLSS 

strain in a healthy population and asked whether I could use DLSS strain to identify wall 

motion abnormalities in an ischemic heart disease population.  Lastly, I compared DLSS 

classification performance against the consensus visual assessment of four 

cardiothoracic radiologist readers. 
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Chapter 1: Introduction 

1.1 Background 

1.1.1 Introduction to Cardiac MRI 
 

Since its invention in the 1970s 1–3, magnetic resonance imaging (MRI) has 

contributed greatly to our understanding of the human body in health and disease.  

Broadly, MRI leverages the fact that certain isotopes, notably protons, have a net 

magnetic moment and can be forcefully aligned in the direction of a strong external 

magnetic field (B0).  Once aligned, the orientation of these protons can be transiently 

perturbed using a brief radiofrequency electromagnetic pulse.  Receiver coils record the 

radiofrequency echoes of the perturbed protons as they asymptotically relax and re-align 

themselves to B0.  The kinetics of relaxation vary between substances and tissues and 

serve as a molecular fingerprint.  Thus, we may generate informative images of anatomy 

based on snapshots of their signal intensity, where the brightness of each voxel is 

dependent on the relaxation times and proton density of its encapsulated tissue4.   

The prescribed strength and timing of the external magnetic fields and 

radiofrequency pulses are called pulse sequences; different pulse sequences emphasize 

different aspects of the anatomy or permit measurement of physiology.  For example, the 

steady-state free precession (SSFP) pulse sequence forms the backbone of cardiac MRI, 

as it produces high-contrast images with bright blood and darker myocardial tissue which 

permit assessment of morphology and function5.  More complex pulse sequences e.g., 

2D Phase-Contrast MRI6 and 4D Flow MRI7, measure the blood velocity field.  

Additionally, one may acquire and interleave multiple images over the cardiac cycle to 

generate movies with high temporal resolution through cine imaging8.  Thus, the ability of 
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MRI to measure different aspects of cardiac physiology with high spatiotemporal 

resolution makes it particularly well-suited for studying the heart. 

1.1.2 Strengths of Cardiac MRI 
 
 Cardiac MRI is the clinical gold standard for non-invasively measuring cardiac 

morphology9,10, flow11,12, and function13,14.  Cardiac MRI’s strengths and abilities are 

illustrated in the examples of ischemic heart disease and congenital heart disease. 

 Ischemic heart disease, also known as coronary artery disease, is exceedingly 

common and affects over 18 million adults in the USA15.  Anatomically, the right and left 

coronary arteries originate from the sinus of Valsalva and deliver oxygen-rich blood to the 

heart.  The branches of the coronary arteries in turn are responsible for nourishing distinct 

territories of the myocardium; any interruptions to blood flow results in tissue ischemia 

and resulting loss of function.  The most common underlying cause of coronary blockage 

is plaque formation due to atherosclerosis, where fatty, fibrotic material gradually 

accumulates within the vessel walls and pinch off blood flow16,17.  Severe ischemia 

eventually leads to tissue necrosis, scar tissue formation, and complete loss of function18.     

Clinically relevant information entails: 1) whether there is ischemia and loss of 

function, 2) which regions of the heart are affected, and 3) how to therapeutically manage 

disease.  Cardiac MRI can help answer all these questions.  Short-axis cine SSFP stacks 

permit accurate quantification of ejection fraction to determine whether there is globally 

depressed function10,19.  From these same images, clinicians visually assess myocardial 

thickening to determine whether there are local wall motion abnormalities indicative of 

ischemic disease20.  To pinpoint which regions have reduced blood flow, physicians 

administer intravenous contrast agent, which increases local signal intensity, and note 
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any persistently dark, and therefore ischemic, myocardial segments.  This is known as 

perfusion imaging21.  Finally, we ask what can be done to manage these patients?  

Coronary bypass grafts short-circuit sites of occlusion and re-perfuse viable myocardium; 

however, such invasive interventions are likely futile when there is no viable tissue to 

recover22.  Cardiac MRI guides whether surgical intervention may be helpful through 

quantification of myocardial scar.  In healthy tissue, contrast agent transiently passes 

through the microvasculature of the myocardium; however, it will linger in enlarged 

extracellular spaces, which result from tissue injury and scarring.  Through a technique 

called myocardial delayed enhancement, clinicians may locate and quantify bright regions 

denoting myocardial scar; poor surgical outcomes are probable when scarring is >50% 

transmural extent23.  Thus, cardiac MRI provides insight into determining, localizing, and 

prognosticating ischemic heart disease. 

Cardiac MRI also informs the management of patients with congenital heart 

disease.  For example, ventricular septal defects (VSD) is a relatively common congenital 

cardiac defect estimated to occur in 2829 per 1 million live births and involves a persistent 

communicating hole through the ventricular septum24.  As with ischemic heart disease, 

clinicians may assess cardiac morphology using cine SSFP MRI and locate any septal 

defects.  To determine physiological severity of these VSDs, radiologists can employ 4D 

Flow MRI25.  Specifically, flow measurements are taken at the aorta (systemic flow, Qs) 

and the pulmonary artery (pulmonary flow, Qp) to determine the degree of left-to-right 

shunting.  Surgical intervention i.e., myocardial patching, is considered when the Qp/Qs 

ratio is greater than 1.526.  

1.1.3 Limitations of Cardiac MRI 
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 Despite the utility of cardiac MRI, there are multiple hurdles involving data 

acquisition, post-processing, and analysis which limit its potential.  Broadly, my 

dissertation aims to build and evaluate image processing methods to augment 

assessment of cardiac morphology, flow, and function. 

 Cine SSFP forms the backbone of cardiac imaging and is crucial for the 

assessment of cardiac morphology and left ventricular function.  However, MRI suffers 

from long acquisition times27, often requiring averaging across multiple heartbeats, and 

necessitates a trade-off among spatial resolution, temporal resolution, and scan time28.  

Additionally, longer breath holds are required with increasing spatial resolution, which 

may be intolerable for patients with severe pulmonary disease29.  Radiologists are 

therefore forced to balance acquisition time with resolution to fit clinical needs, and certain 

applications such as real-time imaging may require small acquisition matrices30.   

 4D Flow MRI contributes critical flow and hemodynamic information for the 

diagnosis and management of cardiac disease31, and its applications are growing to 

include assessment of abdominal32 and brain vasculature33.  However, the rapidly 

changing external magnetic fields inherent to MRI give rise to eddy currents, which 

substantially contribute to background phase error in 4D Flow MRI.  Correction of 

background phase error remains a challenge34–37. Partial phase error correction can be 

achieved using pre-emphases techniques38, incorporation of gradient nonlinearity in the 

image reconstruction process39, and field derivation and correction via Maxwell 

equations40; however, residual phase error may compromise the accuracy of 4D Flow 

measurements36,41.  Further phase error correction is therefore required.  Additionally, 

acquisition of 4D Flow MRI is a lengthy process, as velocity measurements in the x, y, 
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and z directions must be measured individually42.  Advanced technical expertise is also 

required, and thus 4D Flow is currently not widely available43.    

 Lastly, visual assessment of regional myocardial function is considered the clinical 

gold standard, however it largely remains a subjective visual task by expert readers13,20,44–

46.  Strain, defined as the change in length over initial length, has been proposed as a 

quantitative alternative for visual assessment.  Since the 1980s47, dedicated strain 

imaging techniques, such as myocardial tagging47, DENSE48, SENC49, and HARP50, have 

been developed to yield granular measurements of regional myocardial function.  Each 

of these however requires acquisition of a dedicated imaging sequence and considerable 

post-processing analysis.  More recently, feature tracking strain methods have emerged 

as a method for retrospective analysis of strain from cine SSFP images51,52, with multiple 

studies showing potential values of measurements of global strain.  However, the 

published values of feature tracking-derived strain in normal subjects varies widely 

between studies and vendors53 and show poor agreement with established strain imaging 

techniques54,55. 

1.1.4 Introduction to Convolutional Neural Networks 
 
 Convolutional neural networks (CNNs), a form of deep learning and artificial 

intelligence, have emerged as a powerful technology for the analysis of biomedical image 

data56.  In the broadest sense, CNNs learn relevant features from input images to produce 

desired outputs.  The building blocks of CNNs are convolutional layers, which comprise 

a set of filters, followed by an activation function.  Each filter comprises a grid of learnable 

weights, which are convolved with the input image to yield an intermediate output57,58.  

These intermediate outputs are then passed into a differentiable non-linear activation 
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function e.g., sigmoid function, which permits approximation of linear and non-linear 

functions59,60.  The outputs of each convolutional layer are called feature maps and can 

be passed as inputs into successive convolutional layers.   

 CNN training is the process in which the weights of each convolutional filter 

iteratively update to generate more accurate predictions, and requires input images, 

affiliated labels, and a loss function.  For example, let us assume we wish to train a CNN 

to segment the lungs on a radiograph i.e., assign a label of 1 to all lung pixels and 0 to all 

non-lung pixels.  We assume we have a curated set of chest radiographs, where an expert 

has provided manual segmentations of the lungs.  As we feed each input radiograph 

image into a given CNN (with randomly initiated weights), each successive convolutional 

layer generates feature maps, until a single output image is produced61.  Most likely, the 

output will bear minimal resemblance to the manually segmented label image.  The first 

step in the learning process is quantifying how incorrect a given prediction is, which is the 

role of the loss function.  A simple, yet powerful, example loss function is the mean-

squared error between predicted and label images62.  The aim of training is thus to 

minimize the value of the loss function.  Assuming a differential loss function, it is possible 

to calculate the gradient of the loss function with respect to all weights in the CNN via the 

chain-rule of calculus.  Given an appropriate step-size, we can use the gradient to 

iteratively update each weight in the CNN to minimize the loss function and produce more 

accurate predictions63.   

 Over the last several years, CNNs have proven valuable for automating multiple 

visual tasks in medical imaging and are progressively being integrated into clinical 

workflows.  Multiple groups have shown that CNNs can approach radiologist-level 
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performance for detection of COVID-19 from radiographs64,65, ventricular 

segmentation10,19, and landmark localization62,66,67.  While there has been significant 

progress for these visual tasks, CNNs have untapped potential to extrapolate beyond 

structural identification.  Specifically, the ability of CNNs to perform image synthesis i.e., 

generation of realistic pixelwise representations of physical phenomena such as 

displacement and velocity, remains unknown.   

1.2 Outline of the Dissertation 

Broadly, my dissertation sought to answer the question: can we use deep learning 

to perform image synthesis for MRI?  In stepwise fashion, I iteratively refined novel CNN 

architectures to accomplish more complex visual tasks and build the tools and expertise 

necessary to interrogate cardiovascular biomechanics.   

In my first chapter, I asked whether CNNs can enhance low-resolution cardiac 

images.  That is, can CNNs perform image super-resolution of steady-state free 

precession (SSFP)?  I split this aim into two sub-aims to guide my approach:  

1) Given existing CNN architectures commonly used for simple visual tasks, which 

are best suited for image super-resolution as a first foray into image synthesis?  

2) How well does CNN super-resolution perform relative to conventional image 

upscaling methods? 

 In my second chapter, I asked whether I could upgrade the CNN architectures from 

aim 1 to isolate and remove background signal from 4D Flow MRI.  That is, can CNNs 

perform phase-error correction of 4D Flow MRI acquisitions via synthesis of the 

background static vector field?  In doing so, I aimed to extend the capabilities of image 
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synthesis CNNs to perform static vector field synthesis.  I split this aim into the following 

sub-aims: 

1)  What modifications to the CNNs explored in aim 1 are required to perform vector 

field synthesis? 

2) How well does CNN phase error correction perform relative to existing manual 

correction methods? 

In my third chapter, I build on my findings in aim 2 and asked whether I could 

further upgrade my phase-error correction CNN to predict intracardiac blood flow from 

videos of the beating heart.  That is, can CNNs infer dynamic blood flow velocity fields 

from cardiac cine SSFP images?  Thus, I aimed to further extend the capability of image 

synthesis CNNs to perform spatiotemporal vector field synthesis with the following sub-

aims: 

1) Given the dynamic nature of cardiac blood flow, what architectural 

modifications are required to incorporate spatiotemporal information into my 

CNN from aim 2? 

2) How well do CNN-inferred flow fields compare with 4D Flow measurements? 

3) Can we use CNN-inferred flow at the outflow tract to detect obstructive 

disease? 

In my fourth and final chapter, I asked whether I could refine Triton-Net to evaluate 

local myocardial function.  That is, could I add explicit physical constraints into Triton-Net 

to infer dynamic myocardial velocity and strain fields from cardiac cine SSFP images?    I 

sought to demonstrate that CNNs can perform tensor field synthesis, and thus permit 

automated cardiovascular biomechanical analysis.  My sub-aims were: 
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1) What modifications, particularly physical constraints, must be added to the 

CNN from aim 3 to accomplish inference of strain fields? 

2) Given a normal population, what are the baseline ranges for segmental 

myocardial strain using this CNN method? 

3) In an ischemic heart disease population, how well do cardiothoracic radiologists 

and my CNN identify wall motion abnormalities? 

4) What are other potential clinical applications for this CNN? 

 

This introduction was adapted in part from the following manuscripts: 

1) “Deep Learning Single-Frame and Multiframe Super-Resolution for Cardiac 

MRI” in Radiology, 2020 by Evan Masutani, Naeim Bahrami, and Albert Hsiao 

2) “Deep Learning Automated Background Phase Error Correction for 

Abdominopelvic 4D Flow MRI” in Radiology, 2021 by Sophie You*, Evan 

Masutani*, Marcus Alley, Shreyas Vasanawala, Pam Taub, Joy Liau, Anne 

Roberts, and Albert Hsiao 

3) “Feasibility off Deep Learning to Synthesize Outflow Hemodynamics from 

Cardiac MRI”, manuscript in preparation, by Evan Masutani, Tara Retson, Brian 

Hurt, Kevin Blansit, and Albert Hsiao 

4) “Deep Learning Synthetic Strain: Quantitative Assessment of Regional Wall 

Motion Abnormalities”, manuscript in preparation, by Evan Masutani. Rahul 

Chandrupatla, Lewis Hahn, Misha Horowitz, Kathleen Jacobs, Seth Kligerman, 

and Albert Hsiao 
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*Denote co-first authorship.  The dissertation author was the first or co-first author in the 

listed manuscripts.  
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Chapter 2: Deep Learning Single-Frame and Multiframe Super-Resolution for 
Cardiac MRI 
 
2.1 Abstract 

Background 

Cardiac MRI is limited by long acquisition times, yet faster acquisition of smaller-

matrix images reduces spatial detail. Deep learning (DL) might enable both faster 

acquisition and higher spatial detail via super-resolution. 

Purpose 

To explore the feasibility of using DL to enhance spatial detail from small-matrix 

MRI acquisitions and evaluate its performance against that of conventional image 

upscaling methods. 

Materials and Methods 

Short-axis cine cardiac MRI examinations performed between January 2012 and 

December 2018 at one institution were retrospectively collected for algorithm 

development and testing. Convolutional neural networks (CNNs), a form of DL, were 

trained to perform super resolution in image space by using synthetically generated low-

resolution data. There were 70%, 20%, and 10% of examinations allocated to training, 

validation, and test sets, respectively. CNNs were compared against bicubic interpolation 

and Fourier-based zero padding by calculating the structural similarity index (SSIM) 

between high-resolution ground truth and each upscaling method. Means and standard 

deviations of the SSIM were reported, and statistical significance was determined by 

using the Wilcoxon signed-rank test. For evaluation of clinical performance, left ventricular 

volumes were measured, and statistical significance was determined by using the paired 

Student’s t-test. 
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Results 

For CNN training and retrospective analysis, 400 MRI scans from 367 patients 

(mean age, 48 years ± 18; 214 men) were included. All CNNs outperformed zero padding 

and bicubic interpolation at upsampling factors from two to 64 (P < .001). CNNs 

outperformed zero padding on more than 99.2% of slices (9828 of 9907). In addition, 10 

patients (mean age, 51 years ± 22; seven men) were prospectively recruited for super-

resolution MRI. Super-resolved low-resolution images yielded left ventricular volumes 

comparable to those from full-resolution images (P > .05), and super-resolved full-

resolution images appeared to further enhance anatomic detail. 

Conclusion 

Deep learning outperformed conventional upscaling methods and recovered high-

frequency spatial information. Although training was performed only on short-axis cardiac 

MRI examinations, the proposed strategy appeared to improve quality in other imaging 

planes. 

2.2 Summary and Key Results 

Summary 

Deep learning image super resolution can consistently outperform conventional 

image upscaling methods and can infer high-frequency spatial detail from low-resolution 

inputs. 

Key Results 

• When trained with Fourier downsampled data, deep learning consistently 

outperformed Fourier domain zero padding and bicubic interpolation at upsampling 

factors of two to 64 (P < .001). 
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• Trained purely in image space, both single-frame and multiframe super-resolution 

convolutional neural networks (CNNs) showed filling of outer k-space, indicating 

CNN inference of high-frequency spatial detail. 

• Super-resolution of small-matrix acquisitions from 10 patients yielded ventricular 

volumes comparable (P > .05 for each metric) to measurements from full-

resolution images with improved image detail. 

2.3 Introduction 

Cardiac MRI is the clinical reference standard for visual and quantitative 

assessment of heart function62. Specifically, cine balanced steady-state free precession 

(SSFP) can yield cardiac images with high myocardium–blood pool contrast for evaluation 

of left ventricular (LV) function5. However, MRI suffers from long acquisition times, often 

requiring averaging across multiple heartbeats27, and necessitates a trade-off among 

spatial resolution, temporal resolution, and scan time28. Clinically, radiologists are forced 

to balance acquisition time with resolution to fit clinical needs, and certain applications 

such as real-time imaging may require small acquisition matrices30. Image scaling is 

typically performed by using conventional upscaling methods, such as Fourier domain 

zero padding and bicubic interpolation68,69. These methods, however, do not readily 

recover spatial detail70, such as the myocardium–blood pool interface or delineation of 

papillary muscles68. 

The concept of super-resolution, or recovery of high-resolution images from low-

resolution observations, has been explored since the 1980s for application in video 

processing71. A few algorithms have been proposed72 in attempts to combine information 
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between spatially shifted and downsampled frames73. However, based on physical 

arguments regarding the transformation between image space and Fourier space, 

multiple authors are skeptical that such methods are feasible74–76. Peled et al77 and Tieng 

et al78 had inconsistent results when attempting to combine information from multiple 

intersecting imaging planes to recover spatial resolution in the white matter fiber tract and 

phantoms, respectively. It is largely believed that without prior knowledge, zero padding 

of outer k-space is the most reliable and effective method for image upscaling and 

therefore is widely used as the industry standard75. 

Convolutional neural networks (CNNs), a recently developed form of deep learning 

(DL), may have potential to overcome some of these limitations56,79. CNNs learn relevant 

features from input images to predict desired outputs56. In medical imaging, CNNs have 

shown potential for image classification80, segmentation81, and localization62 for MRI and 

CT. Important to note, CNNs have a large capacity for recalling learned features and 

might supply a priori information and assumptions during inference58. Our aim was to 

explore the feasibility of DL for enhancing spatial detail from small-matrix MRI acquisitions 

and evaluate its performance against that of the conventional image upscaling methods 

of Fourier domain zero padding and bicubic interpolation. 

2.4 Materials and Methods 

2.4.1 Prototype Neural Networks 

We developed and evaluated four neural networks56,82,83 for their ability to perform 

single-frame (k) and multiframe (kt) super resolution. All algorithms were developed by 

the lead author, a 4th-year doctoral student (E.M.M.). Two general neural network 
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architectures were explored for feasibility in performing this task (Supplemental Fig 1). 

