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ABSTRACT OF THE DISSERTATION

Optimization of Reservoir Adaptation for Multivariate Time Series
Classification

by

Babak Moatamed
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2020
Professor Majid Sarrafzadeh, Chair

With the increasing need for real-time human health monitoring and the advent of activity
tracking devices in our daily lives, temporal data is more available than ever. Time series are
encountered in many real-world applications ranging from electronic health records (EHR)
and human activity recognition to human biosignal classification. One powerful model for
time series learning tasks is Reservoir Computing (RC). Due to its recurrent nature, it is
capable of encoding temporal dependencies of time series and because of its unique architec-
ture (fixed recurrent layer), it is much faster to train compared to state-of-the-art recurrent
models. In this dissertation, we propose an Adaptive Reservoir training method for Echo
State Networks (ESN). This method enables the reservoir to adapt to the training task only
when it results in more discriminative representations for the input time series. In addition as
an example of real-world time series applications, we propose an athletic performance moni-
toring framework. Finally, we conclude with an in-depth region-based analysis of COVID-19
pandemic events not only because it is another time series related task but since as this

dissertation is being written it has affected us all and has taken many lives.
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CHAPTER 1

Introduction

The quantity of information generated by the many different activities carried out in medicine
and healthcare is constantly on the increase. The efficient and responsible use of this infor-
mation is one of the key challenges today. To enable this, approaches capable of discovering
knowledge in the presence of data and modeling challenges are demanded. Distributional
shift, missing values, limited training data, lack of labeled data, imbalanced class data and
domain adaptation are only a few of such challenges. One of the more challenging data types
for machine learning algorithms are time series data [EA12]. Time series are encountered
in many real-world applications ranging from electronic health records (EHR) and human
activity recognition to human biosignal classification. Given the need to accurately classify

time series data, researchers have proposed hundreds of methods to solve this task [FFW19].

1.1 Motivation

With the increasing demand for real-time human health monitoring and advent of activity
tracking devices in our daily lives, temporal data is more available than ever and hundreds
of time series classification (TSC) algorithms have been proposed since 2015. Due to their
natural temporal ordering, time series data are present in almost every task that requires

some sort of human activity tracking.

In addition, as TSC models gain more predictive power they become more complex. This

complexity in some scenarios is bounded by the computation capabilities of the running



device. In case of edge devices (e.g. smartphones and smartwatches), there is only a limited
amount of computation power available for machine learning tasks which is enforced by the
operating system. As a result, this imposes a limitation on the models we can exploit on
these devices. Recently, recurrent neural networks (RNN) have shown great potential in
modeling characteristics of temporal data and there has been a great amount of research
conducted on enhancing the performance of such models for long time series. However, most
of these efforts traded model capacity and predictive power with model complexity. This
limits the feasibility of training deep models on low power edge devices and in practice these
devices only exploit such models during inference time. In this thesis we are focusing on
reservoir computing (RC) models, a family of neural network models in order to mitigate the
challenges of RNNs by eliminating the need to compute the gradient for the hidden layers

which reduces the training time of these neural networks.

1.2 Overview of Contributions

The remaining chapters of this thesis is organized as follows.

In chapter 2, we will review state-of-the-art approaches in multivariate time series classi-
fication (TSC) and will provide necessary background on reservoir computing models. Then
we will provide in depth analysis of the reservoir dynamics through several experiments. We
then introduce a new reservoir computing model and compare the efficiency of the model with
the state-of-the-art time series learning models (classifiers based on fully trainable RNNs,
deep learning models, DTW, and SVM configured with kernels) using numerous publicly
available multivariate datasets. Then we conclude the chapter with analysis of configuration
of our proposed model and hyperparameters. In the next two chapters we will present two

real-world TSC problems and evaluate the efficiency of our proposed model in each context.

In chapter 3, we propose a remote monitoring framework for athletic population as a

use case of our time-series classification approach discussed in chapter 2. We introduce



various concepts regarding human activity monitoring and assessment. We then show how
the time-series classification models can help with injury prevention and training adaptation

and recovery.

Chapter 4 is a special chapter and is dedicated to predictive modeling for COVID-19

pandemic events as another application of time-series analysis.

We finally conclude with a summary of this thesis and future directions for this branch

of research in chapter 5.



CHAPTER 2

Reservoir Computing for Time Series Classification

Artificial recurrent neural networks (RNNs) represent a large class of computational models
that are designed inspired by analogy with biological brain neurons. In an RNN numer-
ous abstract computation units (neurons) are interconnected by likewise abstracted synaptic
connections, which enable activations to propagate through the network. Unlike feedforward
neural networks, RNNs possess cycles in their topology (computation graph). Mathemati-
cally, this renders an RNN to be a dynamical system, while feedforward networks are func-
tions. It is this key difference that enables RNNs to remember historical information from
previous time steps through preserving a nonlinear transformation of the input history in
their internal state. However, as an undesired effect, the gradient of the loss shrinks when
backpropagated in time through the network. Reservoir computing (RC) is a family of RNN
models whose recurrent part is generated randomly and then kept fixed [LJ09, BSL20]. De-
spite this strong simplification, the recurrent part of the model (the reservoir) provides a

rich pool of dynamic features that are suitable for solving a large variety of tasks.

Notation: Throughout the thesis we denote variables as lowercase letters (x); constants
as uppercase letters (X); vectors as boldface lowercase letters (x); matrices as boldface
uppercase letters (X); All vectors are assumed to be columns. The notation x(t) indicates

time step t and x[n] sample n in the dataset.



2.1 Background

In this section, we start by introducing the mathematical definition of time series classifica-

tion (TSC). We then follow by reviewing the current methods in time series classification.

The problem of classifying multivariate time series (MTS) consists in assigning each M'TS

to one of a fixed number of classes.

Definition 1 An F-dimensional MTS, X = [z(1),...,2(T)]" consists of T observations
through T time steps, whose observation at time t is denoted as z(t) € RY. Hence we

can represent X as a T x F' matriz.

The true action label for each time step is given by y; € {1, ...,C}, where C is the number
of classes. The task of classifying time series data consists of learning a classifier in order
to map from the space of possible inputs X to a probability distribution over the labels
{y(1),...,y(k)} where k is the total number of observations.

2.1.1 Review of time series classification methods

Classical approaches to the problem of TSC involve hand crafting features from the time
series data based on fixed-sized windows and rolling window averages, such as ensembles
of decision trees. The main challenge with these methods is that these feature extractions
require field expertise and prior knowledge about the type of data. In addition, they are

susceptible to distributional shift and will not generalize well.

One way to distinguish between two time series of the same length is to treat them as
vectors and simply employ a linear kernel or Radial basis kernel. This method can be simple
and efficient provided the time series are short and of equal length. However, in many real-
world applications, the time series of interest are of variable-length and can be quite long.
It is therefore desirable to construct kernels capable of handling possibly long time series

of variable length. For example, dynamic time warping (DTW) tries to wrap the time axis

bt



of one (or both) sequences to achieve a better alignment [CTT13, BC94]. DTW has been
successfully used in many applications. However, DTW can generate unintuitive alignments
by mapping a single point on one time series onto a large subsection of another time series,

leading to inferior results [CKH15].

In recent years, following the success of deep neural networks (DNNs) in computer vi-
sion tasks, researchers have proposed several DNN architectures to solve natural language
processing (NLP) tasks such as machine translation [SVL14], learning word embeddings
[MCC13], and document classification [LM14]. DNNs also had a huge impact on the speech
recognition tasks [HDY12]. Interestingly, we should note that the intrinsic similarity between
the NLP and speech recognition tasks is in the sequential aspect of the data which is also
one of the main characteristics of time series data. As a result, numerous DNN architecture

have been proposed to solve TSC problems.

A deep neural network is comprised of L layers where each layer is considered an abstract
representation of the input domain. Each [; contains nonlinear transformation functions
also called neurons, which are small units that compute one element of the layer’s output.
The layer [; takes as input the output of its previous layer /;_; and applies a non-linearity
(sigmoid or tanh function) to compute its output. The output characteristics of these non-
linear transformations is controlled by a set of weight parameters #; for each layer which
link neurons in successive layers together. Given an input x, a neural network performs the

following computations to predict the class also known as feed-forward propagation (pass):

fL(0L7 I) = fL—1(9L—1, fL—2(9L—2> oo f1(91, iE))) (2-1)

where f; corresponds to the non-linearity applied at layer [;. At train time, the network is
fed with a certain number of input values (batch) as well as the corresponding label (target).
First, the weights are initialized randomly or through more sophisticated weight initialization

methods [GB10]. After the weight initialization step, through using a forward pass output of



the network corresponding to input x is computed. The output is a vector whose components
are the estimated probabilities of input x belonging to each class. Having the true labels, the
model’s prediction loss is computed using a loss function (e.g. cross entropy or negative log
likelihood). Then, using gradient descent algorithm [LBB9S8], the § parameters are updated
in a backward pass to propagate the loss to the entire network. By iteratively taking a
forward pass followed by backpropagation, the model’s parameters are updated in a way
that minimizes the loss on the given training data. During test time (inference), the network
is tested on unseen data. Depending on the data type and the learning task, an accuracy
measure is adopted. One advantage of DNNs over non-probabilistic classifiers (such as DTW)
is that a probabilistic decision is taken by the network [BLB17], thus allowing to measure

the confidence of a certain prediction given by an algorithm [FFW19].

Here we briefly introduce some of the state-of-the-art DNN models for TSC.

o Multi Layer Perceptron
The Multi Layer Perceptron (MLP) is the most traditional form of DNNs. This network
architecture is also known as a fully-connected (FC) network since the neurons in layer
l; are connected to every neuron in layer [;_;. Activation function of each layer of this

network can be calculated through the following matrix form:

A, = f(W, X +b) (2.2)

Where W, € R%:*%i-1 ig the weight matrix connecting layer [;_; to layer {; and d;, is

the output dimension of layer [;.

One restriction of adopting MLPs for time series data is that they do not exhibit
any spatial invariance. In other words, each time stamp has its own weight and the

temporal information is lost: meaning time series elements are treated independently

from each other [FFW19].



e Fully Convolutional Neural Network
Following the success of CNN architectures in image recognition and classification
tasks, researchers have started adopting them for time series analysis. A time series
convolution can be seen as applying and sliding a one dimensional filter over the time
series. In this sense, the filters can also be seen as a generic non-linear transformation
of a time series. The result of a convolution on an input time series can be considered
as another univariate time series. Thus, applying several filters on a time series will
result in a multivariate time series whose dimensions are equal to the number of filters
used. The intuition behind applying several filters on an input time series would be
to learn multiple discriminative features useful for the classification task. The key
difference between CNNs and MLPs is that the same convolution will be used to find
the result for all time stamps. This weight sharing feature of the CNNs enables them
to learn filters that are invariant across the time dimension. When considering an M'T'S
as input to a convolutional layer, the filter no longer has one dimension but also has

dimensions that are equal to the number of dimensions of the input MTS.

o t-LeNet
Inspired by the great performance of LeNet’s architecture for the document classifica-
tion task [LBB98], t-LeNet was proposed by [LMT16]. It is made of two convolutions
layers, each followed by a sub-sampling step performed through max pooling. Finally,
fully connected layers enable to match extracted features with class labels to be pre-
dicted. Unlike global average pooling (GAP), local pooling introduces invariance to
small perturbations in the activation map (the result of the convolution filter) by tak-
ing the maximum value in a local pooling window. Therefore for a pool size equal to
2, the pooling operation will halve the length of a time series by taking the maximum

value between each two time steps.

e Time Convolutional Neural Network

[ZLC17] proposed Time-CNN for multivariate time series. Time-CNN uses a FC layer

8



with sigmoid unlike rest of the models described so far. The reason is the loss function
defined in this architecture is mean squared error (MSE) instead of traditional cross
entropy for classification. Another key difference to other CNNs is use of only one
convolution filter for all dimensions of M'TS which reduces the complexity of the model

and trainable parameters.

Residual Networks

[WYOL17] proposed a relatively deep Residual Network (ResNet) for TSC. This model
has 11 layers of which the first 9 layers are convolutional followed by a GAP layer that
averages the time series across the time dimension. The key characteristic of ResNets is
the shortcut residual connection between consecutive convolutional layers which makes

training the DNN much easier by reducing the vanishing gradient effect.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are the most commonly used architecture for se-
quence prediction tasks. They have particularly gained popularity in the domain of
natural language processing and TSC. The key feature of RNNs is the existence of
feedback loops. RNNs will preserve information from the past in their internal cell
state and this state will be used as an input for future state updates. However, this
powerful characteristic of RNNs comes with several challenges. RNNs typically suffer
from vanishing gradient problem and they are considered hard to train and parallelize
[PMB13]. It is worth mentioning similar to ANNs, RNNs are universal approximators
as well. Figure 2.1 shows the overall architecture of an RNN and its unfolding through

time.

