
UC San Diego
UC San Diego Previously Published Works

Title
Visual Reinforcement Learning With Self-Supervised 3D Representations

Permalink
https://escholarship.org/uc/item/8006n1fz

Journal
IEEE Robotics and Automation Letters, 8(5)

ISSN
2377-3766

Authors
Ze, Yanjie
Hansen, Nicklas
Chen, Yinbo
et al.

Publication Date
2023-05-01

DOI
10.1109/lra.2023.3259681

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8006n1fz
https://escholarship.org/uc/item/8006n1fz#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023 1

Visual Reinforcement Learning with
Self-Supervised 3D Representations

Yanjie Ze∗1 Nicklas Hansen∗2 Yinbo Chen2 Mohit Jain2 Xiaolong Wang2

R
ea

l
(P

er
tu

rb
)

R
ea

l
Si

m

Reach Push Peg in Box Lift Robot setup

Fig. 1: Overview of sim-to-real tasks. We consider four tasks for our sim-to-real experiments: (1) reach, (2) push, (3) peg in
box, and (4) lift. Observations are captured by a static over-the-shoulder camera (pictured). We visualize the initial configuration
of robot and objects in simulation and the success in the real world. We consider transfer to two distinct real-world setups
with varying degrees of similarity to the simulation, namely in terms of camera view and lighting.

Abstract—A prominent approach to visual Reinforcement
Learning (RL) is to learn an internal state representation
using self-supervised methods, which has the potential benefit of
improved sample-efficiency and generalization through additional
learning signal and inductive biases. However, while the real
world is inherently 3D, prior efforts have largely been focused
on leveraging 2D computer vision techniques as auxiliary self-
supervision. In this work, we present a unified framework for
self-supervised learning of 3D representations for motor control.
Our proposed framework consists of two phases: a pretraining
phase where a deep voxel-based 3D autoencoder is pretrained on
a large object-centric dataset, and a finetuning phase where the
representation is jointly finetuned together with RL on in-domain
data. We empirically show that our method enjoys improved sam-
ple efficiency compared to 2D representation learning methods.
Additionally, our learned policies transfer zero-shot to a real
robot setup with only approximate geometric correspondence,
and successfully solve motor control tasks that involve grasping
and lifting from a single, uncalibrated RGB camera. Code and
videos are available at https://yanjieze.com/3d4rl/.

Manuscript received: December, 04, 2022; Revised February, 26, 2023;
Accepted March, 03, 2023.

∗Equal contribution. 1Shanghai Jiao Tong University, Shanghai, China,
work done while an intern at University of California San Diego. 2University
of California San Diego, CA, USA. Correspondence at xiw012@ucsd.edu.

This paper was recommended for publication by Editor Jens Kober upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported, in part, by Amazon Research Award and gifts
from Qualcomm.

Digital Object Identifier (DOI): see top of this page.

Index Terms—Reinforcement Learning; Representation Learn-
ing; Deep Learning for Visual Perception

I. INTRODUCTION

While deep Reinforcement Learning (RL) has proven to
be a powerful framework for complex and high-dimensional
control problems, most notable successes have been in prob-
lem settings either with access to fully observable states [1]–
[3], or settings where partial observability through 2D image
observations (visual RL) suffice, e.g., playing video games [4].
While potential applications of visual RL are far broader, it
has historically been challenging to deploy in areas such as
robotics, in part due to the complexity of controlling from
high-dimensional observations.

A prominent approach is to tackle the resulting complexity
by learning a good representation of the world, which reduces
the information gap that stems from partial observability.
Leveraging techniques such as self-supervised objectives for
joint representation learning together with RL has been found
to improve both sample efficiency [5], [6] and generalization
[7]–[9] of RL in control tasks. Recently, researchers also
discover training RL from embeddings produced by pretrained
frozen visual encoders trained on external datasets can match

ar
X

iv
:2

21
0.

07
24

1v
2 

 [
cs

.L
G

] 
 1

5 
M

ar
 2

02
3

https://yanjieze.com/3d4rl/
emailto:xiw012@ucsd.edu


2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023

the performance of tabula rasa (from scratch) representations
while requiring less in-domain data [10], [11].

Yet, efforts have largely been focused on applying success-
ful techniques from 2D computer vision to control problems.
However, our world is inherently 3D and agents will arguably
need to perceive it as such in order to tackle the enormous
complexity of real world environments [12]–[14]. For exam-
ple, a robot manipulating objects may encounter challenges
such as partial occlusion and geometric shape understanding,
neither of which are easily captured by 2D images without
prior knowledge or strong inductive biases [15], [16].