The first, a relatively shallow network, is a super-resolution CNN–inspired neural 

network84, which we refer to as k-SRNet 

(http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html). The second, a deeper, more 

complex network, is a modified U-Net CNN61, which we refer to as k-

UNet (https://github.com/zhixuhao/unet). 

2.4.2 Multiframe Neural Networks 

Given that additional data from neighboring time points might improve 

performance, we extended both architectures to incorporate three-dimensional 

convolutions, handling the temporal domain in the third dimension. Each input frame was 

combined with immediately flanking frames to generate input volumes. We refer to these 

spatiotemporal versions of k-SRNet and k-UNet as kt-SRNet and kt-UNet (Fig 1), 

respectively. 

http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
https://github.com/zhixuhao/unet
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Figure 1: Prototype Convolutional Neural Networks.  Images show prototype 
convolutional neural networks (CNNs) evaluated for their performance in generating 
single-frame (k) and multiframe (kt) super-resolution images. The k-SRNet and kt-SRNet 
CNNs are examples of shallow networks and k-UNet and kt-UNet 

2.4.3 Patients and Image Data 

This study was compliant with the Health Insurance Portability and Accountability 

Act, and institutional review board approval and waiver of written informed consent were 

obtained. We retrospectively collected a convenience sample of short-axis (SAX) cine 

SSFP series from 400 clinical cardiac MRI examinations performed at our academic 

institution in 367 patients between January 2012 and December 2018 for algorithm 

development (Table 1). No exclusion criteria were applied. Of these 400 studies, 200 

were performed with a 1.5-T MRI scanner (Signa HDxt; GE Healthcare, Waukesha, Wis) 

and 200 were performed with a 3.0-T MRI scanner (Discovery MR750 DV26; GE 

Healthcare) (Table 2). 
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Table 1: Patient Demographics 

 

Table 2: MRI Short-Axis Cine Steady-State Free Precession Parameters 

 

2.4.4 Synthetic Training Data 

We developed a strategy for generation and use of synthetic training data to mimic 

the super-resolution task. Training workflow comprised two steps: (a) cropping a central 

128 × 128 area of the SAX image to standardize image presentation and serve as ground 

truth and (b) windowing a central region of k-space to generate synthetic training data 

(Fig 2). 
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Figure 2: Diagram shows strategy for generation of synthetic training data. Source image 
data were first cropped to standardize image presentation to the neural network and were 
windowed in Fourier space to mimic a fully sampled low-resolution acquisition. The 
cropped images were later used as ground truth for training, and the downsampled 
images were used as synthetic input images. Z-PAD = zero padding. 

2.4.5 Fourier Downsampling 

To mimic low-resolution small-matrix MRI acquisitions, we performed a process 

we refer to as Fourier downsampling. Each downsampling factor was simulated by 

retaining central windows of k-space of varying sizes. Outer portions of k-space were zero 

filled to a matrix size of 128 × 128. Images were transformed back to the image domain, 

and pixel values were scaled to 0 and 1. Each downsampling (and commensurate 

upsampling) factor was defined as the ratio of the k-space window area to the cropped 

128 × 128 area. 

2.4.6 Neural Network Training 

SAX examinations were randomly divided and allocated to 70% (140 of 200 1.5-T 

examinations and 140 of 200 3-T examinations) for training, 20% (40 of 200 1.5-T 

examinations and 40 of 200 3.0-T examinations) for validation, and 10% (20 of 200 1.5-

T examinations and 20 of 200 3.0-T examinations) for testing. We trained our networks 

on two workstations running Ubuntu 16.04 (Canonical, London, England) and equipped 

with either two Titan Xp graphics cards or one Titan V graphics card (Nvidia, Santa Clara, 
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Calif). We used Keras 2.2.4 with TensorFlow-GPU 1.12.0 (Google, Mountain View, Calif) 

at the back end for all DL experiments. 

2.4.7 Hybrid Loss Function 

We chose to use a hybrid loss function based on the work of Zhao et al85. 

Specifically, our loss function was the sum of L1 loss and a modified form of the multiscale 

structural similarity index (SSIM) loss (defined as 1 minus multiscale SSIM)86 

(Supplemental Appendix). 

2.4.8 Evaluation of Performance 

In compliance with the Health Insurance Portability and Accountability Act and with 

institutional review board approval and written informed consent, we prospectively 

acquired SAX and four-chamber cine SSFP cardiac MRI series at 3.0 T in two healthy 

men and 10 clinical patients at low resolution and full resolution (Table 1). Low-resolution 

scans were performed with a 64 × 224 matrix (resulting in a 3.5-fold shortened scan time), 

and full-resolution scans were performed with a 192 × 192 matrix while leveraging the 

array spatial sensitivity encoding technique (ASSET; GE Healthcare). The super-

resolution networks were then applied to low-resolution acquisitions and, with a tiling 

approach, they were also applied to full-resolution acquisitions (Supplemental Appendix). 

To evaluate the clinical utility of our strategy, we measured LV end-diastolic 

volume (EDV), LV end-systolic volume (ESV), LV stroke volume (SV), and LV ejection 

fraction (EF) in the patient cohort. One researcher (E.M.M.) performed all segmentation 

and volumetric analyses with software (Arterys Cardio DL, version 19.14.2; Arterys, San 
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Francisco, Calif) under the supervision of a cardiovascular radiologist with 12 years of 

experience in cardiac MRI (A.H.). 

2.4.9 Statistical Analysis 

We compared CNN-based approaches and conventional methods of bicubic 

interpolation and zero padding by calculating the SSIM87 between each ground truth 

image and its corresponding super-resolved image from each method of upscaling (Fig 

3, A). We reported the mean and standard deviation of SSIM and determined statistical 

significance by using the Wilcoxon signed-rank test with a type I error threshold of 0.05 

(P < .05). For our comparison of SSIM performance relative to zero padding (Fig 3, B), 

we calculated the pairwise difference of SSIM between zero padding and each super-

resolution method. 
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Figure 3: Box-and-whisker plots compare performance based on the structural similarity 
index (SSIM) for each super-resolution method across multiple upsampling factors. Boxes 
encapsulate interquartile ranges, whiskers demarcate the central 95% of data points, and 
black bars lie on the median (n = 9907 short-axis slices from testing set). A, Aggregate 
performance for each super-resolution method. B, Pairwise comparison of performance 
between each method and zero padding (z-pad). Deep learning–based methods 
consistently outperformed conventional methods on bulk and per-slice bases. Neural 
network–based methods outperformed traditional bicubic and zero padding for nearly 
every slice evaluated. Zero padding outperformed the bicubic method for nearly every 
slice evaluated. k = single frame, kt = multiframe. 

To compare LV volumes from paired CNN super-resolved low-resolution 

acquisitions and high-resolution clinical acquisitions, we reported the mean and standard 

deviation of LV EDV, LV ESV, LV SV, and LV EF and determined statistical significance 

by using paired Student t test with a type I error threshold of 0.05 (P < .05). We used 

software (Python, version 3.5, Python Software Foundation, Wilmington, Del; Microsoft 

Excel, version 1912, Microsoft, Redmond, Wash) for all statistical analyses. 
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2.5 Results 

2.5.1 Patient Characteristics 

For CNN development, we retrospectively collected 200 1.5-T examinations from 

183 patients (mean age, 53 years ± 17; 125 male patients) and 200 3.0-T examinations 

from 184 patients (41 years ± 17; 89 male patients). We prospectively collected two 3.0-

T examinations from two healthy volunteers (26 years ± 1; two male patients) and 10 3.0-

T examinations from 10 clinical patients (51 years ± 22; seven male patients) (Table 1). 

We did not exclude any of our initial 12 prospectively acquired participants. 

2.5.2 Quantitative Differences 

The SSIMs of shallow (SRNet) and deep (UNet) CNNs are shown in Table 3 and 

Figure 3. Mean SSIMs for zero padding ranged from 0.645 ± 0.074 at upsampling by a 

factor of 64 to 0.983 ± 0.007 at upsampling by a factor of two. Mean SSIMs for k-SRNet, 

the most poorly performing CNN, ranged from 0.760 ± 0.056 at upsampling by a factor of 

64 to 0.989 ± 0.006 at upsampling by a factor of two. For all degrees of upsampling tested, 

every CNN outperformed conventional upscaling methods (P < .001) (Fig 3, A). 

Table 3: Pairwise Comparison of Shallow (SRNet) and Deep (UNet) Methods for Super 
Resolution 

 



 
 

23 
 

On a per-slice basis, every CNN consistently outperformed zero padding for nearly 

all input images (Fig 3, B). All four methods—k-SRNet, kt-SRNet, k-UNet, and kt-UNet—

outperformed zero padding on more than 99.2% (9828 of 9907) of slices at all reported 

degrees of upsampling. 

For synthetic test data, there were differences between SRNet and UNet (Table 

3). For all degrees of upsampling, k-UNet and kt-UNet outperformed k-SRNet and kt-

SRNet, respectively (P < .001). In addition, kt-SRNet outperformed k-SRNet at all 

degrees of upsampling (P < .001), whereas kt-UNet outperformed k-UNet at upsampling 

factors of two, four, eight, and 64 (P < .001). We observed average SSIM within 0.02 of 

all CNNs across each upsampling factor, in contrast to a widening performance gap with 

conventional upscaling methods with higher upsampling factors (Fig 3, A). 

2.5.3 Qualitative Differences 

We present examples of each upsampling method in a 62-year-old man (Fig 4). At 

upsampling by a factor of eight, bicubic interpolation showed noticeably reduced 

sharpness of the right ventricular trabeculations and the myocardium–blood pool 

interface. At upsampling by a factor of 16, all methods showed noticeable image quality 

degradation, particularly with respect to papillary muscle sharpness; however, the edges 

of the interventricular septum were noticeably sharper in the CNN outputs. At upsampling 

by a factor of 32, the LV papillary muscles appeared to blend in with the LV walls in the 

bicubic and zero-padding outputs. The ventricular walls were noticeably blurry in bicubic 

and zero-padding outputs. Although there was some gross loss in texture of the blood 

pool and blurriness of the papillary muscles in the CNNs, the boundaries of the ventricular 
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walls remained sharp. At upsampling by a factor of 64, the boundary between the right 

ventricular wall and the blood pool became severely blurred with the conventional 

upscaling methods; all papillary muscle detail was also lost. The ventricular walls and 

boundaries remained sharp in all CNNs. From upsampling factors of eight to 64, z padding 

shows increasingly noticeable Gibbs artifact, which is absent in CNN predictions. 

 

Figure 4: Representative example images in a 62-year-old man for comparison of super-
resolution methods across multiple upsampling factors. Neural network–based methods 
had a pronounced effect at upsampling by a factor of eight or more. k = single frame, kt 
= multiframe, Z-pad = zero padding. 

We present representative examples, upsampled by a factor of eight with each 

super-resolution method, in Figure 5. Each example shows the output image and 
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corresponding k-space log plots for each method. In a 36-year-old man with hypertrophic 

cardiomyopathy examined at 1.5 T (Fig 5, A), only bicubic interpolation showed reduced 

image quality relative to ground truth. The log plots indicate that CNNs filled the outer k-

space. CNNs also reduced severe radiofrequency artifacts in a 1.5-T examination in a 

44-year-old woman (Fig 5, B). Both bicubic interpolation and zero padding showed 

reduced sharpness at the myocardium–blood pool interface and increased graininess 

compared with CNN outputs. The log plots showed radiofrequency artifacts in ground 

truth outer k-space, which were markedly reduced in CNN predictions. 
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Figure 5: Example images compare super-resolution methods at upsampling by a factor 
of eight. Output images and corresponding log plots of k-space are shown along with the 
structural similarity index (SSIM) relative to ground truth. At 1.5 T, neural network 
methods, A, perform well in a 36-year-old male patient with hypertrophic cardiomyopathy 
and, B, serendipitously repair severe radiofrequency artifact in the outer k-space in a 44-
year-old female patient. At 3.0 T, neural network methods, C, perform well in a 54-year-
old female patient with dilated cardiomyopathy and, D, tolerate artifacts from sternal wires 
in a 28-year-old female patient. k = single frame, kt = multiframe, Z-pad = zero padding. 

In a 54-year-old woman with dilated cardiomyopathy examined at 3.0 T (Fig 5, C), 

we saw loss of image sharpness with bicubic interpolation alone. The corresponding log 

plots indicated filling of outer k-space for all CNNs. CNNs also successfully super-
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resolved a 3.0-T examination with artifact from sternal wires in a 28-year-old woman (Fig 

5, D). Both bicubic interpolation and zero padding showed increased blurring of the 

myocardium–blood pool boundary relative to CNN outputs. SSIMs of bicubic interpolation 

and zero padding were also markedly lower relative to CNN predictions. The log plots 

again indicated outer k-space filling by CNNs. 

To illustrate an extreme upsampling factor, we performed super-resolved 

examinations upsampled by a factor of 64 at 1.5 and 3.0 T (Supplemental Fig 2). All 

super-resolution–method outputs displayed loss of detail in right ventricular 

trabeculations, LV papillary muscles, and the blood pool; however, CNNs clearly 

demarcated the myocardium–blood pool boundary. CNNs also exhibited markedly higher 

SSIM. 

2.5.4 Clinical Proof of Concept 

To assess clinical feasibility of the super-resolution technique, we undertook a 

proof-of-concept evaluation, prospectively acquiring SAX and four-chamber SSFP 

images in low resolution and full resolution in two healthy participants and 10 clinical 

patients (Fig 6). 
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Figure 6: Images demonstrate proof-of-concept assessment of super-resolution 
methods. Low-resolution input, full-resolution reference, and k-UNet super-resolved 
images are shown for five experiments: A, short-axis cine steady-state free precession 
(SSFP) in a 27-year-old healthy male volunteer at 3.0 T, B, four-chamber cine SSFP in a 
26-year-old healthy male volunteer at 3.0 T, C, short-axis cine SSFP in a 36-year-old 
patient with transposition of the great arteries after Mustard switch, D, four-chamber cine 
SSFP in the same patient as in, C, and, E, photographs of a human face. The k-UNet 
network appears to improve myocardium–blood pool delineation, especially along the 
septal wall. Although trained only with short-axis images, the k-UNet network appears to 
generalize to long-axis images and digital photographs, sharpening details. This network 
also appears to further enhance detail of low-resolution images and full-resolution 
reference acquisitions. 
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In the two healthy participants, we qualitatively assessed the performance of CNNs 

in enhancing anatomic detail. The k-UNet successfully super-resolved 2.4-fold 

abbreviated 3.0-T SAX images in a healthy 27-year-old man. We noted sharpening of the 

myocardium–blood pool interface, right ventricular trabeculations, and LV papillary 

muscles (Fig 6, A). The k-UNet, trained only on SAX images, also super-resolved 2.4-fold 

abbreviated four-chamber acquisitions from a healthy 26-year-old man and increased 

sharpness of right ventricular trabeculations and the septal wall (Fig 6, B). 

In the cohort of 10 clinical patients, we quantitatively assessed ventricular 

volumetry and ejection fraction. There were no significant differences between volumetric 

measurements obtained from super-resolved low-resolution images and full-resolution 

images (Table 4). On average, reference examinations yielded LV EDV of 152 mL, LV 

ESV of 58 mL, LV SV of 96 mL, and LV EF of 64%. On average, super-resolved low-

resolution images yielded values as follows, and the differences were not significantly 

different: LV EDV, 152 mL (P = .99); LV ESV, 55 mL (P = .40); LV SV, 98 mL (P = .57); 

and LVEF, 65% (P = .27). From this cohort, we show representative super-resolved low-

resolution SAX (Fig 6, C) and four-chamber (Fig 6, D) images from a 36-year-old female 

patient with transposition of the great arteries after Mustard atrial switch. Super resolution 

yielded reduced Gibbs artifact and sharpened myocardium–blood pool interfaces 

compared with the low-resolution input images. When applied to full-resolution input 

images, super resolution also achieved a similar effect, with reduced Gibbs artifact and 

sharpened myocardium–blood pool interfaces. 
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Table 4: Pairwise Comparison of LV Volumes Derived from Prospectively Acquired 
Examinations 

 

To explore whether our CNNs have applicability beyond MRI, we super-resolved 

a low-resolution photograph of a human face (Fig 6, E). The k-UNet removed much of the 

Gibbs artifact and sharpened edges. Finally, we further super-resolved high-resolution 

reference images using k-UNet. We observed sharper edges and less pixelation on all 

super-resolved high-resolution reference images. 

2.6 Discussion 

We have demonstrated the feasibility of convolutional neural networks (CNNs) to 

super-resolve cardiac MRI scans acquired at both 1.5 T and 3.0 T at a wide range of 

upsampling factors. We quantitatively showed that both SRNets and UNets outperform 

conventional upscaling methods including Fourier domain zero padding and bicubic 

interpolation at multiple upsampling factors as evaluated with structural similarity index 

(SSIM) on more than 99.2% (9828 of 9907) of slices (P < .001). Qualitatively, CNNs 

appeared to improve some spatial details, including the myocardium–blood pool 

boundary. We further showed that this approach works not only with synthetic low-

resolution data, but also prospectively with patients referred clinically for cardiac MRI. 
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Super resolution does not appear to negatively impact ventricular volumetry, achieving 

comparable left ventricular (LV) end-diastolic volume, LV end-systolic volume, LV stroke 

volume, and LV ejection fraction values between super-resolved low-resolution images 

and full-resolution reference images, while recovering noticeable improvement in spatial 

detail. 

The concept of super-resolution in MRI has been explored in earlier studies, albeit 

without application of CNNs. These studies71,77,78 attempted to recover in-plane high-

frequency spatial information from multiple low-resolution frames but were not 

successful71,74–76. Many authors have felt that spatially shifted low-resolution images do 

not provide informational content to resolve high-frequency detail. Unlike earlier 

approaches, the CNNs we explored here appeared to work even on a single image frame. 

In fact, the addition of multiple adjacent frames did not markedly improve performance in 

our study. We are uncertain why each of the CNNs we evaluated appeared to accomplish 

super-resolution. We speculate that this might be related to the large feature capacity of 

CNNs58, which can carry learned information as prior knowledge. For this application, the 

learned information appears to generalize across multiple views, including the four-

chamber view and, surprisingly, a photograph of a human face. 

Clinically, super resolution could be used to reduce scan time, increase temporal 

resolution, or both. Acquisition time is, of course, proportional to the number of phase-

encode lines measured88. This results in relatively long breath holds for cardiac MRI, 

which cannot be tolerated by many patients. Multiple methods are now available to 

abbreviate acquisition, including parallel imaging88 and compressed sensing89. Given that 
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we have been able to implement this as an image-space task, it is possible that CNN-

based super resolution may be combined with these techniques. 

Our study had some limitations. First, initial analyses of performance were based 

on synthetically downsampled images. Second, we sourced training data from scanners 

from one vendor at one institution. Clinical evaluation was limited to proof of concept, 

showing feasibility in 12 patients. Finally, we were able to apply super-resolution to the 

full-resolution image data, but ultimately there is no reference standard for this final 

comparison because exceedingly long breath holds would be required. 

In conclusion, in this proof-of-concept study we showed that convolutional neural 

network (CNNs) can recover high-frequency spatial detail from low-resolution MRI scans. 