Autoregressive Feed-forward Models
Instead of making predictions from a state that depends on the entire history, an
autoregressive model directly predicts output using only the k most recent inputs.

This corresponds to a strong conditional independence assumption. In particular, a
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Input

feed-forward model assumes the target only depends on the k most recent inputs.
In contrast to an RNN, the limited context of a feed-forward model means that it
cannot capture patterns that extend more than k steps. However, using techniques
like dilated-convolutions, one can make k quite large. Google’s Wavenet architecture

shown in Fig. 2.2 is a good example of this type of network .

e [Fcho State Networks
Echo State Networks (ESNs) were first proposed by [JH04] and were designed to alle-
viate some of the challenges of training RNNs such as vanishing gradient problem by
eliminating the need to compute the gradient for the hidden layers which reduces the
training time of these neural networks. An ESN consists of a non-trainable randomly

initialized RNN called reservoir and a trainable readout layer which maps the reservoir
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to output. Typically a logistic regression or Ridge classifier is used for the readout

layer. In the next section we will focus more on this family of neural network models.

2.1.2 Reservoir Computing

Reservoir computing (RC) is a family of RNN models whose recurrent part is generated
randomly and is not trainable. Loosely speaking, this means that the reservoir output would
be independent of the initial conditions. Despite this strong simplification, the recurrent part
of the model (the reservoir) provides a rich pool of dynamic features which are suitable for
solving a large variety of tasks including time series classification [MSC16] and training of
these models is significantly faster compared to other RNNs. RC based models were originally
introduced under the name echo state networks (ESNs) [Jae01]. In scenarios with limited
amount of temporal memory available, ESNs achieve state-of-the-art results in many real-
world applications constrained by time, low-power hardware and limited data [SW17]. On
the other hand, fully-trained RNNs trade architectural and training complexity with more
accurate representations and a larger memory capability [BSL17]. An overview of an RC
network is shown in 2.3. Let X be a multivariate time series in definition 1. The formulation

for reservoir part of the network is given by

h(t) = f(x(t),h(t =1);0cs) (2.3)

where h(t) is the reservoir state at time ¢ and f is a nonlinear activation function (typ-
ically tanh) and 6 defines the set of reservoir parameters. In practice, input sequence is
connected to reservoir through a randomly generated weight matrix W,,, and reservoir state

recurrent matrix is W,.. Hence, we can rewrite equation 2.3 as

h(t) = tanh(W;,x(t) + W, h(t — 1)) (2.4)
At each time step h(t) is calculate through equation 2.4. Therefore, if the length of input
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Input Reservoir Output

Figure 2.3: Overview of Reservoir Computing model network

sequence is T, we can show the sequence of generated states by H=[h(1), h(2),...,h(T)]. The
idea behind reservoir state is that the entire input sequence will be encoded into H so we
can find a respresentation based on H and compute the output of the network. If we name
r, = rep(H) respresentation of input sequence, then the output of the model (readout) will

be calculated by

y= g<rz; ereadout) (25)

where y is the class label for the input time series and ¢ can be a set of trainable classifiers

such as ridge regression, softmax or even SVM classifier.

2.1.3 Universal Approximation

Universality with respect to a machine learning paradigm refers to its versatility at the time
of generating a rich number of patterns obtained by modifying only a limited number of
hyperparameters. In the language of learning theory, universality amounts to the possibility
of making approximation errors as small as one wants [CS02]. [GO19] proves that linear

reservoir systems with either polynomial or neural network readout maps are universal.
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Moreover it proves the universality of ESNs with linear readouts which are the most common
RC model in applications. The linearity in the readouts is a key feature in supervised machine
learning applications. It guarantees that these models can be used in high-dimensional spaces

with large datasets.

2.2 Representation Model
In this section we will briefly introduce the current methods in reservoir state representation.

e last state
The most common representation of reservoir state is last state where the value of h(t)
at final time step captures past dependencies of the input and used in the readout layer

to calculate the output of the model.

e output model space
A powerful representation is the output model space [CTT13], obtained by passing
input through reservoir and then use the current state of reservoir to predict the input

one step-ahead

x(t) = W,h(t — 1) + b, (2.6)

where W, and b, are the coefficient matrix and bias vector of the ridge regression
model. Then by concatenating the vectorized form of W, and b, the representation

of the input time series x(¢) is calculated.

r, = [vect(W,); b,] (2.7)

e reservoir model space

Inspired by the idea of output model space, reservoir model space is proposed by
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[BSL20]. In this model space, each MTS is represented by the parameters of a linear
model, which unlike output model space predicts the next reservoir state by considering
all the reservoir dynamics. The intuition behind this is that in task of predicting next
input (in case of output model space) all the reservoir dynamics that are not useful for
the task will be discarded and this will create a bias in this model. The linear model

to predict next reservoir state is give by

h(t) = W;h(t — 1) + b, (2.8)

where W, and b, are the coefficient matrix and bias vector of the linear model. Lastly,

the reservoir output state will be calculated through

r, = [vect(W,); b,] (2.9)

[BSL20] showed the superiority of reservoir model space over the other methods in some
tasks; however, computing the reservoir model representation requires fitting a linear model
on the sequence of reservoir states. It means that we should keep the reservoir state at all
time steps in memory which might not be practical when the length of input time series is
relatively long. As a result, we will select the last state representation for the rest of this
thesis merely because of its computational scalability and simplicity. Figure 2.4 shows these

various models with potential readout layer classifiers for TSC tasks.

2.3 Regularization and problem of missing values

One of the most common problems in machine learning modeling is generalization which
refers to model’s ability to properly handle unseen data drawn from the same distribution
as training data. In the ESN literature, various methods have been proposed to increase the

generalization ability of the network. For example, in [DSV09], the authors propose a form
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Figure 2.4: Overview of various reservoir state representation models. Image from [BSL20]

of regularization by imposing a constraint on weights of the connections from the reservoir to
the readout layer W,. By pruning some connections from the reservoir to the readout layer
[SCS15] shown better generalization can be achieved. Another method which can assist with

better generalization of the RC models is dimensionality reduction which we discuss next.

2.3.1 Dimensionality reduction

In practice reservoir has a large number of neurons in order to capture dynamics of input
time series in a high dimensional space. In order for the readout layer to generalize better and
and avoid curse of dimensionality and also meet potential computational constraints, low-
dimensional embeddings for reservoir state sequence is calculated by applying methods such
as principle component analysis (PCA) [BSL17]. In [LBJ17], authors proposed a framework
for training ESNs by a dimensionality reduction procedure. They also demonstrated that

it is possible to reconstruct the phase space of dynamical systems which can be a solid
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alternative to time-delay embedding. In addition, [BSL20] proposed a modified version of
PCA for tensors, which keeps separated the modes of variation among time steps and data

samples.

2.3.2 Missing Values

It is common in time series data that some of the input features are missing either in training
data or test time. This can be due to several factors such as faulty sensors or inconsistency
in data collection. As a result this can introduce biased estimates in the classifier. One of the
commonly used approaches to deal with this problem exploits imputation, i.e. substituting
the missing feature by inferring it from other information available in the training data
[GSF10]. There exist scenarios where the entire time series data is available for training
without any missing values but at inference time parts of the input might become unavailable.
In order to mitigate the effect of missing inputs in test time [BCM17] has proposed DropIn
a technique inspired by dropout [SHK14] in context of reservoir computing where during
training time similar to dropout method, connection of some part of the input time series to
reservoir neurons is removed. The Dropln approach is general, as it can be applied to any
neural network model for which Dropout applies. According to [BCM17] once an ESN model
has been trained using Dropln, it can be used for prediction without any weight re-scaling. In
a DropIn-ESN masking of the input units does not bear any effect on the input-to-reservoir
weights, whose values are fixed. Readout weights are the only ones that are affected by

Dropln but the effect on them is indirect and mediated by the reservoir activations.

2.4 Reservoir Dynamics Analysis

In a report, [Jael2] introduced numerous experiments on ESN dynamics with the goal of
assessing learnability of long-term temporal dependencies. The generalization capabilities of

the reservoir mainly depend on three components:
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1. a high number of neurons in the reservoir
2. spectral radius of the recurrent weight matrix W,

3. sparsity of the recurrent connections

The behaviour of the reservoir is controlled by modifying the following hyperparameters:
spectral radius; percentage of non-zero connections; number of reservoir units. Another
important hyperparameter is the input scaling, which controls the amount of nonlinearity
in neurons, jointly with spectral radius, can shift the internal dynamics from a chaotic to a

contractive regime [LBA17].

In the rest of this section we will show the effect of various reservoir parameters on a
TSC task. We consider the task of binary classification of spontaneous termination of Atrial

Fibrillation (AF) from two-channel ECG signals [CKH15].

2.4.1 Reservoir Configuration

Spectral Radius
One important parameter of reservoir is the spectral radius of its state-to-state update matrix

or W, Jacobians.

) = 8ha(ltl(f)l)

Then spectral radius p(W,.) is defined as the maximum of absolute eigenvalue of weight
matrix W,.. In theory we should set p(W,) < 1 to ensure stability of the reservoir. The
reason is if we assume W, has an eigenvector u with eignevalue A\ according to equation
2.4 if we have a perturbation of size # in reservoir state at any time step in direction of the
eigenvector u, then in the next k updates of reservoir state we have an additional 8| \|* term.
When |A| > 1 the state activations becomes infinite which means historical information from

past inputs grow exponentially in time and when |A| < 1 reservoir will forget those past

information after certain number of time steps and we call p(W,.) contractive. However, in
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practice p(W,.) is usually selected to maximize the performance of the model. If the task
requires long-term temporal dependencies to be learned by the model then we select larger
values of p. Optimization of a reservoir for a specific task is usually based on experience and
heuristics and partly on hyperparameter tuning. Moreover, due to random initialization of
reservoir the variance of the performance across different reservoirs with the same spectral
radius is still quite substantial. In [WS07] authors proposed an unsupervised and local
adaptation rule based on entropy and information maximization, called intrinsic plasticity

(IP) which can improve the performance of ESN models.

Size and Sparsity

Depending on the learning task, we can select a suitable reservoir size N(number of neurons
in reservoir pool) for our model. We usually set a much larger number for N compared
to input dimension. The idea of a fixed reservoir is to encode the entire history of spatio-
temporal input within its state; however, extremely large reservoir size can lead to overfitting.
According to [Lukl12] the general rule of thumb is that the bigger the reservoir, the better
the obtainable performance, provided appropriate regularization measures are taken against
overfitting. Another reservoir control parameter is sparsity. As mentioned in section 2.1.2
the weights of reservoir are initialized randomly with a certain sparsity meaning that not all
reservoir neurons are connected together. This is particularly because due to large dimension
of the reservoir computations on W, € R¥*¥ can become quite expensive. In general,
sparsity of the reservoir does not affect the performance of the model significantly and has
a low priority for optimization. However, sparsity enables fast reservoir updates if sparse

matrix representations are used [Luk12].

Input Scaling
Another key control parameter of reservoir is input scaling which defines the range W;,
weights are sampled from. Therefore if we set input scaling to a then W, weights are

sampled from [—a,a]. When dealing with multivariate time series if all input channels
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Table 2.1: Binary classification accuracy results for ECG task with various configurations of

reservoir.

N /Sparsity /scaling 100/0.1/1 200/0.1/1 400/0.5/2 800/0.5/2
spectral radius (p) | 0.5 1 2 | 05 1 2 | 05 1 2 |05 1 2

ECG (accuracy %) | 67.4 79.2 81.0 | 69.1 81.1 84.5 | 72.3 80.8 84.7 | 743 79.7 82.1

contribute to the task in very different ways, it is better to optimize their scaling factor
separately [Lukl12]. In other words, input scaling determines the degree of nonlinearity of
reservoir response. Therefore, for TSC tasks that are mainly linear, input scaling should be

small such that reservoir neurons operate in their linear zone of tanh activation.

In table 2.4.1 the effect of reservoir spectral radius, size, sparsity and input scaling is
shown on the task of ECG classification described at the beginning of this section. For the

readout layer we have used a 1-layer feedforward layer and a softmax classifier layer.