In this paper, we propose a 3D representation learning
framework for RL that includes both a pretraining phase using
external data and a joint training phase using in-domain data
collected by the RL agent. Figure 2 provides an overview of
our method. In the first phase, we learn a generalizable 3D
representation using a repurposed video autoencoder [17] that
performs 3D deep voxel-based novel view synthesis without
assuming access to ground-truth cameras. For pretraining, we
leverage Common Objects in 3D (CO3D) [18] – a large-scale
object-centric 3D dataset – to steer learning towards object-
centric scene representations suitable for our downstream
manipulation tasks. In the second phase, we finetune the
learned representation together with policy learning on in-
domain data collected by online interaction. Concretely, a 2D
encoder produces a 2D feature map that is shared between
the two tasks and the 3D voxel is generated upon this feature
map. For the view synthesis task, we apply a random affine
transformation to the voxel representation, corresponding to a
change of camera pose, and task a 3D decoder with recon-
structing the scene from the novel view. This encourages the
network to learn the underlying scene geometry. The policy
learns to predict actions from the 2D feature map, and we
backpropagate gradients from both objectives to the shared
encoder for in-domain finetuning. We emphasize the different
views are only utilized in training and the learned model only
requires a single view for deployment.

To validate our method, we consider a set of vision-based
Meta-World [19] tasks, as well as four robotic manipulation
tasks with camera feedback both in simulation and the real
world as shown in Figure 1. For the latter, we train policies in
simulated environments, and transfer zero-shot to a real robot
setup with only approximate geometric correspondence and an
uncalibrated third-person RGB camera. We also demonstrate
that our model is more robust to visual changes by using two
variations of our real environment with different camera posi-
tion, camera orientation, and lighting (bottom row in Figure 1).
Compared to strong baselines that pretrain representations
using 2D computer vision objectives, our method demonstrates
improved sample efficiency during policy learning and trans-
fers better to the real world despite environment perturbations.
In summary, our contributions are three-fold,
• We propose a novel 3D representation learning frame-

work for RL, using a view synthesis task and including
a pretraining stage and a finetuning stage.

• Our method is evaluated on 9 simulation tasks and
achieves good sample efficiency compared to 2D repre-
sentations.

• Our learned policy transfers zero-shot to the real world
successfully in both a non-perturbed setting and a per-
turbed setting, showing the robustness of our 3D repre-
sentation to visual changes.

II. RELATED WORK

Representation learning for RL. Learning good representa-
tions for vision-based RL is a well-studied problem. Prominent
approaches include the use of learned dynamics models [20],
[21], auxiliary objectives [9], [22], and data augmentation
[23]–[25]. Recently, researchers have found that visual back-
bones pretrained using 2D computer vision objectives on large
external datasets can produce useful features for control both
in simulation and the real world [10], [11], [26]. Although
these pretraining methods that use a frozen visual representa-
tion have shown initial success, the domain gap between the
RL task and the pretraining data is still non-negligible. In this
work we find that jointly finetuning the visual backbone
on in-domain data produces better representations for RL
across different representations including ours, ImageNet
pretrained, and 2D self-supervised pretrained ones, which
is a neglected factor in most previous works. Compared to
these stronger, finetuned baselines, our method still performs
significantly better, especially during sim-to-real transfer.
Learning 3D scene representations. Besides the aforemen-
tioned 2D-centric techniques, there are also prior efforts in
learning 3D scene representations for RL, e.g. through differ-
entiable 3D keypoints [27], [28], object-centric graphs [29],
[30], latent 3D features [16], [17], [31], and neural radiance
fields [32]–[34]. Notably, the proposed framework in [34]
shares similarities with ours; however, their approach requires
multi-view images (with perfect foreground segmentations) as
input and only includes experiments in simplistic environments
without any actual robots (the agent is simplified as a mov-
ing end-effector point), which makes real-world deployment
challenging. Our method also learns latent 3D features, but in
contrast to prior work we only use a single fixed view for
policy inference, which makes our method both extendable
and easy to deploy in the real world.
Sim-to-real transfer. Transferring policies learned in simula-
tion to the real world is a hard problem for which a number
of (largely orthogonal) approaches have been proposed. For
example, domain randomization [9], [35] improves transfer
by artificially widening the training data distribution. Alterna-
tively, the simulation can be iteratively adjusted to match real
world data [36], [37], the learned RL policy can be adapted
by finetuning in the real world [21], [38], [39], or zero-shot
transfer can be improved by learning a better representation
[40]. We also consider the problem of sim-to-real transfer from
the lens of representation learning due to its generality and not
requiring real world data, which often relies on human labor
for collection.