Each of the CNNs we evaluated (SRNet and Unet) outperformed traditional zero padding 

and bicubic image upscaling strategies. Further work may be required to evaluate general 

applicability across institutions, MRI vendors, or other pulse sequences, but these results 

show feasibility of super-resolution methods to improve the speed of MRI acquisition. In 

particular, for cardiac MRI, it is often challenging to acquire high-quality images in patients 

with arrhythmia. A real-time strategy that combines multiple techniques including CNN 

super-resolution might make this more feasible. 
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2.8 Appendix: Supplemental Materials and Methods  

2.8.1 Neural Network Training Data  

From 400 short-axis examinations, we used 37,700 1.5T images + 32,380 3.0T 

images for training, 10,720 1.5T images + 32,380 3.0T images for validation, and 5,167 

1.5T images + 4,740 3.0T images for testing. All reported statistical analyses are based 

on performance on the test set.  

2.8.2 Recovery of Fourier Data from DICOM Files  

To recover measured k-space data from source Digital Imaging and 

Communications in Medicine (DICOM) files, we first queried the Acquisition Matrix 

(0018,1310) field to determine the extent of Fourier zero-padding used by the 

manufacturer. We effectively reversed this zeropadding by transforming the DICOM pixel 

data to k-space and removing interpolated data beyond the acquisition matrix geometry.  

2.8.3 Fourier Downsampling of Multiframe Data 

 To generate synthetic multiframe training data, we performed the same 

downsampling strategy at the time frame of interest and adjacent flanking time frames. 
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The three downsampled frames were stacked as a single volume to provide an input for 

the multiframe variants of the neural networks.  

2.8.4 Hybrid Loss Function 

  We used the Tensorflow implementation of multiscale structural similarity index 

(MS-SSIM) and its default settings for filter size = 11, filter sigma = 1.5, k1 = 0.01, and k2 

= 0.03. Due to relatively small 128 × 128 matrix size for training data, we only used the 

first four default MSSSIM power factors and renormalized them resulting in the weights 

[0.0517,0.3295,0.3462,0.2726]. For multiframe experiments, we added the 3D L1-loss to 

the mean of the MS-SSIM losses calculated for each of the three adjacent timeframes.  

2.8.5 Other Training Parameters 

We used the hyperbolic tangent as the final activation function for all cognitive 

neural networks (CNNs). Additionally, we used the Adam optimizer with a learning rate of 

1e-4. We performed training with early-stopping for a maximum of 25 epochs. We trained 

a unique set of UNets and SRNets for multiple degrees of upsampling, from 2× to 64×.  

Super-Resolution of Low-Resolution Images  

To predict a high-resolution image from low-resolution inputs, we z-padded outer 

k-space of the low-resolution acquisitions, transformed them to the image domain, 

retained the central 128 × 128, and scaled pixel values to [0,1] prior to CNN inference. 

2.8.6 Super-Resolution of Full-Resolution Images  

To further super-resolve full-resolution acquisitions, we divided each full-resolution 

image into tiles, transformed the tiles into k-space, z-padded them to 128 × 128, 

converted them to image space, and scaled pixel values to [0,1] prior to CNN inference. 

We then concatenated the superresolved tiles to form a higher resolution image. As an 
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example, to super-resolve a 128 × 128 image by a factor of 4 (2× along the row direction 

and 2× along the column direction), we first subdivide the source image into 4 64 × 64 

tiles. We then transform each tile to k-space and z-pad them to 128 × 128. We then 

convert each tile back to image space, scale the pixel values to [0,1], and use k-UNet to 

super-resolve each tile. Following super-resolution, we have 4 128 × 128 tiles which, in 

this case, correspond to the four quadrants of our input image. We then concatenate the 

tiles relative to their original position in the source image to generate a final 256 × 256 

super-resolved image. 
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2.9 Supplemental Figures 

 

 

 

Supplemental Figure 1: Four prototype CNNs we trained and evaluated for single-frame 
and multiframe super-resolution. kt-SRNet and kt-UNet perform multiframe super-
resolution on three temporally adjacent input images. Layer dimensions lie beside gray 
bars; number of channels lie atop gray bars. 3D gray bars in kt-SRNet and kt-Unet 
emphasize use of 3D convolutions. 
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Supplemental Figure 2: MRI examples comparing super-resolution methods at 64× 
upsampling. Output images and corresponding log plots of k-space are shown along with 
structural similarity (SSIM) relative to ground truth. CNNs improve image quality at (top) 
1.5T and (bottom) 3.0T. 
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Chapter 3: Deep Learning Automated Background Phase Error Correction for 
Abdominopelvic 4D Flow MRI 
 

3.1 Abstract 

Background 

Four-dimensional (4D) flow MRI has the potential to provide hemodynamic insights 

for a variety of abdominopelvic vascular diseases, but its clinical utility is currently 

impaired by background phase error, which can be challenging to correct. 

Purpose 

To assess the feasibility of using deep learning to automatically perform image-

based background phase error correction in 4D flow MRI and to compare its effectiveness 

relative to manual image-based correction. 

Materials and Methods 

A convenience sample of 139 abdominopelvic 4D flow MRI acquisitions performed 

between January 2016 and July 2020 was retrospectively collected. Manual phase error 

correction was performed using dedicated imaging software and served as the reference 

standard. After reserving 40 examinations for testing, the remaining examinations were 

randomly divided into training (86% [85 of 99]) and validation (14% [14 of 99]) data sets 

to train a multichannel three-dimensional U-Net convolutional neural network. Flow 

measurements were obtained for the infrarenal aorta, common iliac arteries, common iliac 

veins, and inferior vena cava. Statistical analyses included Pearson correlation, Bland-

Altman analysis, and F tests with Bonferroni correction. 

Results 
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A total of 139 patients (mean age, 47 years ± 14 [standard deviation]; 108 women) 

were included. Inflow-outflow correlation improved after manual correction (ρ = 0.94, P < 

.001) compared with that before correction (ρ = 0.50, P < .001). Automated correction 

showed similar results (ρ = 0.91, P < .001) and demonstrated very strong correlation with 

manual correction (ρ = 0.98, P < .001). Both correction methods reduced inflow-outflow 

variance, improving mean difference from –0.14 L/min (95% limits of agreement: –1.61, 

1.32) (uncorrected) to 0.05 L/min (95% limits of agreement: –0.32, 0.42) (manually 

corrected) and 0.05 L/min (95% limits of agreement: –0.38, 0.49) (automatically 

corrected). There was no significant difference in inflow-outflow variance between manual 

and automated correction methods (P = .10). 

Conclusion 

Deep learning automated phase error correction reduced inflow-outflow bias and 

variance of volumetric flow measurements in four-dimensional flow MRI, achieving results 

comparable with manual image-based phase error correction. 

3.2 Summary and Key Results 

Summary 

Deep learning-based background phase error correction improved the consistency 

of flow measurements in abdominopelvic four-dimensional flow MRI and simplified 

hemodynamic analysis for clinical use. 

Key Results 

• A deep learning algorithm trained with 99 abdominopelvic four-dimensional (4D) 

flow MRI examinations successfully generated phase error fields for automated 

correction. 
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• In an independent sample of 40 patients, flow measurements after deep learning 

correction had very strong correlation with manually corrected measurements (ρ = 

0.98, P < .001). 

• Automated correction reduced inflow-outflow bias and variance (P < .001), 

improving mean difference from –0.14 L/min uncorrected to 0.05 L/min deep 

learning corrected. 

 

3.3 Introduction 

The visual and quantitative assessment of abdominopelvic hemodynamics is 

essential in the evaluation of many clinical entities. In abdominal imaging, this is primarily 

undertaken with Doppler US and time-resolved two-dimensional phase-contrast MRI90. 

Abdominal US is limited by sonographic windows, but targeted windows can be applied 

to interrogate postoperative vascular complications of transplantation, renal artery 

stenosis, and other indications91–93. Because of the need to place precise imaging planes 

at the time of the scan, planar phase-contrast MRI is challenging to implement in the 

clinical environment but can be used to evaluate mesenteric ischemia, aortic dissections, 

and other vascular conditions 94,95. Time-resolved three-dimensional (3D) phase-contrast 

MRI with three-directional velocity encoding (four-dimensional [4D] flow MRI) addresses 

these limitations by providing comprehensive imaging of the entire abdomen, allowing 

blood flow in any vessel to be retrospectively assessed in any direction90,96,97. 

While applications of 4D flow MRI have grown rapidly31,33, the correction of 

magnetic eddy current–related background phase error remains a challenge34–37. Partial 
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phase error correction can be achieved using pre-emphasis techniques38, incorporation 

of gradient nonlinearity in the image reconstruction process39, and field derivation and 

correction via Maxwell equations40; however, residual phase error may compromise the 

accuracy of 4D flow measurements36,41. Further phase error correction is therefore 

required (Fig 7). Current methods primarily address residual phase error through one of 

two approaches: stationary phantom imaging and polynomial regression of phase error 

in static soft tissues41. Phantom-based correction methods98 require a second phantom 

scan after the patient scan with identical imaging parameters and are therefore 

impractical in a routine clinical setting99. Image-based correction37,100 can use pixel-based 

velocity thresholding throughout the cardiac cycle but often requires a human operator 

for reliable segmentation of static soft tissues. 
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Figure 7:  Effect of background phase error correction on flow visualization and 
quantification. (A) Coronal images in a 53-year-old man with cirrhosis and severe portal 
hypertension. Postcontrast four-dimensional (4D) flow MRI scans of the abdomen show 
portosystemic shunting through variceal vessels (solid arrows) that are difficult to discern 
prior to correction but are clearly seen after correction. The main portal vein (dashed 
arrows) is also better depicted. Adjacent anatomy is shown in the fast spoiled gradient 
echo (FSPGR) image. (B) Postcontrast 4D flow MRI scans in a 29-year-old woman with 
pelvic venous congestion, marked compression of the left common iliac vein (LCIV) under 
the right common iliac artery, and compensatory collateral flow connecting the LCIV to 
the right common iliac vein (RCIV). A large discrepancy in the amount of collateral flow 
(orange arrow) that passes to the RCIV is seen prior to correction. After correction, LCIV 
flow (0.60 L/min) is equal to the sum of flow within the compressed LCIV and the collateral 
vein (0.39 + 0.21 L/min). Line graph shows flow curves throughout one cardiac cycle for 
two locations in the LCIV, where right common iliac arterial flow (red line) suppresses 
venous return in the LCIV (dashed line and arrows). Venous flow in the LCIV before the 
collateral (solid line and arrows) remains unaffected. 

Convolutional neural networks (CNNs) are an emerging class of deep learning 

techniques that have been used for classification, localization, and segmentation and 

have broad potential to further benefit medical image analysis101. Our objective was to 

develop a deep learning algorithm to generate phase error corrections without human 
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intervention, simplifying the analysis and interpretation of abdominopelvic 4D flow 

acquisitions. We evaluated the feasibility of using a fully automated deep learning 

algorithm to perform image-based background phase error correction in 4D flow MRI and 

compared its effectiveness relative to manual image-based correction, applying inflow-

outflow consistency as a principal benchmark of algorithm performance. 

3.4 Materials and Methods 

3.4.1 Patients 

This study was compliant with the Health Insurance Portability and Accountability 

Act, and we obtained institutional review board approval, with waiver of informed consent. 

We retrospectively collected a convenience sample of 139 abdominopelvic 4D flow MRI 

acquisitions performed at our institution between January 2016 and July 2020 as part of 

routine clinical MRI examinations, which also included contrast-enhanced MR 

angiography and postcontrast fast spoiled gradient-echo imaging. 

3.4.2 Data Acquisition 

MRI examinations were performed on a 3-T MRI scanner (Discovery MR 750; GE 

Healthcare) using a 32-channel phased-array coil. Postcontrast 4D flow MRI was 

performed with a 3D cartesian strategy in which Ky-Kz samples were grouped in spiral-

like sets and were acquired with golden angle ordering102,103, evenly spaced over time104 

with dense central k-space sampling for respiratory soft gating105. Imaging parameters 

are summarized in Table 5. The 4D flow MRI scans were acquired as a coronal slab 

through the abdomen and pelvis, with the patient’s arms raised above his or her head to 

prevent soft-tissue wrapping in the right-left phase direction. 
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Table 5: Imaging Parameters for Time-resolved 3D Phase-Contrast MRI with 3D Velocity 
Encoding 

 

3.4.3 Manual Background Phase Error Correction 

Manual phase error correction was performed with dedicated imaging software 

(Arterys, version 26.7.6; Arterys) by two individuals (S.Y., a 4th-year medical student; 

A.H., a board-certified radiologist with more than 10 years of experience working with 4D 

flow MRI). Manual correction was performed via segmentation of static tissue followed by 

patchwise linear regression of static tissue velocities. Raw uncorrected and corrected 

velocity data were exported from the imaging software. 

3.4.4 Data Preprocessing 

After 40 examinations were reserved for testing, the remaining 1980 temporal 

volumes from 99 examinations were randomly divided by examination into two cohorts, 

with 86% (85 of 99) for training and 14% (14 of 99) for validation. Maxwell terms and 

gradient field nonlinearity were corrected in-line during the image reconstruction 

process39,40. After performing semiautomatic thresholding of magnitude images for 
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exclusion of air pixels, velocity values corresponding to unexcluded pixels were used to 

generate a third-order polynomial regression of the manual correction. Velocities were 

scaled by the encoding velocity for each examination, and all data were downsampled to 

64 × 64 × 64 cubes due to anticipated GPU memory limitations. 

3.4.5 Neural Network Training 

Our 3D multichannel U-Net61, a type of CNN whose architecture is illustrated 

in Figure 8, was trained for 300 epochs using mean squared error loss, hyperbolic tangent 

activation, and Adam optimization with a learning rate of 1 × 10–4. Network training used 

TensorFlow-GPU 2.1 (Google) on a workstation running Ubuntu 18.04 (Canonical) 

equipped with four Nvidia Quadro GV100 GPUs (Nvidia). CNN design and training were 

performed by two authors (S.Y.; E.M.M., a doctoral student in his 6th year of training). 

The code for the model architecture and training routine is available on request (release 

version 1.0; https://github.com/AiDALabUCSD/Abdominal-Phase-Error-Correction); 

GitHub login required). 

 

 

https://github.com/AiDALabUCSD/Abdominal-Phase-Error-Correction
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Figure 8: Pipeline for automated phase error correction. A three-dimensional (3D) 
multichannel U-Net (a type of convolutional neural network) designed with (A) four input 
channels, including flow velocities encoded in three cardinal directions and corresponding 
magnitude volumes, and (B) three output channels to infer corrections for the same three 
velocity components. Architecture of the 3D multichannel U-Net is shown, with numbers 
indicating the total number of channels, operations (arrowheads), and kernel sizes and 
activation functions indicated in the legend. As a postprocessing step, pixelwise inferred 
corrections are smoothed with least squares regression to a third-order polynomial in (C). 
This correction is then added to the (D) original uncorrected data to 
generate (E) corrected flow data. 

3.4.6 Polynomial Regression and Application 

Pixelwise velocity corrections generated by the CNN were supplied as input to 

third-order polynomial least-squares regression after intensity thresholding for exclusion 

of air pixels. A single-phase error correction was generated for each examination, 

computed as the average of corrections generated for each of the 20 time points in the 

4D flow time series. The fully automated postprocessing pipeline is shown in Figure 8. 

3.4.7 Volumetric Flow Measurements 

Segmentation of vessels for flow quantification was performed by two observers 

(S.Y., A.H.) for the infrarenal aorta in triplicate and individually for the left common iliac 

artery (LCIA) and right common iliac artery (RCIA), inferior vena cava, left common iliac 

vein (LCIV), and right common iliac vein (RCIV). The same manual segmentations were 
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used for uncorrected, manually corrected, and automatically corrected data, such that 

measurements between the three data sets were spatially consistent. 

3.4.8 Performance Evaluation 

Internal consistency of flow measurements was established by assessing 

conservation of mass in the 40 test cases. The average of the three aortic measurements 

was compared with the sum of the LCIA and RCIA, while the inferior vena cava was 

compared with the sum of the LCIV and RCIV. Each arterial vessel was compared with 

its venous counterpart (aorta vs inferior vena cava, LCIA vs LCIV, and RCIA vs RCIV). A 

representative case from the test set is illustrated in Figure 9, showing the 24 total 

measurements per case. 
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Figure 9: Visual example of background phase error correction for four-dimensional flow 
MRI. Images show visual and quantitative reduction of background phase error after 
manual or convolutional neural network (CNN)-based correction. (A–C) Coronal MRI 
scans of the aorta and common iliac arteries during peak systole. (D–F) Coronal MRI 
scans show the inferior vena cava and common iliac veins during mid-diastole. Flow 
velocity is represented by a color map ranging from blue (0 cm/sec) to red (80 cm/sec). 
For assessment of flow continuity, measurements (in liters per minute) were taken at 
multiple locations (arrows). Corrected velocity measurements showed improved 
consistency along the length of the infrarenal aorta and conservation of mass across 
bifurcations in the arterial and venous systems. 

3.4.9 Statistical Analysis 

For the 40 test cases, t tests were performed with a difference of zero as the null 

hypothesis for the five comparisons assessing conservation of mass and a type I error 

threshold of P < .01 (α = .05 with Bonferroni correction for multiple comparisons). 

Additional statistical comparisons were performed using the Bartlett test of 

homoscedasticity106 followed by pairwise F tests with Bonferroni correction. These 

analyses were performed in RStudio 1.3.959 (R Foundation for Statistical Computing). 
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Inflow-outflow consistency in the test set was further assessed using Pearson 

correlation and Bland-Altman analysis. The time required for manual versus automated 

correction was assessed using a t test. We fitted a single-rater two-way random effects 

intraclass correlation model107 to assess absolute agreement between flow 

measurements made by two observers (S.Y., A.H.). These statistical analyses were 

performed using the Scipy 1.4.1 and Pingouin 0.3.12 libraries in Python (version 

3.7.7; https://www.python.org/). 

 

3.5 Results 

3.5.1 Patient Characteristics 

We retrospectively collected abdominopelvic 4D flow MRI examinations from 140 

patients (mean age, 47 years ± 14 [standard deviation]; 108 women). Patient 

characteristics grouped by clinical indication are summarized in Table 6. 

https://www.python.org/
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Table 6: Patient Characteristics 

 

 

3.5.2 Performance of Manual Phase Error Correction 

Prior to background phase error correction, there was poor inflow-outflow 

consistency for comparison of arterial flow with venous flow and for comparison of blood 

flow before bifurcation with blood flow after bifurcation (Fig 9A, 9D). The mean absolute 

difference between flow measurements was 0.52 L/min ± 0.55 (standard deviation), while 

the mean percentage difference was 37% ± 26. Correlation between flow measurements 

was moderate (ρ = 0.50, P < .001). 

After manual correction (Fig 9B, 9E), the mean absolute difference improved to 

0.15 L/min ± 0.12, with a corresponding mean percentage difference of 14% ± 10. 
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Corrected flow measurements also demonstrated very strong correlation between inflow 

and outflow measurements (ρ = 0.94, P < .001). 

3.5.3 Clinical Application of 4D Flow 

In Figure 10, we highlight two example cases in which manually corrected 4D flow 

MRI was helpful for diagnosis. 