2.4.2 Recurrent Analysis

Recurrence plots (RP) are a powerful tool for analyzing the progression of reservoir states
for an input time series. RPs are constructed by defining a dissimilarity measure in state
space and a distance threshold. Each element of RP is derived by calculating the distance
between two reservoir states h[i] and h[j] which refer to time ¢ and j respectively. Recently,
RPs have been used in study of heterogeneous recurrences. RPs are also being used in field
of recurrence networks [DZD10], whose main goal is to exploit complex network methods to
analyze temporal dynamical systems. Fig 2.5 shows the recurrence plot for reservoir states
corresponding to two input ECG samples. It can be seen that by end of reading the entire

input sequence, reservoir state has changed dramatically compared to its initial state.

In order to better understand the recurrence of reservoir, we can clip the recurrence

matrix with a dissimilarity threshold 7. Then we can recalculate matrix RP as:
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Figure 2.5: Recurrence plot of reservoir states for two samples of ECG signals.

RP, 1, if diss(h[i], h[j]) > 7 (2.10)

0 otherwise
Figure 2.6 shows the result of applying recurrence threshold on a sample ECG input.
We can see that as we increase the spectral radius for the reservoir, dissimilarity between
consecutive states at the end of the sequence increases. This shows that even though input
signal is almost flat at the end of the sequence, reservoir with higher p value can remember

the history of input time series better.
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Figure 2.6: Recurrence plots for a sample ECG input and the corresponding states with

various values of spectral radius with 7 = 0.5.

2.5 Adaptive Reservoir Optimization

In this section we introduce the crux of our contribution, that is a novel learning rule for
adapting the recurrence weights of the reservoir. It should be noted that this learning rule
is specifically designed for readout layers with neural network architecture which require
backpropagation but can be applied to other linear approximation methods through recursive

least squares (RLS) algorithm.

Though very successful in many TSC tasks, using a random fixed set of weights for
reservoir dynamics can be quite inefficient when considering the large size of reservoir and

the projected state representation. We consider updating reservoir internal weights with
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truncated version of BPTT controlled by a distance measure of input pairs.

We consider again an ESN model with reservoir state equation from 2.4 where input

sequence is connected to reservoir through a randomly generated weight matrix W;,, € RV*¥

RNXN

and reservoir state recurrent matrix is W,. € and the input time series is x(¢t) € RF*1,

h(t) = tanh(W;,x(t) + W, h(t — 1))
y= g(h(T>a 9readout>

For the TMC task we will assume that ¢ is a differentiable softmax function. Then we

can define the cross-entropy loss function as:
Lee == yilog(ji)

Then we can derive the equations for backpropagation gradients as follows:

t
oL :Zaz y (2.11)
k

(?wtij 0_y 8htk (?wtij

Here h'; is the k" element of reservoir at time ¢ and w';; represents the element of the

" row and j™ column of W, at time t. We know that % depends on previous state at
ij

time ¢t — 1s which itself depends on previous states. Here we make a simplifying assumption
and cut the BPTT to one step by assuming independence between h(t — 1) and W, so we

have

— = Ry;(t) (2.12)

where the R is given by

R(t) = (1 — tanh®>(W,x(t) + W,h(t — 1)))"h(t — 1) (2.13)
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therefore 2.11 becomes:

oL vy
— — 2 Ry, 2.14
zk: ay ahtk J ( )

Here instead of simply using a learning rate for our weight updates like conventional
gradient based learning rules, we propose a gating mechanism to pass the gradient to reservoir
internal weights under certain criteria. Ideally we want to modify reservoir dynamics when
reservoir is mapping dissimilar inputs to alike state representations. In order to achieve
this we introduce a distance measure between input sequences and a notion of similarity
between derived states (which are then fed to readout layer). There are various methods for
measuring the distance between two multivariate time series but we will chose normalized
Euclidean distance for its simplicity. Therefore, for two input sequences u(t) and v(t) we

define D(u,v) as

VN, (- vi)?

\/Zz 1 Ui +\/Zz 1 0f

Subsequently we will use Pearson’s similarity coefficient as the similarity measure be-

(2.15)

tween two state vectors since Euclidean metric is less applicable for higher dimension spaces

according to [IK13]. As a result for two state vectors p and q we have

\/ZZ 1(pi = D)*(4 —q)?

Now we can define our gradient propagation criteria as following

Wij Saﬁ, if D(u,v)S(p,q) > T
wy = o (4, 0)5(,9) (2.17)

wij, otherwise
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Figure 2.7: Proposed RC model and learning optimizer for time series classification.

where 7 is the update threshold hyperparameter and 7 is the learning rate. Algorithm 1
shows steps for initializing the model and training contains. Figure 2.7 demonstrates the

architecture our proposed model.

2.5.1 Intuition Behind Learning Rule

Having a fixed non-trainable recurrence matrix enables reservoir computing models such as
ESNs to train much faster than trainable RNNs (through BPTT). ESNs achieve temporal
encoding through a large reservoir layer which projects the input time series to a high-
dimensional space. However, since the reservoir weights are initialized randomly and are
fixed through time, completely distinct and uncorrelated input sequences can result in the
same reservoir respresentation. Fig 2.8 shows three different input sequences a(t), b(t) =
a(t) + n(t) and c(t) where n(t) ~ N (0, o). The corresponding reservoir activation map for
each signal confirms that the reservoir is resilient to small input noise due to high-dimensional

projection of the input. However, signal c(t) despite its clear dissimilarity with signal a(t)
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Algorithm 1 Reservoir Adaptation Optimizer

Step 1 — Randomly initialize reservoir dynamics (W;,, W,.)

Step 2 — Sample two input sequences u(t) and v(t)

Step 3 — Calculate the reservoir states for both inputs, s,(¢) and s,(t) and calculate the
corresponding model outputs ¢, (t) and g, (t)

Step 4 — Calculate the distance between two input time series through 2.15 and the
similarity of the derived states through 2.16

Step 5 — Calculate the loss for each input, L, and L, and compute the derivation of the
backpropagated loss with respect to W, through 2.17

Step 6 — Calculate the spectral radius of the reservoir and scale if needed

excites the reservoir in almost identical way when using conventional fixed reservoir model.
Since in ESN models the output error only propagates through the readout layer, the model
will not benefit from the backpropagation step in case of this example. Our proposed method
will account for such scenarios by propagating the loss back to reservoir internal weights when
there is insignificant correlation between input sequences whereas high correlation between
their derived representations is achieved. In figure 2.8(b) it is clear that using the proposed
optimizer results in more distinct reservoir activations in signals a and b which is a more

desirable outcome.

2.6 Experimental Results

In this section we validate the efficacy of the proposed reservoir adaptation algorithm and
compare the ESN model with state-of-the-art recurrent models such as LSTM and GRU on
various multivariate time series classification benchmarks. More specifically we will use some
of the time series datasets in UCR Time Series Classification Archive [CKH15] summarized

in Table 2.6.
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Figure 2.8:
constructed by adding Gaussian noise to a(t) and ¢(t) is another ECG sample with similar

time domain representation to a(t).
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dynamic reservoir activations by proposed learning algorithm.
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Table 2.2: Summary of time series datasets used in this section.

Dataset Input Length # of Classes Dimension Train Size Test Size
ECG 152 2 2 100 100
JapaneseVowels (JpVow) 29 9 12 270 370
Char.Traj. 205 20 3 300 2558
Libras 45 15 2 180 180
Wafer 198 2 6 298 896

2.6.1 Experimental Setup

For each of the time series dataset in Table 2.6 we train models 10 times with random

parameter initialization and same set of hyperparameters.

2.6.2 Classification Benchmark

We compare the performance of ESN model and our proposed Adaptive ESN model against
state-of-the-art models on datasets in Table 2.6. For RC models we consider a vanilla ESN
model and our proposed Adaptive ESN. In section 2.6.3 we study various architectures based
on the readout layer, bidirectional input and reservoir state space in depth. Reservoir dynam-
ics are configured as follows: size of reservoir N = 800 spectral radius p = 0.99, connection
percentage (sparsity) = 0.25, input scaling o = 0.15. For vanilla ESN the readout layer is a
ridge regression model with A = 1.0. For the proposed Adaptive ESN, we used a fully con-
nected layer with 40 units followed by a softmax layer. Also a PCA dimensionality reduction
step is performed on the reservoir state for better generalization and robustness [BSL20].
For a fair comparison we also added another ESN model with the same MLP architecture
(mlp-ESN) for readout layer where the reservoir recurrent weights are non-trainable. LSTM
and GRU networks have a hidden layer with 30 units followed by 2 fully connected (FC)
layers of size 20 and the last layer is a softmax classifier layer. /5 regularization parameter

A = 10~* and dropout probability is pg. = 0.1. For training these models gradient descent
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Table 2.3: Classification accuracy and training time obtained by various models on time

series datasets

DTW-1-NN ESN mlp-ESN ada-ESN LSTM GRU
Dataset

acc time acc time acc time acc time acc time acc time
ECG 80.2 220 725 0.11 745 2 79.8 783 10.1 79.1 10.35

Jp.Vow. 93.6 135 8.8 006 872 1.2 927 14 939 58 94.4 6.0

Char.Traj. | 74.5 615 434 023 534 7.12 69.3 815 704 394 721 40.28
Libras 73.1 95 76.2 003 77.0 028 786 035 71.0 5.1 2.7 5.27
Wafer 99.1 590 89.7 0.06 91.2 6.1 953 6.6 974 3346 98.2 3538

with Adam optimizer is used. The models are trained for 3000 epochs or when the meet
stopping criteria. For Dynamic Time Warping (DTW) similarity based classifier we use k-NN
(nearest neighbour) classifier with k=1. Results for mean classification accuracy and stan-
dard deviation of 10 independent runs on all benchmark datasets, and average training time
(in minutes on a logarithmic scale) is reported in Table 2.6.2. The ada-ESN model achieves
a much higher accuracy compared to its peers, vanilla ESN and mlp-ESN which shows the
efficacy of our proposed learning algorithm while the time overhead of our proposed reser-
voir optimization method is negligible when compared to mlp-ESN. Also it can be seen that
the accuracy of Adaptive ESN (ada-ESN) is comparable to LSTM and GRU which shows
that even though learned representations in Adaptive ESN are semi-unsupervised, they can
compete with fully supervised methods with powerful non-linear classifiers. In addition, it
is evident that vanilla ESN model is much faster than the rest of the models and our Adap-
tive ESN is the second fastest classifier. This is particularly the result of having much less
trainable parameters compared to LSTM and GRU which was the motivation behind this

work.
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2.6.3 Comparison between various RC models

Since the advent of RC models many studies have tried to enhance the performance of
such models. Many of such studies are inspired by recent advancements in deep learning
methods and RNN models. [GMP17] extended the idea of deep learning paradigm to ESN
models by stacking a hierarchy of reservoir layers. Performance of Deep ESN models has
been compared against gated RNN models (LSTM, GRU) in [GMP18]. Other successful
ideas in RNN models such as bidirectional RNN have been exploited for RC models as
well. [BSL17] reported that bidirectional ESNs which capture time dependencies in data
forward and backward in time outperform ESN and are comparable with GRU networks

while training much faster.

Another interesting method in the context of unsupervised reservoir adaptation tech-
niques is Intrinsic Plasticity (IP) [SWV08] which tries to maximize the entropy of the reser-
voir units output distribution. The IP rule implements a gradient descent algorithm that
adapts the gain and bias parameters of the activation function locally to each reservoir unit.
In particular, when using the tanh as activation function, the IP rule aims at the minimiza-
tion of the KullbackLeibler (KL) divergence between the empirical output distribution and a
Gaussian distribution. Furthermore, to better understand the trade off between complexity
and accuracy in our proposed method, we can compare the learning curve of mlp-ESN and
ada-ESN on ECG classification task as well as the training time of these models for all the
datasets in Table 2.6. Figure 2.9 shows the learning curve for the two MLP based ESN
models for ECG classification task. Also the accuracy of ESN is drawn as a baseline. We
can understand from the result that proposed ada-ESN converges faster than mlp-ESN while
achieving a better accuracy. This confirms our hypothesis that our optimization algorithm

helps with better adaptation of reservoir even in early training epochs.

Figure 2.10 reports the average training time of LSTM and various ESN models over

all datasets. This result shows that time overhead for ada-ESN is insignificant making it
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2.6.4 Class Activation Map

In order to visualized the effectiveness of our proposed model for time series classification,
inspired by idea of one-dimensional class activation map (CAM) [WYO17], we used CAM
of reservoir states to highlight the regions of the input that classifier correlated with Atrial
Fibrillation. Figures 2.11 show the results of applying CAM on two channels of ECG signal
for both classes. We can distinctly visualize the segments of ECG which have high contri-
bution to detection of AF. Circled areas show the fibrillatory waves associated with AF and

the ada-ESN model has successfully assigned high correlation probabilities to these regions.