III. BACKGROUND

Problem definition. We model agent and environment as
a Markov Decision Process (MDP) M = 〈S,A, T ,R, γ〉,
where s ∈ S are states, a ∈ A are actions, T : S × A 7→ S



ZE et al.: VISUAL REINFORCEMENT LEARNING WITH SELF-SUPERVISED 3D REPRESENTATIONS 3

Fig. 2: Overview of our approach. We pretrain a 3D deep voxel-based auto-encoder on the Common Objects in 3D (CO3D)
dataset. Then we train an RL policy in simulation using the learned representation as initialization and jointly finetune the
representation with 3D and RL objectives on in-domain data collected by the RL agent.

is a transition function, r ∈ R are rewards, and γ ∈ [0, 1) is
a discount factor. The agent’s goal is to learn a policy π that
maximizes discounted cumulative rewards on M. In visual
RL, states s are generally unknown, but we can use image
observations o ∈ O in lieu of states, rendering it a Partially
Observable MDP.
Soft Actor-Critic (SAC) [41] is an off-policy actor-critic
algorithm that learns a stochastic policy πθ and critic Qθ
from an iteratively grown dataset D collected by interaction.
Throughout, we let θ denote the combined parameter vector.
The critic is learned by minimizing the Bellman error

LQ(θ;D) = Eo,a,r,o′∼D [(Qθ(fθ(o),a)− (r + γV)] , (1)

where V = Qθ(fθ(o
′),a′) − α log πθ(a

′|fθ(o′)) is the soft
Q-target, θ is a slow-moving average of θ, α is a learnable
parameter balancing entropy maximization and value function
optimization, and o′ ∼ T (o,a), a′ ∼ πθ(·|fθ(o′)). πθ learns
to maximize an entropy-regularized expected return:

Lπ(θ;D) = Eo∼D [Qθ(fθ(o),a)− α log πθ(a|fθ(o))] , (2)

for a ∼ πθ(fθ(o)). Actions are sampled from π using a
squashed Gaussian parameterization; see [41] for further de-
tails. In this work, we focus on learning a good representation
fθ for SAC, but we emphasize that our framework is fully
agnostic to the underlying RL algorithm.

IV. METHOD

We propose a 3D representation learning framework for RL
that includes both a pretraining phase using external data and
a finetuning phase using in-domain data collected by an RL
agent. An overview of our approach is shown in Figure 2.

A. Object-Centric 3D Pretraining

Our framework is implemented as a deep voxel-based 3D
auto-encoder [17] that shares a 2D encoder with an RL policy.

Given a view (image) of a 3D scene and an affine camera trans-
formation, we task the 3D auto-encoder with reconstructing a
2D view of the scene after applying a transformation to the
deep voxel representation. This task encourages the network
to encode geometric scene information, which is beneficial for
downstream control tasks.
Architecture. For brevity, we let θ denote the combined
parameter vector of our network. A source view Isrc is
encoded by a 2D encoder fθ to produce feature maps Z =
fθ(Isrc), Z ∈ RC×H×W . We then reshape Z into a 3D grid
of dimensions (C/D)×D×H×W and upsample the reshaped
feature maps using strided transposed 3D convolutions gθ
to obtain our final deep voxel representation V = gθ(Z) =

gθ(fθ(Isrc)). Now, let Itgt denote a target view (used as recon-
struction target) of the same scene as Isrc. To obtain a camera
transformation between Isrc and Itgt for our 3D reconstruction
task, we learn an additional PoseNet Fpose that estimates the
rotation between two views. This is necessary because com-
mon datasets do not have access to ground-truth cameras. Fpose
takes the concatenation [Isrc, Itgt] as input and predicts relative
rotation parameterized by Euler angles [α, β, γ]> (from which
we trivially obtain rotation matrix R) as well as translation
t = [x, y, z]>, i.e., Fpose(Isrc, Itgt) ∈ R6. We transform V by
R, t and obtain a warped grid V̂ = TR,t(V ), and predict the
target view Itgt from V̂ with a 3D decoder hθ. The 3D network
thus predicts Itgt from Isrc as Îtgt = hθ(TR,t(gθ(fθ(Isrc)))),
where R, t are obtained from Fpose(Isrc, Itgt). Intuitively, the
source view Isrc is used to generate a 3D representation, and
the target view Itgt is used as reconstruction target to supervise
the 3D representation.
Objective. To optimize the 3D auto-encoder and associated
PoseNet, we adopt a `1-norm reconstruction loss

Lrecon

(
Îtgt, Itgt

)
= λL1

∥∥∥Îtgt − Itgt

∥∥∥
1
. (3)

Training. We implement the 2D encoder fθ as an ImageNet-



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023

initialized ResNet18 and let the 3D encoder/decoder have
relatively fewer parameters, such that the majority of trainable
parameters are shared with the RL policy during finetuning.
To steer learning of the encoder towards object-centric scene
representations, we pretrain our network on 20 object cate-
gories from Common Objects in 3D (CO3D) [18], a large-scale
object-centric 3D dataset. CO3D contains videos that rotate
around objects and we only use raw frames. We emphasize
that the video for pretraining is not limited to static scenes.