 

Figure 10: Clinical applications of abdominopelvic four-dimensional (4D) flow MRI. (A–
C) Coronal oblique MRI scans obtained with postcontrast 4D flow MRI (A) and MR 
angiography (B) in a 24-year-old woman with Nutcracker syndrome and May-Thurner 
syndrome who had retrograde flow in an asymmetrically enlarged left ovarian vein (LOV) 
(red arrow) and antegrade flow in the enlarged contralateral ovarian vein (blue arrow). 
AO = aorta, IVC = inferior vena cava, LCIA = left common iliac artery, RCIA = right 
common iliac artery, RCIV = right common iliac vein, ROV = right ovarian vein. In C, both 
retrograde ovarian flow and left common iliac vein (LCIV) stenosis were confirmed during 
catheter angiography, with flow through the compressed LCIV (black arrow) being 
restored after stent placement. (D–F) Sagittal oblique images in an 89-year-old woman 
with a history of ischemic colitis and severe stenosis of the celiac artery and superior 
mesenteric artery at their origins, seen as focal vessel narrowing in the two-dimensional 
MR angiography image (D) and three-dimensional (3D) reconstruction (E). Postcontrast 
4D flow MRI scan (F) shows similar narrowing and provides additional hemodynamic 
information: high flow velocity is shown in red, and persistent high-velocity flow in the 
celiac artery during diastole is reflected in the corresponding flow curves. 
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In the first example case (Fig 10A-10C), a 24-year-old woman with postural 

orthostatic tachycardia syndrome presented with orthostatic lightheadedness, left leg 

discomfort, and abdominopelvic pressure that worsened throughout the day. She 

underwent multisequence MRI, including differential subsampling with cartesian ordering 

108, which demonstrated dilated ovarian veins bilaterally and filling of pelvic venous 

collaterals. Further evaluation with 4D flow MRI enabled us to confirm retrograde flow in 

the left ovarian vein (280 mL/min) and anterograde flow in the right ovarian vein (230 

mL/min). There was absent flow in the left renal vein as it passed under the superior 

mesenteric artery, indicating nutcracker physiology. There was limited flow (270 mL/min) 

in the LCIV as it passed under the RCIA, which was inadequate to accommodate the 

retrograde ovarian venous flow, indicating May-Thurner venous insufficiency. 

The patient subsequently underwent catheter venography, which enabled us to 

confirm left ovarian vein reflux and left iliac venous insufficiency. This was followed by 

LCIV stenting, resolution of May-Thurner venous insufficiency and left leg discomfort, 

and, later, left gonadal vein embolization with resolution of her abdominal bloating, urinary 

discomfort, and pelvic pain. 

In a second example case (Fig 10D-10F), an 89-year-old woman with a history of 

ischemic colitis underwent abdominal MRI for evaluation of persistent abdominal pain and 

diarrhea. Quantitative flow measurements using two-dimensional phase-contrast MRI 

demonstrated limited augmentation of mesenteric blood flow after a prandial challenge94, 

with flow through the superior mesenteric vein increasing from 299 to 330 mL/min and 

flow through the superior mesenteric artery increasing from 386 to 414 mL/min. 
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Postprandial 4D flow MRI measurements were obtained to assess the feasibility of using 

4D flow in place of two-dimensional phase-contrast planes, and the 4D flow 

measurements were found to be similar to the two-dimensional phase-contrast flow 

measurements. We observed several additional findings on 4D flow MRI scans, including 

high-velocity systolic blood flow through the celiac (159.41 cm/sec) and superior 

mesenteric (136.33 cm/sec) arteries and prolonged diastolic forward flow through the 

stenotic celiac artery (Fig 10F). Taken together, these findings are consistent with 

hemodynamically significant celiac and superior mesenteric artery stenosis and chronic 

mesenteric ischemia. 

3.5.4 Performance of Automated Phase Error Correction 

Neural network inference required a mean of 0.54 second ± 0.01 per case, while 

postprocessing required a mean of 11.75 seconds ± 0.61 per case. The mean total time 

for automated phase error correction was 12.29 seconds ± 0.61 compared with manual 

phase error correction performed by the most experienced observer (A.H.), which 

required 152.3 seconds ± 52.58 per case (P < .001). 

The multichannel 3D U-Net led to an improvement in inflow-outflow consistency 

comparable to that of manual correction, with strong correlation between flow 

measurements (ρ = 0.91, P < .001). The average standard deviation for the three aortic 

measurements performed for each case was 0.07 L/min, compared with 0.07 L/min after 

manual correction and 0.23 L/min for uncorrected cases. The CNN algorithm was 

successfully executed in all 40 test cases, resolving phase error in all three principal 

directions (Fig 11). There were no technical failures. 
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Figure 11: Representative coronal sections of MRI scans from all 40 test cases. With 
velocity shown on a red-white-blue color scale, manual and automated correction 
methods show a similar reduction of soft-tissue phase error, seen as primarily white 
coloring (zero flow). Phase errors for each cardinal direction appear to follow fairly 
consistent patterns but with slight differences from case to case. AP = anterior to 
posterior, RL = right to left, SI = superior to inferior. 

A direct comparison of flow measurements obtained using manual and automated 

correction demonstrated very strong correlation (ρ = 0.98, P < .001) (Fig 12A). 
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Figure 12: Analysis of volumetric flow continuity in the testing data set (40 
examinations). (A) Panel shows a comparison of all manually and automatically corrected 
flow measurements. The slope of the regression is 1.01, and the correlation coefficient is 
0.98. (B) Box-and-whisker plot grouped by vessel type compares uncorrected, manually 
corrected, and automatically corrected flow differences among the five vessel 
comparisons. Compared with uncorrected measurements, manually and automatically 
corrected measurements show an overall reduction in range, with mean values closer to 
zero. AO = aorta, IVC = inferior vena cava, LCIA = left common iliac artery, LCIV = left 
common iliac vein, RCIA = right common iliac artery, RCIV = right common iliac 
vein. (C) Bland-Altman plots with comparisons of arterial and venous flow (red) and 
comparisons of flow before and after bifurcation (blue) show greater flow consistency with 
narrower limits of agreement after both manual and automated correction. 

The multichannel 3D U-Net achieved an average difference between vessel 

measurements of 0.05 L/min overall (P < .001), an improvement over uncorrected 

measurements, which had an average difference of –0.14 L/min overall (P = .01). In 

comparison, manual correction had an average difference of 0.05 L/min (P < .001). When 

considering only comparisons of arterial flow versus venous flow, both correction methods 

showed marked improvement over uncorrected data, with mean differences of –0.005 



 
 

56 
 

L/min (P = .79) after manual correction and –0.003 L/min (P = .89) after automated 

correction compared with –0.35 L/min for uncorrected data (P < .001). Comparisons 

between pre- and postbifurcation flow also showed an improvement in mean difference 

from 0.17 L/min uncorrected to 0.14 L/min manually corrected and 0.13 automatically 

corrected, though the mean difference remained greater than zero for both correction 

methods (P = .02 for uncorrected, P < .001 for manually corrected, P < .001 for 

automatically corrected). Uncorrected data demonstrated a mean difference significantly 

different from zero for three of the five vessel comparisons (P < .001 for the difference 

between the LCIA and LCIV, the difference between the RCIA and RCIV, and the 

difference between the aorta and the sum of the RCIA and LCIA, while manually and 

automatically corrected vessel comparisons were significantly different from zero (P < 

.001 and P < .001, respectively) for only the difference between the aorta and the sum of 

the RCIA and LCIA (Table 7, Fig 12B). 

Table 7: Effect of Manual and Deep Learning-based Automated Phase Error Correction 
on Inflow-Outflow Consistency for Five Vessel Comparisons 

 

Manual and automated correction methods also demonstrated a reduction in 

variance of volumetric flow differences, with overall mean difference as follows: –0.14 

L/min (95% limits of agreement: –1.61, 1.32) for uncorrected data, 0.05 L/min (95% limits 
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of agreement: –0.32, 0.42) for manually corrected data, and 0.05 L/min (95% limits of 

agreement: –0.38, 0.49) for automatically corrected data (Fig 12C). The Bartlett test of 

homogeneity of variances yielded an overall P < .001, and pairwise F tests with 

Bonferroni correction demonstrated no significant difference between manual and 

automated correction (P < .001 for manually corrected vs uncorrected data, P < .001 for 

automatically corrected vs uncorrected data, P = .10 for manual vs automatically 

corrected data). 

Analysis of interobserver variability demonstrated excellent reliability both before 

and after background phase error correction. The intraclass correlation coefficient prior 

to correction was 0.94 (P < .001). Manual and automated correction methods each 

improved the coefficient to 0.99 (P < .001 for both). 

3.6 Discussion 

Four-dimensional (4D) flow MRI has become increasingly valuable in the 

qualitative and quantitative assessment of blood flow. Since all measurements can be 

retrospectively obtained after image acquisition without the need for targeted US windows 

or placement of two-dimensional phase-contrast planes at the time of the examination, 

4D flow MRI provides versatility that can be essential in the diagnostic process. However, 

the correction of magnetic eddy current–related background phase error remains a 

challenge in abdominal applications. 

In this study, we demonstrated the feasibility of automating background phase 

error correction using a multichannel 3D U-Net, with improved consistency in 
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comparisons of arterial and venous flow as well as in comparisons of blood flow before 

and after bifurcations. In a test set of 40 patients, automated phase error correction 

demonstrated very strong correlation with manually corrected measurements (ρ = 

0.98, P < .001). Inflow-outflow bias and variance were also reduced, with mean difference 

and limits of agreement improving from –0.14 L/min (95% limits of agreement: –1.61, 

1.32) (uncorrected) to 0.05 L/min (95% limits of agreement: –0.38, 0.49) (automatically 

corrected) and no significant difference in variance between manual and automated 

correction methods (P = .10, F test with Bonferroni correction). 

Performance of manual correction requires substantial time and expertise due to 

the need for manual vessel segmentation. Previous studies41,109 have explored the effect 

of various parameters on the accuracy of image-based phase error correction, including 

the signal-to-noise ratio of the data itself, the percentage of stationary tissue used in the 

regression, and the spatial order of the regressed correction. In general, the quality of the 

correction decreases with decreasing percentage of static tissue, which means that 

manual tissue segmentation requires a delicate balance between excluding as many 

vessels as possible and maximizing inclusion of soft tissue. This deterioration is 

increasingly pronounced with regressions of higher spatial order; in fact, third- and 

sometimes second-order polynomial regressions are frequently rendered impossible due 

to insufficient soft-tissue selection. CNNs are able to overcome this limitation because 

they learn relevant features of input images on their own. 

Our study had limitations. First, our training and testing data were sourced using 

one MRI scanner from one vendor at one institution. Second, because many of our 
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patients underwent 4D flow MRI for clinical evaluation of venous abnormalities, low 

encoding velocity (usually 80 cm/sec) created velocity aliasing within some high-flow 

arteries, limiting our ability to accurately measure blood flow in some vessels. Although 

we did not evaluate the potential of CNNs to correct for velocity aliasing, it is plausible 

that they might be applied similarly for this purpose as well. Finally, performance 

evaluation of our neural network relied on inflow-outflow consistency in major abdominal 

vessels. We did not assess whether detection of intraabdominal shunts was impaired or 

improved with phase error correction, instead focusing primarily on the feasibility of using 

a CNN to perform this correction. 

In conclusion, correction of background phase offset poses a challenge to the 

clinical application of four-dimensional (4D) flow MRI but can be accomplished using a 

single multichannel three-dimensional U-Net, a type of convolutional neural network 

(CNN). We expect that similar results may be possible for other body territories, scanners, 

vendors, and institutions, which might be the subject of future investigations. This could 

be accomplished by retraining the CNN using new 4D flow data sets or by using transfer 

learning to expand the generalizability of this CNN. Our proof-of-concept study 

demonstrates the feasibility of automating phase error correction, bypassing the 

segmentation that is generally required for manual correction. In essence, we have 

trained a CNN to perform a complex task, simultaneously capturing the phase error in 

static soft tissue while ignoring flowing blood in the arterial and venous systems. The 

feasibility of this work highlights the untapped potential of CNNs to accomplish complex 

visual and computational tasks that may not be readily performed by humans and may 
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help bring advanced imaging technologies, including 4D flow MRI, into routine clinical 

care. 
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Chapter 4: Feasibility of Deep Learning to Synthesize Outflow Hemodynamics from 
Cardiac MRI 
 

4.1 Abstract 

Purpose 

Convolutional neural networks (CNNs) have proven valuable for segmentation and 

localization of anatomical structures on cardiac MRI. However, CNNs have potential to 

extrapolate beyond these straightforward visual tasks. We hypothesized that a CNN might 

be capable of inferring left ventricular outflow hemodynamics from cine SSFP images 

obtained during routine cardiac MRI.  

Materials and Methods 

Conventional and 4D Flow MRI acquisitions were retrospectively collected from 

139 patients. We devised a novel CNN, Triton-Net, to synthesize the blood flow velocity 

field, while concurrently segmenting ventricular chambers and localizing cardiac 

landmarks.  To evaluate technical performance of Triton-Net, segmentation and 

localization were compared against manual annotation; synthesized flow fields were 

compared against 4D Flow.  As a clinical proof-of-concept, the algorithm was evaluated 

for its ability to detect left ventricular hypertrophy and predict outflow gradient >25 mmHg 

in an independent test set of 50 patients, measuring area under the receiver operating 

characteristic curve (AUROC).   

Results 

Median Dice of cardiac chamber segmentation ranged from 0.80–0.92, while 

median localization error of valve and apex positions ranged from 3.14–4.45 mm.  

Synthesized flow fields significantly correlated with 4D Flow (p<0.001, Wald test) with 
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median root-mean-squared-error from 136–252 mm/s.  AUROC for detection of 

hypertrophy and outflow gradient were 0.863 and 0.830, respectively. 

Conclusion 

Triton-Net can perform multiple concurrent tasks, notably inference of left 

ventricular outflow hemodynamics directly from anatomic images, without separate 

acquisition of flow-sensitive MRI sequences.  CNNs can infer cardiovascular fluid-

mechanical relationships from routine cardiac MR images and may be applied for 

retrospective analysis of historical cardiac MRI exams. 

4.2 Summary and Key Results 

Summary 

We demonstrate feasibility of a convolutional neural network named Triton-Net to 

synthesize intracardiac blood flow fields from SSFP MRI anatomic images and illustrate 

its clinical potential for hypertrophic cardiomyopathy and aortic stenosis. 

Key Results 

1. Triton-Net can synthesize intraventricular flow fields from anatomic images, which 

are correlated with 4D Flow MRI measurements (p< 0.001, Wald test). 

2. The trifurcated architecture of Triton-Net enables concurrent cardiac segmentation 

and landmark localization to facilitate automated measurement of myocardial wall 

thickness. 

3. Triton-Net outputs accurately classified elevated outflow pressure gradients 

(AUROC = 0.830) and hypertrophy (AUROC = 0.863), suggesting its ability to 

autonomously detect outflow stenosis and assist diagnostic interpretation. 
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4.3 Introduction 

Cardiac MRI is a versatile imaging technique for assessment of anatomy and 

function90,110–112.  Cine balanced steady-state free precession (SSFP) forms the 

backbone of cardiac MRI and is the standard for quantification of cardiac function111 and 

morphology.  A newer technique, 4D Flow MRI, is increasingly used to assess 

hemodynamics113 to guide management and surgical correction of structural heart 

diseases25.  For example, diseases like hypertrophic cardiomyopathy (HCM) and aortic 

stenosis (AS) exhibit structural abnormalities and benefit from hemodynamic 

assessment114. HCM is a relatively common inherited disease115 associated with left 

ventricular outflow tract (LVOT) obstruction and can contribute to sudden cardiac 

death116.  Septal reduction therapy is indicated for patients with outflow pressure 

gradients ≥50 mmHg117.  Similarly, patients with AS are assessed with a combination of 

anatomic and hemodynamic parameters, usually with echocardiography, including aortic 

valve area and transvalvular pressure gradient. Symptomatic patients with untreated 

severe AS can have a >50% 2-year mortality rate.118  While 4D Flow MRI has potential to 

assist in assessing hemodynamic severity to complement traditional Cine SSFP imaging, 

it requires acquisition of a separate specialized pulse sequence, advanced technical 

expertise, and is not yet widely available43.   

Over the last several years, convolutional neural networks (CNNs) have proven 

valuable for automating multiple visual tasks, including segmentation and localization of 

anatomic landmarks and cardiac chambers, and are progressively being integrated into 

clinical workflows119,120.  Multiple groups have shown that CNNs can approach radiologist-

level performance for ventricular segmentation10,121 and landmark localization62,122.  While 
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there has been significant progress for these visual tasks, CNNs have untapped potential 

to extrapolate beyond structural identification.   Recent work has hinted at the ability of 

CNNs to learn dynamic features to perform more complex tasks such as direct regression 

of ventricular function123,124, synthesis of high frequency spatial information125, and 

computation of pixel image velocimetry126.  We hypothesized that in the same vein, we 

could develop a CNN to learn cardiovascular fluid-mechanical relationships and 

synthesize intracardiac blood flow fields from Cine SSFP images commonly obtained 

during cardiac MRI.  In doing so, we might provide hemodynamic data, which otherwise 

would require a dedicated 4D Flow MRI acquisition. 

To undertake this problem, we designed a novel three-pronged CNN, which we 

call Triton-Net, to concurrently perform multiple complementary tasks – cardiac chamber 

segmentation, landmark localization and synthesis of the intracardiac blood flow field.  

This CNN was then trained using our historical database of 4D Flow MRI examinations, 

which provided pixelwise ground truth vector fields for Triton-Net training and evaluation. 

 

4.4 Materials and Methods 

4.4.1 Patients and Image Data 

Our study was performed with institutional review board approval and waiver of 

written informed consent.  We retrospectively collected a convenience sample of 139 

cardiac MRI exams that included 3-chamber Cine SSFP and 4D Flow as part of the 

clinical exam at our institution between December 2017 to May 2021. On a per patient 

basis, exams were divided 64% for training (89/139 examinations) and 36% for 

independent testing (50/139 examinations). We specifically enriched our testing set to 
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contain patients with elevated outflow gradient i.e., peak pressure gradient exceeding 25 

mmHg at the AV or LVOT, and randomly allocated the remainder of patients.  Of the 50 

patients in the test set, 7 had aortic stenosis, 8 had hypertrophic cardiomyopathy, and 1 

had subaortic stenosis due to subaortic membrane (Fig 13). The remaining 34 patients in 

the test set did not have stenosis of the LVOT or aortic valve. 

 

Figure 13: Patient Population Flowchart 

All 4D Flow MRI examinations were performed following administration of 

intravenous gadolinium contrast (gadobenate dimeglumine, 0.15 mmol/kg) and employed 

respiratory self-navigation, iterative compressed-sensing, and parallel imaging 

reconstruction127.  From the same set of exams, we collected 231 concurrently performed 
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3-chamber cine SSFP series.  All studies were performed with a 3.0-T MRI scanner 

(Discovery MR750 DV26; GE Healthcare) with a standard 32-channel phased-array coil 

(Table 8).  

Table 8: MRI Scanner Parameters.  Data are means, with ranges in parentheses.  VENC 
= Velocity encoding 

 

4.4.2 Image Annotation 

Image annotation and registration of 4D Flow and Cine SSFP images were 

performed using in-house software developed in Python by the lead author, a 5th-year 

MD-PhD student (E.M.M.). The lead author and a 3rd year diagnostic radiology resident 

(T.A.R.) manually annotated all 3-chamber cine SSFP series under the supervision of a 

cardiovascular radiologist with 12 years of experience in cardiac MRI (A.H.).  For cardiac 

chamber segmentation and landmark localization, we generated 1) segmentations of the 

left atrium, left ventricular blood pool, left ventricular myocardium, right ventricular blood 

pool, aortic root and 2) marked locations for the mitral valve, aortic valve, and apex.  