2.6.5 Memory Capacity

Inspired by memory analysis work in [Jael2], in order to assess the efficacy of reservoir to
recall history of input sequence, we will define a task called memory capacity (MC) which
aims to evaluate how well reservoir can recall delayed versions of the input. Given a univariate
input time series z(t) we define target values gx(t) = x(t — k) for k = 0, 1,...,00. Then we

can define MC score as:

MC =Y r’(y(t), z(t — k) (2.18)

where 1 is the correlation coefficient defined as:

Z?:1 (xz - T) (yZ — @)
V(@i — )2y — 7)? (2.19)

We consider the task of remembering first channel of ECG signal. Then each ECG sample

r(z,y) =

is a sequence of 152 readings. We calculate the MC of reservoir with respect to various values
of spectral radius p. In order to ensure the stability of the results we run this experiment on
10 different instance of reservoir initialized randomly. We used a fully connected feedforward

layer with sigmoid output layer for readout layer in this task. The result of this experiment
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is reported in figure 2.12. This result validates the efficacy of using our proposed model.
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CHAPTER 3

Sport Analytics

Many coaches and athletes are showing an increasing interest in training monitoring systems
every year. There is a plethora of performance markers that can aid in a coaches assessment
of physiological and psychological conditions of their athletes. These markers can indicate
an athlete’s readiness for competition, adaptation to training, or risk for injury. However,
studies have shown examination of these performance markers individually may not result
in a clear perception of one’s performance. Hence, an inclusive analysis of these metrics
is required to achieve meaningful assessment. Recently with the growing use of wearable
activity trackers, we have access to many of these markers. Currently, there are a few sport
monitoring tools which are using a subset of these metrics and are mostly providing real-
time data visualization to coaching staff. However, an appropriate athletic performance
monitoring system should be intuitive, provide useful data analysis, feedback and reliable
predictions to coaches and athletes. In this chapter, we introduce an athletic monitoring
system which collects a comprehensive set of metrics in real-time and informs coaches about

athlete’s physical conditioning.

3.1 Human Physiology Background and performance metrics

Many studies have investigated a number of performance monitoring metrics and tools, such
as neuromuscular functions (e.g. maximum effort sprints), heart rate variability (HRV),
heart rate recovery (HRR), bar speed, blood lactate, rate of perceived exertion (RPE), and
questionnaires [MGWO06, ASV11, MSR16, KMA16]. Each of these metrics can correlate
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with athlete’s overall conditioning. However, the inconsistent approaches for collecting these
metrics, and effects of other environmental and physiological stressors on athlete’s physiology
and recovery have, limited the use of such markers. In this thesis, we show that by following
a restricted data collection protocol we can eliminate most of these artifacts. With the help
of a group of experts in athletic performance department of our campus, we have selected
a comprehensive set of these metrics for our monitoring system such that by tracking all
markers, we can capture clinically and practically relevant changes in athlete’s physical and

mental condition.

o Mazimal effort neuromuscular function (Jump test)
The assessment of neuromuscular functions such as maximum jump height have become
popular due to simple test procedure and data collection and minimal fatigue induced
by the test [Hall4, XHA12]. Athletes will perform a maximal effort jump at the
beginning of their training session, as well as end of the session. As a result, we have
designed a wearable jump sensor that can easily be worn by athletes during training

sessions.

o Heart Rate Variability
Using heart rate as a performance metric is a common approach in most fitness track-
ers and monitoring systems. However, the heart rate value can only be an indicator
of the intensity of the activity. In order to capture more expressive features of heart
rate, we are measuring heart rate variability (HRV) which studies have shown is an
indicator of adaptation to training, fitness, freshness, and recovery [PLS13]. HRV is
the variation of time intervals between consecutive heartbeats. HRV is said to reflect
cardiac parasympathetic activity of the nervous system . There are multiple methods
in the literature to calculate HRV. We are using root mean square of the successive
differences between R-R intervals (RMSSD) since it has shown lower variation co-
efficient compared to other methods. Many studies have tried to find relationships

between HRV and physiological metrics such as fitness, training adaptation, recovery
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and stress. However, the results of such studies are inconclusive and in some cases
contradicting. For example, a reduction in covariance of variation of RMSSD is can be
related to increased chance of non-functional overreaching [PLK12] while some other
studies have associated this with better training adaptation. As a result, we should

take multiple factors and parameters into account while analyzing variations of HRV.

Heart Rate Recovery (HRR)

Heart-rate recovery (HRR) is the rate at which HR declines at the cessation of exercise
and has been suggested to be a marker of autonomic function and training status in
athletes. The autonomic nervous system consists of the sympathetic and parasympa-
thetic systems, with the rise in HR during exercise being the result of increased sym-
pathetic activity in combination with a reduction in parasympathetic activity. HRR
is characterized by opposing autonomic nervous system activity, with an increase in
parasympathetic activity and withdrawal of sympathetic nervous activity. HRR can be
calculated over varying time frames, usually between 30 s and 2 min, with the difference
between end of exercise HR and HR at 60 s post-exercise being most commonly used.
In a recent review on HRR and monitoring changes in training status, it is suggested
that HRR improves with increased training status, remains unchanged when there is
no change in training status, and decreases when training status is reduced. It was
then concluded that, with the exception of overreaching (where research is conflicting),

HRR could be used to monitor the accumulation of fatigue in athletes.

Rated Perceived Ezertion

Rated Perceived Exertion (RPE) is a self-reported metric that indicates intensity of
the exercise which scales from 0 to 10. The importance of RPE lies in the fact that
athletes can monitor their physical sensations they experience during physical activity.
Research has shown high correlation between RPE and steady-state/high intensity
exercises, however, in some studies validity of RPE’s expressiveness has been questioned

[CRMO09]. As a result, we are going to combine RPE with HR and use HR to RPE
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ratio as an indicator of fatigue as suggested in some studies [Hall4].

e (Questionnaires
Health surveys and questionnaires can be a relatively simple and inexpensive mean
of determining the training load and subsequent physiological responses to that train-
ing. In our study, we included fatigue, stress, mood, sleep and soreness to our daily

subjective questionnaire, each on a 1-5 scale.

3.2 Heart-rate Metrics

With ubiquitous sensors and decreasing cost trends in hardware costs, devices capable of
monitoring physiological signals in humans have become pervasive. Heart rate monitors
(HRMS) are widely used for monitoring patient condition in various settings and scenarios
mainly in hospitals. These HRMS widely use electrocardiogram (ECG) sensors or photo-
plythsmograms (PPG), which are useful for extracting cardiovascular health and physio-
logical dynamics. There has been an increasing interest in deploying such systems outside

hospitals in outdoor environments to monitor activity and athletic dynamics.

Elite athletes undergo various training phases, such as light and heavy training prior to
competition. Monitoring training loads and recovery periods of an athlete is interesting as
these transpositions are responsible for the disturbance of homeostasis and the autonomous
nervous system (ANS) in order to reap maximal performance [SRD13, TML09]. Knowing
when to recover and understanding the effectiveness of a training session is complex. Cur-
rently a number of assessment tools are available, including subjective metrics (ie. Wellness
surveys and ratings of perceived exertion [RPE]) as well as objective metrics (ie. Counter-
movement jump and resting heart rate. A number of factors both physiological as well as
neurological effect the stress induced by training, the precise stimuli and mechanism of fa-
tigue is complex and has yet to be completely revealed. Stress is the body’s mechanism of

responding to activity of all sorts, the individual physiological and neurological response is
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quite different from person-to-person which necessitates individual monitoring. Individual
monitoring could facilitate an individualized training program via constant observation of

the internal training stress and undulating the training stimuli based on the observed data.

In training, clinical signs of fatigue are not always attributed to training only, but can
stem from inadequate rest, nutrition, and work stress. It is noted in the medical literature
that the autonomic nervous system is largely responsible for various stress induced in the
body. The ANS is divided into the parasympathetic (resting) nervous system (PNS), and
sympathetic (fight or flight) nervous system (SNS). When the body undergoes stress due
to physical activities, or mental load the SNS dominates the ANS [DT16]. Various metrics
have been proposed to evaluate the effect of these stress on the ANS and a common metric
developed is heart rate variability (HRV). It has been shown that HRV has the potential
for use in prescribing training for athletes [Don16]. In the rest of this section will introduce

some of the most widely used methods for measuring heart activity as well as

3.2.1 PPG

The PPG technique was developed for monitoring blood pulsing under the skin and offers
a non-invasive and convenient method for vital signal monitoring. It uses photo-diodes for
detecting blood circulation on various parts of the body. As the heart undergoes pumping
action to provide nutrition to other parts of the body via blood, the density of blood cells
varies and hence the light emitted and reflected varies with the blood circulation. This is
detected using photo-diodes and measuring the amount of light being reflected as blood flow
changes. The widely used sensors use green, red infrared light for optimal blood flow detec-
tion [LMY13, KKM17]. Commonly PPG sensors are placed on the wrist, or on the finger.

The device used in our setup is placed on the finger and uses a red emitting diode.

PPG Peak Detection

The PPG signal has various distortions caused by differing skin color, motion artifact, drift
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Figure 3.1: PPG sample depicting drift caused by inhaling. In top figure the unfiltered signal
shows large variations in peak amplitudes. The bottom figure shows signal after applying

log filter.

caused by breathing and exhaling. The drift caused by exhaling and inhaling approximately

effects the signal by a proportionality constant «

gln] = ay[n] (3.1)

where g[n] is the distorted amplitude caused by exhaling and inhaling. By using a log

filter the effect of this drift will become negligible and hence bring the peaks to similar
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amplitude levels. Figure 3.1 shows the amplitude smoothing effect of applying log filter on
the PPG signal.

yi[n] = log(y[n]) = log(a) + log(y[n]) (3.2)

In our proposed peak detection algorithm we apply this transformation twice prior to
processing the signal as in algorithm 2. It should be mentioned that the sampling frequency

is 75 Hz, and we assumed a upper limit of 160 BPM for HR in the time window based filter.

3.2.2 ECG

ECG is another common method used for vital heart signal monitoring. The ECG records
the electrical activation of at different chambers of the hear. The signal comprises of different
segments, and for the purposes of calculating HRV we are interested in the largest peak in

a heart beat segment labelled as R in an ECG diagram. ECG Peak Detection

Similar to PPG, ECG is prone to various noise sources such as movement, and drift caused
by breathing. Due to the intrinsic waveform of ECG, it is relatively easier to pinpoint a peak
in the waveform. We used a real-time adaptive threshold peak detection algorithm [PT85]

for processing HRV values of ECG signals obtained from athletes.

3.2.3 HRV

HRV is a measure used to calculate the response of an athlete to training loads, overreaching
and fitness of athletes. To calculate HRV peak-peak (RR) intervals are calculated from the
peaks detected using the aforementioned algorithms. The measure used for HRV is root

mean square of successive peaks RMSSD, calculated as follows
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Algorithm 2 PPG Peak Detection

Require: length (ppg_signal[] > 10 beats)
1: for i < length(ppg_signal[]) do

B

filt_ppgl[i] = log(1 + log(ppg-signal[i] + 1))
3: end for

4: for i < length(filt_ppg_signal[]) do

5. if filt_ppglli — 1] < filt_ppgl[i] and filt_ppgl[i] > filt_ppgl]i + 1] then

6: add i to idx_peak|[] array

7 add filt_ppgli] to amp_peak[] array
8 end if

9: end for

10: mean_peaks = mean(amp_peak)

11: std_peaks = std(amp_peak]])

12: for i < length(amp_peak) do

13:  if amp_peak within 2 std of mean_peaks then
14 add amp_peaksli] to filt_ampl]

15: add idx_peaks|i] to filt_idx]]

16:  end if

17: end for

18: min_idx_diff = ﬁm

19: for i < length(filt-idz) do
20: if filt_ida[i] — filtaideli — 1] < min_idz_diff then

21: remove filt_idx|i]
22: end if
23: end for

24: return filt_idx|]
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2] = I = 1))
RMSSD = \/ N1 (3:3)

3.2.3.1 HRYV Estimation

In the medical literature the recording time for measuring HRV varies between 1 minute to
15 minute [BSY17]. Given that the system is deployed on field and athletes are generally
impatient it is undesirable to have a long measurement time. Hence, an attempt was made at
shortening the HRV calculation time. To do this the HRV value is plotted versus time as in
figure 3.2. As shown, the first 60 seconds of the measurement captures most of the variation

in the RMSSD value, and hence our RMSSD measurement time was set to 1 minute.