B. In-Domain Joint Training of 3D and RL

After the pretraining phase, we use the learned represen-
tation as initialization for training an RL policy, while we
continue to jointly optimize the 3D objective together with RL
using in-domain data collected by the RL agent. Specifically,
we learn a policy network πθ : RC×H×W 7→ A that takes
feature maps Z = fθ(I) from the pretrained 2D encoder fθ
as input (where I is an image observation) and outputs a con-
tinuous action. The motivation for our joint finetuning phase is
two-fold: (1) finetuning with the 3D objective improves the 3D
representation on in-domain data, and (2) finetuning with the
RL objective improves feature extraction relevant for the task
at hand. Figure 3 provides an overview of our joint training.
Optimizing 3D. Since our proposed 3D task requires at least
two views of a scene, we design a static camera and another
dynamic camera. Let Isrc denote the image from the static
(source) view and Itgt denote the image from the dynamic
(target) view, respectively. The 3D task is then to reconstruct
Itgt from Isrc. We move the dynamic camera positioned with
angle φd in a circular manner around the scene within an angle
φ of the static camera, thus φd ∈ [0, φ].
Optimizing RL. We train the RL agent by online interaction
with a simulation environment, and store observed transitions
in a replay buffer for joint optimization together with the
3D objective. To mitigate catastrophical forgetting in the 3D
representation due to changes in the data distribution, we
optimize the 3D network using a smaller learning rate than
for RL. Formally, let λft denote the finetuning scale, let lr3D
denote the learning rate for the 3D task, and let lrRL denote
the learning rate for RL. We then have lr3D = λft × lrRL.

V. EXPERIMENTS

We validate our method on a set of precision-based robotic
manipulation tasks from visual inputs. We report success rates
over a set of pre-defined goal and object locations both in
simulation and in the real world.
Robot setup is shown in Figure 1 (right). We use an xArm
robot equipped with a gripper, and observations are captured
by a static third-person camera. The agent operates from
84 × 84 RGB camera observations, as well as the robot
state including end-effector position and gripper aperture. We
do not calibrate the camera. To estimate the robustness of
representations, we consider two variants of our real-world
setup of varying likeness to the simulation – we refer to these
as perturbed and non-perturbed environments.
Baselines. We implement our method and all baselines using
Soft Actor-Critic (SAC; [41]) as the backbone RL algo-
rithm and use the same hyperparameters whenever applicable.

Concretely, we consider the following baselines: (i) training
an image-based SAC with a 4-layer ConvNet encoder from
Scratch; (ii) replacing the encoder with a ResNet18 backbone
pretrained by ImageNet classification; and (iii) a ResNet18
pretrained on ImageNet using the self-supervised MoCo [42]
objective; (iv) CURL [6], a strong visual RL method that
leverages data augmentation and contrastive learning. All
methods use ±4 random shift [24] and color jitter as data
augmentation during RL, except for CURL that uses random
crop augmentation as originally proposed.
Tasks. We experiment with 5 image-based tasks from Meta-
World, as well as 4 manipulation tasks both in simulation and
on physical hardware. We consider the following tasks in our
sim-to-real experiments: (1) reach (A ∈ R3), where the agent
needs to position the gripper at the red goal, (2) push (A ∈
R2), where the agent needs to push a green cube to the red
goal, (3) peg in box (A ∈ R3), where the agent needs to place
a green peg inside a red box, and (4) lift (A ∈ R4), where
the agent needs to grasp and lift a green cube into the air. A
trial is considered successful only when the goal is reached
(e.g., the peg is fully inside the box) within a fixed time limit
of 20s (50 decision steps). We conduct an extensive set of
real-world trials using 5 model seeds per method per task and
evaluate each seed over 10 trials (5 for reach) on a set of
predefined configurations for a total of 1300 trials: 700 trials
for the setup close to the simulated environments and 600 trials
for the perturbed real world setup; see Figure 1 (left) for the
two setups.

A. Sample-Efficiency
We train for 500k environment steps across all xArm tasks

and train for 1m environment steps across Meta-World tasks.
Results for Meta-World tasks and xArm manipulation tasks
are shown in Figure 4, totalling 9 tasks. We summarize our
findings as follows:
From scratch training of SAC is generally a strong baseline,
but the gap between this baseline and methods that use pre-
trained representations widens with increasing task difficulty.
For example, the success rate of from scratch is close to that
of our method in coffee push (Meta-World), while it fails to
solve harder tasks like coffee pull.
MoCo vs. ImageNet pretraining. We find that MoCo gener-
ally leads to better downstream performance than pretraining
with ImageNet classification, which is consistent with obser-
vations made in prior work [11], while the performance gap
is relatively small for most tasks. we observe MoCo to be
better on basketball (Meta-World) and lift (xArm) which both
involve precise object manipulation. This finding suggests that
self-supervised pretraining might produce better initializations
for in-domain finetuning in precision-based control tasks.
3D vs. 2D representations. Our proposed method that uses
a self-supervised 3D representation outperforms from-scratch
training, pretrained 2D representations (MoCo), and 2D
representations with a SSL auxiliary objective (CURL) across
most tasks. Notably, our method enjoys large performance
gains on challenging tasks such as coffee pull (Meta-World),
hammer (Meta-World), and lift (xArm) that require spatial
understanding.