4.4.3 Triton-Net: A Multi-Prong Neural Network 

Triton-Net is a novel three-pronged CNN (Fig 14). It simultaneously performs: 1) 

localization of anatomical landmarks, 2) segmentation of cardiac chambers, and 3) 

synthesis of blood flow fields.  Triton-Net takes as input five adjacent timeframes from 3-
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chamber cine SSFP series, which are passed into an encoder-decoder block based on 

the 3D-UNet architecture61, which are then temporally condensed into a single-timeframe 

feature map (Supplemental Figure 3).  This shared feature map is then passed into three 

output prongs, each comprising a squeeze-excitation block and shallow sub-CNN based 

on the SRNet architecture128 to infer chamber segmentations, landmark localizations, and 

intracardiac blood flow fields.  The synthesized blood flow fields comprise pixel-wise 

inferences of velocity in the x and y directions.  Training data were standardized by 

performing in-plane rotation. Training data was augmented with -5° and 5° degree in-

plane rotations. Additional details of CNN training can be found in the Chapter Appendix 

Text. 

 

Figure 14: Triton-Net: A three-pronged, spatiotemporal multitask convolutional neural 
network.  A multitask deep convolutional neural network named Triton-Net accomplishes 
three related component tasks from source 3-chamber cine SSFP cardiac MR images: 1) 
segmentation of cardiac chambers, 2) localization of anatomical landmarks, and 3) 
synthesis of blood flow fields.  These inferences are post-processed to generate 
measurements of maximal left ventricular wall thickness and peak left ventricular outflow 
tract pressure gradient. 

4.4.4 Evaluation of Performance 

To evaluate the clinical utility of Triton-Net for outflow obstruction, CNN inferences 

were used to compute estimates for outflow gradients and maximum wall thicknesses.  
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Peak pressure gradients were calculated using the modified Bernoulli equation, ∆𝑃 =

4𝑣2 , where 𝑣  is the peak speed. Gradients exceeding 25 mmHg were considered 

significant.  Left ventricular wall thickness was calculated by defining the mitral valve-

apex axis and slicing the end-diastolic myocardial mask orthogonally to this axis.  Ground 

truth values were derived in the same manner using manual annotations and 4D Flow 

MRI data.   

4.4.5 Statistical Analysis 

All statistical analyses were performed on the independent test set.  We evaluated 

the ability of Triton-Net to perform multi-class segmentation by calculating the Sorenson-

Dice coefficient between inferred and annotated ground truth masks.  For the evaluation 

of multi-landmark localization performance, we calculated the Euclidean distance 

between the inferred and annotated ground truth landmark coordinates.  We report the 

first, second, and third quartiles for Dice coefficients and Euclidean distances.   

To evaluate correlation between synthesized and ground truth blood flow fields, 

we performed pixel-wise calculation of Pearson correlation.  Additionally, we reported the 

per-frame root-mean-squared-error between synthesized and ground truth flow fields for 

each chamber. To assess effectiveness of the CNN-derived classifications of outflow 

stenosis and myocardial hypertrophy, we generated Receiver-Operating Characteristic 

curves by comparing inferred and ground-truth values and report the area under the 

receiver operating characteristic curve (AUROC).   

Statistical analysis was performed using Python (version 3.7, Python Software 

Foundation, Wilmington, Del), NumPy, SciPy, scikit-learn, and Excel (Microsoft, 
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Redmond, Wash). Statistical significance of correlation between inferred and ground truth 

values was assessed using the Wald test with type I error threshold of 0.05.   

4.5 Results 

4.5.1 Patient Characteristics 

For CNN development and evaluation, we retrospectively collected 139 4D Flow 

MRI series and 243 corresponding 3-chamber cine SSFP series from 139 patients (mean 

age, 51 years ± 18; 66 female).  MRI exams from 50 patients were reserved for 

independent testing of the CNN algorithm.  Of the patients in the independent test set, 

64% had myocardial wall thickness greater than 15 mm and 32% had left ventricular 

outflow peak gradient exceeding 25 mmHg. 

4.5.2 Chamber Segmentation and Landmark Localization 

On aggregate, we observed strong overlap between inferred and ground truth 

segmentations as assessed by the Dice coefficient (Fig 15C).   
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Figure 15: Performance of the segmentation and localization prongs of Triton-Net.  A) 
Representative multi-chamber cardiac segmentation and B) multi-landmark localization 
in a morphologically normal 41 year-old female.  Left atrium (blue), left myocardium 
(orange), left ventricular blood pool (green), right ventricle (red), and aortic root (purple) 
shown.  Bullseyes at mitral valve, aortic valve, and apex.  Box-and-whisker plots show 
aggregate C ) segmentation performance based on the Sorenson-Dice coefficient and D) 
localization performance based on distance from ground truth annotations (D) (n = 1780 
slices from testing set).  Boxes encapsulate interquartile ranges, whiskers demarcate the 
central 95% of data points, and black bars lie on the median.    

Median Dice coefficients (with 1st and 3rd quartiles in parentheses) for each 

chamber were 0.89 (0.85 – 0.92) for the left atrium, 0.80 (0.74 – 0.84) for the left 

myocardium, 0.89 (0.83 – 0.92) for the left ventricular blood pool, 0.87 (0.81 – 0.90) for 

the right ventricle, and 0.83 (0.76 – 0.89) for the aortic root (Table 9).  We measured 

similarly strong aggregate performance for landmark localization as assessed by 

Euclidean distance between inferred and annotated positions (Fig 15D).  Median 

distances in millimeters (with 1st and 3rd quartiles in parentheses) for each landmark were 

4.20 (2.80 – 5.80) for the mitral valve, 3.14 (1.99 – 4.84) for the aortic valve, and 4.45 

(2.81 – 6.30) for the apex.   

We present a representative case of chamber segmentation (Fig 15A) and 

landmark localization (Fig 15B) in a morphologically normal 41-year-old female.  For this 
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case, the left atrium, left ventricular blood pool, left myocardium, right ventricle, and aortic 

root showed good agreement between the inferred and ground truth segmentations.  

Likewise, we found concurrence between Triton-Net and annotated localizations of the 

mitral valve, aortic valve, and apex.  To show further agreement between inferred and 

annotated segmentations over the cardiac cycle, we track the predicted and ground truth 

areas for each chamber for this exemplar case (Supplemental Video 1).  

 

Table 9: Performance of Triton-Net Multi-Chamber Segmentation and Multi-Landmark 
Localization.  Data are medians, with first and third quartiles in parentheses.   

 

4.5.3 Intracardiac Blood Flow Field Synthesis 

Triton-Net showed an ability to synthesize intracardiac blood flow fields from two-

dimensional time series, provided only image data from the 3-chamber view. 

Quantitatively, on a pixel-wise basis Triton-Net showed significant correlation between 

synthesized and ground-truth velocities (Fig 16B), with slightly stronger correlation of 

synthesized flow fields along the major axis (p<0.001, ρ=0.57, slope=0.75) than minor 

axis (p<0.001, ρ=0.57, slope=0.78) of the left ventricle (Table 10).  
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Figure 16: Performance of the blood flow field synthesis prong of Triton-Net.  A) 
Representative example from a 69 year-old male with normal cardiac function depicting 
source 3-chamber cine SSFP images (left column), Triton-Net synthesized blood flow 
fields (center column), and ground truth flow fields derived from 4D Flow MRI(right 
column).    B) Triton-Net synthesized flow compared with 4D Flow MRI-derived ground-
truth along the major (left) and minor (right) axis in the left ventricle (n=1780 slices).  The 
solid line indicates the least-squares regression line between synthesized and ground-
truth flow, dashed line is line of identity.  C) Root-mean-squared-error between Triton-Net 
synthesized blood flow velocities and 4D Flow MRI-derived ground truth along major (left) 
and minor (right) axes, for each cardiac chamber.  Boxes encapsulate the interquartile 
range and whiskers demarcate the central 95% of data points 

Root-mean-squared error (RMSE) for the synthesized velocities were within the 

range of measurement error of phase-contrast MRI (approximately 150-250 mm/s) for 

each chamber (Fig 16C).  For the major axis, median RMSE (with 1st and 3rd quartiles in 

parentheses) were 154 (137 – 179) mm/s for the left atrium, 220 (188 – 247) mm/s for the 

left ventricle, 142 (121 – 166) mm/s for the right ventricle, and 223 (190 – 273) mm/s for 

the aortic root.  For the minor axis, we found RMSE values of 136 (124 – 163) mm/s for 

the left atrium, 179 (154 – 216) mm/s for the left ventricle, 154 (140 – 190) mm/s for the 

right ventricle, and 252 (197 – 326) mm/s for the aortic root (Table 10).   

. 
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Table 10: Performance of Triton-Net Flow Synthesis. RMSE results are medians, with 
first and third quartiles in parentheses.  RMSE = Root Mean Squared Error 

 

Images from a representative patient, a morphologically normal 69-year-old male, 

are shown in Figure 16A, spanning several timepoints over the cardiac cycle.  During 

systole, we observe the ability of Triton-Net to infer a pattern of systolic flow in the left 

ventricular outflow tract similar to measured velocities from 4D Flow. During diastole, we 

observe the ability of Triton-Net to infer mitral inflow both during early ventricular 

relaxation (E-wave) and atrial contraction (A-wave), which were also comparable to 

ground truth 4D Flow MRI data. 

We found that Triton-Net was generally able to correctly infer the presence of high 

velocity flow in the left ventricular outflow tract and aortic valve (Fig 17).   
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Figure 17: Performance of Triton-Net flow synthesis on cine SSFP series with left 
ventricular outflow tract obstruction.  Representative mid-systolic examples depicting 
source long-axis cine SSFP images (top row), Triton-Net synthesized blood flow fields 
(center row), and ground truth flow fields derived from 4D Flow MRI (bottom row).  Triton-
Net synthesizes realistic intracardiac blood flow fields in: A) a structurally normal 51 year-
old female, B) a 66 year-old male with hypertrophic obstructive cardiomyopathy, C) a 35 
year-old male with subaortic membrane, and D) a 69 year-old female with bicuspid aortic 
valve.   

In a morphologically normal patient, a 51-year-old female, Triton-Net inferred 

normal velocities within the left ventricular outflow tract, which were also normal by 4D 

Flow MRI (Supplemental Video 2).  In contrast, in three representative patients with LVOT 

or AV obstruction on 4D Flow MRI, Triton-Net was able to infer high velocities at each 

location of outflow tract and valvular stenosis.  In a 66-year-old male patient with 
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hypertrophic obstructive cardiomyopathy and diffuse left ventricular hypertrophy (Fig 

17B), Triton-Net inferred marked flow acceleration in the narrowed LVOT, comparable to 

4D Flow MRI (Supplemental Video 3). Inferred peak velocity was 2.689 m/s, 

corresponding to a gradient of 29 mmHg. Measured peak velocity on 4D Flow was 4.093 

m/s, corresponding to a gradient of 67 mmHg. In a 35-year-old male patient with subaortic 

membrane, Triton-Net inferred the presence of high velocity flow in the LVOT (Fig 17C).  

Inferred peak velocity was 4.433 m/s, corresponding to a gradient of 79 mmHg. Measured 

peak velocity on 4D Flow was 3.317 m/s, corresponding to a gradient of 44 mmHg.  Lastly, 

in a 69-year-old female patient with bicuspid aortic valve, Triton-Net inferred the presence 

of flow acceleration at the stenotic aortic valve (Fig 17D).  Inferred peak velocity was 

3.620 m/s, corresponding to a gradient of 52 mmHg. Measured peak velocity on 4D Flow 

was 3.969 m/s, corresponding to a gradient of 63 mmHg.   

4.5.4 Detection of Outflow Stenosis and Wall Thickening 

To further assess the potential clinical utility of Triton-Net for outflow stenosis and 

myocardial wall thickening, we performed additional analyses in the test population for 

detection of both entities (Fig 18).   
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Figure 18: Post-Processing of Triton-Net Inferences Yields Detection of Increased Left 
Ventricular Outflow Tract Pressure Gradients and Myocardial Thickness.  Receiver-
Operating-Characteristic Curve for detection of A) left ventricular outflow obstruction 
(AUROC=0.830) and B) left ventricular hypertrophy (AUROC=0.863) in an independent 
test set (n=50 patients).   

There was moderate agreement between outflow gradients inferred by Triton-Net 

and those measured by 4D Flow (p<0.001, r=0.54, slope=0.56). There was strong 

agreement between Triton-Net and manual measurements of myocardial thickness 

(p<0.001, r=0.77, slope=0.62).  Receiver operating characteristic curves for detection of 

outflow obstruction showed strong ability to detect outflow tract obstruction exceeding 25 

mmHg (AUROC 0.830). Similarly, receiver operating characteristic curves for left 

myocardial hypertrophy showed strong ability to detect myocardial wall thickening with 

end-diastolic wall thickness > 15 mm (AUROC 0.863).  

4.6 Discussion 

In this work, we illustrated the feasibility of a novel CNN architecture to 

concurrently perform the disparate but complementary tasks of cardiac chamber 

segmentation, landmark localization, and synthesis of blood flow fields.  To our 
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knowledge, Triton-Net is the first CNN capable of synthesizing blood flow fields solely 

from routine cine SSFP imaging data.  Furthermore, in contrast to previous methods 

which have attacked the segmentation19,129 and localization62,122 problems separately, we 

show that the trifurcated architecture of Triton-Net can perform these tasks within a single 

comprehensive end-to-end architecture and achieve comparable performance to 

previously reported methods for the individual tasks.   

There was strong quantitative agreement between synthesized flow fields and 4D 

Flow-derived ground truth across the entire cardiac cycle, particularly in the left ventricle.  

While synthesis of the blood flow field has historically been the domain of computational 

fluid dynamics130, these methods are computationally expensive and require explicit 

boundary conditions, which are often approximated, particularly at the valves131. We 

attribute the performance of the CNN to the multi-pronged architecture that we employed, 

which was able to incorporate knowledge from the cardiac chamber segmentations and 

landmark locations to learn the relevant biomechanical relationships between the 

myocardial wall and blood flow velocity field from a relatively small training set.  Recent 

work suggest that much fewer datasets are required when manual annotations of 

component sub-tasks are provided during training132.   

Our study has several limitations.  All MRI data were sourced from examinations 

performed from a scanner from a single vendor from our institution. It is unclear how well 

the CNN will perform on images obtained on MR images from other vendors or 

institutions. It is likely that a larger training set incorporating image data from other MRI 

manufacturers and field strengths will further benefit the performance of the CNN on 

images from other institutions. Another limitation is that we have focused primarily on two-
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dimensional time-series, primarily on the 3-chamber view, as an illustration of the 

feasibility of this approach. We anticipate that this work may be further expanded to other 

imaging planes and volumetric imaging, including cardiac CTA, to enable synthesis of 

more comprehensive velocity fields.  

In conclusion, we show the potential of a novel CNN architecture to extrapolate 

beyond the straightforward visual tasks of localization and segmentation.  Specifically, 

Triton-Net can learn to synthesize the outflow blood velocity field from routine cine SSFP 

cardiac MR images.  CNNs that can infer such information may provide additional 

hemodynamic insights retrospectively for patients who undergo routine cardiac MR 

imaging.  We anticipate that similar strategies will be valuable to enable convolutional 

neural networks to perform complex tasks that require extrapolation of pathophysiology 

beyond what is anatomically visible. Such techniques may enable more in-depth 

biomechanical and hemodynamic analyses of historical cardiac MRI exams. 
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4.8 Appendix 
 

4.8.1 Triton-Net 

Triton-Net is a novel, three-pronged architecture designed by the lead-author for 

multi-prong training and inference. Triton-Net segments cardiac chambers, localizes 

anatomical landmarks, and synthesize blood flow fields.   

Triton-Net is composed of multiple output prongs for each component task and a 

deep decoder-encoder block that forms the shaft of the CNN. The encoder-decoder block 

is based on the 3D U-Net61 architecture, and receives a temporal window (5 adjacent time 

frames) of long-axis cine SSFP images.  Specifically, the encoder-decoder block 

sequentially comprised a 3D U-Net, a 3D-to-2D convolutional block, and a resolution 

scaling layer.  The 3D-to-2D convolutional block comprised a 3-dimensional convolutional 

block with kernel size 5x1x1 and appropriate padding, resulting in coalescence of the 

temporal dimension, followed by a lambda squeeze layer.  The resolution scaling layer 

scales the outputs of the 3D-to-2D convolutional block, incorporating pixel resolution and 

heart rate.  From these scaled feature maps, triple output prongs produce single-frame 

cardiac chamber segmentations, landmark localization heatmaps, and flow fields.  Each 
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output prong comprised a sequential squeeze-excitation133 and SRNet128 blocks.  We 

iterate Triton-Net over adjacent temporal windows to generate inferences over the entire 

cardiac cycle.   To generate point-localizations, we solve for the argmax of each 

heatmap62. 

4.8.2 Data Preprocessing 

We developed a semi-automated strategy for generating our training data.  Our 

workflow comprised four steps: a) re-slicing source 4D Flow data to in-plane flow vectors 

based on each 3-chamber view’s coordinates using trilinear interpolation, b) view-

standardizing each paired 3-chamber-flow dataset62 orienting the apex upward while 

reducing and centering the field of view to the heart, c) manually co-registering and 

annotating the cardiac chambers/landmarks between 3-chamber and flow datasets using 

in-house software to provide CNN segmentation ground truth132, and d) organizing and 

scaling each dataset.  We scaled 3-chamber pixel values to lie within [0,1] and flow values 

to lie within [-1,1] to serve as CNN blood flow synthesis ground truth.   

4.8.3 Neural Network Training 

We trained Triton-Net for 200 epochs using the Adam optimizer with a learning 

rate of 3e-5.  We trained Triton-Net using a Microsoft Azure virtual machine running 

Ubuntu 18.04 (Canonical, London, England) equipped with four Quadro GV100 graphics 

cards with 16 GB of VRAM (Nvidia, Santa Clara, California).  We used TensorFlow-GPU 

2.1.0 (Google, Mountain View, California) with mixed-precision for all deep-learning 

experiments. 
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4.8.4 Loss Functions 

For the following mathematical expressions, we denote each prong’s output 

inference as 𝑦̂ and its corresponding ground truth as 𝑦. 