We attempt to reduce the time taken for measuring HRV by observing HRV plotted

versus time has a hyperbolic shape as depicted in figure 3.2.

Using this observation, we fit a hyperbola of the form y = % + b, using a subset of the
initial points. To confirm the accuracy of this interpolation 10 measurements were taken
using both ECG and PPG sensors from 2 subjects. Figure 3.3 depicts the fits achieved using
20 sample points starting from the 6" sample point. When fitting the hyperbol, the initial
several points are ignored due to the fact that the HRV calculated is using very few peaks.
By using this approximation method, it translates to a 30 second measurement requirement

with [true — fit| average error of 7.57 across both subjects.

It is important for the approximated values to capture the trends in HRV as it is the
trend in HRV values across several days is what captures indications of fatigue and athletic

performance.

3.2.4 Beat-Wise ECG Compression

ECG compression aims to compress original ECG data to lower dimension, thus allowing less

data storage and faster data transmission. In this section, we empirically study the efficacy
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Figure 3.2: Plot of RMSSD vs Time. The red curve represents true RMSSD values at that

corresponding time step.

of using one-layer autoencoder for beat-wise ECG compression and reconstruction.

One-layer autoencoder encodes its input to a hidden vector, and then decodes the hidden
vector to the output. Reconstruction error (e.g. Mean Square Error) is used to optimize
the autoencoder. When the size of hidden vector is smaller than the input, autoencoder is
forced to abstract information from the input to the hidden vector, in order to reconstruct

the original input in the decoding phase [DMH17].

In our experiment, we first detect all peaks in an ECG recording. For each peak, we
retrieve the a window of 300 data points with the peak in the middle. The autoencoder
takes the 300 data points as input and is trained to reconstruct the input using MSE loss.
The size of hidden vector is among {10,20,50,100}. We use the the normal sinus rhythm
data in a Atrial Fibrillation Classification dataset|CLM17] to train and test the one-layer
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Figure 3.3: HRV vs time. Red + represent the true values obtained, and blue represents the

hyperbol function fit using a subset of the true samples.

autoencoder. The training process is limited to 200 epochs and the model with least test

error is used for presenting the result.

As shown in figure 3.5, the autoencoders with hidden vector of size 100 and 50 can
reconstruct the shape of original data with only small error. However, the autoencoders
with hidden vector of size 20 and 10 lose too much information and cannot reconstruct some

waves in the input data.

To better understand the autoencoder, we measure the sensitivity of one element in
output with respect to the variation of each element in input. The encoding process can
be represented as multiplying the input with a matrix W, and decoding the hidden vector
to one element in the output can be represented as multiplying the hidden vector with a
matrix W, shown in figure 3.4. We choose the 250th element in the output and calculate

its sensitivity to the input. The result is plotted in figure 3.6.

In figure 3.6, we can observe that, for all different sizes of hidden vector, the 250" element
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input

Figure 3.4: ECG compression autoencoder with corresponding weight matrices W, and W,.

in output is most sensitive to the 250" element in input, which agrees with our expectation
because the autoencoder is trying to reconstruct the input. In addition, the 250" element
in output is more sensitive to the 250" element in input if the size of hidden vector is larger.
This can be explained by that an autoencoder with larger size of hidden vector can preserve

more information in the input.

3.3 Readiness Assessment

The ubiquity of wearable devices such as heart rate sensors, force sensors, accelerometers and
mobile platforms have enabled many new emerging applications in healthcare. One major
application is in sports and monitoring athletes. With these technologies, it is possible
to deploy machine learning algorithms to track a player’s movement in a game as well
as collecting physiological variables that could help extract useful indicators of an athlete’s
performance. Recently, there has been great interest in developing individualized monitoring
systems that could help both athlete and the coach to take a more quantitative approach to

assessing the athlete’s state.

Athletes undergo tremendous amounts of training everyday in order to reach their maxi-

mum performance on competition day. A byproduct of training is fatigue. Fatigue is referred
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Figure 3.5: Reconstruction result from autoencoders with different hidden size.

to as reduced capacity to perform maximal effort on related exercises [PLS13]. As an ath-
lete trains, fatigue accumulates, which is typically followed by rest or low intensity training.

Without sufficient rest and recovery, athletes will be at risk of non-functional overreaching

[Bucl4].

A well-known condition athletes may fall into is the over-training syndrome. This occurs
when an athlete sustains high intensity training for weeks and months without being given
the proper amount of rest. This results in an unstable emotional state and behavior in
the athlete, which could lead to a lack of aptitude for competition and drive for the sport.
It has been noted that following a training session the physiological improvements mainly
occur during the rest period. Hence, it is paramount to monitor athletes fatigue, fitness and
performance response to the training phases they undergo. This would lead to a quantifiable
compromise between training, and rest periods providing appropriate training intensity for

the individual.
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Athletic readiness is also an important metric for trainers. Readiness measure is used
to assess whether an athlete has reached game-day performance level. It is also used for
athletes who have sustained an injury, and are currently undergoing rehabilitation. A key
question that arises in this situation is: can athlete now sustain moderate/high intensity
training without increasing risk of injury?

Various physiological parameters such as oxygen uptake, blood lactate, saliva and specific
blood variables are monitored to quantify training load [Ple14, PRG00, DLK12]; However,
these methods are expensive and inconvenient for users. Other available measures for quanti-
fying fatigue are heart rate (HR), heart rate variability (HRV) and rate of perceived exertion
(RPE) [ASBO03]. These metrics are appealing in that they are time-efficient and inexpensive,

enabling them to be consistently used throughout training session and post-training phase.
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In this section we will propose an athletic readiness assessment framework based on these

metrics.

3.3.1 System Design

We designed a system to provide real-time feedback and analysis to the coaches and athletes
[IMDS19, MDG17]. Athletes can benefit from this system by keeping track of their HRV,
jump height, athletic survey, and RPE records and receive feedback and suggestions about

their training progress.

Here we will introduce the three components of our proposed system: Mobile platform,

sensors and back-end server.

Analytics
Engine

Figure 3.7: System overview.

3.3.1.1 Mobile Platform

The mobile platform is a kiosk which the coaches use to collect jump height, and HRV data
from athletes. The kiosk is projected on a screen allowing other players to also see the
jump height performance of the current player. This is done as to encourage maximal effort.
Further, the mobile platform provides athletes with athletic survey questionnaires and an

RPE scale which they could use to report. Once the athlete is done recording their data
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using the kiosk, the data will be sent to the server for real-time analysis.

3.3.1.2 Sensors

In order to measure HRV and jump height we use a heart rate monitoring sensor and a jump

strap respectively.

e Jump strap
The jump strap consists of a force resistor sensor [TSC10], integrated with a bluetooth
enabled MCU. The athletes strap this around their foot, and record their jump height
by pressing start on the kiosk app then performing their counter movement jump.
Data then will be transferred to a receiver box (Fig. 3.8) which also enables use of

other wired jump measurement devices (e.g. jump mats).

e Nonin Pulse Oximeter
This pulse oximeter is a photoplethysmogram (PPG) based, clinical-level heart rate
monitor that is highly portable and easy to use. The sensor sends data to the kiosk
application while the athlete is performing the measurement. Then HRV will be cal-

culated based on the heart rate signal.

3.3.2 Experiments

Our goal is to quantify readiness based on jump height, HRV, and RPE. However, we
first need to measure readiness. Athletes can subjectively reflect their readiness in their
survey questions. In other words, metrics such as sleep quality, soreness, fatigue, mood, and
stress can give us a good estimation of athletes” physical and mental condition which can be
interpreted as readiness. However, this might not be a reliable source for measuring athlete’s
performance since the athletes perception of their own conditioning could be different from

their coach’s. As a result we will measure readiness with two different methods: A subjective
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Figure 3.8: Jump receiver box built with an RFduino

readiness based on health surveys and an objective readiness based on coaches’ perception.

3.3.2.1 Experimental Setup

We tested our system on 12 male college athletes over 5 months of data collection, having
4 training sessions every week. In order to suppress the environmental effects on data
collection, our protocol required athletes to record their HRV (measured over 60 seconds)
early in the morning before engaging in any type of physical or mental challenge. Before
each training session, athletes were asked to fill out the questionnaire and coaches would

measure jump height so the current day training load would not affect their measurements.

Subjective Readiness
We define a subjective readiness score based on survey questions. The survey questionnaire

has five health components. Hence, we define readiness score as:
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Figure 3.9: Pairwise correlation plot of jump and HRV vs. fatigue, stress and sleep quality

for Athlete 1.

Sreadiness = avg(ssleep7 Sfatigue7 Ssorenessa Smood7 Sstress)

where 1 < 5; < 5.

Fig. 3.9 show the pairwise relationships of jump height, HRV and some components of
the survey for one of the athletes. As it can be seen from the figure, none of the features has
a manifest linear correlation with the other ones. As a result, we use a weighted average of

survey scores to calculate a subjective readiness and we initially set equal weights for all of

survey components.

Fig.3.10 shows the correlation of jump heights and Scqqiness for 6 athletes. This shows
that although individual survey components might not be directly correlated to jump heights,
the aggregate of these components shows a strong correlation with jump height. In a similar
way we can derive an inverse correlation between HRV and S,cqdiness as shown in Fig. 3.11. As

it can be discovered from Figures 3.10 and 3.11, HRV-readiness and jump-readiness plots have
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different characteristics among athletes. Subsequently, we might not be able to generalize
HRV-readiness relation to other athletes as some studies have shown in different populations,
reductions in parasympathetic activity (RMSSD) can indicate completely different training
adaptation [BLO7, SRD13]. Nevertheless, the HRV trends can be used to predict readiness

individually.

name = Athlete 1 name = Athlete 2 e name = Athlete 3

readiness
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Figure 3.10: jump height vs. subjective readiness correlation for 6 athletes. As it can be

seen there is a linear correlation between jump height and readiness

Objective Readiness

In order to validate the efficacy of using jump height and HRV for measuring athletic readi-
ness, we asked coaches to rate the performance of their athletes on a 1 to 100 scale for a
period of three months. Meanwhile we collected data from 80 student-athletes of four campus
club sports teams (Men’s Volleyball, Men’s Basketball, Women’s Soccer, Men’s Water polo)
five times per week during the training sessions. These jump tests were performed using the

counter-movement jump technique under the supervision of athletic performance coaches and
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Figure 3.11: HRV vs. subjective readiness correlation for 6 athletes. As it can be seen there

is a linear correlation between HRV and readiness

is an established method used by coaches, health care professionals, and strength and con-
ditioning professionals to objectively measure physical conditioning [LCK07, WBW17]. We
removed all athletes who had completed fewer than 10 jump tests. It should be noted that
the choice of these teams for our study was because of data collection resource limitations

otherwise any athlete in any sport can use the system.

We then trained several models such as linear regression and Support Vector Regression
(SVR) with different kernels over various window sizes to estimate athlete’s readiness score
based on their historical jump test as well as HRV measurements. Due to limitations of

our dataset training a neural network models was not applicable. Tables 3.3.2.1 and 3.3.2.1
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Table 3.1: Objective Readiness estimation RMSE results for various models

WINDOW SIZE, N
methods 3 4 5 6

Linear Regression | 9.43 8.12 8.69 7.88

SVR Linear Kernel | 10.13 8.15 5.68 8.23

SVR Poly Kernel | 13.33 10.04 8.52 10.44

SVR RBF Kernel | 10.36 6.05 6.33 3.98

Table 3.2: Objective Readiness estimation R? score for various models

WINDOW SIZE, N
methods 3 4 5) 6

Linear Regression | 0.659 0.744 0.790 0.774

SVR Linear Kernel | 0.606 0.742 0.802 0.754

SVR Poly Kernel | 0.318 0.608 0.550  0.605

SVR RBF Kernel | 0.587 0.857 0.752 0.942
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show the results of this experiment. The best model was SVR with RBF kernel and the best
sliding window for the jump test was 6 which is about a week of consistent data collection.

This setup achieves an MSRE of 3.6 and R? score of 0.93.

3.4 Injury Prevention

Although practice and training are associated with improvement of athletic performance,
they also carry an increased risk of injury. Sport injuries can hinder athlete’s performance
and in chronic cases can deter athletes from continuing their career. Also the medical costs
associated with these injuries are high. Overtraining and overuse of muscles or joints are the
major cause of sport injuries and the majority of such injuries are caused by minor trauma

involving muscles, ligaments, tendons, or bones.