ZE et al.: VISUAL REINFORCEMENT LEARNING WITH SELF-SUPERVISED 3D REPRESENTATIONS 5

Fig. 3: In-domain joint training of 3D and RL. A static view is used as input to both 3D and RL and is encoded using a
shared 2D encoder. The 3D autoencoder takes 2D features as input and reconstructs observations from a dynamic view.

0.0 0.2 0.5 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.5

0.8

1.0

S
uc

ce
ss

 R
at

e

Basketball

0.0 0.2 0.5 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.5

0.8

1.0
Box Close

0.0 0.2 0.5 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.5

0.8

1.0
Coffee Pull

0.0 0.2 0.5 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.5

0.8

1.0
Coffee Push

0.0 0.5 1.0 1.5
Environment Steps (×106)

0.0

0.2

0.5

0.8

1.0
Hammer

Scratch ImageNet MoCo 3D (ours)

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Lift

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0
Push

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0
Peg in Box

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0
Reach

3D (ours) CURL ImageNet MoCo Scratch

Fig. 4: Learning curves (Meta-World and xArm). Success rate of our method and baselines on five diverse image-based
Meta-World tasks and four simulated xArm manipulation tasks. Mean of 5 seeds, shaded areas are 95% CIs. Our method
achieves non-trivial success rates faster than other methods.

B. Sim-to-Real Transfer

We evaluate policies trained in simulation on physical hard-
ware following the previously outlined evaluation procedure.
For the lift task, we additionally report the grasping success
rate in real. Results are shown in Table I. We observe a
drop in success rates across the board when transferring
learned policies to the real world relative to their simulation
performance. However, the gap between simulation and real
performances is generally lower for our 3D method than for
baselines. For example, our method achieves a 46% success
rate on lift (vs. 64% in sim), whereas MoCo – the second-best
method in sim – achieves only 20% success rate (vs. 51% in
sim). While baseline performances differ in simulation, we do
not find any single 2D method to consistently transfer better
than the others. We thus attribute the sizable difference in
transfer results between our method and the baselines to the
learned 3D representation.

C. Robustness

We provide a more challenging evaluation in both simula-
tion and the real world by adding further perturbations to the
environments. Perturbations added to the simulation includes
camera position and orientation, lighting, and the texture of
objects and robot. Perturbation added to the real world include
camera position and orientation, as well as lighting. We
refer to the latter setting as Real (Perturb) and visualize it
in Figure 1. Results are shown in Table II. We observe a drop
in success rates across all methods due to the perturbation,
while the perturbation effects are alleviated in our method.
For example, our method still achieves 95% success rate in
perturbed simulation and 60% success rate in perturbed real
on reach whereas MoCo achieves only 86% in sim and 27%
in real respectively. We also find that for 2D baselines there
is no single method that outperforms others consistently. For
example, ImageNet pretraining leads to better generalization



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023

TABLE I: Robotic manipulation results (xArm). Success rate (in %) of our method and baselines. (left) results in simulation.
(right) results when transferred zero-shot to physical hardware. We report mean and std. err. across 5 model seeds for all
evaluations. Initial configurations are randomized.

Sim Scratch ImageNet MoCo 3D (ours)

Reach 100±0 100±0 100±0 100±0

Push 65±16 74±15 74±14 80±14

Peg in Box 77±22 82±18 82±17 82±17

Grasp − − − −
Lift 20±34 40±40 51±40 64±32

Real Scratch ImageNet MoCo 3D (ours)

Reach 84±12 96±4 80±11 96±4

Push 2±2 22±10 22±7 48±9

Peg in Box 40±14 62±20 50±15 76±19

Grasp 44±14 20±10 38±10 62±14

Lift 30±15 2±2 20±5 46±19

TABLE II: Robotic manipulation results evaluated in perturbed environments (xArm). Success rate (in %) of our method
and baselines. (left) results in perturbed (P) simulation environments. (right) results when transferred zero-shot to perturbed
real environments. We report mean and std. err. across 5 model seeds for all evaluations. Initial configurations are randomized.

Sim(P) Scratch ImageNet MoCo 3D (ours)

Reach 76±10 96±8 86±14 96±5

Push 12±7 12±10 14±14 24±21

Peg in Box 20±20 22±13 24±7 34±20

Grasp − − − −
Lift 0±0 10±15 10±10 16±8

Real(P) Scratch ImageNet MoCo 3D (ours)

Reach 26±12 48±12 27±12 60±12

Push 10±7 10±7 0±0 33±17

Peg in Box 18±11 28±14 20±6 52±14

Grasp 25±11 10±10 35±19 40±15

Lift 10±10 0±0 10±10 25±11

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Peg in Box

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0
Lift

3D (frozen) 3D (finetuned) MVP PVR R3M

Fig. 5: Success rate of different frozen visual representations.
We compare our 3D visual representation with MVP [10], PVR [11],
and R3M [26] on peg in box and lift.

on reach while MoCo performs well on lift. The experiments
demonstrate that our 3D visual representation is more robust
to distribution shifts in the observation space.