4.8.5 Segmentation Loss 

For cardiac chamber segmentation, we employed a multichannel Dice loss 

function with a smoothing factor of 181: 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 = 1 −  
1

𝑁𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠
∑ 𝐷𝑖𝑐𝑒(𝑦𝑖, 𝑦𝑖̂)

𝑁𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝑖

 

4.8.6 Localization Loss 

For landmark localization, we employed a heatmap localization strategy62, where 

we Gaussian blurred the annotations for the mitral valve (s = 20 pixels), aortic valve (s = 

20 pixels) and the apex (s = 40 pixels) to serve as multichannel ground-truth.  This 

strategy permits use of weighted mean-squared-error (MSE) loss.  We additionally solved 

for regions of high speed, 𝑦𝑠𝑝𝑒𝑒𝑑 (values greater than 0.05 in ijk coordinates).  Together, 

the combine loss function took the form of: 

𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 = (
1

𝑁𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠
∑ 𝑀𝑆𝐸(𝑦𝑖, 𝑦𝑖̂)

𝑁𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠

𝑖

) + 𝜆 ∗ 𝑀𝑆𝐸(𝑦𝑠𝑝𝑒𝑒𝑑, 𝑦̂𝑠𝑝𝑒𝑒𝑑) 

𝜆 = 1000 

4.8.7 Flow Synthesis Loss 

For blood flow field synthesis, we built a custom loss function incorporating the 

multi-scale structural similarity index (MSSSIM)87 and piecewise linear regression for 

each component of velocity and the speed.  We first define our piecewise linear 

regression function: 
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Given 1D vectors of inferred, 𝑥̂ , and ground truth, 𝑥 , values, solution of the normal 

equation yields coefficients defining the best-fit linear regression134:  For example: 

We first generate a matrix 𝐴 = [
1 𝑥1

⋮ ⋮
1 𝑥𝑁

] and a column vector 𝑥̂ = [
𝑥̂1

⋮
𝑥̂𝑁

]  

Solving (𝐴𝑇𝐴)−1𝐴𝑇𝑥̂ yields the coefficient matrix, 𝜃 = [
𝑚̂0

𝑚̂1
], such that 𝑚̂1𝑥 + 𝑚̂0 defines 

the least-squares best-fit line.  Given objective coefficients, 𝜃 = [
𝑚0

𝑚1
], the loss function 

takes the form of ∑(𝜃 − 𝜃)
2
.  Under ideal conditions, values of 𝑚̂0 = 0 and 𝑚̂1 = 1 mean 

𝑥̂ = 𝑥 . However, experimentally, objective values of 𝑚0 = 0, 𝑚1 = 1 do not necessary 

yield 𝑚̂0 = 0 and 𝑚̂1 = 1 and are dependent on training set composition and competing 

contributions from other component loss functions. 

In the case of severe class imbalance e.g., preponderance of low-velocity pixels of low 

clinical significance, piecewise-linear regression permits greater weighing of high-

magnitude pixels.  For piecewise-linear regression, we wish to regress such that: 

𝑥̂ = {
𝑚1𝑥,   |𝑥| ≥ 𝛼

𝑚2𝑥,   |𝑥| < 𝛼
; since this form is non-differentiable, we approximate it using a logistic 

function such that: 

𝑥̂ = 𝑚1𝑥 +
(𝑚2−𝑚1)(𝑥−𝛼)

1+𝑒−𝜎(𝑥−𝛼) +
(𝑚2−𝑚1)(𝑥+𝛼)(2+𝑒−𝜎(𝑥+𝛼))

1+𝑒−𝜎(𝑥+𝛼) , which we denote as 

𝑥̂ = 𝑚1𝑥 + (𝑚2 − 𝑚1) ∗ 𝑓1(𝑥) + (𝑚2 − 𝑚1) ∗ 𝑓2(𝑥) 

To solve the normal equation, we expand 𝐴 column-wise:   

𝐴 = [
1 𝑥1 𝑓1(𝑥1) 𝑓2(𝑥1)
⋮ ⋮ ⋮ ⋮
1 𝑥𝑁 𝑓1(𝑥𝑁) 𝑓2(𝑥𝑁)

] 
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Solving (𝐴𝑇𝐴)−1𝐴𝑇𝑥̂ yields the coefficient matrix, 𝜃 = [

𝑚̂0

𝑚̂1

𝑚̂2

𝑚̂3

], such that  

𝑚̂3𝑓2(𝑥) + 𝑚̂2𝑓1(𝑥) + 𝑚̂1𝑥 + 𝑚̂0  defines the piecewise least-squares best-fit line.  As 

before, we can thus set our loss function to be of the form ∑(𝜃 − 𝜃)
2
, where 

𝜃 = [

𝑚0

𝑚1
𝑚2
𝑚3

] contains our objective coefficients.  Note that each component of velocity 

requires its own linear regression.  For our experiments, we used the following 

hyperparameters: 

For objective coefficients, 𝑚0 = 0, 𝑚1 = 𝑚2 = 𝑚3 = 1.25 

For logistic function, 𝜎 = 10, 𝛼 = 0.3 

Thus, our flow loss function took the general form of: 

𝐹𝑙𝑜𝑤 𝐿𝑜𝑠𝑠 = ∑(1 − 𝑀𝑆𝑆𝑆𝐼𝑀(𝑦𝑖, 𝑦̂𝑖))

𝑐

𝑖

+ ∑(𝜃𝑖 − 𝜃𝑖)
2

  

Where 𝑐 comprises the row and column components of velocity and the speed.  We 

average the squared differences for the velocity components, and do not consider the 

negative term of the piecewise function for speed. 

4.8.8 Peak Left Ventricular Speed Loss 

Lastly, we composed an auxiliary loss function to optimize peak left ventricular 

speed in each frame (rather than over all pixels) to aid regression of LVOT peak pressure 

gradients.  In a given batch, we multiplied each frame’s inferred speed by the 

commensurate left ventricular ground truth masks and applied global 2D maxpooling to 
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solve for the peak left ventricular speeds.  We use weighted linear regression, such that, 

given vectors of inferred, 𝑥̂, and ground truth, 𝑥, values (with length equal to batch-size): 

𝐴 = [
1 𝑤1𝑥1

⋮ ⋮
1 𝑤𝑁𝑥𝑁

] , where 𝑤𝑖 is the ground truth peak left ventricular speed at given frame, 

giving greater weight to high-speed values.  We declare our objective coefficients 𝜃 =

[
𝑚0

𝑚1
], with 𝑚0 = 0, 𝑚1 = 2 

Thus, our loss function is: 

𝑃𝑒𝑎𝑘 𝑆𝑝𝑒𝑒𝑑 𝐿𝑜𝑠𝑠 = ∑(𝜃 − 𝜃)
2

+ 𝑀𝑆𝐸(𝑦𝑖, 𝑦̂𝑖) 

4.8.9 Loss Function Weighing 

For training, we gave scaled each component loss function such that their values 

were of similar scale.  We weighed segmentation loss, localization loss, flow synthesis 

loss, and peak speed loss by factors of 10, 10, 0.1, and 0.1, respectively.  Our final loss 

function is, therefore: 

𝐿𝑜𝑠𝑠 = 10(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 + 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠) + 0.1(𝐹𝑙𝑜𝑤 𝐿𝑜𝑠𝑠

+ 𝑃𝑒𝑎𝑘 𝑆𝑝𝑒𝑒𝑑 𝐿𝑜𝑠𝑠) 
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4.9 Supplemental Figures and Videos 

 

Supplemental Figure 3: Details of Triton-Net Architecture.  Triton-Net is a deep multi-
prong convolutional neural network which broadly comprises three parts.  1) A modified 
3D-UNet architecture generates spatiotemporal feature maps from anatomic cine SSFP 
images.  2) These feature maps are condensed to a single timepoint and are scaled by 
the input cine SSFP series’ spatiotemporal resolution.  3) The scaled feature maps 
trifurcate into three shallow, sub-convolutional neural network output prongs based on the 
SRNet architecture to generate inferences for multi-chamber segmentation, synthesis of 
blood flow field, and multi-landmark localization.   
 
Supplemental Video 1: Multi-chamber Segmentation Over the Cardiac Cycle.  Exemplar 
multi-chamber cardiac segmentation from a morphologically normal 41-year old female.  
Source 3-chamber cine SSFP images (left column), Triton-Net inferences (center 
column), and ground truth (right column), display segmentations over the entire cardiac 
cycle.  (Bottom) The corresponding area of each color-matched inferred (-) and ground 
truth (x) segmentation is shown the cardiac cycle. 
 
Supplemental Video 2: Intracardiac Blood Flow Field Synthesis in a Morphologically-
Normal Patient.  Exemplar blood flow fields from a 69 year-old male with normal cardiac 
function depicting source 3-chamber cine SSFP images (left column), Triton-Net 
synthesized blood flow fields (center column), and ground truth flow fields derived from 
4D Flow MRI (right column).  Systolic outflow, diastolic E-wave, and diastolic A-wave can 
all be visualized in inferred and ground truth flow fields. 
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Supplemental Video 3: Intracardiac Blood Flow Field Synthesis in a Patient with 
Hypertrophic Obstructive Cardiomyopathy.  Exemplar blood flow fields from a 66 year-old 
male with hypertrophic obstructive cardiomyopathy depicting source 3-chamber cine 
SSFP images (left column), Triton-Net synthesized blood flow fields (center column), and 
ground truth flow fields derived from 4D Flow MRI (right column).  Accelerated systolic 
outflow is seen in the obstructed left ventricular outflow tract in both inferred and ground 
truth flow fields.   
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Chapter 5: Deep Learning Synthetic Strain: Quantitative Assessment of Regional 
Wall Motion Abnormalities 
 

5.1 Abstract 

Background 

Assessment of regional myocardial function in MRI is an essential component of 

diagnosing ischemic heart disease but is currently a qualitative visual task. Deep learning 

algorithms have potential to learn biomechanical tissue properties from image data, which 

might be used to detect disease.  

Purpose 

To assess the feasibility of a novel algorithm, which we call deep learning synthetic 

strain (DLSS), to infer myocardial velocity from cine SSFP images and detect wall motion 

abnormalities in patients with ischemic heart disease.  

Methods 

DLSS was developed using a retrospectively curated data set of 223 cardiac MRIs 

including cine SSFP images and 4D Flow velocity data. To establish normal ranges for 

DLSS, segmental peak radial strain was calculated from 40 subjects (age 41 ± 17 years, 

10 female). Performance of DLSS was then evaluated on MRIs from a separate 

retrospective cohort of 53 patients with catheter angiography-proven coronary artery 

disease, which were independently evaluated for wall motion abnormalities by four 

cardiothoracic radiologists. The consensus of four readers was considered ground truth 

for evaluation of DLSS. Statistical analyses included Cohen’s  and area under the 

receiver operating characteristic (AUROC) curves. 

Results 
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Median peak segmental radial strain in normal subjects was 38% (IQR: 30 – 48%).  

Amongst patients with ischemic heart disease (846 segments from 53 patients, age 61 ± 

12 years, 12 female), Cohen’s  between four cardiothoracic readers ranged between 

0.60 – 0.78.  AUROC for DLSS detection of segmental wall motion abnormalities was 

0.87.  Using a fixed 30% threshold for abnormal peak radial strain, sensitivity, specificity, 

and accuracy for detection of segmental wall motion abnormalities were 84%, 83%, and 

84%, respectively. 

Conclusion 

Deep learning can be used to infer myocardial velocity from routine cine SSFP 

images. DLSS discriminates normal from abnormal myocardial contraction in patients 

with ischemic heart disease with performance comparable to subspecialty radiologists. 

5.2 Summary and Key Results 

Summary 

A deep learning algorithm can infer myocardial velocities and quantify strain from 

cine SSFP images to detect wall motion abnormalities in patients with ischemic heart 

disease with performance comparable to subspecialty radiologists. 

Key Results 

• Normal ranges for segmental myocardial strain and strain rate for the algorithm 

were established in 40 normal subjects. 

• Subspecialty radiologists showed moderate-to-substantial agreement for detection 

of wall motion abnormalities in 53 patients with ischemic heart disease (Cohen’s 

k: 0.60-0.78) 
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• Relative to the consensus of four subspecialty radiologists, the algorithm detected 

wall motion abnormalities in patients with ischemic heart disease with AUROC of 

0.87, and accuracy, sensitivity, and specificity of 84%, 84%, and 83%, respectively. 

5.3 Introduction 

Cardiac MRI is the clinical reference standard for non-invasive evaluation of 

cardiac function due to its ability to completely visualize the heart without ionizing 

radiation and without dependence on sonographic windows9,135,136. Ventricular volumetry 

and ejection fraction remain the principal measurements clinically used to assess 

ventricular function, but do not provide information regarding regional function. Clinical 

assessment of regional myocardial function (4–6) largely remains a subjective visual task 

by expert readers13,20,44–46, and provides important cues for diagnosis of multiple 

diseases137–139 including ischemic heart disease.  

Strain imaging techniques, first described in the 1980s140, have potential to provide 

granular measurements of regional myocardial function. Multiple methods have been 

developed over the last several decades, including myocardial tagging140, DENSE141, 

SENC(14)(14), HARP143 and phase-contrast velocity mapping144,145. Each of these 

however requires acquisition of a dedicated imaging sequence and considerable post-

processing analysis. More recently, feature tracking strain methods have emerged as a 

method for retrospective analysis of strain from cine SSFP images51,52, with multiple 

studies showing potential value of measurements of global strain. However, while 

echocardiographic studies have confirmed the relationship between regional speckle 

tracking strain and visual grades of myocardial function146 or myocardial scar147,148, 

feature tracking methods currently lack this evidence base. The lack of such data may be 
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due to limited reliability of current feature tracking methods for assessing regional wall 

motion148 with widely varying ranges in normal subjects149 and poor agreement with 

established strain imaging techniques150,151. 

Deep learning methods, specifically convolutional neural networks (CNNs), have 

emerged as a powerful technology for the analysis of biomedical image data, and have 

the capability of rapidly performing computational tasks. Applications of this technology 

in cardiac MRI include image classification152, localization62,66, segmentation10,153,154, and 

image enhancement125,155. Recent groups have proposed application of deep learning 

methods to simplify the analysis of dedicated strain imaging techniques156,157. However, 

a rate-limiting factor for such techniques remains the need for a separate acquisition of 

strain image data.  

We thus sought to develop an alternative strategy, which we call Deep Learning 

Synthetic Strain (DLSS) to enable the measurement of myocardial wall motion from cine 

SSFP images that are routinely acquired in clinical cardiac MRI examinations. We apply 

this new approach to determine normal ranges for strain and strain rate to a population 

of normal subjects and use this to establish thresholds for abnormal myocardial 

contraction. Finally, we evaluated the ability of DLSS to identify regional wall motion 

abnormalities in patients with catheter-angiography proven coronary artery disease, 

assessing performance against a consensus of four cardiothoracic radiologist readers. 

5.4 Materials and Methods 

Our study was performed with institutional review board (IRB) approval including 

waiver of informed consent for development of the algorithm and assessment on 

retrospective patient populations.  Written informed consent was additionally obtained 
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from normal volunteers according to a separate IRB protocol for MRI scanning of 

volunteer subjects. 

5.4.1 Algorithm Training Data 

To establish data for deep learning algorithm development, we retrospectively 

collected a convenience sample of 223 cardiac MRI exams from 219 patients, which 

included short-axis cine SSFP and 4D Flow as part of routine clinical exams at our 

institution between November 2017 to May 2021.  4D Flow MRI images were corrected 

for phase error (Arterys Cardio AI; San Francisco, CA). 4D Flow velocities were then 

linearly resampled and co-registered with cine SSFP images by the lead author using 

custom in-house software developed in Python.  Left ventricular myocardial 

segmentations were obtained using a previously developed, commercially available 

neural network (Cardio AI, Arterys; San Francisco, CA) and incorporated into algorithm 

training. 

Data was divided into training and validation data sets by exam. 90% of exams 

(602 short-axis slices from 201 exams) were allocated to the training set and 10% of 

exams (65 slices from 22 exams) were allocated to the validation set for CNN 

optimization.  Training data was augmented by in-plane rotation at 15-degree increments 

and variable adjustments of image contrast including intensity thresholding and 

normalization.   

5.4.2 Neural Network Architecture 

We designed a novel CNN architecture to infer spatiotemporal myocardial velocity 

fields from short axis cine SSFP images (Figure 19).  The CNN takes images from the 

entire cardiac cycle and returns 1) the in-plane myocardial velocity field and 2) myocardial 
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segmentations for each time frame, which are post-processed to yield strain rate and 

strain fields. These are further decomposed into radial and circumferential components.  

Additional details regarding CNN architecture and data post-processing can be found in 

the Supporting Information.   

 

Figure 19: Overview of the deep learning synthetic strain (DLSS) approach. A CNN was 
trained to infer myocardial velocities from a series of cine SSFP images. Training data 
included co-registered myocardial velocities from cardiac MRIs from 219 patients who 
underwent 4D Flow as part of their clinical exam. The inferred myocardial velocities are 
then used to calculate myocardial strain rate and strain maps, which are superimposed 
on the source SSFP images for quantification and visual interpretation.  

5.4.3 Establishment of Segmental and Global Normal Ranges 

To establish segmental normal ranges for the DLSS technique, short-axis cine 

SSFP series were obtained from 21 healthy volunteers and a retrospective population of 

19 patients with normal cardiac MRI (referred for iron deposition or arrhythmogenic right 

ventricular dysplasia/cardiomyopathy) from February 2015 and October 2021. Normal 

cardiac MRI was defined as normal ventricular volume, function, and absence of delayed 

enhancement. Images were processed with DLSS to yield segmental and global strain 

measurements.   
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5.4.4 Assessment of Wall Motion Abnormalities in Patients with Ischemic Heart 

Disease 

To assess the ability of DLSS to identify segmental wall motion abnormalities in an 

independent population, short-axis cine SSFP images from 53 patients with catheter 

angiography-proven ischemic heart disease were retrospectively curated between 

September 2014 and December 2020.  Strain was calculated using DLSS and partitioned 

into 16 AHA segments, excluding the apical segment, for a total of 846 segments. 

To establish a reference standard for the presence of wall motion abnormalities, 

four board-certified cardiothoracic radiologists (blinded for peer review) graded each 

segment on a 1-4 scale as either 1-normal, 2-hypokinetic, 3-akinetic, or 4-dyskinetic.  

Post-fellowship experience of each radiologist was 14 years, 2 years, 2 years, and 3 

years, respectively. Radiologists were solely provided short axis cine SSFP images and 

were blinded to all other clinical and demographic information.  Because few dyskinetic 

segments were identified in this population, dyskinetic and akinetic segments were pooled 

for analysis. Segmental wall motion scores for all four radiologists were averaged to serve 

as consensus ground truth for assessment of DLSS.  

5.4.5 Data Acquisition 

MRI exams were performed with either a 1.5-T MRI scanner (Signa HDxt; GE 

Healthcare) or a 3.0-T MRI scanner (Discovery MR750 DV26; GE Healthcare).  All exams 

employed a standard 32-channel phased-array coil. 4D Flow MRI was performed at 3.0-

T following administration of intravenous gadolinium contrast (gadobenate dimeglumine, 

0.15 mmol/kg) and employed respiratory self-navigation, compressed-sensing, and 
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parallel imaging reconstruction127.  Additional scanner parameters are listed in 

Supplemental Table 1. 

5.4.6 Statistical Analysis 

To assess inter-rater agreement between subspecialty cardiothoracic radiologists 

for grading of wall motion abnormalities, we calculated the Cohen’s kappa () coefficient 

and intra-class correlation coefficient (ICC)158. To evaluate DLSS algorithm performance 

for detecting wall motion abnormalities, we generated receiver-operating characteristic 

(ROC) curves and reported the area under the ROC curve (AUROC).  Thresholds for 

discriminating normal from abnormal myocardial wall motion were defined based on the 

Youden index159. Thresholds for akinesis and dyskinesis were defined as 50% of this 

threshold. We also report accuracy, sensitivity, and specificity of the DLSS algorithm for 

detecting abnormal wall motion. 

Statistical analysis was performed using Python (version 3.7, Python Software 

Foundation, Wilmington, Del), NumPy, SciPy, scikit-learn, pingouin, and Excel (Microsoft, 

Redmond, Wash). k values between 0.41 – 0.60 and between 0.61 – 0.80 denoted 

moderate and substantial agreement, respectively160.  ICC values above 0.75 were 

considered excellent161.   