Therefore, being able to prevent or mitigate such injuries is of interest. Injury prediction
helps reduce potential sport injuries and provides several benefits. Some benefits include a
longer duration of participation in the sport, potential for better performance, and reduced
medical costs. The question is to what extent these injuries can be prevented. In the field of
sport science, many researchers have proposed guidelines and strategies in order to reduce
the chance of injury by better preparing the athletes. Recently, more research has been

focusing on intrinsic injury prevention strategies [SCO10].

Intrinsic prevention measures involve factors that relate to the physical attributes of the
athletes themselves. These strategies focus on conditioning the athletes by making them

more prepared to endure the pressure of the sport, resulting in a decreased risk of injury.

“Factors that are intrinsic to the athlete, such as different aspects of conditioning, appear

to be promising areas for the prevention of sports injuries” [SCO10].

However, the current research lacks the real-time monitoring aspect of injury prevention.
In this section we will propose an injury prediction framework for athletes by defining a set

of muscular conditioning metrics.
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3.4.1 Training Load and Fatigue

According to [JGM17] athletes training load and fatigue should be monitored and modified
appropriately during key stages of training and competition, such as periods of intensification
of work training load, accumulated training load and changes in acute training load, otherwise
there is a significant risk of injury. As a result, we designed a monitoring system to measure

athlete’s training load and fatigue during training sessions.

Training Load

In order to measure training load, we used Rating of Perceived Exertion (RPE) method
introduced in [FFFO01]. This method, known as session-RPE method, takes into consideration
both the intensity and the duration of a training session [HSD17]. RPE is defined on a 1-10

scale. Therefore, the training load is defined as:

TL = RPE x Ty (3.4)

where T4 is the session duration in minutes.

Fatigue

Fatigue can be defined as the decrease in the baseline psychological and physiological con-
ditioning of the athlete. An accumulation of fatigue can result in overtraining, which has a
significant negative impact on performance [JGM17]. In order to measure fatigue, we have
included a body soreness survey to our data collection system such that before each training
session, each athlete will indicate the areas in which they feel pain and fatigue. Based on
suggestions from athletic performance coaches, we have indicated 26 muscles that are play-
ing significant roles in majority of training exercises. Figure 3.12 shows the soreness survey

component of data collection. Complete set of data collection components is provided in
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Figure 3.12: Body soreness survey

appendix B.1.

3.4.2 Experimental Setup

We deployed our system in an athletic training facility and collected data from 54 student
athletes across 8 different sports for 6 months. During this time, we have been receiving
injury reports from the medical team as the ground truth. Our goal is to predict the chance
of injury in the next few days given training load and fatigue measurements over a specific
period of time. We have experimented with different values of training window and compared
the results. We simplified the objective to a binary classification task for which labels are

< no njury, chance of injury >.

Problem: Given the training load and fatigue readings of an athlete for a certain time

window, predict whether an injury will happen to athlete within the next 7 days.

We have trained a 2-layer LSTM model with Adam optimizer and also an ESN network with

our proposed learning algorithm in section 2.5. The ada-ESN model has a reservoir of size
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Table 3.3: Injury classification accuracy and training time obtained by LSTM and ada-ESN

Window = 5 days Window="7 days Window=10 days
Model
acc(%) time(min) ‘ acc(%) time(min) ‘ acc(%) time(min)
ada-ESN | 63.44 £+ 1.68 0.6 76.52 +1.28 0.6 84.61 £1.02 0.5
LSTM 68.06 £ 0.62 9.2 78.28 £0.51 8.1 83.41 £ 0.58 7.8

200, spectral radius p = 1.0, input scaling a« = 0.1 and connectivity is 0.1. We trained each

model 10 times and used cross-validation to report the results.

3.4.3 Results

Table 3.4.3 shows the result of our injury prediction for various input length (time window)
over 10 runs for each configuration. We can observe that increasing input window will result
in higher accuracy which indicates the dependence of injury on long-term training load and
fatigue history. In addition, we can notice that ada-ESN’s performance with W = 10, is very
close to LSTM model while having a 15x faster training time. This result again confirms
the efficacy of ada-ESN model for TSC applications. The receiver operating characteristic

(ROC) curve of 3 ada-ESN models are compared in figure

3.5 Conclusion

Analyzing readiness and performance in athletic population is not easy. Researchers often
presents case studies analyzing a single athlete’s performance and physiological information
over a period of a few months [KPB16] and finding patterns that connect components such
as HRV to fitness. However, given the nature of these studies it is impractical to general-
ize these patterns to the rest of the population. We observed that by exploiting multiple
parameters in parallel we can narrow down our predictions about the status of each athlete

and find meaningful patterns in athletes’ training progress and adaptation (i.e. jump height
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Figure 3.13: Injury prediction ROC characteristics of ada-ESN models.

and HRV). Both subjective readiness and objective readiness methods achieved promising
results. The combination of jump score and HRV effectively allows for an individual to
assess the readiness of an athlete and in the absence of jump test and HRV test (e.g. due
to lack of equipment) we can estimate the readiness based on the subjective questionnaires.
Furthermore, we demonstrated that by monitoring training load and fatigue levels of each
athlete, we can reliably predict the risk of injury in the upcoming week which can be used
to modify or reduce the training load accordingly. Combining these findings, our proposed
athletic monitoring framework can help coaches and athletes move towards enhancing the
performance while lowering the risk of any potential injuries due to intense training or ac-

cumulated fatigue.
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CHAPTER 4

COVID-19 Region Based Analytics

In early 2020 world became a very different place as coronavirus (COVID-19) pandemic
brought most of the globe to a halt. The rapid spread of the novel coronavirus has severely
impacted almost all countries around the world. It not only has caused a tremendous burden
on healthcare providers, it has also severely impacted the global economy and social life. The
presence of reliable data and the results of in-depth statistical analyses provide researchers
and policymakers with invaluable information to understand this pandemic and its growth

pattern more clearly.

In this chapter we propose a model to help with understanding of the underlying pat-
terns of pandemic events. In order to achieve this, we gathered an extensive collection of
fine-grained regional features along with COVID-19 pandemic patterns across the United
States. The features derived from these datasets are grouped into various categories to ac-
count for their impact based on the higher-level concepts associated with them. This work
uses several correlation analysis techniques to observe value and order relationships between
features, feature groups, and COVID-19 occurrences. Dimensionality reduction techniques
and projection methodologies are used to elaborate on individual and group contribution of
these informative features to the representation variance. Then we propose an RNN-based
inference pipeline called DoubleWindow LSTM-CP (DWLSTM-CP) for predictive event mod-
eling with minimal use of historical data on outbreak events, thus utilizing sequential and
temporal patterns as well as enabling concise record representation [FMS20]. In addition,

we use ada-ESN model proposed in chapter 2 and compare results with DWLSTM-CP.
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The primarily quantitative results of our statistical analysis indicated critical patterns
reflecting on many of the expected collective behavior and their associated outcomes. As an
example, the 33% Pearson correlation with a p-value smaller than 0.0001 indicates a well-
defined relationship between the proportion of public transit in the methods of commute to

work and the daily number of deaths due to COVID-19.

Representing a region and its population can play an essential role in pandemic modeling,
and this is due to the fact that such representation reflects on the regional reaction and
susceptibility to the outbreak. The analysis presented here demonstrates that high-resolution
region-based features can be leveraged to obtain accurate outbreak event predictions while

using but a minimal amount of historical data on the pandemic patterns.

4.1 Introduction

The family of Coronaviruses to which this RNA virus belongs can cause respiratory tract
infections of various severities. These infections range from cases of the common cold to the
more lethal degrees. Many of the confirmed cases and deaths reported due to COVID-19
showed evidence of severe forms of infections [KAC12, FZS19, LCC19].

The rapid spread of this virus has inflicted enormous damage to healthcare systems,
economy and people’s lives. It is also expected to have an adverse effects on mental health
due to prolonged shutdowns and quarantines, and there are guidelines published to help

minimize this negative impact [DP].

In this work, we have gathered, processed, and combined several well-known publicly
available datasets on the COVID-19 outbreak in the United States. The idea is to provide
a reliable source of information derived from a wide range of sources on important features
describing a region and its population from various perspectives. These features are primarily
related to demographics, socioeconomic, and public health aspects of the US geographical

regions. They are chosen in this manner because it is plausible to assume that they can
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be potential indicators of commonalities between the affected areas. Even though finding
causality is not the objective of this work, our analyses attempt to shed light on these
possible commonalities that allow public health researchers to obtain a better perspective on
the nature of this pandemic and the potential factors contributing to a slower outbreak. This
is vitally important as the critical role of proper policies enforced at the proper time is evident
now more than ever. The major hypothesis that this work attempts to empirically validate is
that pandemic-related region-based representations can be learned and leveraged to obtain
accurate outbreak event prediction with only minimal use of the historical information related

to the outbreak.

In summary, the contributions of this work are as follows:

e Gathering and providing a thorough collection of datasets for the fine-grained repre-
sentation of US counties as sub-regions. This collection includes data from various
US bureaus, health organizations, the Center for Disease Control and Prevention, and

COVID-19 epidemic information.

e Evaluation of the informativeness of individual features in distinguishing between re-

gions

e Correlation analyses and investigating monotonic and non-monotonic relationships be-

tween several key features and the pandemic outcomes

e Proposing a neural architecture for accurate short-term predictive modeling of the
COVID-19 pandemic with minimal use of historical data by leveraging the automati-

cally learned region representations

Given the importance of open-research in dealing with the COVID-19 pandemic, we have
also designed OLIVIA [oli]. OLIVIA is an online interactive platform with various utilities
for COVID-19 event monitoring and analysis, which allows both expert researchers and users

with little or no scientific background to study outbreak events and regional characteristics.
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4.2 Methodology

4.2.1 Data

This study focuses on analyzing the regions of the United States with statistical and Al-based
approaches to obtain results and representations associated with their pandemic-related be-
havior. A primary and essential step in doing so is to prepare a dataset covering a wide
range of information topics, from socioeconomic to regional mobility reports. More details
regarding the primary data sources from which we have obtained information for this work’s

dataset are elaborated upon here under.

e COVID-19 Daily Information per County
Our first step towards the mentioned objective is to gather the daily COVID-19 out-
break data. This data should include the number of cases that are confirmed to be
caused by the novel coronavirus and its associated death toll. We are using the publicly
accessible dataset API in [cov, YSH20] to fetch the relevant data records. The table
of data obtained using this API contains the numerical information along with dates
corresponding to each record, and each document includes the number of confirmed
cases and the number of deaths that occurred due to COVID-19 on that date. It also
includes the number of recoveries from COVID-19 in the same format. This dataset’s
significance is that it provides us with a detailed and high-resolution temporal trajec-
tory of the COVID-19 outbreak in different urban regions across the United States.
Using the dates, one can constitute a set of time-series for every county and monitor

the outbreak along with the other metadata to make relevant inferences.

e US Census Demographic Data
The US Census Demographic Data gathered by the US Census Bureau [kagd] plays a
critical role in our analysis by providing us with necessary information on each region’s

population. Additionally, this information includes specific features such as the types of
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work people in that region mainly take part in, their income levels, and other invaluable

demographical and social information.

US County-level Mortality

The fluctuations in the mortality rate of a region is also a potential critical feature in
pandemic analytics. The US county-level mortality dataset was incorporated into our
collection to add the high-resolution mortality rate time-series throughout the years
[kagh, kage]. The age-standardized mortality rates provide us with information on
variables, the values of which can be considered as the effects of specific causes. It
is crucial since some of these causes might have contributed to the faster spread of

COVID-19 in different regions [DBS16].

US County-Level Diversity Index

Another dataset that offers a race-based breakdown of the county populations is avail-
able at [kaga] with the diversity index values corresponding to the notion of ecological
entropy. For a particular region, if K races comprise its population, the value of diver-

sity index can be computed using the following formula:

K p,

di=1-) (%)

;( +)
In the above formula, N is the total population and n; is the number of people from
race ¢. This formula represents the probability p, which means that if we randomly
pick two persons from this cohort, they are of different races with probability p. In

addition to that, we have the percentages of different races in the regional population

as well.