D. Ablations

Frozen 3D visual representation. We compare our frozen 3D
visual representation with the following pretrain methods for
motor control: (i) MVP [10] which provides a pretrained vi-
sion transformer using masked auto-encoder on a joint Human-
Object Interaction dataset; (ii) PVR [11] which utilizes a
ResNet50 pretrained with MoCo on ImageNet; and (iii) R3M
[26] which pretrains a ResNet50 with time contrastive learning
and video-language alignment on the Ego4D human video
dataset. The results are shown in Figure 5. We directly apply
the public pretrained encoders provided by these works and
all the methods are equipped with the same RL backbone.
Our encoder uses fewer parameters (11.47m) than MVP
(21.67m), PVR (23.51m), and R3M (23.51m). On peg in
box our method could achieve high success rates in 500k

steps and is comparable to MVP, while another two baselines
learn much slower. On a more challenging task lift, only
our method achieves meaningful accuracy and all other three
methods have not yet. Thus our visual representation with
much fewer parameters is very competitive to recent methods.
In addition, we compare between the frozen 3D representation
and the finetuned 3D representation and find that unfreezing
the representation could give a more promising result. It is not
surprising, but recent works [10], [11], [26] only focus on the
frozen visual representation, which might neglect the power
of end-to-end policy learning [43].
Finetuning with the 3D objective. We demonstrate the neces-
sity of finetuning the 3D visual representation with in-domain
data and our 3D objective, specifically the reconstruction loss.
Figure 7 (left) shows that our method without 3D finetuning
initially converges at a similar rate but to a lower accuracy
in 500k steps. The finetuning scale for the 3D objective also
matters, as shown in Figure 7 (mid), where a smaller scale
stabilizes the learning process. Table III provides quantitative
and qualitative evaluation on the view synthesis results with
3D finetuning, demonstrating that it leads to more realistic and
closer-to-original images.
3D Pretraining. We are also curious about whether 3D
pretraining really helps if the visual representation has been
trained with the 3D objective and the RL objective jointly.
As shown in Figure 7 (right), it is observed that without 3D
pretraining the representation achieves much lower accuracy
on lift. Compared to Figure 7 (left), we could also find that
the lack of 3D pretraining leads to more degradation of the
success rates, showing that 3D pretraining is necessary.
Novel view synthesis in sim and real. We evaluate our
method’s 3D representation using qualitative and quantitative
methods: (i) novel view synthesis results from simulated and
real observations (Figure 6) and (ii) quantitative ablations



ZE et al.: VISUAL REINFORCEMENT LEARNING WITH SELF-SUPERVISED 3D REPRESENTATIONS 7

TABLE III: Quantitative evaluation of novel view synthesis in sim (S) and real (R) on peg in box. (left two) Different λft
for φ = 30◦. (right two) Different dynamic camera angle φd when φ = 30◦ and λft = 0.01. Our method generalizes well to
out-of-distribution camera angles.

λft (S) SSIM↑ PSNR↑

0.00 8.69 0.22

0.01 11.34 0.37

0.10 11.75 0.35

1.00 11.93 0.37

λft (R) SSIM↑ PSNR↑

0.00 8.28 0.28

0.01 10.49 0.31

0.10 11.20 0.34

1.00 11.29 0.38

φd (S) SSIM↑ PSNR↑

15 12.26 0.42

30 11.34 0.37

45 11.68 0.37

60 10.13 0.33

φd (R) SSIM↑ PSNR↑

15 11.78 0.36

30 10.49 0.31

45 9.94 0.24

60 8.72 0.20

Pu
sh

Pe
g

in
B

ox

Static (real)
Input

Static (sim) Dynamic (sim)
15◦

Synthesis (real)
15◦

Dynamic (sim)
30◦

Synthesis (real)
30◦

Fig. 6: Novel view synthesis in real. We use images in the real world to generate the deep voxel and use the static view and
the dynamic in the simulation to predict the transformation and then reconstruct the novel view. We display the reconstruction
results for φd = 15◦, 30◦ in two tasks.