5.5 Results 

5.5.1 Ranges of Segmental Strain in Normal Subjects 

To establish normal ranges for segmental myocardial strain, we applied DLSS to 

analyze cine SSFP images from a cohort of 40 normal subjects comprised of two groups 

with no known cardiovascular disease: (a) 21 healthy volunteers and (b) 19 patients with 

normal cardiac MRI. Demographic parameters are summarized in Table 11.  
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Table 11: Patient Demographics. Age, BMI, BSA, and Heart Rate presented as sample 
means ± standard deviation 

 

DLSS peak radial and circumferential strain for each segment are listed in Table 

12.  Peak radial strain for each segment is shown in figure 20. Broadly, we note lower 

median peak radial strain in the anterior, anteroseptal, and inferoseptal segments.  Peak 

radial strain was greater in apical segments. In contrast, we observed less variability in 

segmental peak circumferential strain across segments. 

Table 12: DLSS peak strain in volunteers and patients without known cardiac disease.  
Data for all myocardial segments are presented as population median, values in 
parentheses are the interquartile range. 
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In the 21 healthy volunteers, the median peak radial strain averaged over all 16 

AHA segments, was 35% (IQR: 27 – 45%). Median peak GRS was 38% (IQR: 34 – 40%). 

We observed similar values in an independent cohort of 19 patients with normal cardiac 

MRI.  The median peak radial strain was 41% (IQR: 33 – 49%) and the median GRS was 

40% (IQR: 38 – 47%).  Pooled median peak radial strain was 38% (IQR: 30 – 48%) and 

median GRS 39% (36 – 44%).   

 

Figure 20: Distribution of Peak Radial Strain in Normal Volunteers and Clinically-Normal 
Patients. DLSS estimates of radial strain were computed in 21 normal volunteers and 19 
patients with normal cardiac MRIs, who were referred for screening for iron deposition, 
family history of ARVD/C, or hemoglobinopathy. Both populations show similar 
distributions of DLSS-estimated peak radial strain and provide a reference point for 
identification of reduced regional wall motion. 

We observed similar trends for peak circumferential strain.  For the 21 healthy 

volunteers, median peak circumferential strain averaged over all 16 AHA segments was 

-35% (IQR: -44 to -27%) and median peak GCS was -36% (IQR: -40 to -32%).  Likewise, 

for the 19 patients with normal cardiac MRI, median peak circumferential strain was -41% 

(IQR: -49 to -33%) and median peak GCS was -40% (IQR: -47 to -38%).  Pooled median 

peak circumferential strain was -38% (IQR: -47 to -30%) and median GCS -38% (-43 to -

35%).   
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5.5.2 Reader Agreement for Ischemic Wall Motion Abnormalities 

Table 13 shows the interobserver agreement as assessed by Cohen’s  between 

the four cardiothoracic radiologists.  For classification of normal vs abnormal segments, 

Cohen’s  ranged from 0.60 – 0.78, indicating moderate-to-substantial interobserver 

agreement.  ICC(2,k) was 0.96 (95% CI: 0.93, 0.98).  For classification of normal vs 

hypokinetic vs akinetic/dyskinetic segments, Cohen’s  ranged from 0.52 – 0.64, 

indicating moderate-to-substantial interobserver agreement.  ICC(2,k) was 0.97 (95% CI: 

0.95 – 0.98). 

Table 13: Inter-rater Cohen’s kappa for identification of segmental wall motion 
abnormalities 

 

5.5.3 Deep Learning Detection of Wall Motion Abnormalities 

In the schematic diagram of the implementation of the deep learning synthetic 

strain algorithm (Figure 19), we show an exemplar case of a 58-year-old male patient with 

a normal cardiac MRI, who initially presented with fatigue and dyspnea on exertion. The 
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patient was subsequently found to have no obstructive coronary artery disease on 

coronary artery catheterization. DLSS radial strain rate curves were relatively uniform 

across all myocardial segments with peak segmental strain rate ranging from 1.47 – 2.27 

Hz.  Similarly, DLSS radial strain curves were also relatively uniform across all myocardial 

segments with peak segmental values ranging from 29 – 47%. 

In contrast, a 66-year-old male with a history of coronary artery disease and ST-

segment elevated myocardial infarction presented with intermittent chest pressure and 

underwent cardiac MRI 3 days after acute presentation (Figure 21).   

 

Figure 21: Exemplar case of a patient with catheter angiogram-proven LAD occlusion. 
There is focal wall motion abnormality of the anteroseptal (blue arrow) and inferoseptal 
(purple arrow) walls with decreased peak radial strain and strain rate. Corresponding 
strain and strain rate curves show the severity of this abnormality relative to the other 
myocardial segments in the same slice. Following intravenous contrast administration, 
the septal wall shows a matching perfusion defect and transmural delayed enhancement, 
indicating myocardial ischemia and infarction. 

Cardiac MRI acquired at 1.5 T showed reduced global function (LVEF 25%). DLSS 

showed markedly reduced strain rate and strain in the basal anteroseptal and inferoseptal 

segments in addition to multiple mid-ventricular and apical segments (not shown) 

corresponding to the left anterior descending (LAD) territory.  Peak radial strain of the 
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anteroseptal and inferoseptal segments were 8.4% and -2.2%, respectively, far below the 

normal range.  Peak radial strain of the remaining segments ranged from 32 – 42%, within 

the normal range.  Following administration of intravenous contrast, there is a perfusion 

defect and transmural delayed enhancement in the septal wall.  Catheter angiography 

confirmed a complete occlusion of the mid LAD. 

ROC curves for DLSS detection of segmental wall motion abnormalities are shown 

in Figure 22.  Using fixed thresholds of peak radial strain to identify wall motion 

abnormalities yielded AUROC = 0.87 (Figure 22A).   

 

Figure 22: Performance of DLSS for detecting segmental wall motion abnormalities. ROC 
curves for discrimination of normal from abnormal (hypokinetic, akinetic, dyskinetic), 
relative to the consensus of four subspecialty readers is shown in A. Orange line shows 
classification performance of DLSS when using fixed peak radial strain values as cutoffs 
(AUROC = 0.87). Black diamond marks the location of the fixed peak radial strain 
threshold of 30% on the ROC curve. Dashed blue line shows classification performance 
of DLSS when using peak radial strain percentiles as cutoffs (AUROC = 0.88). 
Performance of each reader relative to the average of the other readers are shown in the 
colored dots. Confusion matrix for the performance of DLSS for discriminating wall motion 
abnormalities, relative to the average of four readers is shown in B. 

Similarly, using segment-specific percentile thresholds of peak strain yielded 

AUROC = 0.88.  At the Youden index, which corresponded to peak radial strain of 30%, 

DLSS had 84% sensitivity, 83% specificity, and 84% accuracy (Table 14).  In comparison, 
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expert reader performance relative to the consensus of the remaining three readers 

ranged from 84 – 97% for sensitivity, 78 – 90% for specificity, and 85 – 93% for accuracy.   

Table 14: DLSS performance using fixed peak strain cutoffs.  30% peak radial strain 
corresponds to 25th percentile of normal population peak radial strain measurements.  -
30% peak circumferential strain corresponds to 75th percentile of normal population peak 
circumferential strain measurements. 

 

A confusion matrix is shown in Figure 22B.  For discrimination of hypokinetic vs 

akinetic/dyskinetic segments using a peak radial strain threshold of 15%, DLSS had 86% 

sensitivity, 61% specificity, and 66% accuracy.   Peak circumferential strain was generally 

less reliable for detection of wall motion abnormalities relative to peak radial strain.  For 

identification of any wall motion abnormalities, DLSS-derived peak circumferential strain 

had 80% sensitivity, 73% specificity, and 78% accuracy.  For discrimination of hypokinetic 

vs akinetic/dyskinetic segments, fixed peak circumferential strain cutoffs yielded 65% 

sensitivity, 67% specificity, and 67% accuracy. 
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5.5.4 Potential Applications of DLSS Beyond Ischemic Heart Disease 

To further assess the potential of DLSS for detecting abnormal wall motion beyond 

the cohort of patients with ischemic heart disease, we executed the algorithm on two 

additional patients. 

A 55-year-old male who presented with cardiac arrest was diagnosed with viral 

myocarditis 4 months prior to cardiac MRI. The patient was referred to MRI to assess scar 

for potential implantable cardioverter defibrillator placement, and initially assessed to 

have normal cardiac MRI with no delayed enhancement or edema. However, DLSS 

detected global hypokinesis with marked hypokinesis at the mid anteroseptal and anterior 

segments with peak radial strain 15% and 19%, respectively (Figure 23).  

 

Figure 23: Patient with cardiac arrest 4 months prior with viral prodrome and presumed 
myocarditis with negative myocardial biopsy. There is hypokinesis of the mid anteroseptal 
(blue arrow) and anterior (green arrow) wall evident on DLSS-derived peak radial strain 
rate and strain maps. Following administration of intravenous contrast, there is only subtle 
mesocardial enhancement of the mid anteroseptal wall. Without DLSS strain maps, this 
was initially interpreted clinically as a normal cardiac MRI.  Peak segmental radial strain 
shown in bullseye plot.   
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Subsequent review of the delayed enhancement images showed subtle 

mesocardial delayed enhancement at the mid anteroseptal wall. When requested to 

perform a second review of short-axis cine SSFP images from this patient without clinical 

history, readers 1, 2, and 3 interpreted the mid ventricular slices as globally hypokinetic 

without perceiving additional focal wall motion abnormality. Reader 4 noted additional 

focal hypokinesis of the mid anterior wall, corresponding with reduced strain detected by 

DLSS. 

A 54-year-old male who presented with cardiac arrest was referred for cardiac MRI 

to evaluate for myocardial scar and viability. The cardiac MRI was initially interpreted with 

no wall motion abnormalities or delayed enhancement.  Catheter angiography was also 

unremarkable.  However, DLSS detected marked dissociation between contraction of the 

septal and lateral walls (Figure 24).   
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Figure 24: Ventricular dyssynchrony with dissociation of contraction of the septal and 
lateral walls due to left bundle branch block, visualized and quantified with DLSS. In the 
top row early in the cardiac cycle, while the anterolateral wall (yellow arrow) contracts, 
the inferoseptal wall (purple arrow) relaxes. In the bottom row, the inferoseptal wall then 
contracts while the anterolateral wall relaxes. Strain rate curves highlight the dissociation 
between these segments. EKG from this patients showed a left bundle branch block. 

While the lateral wall contracted, the septal wall showed dyssynchronous 

relaxation with negative radial strain rate; while the lateral wall relaxed, the septal wall 

showed dyssynchronous contraction with positive radial strain rate.  ECG confirmed the 

presence of a complete left bundle branch block (LBBB), which explains the pattern of 

dyssynchronous myocardial wall motion.  

5.6 Discussion 

In this study, we show the potential of a deep learning algorithm to quantify strain 

and strain rate from routine short-axis cine SSFP MRI acquired at both 1.5 T and 3.0 T.  

To establish normal ranges for segmental radial and circumferential strain, we analyzed 

segmental strain in 16  

AHA segments in 40 subjects without known cardiac disease.  We then showed the 



 
 

104 
 

potential of the deep learning algorithm to detect wall motion abnormalities in 53 patients 

with catheter angiography-proven ischemic heart disease, based on thresholds of 

segmental myocardial strain.  We observed high agreement (Cohen’s  0.60–0.78) 

between four expert subspecialty radiologists for visual assessment of segmental wall 

motion abnormalities, who formed a consensus ground truth for evaluation of the deep 

learning algorithm.  These values are comparable or slightly higher than those reported 

in previous studies which assessed expert interobserver agreement for assessment of 

wall motion abnormalities162,163.  DLSS to identified wall motion abnormalities with 

performance comparable to expert readers, with AUROC of 0.87 and accuracy of 84%.  

We further demonstrated the clinical potential of DLSS through visual analysis of two 

example cases of viral myocarditis and LBBB. 

We have demonstrated the ability of DLSS to automatically quantify and detect 

regional wall motion abnormalities at a segmental level.  Additionally, our normal ranges 

of strain, are comparable to those of previous studies, which assessed performance of 

traditional strain quantification methods.  A large meta-analysis comparing DENSE, 

feature tracking, and feature tracking found mean global radial strain in normal subjects 

to be 24.3% (95% CI: 16.2 – 32.3%), 34.1% (95% CI: 28.5 – 39.7%), and 47.3% (95% 

CI: 43.6 – 51.0%), respectively 149.  Given that DLSS and feature tracking both use cine 

SSFP images as inputs, it is perhaps unsurprising that they have very similar normal 

ranges of strain.  However, feature tracking requires expert manual segmentation of the 

endocardium and epicardium164 and is known to suffer from considerable inter-vendor 

variability52. Our DLSS method requires no segmentations or manual interventions, 

permitting rapid and user-independent strain measurements.  Additionally, while feature 
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tracking has shown good reproducibility and interobserver agreement for global metrics 

of strain, it is less reliable for segmental metrics of strain165,166.  We hypothesize that 

DLSS, trained using pixelwise velocity fields derived from 4D Flow MRI, is better equipped 

to infer segmental myocardial strain. 

Several limitations should be considered. All training data were acquired at 3.0-T 

using an MRI scanner from a single vendor at our institution, which may be considered a 

limitation.  However, we established normal ranges for the DLSS algorithm and evaluated 

its performance in a relatively broad population of normal subjects and clinical patients 

from a patients scanned on multiple 3.0 T and 1.5 T MRIs. This is evidence of that the 

method exhibited broader generalizability than might be expected. Prior works have 

similarly observed broader generalizability of image segmentation10and image 

enhancement125 algorithms. Further work may be necessary to show broad 

generalizability to MRIs from multiple vendors.  Additionally, we did not directly compare 

head-to-head performance of DLSS performance against other retrospective methods of 

assessing myocardial strain in this study. Although we did not compare to existing feature 

tracking methods, we felt it was more important to benchmark against expert radiologists, 

which to date has not been performed for other strain methods. Finally, we have only 

shown results for using DLSS to compute in-plane strain in short-axis cine SSFP images.  

Future work may include extension of the deep learning approach to long axis images for 

automated measurement of regional longitudinal strain and extension to the right 

ventricle. 

In conclusion, computation of myocardial strain from cardiac MRI has traditionally 

required either dedicated acquisitions of strain imaging pulse sequences and/or 
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significant manual post-processing.  Furthermore, we observe that there have been few 

comparisons between existing methods and the clinical reference standard of visual 

assessment of focal wall motion abnormalities.  DLSS is unique from previous 

approaches in that no fiducial markers or manual segmentations are required—instead, 

it performs the complex visual tasks of inferring myocardial velocity solely from anatomic 

image data over an entire cardiac cycle.  DLSS performs fully-automated analysis of 

myocardial strain from historical imaging data, and may enable larger scale studies to 

study regional myocardial strain in many other disease states beyond ischemic heart 

disease. 
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5.8 Appendix 
 

5.8.1 DLSS Architecture 

The DLSS CNN is a novel, bifurcated architecture designed by the lead-author to 

synthesize spatiotemporal myocardial velocity fields from short-axis cine SSFP images. 

Broadly, the CNN architecture comprises an encoder-decoder block based on the 3D 

UNet61 which bifurcates into branches comprising a squeeze-excitation module133 

followed by 3D SRNet84 block to generate myocardial segmentations and the velocity 

field.  The encoder-decoder block receives as input 20 time frames with shape 192 x 192 

pixels, which encompass the entire cardiac cycle.  To integrate the periodic nature of the 

cardiac cycle into our CNN architecture, we introduce periodic 3D convolutional layers 

(pConv3D), which entail padding the temporal dimension with feature maps, rather than 

zero-padding, prior to convolution.  For example, given a 3x3x3 convolutional kernel, we 

concatenate the feature maps from the 20th timepoint upstream of the feature maps from 

the 1st timepoint; likewise, we concatenate the feature maps from the 1st timepoint 

downstream of the feature maps from the 20th timepoint. Following each pConv3D layer, 

we employ Batch Normalization (BN) 167.  To account for varying temporal spacing 

between time frames, we multiply the output feature map of the encoder-decoder block 

by the patient heart rate.  We then bifurcate our CNN using two squeeze-excitation blocks 

(SE Blocks) 133 followed by periodic 3D SRNet blocks (pSR Blocks) 84.  The first branch 

generates segmentations of the myocardium, and the second branch generates the 

velocity field.  We then multiply these intermediate branches to obtain the myocardial 

velocity field.  Subsequently, the DLSS CNN internally subtracts any pixelwise net 
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displacement over the cardiac cycle to yield the corrected myocardial velocity field 

(Myocardial Correction Block).   

5.8.2 Neural Network Training 

We trained our DLSS CNN for 300 epochs using the Adam optimizer with a 

learning rate of 3e-5.  For training, we employed an Oracle Cloud virtual machine 

equipped with eight A100 graphics cards with 40 GB of VRAM (Nvidia, Santa Clara, 

California).  We used TensorFlow-GPU 2.4.3 (Google, Mountain View, California) with 

mixed-precision for all deep-learning experiments. 

5.8.3 Loss Functions 

For the following mathematical expressions, we denote each prong’s output 

inference as 𝑦̂ and its corresponding ground truth as 𝑦. 

5.8.4 Segmentation Loss 

For cardiac chamber segmentation, we employed the Dice loss function with a 

smoothing factor of 181. 

5.8.5 Velocity Synthesis Loss 

For myocardial velocity field synthesis, we built a custom loss function 

incorporating the structural similarity index (SSIM)87 at each timepoint, piecewise linear 

regression for each component of velocity, and physical constraints.  We first define our 

piecewise linear regression function: 

Given 1D vectors of inferred, 𝑥̂ , and ground truth, 𝑥 , values, solution of the normal 

equation yields coefficients defining the best-fit linear regression134:  For example: 

We first generate a matrix 𝐴 = [
1 𝑥1

⋮ ⋮
1 𝑥𝑁

] and a column vector 𝑥̂ = [
𝑥̂1

⋮
𝑥̂𝑁

]  
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Solving (𝐴𝑇𝐴)−1𝐴𝑇𝑥̂ yields the coefficient matrix, 𝜃 = [
𝑚̂0

𝑚̂1
], such that 𝑚̂1𝑥 + 𝑚̂0 defines 

the least-squares best-fit line.  Given objective coefficients, 𝜃 = [
𝑚0

𝑚1
], the loss function 

takes the form of ∑(𝜃 − 𝜃)
2
.  We set our objective coefficient matrix to be 𝜃 = [

0
1

] such 

that we approach 𝑥̂ = 𝑥. 

We then incorporate two physical constraints into our loss function: 1) net-zero 

displacement over the cardiac cycle, and 2) net-zero strain over the cardiac cycle.  We 

define pixelwise net displacement as: 

𝑑𝑖 =  ∑ 𝑣𝑖

𝑇

0

(𝑡) 

Where 𝑖 denotes direction, 𝑑 is displacement over the cardiac cycle, 𝑣 is velocity, 𝑡 is 

time, and 𝑇  is the total number of time frames.  We enforce net-zero displacement, 

summed over all pixels, via: 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝐿𝑜𝑠𝑠 =  ∑|𝑑𝑖| 

To approximate strain, we apply the Sobel operator to our net displacement.  We enforce 

non-zero net strain over the cardiac cycle, summed over all pixels, via: 

𝑆𝑡𝑟𝑎𝑖𝑛 𝐿𝑜𝑠𝑠 =  ∑|𝜀𝑖| 

Where 𝑖 denotes direction and 𝜀 is net strain over the cardiac cycle 

Thus, our velocity loss function took the general form of: 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐿𝑜𝑠𝑠 = 𝑎1 ∑|𝑑𝑖| +  𝑎2 ∑|𝜀𝑖| + 𝑎3 ∑(1 − 𝑆𝑆𝐼𝑀(𝑦𝑖, 𝑦̂𝑖))

𝑐

𝑖

+ 𝑎4 ∑(𝜃𝑖 − 𝜃𝑖)
2

𝑐

𝑖

  

Where 𝑐 comprises the row and column components of velocity, with weighing factors: 
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 𝑎1 = 𝑎2 = 1.356 ∗ 10−6, 𝑎3 = 0.05, 𝑎4 = 10−2 .  Note that 𝑎1  and 𝑎2  are equal to 

1

𝑅𝑜𝑤𝑠∗𝐶𝑜𝑙𝑢𝑚𝑛𝑠∗𝑇𝑖𝑚𝑒
, where 𝑅𝑜𝑤𝑠 are the number of pixels in the row dimension, 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 

are the number of pixels in the column dimension, and 𝑇𝑖𝑚𝑒 are the number of time 

frames. 