US Droughts by County
Another source of valuable information regarding the land area and water resources
per county is the data gathered by the US drought monitor [kagf, kagc]. This data is

incorporated into our collection as well.
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e Election
Based on the 2016 US Presidential Election, a breakdown of county populations’ ten-
dencies to vote for the main political parties is available [ele]. These records are added
to our collection as the democratic-republican breakdown of regional voters can reflect
socioeconomic and demographical features that form the underlying reasons for the

regional voting tendencies.

e ICU Beds
Since COVID-19 imposes significant problems in terms of the extensive use of ICU beds
and medical resources such as mechanical ventilators, having access to the number of
ICU beds in each county is helpful. This information offers a glance at the medical
care capacity of each region and its potential to provide care for the patients in ICUs
[kagb]. It could be argued that having knowledge of the ICU-related capacity of regional
healthcare providers can, to some extent, represent the amount of their COVID-19

related resources, such as ventilators and other needed resources.

e US Household Income Statistics
The aggregate dataset on central statistical values on the US household income per
county (including average, median, and standard deviation) is used to provide infor-

mation on the financial well-being of the affected regions’ occupants [kagg)].

e COVID-19 Hospitalizations and Influenza Activity Level
Aside from the socioeconomical and demographical features of a region, the number
of active and potential COVID-19 cases is a critical factor. This information can be
leveraged to provide a possible threat level for the region. These records are made

available by CDC for specific areas and are incorporated into our collection as well

[CDCb, CDCal.

e Google Mobility Reports
The COVID-19 virus is highly contagious. Therefore, the self-quarantine and social
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distancing measures are principal effective methodologies in bolstering the prevention
efforts. Our collection includes Google’s mobility reports obtained from [KWS20].
These records elaborate on the mobility levels across US regions, which are broken
down into the following categories of mobility:

1. Retail and Recreation

2. Grocery and Pharmacy

3. Parks

4. Transit Stations

5. Workplaces

6. Residential

In addition, we have computed a compliance measure that has to do with the overall

compliance with the shelter at home criteria:

(1/6) 329 m; — 100
100.0

compliance = —1 —

In the above formula, m; is the mobility report for the ith mobility category. This
value is computed through time to provide an overall measure of mobility through
time. The compliance measures of +1 and —1 mean +100% and —100% changes from

the baseline mobility behavior, respectively.

Food Businesses

Restaurants and food businesses are affected severely by the economic impacts of this
outbreak. At the same time, they have not ceased to provide services that are essential
and required by many. To reach a proper perspective of the food business in each
region, we have prepared another dataset based on records in [Ass] to provide statistics

on regional restaurant revenue and employment. Analysis of restaurants’ status is
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important in the sense that they are mostly public places that host large gatherings,

and in the time of a pandemic, their role is critical.

e Physical Activity and Life Expectancy
Various features have been selected from the dataset in [hea] to reflect on the obesity
and physical activity representation for different US regions. These features include
the last prevalence survey and the changes in patterns. Also, Life Expectancy related
features are valuable information for representing each region. They are included as

well in our analyses.

e Diabetes
Different features to represent a region according to the diabetes-related characteristics
were selected from the data in [hea]. These include age-standardized features and

clusters that have to do with diabetes-related diagnoses.

e Drinking Habits
Information on regional drinking habits from 2005-2012 has also been used in this
work [hea]. This information includes the proportions of different categories of drinkers
clustered by sex and age. The categories are as follows:

— “Any”: a minimum of one drink of any alcoholic beverage per 30 days

— “Heavy”: a minimum average of one drink per day for women and two drinks for

men per 30 days

— ”Binge”: a minimum of four drinks for women and five drinks for men on a single

occasion at least once per 30 days

Summary of these datasets are shown in Table 4.1.
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Table 4.1: Overview of datasets

Category

Description

Food Businesses (static)

Gender (static)
Race (static)
Election (static)

Income (static)

Commute (static)

Hospitals and Mortality (static)
Obesity and Physical Activity (static)
Life Expectancy (static)

Drinking (static)

Diabetes (static)

Land and Water (static)

Employment (static)

CDC Hospitalizations (dynamic)
Google Mobility Reports (dynamic)

Food and Beverage Locations

Restaurant Employments

Sale and Economy

Percentage of Male and Female

Ratio of different races

Ratio of Democratic, Republican, and other voters

Wage Statistics

Poverty Information

Statistics of Methods of Commute to Work and Their Ratio

Information on ICU Capacity and Statistics on Region’s Mortality
Information on the Statistics of Obesity and Physical Activity

Regional Life Expectancy Values in Years

Alcohol Consumption Patterns and Changes

Patterns of Different Types of Diabetes Diagnoses and Changes in Them
Information on Land and Water Resources of Regions

Ratio of Different Job Types and Other Statistics

Num of Hospitalizations due to COVID-19 and Influenza Activity Surveys
Breakdown of Regional Mobility in Different Categories
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4.2.2 Sub-region Feature Importance

In order to assess the importance of each feature with regards to differentiating between two
regions, we need to measure the informativeness of each feature. To begin with, we associate
a mathematical vector with each data point, which contains the values of all its dynamic and
static features associated with a specific date and location. Since we are mainly targeting US
counties in this study, each record would be associated with a US county at a specific date.
We then use Linear Principal Component Analysis [WEGS87] to reduce the dimensionality
of these data points and to evaluate the importance of the selected features in terms of their
contribution to the overall variation. Our experiments show that in order to retain over 98%
of the original variance, a minimum of 55 principal components should be considered. Each
one of these components is found as a linear combination of the original set of features, and
that along with the percentage of variance along the axis of that component can be used as
a measure of informativeness. To be more specific, considering n features and m data points

that result in p PCA components to retain 98% of the variation, we will have:

C_;: <U1,U2,"' 7/Un> ER”

And w; is the total variance along the axis of ith PCA component. This can be thought
of as a measure of importance for the PCA components, and the absolute value of v;s
magnitudes can be considered as the importance of original feature i’s contribution to its
making. Therefore, we will have the following measure of informativeness defined for our

features:

The features can be sorted according to these values, and the categories can also be considered

in their relevant importance.
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4.2.3 Statistical Analytics

In order to better understand the co-occurrences of the features in our dataset and their
corresponding COVID-19 related events, we have performed an in-depth correlation analy-
sis. We have considered four principal measures of correlation, namely: Pearson, Kendall,
Histogram Intersection, and Spearman, as described in Table 4.2. We have used the Pear-
son correlation coefficient along with the p-values to shed light on the presence or absence
of a significant relationship between the values of each specific feature and each category
of pandemic outcome. We have also computed nonparametric Spearman rank correlation
coefficients between any two of our random variables. This value would be computed as the
Pearson measure of the raw values converted to their ranks. The formulation is shown in
Table 4.2 in which d; is the difference in paired ranks. Mutual information has also been
used to provide additional information on such relationships. This coefficient measures the
strength of the association between the values of these random variables in terms of their
ranks. Since many of the relationships in our dataset can be intuitively thought of as mono-
tonic, these values are particularly important. To better understand the concordance and
discordance, Kendall correlation is computed as well. In the formulation shown in Table 4.2,
my and msy are the numbers of concordant and discordant pairs of values, respectively. Nor-
malized Histogram Intersection is another methodology directly targeting the distributions
of these variables. The degree of their overlap represents how closely x’s distribution follows

the distribution of y. It has also been utilized in finding the results of this section.

4.2.4 Pandemic Event Prediction

Following our statistical analyses on COVID-19 event distributions, we have designed a neu-
ral inference pipeline to help with the effective utilization of both learned deep representations

and the embedded sequential information in the dataset.

We propose two neural architectures, which are trained and used for COVID-19 event
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Table 4.2: The equations for the three main correlation analysis techniques used in this
work, namely, Pearson, Spearman, and Kendall correlations to evaluate the monotonic and

general relationships between variables.

Correlation Analysis Formula
p >y (T = pa) - (yi — p1y)
earson Toy = = =
S (i pe)?) - (0 (i — )2
63" dy
Spearman Spy=1— mmz=1)
mq — Mo
Kendall ky,=———~+—
)

prediction across the US regions. The Double Window Long Short Term Memory COVID-
19 Predictor (DWLSTM-CP) and ada-ESN. In both architectures, the vector of dynamic
features will be fed to the RNN-based models and spatiotemporal representation vector of
dynamic features will be calculated. Then, the vector of static features will be concatenated
with dynamic representation vector to form the complete representation of each data point.
Finally, this representation will be fed to regression unit and the output will be calculated.
The outputs are compared with the ground truth time-series, and a weighted Mean Squared
Error loss along with Norm-based regularization is used to guide the training process while
encouraging more focus on the points with large values. The overall pipeline is shown in

Figure 4.1.

It is worth mentioning that this approach leverages and utilizes all of the features dis-
cussed in the previous sections. It learns representations that take various factors, from dif-
ferent categories of mobility and activities to socioeconomic information, to make accurate
short-term predictions while reducing the need for lengthy historical data on the pandemic
outcomes. There are many occasions in which accurate and reliable historical data on the

pandemic is not available due to a variety of reasons (e.g., a problem in reporting scheme),
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Figure 4.1: Inference pipeline of DWLSTM and ada-ESN COVID-19 event prediction models.

which motivates approaches with less dependency on it.

4.3 Results

The results on our regional dataset in terms of feature importance from the principal com-
ponent analysis indicate the following features contribute to the overall representation sig-

nificantly:

e Restaurant businesses, namely the contribution to the state economy and the count
of food and beverage locations. Even though we only have access to state-level data,
its importance can be intuitively argued as it reflects on the counties that the state
includes. This is due to the fact that the status of restaurants plays an essential role

in such pandemics.

e The influenza activity level is another critical feature in the analysis. Given the sim-

ilarity of symptoms between Influenza and COVID-19 infection, monitoring Influenza
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Table 4.3: Sample Features of High and Low Informativeness Score

Level Feature Score

Diversity Index 0.148

High  Contribution of Restaurants’ Table Service to State Economy 0.130

African American Ratio 0.109
Percentage of Men 0.020
Low  Pacific Islanders Ratio 0.013
Percentage of Family Jobs 0.006

activity is very helpful for COVID-19 pandemic understanding.

e Diversity index, which signifies the probability of two randomly selected persons be-
longing to different races from a population, also plays a crucial role in representing

the regions.

e The changes in the mortality rate that is not associated with COVID-19 are beneficial
as well. This is also intuitively arguable as it can be thought of as a measure of

mortality related sensitivity for the regions.

Figure 4.2 shows how the projected points scatter after applying PCA. Table 4.3 pro-
vides the values of the aforementioned importance metric computed for sample features with

different importance levels.

4.3.1 Statistical Analytics

The results of correlation analyses help empirically and quantitatively validate many of the
relationships mentioned in the known hypotheses regarding the COVID-19 outbreak. The
Pearson correlation of —28.67% with the p-value of 0.046 indicates a significant relationship
between the percentage of food businesses in the state economy, and the average cumulative

death count in its counties. Another example is the value of the Spearman correlation coef-
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Figure 4.2: The plot in this figure is a PCA BiPlot which shows the variations of the first

two PCA components and axes of some of the selected features.
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Table 4.4: The Spearman correlation coefficients between the share of different methods of
commute in county transportation and the cumulative pandemic outcomes. As we can see,
the more the percentage of public transit is for the method of commute to work, the more
the number of potential cases is expected to be as the Spearman correlation coefficient is an

indicator of a monotonic relationship between variables.

Cumulative Death Count | Cumulative Case Count | Cumulative Recovery Count
Drive 0.22 0.20 —0.03
Carpool —0.04 0.04 0.04
Transit 0.20 0.12 —0.06
Walk —0.29 —0.35 0.05

ficients between the different types of commute to work associated with each county and the
values of the pandemic-related events. From Table 4.4, it is apparent that there is a positive
relationship between the proportion of public transit as a method of commute to work and
the spread of COVID-19 in the region. Another example is the Pearson correlation between
the ratio of different races in regions and the pandemic outcomes. It is known that COVID-
19 is affecting the African American community disproportionately [Sco]. Accordingly, the
values in Table 4.5 show a higher correlation between the ratio of African Americans and

the severity of COVID-19 outcomes.

4.3.2 Pandemic Event Prediction

The collected set of datasets in this work provide a sufficient number of records for enabling
the efficient use of Artificial Intelligence for spatiotemporal representation learning. We show
this by training instances of our proposed DWLSTM and ada-ESN architectures on the two
main short-term tasks regarding epidemic modeling; namely, new daily death and case count.

In our dataset, we considered the US COVID-19 information from March 1st, 2020 to July
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Table 4.5: Pearson correlation between the race percentages per county and COVID-19
variables, which also indicates the more diverse regions were impacted the most. This result
is in accordance with the findings of feature importance, which listed the Diversity Index as

one of the most important entities.

Race Cumulative Death | Cumulative Case | Cumulative Recovery
White —0.30 —0.48 —0.15
African-American 0.34 0.42 —0.01
Hispanic 0.04 0.23 0.2

Native American 0.03 0.02 0.03

Asian 0.14 0.11 0.04

Pacific Islander —0.03 —0.02 0.03

22nd, 2020, in which the July data is used for our evaluations, and the rest are leveraged
for training and cross-validation. The objective using which the proposed architecture was
trained is a multi-step weighted Mean Squared Error (MSE) loss, which helps to minimize
a notion of distance between the predictions and the target ground-truth while encouraging
(by assigning larger weights) to the windows that exhibit larger values. These thresholds are

empirically tuned and set prior to the training procedure.