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Lift

With 3D Finetuning
Without 3D Finetuning

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Lift

0.01
0.1
1

0.0 0.2 0.4
Environment Steps (×106)

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Lift

With 3D Pretrain
Without 3D Pretrain

Fig. 7: (left) Success rate of our 3D method with and without
3D finetuning on lift. (mid) Success rate of different lrft on lift,
where lrft is the finetuning scale for 3D auxiliary task such that
the learning rate would be lr× lrft. (right) Success rate of our
3D method with and without 3D pretraining.

to investigate the effect of important hyperparameters on
reconstruction quality (Table III). Our method can synthesize
meaningful reconstructions using real camera observations,
even without prior exposure to our robot setup. For quantitative
evaluation, we use Structural Similarity (SSIM) and Peak
Signal-to-Noise Ratio (PSNR) metrics to evaluate different
finetuning rates (λft) and camera angles (φd) at φ = 30◦.
Results show that a reduced learning rate does not harm
reconstruction, and our method trained at φ = 30◦ generalizes
well to out-of-distribution angles, up to 60◦.
Camera pose estimation with PoseNet. Our PoseNet esti-
mates the relative pose between two frames. We quantitatively
evaluate such pose estimation results in the following. For
a whole trajectory, we estimate the relative pose between
the dynamic camera and the static camera for each timestep.

TABLE IV: Quality of pose estimation for the peg in box
task. The table shows the root mean squared error (RMSE)
of camera pose estimation given varying dynamic camera
angles φd and varying finetuning coefficients λft. We only train
with φd = 30◦ and evaluate both in-domain (ID) and out-of-
domain (OOD) performance. We observe that finetuning leads
to smaller errors.

Pose Estimation Error (RMSE↓)

φd/λft Pretrain 0.01 0.10 1.00

15 (ID) 0.041 0.041 0.040 0.046
30 (ID) 0.066 0.059 0.033 0.041
45 (OOD) 0.120 0.064 0.046 0.044
60 (OOD) 0.174 0.130 0.132 0.133
avg 0.100 0.073 0.063 0.066

To align predicted camera pose trajectories with the ground
truth [17], we apply Umeyama alignment [44] in deep voxel
coordinate space. Our method is tested with in-domain and
out-of-domain dynamic camera angles and various finetuning
scales. Results (Table IV) show that our method reduces pose
estimation error compared to CO3D-only pretrained networks.
Our method could also generalize to 45 degrees with a
small error equal to 0.064, nearly half of the one with only
pretraining. Larger finetuning scales generally reduce error,
but even small scale finetuning can improve results over the
pretrained model.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023

VI. CONCLUSION

Our proposed 3D framework for pretraining and joint learn-
ing improves sample efficiency of reinforcement learning (RL)
in simulation and successfully transfers to a real robot setup.
This is, to the best of our knowledge, the first positive sim-
to-real transfer result using pretrained 3D representations with
RL. We find that learning 3D representations leads to signifi-
cant gain in real robot performance and our representation is
much more robust to the visual environment changes in the real
world. We also compare to settings on RL with frozen features
and show frozen 3D representation consistently outperforms
state-of-the-art methods with frozen 2D representations. A
possible limitation of our work is the requirement of multi-
view inputs during training. While these are easy to obtain
in simulation, it could be difficult to learn a multi-view
representation in the real world. Exploring single-view training
with a 3D-aware objective could therefore be an interesting
direction for future research.

REFERENCES

[1] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv, 2016. 1

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv, 2017. 1

[3] O. M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew,
J. W. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider,
S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba, “Learning
dexterous in-hand manipulation,” IJRR, 2020. 1

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv, 2013. 1

[5] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus,
“Improving sample efficiency in model-free reinforcement learning from
images,” 2019. 1

[6] M. Laskin, A. Srinivas, and P. Abbeel, “Curl: Contrastive unsupervised
representations for reinforcement learning,” in ICML, 2020. 1, 4

[7] I. Higgins, A. Pal, A. A. Rusu, L. Matthey, C. P. Burgess, A. Pritzel,
M. M. Botvinick, C. Blundell, and A. Lerchner, “Darla: Improving zero-
shot transfer in reinforcement learning,” arXiv, 2017. 1

[8] A. Nair, V. H. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, “Visual
reinforcement learning with imagined goals,” in NeurIPS, 2018. 1

[9] N. Hansen and X. Wang, “Generalization in reinforcement learning by
soft data augmentation,” in ICRA, 2021. 1, 2

[10] T. Xiao, I. Radosavovic, T. Darrell, and J. Malik, “Masked visual pre-
training for motor control,” arXiv, 2022. 2, 6

[11] S. Parisi, A. Rajeswaran, S. Purushwalkam, and A. K. Gupta, “The
unsurprising effectiveness of pre-trained vision models for control,”
arXiv, 2022. 2, 4, 6

[12] A. Dobbins, R. Jeo, J. Fiser, and J. Allman, “Distance modulation of
neural activity in the visual cortex,” Science, 1998. 2

[13] R. Cheng, A. Agarwal, and K. Fragkiadaki, “Reinforcement learning of
active vision for manipulating objects under occlusions,” in CoRL, 2018.
2

[14] I. Akinola, J. Varley, and D. Kalashnikov, “Learning precise 3d manip-
ulation from multiple uncalibrated cameras,” in ICRA. IEEE, 2020, pp.
4616–4622. 2