5.8.6 Loss Function Weighing 

For training, we scaled each component loss function such that their values were 

of similar scale.  We weighed segmentation loss and velocity synthesis loss by factors of 

1 and 0.05, respectively.  Our final loss function is, therefore: 

𝐿𝑜𝑠𝑠 = 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 + 0.05(𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝐿𝑜𝑠𝑠) 

5.8.7 Calculation of Strain-Rate and Strain 

Myocardial velocity (𝑣⃗), myocardial strain rate (𝑆𝑅), and myocardial strain (𝜀) are 

related in the following manner168: 

(1) 𝑆𝑅(𝑡) =  
𝜕𝑣⃗𝑥(𝑡)

𝜕𝑥
 

(2) 𝜀(𝑡) = ∫ 𝑆𝑅 𝑑𝑡

𝑡

𝑡0

 

Where 𝑥  is the direction of interest e.g., radial or circumferential, 𝑡  is an arbitrary 

timepoint, and 𝑡0 is the end-diastolic timepoint.  Solving equations (1) and (2) numerically 

using second-order finite differences and Riemann sums, respectively, yielded strain rate 

and strain fields, which were then averaged over each AHA segment169.  Global radial 

strain (GRS) represents the average of all 16 non-apex AHA segments; GRS was not 

reported for acquisitions missing any segment. 
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5.9 Supplemental Tables, Figures, and Videos 
 
Supplemental Table 1: Data for short axis cine SSFP parameters presented as means 
with ranges in parentheses. 

 
 

 
Supplemental Figure 4: Details of the DLSS CNN Architecture.  The DLSS CNN is a 
deep multi-prong convolutional neural network which synthesizes myocardial velocity 
fields from input cine SSFP images.  Refer to Supporting Information Text for in-depth 
details. 

Supplemental Video 4: Overview of the deep learning synthetic strain (DLSS) approach. 
A CNN was trained to infer myocardial velocities from a series of cine SSFP images. 
Training data included co-registered myocardial velocities from cardiac MRIs from 219 
patients who underwent 4D Flow as part of their clinical exam. The inferred myocardial 
velocities are then used to calculate myocardial strain rate and strain maps, which are 
superimposed on the source SSFP images for quantification and visual interpretation. 

Supplemental Video 5: Exemplar case of a patient with catheter angiogram-proven LAD 
occlusion. There is focal wall motion abnormality of the anteroseptal (blue arrow) and 
inferoseptal (purple arrow) walls with decreased peak radial strain and strain rate. 
Corresponding strain and strain rate curves show the severity of this abnormality relative 
to the other myocardial segments in the same slice. Following intravenous contrast 
administration, the septal wall shows a matching perfusion defect and transmural delayed 
enhancement, indicating myocardial ischemia and infarction. 
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Supplemental Video 6: Patient with cardiac arrest 4 months prior with viral prodrome 
and presumed myocarditis with negative myocardial biopsy. There is hypokinesis of the 
mid anteroseptal (blue arrow) and anterior (green arrow) wall evident on DLSS-derived 
peak radial strain rate and strain maps. Following administration of intravenous contrast, 
there is only subtle mesocardial enhancement of the mid anteroseptal wall. Without DLSS 
strain maps, this was initially interpreted clinically as a normal cardiac MRI.   

Supplemental Video 7: Ventricular dyssynchrony with dissociation of contraction of the 
septal and lateral walls due to left bundle branch block, visualized and quantified with 
DLSS. Early in the cardiac cycle, while the anterolateral wall contracts, the inferoseptal 
wall relaxes. Strain rate curves highlight the dissociation between these segments. 
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Chapter 6. Conclusions and Future Directions 

6.1 Summary 

With this dissertation, I have shown that deep learning can perform image 

synthesis for cardiac MRI.  Additionally, I have demonstrated the necessary CNN 

architectural modifications required to progressively synthesize scalar fields, static vector 

fields, spatiotemporal vector fields, and finally spatiotemporal tensor fields.   

In my first chapter, I hypothesized that existing CNNs, commonly used for simpler 

computer vision tasks, could be adapted to perform image super-resolution of medical 

images.  I found that all tested CNNs, when trained to specifically enhance spatial 

resolution using synthetically generated datasets, significantly outperformed conventional 

methods of image upscaling.  Clinically, I demonstrated that CNNs could super-resolve 

small matrix short-axis cine SSFP MRI acquisitions and that the resulting volumetric 

measurements were not significantly different than volumetric measurements of full-

resolution images.  Finally, I demonstrated that I could super-resolve full-resolution MR 

images and further enhance spatial detail beyond what is typically acquired.  I have 

therefore shown that CNNs can effectively perform image synthesis of scalar fields and 

have specifically established the UNet and SRNet as candidate architectures to iteratively 

improve to tackle more complex image synthesis problems. 

In my second chapter, I aimed to improve the kt-UNet from my first chapter to 

perform background phase error correction of 4D Flow MRI.  By incorporating hyperbolic 

tangent activation functions and multiple output channels, I could now predict negative 

values and multiple vector components, respectively, which together permit synthesis of 

static vector fields.  Flow measurements from CNN-corrected datasets significantly and 
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very strongly correlated with manually corrected measurements. Furthermore, CNN-

correction significantly reduced inflow-outflow bias and variance.  I have therefore shown 

that CNNs can effectively perform image synthesis of static vector fields through 

modification of the kt-UNet architecture. 

In my third chapter, I aimed to incorporate spatiotemporal information into the 

phase error correction CNN architecture to synthesize dynamic blood flow fields from cine 

SSFP timeseries.  Blood flow is the biomechanical consequence of ventricular 

contraction. Therefore, I reasoned that a multi-task CNN which also learned cardiac 

morphology would stand a better chance of inferring blood flow.  To achieve this, I 

developed a trifurcated multi-task architecture I named Triton-Net, which simultaneously 

localized anatomical landmarks, segmented cardiac chambers, and synthesized blood 

flow fields from input adjacent cine SSFP timeframes.  Notably, I combined both UNet 

and SRNet architectures from my first aim to execute the trifurcation.  I also introduced 

the concept of using the Moore-Penrose inverse as a component of the loss function to 

give greater weight to pixels with higher velocity.  Overall, I found moderate and significant 

correlation between Triton-Net synthesized velocities and acquired 4D Flow MRI 

velocities.  Clinically, I sought to use the synthesized blood flow velocities to calculate the 

pressure gradient at the left ventricular outflow tract to detect obstructive disease.  I found 

that Triton-Net could detect outflow obstruction with an AUROC of 0.830 based on these 

pressure gradient measurements.  I have therefore shown that CNNs can effectively 

perform image synthesis of dynamic vector fields through extensive modifications of the 

phase error correction CNN. 
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Finally, in my fourth chapter, I aimed to further refine Triton-Net with additional 

physical constraints to synthesize myocardial velocities, strain rate, and strain fields from 

cine SSFP timeseries.  Realizing that the cardiac cycle is inherently periodic, with no net 

displacement or strain over successive heartbeats, I sought to integrate these physical 

constraints into the Triton-Net architecture.  To accomplish this, I connected the 

segmentation and flow synthesis prongs of Triton-Net via multiplication to yield 

myocardial velocity fields.  I then modified the convolutional layers themselves to allow 

processing of the entire cardiac cycle, which enabled me to subtract any net myocardial 

displacement within the CNN architecture.  Lastly, I added net-zero displacement and 

strain as components of the overall loss function; together, these substantial upgrades 

yielded the DLSS architecture.  To establish segmental and global normal ranges for 

DLSS, I measured radial and circumferential strain in a normal population of 21 healthy 

volunteers and 19 patients with normal cardiac MRI.  To demonstrate clinical utility, I 

sought to detect wall motion abnormalities in an ischemic heart disease population using 

the DLSS technique.  After generating a consensus ground truth for each segment based 

on ratings from four cardiothoracic radiologists, I determined that DLSS could detect wall 

motion abnormalities with performance comparable to expert readers.  I have therefore 

shown that CNNs can effectively perform image synthesis of dynamic tensor fields by 

incorporating physical constraints into the Triton-Net framework. 

6.2 Future Directions 

6.2.1 Overview 

 Over the course of my dissertation, I have progressively upgraded my CNN 

armamentarium to tackle more complex clinical problems, beginning with image super-
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resolution and ending with inference of cardiac biomechanics.  Broadly, I envision 

expanding this work in the following domains: 1) refinement of CNN architecture to 

improve the results of the discussed aims, 2) application of image synthesis to other 

complementary imaging modalities and additional organs, and 3) characterization of the 

biomechanics of healthy and diseased tissues to augment clinical diagnosis and 

management.    

6.2.2 Technical Innovations 

 We could potentially use variants of the final DLSS architecture in the previous 

aims to yield more accurate results and further augment analysis of cardiac MRI.  In 

super-resolution, we previously restricted our task to recovering high spatial frequency 

detail in k-space.  With a multi-pronged CNN, we could super-resolve low-resolution cine 

SSFP images, generate myocardial segmentations, and synthesize myocardial velocity 

and strain fields.  Learning the implicit biomechanical relationships required to perform 

segmentation and flow synthesis would likely improve the sharpness of super-resolved 

myocardial edges.  Perhaps more importantly, we would automate two vital components 

of cardiac MRI analysis: quantification of volumetry via ventricular segmentation and 

evaluation of wall motion abnormalities via strain synthesis.   

We could apply a similar approach for improving phase error correction.  As 

mentioned in aim 2, we typically employ manual segmentation of 4D Flow acquisition to 

locate static tissue voxels from which we may model background phase error.  While we 

opted for a purely image synthesis approach to estimate pixelwise background, 

generating segmentations of static tissue may further improve results.  Specifically, we 

could first integrate the polynomial regression of the synthesized phase error maps into 
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the CNN architecture, similar to how I incorporated weighted linear regression into the 

loss function of aim 3.  An additional static tissue segmentation output could then provide 

weights for this polynomial regression: we would explicitly encode the CNN to avoid non-

static tissue.  The segmentation output would also aid explainability of the outputs, as 

poor segmentations of static tissue would imply unreliable phase error results.  Extending 

this idea further, we could also generate segmentations of the relevant vasculature, from 

which we may perform automated flow measurements.  Thus, a DLSS-type CNN would 

simultaneously correct background phase error and automate hemodynamic analyses of 

large 4D Flow MRI datasets. 

 While we have immediate potential to incrementally augment cardiac MRI by 

slightly modifying the DLSS architecture, we will likely realize larger gains by incorporating 

additional physical constraints, particularly conservation laws, into model design, as 

exemplified by aim 4.  However, the heart is naturally a spatiotemporal object, which 

means accurate modeling of biomechanics requires four dimensions.  In all aims we have 

only analyzed, at most, three dimensions largely due to technical limitations.  First, while 

4D convolutions are a straightforward extension of 3D convolutions, only a few studies 

have examined their use170,171.  This may be partly due to their relatively large memory 

consumption: the number of model weights scale exponentially with increasing 

dimensionality.  While one valid approach is to simply wait for computational hardware to 

meet this intense memory demand, there are architectural innovations in the literature 

which may make these higher-dimensional neural networks viable. 

   Often, the anatomy of interest comprises a relatively small fraction of the field of 

view e.g., myocardial voxels within the entire short-axis cine SSFP stack for inference of 
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myocardial strain.  One method to reduce memory overhead is to leverage this inherent 

data sparsity: after an initial segmentation, we could isolate voxels of interest for 

convolution and ignore the remainder.  Previous work by Ren, et al.172 suggests this may 

be possible in a CNN framework they named Sparse Block Network (SBNet).  These 

authors demonstrated that, given an input image and affiliated binary mask, they could 

leverage gather and scatter operations which would isolate blocks of relevant voxels for 

convolution, then replace the outputs into a sparse tensor, respectively.  A drawback of 

this method is the requirement to subdivide any masks into uniform rectangular chunks a 

priori, which could be problematic for highly irregular anatomy.  Another approach to 

reduce memory overhead is to apply compression; rather than ignoring regions, methods 

like octree compression effectively pool similar voxels into larger voxels, thereby reducing 

both the number of operations required and the memory consumption of inputs and 

feature maps173.  Work by Gupta, et al.174 has shown that combining octree compression 

in the CNN architecture (OctNet) for segmentation of cardiac CT significantly 

outperformed conventional image downsampling while consuming a fraction of GPU 

memory.  A potential limitation of OctNet is that the octree compression method is lossy: 

the pooling operation reduces the local spatial resolution depending on the degree of 

compression.   

 Another promising method to reduce memory overhead is the graph convolutional 

neural network (GCNN).  GCNNs do not operate on Cartesian grids; instead, they operate 

on graphs, which comprise multiple nodes and a map of their k-nearest neighbor 

connectivity.  Effectively, GCNNs perform convolution on unstructured data e.g., point 

clouds175,176.  Given a starting cardiac cine SSFP series and affiliated myocardial 
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segmentation, we could potentially isolate the myocardial voxels and represent them as 

an unstructured point cloud for input to an image synthesis GCNN.  Similar to the SBNet 

approach, we would substantially reduce memory overhead by discarding irrelevant 

voxels from analysis while maintaining full spatiotemporal resolution.  While previous work 

has shown good performance of GCNNs to perform 3D segmentation175,176, their 

extension to image synthesis and analysis of four-dimensional objects remains unknown.  

6.2.3 Generalizability to Other Modalities and Organs 

 While my dissertation has specifically focused on image synthesis for cardiac MRI, 

it is possible that we may achieve similar results across modalities and organ systems.  

While cardiac MRI is the gold standard for evaluation of morphology, flow, and function, 

echocardiography and computed tomography (CT) are more widely available and are 

often first-line clinically for evaluating cardiac disease.   

Echocardiography, a form of ultrasound, emits sound waves and measures how 

long it takes echoes, reflected off tissues, to return to the probe.  The distances between 

the probe and tissues are then calculated, which permits image formation.  Additionally, 

we can also evaluate hemodynamics through color Doppler ultrasound4.  As a result, 

ultrasound may produce analogous images, from which volumetry, blood flow, and 

regional function are calculated clinically.  Indeed, CNNs have been applied with great 

effect for classification of echocardiogram views177, segmentation of cardiac chambers178, 

and regression of ventricular function123.  I hypothesize that we could use the same Triton-

Net and DLSS architectures to infer blood flow and myocardial motion from 

echocardiograms, using color Doppler velocimetry as ground truth.  However, it is known 

that color Doppler velocities are significantly less-reliable than those obtained by phase-
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contrast MRI90; therefore, to generate a stronger ground truth, we could re-slice and co-

register patient-matched 4D Flow-derived vector fields onto echocardiograms.   

We may use a similar approach for CT.  Like MRI and echocardiography, CT can 

also produce spatiotemporal images of cardiac morphology.  As a modality, CT measures 

the local tissue attenuation coefficient to incident x-ray radiation4.  However, there are 

currently no methods to directly quantify blood or myocardial motion; additionally, CT 

employs carcinogenic, ionizing radiation, limiting the amount of data which may be 

acquired during a given scan179.   As with echocardiography, we could simply re-slice and 

co-register patient-matched 4D Flow MRI data with the CT scans to serve as ground truth 

for direct synthesis of blood and myocardial velocity fields.  We could also attempt to limit 

the radiation dose via image synthesis, where we simulate low-dose CT from existing 

scans by synthesizing noise and train a CNN to synthesize the uncorrupted image.   

In addition to cross-modality application, we could easily apply the same image 

synthesis pipeline to other organ systems.  Already, we have seen that we can apply 

background phase-error correction to the abdominopelvic vasculature in aim 2.  We could 

apply the same CNN to removal of phase error from 4D Flow scans of the brain, heart, 

pulmonary vasculature, and peripheral vasculature.  Similarly, we may apply the super-

resolution concept across many MRI scans, which, in conjunction with a segmentation 

output, could be crucial for demarcating tumors with poorly visualized boundaries, such 

as pancreatic adenocarcinoma180.   

6.2.4 Image Synthesis for Biomechanical Discovery 

 In aims 3 and 4, I demonstrated the ability of Triton-Net and DLSS to identify 

disease based on peak outflow gradient and peak radial segmental strain, respectively.  



 
 

121 
 

While these metrics may be calculated manually, annotation is a time-consuming process 

which severely limits the throughput of population-based analyses.  Our fully automated 

image synthesis methods permit the rapid characterization of various biomechanical 

characteristics such as peak strain, mean strain, time to peak strain, etc.  Therefore, the 

immediate applicability of image synthesis networks is to tabulate meaningful 

biomechanical metrics in healthy and diseased populations and determine their value in 

diagnosis, management, and prognostication.  For example, in Tetralogy of Fallot (ToF), 

individuals are born with a ventricular septal defect, pulmonary stenosis, overriding aorta, 

and right ventricular hypertrophy, and typically receive corrective surgery shortly after 

birth.  However, despite surgical correction, these patients are at increased risk for right 

ventricular failure and potentially fatal ventricular arrythmia181.  While conventional global 

volumetric metrics like increased right ventricular end-diastolic and end-systolic volumes 

are important for prognosis182, recent studies have identified right ventricular akinesis as 

an even stronger predictor of ventricular arrythmia183.  Therefore, DLSS characterization 

of segmental strain in a ToF population could permit automated stratification of at-risk 

patients based on right ventricular strain metrics.  In previous analyses, we have largely 

relied on peak segmental radial strain to detect disease.  It is possible that related metrics 

e.g., relative dyssynchrony between segments and time to peak strain184, may provide 

even better prognostication value.  As we gain a better understanding of biomechanics in 

healthy and diseased populations, we will be able to build more robust statistical models 

to sub-classify and manage patients with congenital heart disease. 
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6.3 Conclusion 

 In conclusion, I have demonstrated broad applicability of deep learning image 

synthesis in cardiovascular MRI.  We have seen the ability of image synthesis CNNs to 

infer data of progressively higher dimensionality, from scalars to tensor fields.  Current 

limitations of this approach are partly due to computational constraints: full analysis of 

volumetric, time-varying systems requires some form of 4D analysis, which are currently 

difficult to implement.  Furthermore, as with all forms of deep learning, the training process 

is inherently data intensive.  While we may achieve high performance with relatively small, 

but highly curated and annotated dataset64, highly specialized datasets, such as 4D Flow 

MRI, may be rare outside of academic clinical settings62.  Nevertheless, research 

institutions with access to these datasets can train these image synthesis CNNs to 

maximally extract biomechanical and, ultimately, clinically useful data from routine scans.  

Distributing these CNNs to the greater medical community could therefore augment 

clinical interpretation of routine scans without necessitating increased acquisition times, 

advanced pulse sequences, or additional manual annotation.  It is the author’s sincere 

hope that this and related works will increase the quality of patient care and lead to a 

brighter and healthier future. 
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