To quantitatively evaluate the performance, we have reported the Root Mean Square
Error (RMSE) for the prediction of new daily deaths and cases due to COVID-19 in Table 4.6.
For comparison, we have used the ARIMA model as well with the parameters set according to
the work in [Kuf20] that have fine-tuned this scheme for forecasting the dynamics of COVID-
19 cases in Europe. We have also found the best ARIMA model in each scenario according
to Augmented Dickey-Fuller (ADF) tests and based on Akaike information criterion (AIC)
and reported the results denoted by ARIMA*. To compare with other works in this area, we
had to aggregate our county-level findings to form estimators for state-level prediction. From

the results reported in Table 4.7, it is interesting to observe that the aggregated estimator
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Figure 4.3: Learning curve of DWLSTM model for death count and case count experiments

based on our models achieves strong evaluation result comparable to the models that achieve
highest scores, while clearly outperforming the other two models that are inherently county-

level, namely, the works in [WWG20] and [PS20]. The learning curves for DWLSTM model

in both experiments indicate clear convergence in Figure 4.3.

The results show that our proposed DWLSTM model outperforms the ada-ESN model
in both experiments. One likely justification is that pandemic events are to some extent
stochastic and there are significant jumps in the number of cases in various regions whereas

ESN models are more suitable for continuous type time-series.

The predictions for several regions exhibiting different severities are shown in Figure 4.4.

These results can help the reader in a qualitative assessment of the model performance.

4.4 Discussion

4.4.1 Comparison with Previous Studies

Since the beginning of the COVID-19 outbreak, there have been works focusing on gathering

information or performing statistical analysis related to this epidemic. Even though our
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Table 4.6: The comparison of Average Daily Root Mean Square Error between the DWL-
STM, ada-ESN and the ARIMA-based predictions. The evaluation is performed on the test

set, which includes the data from the end of June 2020 to July 22nd, 2020.

New Daily Deaths New Daily Cases
Objective and Timeframe

10-day  15-day 10-day 15-day
DWLSTM 4.4347  3.0435 81.4205  92.4027
ada-ESN 13.3210 9.0240 109.2287 111.5355
ARIMA* 29.9813 12.7631 233.3008  235.3828
ARIMA(1,2,0) 57.1886 22.4285 394.3747  566.5686

Location: Camden - NJ Location: Marin - CA

Figure 4.4: Sample Test Prediction of Cumulative Death Count per 100k Population - Four
regions exhibiting different severity levels are chosen to show the efficacy of the model. The
95% confidence intervals for ARIMA* and DWLSTM models are shown and clearly indicate

the stability in training our model and the predictions made by it.
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Table 4.7: An overview of the comparisons for the evaluation results on DWLSTM and
ada-ESN compared to seven COVID-19 prediction models is shown in this table. The eval-
uations for the DWLSTM and ada-ESN have been done for the next 15 days during the
month of July until July 22nd, in which many drastic changes to the pattern of the outbreak
have been observed in the US, especially in California and Texas. The other models are eval-
uated until June 28th and on different datasets on pandemic events, namely, Johns Hopkins
University (JHU) [YSH20, cov], New York Times dataset (NYU) [nyt], and the US Facts
dataset (USF) [usf]. It should also be noted that even though the objective for the DWLSTM
and ada-ESN models was to predict county-level information, the provided state-level errors
which are obtained by aggregation fall in the range of the dominant COVID-19 predictor

models that rely heavily on the accuracy of the historical epidemic data.

model Window (days) Avg Daily RMSE Ground-truth Source
DWLSTM 15 26.23 JHU!
ada-ESN 15 29.43 JHU
SlkJa 14 23.63 JHU
UCLA SuEIR 14 22.97 NYT
CovidActNow SEIR CAN 14 27.78 NYT
IowaStateLW. STEM 14 26.67 JHU
Covid19Sim Simulator 14 27.82 JHU
JHU IDD CovidSP 14 48.97 USF
CU Select 14 32.36 USF
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model is trained with the objective of providing county-level predictions, we have aggregated
these county-level predictions and used these now state-level estimators to evaluate the loss
on the most recent data. In Table 6, we have compared these results with the information
on the similar performance measure of the seven COVID-19 prediction works that perform
state-level inference making. It can be seen that our framework provides a simple solution
which outperforms the other county-level methodologies (namely, [WWG20] and [PS20]) on
this task.

4.4.2 Limitations

The initial notion of feature informativeness which was discussed in the earlier sections of
this article mainly has to do with the contribution of features to the variance in representing
regions and areas. Given the nature of this study, combining this with more in-depth prior
domain knowledge about important pandemic metrics can help with a better definition of
feature importance. Our methodology provides the means to use region-based representa-
tions to obtain predictions with less reliance on the historical epidemic data. Nevertheless,
generalizing the network architecture in this work and providing access to more extended and
reliable historical data, if possible, can be an improvement and is worthwhile as a potential
future direction. Utilizing attention-based methodologies and other interpretation techniques
with the pre-trained weights is also a well-suited future direction to better understand what

the models learn.

4.4.3 Conclusions

In this study, we gathered a collection of datasets on a wide range of features associated with
US regions. Our approach then used various statistical techniques and machine learning to
measure the relationship between these regional representations and the pandemic time-series

events and perform predictive modeling with minimal use of historical data on the epidemic.
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Both quantitative and qualitative evaluations were used in assessing the efficacy of our design,
which renders it suitable for applications in various areas related to pandemic understanding
and control. This is crucial since the information on the patterns and predictions related to
an outbreak play a critical role in elaborate preparations for the pandemic, such as improving
the allocation of resources in healthcare systems that will otherwise be overwhelmed by an

unexpected number of cases.
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CHAPTER 5

Conclusion and Future Directions

In order to overcome some of the known challenges in training recurrent neural network
models for capturing long temporal dependencies in time series data and reducing train
time, we proposed an RC based model and optimization algorithm. We reviewed some
of the state-of-the-art RNN models and RC models and compared their performance on
a variety of time series classification tasks. Through an extensive set of experiments, we

validated the efficacy of hour proposed model

Moreover, we proposed an athletic performance monitoring system to be used by coaches
and athletes to measure the conditioning and readiness of athletes and prevent future injuries
due to overtraining and fatigue. We defined a set of performance measures and designed
models to assess the performance of athletes and predict the risk of injury through consistent

measurements.

Finally, we studied the recent COVID-19 pandemic events as a time series problem. We
gathered a collection of datasets on a wide range of features associated with US regions. We
used various statistical techniques and machine learning models to measure the relationship
between these regional representations and the pandemic time-series events and perform
predictive modeling with minimal use of pandemic events historical data. This is particularly
important since the information on patterns and predictions related to an outbreak play a
critical role in elaborate preparations for the pandemic, such as improving the allocation
of resources in healthcare systems that will otherwise be overwhelmed by an unexpected

number of cases.
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Fast recurrent models that can capture temporal dependencies are becoming of interest
more than ever by advancements in edge computing and hardware accelerators. Machine
learning hardware for real-time temporal data processing can be used in many daily tasks
in the future and that is the reason a lot of companies and researchers are investing in this
branch of research. Some RC models show promising results for developing next-generation
machine learning hardware devices and chips. As a result there is a great amount demand
for RC optimization algorithms that can help with faster training and inference on hardware

to reduce the power consumption.
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APPENDIX A

Model Evaluation Subtleties

In Fig. A.1, we used an LSTM Network that makes predictions according to the data at
previous times on an EMG signal. However, when zooming in a bit on the model predictions

we start to see what the model is actually doing.
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—— EMG Predicted —— EMG Predicted
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Figure A.1: EMG signal prediction and magnified view. Showing the predictor is using old

values of the original signal although it achieves a high r2 score (0.88).

Time series data tend to be correlated in time, and exhibit a significant autocorrelation.
In this case, that means that the index at time “t+1” is quite likely close to the index at
time “t”. As illustrated in the above figure to the right, what the model is actually doing
is that when predicting the value at time “t+1”, it simply uses the value at time “t” as
its prediction (often referred to as the persistence model). Plotting the cross-correlation

between the predicted and real value (below figure), we see a clear peak at a time lag of
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1 day, indicating that the model simply uses the previous value as the prediction for the

future.

This means that when evaluating the model in terms of its ability of predicting the
value directly, common error metrics such as mean percentage error and R2 score both
indicate a high prediction accuracy. However, as the example data is generated through a
random walk process, the model cannot possibly predict future outcomes. This underlines
the important fact that simply evaluating the models predictive powers through directly
calculating common error metrics can be very misleading, and one can easily be fooled into

being overly confident in the model accuracy.
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APPENDIX B

Athletic monitoring data collection

B.1 App Screenshots

Here are screenshots from the data collection app we discussed in chapter 3
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Figure B.2: RPE Survey
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Wellness Survey
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Figure B.3: Wellness Survey
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APPENDIX C

COVID-19 Pandemic

C.1 Early-phase Analytics

It is important for a predictive modeling approach on the pandemics to be able to help
when the epidemic is in its early stages. To evaluate the performance of our approach, we
have performed experiments on the early stages of the COVID-19 pandemic as well. In this
particular dataset, the March 1st, 2020 to May 5%, 2020 date range is covered. Using a
k-fold validation approach, the performance of the model is evaluated and reported in Table
C.1 and C.2. It is shown that the network operates significantly better than ARIMA*, the
details of which were discussed in the article. Please note that ARIMA based models have

shown success in predicting COVID-19 events in the literature.

Table C.1: This table shows the average Daily Root Mean Square Error for the DWLSTM
model compared to the ARIMA* predictions. The evaluations are done using a dataset that
contains only the early stages of the COVID-19 outbreak in the US. The objective in the

following experiments was to predict the new daily death counts for the US counties.
DWLSTM ARIMA¥*

Macro Micro Macro Micro

10-day window  15.62 38.12 91.06  237.07
15-day window  16.80 40.72 12092 339.51
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Table C.2: This table shows the average Daily Root Mean Square Error for the DWLSTM
model compared to the ARIMA* predictions. The evaluations are done using a dataset that
contains only the early stages of the COVID-19 outbreak in the US. The objective in the
following experiments was to predict the new daily confirmed COVID-19 case counts for the

US counties.

DWLSTM ARIMA*

Macro Micro Macro Micro

10-day window  70.44  107.34 184.27  271.87
15-day window 9145  134.22 512.09 1215.06

C.2 Different Pandemic Events

In the first appendix, the performance of the model on the two main tasks regarding COVID-
19 predictions and simulations was demonstrated. To add on that, Table C.3 shows the
performance of the model on the task of predicting normalized cumulative death counts for
each county which is attributed to the pandemic. The other factor that is shown in Table C.3
is the variations of the performance level by changing the length of the prediction window.
This suggests that in the early stages, since the available data is limited, choosing smaller
windows would help with the performance. However, based on the results in the article we
came to know that as more data becomes available, the performance on the longer windows

can be significantly improved.
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Table C.3: This table shows the results of evaluating the trained DWLSTM model in com-
parison to the best ARIMA models in performing the prediction task on the normalized

cumulative death counts due to COVID-19.
DWLSTM (Daily) ARIMA* (daily)

Macro Micro Macro Micro
10-day window  14.68 33.57 18.34 43.38
15-day window  17.24 39.98 22.06 54.72
20-day window  24.15 55.98 26.62 67.15

C.3 Impact of Highly Affected Areas

As an experiment to show the impact of the highly affected areas in teaching the machine
learning model in our approach, we have tried removing the counties of New York state
from the dataset and showed the results in Table C.4. The results indicate that in terms of
quantitative assessment, the lack of presence for the highly affected areas causes a significant
drop in the loss values. However, the qualitative analysis showed that the models do not
perform well in the case of rising values, as the amount of information available on such cases
to train the network on is fairly limited. This causes both family of models to be biased in

making predictions that tend to underestimate the target values.

Table C.4: The performance of DWLSTM and the ARIMA* predictions on the early
COVID-19 epidemic (until May 5th, 2020). The objective in training the models was the
prediction of normalized cumulative death counts due to the pandemic, and the performance

is measured in terms of Daily RMSE on predicting the new daily death counts per county.

DWLSTM (Daily) ARIMA* (daily)

Macro Micro Macro Micro
10-day window without NY counties 5.35 5.91 5.07 5.49
10-day window 14.68 33.57 18.33 43.48
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