[15] C. Wang, R. Martı́n-Martı́n, D. Xu, J. Lv, C. Lu, L. Fei-Fei, S. Savarese,
and Y. Zhu, “6-pack: Category-level 6d pose tracker with anchor-based
keypoints,” in ICRA. IEEE, 2020, pp. 10 059–10 066. 2

[16] H.-Y. F. Tung, R. Cheng, and K. Fragkiadaki, “Learning spatial common
sense with geometry-aware recurrent networks,” in CVPR, 2019. 2

[17] Z. Lai, S. Liu, A. A. Efros, and X. Wang, “Video autoencoder: self-
supervised disentanglement of static 3d structure and motion,” arXiv,
2021. 2, 3, 7

[18] J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut,
and D. Novotny, “Common objects in 3d: Large-scale learning and
evaluation of real-life 3d category reconstruction,” in ICCV, 2021. 2, 4

[19] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine,
“Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning,” in CoRL, 2019. 2

[20] D. Hafner, T. P. Lillicrap, J. Ba, and M. Norouzi, “Dream to control:
Learning behaviors by latent imagination,” arXiv, 2020. 2

[21] N. Hansen, R. Jangir, Y. Sun, G. Alenyà, P. Abbeel, A. A. Efros, L. Pinto,
and X. Wang, “Self-supervised policy adaptation during deployment,”
in ICLR, 2021. 2

[22] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao, “Mastering atari
games with limited data,” arXiv, 2021. 2

[23] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” arXiv, 2020. 2

[24] I. Kostrikov, D. Yarats, and R. Fergus, “Image augmentation is all you
need: Regularizing deep reinforcement learning from pixels,” ICLR,
2020. 2, 4

[25] N. Hansen, H. Su, and X. Wang, “Stabilizing deep q-learning with
convnets and vision transformers under data augmentation,” arXiv, 2021.
2

[26] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, “R3m: A
universal visual representation for robot manipulation,” arXiv, 2022. 2,
6

[27] B. Chen, P. Abbeel, and D. Pathak, “Unsupervised learning of visual 3d
keypoints for control,” arXiv, vol. abs/2106.07643, 2021. 2

[28] M. Jaritz, J. Gu, and H. Su, “Multi-view PointNet for 3D Scene
Understanding,” arXiv, 2019. 2

[29] H.-Y. F. Tung, X. Zhou, M. Prabhudesai, S. Lal, and K. Fragkiadaki,
“3d-oes: Viewpoint-invariant object-factorized environment simulators,”
in CoRL, 2020. 2

[30] H. Qi, X. Wang, D. Pathak, Y. Ma, and J. Malik, “Learning long-term
visual dynamics with region proposal interaction networks,” in ICLR,
2021. 2

[31] C. P. Burgess, L. Matthey, N. Watters, R. Kabra, I. Higgins, M. M.
Botvinick, and A. Lerchner, “Monet: Unsupervised scene decomposition
and representation,” arXiv, 2019. 2

[32] Y. Li, S. Li, V. Sitzmann, P. Agrawal, and A. Torralba, “3d neural scene
representations for visuomotor control,” arXiv, 2021. 2

[33] J. Ichnowski, Y. Avigal, J. Kerr, and K. Goldberg, “Dex-neRF: Using a
neural radiance field to grasp transparent objects,” in CoRL, 2021. 2

[34] D. Driess, I. Schubert, P. Florence, Y. Li, and M. Toussaint, “Reinforce-
ment learning with neural radiance fields,” arXiv, 2022. 2

[35] K. Wang, B. Kang, J. Shao, and J. Feng, “Improving generalization in
reinforcement learning with mixture regularization,” arXiv, 2020. 2

[36] Y.-Y. Tsai, H. Xu, Z. Ding, C. Zhang, E. Johns, and B. Huang, “Droid:
Minimizing the reality gap using single-shot human demonstration,” RA-
L, 2021. 2

[37] Y. Du, O. Watkins, T. Darrell, P. Abbeel, and D. Pathak, “Auto-tuned
sim-to-real transfer,” ICRA, 2021. 2

[38] R. Julian, B. Swanson, G. Sukhatme, S. Levine, C. Finn, and K. Haus-
man, “Never stop learning: The effectiveness of fine-tuning in robotic
reinforcement learning,” arXiv, 2020. 2

[39] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor adaptation
for legged robots,” arXiv, 2021. 2

[40] R. Jangir, N. Hansen, S. Ghosal, M. Jain, and X. Wang, “Look closer:
Bridging egocentric and third-person views with transformers for robotic
manipulation,” RA-L, 2022. 2

[41] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” arXiv, 2018. 3, 4

[42] X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with
momentum contrastive learning,” arXiv, 2020. 4

[43] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” JMLR, 2016. 6

[44] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on Pattern Analysis &
Machine Intelligence, vol. 13, no. 04, pp. 376–380, 1991. 7




